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Abstract

This paper considers the identi�cation of social interaction e¤ects in the context

of multivariate choices. First, we generalize the theoretical social interaction model to

allow individuals to make interdependent choices in di¤erent activities. Based on the

theoretical model, we propose a simultaneous-equation network model and discuss the

identi�cation of social interaction e¤ects in the econometric model. We also provide an

empirical example to show the empirical salience of this model. Using the Add Health

data, we �nd that a student�s academic performance is not only a¤ected by academic

performance of her peers but also a¤ected by screen-related activities of her peers.
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1 Introduction

Peer choices and/or peer characteristics have been shown to be important in predicting

individual outcomes, ranging from education and crime to participation in the labor market

(see, e.g., Ioannides and Loury, 2004; Sacerdote, 2011; Patacchini and Zenou, 2012). Most

of this literature has, however, focused on peer e¤ects on choices regarding one speci�c

activity.

In reality, individuals make a multitude of choices in di¤erent activities, many of which

may depend on each other. As a result, an individual may have di¤erent and sometimes

opposite in�uences on her friend. For example, if a student is very active in extracurricular

activities but also studies very hard, how would these choices a¤ect the study e¤ort of her

friends? The peer e¤ects of interdependent choices is what we study in this paper. Our

purpose is to help understand the decision making process involving multiple activities in

the context of peer in�uences and social networks.

The contribution of this paper is threefold. First, we provide a microfoundation that

helps characterize the decision making process in multiple activities in a social interaction

setting. The theoretical model we consider has two important features. First, as is common

in this literature (see, e.g., Ballester et al., 2006; Bramoullé and Kranton, 2007; Bramoullé

et al., 2014; Jackson and Zenou, 2015), our model has the feature that individuals enjoy

utility as a function of peers�choices. Second, our model allows individuals to make choices

in multiple activities that have an arbitrary degree of complementarity or substitutabil-

ity.1 The model is general enough to encompass arbitrary combinations of choices without

making assumptions regarding the orderings of choice bundles. This generality is essential

because combining sets of choices into bundles in a social interaction context dramatically

1Belhaj and Deroïan (2014) and Chen et al. (2015) develop a network model where two activities
are considered. Both papers only analyze the theoretical implications of their respective models without
addressing econometric issues.
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restricts the set of possible actions available to individuals. It is easy to construct exam-

ples of preference reversals in the bundled goods setting that comply with standard choice

axioms in the general setting considered here.

Second, we investigate the identi�cation of peer e¤ects in the context of multivariate

choices. The econometric model implied by the best response function of the theoreti-

cal model extends the simultaneous-equation spatial autoregressive model introduced by

Kelejian and Prucha (2004) to allow for network �xed e¤ects. As single-activity social

interaction models (e.g., Bramoullé et al., 2009; Lee et al., 2010), our model includes the

within-activity peer e¤ect (also known as the endogenous peer e¤ect in single-activity social

interaction models) where an individual�s choice in an activity may depend on the choices

of her peers in the same activity; the contextual e¤ect, where an individual�s choice may

depend on the exogenous characteristics of her peers; and the correlated e¤ect, where indi-

viduals in the same network tend to behave similarly because they have similar unobserved

individual characteristics and/or face similar institutional environments. The re�ection

problem (Manski, 1993) is well known and emerges from the coexistence of these e¤ects.

Furthermore, an individual�s choice in a certain activity may depend on her own choices

in related activities. This is the usual simultaneity e¤ect that is endemic in simultaneous-

equation models. To distinguish it from other types of simultaneity e¤ects in our model,

we call it the self-simultaneity e¤ect. Finally, our model includes a new type of social inter-

action e¤ect, the cross-activity peer e¤ect, where an individual�s choice in an activity may

depend on the choices of her peers in related activities. Following Bramoullé et al. (2009),

we provide identi�cation conditions for the di¤erent social interaction and simultaneity

e¤ects based on the topology of underlying networks.

Third, we test the empirical salience of this model. Using a representative sample

of U.S. teenagers in the National Longitudinal Study of Adolescent Health (Add Health)
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data, we �nd that a student�s academic performance is positively a¤ected by academic

performance of her peers and negatively a¤ected by screen-related activities of her peers.

The rest of the paper is organized as follows. We develop a general theoretical model

in Section 2. Section 3 presents the econometric model implied by the theoretical model

and Section 4 discusses the identi�cation of peer e¤ects. Section 5 provides an empirical

example. Finally, Section 6 concludes. The proofs are collected in the web appendix.

2 Theoretical Model

Suppose a �nite set of individuals f1; � � � ; ng is connected by a network. We keep track of

social connections in the network through an adjacency matrixG = [gij ]. Let ni denote the

number of direct connections of individual i. For ease of presentation, we assume ni > 0 for

all i. The (i; j)-th element of G is given by gij = 1=ni if individuals i and j are connected

and gij = 0 otherwise. We set gii = 0. We de�ne the peers of individual i as the set of

individuals connected to individual i, i.e. fj : gij > 0g. An example is given in Figure 1

for a star-shaped network with four individuals.

3 4
1

2

G =

266666664

0 1=3 1=3 1=3

1 0 0 0

1 0 0 0

1 0 0 0

377777775
Figure 1: an example of G for a star-shaped network.

In the network game, individuals choose their e¤ort levels in two activities, denoted

by y1 = (y11; � � � ; yn1)0 and y2 = (y12; � � � ; yn2)0, to maximize their utility. The utility of
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individual i is a linear-quadratic function of the e¤ort levels y1 and y2 given by

Ui(y1;y2) = $i1yi1 +$i2yi2 +
Pn
j=1 gij(%11yj1yi1 + %12yj1yi2 + %21yj2yi1 + %22yj2yi2)| {z }

payo¤

�1
2
('11y

2
i1 + 2'12yi1yi2 + '22y

2
i2)| {z }

cost

: (2.1)

As in the single-activity linear-quadratic utility function considered in Ballester et al.

(2006), the utility given by (2.1) has two components: payo¤ and cost. The marginal

payo¤ of individual i�s e¤ort in activity k (for k = 1; 2) depends on (exogenous) attributes

of individual i given by $ik and the average e¤ort of her peers in the same and related

activities given by
P2
l=1 %lk

Pn
j=1 gijyjl. The parameter %lk (for k; l = 1; 2) captures the

strategic substitutability or complementarity (depending on the sign of %lk) between indi-

vidual i�s own e¤ort in activity k and her peers�average e¤ort in activity l. The marginal

cost of individual i�s e¤ort in activity k depends on individual i�s e¤ort in both activities.

The parameter '12 measures the substitutability or complementarity (depending on the

sign of '12) of an individual�s e¤ort levels in these two activities.

Given the network structure and e¤ort levels of the peers, individual i chooses e¤ort lev-

els yi1 and yi2 to maximize the utility (2.1). From the �rst order condition, the equilibrium

best response function is

yik = �lkyil + �kk
Pn
j=1 gijyjk + �lk

Pn
j=1 gijyjl + �ik; for k = 1; 2 and l = 3� k;

where �lk = �'12='kk, �kk = %kk='kk, �lk = %lk='kk, and �ik = $ik='kk. In matrix form,

the equilibrium best response function is given by

yk = �lkyl + �kkGyk + �lkGyl + �k; for k = 1; 2 and l = 3� k; (2.2)
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where �k = (�1k; � � � ; �nk)0. Let

S = (1� �12�21)In � (�11 + �22 + �21�12 + �12�21)G+ (�11�22 � �12�21)G2: (2.3)

If �12�21 6= 1 and

maxfj�11 + �21�12j+j�21 + �21�22j ; j�22 + �12�21j+j�12 + �12�11jg < j1� �12�21j ; (2.4)

then S de�ned in (2.3) is nonsingular and the network game with the utility (2.1) has a

unique Nash equilibrium in pure strategies with the equilibrium e¤orts given by

yk = S
�1[(In � �llG)�k + (�lkIn + �lkG)�l]; for k = 1; 2 and l = 3� k:

This theoretical model provides a microfoundation to understand an individual�s be-

havior involving multiple activities and motivates the econometric model considered in

the following section. However, it is worth noting that the best response function that

the econometric model is based on can be derived from theoretical models with other un-

derlying utility functions (see web Appendix A). Hence, the usefulness of the proposed

econometric model is not limited to the speci�c structural model considered here.

