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Abstract

The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very

constrained Dirac neutrino mass matrix, involving one texture zero and two inde-

pendent Dirac masses, leading to a highly predictive scheme in which all neutrino

masses and the entire PMNS matrix is successfully predicted in terms of just two

real parameters. We calculate the renormalisation group (RG) corrections to the LS

predictions, with and without supersymmetry, including also the threshold effects

induced by the decoupling of heavy Majorana neutrinos both analytically and nu-

merically. We find that the predictions for neutrino mixing angles and mass ratios

are rather stable under RG corrections. For example we find that the LS model

with RG corrections predicts close to maximal atmospheric mixing, θ23 = 45◦ ± 1◦,

in most considered cases, in tension with the latest NOvA results. The techniques

used here apply to other seesaw models with a strong normal mass hierarchy.

∗E-mail: king@soton.ac.uk
†E-mail: juezhang87@pku.edu.cn
‡E-mail: zhoush@ihep.ac.cn

1

http://arxiv.org/abs/1609.09402v2


1 Introduction

Although it has been well established by neutrino oscillation experiments that neutrinos

are massive particles and lepton flavors are significantly mixed [1], the dynamical origin

of neutrino mass generation and lepton flavor mixing is yet unknown [2, 3]. Among a

number of theoretical models for tiny neutrino masses, the simplest and most elegant one

should be the canonical seesaw model [4, 5, 6, 7, 8], in which the standard model (SM)

is extended with right-handed neutrino singlets NiR and the gauge-invariant Lagrangian

relevant for neutrino masses and lepton flavor mixing reads

− Lm = ℓLYlHER + ℓLYνH̃NR +
1

2
N c

RMRNR + h.c. , (1)

where ℓL and H̃ ≡ iσ2H
∗ stand respectively for the left-handed lepton and Higgs dou-

blets, ER and NR are the right-handed charged-lepton and neutrino singlets, Yl and Yν

are the charged-lepton and Dirac neutrino Yukawa coupling matrices, MR is the Majo-

rana mass matrix of right-handed neutrino singlets. After the Higgs field acquires its

vacuum expectation value (vev), i.e., v ≡ 〈H〉 ≈ 174 GeV, and the gauge symmetry is

spontaneously broken, the charged-lepton and Dirac neutrino mass matrices are given by

Ml = Ylv and MD = Yνv, respectively. Consequently, the effective neutrino mass matrix

is Mν ≈ MDM
−1
R MT

D and the lightness of active neutrinos O(Mν) ∼ 0.1 eV can be as-

cribed to the heaviness of right-handed Majorana neutrinos O(MR) ∼ 1014 GeV, given

O(MD) ∼ 100 GeV at the electroweak scale.

However, the general seesaw model involves a large number of free parameters mainly

arising from the Dirac neutrino Yukawa coupling matrix Yν in the flavor basis, where the

charged-lepton and right-handed neutrino mass matrices Ml = M̂l ≡ Diag{me, mµ, mτ}
and MR = M̂R ≡ Diag{M1,M2,M3} are diagonal. In order to reduce the number of free

parameters in a successful seesaw model, one may consider the so-called minimal version

of only two right-handed neutrinos, which was first proposed by one of us in Refs. [9, 10],

focussing on the decoupling case of M3 ≫ M2 > M1, and with one texture zero in the

Dirac neutrino mass matrix MD. Therefore, the lightest neutrino is massless, namely,

m1 = 0 in the case of normal neutrino mass hierarchy (NH, i.e., m1 < m2 < m3) and

m3 = 0 in the case of inverted neutrino mass hierarchy (IH, i.e., m3 < m1 < m2). A further

simplification of the minimal seesaw model has been considered by Frampton, Glashow

and Yanagida [11], who assume two texture zeros in the Dirac neutrino mass matrix

MD and demonstrate that both neutrino masses and the cosmological matter-antimatter

asymmetry can be explained in this economical setup via the seesaw and leptogenesis

mechanisms [12]. The phenomenology of the minimal seesaw model was subsequently

fully explored in the literature [13, 14, 15, 16, 17, 18, 19]. In particular, the NH case in

the Frampton-Glashow-Yanagida model has been shown to be already excluded by the

latest neutrino oscillation data [18, 19].

More recently, the Littlest Seesaw (LS) model was put forward in Refs. [20, 21, 22,
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23, 24], where two right-handed neutrino singlets Natm
R and N sol

R are introduced into the

SM and a simple but viable structure of the Dirac neutrino Yukawa coupling matrix is

conjectured as

Case A : Yν =



0 beiη/2

a nbeiη/2

a (n− 2)beiη/2


 or Case B : Yν =



0 beiη/2

a (n− 2)beiη/2

a nbeiη/2


 (2)

with a, b, η being three real parameters and n an integer. In the flavor basis whereMl = M̂l

and M̂R = Diag{Matm,Msol} are diagonal, neutrino masses and lepton flavor mixing pa-

rameters at the electroweak scale ΛEW ∼ O(100 GeV) can be derived by diagonalizing

the effective neutrino mass matrix Mν = YνM̂
−1
R Y T

ν v2. The low-energy phenomenology

in the LS model case A has been studied in detail both numerically [20, 21] and ana-

lytically [22], where it has been found that the best fit to experimental data of neutrino

oscillations is obtained for n = 3 for a particular choice of phase η ≈ 2π/3, while for case

B the preferred choice is for n = 3 and η ≈ −2π/3 [20, 24]. The prediction for the baryon

number asymmetry in our Universe via leptogenesis within case A is also studied [23],

while a successful realization of the flavor structure of Yν for case B in Eq. (2) through

an S4 ×U(1) flavor symmetry is recently achieved in Ref. [24], where the symmetry fixes

n = 3 and η = ±2π/3.

With the parameters n = 3 and η = ±2π/3 fixed, there are only two remaining real

free Yukawa parameters in Eq. (2), namely a, b, so the LS predictions then depend on

only two real free input combinations ma = a2v2/Matm and mb = b2v2/Msol, in terms of

which all neutrino masses and the PMNS matrix are determined. For instance, if ma and

mb are chosen to fix m2 and m3, then the entire PMNS mixing matrix, including phases,

is determined with no free parameters. It turns out that the LS model predicts close to

maximal atmospheric mixing at the high scale, θ23 ≈ 46◦ for case A , or θ23 ≈ 44◦ for

case B [24], where both predictions are challenged by the latest NOvA results in the νµ
disappearance channel [25] which indicates that θ23 = 45◦ is excluded at the 2.5 σ CL,

although T2K measurements in the same channel continue to prefer maximal mixing [26].

In view of the great simplicity and high predictivity of the LS model, we are well moti-

vated to consolidate its theoretical predictions by investigating the renormalization-group

(RG) running of neutrino masses and lepton flavor mixing parameters, which is necessary

to be taken into account as the seesaw scale is as high as ΛSS = 1010−15 GeV, close to the

scale of grand unified theories ΛGUT = 2 × 1016 GeV. In particular, the threshold effects

caused by the decoupling of two heavy right-handed neutrinos are examined in an analyti-

cal way. We demonstrate that the predictions for neutrino mixing angles and CP-violating

phases are rather stable against the radiative corrections. For example, we find that the

LS model including RG corrections for both cases A and B, both with and without su-

persymmetry, predicts maximal atmospheric mixing in the range θ23 = 45◦ ± 1◦. Both

numerical and analytical calculations are implemented to understand our observations.
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The results are expected to be indicative of a large class of seesaw models with a strong

mass hierarchy that predict close to maximal atmospheric mixing, so we conclude that

RG corrections are not generally sufficient to rescue such models if maximal atmospheric

mixing becomes excluded.