3 Simultaneous-Equation Network Model

3.1 The econometric model

Consider a data set containing �r networks, with nr individuals in the r-th network (r =

1; � � � ; �r) and
P�r
r=1 nr = n. Links between individuals in network r are captured by

an nr � nr zero-diagonal row-normalized adjacency matrix Gr = [gij;r] as de�ned in the

previous section.
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Our speci�cation of the econometric model follows closely from the equilibrium best re-

sponse function of the theoretical model. For the r-th network, the best response functions

(2.2) can be written as

yk;r = �lkyl;r + �kkGryk;r + �lkGryl;r + �k;r; for k = 1; 2 and l = 3� k: (3.1)

Let �k;r = Xr�k +GrXrk + �k;r�nr + �k;r, for k = 1; 2, where Xr is an nr � p matrix of

observations on p exogenous individual characteristics, �nr is an nr � 1 vector of ones, and

�k;r is an nr � 1 vector of disturbances. Then, substitution of �k;r into the best response

functions (3.1) gives the simultaneous-equation network model

yk;r = �lkyl;r + �kkGryk;r + �lkGryl;r +Xr�k +GrXrk + �k;r�nr + �k;r; (3.2)

for k = 1; 2, l = 3� k, and r = 1; � � � ; �r.

Let diagfDsg�ss=1 denote a �generalized� block diagonal matrix with diagonal blocks

being (possibly non-square) matrices Ds�s for s = 1; � � � ; �s. For all �r networks in the

sample, the simultaneous-equation network model can be written as

yk = �lkyl + �kkGyk + �lkGyl +X�k +GXk + L�k + �k; (3.3)

where yk = (y0k;1; � � � ;y0k;�r)0, X = (X01; � � � ;X0�r)0, �k = (�0k;1; � � � ; �0k;�r)0, G = diagfGrg�rr=1,

L = diagf�nrg�rr=1, and �k = (�k;1; � � � ; �k;�r)0, for k = 1; 2 and l = 3� k.

In model (3.3), we allow network �xed e¤ects captured by �k to depend on G and X

by treating �k as vectors of unknown parameters. To avoid the �incidental parameters�

problem (Neyman and Scott, 1948) when the number of network �r is large, we transform

(3.3) with a projector J = diagfJrg�rr=1, where Jr = Inr � 1
nr
�nr�

0
nr . This transformation is
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analogous to the within transformation for �xed e¤ect panel data models. As JL = 0, the

within-transformed model is

Jyk = �lkJyl + �kkJGyk + �lkJGyl + JX�k + JGXk + J�k; (3.4)

for k = 1; 2 and l = 3� k.

Following Bramoullé et al. (2009), we assume that we observe an independently dis-

tributed sample of size �r from a population of networks with a �xed and known structure

(i.e. G is nonstochastic). We consider the identi�cation of the parameters in the within-

transformed model (3.4) given the moment conditions E(�kjX) = 0 for k = 1; 2. It is worth

noting that we do not impose any restrictions on the variance and covariance matrices of

�1 and �2 given by E(�k�0ljX), for k; l = 1; 2, except that they are �nite and the diagonal

elements of E(�k�0kjX) are bounded away from zero.

3.2 Identi�cation challenges

As in most models in the social interaction literature (see, e.g., Blume et al., 2011; Ioan-

nides, 2012), a host of identi�cation issues arises in the simultaneous-equation network

model (3.3). In particular, model (3.3) not only su¤ers from the re�ection problem as

single-activity social interaction models but also has the simultaneity issue that is endemic

to simultaneous-equation models. Our main interest in this paper is to study the identi�-

cation of the following e¤ects in this model.

The within-activity peer e¤ect and contextual e¤ect The re�ection problem

(Manski, 1993) is well known and emerges from the coexistence of the within-activity peer

e¤ect �kk (aka. the endogenous peer e¤ect in single-activity social interaction models) and

the contextual e¤ect k. In Manski�s linear-in-means model, individuals are assumed to
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be a¤ected by all members of their group and by no one outside the group, and thus the

simultaneity in behavior of individuals in the same group introduces a perfect collinearity

between the within-activity peer e¤ect and the contextual e¤ect. Hence, these two e¤ects

cannot be identi�ed in the linear-in-means model from the moment conditions E(�kjX) = 0.

In most social networks, individuals are not impacted evenly by all members in the

network. Instead, they are in�uenced by their (direct) connections or peers. Thus, the

structure of social networks can be exploited to identify peer e¤ects. This was originally

recognized in Cohen-Cole (2006) and systematically explored in Bramoullé et al. (2009).

Bramoullé et al. (2009) show that these two e¤ects can be identi�ed if intransitivities exist

in a network so that Inr ;Gr;G
2
r are linearly independent. Intuitively, if individuals i and

j are connected and j and k are connected, it does not necessarily imply that i and k are

also connected. Because of intransitivities, the characteristics of an individual�s indirect

connections are not collinear with her own characteristics and the characteristics of her

direct connections. Therefore, the characteristics of an individual�s indirect connections

can be used as instruments to identify the endogenous within-activity peer e¤ect from the

exogenous contextual e¤ect.

The cross-activity peer e¤ect and self-simultaneity e¤ect A central component

of our model is that we allow an individual�s behavior in a certain activity to be a¤ected

by her own and her peers�choices in other activities, by introducing the self-simultaneity

e¤ect �lk, and the cross-activity peer e¤ect �lk, for l 6= k. These two e¤ects bring additional

layers of complication to the identi�cation. In this paper, we show that the self-simultaneity

e¤ect, the within-activity and cross-activity peer e¤ects, and the contextual e¤ect cannot

be separately identi�ed solely relying on intransitivities of network connections. In order

to achieve identi�cation, we need to impose exclusion restrictions on the model coe¢ cients

as in a classical simultaneous-equation model (see, e.g., Schmidt, 1976).
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The correlated e¤ect Finally, in our model, the correlated e¤ect is captured by

the network �xed e¤ect parameter �k. The network �xed e¤ect can be motivated by a

two-step link formation model, where, in the �rst step, individuals self-select into di¤erent

networks based on network-speci�c characteristics and, in the second step, link formation

takes place within networks based on observable individual characteristics. Thus, network

�xed e¤ects serve as a partial remedy for the bias that originates from the possible sorting of

individuals into networks. In our identi�cation strategy, the correlated e¤ect is eliminated

by the within transformation.

4 Identi�cation of Social Interaction E¤ects

Identi�cation of the simultaneous-equation network model (3.4) via the moment conditions

E(J�1jX) = E(J�2jX) = 0 requires E(JZ1jX) and E(JZ2jX) to have full column rank,

where Z1 = [y2;Gy1;Gy2;X;GX] and Z2 = [y1;Gy2;Gy1;X;GX]. However, in general,

this rank condition is not satis�ed.

Proposition 1. For the simultaneous-equation network model (3.4), E(JZ1jX) and E(JZ2jX)

do not have full column rank.

Therefore, to achieve identi�cation, we need to impose exclusion restrictions. Model

(3.4) has a pseudo reduced form

Jyk = �
�
kkJGyk + �

�
lkJGyl + JX�

�
k + JGX

�
k + J�

�
k; (4.1)

for k = 1; 2 and l = 3� k, where

��kk = (1� �12�21)�1(�kk + �lk�kl); ��lk = (1� �12�21)�1(�lk + �lk�ll);

��k = (1� �12�21)�1(�k + �lk�l); �k = (1� �12�21)�1(k + �lkl);
(4.2)
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and J��k = (1� �12�21)�1(J�k + �lkJ�l). Our identi�cation strategy takes two steps as in

Yang and Lee (2017). In the �rst step, we show that the pseudo reduced form parame-

ters can be identi�ed by exploiting intransitivities of network connections. In the second

step, we show that the structural parameters in model (3.4) can be identi�ed from the

pseudo reduced form parameters by imposing exclusion restrictions as in a classical linear

simultaneous-equation model.

4.1 Identi�cation of pseudo reduced form parameters

The pseudo reduced form (4.1) has the same speci�cation as a simultaneous-equation net-

work model without self-simultaneity e¤ects, i.e. �12 = �21 = 0. By a similar argument

as in Bramoullé et al. (2009), this model is identi�ed if the network topology satis�es As-

sumption 1 (see the proof of Proposition 2). Let ��k;h and 
�
k;h denote the h-th element of

��k and 
�
k respectively, for k = 1; 2.

Assumption 1. (i) In the data generating process, for some h 2 f1; � � � ; pg,

(��11�
�
1;h + �

�
21�

�
2;h + 

�
1;h)[(�

�
12�

�
21 � ��11��22)��2;h + ��12�1;h � ��11�2;h]

6= (��22�
�
2;h + �

�
12�

�
1;h + 

�
2;h)[(�

�
12�

�
21 � ��11��22)��1;h + ��21�2;h � ��22�1;h]:

(ii) The matrices In;G;G2;G3;G4 are linearly independent.

Remark 1. The moment condition E(J�kjX) = 0 implies E(JykjX) = E(JZ�kjX)��k, where

Z�k = [Gyk;Gyl;X;GX] and �
�
k = (�

�
kk; �

�
lk;�

�0
k ;

�0
k )
0, for k = 1; 2 and l = 3�k. To better

understand Assumption 1 (i), consider two special cases where this assumption is violated.

In the �rst case, suppose ��k = 
�
k = 0, for k = 1; 2, in the data generating process. This

case corresponds to the situation where none of the observed exogenous characteristics

has an e¤ect on y1 and y2. In this case, E(JZ�kjX) does not have full column rank as

11



E(JGy1jX) = E(JGy2jX) = 0. In the second case, suppose the restrictions, ��11 = ��22

and ��12 = �
�
21 = 0, hold in the data generating process but the researcher estimates model

(4.1) without imposing these restrictions. This case corresponds to the situation where the

true model is a seemingly unrelated regression (SUR) network model with identical within-

activity peer e¤ects. In this case, E(JGykjX) = JG(I � ��kkG)�1[X;GX](��0k ;�0k )0, for

k = 1; 2, and hence E(JZ�kjX) does not have full column rank due to the perfect collinearity

of E(JGy1jX) and E(JGy2jX).

Remark 2. As pointed out by Bramoullé et al. (2009), the powers of the adjacency matrix

G is closely related to the diameter of the network. In graph theory, the (i; j)-th element

of Gs is non-zero if there exists a path from node i to node j of length s, and the diameter

of a network is the shortest distance between the two most distant nodes in the network.

Hence, to check the linear independence of In;G;G2;G3;G4, one could simply check if

there exists a pair of nodes i and j (i 6= j) in the network such that the shortest path from

i to j is of length 4, i.e., if the diameter of the network is no less than 4.

4.2 Identi�cation of structural parameters

If the pseudo reduced form parameters in (4.1) are identi�ed, then the structural parameters

in model (3.4) can be identi�ed via (4.2) as in a classical linear simultaneous-equation model

(see, e.g., Schmidt, 1976). To be more speci�c, Let �1 = (1;��21;��11;��21;��01;� 01)0,

�2 = (��12; 1;��12;��22;��02;� 02)0, and � = [�1;�2]. Suppose that, for k = 1; 2, there

are qk restrictions on �k of the form Rk�k = 0 where Rk is a qk� (4+2p) matrix of known

constants. Then, the su¢ cient and necessary rank condition for �k to be identi�ed by the

restrictions Rk�k = 0 is that rank(Rk�) = 1, and the necessary order condition is qk � 1.

Assumption 2. Suppose there are qk restrictions on �k of the form Rk�k = 0, such that

rank(Rk�) = 1, for k = 1; 2.
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Proposition 2. Under Assumptions 1 and 2, the simultaneous-equation network model

(3.4) is identi�ed.

To better understand Proposition 2, especially the role played by Assumption 2 in

identi�cation, consider the following examples.

Example 1. Consider the model

yk = �lkyl + �kkGyk +X�k +GXk + L�k + �k

for k = 1; 2 and l = 3� k, with its within-transformed counterpart

Jyk = �lkJyl + �kkJGyk + JX�k + JGXk + J�k: (4.3)

This model includes the self-simultaneity e¤ect and within-activity peer e¤ect but does not

include the cross-activity peer e¤ect. It has a pseudo reduced form de�ned in (4.1), where

��kk = (1� �12�21)�1�kk; ��lk = (1� �12�21)�1�lk�ll;

��k = (1� �12�21)�1(�k + �lk�l); �k = (1� �12�21)�1(k + �lkl):
(4.4)

Suppose Assumption 1 is satis�ed and the pseudo reduced form parameters can be iden-

ti�ed. Then, the parameters in model (4.3) can be identi�ed via (4.4) if Assumption

2 holds. The exclusion restriction �21 = 0 can be written as R1�1 = 0 where R1 =

[0; 0; 0;�1;01�p;01�p]. ThenR1� = [0; �22], which has rank 1 if �22 6= 0. Similarly, the ex-

clusion restriction �12 = 0 can be written as R2�2 = 0 where R2 = [0; 0;�1; 0;01�p;01�p].

Then R2� = [�11; 0], which has rank 1 if �11 6= 0. Indeed, if �11 = �22 = 0, then (4.3)

becomes a classical linear simultaneous-equation model, which cannot be identi�ed without

imposing additional exclusion restrictions.
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Example 2. Suppose X = [X1;X2], where X1 and X2 are, respectively, n � p1 and

n�p2 matrices of exogenous variables. Correspondingly, partition the parameter vectors as

follows �1 = (�
0
11;�

0
21)

0, �2 = (�
0
12;�

0
22)

0, 1 = (
0
11;

0
21)

0 and 2 = (
0
12;

0
22)

0. Consider

the model

yk = �lkyl + �kkGyk + �lkGyl +Xk�kk +GXkkk + L�k + �k

for k = 1; 2 and l = 3� k, with its within-transformed counterpart

Jyk = �lkJyl + �kkJGyk + �lkJGyl + JXk�kk + JGXkkk + J�k: (4.5)

This model has a pseudo reduced form de�ned in (4.1), where

��kk = (1� �12�21)�1(�kk + �lk�kl); (4.6)

��lk = (1� �12�21)�1(�lk + �lk�ll);

[��1;�
�
2] = (1� �12�21)�1

264 �11 �12�11

�21�22 �22

375 ;
[�1;

�
2] = (1� �12�21)�1

264 11 �1211

�2122 22

375 :
Suppose Assumption 1 is satis�ed and the pseudo reduced form parameters can be identi-

�ed. Then, the parameters in model (4.5) can be identi�ed via (4.6) if Assumption 2 holds.

The exclusion restrictions �21 = 21 = 0 can be written as R1�1 = 0 where

R1 =

264 0p2�4 0p2�p1 �Ip2 0p2�p1 0p2�p2

0p2�4 0p2�p1 0p2�p2 0p2�p1 �Ip2

375 :
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Then

R1� =

264 0p2�1 �22

0p2�1 22

375 ;
which has rank 1 if (�022;

0
22)

0 6= 0. Similarly, the exclusion restrictions �12 = 12 = 0 can

be written as R2�2 = 0 where

R2 =

264 0p1�4 �Ip1 0p1�p2 0p1�p1 0p1�p2

0p1�4 0p1�p1 0p1�p2 �Ip1 0p1�p2

375 :
Then

R2� =

264 �11 0p1�1

11 0p1�1

375 ;
which has rank 1 if (�011;

0
11)

0 6= 0.

5 Empirical Application

5.1 Data

To illustrate the empirical salience of the proposed model, we study the (peer) e¤ects of

screen-related activities (e.g., watching TV, playing video games, etc.) on the academic

performance of a student. Indeed, there is a growing concern that screen-related activities

are taking up the time of adolescents and that these activities have strong negative e¤ects

on education. In the United States, eight- to eighteen-year-olds spend more time with

media than in any other activity besides (maybe) sleeping �an average of more than 712

hours a day, seven days a week (Cordes and Miller, 2000). The TV shows they watch,

video games they play, and websites they visit have an enormous in�uence on their lives.