The remaining part of our paper is organized as follows. In Sec. 2, the general

formalism for RG running of neutrino parameters and the treatment of seesaw threshold

effects are briefly reviewed. After a brief review on the basic idea of the LS model in Sec.

3, the radiative corrections are calculated and discussed in Sec. 4. Finally, we summarize

our main results in Sec. 5.

2 Renormalisation Group Running

As is well known [27], neutrino masses and flavor mixing parameters at the low-energy

scale are governed by the dimension-five Weinberg operator κ(ℓL · H̃)(H̃T · ℓcL)/2, which
can be derived by integrating out the heavy Majorana neutrinos. The effective neutrino

coupling matrix κ is related to the neutrino mass matrix as Mν = κv2 in SM or Mν =

κv2 sin2 β in the minimal supersymmetric standard model (MSSM), where tanβ denotes

the ratio between the vev’s of two Higgs doublets in MSSM. If the mass spectrum of

heavy Majorana neutrinos is not strongly hierarchical, it is an excellent approximation

that all of them are simultaneously integrated out at a common seesaw scale, namely,

ΛSS = M1 < M2 < M3. In the case of M1 ≪ M2 ≪ M3, however, we have to decouple the

heavy Majorana neutrino one by one and carefully deal with the matching between the

effective theory belowMi (for i = 1, 2, 3) and the other one above. The detailed discussions

on the RG running of neutrino parameters and threshold effects in the canonical seesaw

model can be found in Refs. [28, 30, 31, 34].

Above the seesaw thresholds, the one-loop RG equations of model parameters have

been derived in Refs. [28, 30, 31] and are collected as below

dYl

dt
=

(
αl + C l

lHl + Cν
l Hν

)
Yl , (3)

dYν

dt
=

(
αν + C l

νHl + Cν
νHν

)
Yν , (4)

dMR

dt
= CR

[
MR

(
Y †
ν Yν

)
+
(
Y †
ν Yν

)T
MR

]
, (5)

where t ≡ ln(µ/ΛEW)/(16π2) with µ being the renormalization scale, Hf ≡ YfY
†
f for

f = l, ν, u, d, and the relevant coefficients (C l
l , C

ν
l , C

l
ν, C

ν
ν , CR) = (3/2,−3/2,−3/2, 3/2, 1)

in the SM while (C l
l , C

ν
l , C

l
ν , C

ν
ν , CR) = (3, 1, 1, 3, 2) in the MSSM. As indicated by Eq. (3),

even if we start with a diagonal matrix Yl at the initial energy scale, it may become non-

diagonal because of the contribution from Hν . In this case, one has to diagonalize both

Yl and the effective neutrino mass matrix Mν to obtain lepton flavor mixing matrix and
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extract mixing parameters. The flavor-independent coefficients αl and αν in Eqs. (3), (4)

and (5) read

αl ≡ Tr (3Hu + 3Hd +Hl +Hν)−
(
9

4
g21 +

9

4
g22

)
, (6)

αν ≡ Tr (3Hu + 3Hd +Hl +Hν)−
(

9

20
g21 +

9

4
g22

)
, (7)

in the SM; and the corresponding results in the MSSM are

αl ≡ Tr (3Hd +Hl)−
(
9

5
g21 + 3g22

)
, (8)

αν ≡ Tr (3Hu +Hν)−
(
3

5
g21 + 3g22

)
. (9)

The one-loop RG equations of gauge couplings g1 and g2 in the SM and MSSM can be

found in the literature and should be solved together with those in Eqs. (3)–(5). For later

convenience, one can also define the effective neutrino coupling matrix κ ≡ YνM
−1
R Y T

ν

above the seesaw thresholds and its RG equation can be obtained by using Eqs. (3)–(5).

More explicitly, we have

dκ

dt
= 2ανκ+

(
C l

κHl + Cν
κHν

)
κ+ κ

(
C l

κHl + Cν
κHν

)T
, (10)

where (C l
κ, C

ν
κ) = (−3/2, 1/2) in the SM while (C l

κ, C
ν
κ) = (1, 1) in the MSSM.

Below the seesaw scale, i.e., µ < M1, the model parameters for leptons contain only

Yl and κ. In the effective theory, the one-loop RG equations are [29, 30, 31]

dYl

dt
=

(
α̂l + C l

lHl

)
Yl , (11)

dκ

dt
= α̂κκ+ C l

κ

(
Hlκ+ κHT

l

)
, (12)

where the flavor-independent coefficients are defined as

α̂l ≡ Tr (3Hu + 3Hd +Hl)−
(
9

4
g21 +

9

4
g22

)
, (13)

α̂κ ≡ Tr (6Hu + 6Hd + 2Hl)−
(
3g22 − λ

)
, (14)

with λ being the quartic Higgs coupling in the SM; and

α̂l ≡ Tr (3Hd +Hl)−
(
9

5
g21 + 3g22

)
, (15)

α̂κ ≡ Tr (6Hu)−
(
6

5
g21 + 6g22

)
, (16)

in the MSSM. Note that C l
l and C l

κ in Eqs. (11) and (12) are the same as those in Eq. (3)

and (10). It is worthwhile to note that if Yl is taken to be diagonal at µ = M1, it remains to

5



be diagonal all the way down to the electroweak scale, as indicated by Eq. (11). Hence, the

lepton flavor mixing parameters are solely determined by the effective neutrino coupling

matrix κ.

Finally, we have to deal with the RG running between any two seesaw thresholds and

specify the matching conditions. Between the i-th and (i− 1)-th thresholds (namely, for

Mi−1 < µ < Mi), the effective neutrino mass matrix is given by [30, 31, 32, 33]

M (i)
ν = v2

[
κ(i) + Y (i)

ν M
(i)
R

−1
Y (i)
ν

T
]
, (17)

in the SM, while v2 should be replaced by v2 sin2 β in the MSSM. Here κ(i) arises from the

decoupling of the right-handed Majorana neutrinos of masses equal to or heavier than Mi,

while the second term in the parentheses on the right-hand side of Eq. (17) is obtained by

manually removing the parameters corresponding to decoupled heavy neutrinos. It should

be emphasized that in the SM the RG running behaviors of those two terms are governed

by two different sets of RG equations, resulting in the so-called “threshold effects”. We

will discuss such effects in detail in Section 4.

Since the hierarchical mass spectrum M1 ≪ M2 ≪ M3 is assumed in the LS model and

the contribution from the heaviest Majorana neutrino N3 to neutrino masses is negligible,

we simply ignore the decoupling of N3 and consider the RG running started from the

initial energy scale µ0 = ΛGUT, where the Dirac neutrino Yukawa coupling matrix takes

either form given in Eq. (2). Then the RG running and threshold effects characterized by

M2 and M1 are treated as described above.