Moreover, there is strong evidence that screen-related activities have a negative impact
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on education. For example, in a research synthesis of 23 studies of the relation between

leisure television time and achievement, Williams et al. (1982) found an overall negative

relation between achievement and TV time. The relation between achievement and TV

watching seems to persist across research designs and background characteristics are con-

trolled for. In particular, it has been shown that TV watching negatively impacts reading

comprehension skills and reduces recreational reading (Koolstra et al., 1997). Moreover, a

number of studies have documented a signi�cant negative relationship between the amount

of time spent with screen-based media (television, movies and video games) and school per-

formance (see, e.g., Cordes and Miller, 2000; Chan and Rabinowitz, 2006; Gentile, 2009).

For example, a survey on a large, nationally representative sample of American children and

adolescents found that nearly half (47%) of heavy media users get poor grades compared to

23% of light media users (Rideout et al., 2010). A longitudinal study of elementary school

children showed that total screen time signi�cantly predicts poorer grades later in the school

year, even while controlling for other relevant characteristics (Anderson et al., 2007).

These studies, however, did not take into account peer e¤ects in these activities. To

understand the impact of peers on education and screen-related activities, we use a unique

and now widely used data set provided by the National Longitudinal Survey of Adoles-

cent Health (Add Health). The data set collected national representative information on

7th-12th graders in both public and private schools in the United States. The survey was

conducted in 1994-1995 and was designed to capture information on friends, family, school

and neighborhood in�uences on students behaviors, including academic performance, so-

cial decisions, extracurriculars, dangerous behaviors and more. Every student attending

schools on the sampling day was provided with a questionnaire that covered topics on

demographics, behavioral characteristics, education, family background and critically for

our purposes, friendships. The in-school survey was followed by four waves of in-home
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interviews with more detailed information. In this empirical study, we use the �rst wave

of the in-home interview data.

We consider the estimation of model (3.3) where y1 and y2 measure, respectively,

academic performance and screen-related activities. To be more speci�c, y1 is the average

grade (converted to a four point scale, with A = 4, B = 3, etc.) in English (or language

arts), mathematics, history (or social studies) and science at the most recent grading

period. y2 is the logarithm of the total number of hours spent on watching TV/videos and

playing video/computer games in a week. We use the logarithm to alleviate the problem

of measurement errors when a student reports spending a large amount of time on screen-

related activities. After taking the logarithm, y2 has similar mean and standard deviation

as y1. A list of the variables used in the empirical study, together with their summary

statistics, is given in Table 1.

[Insert Table 1 here]

The adjacency matrix G = [gij ] is constructed based on the friend-nomination infor-

mation provided by the Add Health data. In the in-school survey questionnaire, students

were asked to identify their 10 best friends (up to 5 female friends and 5 male friends) from

a school roster. About 6.5% of the students in the sample nominated 5 female friends and

about 3.9% of the students in the sample nominated 5 male friends. Thus the bound on the

number of friend-nominations is not binding. We de�ne gij = 1=ni if student i nominates

student j as a friend and gij = 0 otherwise, where ni is the number of nominated friends

of student i. A network is de�ned as the smallest set of students such that all students

in the same network are directly or indirectly connected through friend nominations while

no students from di¤erent networks are connected. After removing isolated students (i.e.

students who nominated no friends and were not nominated by any students) and students
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with missing observations on y1 and y2, the sample consists of 7,669 students distributed

over 124 schools. A school usually consists of several networks. In the sample used by this

empirical study, there are 1043 networks, with sizes ranging from 2 to 484.2 Among all

the networks in the sample, there are 315 networks with diameters no less than 4. Hence,

the identi�cation condition given in Assumption 1 (ii) in terms of the network topology is

clearly satis�ed for the sample considered.

5.2 Parameter estimates

We consider the estimation of model (3.4) under di¤erent exclusion restrictions. First, we

impose the exclusion restrictions that �12 = �21 = �12 = �21 = 0. Under these exclusion

restrictions, model (3.4) reduces to a single-activity social interaction model. The 2SLS

estimation results with the IV matrix Q1 = [JX;JGX;JG2X] are reported in the left

panel (under Model 1) of Table 2a. The estimates of the within-activity peer e¤ect show

that the academic performance of the peers has a statistically signi�cantly positive e¤ect

on a student�s academic performance. This result is in line with studies in the literature

showing positive peer e¤ects in education (see, e.g., Calvó-Armengol et al., 2009; De Giorgi

et al., 2010; Bifulco et al., 2011). Also, the time spent by the peers on screen-related

activities has a positive e¤ect on a student�s own time spent on these activities. However,

the estimated peer e¤ect in screen-related activities is not statistically signi�cant.

It is worth noting that the validity of the IV matrix Q1 relies on the exogeneity of

the network adjacency matrix G. If the over-identifying restrictions (OIR) test (Lin and

Lee, 2010) cannot reject the null hypothesis that the IV matrix Q1 is valid, then it provides

evidence that G is uncorrelated with the error term after controlling for the exogenous

regressors X and network �xed e¤ects. As reported at the bottom of Table 2a, the p-value

2The estimation results reported in the following subsection are qualitatively unchanged when we drop
networks of extremely small or large sizes from the sample.
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of the OIR test is larger than conventional signi�cance levels, which provides evidence for

the exogeneity of G.

[Insert Table 2a and Table 2b here]

Next, we impose the exclusion restrictions that �11 = �22 = �12 = �21 = 0. Under these

exclusion restrictions, model (3.4) becomes a classical simultaneous-equation model without

endogenous peer e¤ects. It is well known that the identi�cation of this model requires

instruments (or exclusion restrictions). Let x1 be a vector of dummy variables set equal to

1 if at least one of the non-resident biological parents of the student is a college graduate,

and 0 if the non-resident biological parents do not have a college degree or the student lives

with both biological parents.3 The intelligence of a student is likely to be correlated with her

biological parent�s education. However, the non-resident parent would have little in�uence

on the amount of time the student spends on screen-related activities. Hence, we use x1 as

an instrument for the academic performance y1. On the other hand, let x2 be a vector of

dummy variables coded as 1 if the resident parents let the student decide how much TV to

watch, and 0 otherwise. We use x2 as an instrument for y2, with the underlying exclusion

restriction that whether the student is allowed to make her own decision on how much

TV to watch only a¤ects her academic performance indirectly through how much time she

spends on watching TV. As the model includes contextual e¤ects, we use Gx1 and Gx2

as additional instruments for y1 and y2 respectively. Thus, the model is over-identi�ed.

The 2SLS estimation results with the IV matrix Q2 = [JX;JGX], where X is a matrix of

all exogenous variables (listed in Table 1) including x1 and x2, are reported in the right

panel (under Model 2) of Table 2a. The p-value of the OIR test is larger than conventional

3The e¤ects of living with both biological parents and the education level of resident parents are con-
trolled for by other regressors in X.
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signi�cance levels, which provides some evidence on the validity of the instruments. The

Cragg-Donald F statistics (Stock and Yogo, 2005) suggest the instruments are informative.

We �nd the time a student spends on screen-related activities is negatively a¤ected by her

own GPA, while a student�s academic performance is positively a¤ected by the time spent

on screen-related activities. However, neither e¤ect is statistically signi�cant.

Finally, we estimate model (3.4) with self-simultaneity e¤ects and cross-activity peer

e¤ects. As discussed in Section 4, identi�cation of this model requires exclusion restrictions.

We consider three sets of exclusion restrictions. Model 3 imposes the exclusion restrictions

that �12 = �21 = 0, i.e. no self-simultaneity e¤ects. Model 4 imposes the exclusion

restrictions that �12 = �21 = 0, i.e. no cross-activity peer e¤ects. Model 5 imposes the

same set of exclusion restrictions on the exogenous regressors as in Model 2. It is worth

noting that Model 3 has the same speci�cation of the pseudo reduced form (4.1), Model

4 conforms to the model in Example 1, and Model 5 conforms to the model in Example

2. Table 2b reports the 2SLS estimation results of these three models with the IV matrix

Q3 = [JX;JGX;JG2X], where X includes a subset of exogenous variables in X. To be

more speci�c, X includes �Age�, �Female�, �Living condition�, and �Live with both bio

parents�. As the Cragg-Donald F statistics reported in Table 2b suggest the instruments are

weak, we only use a subset of the exogenous characteristics in X to construct instruments

to alleviate the potential weak instrument bias. The estimates of these three models are

qualitatively consistent with each other. The estimates of �kk, �lk and �lk (k = 1; 2 and

l = 3 � k) satisfy the condition given in (2.4), suggesting the reduced form equations of

the system are well de�ned. From the estimates of Model 5, we �nd that the academic

performance of a student is not only positively a¤ected the academic performance of the

peers, but also negatively a¤ected by the time the peers spend on screen-related activities.