3 The Littlest Seesaw Model

Before considering the running effects in the LS model [22], we briefly recall its predictions

for neutrino masses and flavor mixing when ignoring the RG running. First of all, given

Yν in case A in Eq. (2) and assuming MR = Diag{Matm,Msol}, one can immediately get

the effective neutrino mass matrix via the seesaw formula

MA
ν = ma



0 0 0

0 1 1

0 1 1


+mbe

iη




1 n n− 2

n n2 n(n− 2)

n− 2 n(n− 2) (n− 2)2


 , (18)

where ma = a2v2/Matm and mb = b2v2/Msol. Since Ml = Diag{me, mµ, mτ} is diagonal,

where mα for α = e, µ, τ are the charged-lepton masses, neutrino masses mi (for i =

1, 2, 3) and the lepton flavor mixing matrix U can be found by diagonalizing MA
ν , namely,

U †MA
ν U

∗ = Diag{0, m2, m3}. In practice, we first perform a basis transformation via

6



M ′
ν = U †

TBM
A
ν U

∗
TB, where UTB stands for the tri-bimaximal mixing pattern [35, 36, 37, 38]

UTB =




2√
6

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2




. (19)

After this transformation, we have

M ′
ν =



0 0 0

0 3mbe
iη

√
6mbe

iη(n− 1)

0
√
6mbe

iη(n− 1) 2
[
ma +mbe

iη(n− 1)2
]


 ≡



0 0 0

0 x y

0 y z


 , (20)

which can be further diagonalized by a rotation Ub(θ) in the 2-3 complex plane. The

corresponding rotation angle θ is given by tan 2θ = 2|xy∗+yz∗|/(|z|2−|x|2), and thus the

mixing matrix is U = UTBUb(θ). As the lightest neutrino is massless, i.e., m1 = 0, the

lepton flavor mixing matrix U can be parametrized in terms of three mixing angles θij for

ij = 12, 13, 23, one Dirac-type CP-violating phase δ and one Majorana-type CP-violating

phase σ, namely,

U =




c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12c23s13e

iδ −c12s23 − c23s12s13e
iδ c13c23






1 0 0

0 eiσ 0

0 0 1


 , (21)

where cij ≡ cos θij and sij ≡ sin θij have been defined. As shown in Ref. [22], neutrino

masses {m2, m3}, flavor mixing angles {θ12, θ13, θ23}, and CP-violating phases {δ, σ} can

be exactly calculated in terms of the model parameters ma, mb and η.

However, in the sequential-dominance approximation, implying ma ≫ mb and |z| ≫
|x|, |y|, the neutrino masses turn out to be

m1 = 0 , m2 ≈ 3mb , m3 ≈ 2ma , (22)

while the mixing angles are

sin θ13 ≈ tan 2θ

2
√
3

, tan θ12 =
1√
2

(
1− 3 sin2 θ13

)1/2
, tan θ23 ≈ 1 +

2 tan 2θ√
6

cosω ,

(23)

where tan 2θ ≈
√
6mb(n−1)/

∣∣ma +mbe
iη(n− 1)2

∣∣ and ω = arg
[
ma +mbe

iη(n− 1)2
]
−η.

It is worthwhile to notice that the correlation between θ12 and θ13 in the above equation is

exact, as a salient feature of the LS model. In addition, two CP-violating phases are [22]

sin δ ≈ − 24m3
am

3
b(n− 1)

m2
2m

2
3∆m2

32s12c12s23c23s13c
2
13

sin η ,

sin σ ≈ +
mamb [4m

2
a −m2

b(2n+ 1)2(n− 2)2]

m2m3∆m2
32c

2
12c

2
13c

2
23s

2
23

sin η , (24)

7



where ∆m2
ji ≡ m2

j −m2
i is the neutrino mass-squared difference.

If the form of Yν in case B in Eq. (2) is taken, the corresponding effective neutrino

mass matrix MB
ν is related to that in case A via MB

ν = P23M
A
ν P

T
23, where P23 denotes the

elementary transformation matrix that exchanges the second and third columns or rows

of an arbitrary 3× 3 matrix. While MA
ν = U ·Diag{0, m2, m3} ·UT has been archived, we

immediately arrive atMB
ν = (P23U)·Diag{0, m2, m3}·(P23U)T. Then, it is straightforward

to verify that such a transformation leads to the following relations between two sets of

mixing parameters

θB12 = θA12 , θB13 = θA13 , θB23 =
π

2
− θA23 , δB = π − δA , σB = π − σA . (25)

Therefore, it is unnecessary to explicitly diagonalize MB
ν , and all the mixing parameters

can be calculated by using the above relations while neutrino mass eigenvalues remain

the same. Some comments on the model predictions are in order:

• Two predictive ansätze of Yν with n = 3 will be considered. The first one is Yν in case

A, and η = 2π/3, together with ma = 25.67 meV and mb = 2.684 meV, is assumed.

One can exactly diagonalize MA
ν and find out neutrino masses {m1, m2, m3} =

{0, 8.59, 49.8} meV, {θ12, θ13, θ23} = {34.3◦, 8.67◦, 45.8◦} and δ = −86.7◦, which

are in perfect agreement with the global-fit results [40, 41, 42] for m1 = 0. The

second one is Yν in case B with n = 3 and η = −2π/3, and the same param-

eters ma = 25.67 meV and mb = 2.684 meV are adopted. Consequently, we

have MB
ν = P23M

A
ν

∗
PT
23, implying the same mass eigenvalues, {θ12, θ13, θ23} =

{34.3◦, 8.67◦, 44.2◦} and δ = −93.3◦ [24]. The prediction for δ = −86.7◦ or −93.3◦

is compatible with the recent hints from T2K and NOvA experiments on a nearly

maximal CP-violating phase.

• As m1 = 0 is implied in the LS, neutrino mass hierarchy is obviously normal. In this

case, the effective neutrino mass for neutrinoless double-beta decays is as small as

mββ = mb = 2.684 meV, which is impossible to measure in the foreseeable future.

These conclusions are applicable to both case A with η = 2π/3 and case B with

η = −2π/3.

• For the chosen input parameters, the baryon number asymmetry is found to be

YB ≈ 8.4 × 10−11 can be reproduced for M1 ≈ 3.9 × 1010 GeV [21]. As indicated

by Eq. (24), the CP violation in neutrino oscillations and that for the cosmological

matter-antimatter asymmetry are determined by the same parameter η. For a

different value of η, the heavy neutrino masses M1 and M2 can be changed by

choosing suitable parameters a and b, without spoiling the low-energy predictions

for neutrino masses and mixing angles.

Since the seesaw scale is extremely high, one may be worried about whether the RG

running effects can significantly modify the above conclusions. This problem will be

addressed in the following section.
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4 Renormalisation Group Corrections to the Littlest

Seesaw Model Predictions

The RG running effects on neutrino mixing parameters in the SM and in the NH case are

expected to be rather small. However, the strongly hierarchical mass spectrum M1 ≪ M2

implies that the seesaw threshold effects can be important, depending on the flavor struc-

ture of Dirac neutrino Yukawa coupling matrix Yν . On the other hand, if the LS model is

supersymmetrized, a large value of tanβ leads to an increase of charged-lepton Yukawa

couplings, which may enhance the RG running effects. Therefore, we are motivated to

carry out a detailed study of those effects. Since the analysis is almost identical for both

case A and B, for definiteness we only consider the RG corrections in full detail for one

of the two cases, namely case A, then later highlight the differences which are important

for case B.

4.1 Case A from ΛGUT to M2

First of all, we need to specify the input parameters at the initial scale µ0 = ΛGUT. In this

subsection, we focus on the form of Yν in case A, and the other scenario will be considered

later. We first consider the mass ordering of right-handed neutrinos M1 = Matm, M2 =

Msol, where by definition M1 < M2. Later we shall consider the results for the alternative

mass ordering. Note that the low energy effective neutrino mass matrix is independent

of this heavy right-handed neutrino mass ordering, but the RG corrections in the heavy

threshold region dependent on it.

To be consistent with the consequential dominance, we take M1 = 1012 GeV and M2 =

1015 GeV for illustration, implying M2 ≫ M1. Furthermore, as shown in the previous

section, the global-fit results of neutrino mixing parameters can be well reproduced for

n = 3, together withma = 25.67 meV, mb = 2.684 meV and η = 2π/3. In this case, Yν(µ0)

is given by Eq. (2) with a ≈ 0.03 and b ≈ 0.3, satisfying b ≫ a. Therefore, it is interesting

to notice a strong hierarchy among the matrix elements of Yν , and | (Yν)µ2 | = 3b is the

largest one. Note that such a choice of Yν(µ0) also implies that we are in the flavor basis

at this initial boundary scale, namely, both Yl(µ0) and MR(µ0) are diagonal.

Since the lepton flavor mixing matrix arises from the mismatch between the diagonal-

ization of charged-lepton Yukawa matrix Yl and that of the neutrino mass matrix Mν , we

therefore pay particular attention to the RG running of both Yl and Mν . It is well known

that below the seesaw threshold (i.e., µ < M1), Yl would always stay diagonal at one-loop

level if it is diagonal initially at the boundary [see Eq. (11)]. However, this is no longer

the case when considering the RG running above the seesaw threshold, due to the term

involving Yν in Eq. (3). In the following we then trace the evolution of both Yl and Mν

analytically for the running between ΛGUT and M2.

Let us start with the RG running of Mν . Above the seesaw threshold µ = M2, the RG
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running of the would-be neutrino mass matrix Mν ≡ κv2 in the SM (or Mν ≡ κv2 sin2 β

in the MSSM) is governed by Eq. (10). Neglecting the relatively small contribution from

Yl, the evolution of the flavor structure in Mν is mainly driven by the term involving

Hν ≡ YνY
†
ν ≈



0 0 0

0 9b2 0

0 0 0


 , (26)

where the approximation a ≪ b ≪ 3b has been made in Yν to simplify our analytical

discussions. If the second column of Yν is fully kept, Hν will be a 3× 3 real and symmet-

ric matrix without any vanishing elements, and it is difficult to deal with the radiative

corrections to neutrino mixing angles in an analytical way. In the approximation made

in Eq. (26), it is straightforward to solve the Eq. (10) and obtain

Mν(t) = Iα



1 0 0

0 Iν 0

0 0 1


M0

ν



1 0 0

0 Iν 0

0 0 1


 , (27)

where all the parameters at the initial scale µ0 = ΛGUT are denoted by a subscript

or superscript “0”. More explicitly, we have defined M0
ν ≡ Mν(t0), and the evolution

functions Iα and Iν are found to be

Iα = exp

[∫ t

t
0

2αν(t
′) dt′

]
, (28)

Iν = exp

[∫ t

t
0

9

2
b(t′)2 dt′

]
. (29)

Assuming that b(t) does not run much from the initial value b0 = b(t0) = 0.3, then we

have Iν ≈ 1− ǫν with ǫν ≡ 9b20(t0 − t)/2. At the threshold µ = M2 = 1015 GeV, one can

obtain t0 − t = ln(ΛGUT/M2)/(16π
2) ≈ 0.02 and thus ǫν ≈ 7.7× 10−3, which serves as an

excellent perturbation parameter. Therefore, we arrive at

Mν(t)/Iα = M0
ν − ǫν




0 (M0
ν )eµ 0

(M0
ν )µe 2(M0

ν )µµ (M0
ν )µτ

0 (M0
ν )τµ 0


+O(ǫ2ν) , (30)

with (M0
ν )αβ for α, β = e, µ, τ being the matrix elements of M0

ν . It is interesting to note

that the one-loop RG corrections to Mν are quite similar to those for κ below the seesaw

threshold, where the dominant corrections from the tau Yukawa coupling yτ modify the

third row and column of κ.

To extract the RG corrections to three mixing angles, we have to diagonalize the mass

matrix in Eq. (30). This can be achieved perturbatively in two steps. First, as shown in

the previous section, the leading-order mass matrix M0
ν can be diagonalized by a unitary

10



matrix Uν
0 = UTBUb, namely, Uν†

0 M0
νU

ν∗
0 = Dν

0 ≡ Diag{0, m0
2, m

0
3} with both m0

2 and m0
3

real and positive. Here UTB is the tri-bimaximal mixing matrix given in Eq. (19), and

Ub =



1

eiϕ

1






1 0 0

0 cos θ sin θ

0 − sin θ cos θ






1

eiφ2
/2

eiφ3
/2


 . (31)

Both ϕ and θ can be obtained by diagonalizing MbM
†
b with Mb ≡ U †

TBM
0
νU

∗
TB, namely,

ϕ = arg[xy∗+yz∗] and tan 2θ = 2|xy∗+yz∗|/(|z|2−|x|2), where x, y, z have been introduced

in Eq. (20). In addition, φ2 and φ3 are obtained by requiring both m0
2 and m0

3 to be real

and positive. More details on the diagonalization of M0
ν can be found in the previous

section and in Ref. [22].

Second, after the unitary transformation Uν†
0 [Mν(t)I

−1
α ]Uν∗

0 = Mν
p , we are left with a

mass matrix Mν
p , which is almost diagonal except for small corrections proportional to ǫ

in both diagonal and off-diagonal entries. As we are interested in the radiative corrections

to neutrino mixing angles, it is sufficient to find out a unitary matrix that diagonalize

Mν
pM

ν†
p , i.e., Uν†

p (Mν
pM

ν†
p )Uν∗

p = Diag{0, m2
2, m

2
3}. The unitary matrix Uν

p can be found

by using the standard perturbation theory [43], and the final mixing matrix in the neutrino

sector is given by Uν = Uν
0U

ν
p up to one physical Majorana-type CP-violating phase.

Having obtained the mixing matrix Uν for the neutrino mass matrix Mν at M2, we

then focus on the mixing matrix from the charged-lepton Yukawa matrix Yl. To this end,

we first study the evolution of Yl from ΛGUT to M2 with the help of Eq. (3). Unlike the

above discussions on the evolution of Mν , now we can keep all the non-zero elements in

Hν , owing to the simpler structure of the RG equation for Yl, namely,

dYl

dt
=


αl −

3

2
b2



1 3 1

3 9 3

1 3 1





Yl . (32)

Since we are interested in the flavor mixing induced by Yl, the first term with a flavor-

independent coefficient αl in the above RG equation can be neglected. Then, we solve

it analytically, with a diagonal form of Yl at the high-energy boundary ΛGUT. In view

of the strong hierarchy y2e ≪ y2µ ≪ y2τ , the unitary matrix Ul defined by U †
l YlY

†
l Ul =

Diag{y2e , y2µ, y2τ} turns out to be

Ul ≈ 1+ ǫl




0 3
√
10 sin θl

−3 0
√
10 cos θl

−
√
10 sin θl −

√
10 cos θl 0


 , (33)

where ǫl ≡ 3b20(t0 − t)/2 serves as another small parameter for expansion, and θl =

arctan(3/4)/2 stems from the diagonalization of Hν , which is needed to solve Eq. (32)

analytically.
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With Ul in Eq. (33), we obtain the lepton mixing matrix U = U †
l Uν at the scale of

M2. Thus, three neutrino mixing angles at µ = M2 can be exacted in the leading-order

approximation

θ′13 ≈ θ013 − ǫν

[
m0

2√
3m0

3

cos(ϕ+ φ2 − φ3)−
√
3

4
θ013 cot θ

0
12

]
cos θ012

− ǫl

[
3 cos(δ0 + ρ) sin θ023 +

√
10 cos θ023 cos(δ

0 − ρ) sin θl

]
,

tan θ′12 ≈ 1√
2
− 3(θ013)

2

2
√
2

+
ǫν
2
√
2
− 3ǫl

2

[
3 cos θ023 cos ρ−

√
10 cos ρ sin θ023 sin θl

]
, (34)

tan θ′23 ≈ tan θ023 −
√
3

2
√
2
sec2 θ023 cos θ

0
12 ǫν −

√
10 cos(2ρ) cos θl sec

2 θ023 ǫl ,

where {θ′12, θ′13, θ′23} stand for the mixing angles at µ = M2, while {θ012, θ013, θ023, δ0} for

those at µ0 = ΛGUT. In addition, the approximations tan θ012 ≈ [1 − 3(θ013)
2/2]/

√
2 and

sin θ ≈
√
3 sin θ013/(

√
2 tan θ012) have been made, and ρ ≡ arg

[
cos θ/

√
2 + sin θeiϕ/

√
3
]
has

been defined.