Both types of peer e¤ects are statistically signi�cant. We also �nd that the academic
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performance of a student is negatively a¤ected by the time she spend on screen-related

activities. However, only the negative e¤ect of GPA on one�s own screen-related activities

is statistically signi�cant. These results con�rm the studies cited at the beginning of this

section and, more importantly, show the importance of peer e¤ects in these activities.

5.3 Marginal e¤ects

It follows from the reduced form of model (3.3) that

@yk
@x0h

= S�1[(�lk�l;h+�k;h)In+(�lk�l;h��ll�k;h+�lkl;h+ k;h)G+(�lkl;h��llk;h)G2]

for k = 1; 2 and l = 3 � k, where xh = (x1h; � � � ; xnh)0 is the h-th column of X. For

k = 1; 2, @yk=@x0h is an n � n matrix of marginal e¤ects, with its (i; j)-th element given

by @yik=@xjh. The o¤-diagonal element of @yk=@x0h, in general, is not zero, suggesting

that a change in the h-th explanatory variable for an individual can potentially a¤ect the

dependent variable of all the other individuals in the network. Following LeSage and Pace

(2009), we de�ne the average direct impact of xh on yk as n�1
Pn
i=1 @yik=@xih and the

average indirect impact of xh on yk as n�1
Pn
i=1

Pn
j=1;j 6=i @yik=@xjh, for h = 1; � � � ; p and

k = 1; 2. Table 3 reports the average direct and indirect impacts of the exogenous variables

with standard errors calculated by the Delta method.

[Insert Table 3 here]

Due to the presence of simultaneity/peer e¤ects, the average direct impact of a covari-

ate is, in general, di¤erent from its coe¢ cient estimate reported in Table 2b. Some of the

average direct impacts even have opposite signs from the corresponding coe¢ cient esti-

mates. According to the reported marginal e¤ects, a younger white female student, who
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is in a higher grade, in excellent health, lives with both biological parents in a well-kept

home, and has well-educated resident or non-resident biological parents, is more likely to

have better academic performance. A younger non-white male student, who is in poor

health and is allowed to make own decision on TV watching time, tends to spend more

time on screen-related activities.

6 Conclusion

In this paper, we investigate the impact of peers on individual outcomes where individ-

uals embedded in a network are involved in multiple activities. We develop a general

simultaneous-equation network model that captures the di¤erent social interaction e¤ects.

In addition to endogenous, contextual and correlated e¤ects that exist in a single-activity

network model, we introduce the self-simultaneity e¤ect and the cross-activity peer e¤ect.

We provide identi�cation conditions for network models with the above e¤ects. We then

study the impact of peer e¤ects on education and screen-related activities and show that

a student�s academic performance is not only a¤ected by the academic performance of the

peers but also a¤ected by screen-related activities of the peers.

We believe that the methodology developed in this paper is important because, in

real-world situations, individuals often make decisions involving more than one activity. In

terms of policy implications, this implies that the social planner could use more than one in-

strument in constructing policy. For example, most policies aiming at reducing crime focus

on the deterrence e¤ect of punishment and the social in�uence of punishment (Patacchini

and Zenou, 2012). Using the model developed in this paper, one could characterize the

social interdependence of crime and education and develop a more e¤ective policy that uses

both punishment and education to reduce crime.

Some possible extensions of the current work are in order. First, di¤erent individu-
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als may participate in di¤erent activities. Therefore, it would be interesting to study the

sample selection issue (Heckman, 1976) in the context of social networks and multivariate

choices. Second, people may form di¤erent social networks for di¤erent activities they

participate. Hence, another thread of future research could be to consider activity-speci�c

networks and to study the formation and evolution of such networks and associated iden-

ti�cation problems. Third, sampling issues prevail in network data. It is very rare one can

observe the whole network of the full population. For example, the Add Health data used in

the empirical application does not provide information on students�friends outside school.

For the single-activity network model, there is a growing literature on the sampling issue

in network data (see, e.g., Sojourner, 2013; Liu, 2013; Liu et al., 2016; Chandrasekhar and

Lewis, 2016). It would be interesting to extend these works to the simultaneous-equation

network model.

References

Anderson, C. A., Gentile, D. A. and Buckley, K. E. (2007). Violent Video Game E¤ects

on Children and Adolescents: Theory, Research, and Public Policy, Oxford University

Press.

Ballester, C., Calvó-Armengol, A. and Zenou, Y. (2006). Who�s who in networks. Wanted:

the key player, Econometrica 74: 1403�1417.

Belhaj, M. and Deroïan, F. (2014). Competing activities in social networks, B.E. Journal

of Economic Analysis & Policy 14: 1431�1466.

Bifulco, R., Fletcher, J. M. and Ross, S. L. (2011). The e¤ect of classmate characteris-

tics on post-secondary outcomes: Evidence from the uppercaseAdd uppercaseHealth,

American Economic Journal: Economic Policy 3: 25�53.

23



Blume, L. E., Brock, W. A., Durlauf, S. N. and Ioannides, Y. M. (2011). Identi�cation

of social interactions, in J. Benhabib, A. Bisin and M. O. Jackson (eds), Handbook of

Social Economics, Vol. 1B, North-Holland, pp. 855�966.

Bramoullé, Y., Djebbari, H. and Fortin, B. (2009). Identi�cation of peer e¤ects through

social networks, Journal of Econometrics 150: 41�55.

Bramoullé, Y. and Kranton, R. (2007). Public goods in networks, Journal of Economic

Theory 135: 478�494.

Bramoullé, Y., Kranton, R. and D�Amours, M. (2014). Strategic interaction and networks,

American Economic Review 104: 898�930.

Calvó-Armengol, A., Patacchini, E. and Zenou, Y. (2009). Peer e¤ects and social networks

in education, The Review of Economic Studies 76: 1239�1267.

Chan, P. A. and Rabinowitz, T. (2006). A cross-sectional analysis of video games and

attention de�cit hyperactivity disorder symptoms in adolescents, Annals of General

Psychiatry 5: 1�10.

Chandrasekhar, A. and Lewis, R. (2016). Econometrics of sampled networks. Working

paper, Stanford University.

Chen, Y.-J., Zenou, Y. and Zhou, J. (2015). Multiple activities for socially connected

criminals. CEPR Discussion Paper No. 10709.

Cohen-Cole, E. (2006). Multiple groups identi�cation in the linear-in-means model, Eco-

nomic Letters 92: 157�162.

Cordes, C. and Miller, E. (2000). Fool�s Gold: A Critical Look at Computers in Childhood,

Alliance for Childhood.

24



De Giorgi, G., Pellizzari, M. and Redaelli, S. (2010). Identi�cation of social interactions

through partially overlapping peer groups, American Economic Journal: Applied Eco-

nomics 2: 241�275.

Gentile, D. (2009). Pathological video-game use among youth ages 8 to 18: A national

study, Psychological Science 20: 594�602.

Heckman, J. J. (1976). The common structure of statistical models of truncation, sample

selection and limited dependent variables and a simple estimator of such models,

Annals of Economic and Social Measurement 5: 475�492.

Ioannides, Y. M. (2012). From Neighborhoods to Nations: The Economics of Social Inter-

actions, Princeton University Press.

Ioannides, Y. M. and Loury, D. L. (2004). Job information networks, neighborhood e¤ects,

and inequality, Journal of Economic Literature 42: 1056�1093.

Jackson, M. O. and Zenou, Y. (2015). Games on networks, in P. Young and S. Zamir (eds),

Handbook of Game Theory, Vol. 4, Elsevier, pp. 91�157.

Kelejian, H. H. and Prucha, I. R. (2004). Estimation of simultaneous systems of spatially

interrelated cross sectional equations, Journal of Econometrics 118: 27�50.

Koolstra, C., van der Voort, T. and van der Kamp, L. (1997). Television�s impact on

reading comprehension and decoding skills: A 3-year panel study, Reading Research

Quarterly 32: 128�152.