Numerically, we have made a comparison between the results from the analytical

formulas and those from solving exactly the RG equations. For illustration, the RG

running effects in the SM case are considered. The final results are shown in Table 1. As

one can see, the approximate formulas in Eq. (34) yield very good predictions (namely,

the fifth row in Table 1) for θ13 and θ23. However, for θ12, we obtain a slightly larger value,

which can be ascribed to the rough approximation at the very beginning, namely, keeping

only the dominant term in Hν . To see this point clearly, we calculate the mixing angles

directly from Eq. (30), while the exact Ul is obtained from the actual RG running, and

show the numerical results in the fourth row of Table 1. An excellent agreement between

the values in the fourth and fifth rows validates the above perturbation method leading

to Eq. (34).

4.2 Case A from M2 to M1

In this subsection we proceed with case A to consider the threshold effects due to the

decoupling of heavy right-handed neutrinos on the neutrino mixing angles. Since M2 is

very close to ΛGUT, it is reasonable to assume that the RG running effects of both Yν and

MR in the first stage are negligible. Therefore, we have the following light neutrino mass

matrix at µ = M2, which can be decomposed into two terms

M ′
ν = M̃ν + v2κ̂ , (35)

with M̃ν ≡ v2ỸνM
−1
1 Ỹ T

ν and κ̂ ≡ ŶνM
−1
2 Ŷ T

ν , where Ỹν and Ŷν stand for the first and

second columns of Yν given in Eq. (2), respectively. As we have shown in Sec. 2, in

the SM the RG equations of M̃ν and κ̂ in the effective theory after the decoupling of N2

12



θ13(deg) θ12(deg) θ23(deg)

Exact, at µ0 8.67 34.32 45.77

Exact, at M2 8.57 34.04 44.89

Exact, at M1 8.11 34.13 44.39

Approximation in Eq. (30), at M2 8.58 34.18 44.79

Approximation in Eq. (34), at M2 8.59 34.18 44.80

Approximation in Eq. (43), at M1 8.01 34.11 44.49

Table 1: Comparison between the numerical and analytical results of three neutrino

mixing angles at different energy scales. The initial values at µ0 = ΛGUT = 2× 1016 GeV

are given in the first row, while the exact values at µ = M2 = 1015 GeV and µ = M1 =

1012 GeV are calculated by solving the full set of RG equations and are listed in the

second and third rows, respectively. The approximate analytical results are shown in the

last three rows.

have different coefficients from the Higgs self-coupling and gauge coupling contributions,

leading to significant threshold effects for a hierarchical mass spectrum of heavy neutrinos.

In the MSSM, one has to replace v2 with v2 sin2 β in Eq. (32), but both M̃ν and κ̂ evolve

in the same way, which is not very interesting in view of threshold effects (although in

the RG equations we need to use Ỹν instead of Yν). For this reason, we focus on the case

of SM.

For clarity, we recap the RG equations of M̃ν and κ̂ in the SM, which have already

been given in Eqs. (10) and (12) and can be expressed as follows

dX

dt
= α̃XX +

(
−3

2
Hl +

1

2
H̃ν

)
X +X

(
−3

2
Hl +

1

2
H̃ν

)T

, (36)

for X = κ̂ or M̃ν . Here H̃ν = ỸνỸ
†
ν , and α̃X is given by

α̃κ = 2Tr[3Hu + 3Hd +Hl + H̃ν ] + λ− 3g22 , (37)

α̃ν = 2Tr[3Hu + 3Hd +Hl + H̃ν ]−
9

10
g21 −

9

2
g22 , (38)

In the case of M1 = 1012 GeV and M2 = 1015 GeV under discussion, all three entries

in Ỹν are quite small, we thus neglect both Hl and H̃ν in the RG equations for both

M̃ν and κ̂. As an immediate consequence, the running of M̃ν and κ̂ only differ in the

flavor-independent coefficient α̃X . Following Ref. [44], we can obtain the neutrino mass

matrix M ′′
ν at µ = M1 as

M ′′
ν ≈ ζ(M ′

ν + ξv2κ̂) , (39)

with

ζ ≈
(
M1

M2

)α̃
ν
/16π2

, ξ ≈
(
M1

M2

)(α̃
κ
−α̃

ν
)/16π2

− 1 . (40)
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Hence, the radiative corrections to three neutrino mixing angles come from the ξv2κ̂ term,

which reflects how large the running effects are between M2 and M1.

To start with, we can diagonalize the neutrino mass matrix at M2 via a unitary

transformation, i.e., M ′
ν = U ′D′

νU
′T with D′

ν = Diag{0, m′
2, m

′
3}. The unitary matrix U ′

is given by

U ′ = Pρ




c′12c
′
13 c′13s

′
12 s′13e

−iδ′

−c′23s
′
12 − c′12s

′
13s

′
23e

iδ′ c′12c
′
23 − s′12s

′
13s

′
23e

iδ′ c′13s
′
23

s′12s
′
23 − c′12c

′
23s

′
13e

iδ′ −c′12s
′
23 − c′23s

′
12s

′
13e

iδ′ c′13c
′
23


Pω , (41)

where Pρ ≡ Diag{eiρ′1 , eiρ′2, eiρ′3} and Pω ≡ Diag{1, eiω′

2, 1} are diagonal phase matrices,

s′ij ≡ sin θ′ij and c′ij ≡ cos θ′ij for ij = 12, 13, 23 have been defined. Here the symbols with

a single prime indicate the parameters at the scale of M2, while those with double primes

are the parameters at M1. Note that there in general will be two Majorana-type CP-

violating phases in the last matrix on the right-hand side of Eq. (38), of which however

only one is physical because of one massless neutrino (i.e., m1 = 0).

Next, we consider the flavor structure of κ̂, which is reconstructed by the second

column of Yν and M2. Keeping all the elements of κ̂, one can obtain

M ′′
ν

ζm′
3

=
M ′

ν

m′
3

+ ǫ̂eiη



1 3 1

3 9 3

1 3 1


 , (42)

where ǫ̂ = b2v2ξ/(M2m
′
3) would be a small expansion parameter. We then diagonalize M ′′

ν

perturbatively following the same procedure as that in the previous section. In the final

step, we multiply the obtained mixing matrix U ′′
ν from the M ′′

ν by the previously found

Ul so as to construct the flavor mixing matrix at M1, i.e., U(M1) = U †
l U

′′
ν . Note that Yl

does not run much from M2 to M1. The three mixing angles are then extracted as

θ′′13 ≈ θ′13 −
[
3 cos(δ′ − γ′

12)s
′
23 +

√
10 cos(δ′ − γ′

13)c
′
23 sin θl

]
ǫl

+ [cos β ′
13c

′
23 + 3 cos β ′

12s
′
23] ǫ̂ ,

t′′12 ≈ t′12 −
[
3c′23 cos γ

′
12 −

√
10 cos γ′

13s
′
23 sin θl

] ǫl
c′212

+
m′

3

m′
2

[3c′23 cosα
′
12 − cosα′

13s
′
23]c

′
12ǫ̂

+
m′

3

m′
2

[
cosα′

11 − 9c′223 cosα
′2
22 − s′223 cosα

′
33 − s′212t

′
12(3c

′
23 cosα

′
12 − cosα′

13s
′
23)

+6s′23c
′
23 cosα

′
23] t

′
12ǫ̂−

{
3c′223 cos β

′
23 + c′23(9 cos β

′
22 − cos β ′

33)s
′
23

−3s′23
[
cos β ′

23s
′
23 + (cos β ′

13 − cos β ′
12)c

′2
12t

′
12

]} θ′13ǫ̂

c′212
, (43)

t′′23 ≈ t′23 −
√
10 cos γ′

23

cos θl
c′223

ǫl +
{
3(1− t′223) cos(α

′
23 + 2ω′

2)

+ [9 cos(η − 2ρ′2)− cos(η − 2ρ′3)] s
′
23c

′
23} ǫ̂ ,

where t′ij ≡ tan θ′ij and t′′ij ≡ tan θ′′ij have been introduced for ij = 12, 23, and α′
ij ≡

η−ρ′i−ρ′j−2ω′
2, β

′
ij ≡ δ′+η−ρ′i−ρ′j , and γ′

ij ≡ ρ′i−ρ′j have been defined for i, j = 1, 2, 3.
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SM MSSM (tanβ = 30)
Best fit

ΛGUT M2 M1 ΛEW ΛGUT M2 M1 ΛEW

θ13(deg) 8.67 8.57 8.11 8.11 8.67 8.68 8.70 8.77 8.46+0.14
−0.15

θ12(deg) 34.32 34.04 34.13 34.13 34.32 34.50 34.53 34.63 33.72+0.79
−0.76

θ23(deg) 45.77 44.89 44.40 44.40 45.77 45.60 45.66 45.92 41.5+1.3
−1.1

δ(deg) −86.7 −91.4 −93.7 −93.7 −86.7 −87.0 −87.0 −87.0 −71+38
−51

σ(deg) −144.0 −144.7 −143.2 −143.2 −144.0 −143.5 −143.5 −143.5 –

m2(meV) 13.4 12.6 11.9 8.72 11.4 10.7 10.6 8.74 8.65+0.11
−0.09

m3(meV) 77.8 72.4 72.0 52.6 65.8 61.1 60.3 49.6 50.26+0.39
−0.37

m2/m3 0.172 0.174 0.165 0.166 0.173 0.175 0.176 0.176 0.172+0.003
−0.003

Table 2: Three mixing angles {θ12, θ13, θ23}, two CP-violating phases {δ, σ} and non-zero

light neutrino masses {m2, m3} at various energy scales according to two scenarios in

Case A given in Fig. 1. For comparison, we also show the best-fit results from Ref. [40]

in the last column.

Note that only the leading-order contributions from ǫ̂, m′
2/m

′
3 and θ′13 are kept in Eq. (43),

except that for θ′′12 we also include corrections of the order of θ′13ǫ̂ for better accuracy.

Numerical verification of our approximate formulas is also given in Table 1. Using

the exact results of three mixing angles at M2 as input, we compute the approximate

results at M1 from Eq. (43), which have been shown in the last row. In comparison with

the exact results in the third row, we can observe that the approximate formulas indeed

capture the major threshold effects.

As is well known, the running effects of neutrino mixing parameters below the seesaw

scale µ = M1 are insignificant, in particular for the NH case. On the other hand, even

in the leading-order approximation, it is complicated to derive any analytical results for

the CP-violating phases and neutrino masses. Therefore, in order to fully address the

RG running effects from ΛGUT = 2 × 1016 GeV to ΛEW = 103 GeV, we numerically

solve the full set of RG equations with the REAP package [30] for three neutrino mixing

angles {θ12, θ13, θ23}, two CP-violating phases {δ, σ}, and two neutrino masses {m2, m3}.
The final results are depicted in Fig. 1 (together with numerical values at various energy

scales in Table 2), and the main features are summarized as follows: (1) All the mixing

angles and CP-violating phases are rather stable against the RG corrections. The largest

deviation from the initial value is observed for θ23, but even in this case the deviation is

only around one degree. Therefore, the theoretical predictions for mixing angles and CP-

violating phases in the LS model can be applied at both low- and high-energy scales. (2)

However, it should be noticed that the running of absolute neutrino masses is remarkable.

To be consistent with neutrino oscillation data, the initial values of Yν should be multiplied

by a factor of 1.25 (or 1.15) for SM (or MSSM), which has already been taken into account

in Fig. 1. This overall scaling of Yν does not alter the results for three flavour mixing

angles at the high-energy boundary, but it does modify the absolute values of Yν , leading

to slightly larger a and b.
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4.3 Case B

We now discuss case B in Eq. (2) with n = 3 and η = −2π/3. It has been found

[24, 20] that this alternative scenario of Yν also yields a phenomenologically successful and

predictive description of neutrino masses and lepton mixing parameters, if RG corrections

are ignored [24]. Following a similar treatment as in the previous case, we now study the

RG running effects given this new form of Yν . The analytical formulas for flavour mixing

angles are almost the same as before, except for two differences.

(1) During the running from ΛGUT to M2, we shall take a form of Hν as

Hν ≈



0 0 0

0 0 0

0 0 9b2


 , (44)

instead of that in Eq. (26). Consequently, in order to obtain Mν at M2, we need to

consider corrections to the third row and column of M0
ν at ΛGUT. In this case, we have

to replace Eq.( 30) with the following

Mν(t)/Iα = M0
ν − ǫν




0 0 (M0
ν )eτ

0 0 (M0
ν )µτ

(M0
ν )τe (M

0
ν )τµ 2(M0

ν )ττ


+O(ǫ2ν) . (45)

Adopting the previous diagonalization procedure, we find that the analytical formulas for

θ′13 and θ′12 remain the same as those in Eq. (34), while for θ′23 we have

tan θ′23 ≈ tan θ023 +

√
3

2
√
2
sec2 θ023 cos θ

0
12 ǫν −

√
10 cos 2ρ cos θl sec

2 θ023 ǫl , (46)

where all the parameters follow the same definitions as in the previous subsections. It is

worthwhile to point out that the correction proportional to ǫν in the above equations has

an opposite sign to that in Eq. (34), which can be used to explain the difference between

the running behavior of decreasing θ23 in case A and that of increasing θ23 in case B.

(2) For threshold effects arising from the running betweenM2 andM1, the modification

on the previous analytical study shows up in Eq. (42), namely,

M ′′
ν

ζm′
3

=
M ′

ν

m′
3

+ ǫ̂eiη



1 1 3

1 1 3

3 3 9


 . (47)

It is straightforward to verify that such a modification leads to slightly different analytical
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SM MSSM (tan β = 30)
Best fit

ΛGUT M2 M1 ΛEW ΛGUT M2 M1 ΛEW

θ13(deg) 8.67 8.57 8.11 8.11 8.67 8.67 8.67 8.67 8.46+0.14
−0.15

θ12(deg) 34.32 34.03 34.13 34.13 34.32 34.50 34.54 34.65 33.72+0.79
−0.76

θ23(deg) 44.22 43.94 44.40 44.40 44.22 45.10 45.19 45.43 41.5+1.3
−1.1

δ(deg) −93.3 −87.6 −85.2 −85.2 −93.3 −93.6 −93.6 −93.7 −71+38
−51

σ(deg) −36.0 −36.4 −37.8 −37.8 −36.0 −35.9 −35.9 −35.9 –

m2(meV) 13.4 12.6 11.9 8.72 11.4 10.7 10.6 8.74 8.65+0.11
−0.09

m3(meV) 77.8 72.4 72.0 52.6 65.8 61.1 60.3 49.6 50.26+0.39
−0.37

m2/m3 0.172 0.174 0.165 0.166 0.173 0.175 0.176 0.176 0.172+0.003
−0.003

Table 3: Three mixing angles {θ12, θ13, θ23}, two CP-violating phases {δ, σ} and non-zero

light neutrino masses {m2, m3} at various energy scales according to two scenarios in

Case B given in Fig. 2. For comparison, we also show the best-fit results from Ref. [40]

in the last column.

formulas for three flavour mixing angles:

θ′′13 ≈ θ′13 −
[
3 cos(δ′ − γ′

12)s
′
23 +

√
10 cos(δ′ − γ′

13)c
′
23 sin θl

]
ǫl

+ (3 cos β ′
13c

′
23 + cos β ′

12s
′
23) ǫ̂ ,

t′′12 ≈ t′12 −
[
3c′23 cos γ

′
12 −

√
10 cos γ′

13s
′
23 sin θl

] ǫl
c′212

+
m′

3

m′
2

[c′23 cosα
′
12 − 3 cosα′

13s
′
23]c

′
12ǫ̂

+
m′

3

m′
2

[
6s′23c

′
23 cosα

′
23 − c′223 cosα

′2
22 − 9s′223 cosα

′
33 − s′212t

′
12(c

′
23 cosα

′
12 − 3 cosα13s

′
23)

+ cosα′
11] t

′
12ǫ̂−

[
3c′223 cos β

′
23 + c′23(cos β

′
22 − 9 cos β ′

33)s
′
23 − 3s′23 cos β

′
23s

′
23

] θ′13ǫ̂
c′212

,

t′′23 ≈ t′23 −
√
10 cos γ′

23

cos θl
c′223

ǫl +
{
3(1− t′223) cos(α

′
23 + 2ω′

2)

+ [cos(η − 2ρ′2)− 9 cos(η − 2ρ′3)] s
′
23c

′
23} ǫ̂ , (48)

where the relevant parameters have been defined below Eq. (43). Comparing between

Eq. (43) and Eq. (48), one can observe that only the coefficients in front of a few terms

are different.

Numerical RG evolution of this alternative form of Yν is also performed in Fig. 2, with

the same input parameters as those in Fig. 1 except for the sign of η. Also, we show the

detailed numerical values for three mixing angles, two CP-violating phases and neutrino

masses at various energy scales in Table 3. As one can see, RG corrections to mixing

angles and phases are quite stable as in the previous case, and similar running behaviours

are also observed for neutrino masses.
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4.4 Alternative Ordering of Matm and Msol

In the previous discussions, we have assumed the mass matrix of heavy right-handed

neutrinos to be MR = Diag{Matm,Msol} and taken the normal mass ordering as Matm =

M1 = 1012 GeV and Msol = M2 = 1015 GeV. As we have mentioned, there exists an

alternative ordering, namely, Matm = M2 = 1015 GeV and Msol = M1 = 1012 GeV. In this

case, in order to obtain the same neutrino masses and mixing angles as before, we require

ma = a2v2/Matm = 25.67 meV and mb = b2v2/Msol = 2.684 meV, implying a ≈ 0.94

and b ≈ 0.01. Although neutrino masses and mixing angles are kept unchanged, the RG

running and threshold effects should be quite different for the following reasons:

1. Now that the mass ordering of two heavy Majorana neutrinos is inverted, we have

to exchange the two columns of Yν in Eq. (2), namely,

Case C : Yν =




beiη/2 0

nbeiη/2 a

(n− 2)beiη/2 a


 or Case D : Yν =




beiη/2 0

(n− 2)beiη/2 a

nbeiη/2 a


 . (49)

When crossing the seesaw thresholds, we first decouple the heaviest neutrino at M2

(by ignoring the second column of Yν for µ < M2), and then the second one at M1.

It is evident that the flavour structure of Yν at each stage is distinct from that for

the normal ordering.

2. During the running from ΛGUT to M2, the evolution of neutrino mixing angles is

mainly governed by

Hν ≈



0 0 0

0 a2 a2

0 a2 a2


 , (50)

where the dominant element a2 ≈ 0.88 is much larger than the others. Moreover,

Hν is not diagonal, and thus affects greatly the flavour structure of Mν . For the

same reason, it seems impossible to solve the RG equation of Mν analytically.

3. During the running from M2 to M1, the reduced Yukawa coupling matrix involves

only the parameter b ≈ 0.01, which is much smaller than that in the previous case.

Therefore, we expect insignificant running effects from the neutrino sector.

Instead of an analytical approach, we adopt the exact numerical approach to solve the

RG equations and show the final results in Figs. 3 and 4 for cases C and D, respectively.

The values at various energy scales are summarized in Tables 4 and 5. Note that the same

scaling factor of 1.25 (1.15) has been applied to Yν for SM (MSSM) so as to obtain better

agreement with low-energy data on neutrino masses. Some comments on the numerical

results are in order:
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SM MSSM (tanβ = 30)
Best fit

ΛGUT M2 M1 ΛEW ΛGUT M2 M1 ΛEW

θ13(deg) 8.67 8.85 9.54 9.54 8.67 8.98 9.02 9.09 8.46+0.14
−0.15

θ12(deg) 34.32 34.27 34.11 34.11 34.32 34.26 34.28 34.38 33.72+0.79
−0.76

θ23(deg) 45.77 44.08 44.79 44.79 45.77 46.98 47.09 47.35 41.5+1.3
−1.1

δ(deg) −86.7 −84.5 −81.8 −81.8 −86.7 −86.9 −86.9 −86.9 −71+38
−51

σ(deg) −144.0 −145.8 −147.8 −143.2 −144.0 −143.1 −143.1 −143.1 –

m2(meV) 13.4 12.2 12.1 8.75 11.4 10.5 10.4 8.63 8.65+0.11
−0.09

m3(meV) 77.8 68.1 63.6 45.9 65.8 57.0 56.3 46.7 50.26+0.39
−0.37

m2/m3 0.172 0.179 0.190 0.190 0.173 0.184 0.185 0.185 0.172+0.003
−0.003

Table 4: Three mixing angles {θ12, θ13, θ23}, two CP-violating phases {δ, σ} and non-zero

light neutrino masses {m2, m3} at various energy scales according to two scenarios in

Case C given in Fig. 3. The best-fit results from Ref. [40] are shown in the last column.

• Now we have more significant running effects on θ13 and θ23. For the previous

ordering Matm ≪ Msol, the running for θ13 and θ23 is about 0.5
◦ and 1.0◦ for case A,

respectively. The change of θ23 for case B is even smaller, as indicated in Table 3. In

the case of Matm ≫ Msol, as shown in Table 4, both θ13 and θ23 get changed by about

1.0◦ for case C. However, for case D, the results of θ23 have been given in Table 5,

and the decrease of θ23 about 3◦ is found for the SM, although the corrections in

the MSSM are again small.

• Regarding the running of θ23 from ΛGUT to M2 in the SM, one can observe from

Tables 4 and 5 that the values of θ23 decrease by about 2.0◦, which is consistent with

our expectation from Eq. (50). However, in the second stage from M2 to M1, θ23
becomes increasing in case C, while it continues decreasing in case D. This opposite

running behaviour may be ascribed to the competition among different contributions

from both neutrino and charged-lepton sectors.

• When running towards low energies, the ratio of m2/m3 becomes increasing while in

the previous case it is decreasing. Moreover, the running of such a ratio is also more

appreciable, and becomes in contradiction with the data. This can be attributed

to a more significant running of m3. In principle, we can adjust both ma and mb

such that neutrino masses are in good agreement with data, and even the tension of

mixing angles with observations may also get reduced. For this purpose, a complete

scan of model parameters should be carried out, which however is beyond the scope

of the present work.