Lee, L. F., Liu, X. and Lin, X. (2010). Speci�cation and estimation of social interaction

models with network structures, The Econometrics Journal 13: 145�176.

LeSage, J. and Pace, R. K. (2009). Introduction to Spatial Econometrics, CRC Press.

25



Lin, X. and Lee, L. F. (2010). GMM estimation of spatial autoregressive models with

unknown heteroskedasticity, Journal of Econometrics 157: 34�52.

Liu, X. (2013). Estimation of a local-aggregate network model with sampled networks,

Economics Letters 118: 243�246.

Liu, X., Patacchini, E. and Rainone, E. (2016). Peer e¤ects in bed time decisions among

adolescents: a social network model with sampled data. The Econometrics Journal,

forthcoming.

Manski, C. F. (1993). Identi�cation of endogenous social e¤ects: the re�ection problem,

The Review of Economic Studies 60: 531�542.

Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent

observations, Econometrica 16: 1�32.

Patacchini, E. and Zenou, Y. (2012). Juvenile delinquency and conformism, Journal of

Law, Economics, and Organization 28: 1�31.

Rideout, V., Foehr, U. and Roberts, D. (2010). Generation M2: Media in

the lives of 8 to 18 year olds. The Henry J. Kaiser Family Foundation,

http://�les.eric.ed.gov/fulltext/ED527859.pdf.

Sacerdote, B. (2011). Peer e¤ects in education: How might they work, how big are they

and how much do we know thus far?, in E. A. Hanushek, S. Machin and L. Woessmann

(eds), Handbook of Economics of Education, Vol. 3, Elsevier, pp. 249�277.

Schmidt, P. (1976). Econometrics, Marcel Dekker.

Sojourner, A. (2013). Identi�cation of peer e¤ects with missing peer data: Evidence from

project star, The Economic Journal 123: 574�605.

26



Stock, J. and Yogo, M. (2005). Testing for weak instruments in linear iv regression, in

D. W. K. Andrews and J. Stock (eds), Identi�cation and Inference for Econometric

Models: Essays in Honor of Thomas Rothenberg, Cambridge University Press, pp. 80�

108.

Williams, P. A., Haertel, E. H., Haertel, G. D. and Walberg, H. J. (1982). The impact of

leisure-time television on school learning: A research synthesis, American Educational

Research Journal 19: 19�50.

Yang, K. and Lee, L. F. (2017). Identi�cation and QML estimation of multivariate

and simultaneous equations spatial autoregressive models, Journal of Econometrics

196: 196�214.

27



Table 1: Data Summary 
 Definition Mean SD 

Dependent variables    
GPA The average grade in English, math, history, and science at 

the most recent grading period 
   2.87    0.73 

TV The logarithm of weekly time spent on watching TV/videos 
and playing video/computer games  

   2.84    0.82 

Control variables    
Age  Age    15.29    1.66 
Female 1 if female    0.53    0.50 
(White) 1 if White American    0.53    0.50 
African American 1 if African American    0.22    0.41 
Other races 1 if race is not White or African American    0.25    0.43 
(Freshman) 1 if in Grade 7 or 8    0.34    0.47 
Junior 1 if in Grade 9 or 10    0.38    0.48 
Senior 1 if in Grade 11 or 12    0.28    0.45 
Health 1 if health is excellent    0.30    0.46 
Living condition 1 if the building in which the respondent lives is well kept    0.59    0.49 
Live with both bio parents 1 if live with both biological parents    0.55    0.50 
(Res parent: less than HS) 1 if the resident parent’s education is less than high school    0.13    0.34 
Res parent: HS grad 1 if the resident parent’s education is high school or higher 

but no college degree 
   0.54    0.50 

Res parent: college grad 1 if the resident parent’s education is college or higher    0.29    0.45 
Res parent: educ missing 1 if the resident parent’s education information is missing    0.04    0.20 
Res parent: professional 1 if the resident parent’s job is a doctor, lawyer, scientist, 

teacher, librarian, nurse, manager, executive, director, 
technical/computer specialist, or radiologist 

   0.30    0.46 

Res parent: office worker 1 if the resident parent’s job is office worker, bookkeepers, 
clerk, secretary, sales worker, insurance agent, or store clerk 

   0.22    0.41 

Res parent: other job 1 if the resident parent’s job is not listed above    0.34    0.47 
(Res parent: no job) 1 if the resident parent does not have a job    0.13    0.34 
Res parent: job missing 1 if the resident parent’s job information is missing    0.01    0.10 
Bio parent: college grad 1 if the non-resident bio parent is a college graduate    0.08    0.26 
Own TV time decision 1 if the resident parents let the respondent decide how much 

TV to watch 
   0.81    0.39 

The variable in the parentheses is the reference category.  
If both parents are in the household, the education and job of the mother is considered. 
  



Table 2a: Parameter Estimates 
 Model 1 Model 2 
 GPA TV GPA TV 

Peer GPA   0.3999***    
  (0.1304)    
Peer TV    0.2924   
   (0.2902)   
Own GPA     -0.4652 
     (0.2908) 
Own TV     0.1941  
    (0.1985)  
Age   -0.0570***  -0.0582***  -0.0496***  -0.1008*** 
  (0.0112)  (0.0184)  (0.0173)  (0.0232) 
Female   0.2086***  -0.2650***   0.2566***  -0.1734*** 
  (0.0162)  (0.0198)  (0.0552)  (0.0626) 
African American  -0.0985***   0.2916***  -0.1652***   0.2303*** 
  (0.0338)  (0.0422)  (0.0660)  (0.0533) 
Other races  -0.0191   0.1071***  -0.0461   0.1067*** 
  (0.0284)  (0.0362)  (0.0371)  (0.0355) 
Junior   0.0461  -0.0965*   0.0701  -0.0607 
  (0.0454)  (0.0549)  (0.0485)  (0.0580) 
Senior   0.2403***  -0.0765   0.2619***   0.0665 
  (0.0555)  (0.0723)  (0.0565)  (0.1029) 
Health   0.1138***  -0.0659***   0.1421***  -0.0026 
  (0.0175)  (0.0207)  (0.0210)  (0.0437) 
Living condition   0.0727***   0.0065   0.0814***   0.0496 
  (0.0176)  (0.0209)  (0.0173)  (0.0326) 
Live with both bio parents   0.1519***  -0.0101   0.1722***   0.0731 
  (0.0192)  (0.0230)  (0.0184)  (0.0470) 
Res parent: HS grad   0.1098***   0.0104   0.1239***   0.0810 
  (0.0267)  (0.0336)  (0.0267)  (0.0500) 
Res parent: college grad   0.2418***  -0.0375   0.2806***   0.0923 
  (0.0325)  (0.0373)  (0.0319)  (0.0920) 
Res parent: educ missing  -0.0425  -0.0480  -0.0212  -0.0578 
  (0.0477)  (0.0657)  (0.0496)  (0.0642) 
Res parent: professional   0.0575**   0.0464   0.0556*   0.0774* 
  (0.0277)  (0.0343)  (0.0298)  (0.0400) 
Res parent: office worker   0.0514*   0.0918***   0.0433   0.1145*** 
  (0.0281)  (0.0351)  (0.0340)  (0.0393) 
Res parent: other job   0.0238   0.0627*   0.0153   0.0745** 
  (0.0258)  (0.0320)  (0.0291)  (0.0337) 
Res parent: job missing   0.2490***   0.0226   0.2558***   0.1389 
  (0.0869)  (0.1326)  (0.0918)  (0.1528) 
Bio parent: college grad   0.1409***  -0.0564   0.1375***  
  (0.0331)  (0.0394)  (0.0345)  
Own TV time decision   0.0116   0.1015***    0.1138*** 
  (0.0209)  (0.0255)   (0.0268) 
Contextual effects Yes Yes Yes Yes 
OIR test p-value 0.300 0.664 0.947 0.393 
Cragg-Donald F statistic 18.016 5.367 8.422 8.702 
Heteroskedastic-robust standard errors in parentheses.  
Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
To save space, estimates of contextual effects are not reported. 
 
  



Table 2b: Parameter Estimates 
 Model 3 Model 4 Model 5 
 GPA TV GPA TV GPA TV 

Peer GPA   0.4877***  -0.1320   0.5876***    0.5319***   0.2487 
  (0.1549)  (0.3835)  (0.2246)   (0.1789)  (0.2675) 
Peer TV  -0.2283   0.4545    0.4155  -0.2774*   0.1844 
  (0.2116)  (0.5609)   (0.3471)  (0.1613)  (0.4590) 
Own GPA     -0.3097   -0.4488* 
     (0.4108)   (0.2579) 
Own TV    -0.5608   -0.0688  
    (0.4678)   (0.1916)  
Age   -0.0659***  -0.0530**  -0.0940***  -0.0723***  -0.0720***  -0.0876*** 
  (0.0141)  (0.0245)  (0.0336)  (0.0270)  (0.0182)  (0.0233) 
Female   0.2068***  -0.2645***   0.0600  -0.2003**   0.1884***  -0.1720*** 
  (0.0166)  (0.0206)  (0.1255)  (0.0882)  (0.0533)  (0.0581) 
African American  -0.1035***   0.2931***   0.0651   0.2615***  -0.0845   0.2458*** 
  (0.0349)  (0.0439)  (0.1423)  (0.0593)  (0.0665)  (0.0505) 
Other races  -0.0104   0.1002***   0.0485   0.0957***  -0.0009   0.1032*** 
  (0.0302)  (0.0425)  (0.0662)  (0.0406)  (0.0388)  (0.0411) 
Junior   0.0532  -0.1003*  -0.0052  -0.0846   0.0491  -0.0730 
  (0.0467)  (0.0581)  (0.0691)  (0.0599)  (0.0501)  (0.0591) 
Senior   0.2579***  -0.0869   0.2064***  -0.0093   0.2588***   0.0391 
  (0.0588)  (0.0811)  (0.0724)  (0.1165)  (0.0588)  (0.0941) 
Health   0.1126***  -0.0623***   0.0710*  -0.0270   0.1068***  -0.0165 
  (0.0180)  (0.0240)  (0.0418)  (0.0562)  (0.0240)  (0.0404) 
Living condition   0.0733***   0.0079   0.0735***   0.0307   0.0733***   0.0390 
  (0.0180)  (0.0220)  (0.0214)  (0.0389)  (0.0182)  (0.0303) 
Live with both bio parents   0.1521***  -0.0069   0.1403***   0.0405   0.1503***   0.0545 
  (0.0196)  (0.0255)  (0.0258)  (0.0717)  (0.0204)  (0.0442) 
Res parent: HS grad   0.1143***   0.0104   0.1132***   0.0455   0.1158***   0.0606 
  (0.0279)  (0.0350)  (0.0328)  (0.0582)  (0.0280)  (0.0447) 
Res parent: college grad   0.2358***  -0.0277   0.2066***   0.0467   0.2294***   0.0673 
  (0.0336)  (0.0481)  (0.0491)  (0.1181)  (0.0368)  (0.0864) 
Res parent: educ missing  -0.0415  -0.0465  -0.0728  -0.0593  -0.0464  -0.0681 
  (0.0493)  (0.0686)  (0.0654)  (0.0700)  (0.0512)  (0.0678) 
Res parent: professional   0.0559**   0.0487   0.0802**   0.0663   0.0588*   0.0715* 
  (0.0285)  (0.0361)  (0.0386)  (0.0446)  (0.0301)  (0.0402) 
Res parent: office worker   0.0447   0.0980***   0.0954*   0.1129***   0.0491   0.1117*** 
  (0.0298)  (0.0406)  (0.0493)  (0.0463)  (0.0333)  (0.0436) 
Res parent: other job   0.0216   0.0648*   0.0564   0.0718**   0.0257   0.0727** 
  (0.0267)  (0.0335)  (0.0409)  (0.0356)  (0.0292)  (0.0348) 
Res parent: job missing   0.2419***   0.0294   0.2535**   0.1054   0.2290***   0.1319 
  (0.0898)  (0.1369)  (0.1139)  (0.1736)  (0.0912)  (0.1536) 
Bio parent: college grad   0.1502***  -0.0652   0.1200***  -0.0202   0.1497***  
  (0.0348)  (0.0484)  (0.0440)  (0.0632)  (0.0356)  
Own TV time decision   0.0123   0.1025***   0.0663   0.1064***    0.1062*** 
  (0.0215)  (0.0266)  (0.0521)  (0.0276)   (0.0272) 
Contextual effects Yes Yes Yes Yes Yes Yes 
OIR test p-value 0.374 0.518 0.643 0.650 0.501 0.839 
Cragg-Donald F statistic 4.871 1.383 0.796 2.028 2.235 1.374 
Heteroskedastic-robust standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
To save space, estimates of contextual effects are not reported. 
 
 
  



Table 3: Marginal Effects of Model 5 
 GPA TV 
 Direct Effects Indirect Effects Direct Effects Indirect Effects 

Age   -0.0686***  -0.0439  -0.0619***  -0.0755 
  (0.0153)  (0.0595)  (0.0200)  (0.0729) 
Female   0.2074***  -0.0053  -0.2663***  -0.0249 
  (0.0337)  (0.1818)  (0.0267)  (0.2214) 
African American  -0.1003**   0.0395   0.2923***  -0.0089 
  (0.0510)  (0.1982)  (0.0537)  (0.2609) 
Other races   0.0066   0.1308   0.1050**  -0.0332 
  (0.0408)  (0.1171)  (0.0513)  (0.1317) 
Junior   0.0540   0.0846  -0.0851   0.2007 
  (0.0578)  (0.1632)  (0.0644)  (0.1699) 
Senior   0.2679***   0.1810  -0.0612   0.2806 
  (0.0769)  (0.2666)  (0.0854)  (0.3440) 
Health   0.1206***   0.0576  -0.0706***  -0.0656 
  (0.0267)  (0.1307)  (0.0270)  (0.1374) 
Living condition   0.0734***   0.0204   0.0082   0.0284 
  (0.0219)  (0.0605)  (0.0249)  (0.0550) 
Live with both bio parents   0.1581***   0.0723  -0.0128   0.0078 
  (0.0245)  (0.0947)  (0.0263)  (0.0901) 
Res parent: HS grad   0.1327***   0.1553   0.0068  -0.0376 
  (0.0384)  (0.1394)  (0.0446)  (0.1336) 
Res parent: college grad   0.2608***   0.2374  -0.0426  -0.0976 
  (0.0477)  (0.2358)  (0.0462)  (0.2335) 
Res parent: educ missing  -0.0420   0.0218  -0.0473   0.0226 
  (0.0596)  (0.1357)  (0.0749)  (0.1049) 
Res parent: professional   0.0503  -0.0467   0.0472   0.0099 
  (0.0355)  (0.0906)  (0.0418)  (0.0782) 
Res parent: office worker   0.0350  -0.0640   0.0941*   0.0266 
  (0.0392)  (0.1053)  (0.0492)  (0.1003) 
Res parent: other job   0.0173  -0.0475   0.0621  -0.0144 
  (0.0330)  (0.0810)  (0.0389)  (0.0786) 
Res parent: job missing   0.2480**   0.1700   0.0255  -0.0766 
  (0.1085)  (0.2679)  (0.1496)  (0.2475) 
Bio parent: college grad   0.1512***  -0.0183  -0.0676   0.0274 
  (0.0432)  (0.1042)  (0.0438)  (0.0598) 
Own TV time decision  -0.0113  -0.0402   0.1092***  -0.0046 
  (0.0279)  (0.0671)  (0.0315)  (0.1023) 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
 



Online Appendices to

�Multivariate Choices and Identi�cation of Social Interactions�

by Ethan Cohen-Cole, Xiaodong Liu, and Yves Zenou

A Model of Social Conformity

The usefulness of the proposed econometric model is not limited to the speci�c structural

model considered in the main text. Here, we present another theoretical model to motivate

the econometric model.

Patacchini and Zenou (2012) consider a social conformity model where the social norm

is given by the average behavior of peers in a certain activity. We generalize their model by

de�ning the social norm based on the weighted average behavior of two activities. Suppose

a set of n individuals interact in a social network. Given the adjacency matrix G = [gij ],

individual i chooses e¤ort levels yi1; yi2 simultaneously to maximize her utility function

Ui(y1;y2) =
P2
k=1$ikyik �

1

2
('11y

2
i1 + 2'12yi1yi2 + '22y

2
i2)

�1
2

P2
k=1 �k(yik �

P2
l=1 %lk

Pn
j=1 gijyjl)

2:

The �rst term of the utility captures the payo¤ from the e¤orts with the productivity of

individual i in activity k given by $ik. The second term is the cost from the e¤orts with

the substitution e¤ect between e¤orts in di¤erent activities captured by '12. The last

term re�ects the in�uence of an individual�s friends on her own behavior. It is such that

each individual wants to minimize the social distance between her own behavior yik to the

social norm of that activity. The social norm for activity k is given by the weighted average

behavior of her friends in the two activities
P2
l=1 %lk

Pn
j=1 gijyjl with the weights %lk such

that %1k + %2k = 1. The coe¢ cient �k captures the taste for conformity.
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Maximizing the utility function yields the best response function

yik = �lkyik + �kk
Pn
j=1 gijyjk + �lk

Pn
j=1 gijyjl + �ik; for k = 1; 2 and l = 3� k;

where �lk = �'12=('kk + �k), �kk = �k%kk=('kk + �k), �lk = �k%lk=('kk + �k), and

�ik = $ik=('kk + �k). Let �ik = x
0
i�k +

Pn
j=1 gijx

0
jk + �k + �ik (the network subscript

r is suppressed for simplicity). Then, the best response function implies the econometric

model considered in this paper.

B Proofs

Proof of Proposition 1. The reduced form of the model is

y1 = S�1[X(�21�2 + �1) +GX(�21�2 � �22�1 + �212 + 1) +G2X(�212 � �221)

+(�21 + �21)L�2 + (1� �22)L�1 + (In � �22G)�1 + (�21In + �21G)�2]

y2 = S�1[X(�12�1 + �2) +GX(�12�1 � �11�2 + �121 + 2) +G2X(�121 � �112)

+(�12 + �12)L�1 + (1� �11)L�2 + (In � �11G)�2 + (�12In + �12G)�1]; (B.1)

where

S = (1� �12�21)In � (�11 + �22 + �21�12 + �12�21)G+ (�11�22 � �12�21)G2: (B.2)

E(JZ1jX) = [E(Jy2jX);E(JGy1jX);E(JGy2jX);JX;JGX] has full column rank if and

only if

E(Jy2jX)d1 + E(JGy1jX)d2 + E(JGy2jX)d3 + JXd4 + JGXd5 = 0 (B.3)

2



implies that d1 = d2 = d3 = 0 and d4 = d5 = 0. As JGJ = JG, JSJ = JS and SG = GS,

if we premultiply (B.3) by JS, then it follows from the reduced form equations (B.1) that

JX�1 + JGX�2 + JG
2X�3 + JG

3X�4 = 0

where

�1 = (�12�1 + �2)d1 + (1� �12�21)d4

�2 = (�12�1 � �11�2 + �121 + 2)d1 + (�1 + �21�2)d2 + (�12�1 + �2)d3

�(�11 + �22 + �12�21 + �21�12)d4 + (1� �12�21)d5

�3 = (�121 � �112)d1 + (�21�2 � �22�1 + �212 + 1)d2 + (�12�1 � �11�2 + �121 + 2)d3

+(�11�22 � �12�21)d4 � (�11 + �22 + �12�21 + �21�12)d5

�4 = (�212 � �221)d2 + (�121 � �112)d3 + (�11�22 � �12�21)d5:

If d2 = (�12 + �11�12)d1=(�12�21 � 1), d3 = (�22 + �21�12)d1=(�12�21 � 1), d4 = (�12�1 +

�2)d1=(�12�21 � 1) and d5 = (�121 + 2)d1=(�12�21 � 1), then (B.3) holds. Therefore,

E(JZ1jX) does not have full column rank. Similarly, E(JZ2jX) does not have full column

rank.

Proof of Proposition 2. The identi�cation of the structural parameters takes two

steps. In the �rst step, we show that the pseudo reduced form parameters can be identi�ed

under Assumption 1. In the second step, we show that the structural parameters can be

identi�ed from the pseudo reduced form parameters under Assumption 2.

Step 1. The proof follows a similar argument as in Bramoullé, Djebbari and Fortin

(2009). We �rst show that, under Assumption 1 (ii), �0In + �1G + �2G
2 + �3G

3 has

identical rows implies �0 = �1 = �2 = �3 = 0. If �0In+ �1G+ �2G
2+ �3G

3 has identical
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rows, then

�0�n + �1G�n + �2G
2�n + �3G

3�n = c0�n; (B.4)

for some constant c0. As G�n = �n, multiplying both sides of (B.4) by G gives

�0G�n + �1G
2�n + �2G

3�n + �3G
4�n = c0�n: (B.5)

Subtracting (B.4) from (B.5) gives �0�n+(�1��0)G�n+(�2��1)G2�n+(�3��2)G3�n�

�3G
4�n = 0, which implies �0 = �1 = �2 = �3 = 0 under Assumption 1 (ii).

The moment conditions E(J�1jX) = E(J�2jX) = 0 imply that

E(Jy1jX) = ��11E(JGy1jX) + ��21E(JGy2jX) + JX��1 + JGX�1

E(Jy2jX) = ��22E(JGy2jX) + ��12E(JGy1jX) + JX��2 + JGX�2:

Let �� = (��01 ;�
�0
2 )
0 with ��k = (�

�
kk; �

�
lk;�

�0
k ;

�0
k )
0, for k = 1; 2 and l = 3�k. If [E(JGy1jX),

E(JGy2jX);JX;JGX] has full column rank, then �� and e�� leading to the same E(Jy1jX)
and E(Jy2jX) implies �� = e��, i.e. �� is identi�ed. [E(JGy1jX);E(JGy2jX);JX;JGX]
has full column rank if

E(JrGry1;rjXr)d1 + E(JrGry2;rjXr)d2 + JrXrd3 + JrGrXrd4 = 0 (B.6)

implies that d1 = d2 = 0 and d3 = d4 = 0, for some network r. The pseudo reduced form

equations imply

E(Jry1;rjXr) = JrS
��1
r [Xr�

�
1 +GrXr(�

�
21�

�
2 � ��22��1 + �1) +G2

rXr(�
�
21

�
2 � ��22�1)]

E(Jry2;rjXr) = JrS
��1
r [Xr�

�
2 +GrXr(�

�
12�

�
1 � ��11��2 + �2) +G2

rXr(�
�
12

�
1 � ��11�2)]
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where S�r = Inr�(��11+��22)Gr+(�
�
11�

�
22���12��21)G2

r . As JrGrJr = JrGr, JrS�rJr = JrS
�
r

and S�rGr = GrS
�
r , premultiplying (B.6) by JrS

�
r gives

Pp
h=1(�0;hInr + �1;hGr + �2;hG

2
r + �3;hG

3
r)xr;h = c1�nr (B.7)

where xr;h is the h-th column of Xr,

�0 = (�0;1; � � � ; �0;p)0 = d3

�1 = (�1;1; � � � ; �1;p)0 = ��1d1 + ��2d2 � (��11 + ��22)d3 + d4

�2 = (�2;1; � � � ; �2;p)0 = (��21��2 � ��22��1 + �1)d1 + (��12��1 � ��11��2 + �2)d2

+(��11�
�
22 � ��12��21)d3 � (��11 + ��22)d4

�3 = (�3;1; � � � ; �3;p)0 = (��21�2 � ��22�1)d1 + (��12�1 � ��11�2)d2 + (��11��22 � ��12��21)d4

and c1 = n�1r �
0
nr(Xr�0 +GrXr�1 +G

2
rXr�2 +G

3
rXr�3). As (B.7) holds for all possible

realizations of xr;h, �0;hInr + �1;hGr + �2;hG
2
r + �3;hG

3
r has identical rows. Therefore,

�0 = �1 = �2 = �3 = 0, which implies that d1 = d2 = 0 and d3 = d4 = 0 under

Assumption 1 (i). Hence, [E(JGy1jX);E(JGy2jX);JX;JGX] has full column rank and

thus �� is identi�ed.

Step 2. Under Assumption 2, the identi�cation of the structural parameters from the

pseudo reduced form parameters follows the same argument as in a classical simultaneous-

equation model (see, e.g., Schmidt, 1976), and thus the proof is omitted here.
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