It is very interesting to notice that a deviation of θ23 from the maximal mixing by 3◦

can only be realised in the case of Matm ≫ Msol and the flavour structure of Yν takes the

form case D in Eq. (49). In the other cases, we are left with a nearly maximal mixing

θ23 = 45◦ ± 1◦, including the radiative corrections.
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SM MSSM (tan β = 30)
Best fit

ΛGUT M2 M1 ΛEW ΛGUT M2 M1 ΛEW

θ13(deg) 8.67 8.85 9.54 9.54 8.67 8.98 8.99 8.99 8.46+0.14
−0.15

θ12(deg) 34.32 34.27 34.11 34.11 34.32 34.26 34.29 34.40 33.72+0.79
−0.76

θ23(deg) 44.22 42.30 41.54 41.54 44.22 45.04 45.14 45.39 41.5+1.3
−1.1

δ(deg) −93.3 −92.0 −94.4 −94.4 −93.3 −95.0 −95.0 −95.1 −71+38
−51

σ(deg) −36.0 −37.7 −36.0 −36.0 −36.0 −35.0 −35.0 −35.0 –

m2(meV) 13.4 12.2 12.1 8.75 11.4 10.5 10.4 8.64 8.65+0.11
−0.09

m3(meV) 77.8 68.1 63.6 45.9 65.8 57.0 56.3 46.7 50.26+0.39
−0.37

m2/m3 0.172 0.179 0.190 0.190 0.173 0.184 0.185 0.185 0.172+0.003
−0.003

Table 5: Three mixing angles {θ12, θ13, θ23}, two CP-violating phases {δ, σ} and non-zero

light neutrino masses {m2, m3} at various energy scales according to two scenarios in

Case D given in Fig. 4. The best-fit results from Ref. [40] are shown in the last column.

4.5 Varying Matm and Msol

Finally, let us further expand our work to the scenario where both Matm and Msol are

allowed to vary within certain ranges. We address this issue by evolving RG equations

numerically, and choose the same boundary values of model parameters as those in Tables

2-5, while varying both Matm and Msol between 1010 GeV and 1015 GeV. The obtained

results for the form of Yν as in Case A of Eq. (2) and Case C of Eq. (49) are presented

in Fig. 5, where both the cases of SM and MSSM with tanβ = 30 are considered. To

compare with the current experimental data, we also include the 1σ and 3σ allowed regions

according to the global-fit results in Ref. [40]. Several observations are then made:

• In the entirely considered ranges of Matm and Msol, the running effects for the three

mixing angles are all rather small, at most one degree for θ13 and θ23.

• In comparison with the global-fit results, we see that having θ12 to be compatible

with the data, even at the level of 1σ, is easy to achieve. However, for θ13 and θ23,

although a 3σ level of agreement is also not difficult, reaching a compatibility at

the 1σ level becomes impossible in θ23, and for θ13 it is only in the case of SM that

there exists some parameter space of Matm and Msol.

It should be pointed out that in Fig. 5 we also consider the case where Matm and Msol are

almost degenerate, while the previously derived analytical results are only applicable to

the hierarchical cases.

We then turn to the other form of Yν, namely, Case B in Eq. (2) and Case D

of Eq. (49). In Fig. 6 we show the numerical results obtained in the same way as the

above. As one can see, the running of three mixing angle is again rather insignificant,

except for θ23 in the case of SM, for which the decrease of θ23 around 3◦ can appear when

Matm ∼ 1015 GeV as discussed in the previous section. Therefore, we have extended
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our previous conclusion, i.e., in the presence of radiative corrections a close to maximal

atmospheric mixing of θ23 = 45◦ ± 1◦ can be achieved in most of cases, to the scenario

that both Matm and Msol are varied in a wide range. Such a robust prediction on θ23 calls

for scrutiny under future neutrino experimental results.

5 Summary

Seesaw models are able to explain simultaneously both tiny neutrino masses and the

cosmological matter-antimatter asymmetry, but generally involve a large number of pa-

rameters. By contrast, the LS model involves two right-handed neutrinos and a very

constrained Dirac mass matrix, involving one texture zero and two independent Dirac

masses, leading to a highly predictive scheme in which all neutrino masses and the entire

PMNS matrix is successfully predicted in terms of just two real parameters. To be precise,

we have considered two simple structures of the Dirac neutrino Yukawa coupling matrix

Yν , denoted as cases A and B, with Matm ≪ Msol each of which contains only three real

parameters a, b, and η, which may be fixed by symmetry arguments to be a cube root

of unity, leading to testable predictions for low-energy neutrino experiments. We also

considered two related cases C and D corresponding to Msol ≪ Matm.

Each case predicts a normal neutrino mass hierarchy with {m1, m2, m3} = {0, 8.6, 50}
meV, where the effective neutrino mass mββ = 2.7 meV for neutrinoless double-beta

decays is so small that observation of such decays is impossible in the foreseeable future.

The LS model also predicts an almost maximal CP-violating phase δ = −87◦ (cases

A,C) or −93◦ (cases B,D) which will be verified or ruled out in the future oscillation

experiments. The LS model also predicts close to maximal atmospheric mixing at the

high scale, θ23 ≈ 46◦ (cases A,C), or θ23 ≈ 44◦ (cases B,D), where both predictions are

challenged by the latest NOvA results in the νµ disappearance channel which indicates

that θ23 = 45◦ is excluded at the 2.5 σ CL, although T2K measurements in the same

channel continue to prefer maximal mixing.

In this paper, motivated by the simplicity and predictivity of the LS, we have calculated

the RG corrections to the LS predictions, for both cases A and B, with and without

supersymmetry, including also the threshold effects induced by the decoupling of heavy

Majorana neutrinos both analytically and numerically. We also performed a numerical

RG analysis for cases C and D. In particular we have investigated the RG running of three

neutrino mixing angles, taking account of the threshold effects induced by the decoupling

of heavy Majorana neutrinos, including both possible mass orderings of right-handed

neutrinos. Although the running effects are rather small both in the SM and in the MSSM

with tanβ = 30, we have carried out an analytical treatment of the RG running between

two seesaw thresholds for cases A,B. We emphasise that the full numerical calculation was

performed to verify our analytical and approximate results. We find that the predictions

for neutrino mixing angles and mass ratios are rather stable under RG corrections. For
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example we find that the LS model with RG corrections always predicts close to maximal

atmospheric mixing θ23 = 45◦ ± 1◦, for most considered cases, which remains in tension

with the latest NOvA results. The one exception is case D for the SM, where θ23 = 41.5◦

after RG corrections.

Finally we mention that the techniques used here may be applied to other seesaw

models with a strong normal mass hierarchy. We hope that such future studies would

be helpful in revealing how the RG running modifies theoretical predictions for neutrino

mixing parameters, for other related neutrino mass models with flavour symmetries. In

particular, the results here are expected to be indicative of a large class of seesaw models

with a strong mass hierarchy that predict close to maximal atmospheric mixing, so we

conclude that RG corrections are not generally sufficient to rescue such models if maximal

atmospheric mixing becomes excluded.
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Figure 1: The evolution of three mixing angles {θ12, θ13, θ23}, two CP-violating phases

{δ, σ} and neutrino masses {m2, m3} within the SM (left) and MSSM with tanβ = 30

(right) for the form of Yν in Case A given in Eq. (2). The initial values for the most

relevant parameters at the high-energy scale µ0 include g1 = 0.579, g2 = 0.521, g3 = 0.527,

λ = 0.5 (only for the SM), yτ = 0.010 and yt = 0.483.
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Figure 2: The evolution of three mixing angles {θ12, θ13, θ23}, two CP-violating phases

{δ, σ} and neutrino masses {m2, m3} within the SM (left) and MSSM with tanβ = 30

(right) for the form of Yν in Case B given in Eq. (2). The initial values for the most

relevant parameters at the high-energy scale µ0 include g1 = 0.579, g2 = 0.521, g3 = 0.527,

λ = 0.5 (only for the SM), yτ = 0.010 and yt = 0.483.
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Figure 3: The evolution of three mixing angles {θ12, θ13, θ23}, two CP-violating phases

{δ, σ} and neutrino masses {m2, m3} within the SM (left) and MSSM with tanβ = 30

(right) for the form of Yν in Case C given in Eq. (49). The initial values for the most

relevant parameters at the high-energy scale µ0 include g1 = 0.579, g2 = 0.521, g3 = 0.527,

λ = 0.5 (only for the SM), yτ = 0.010 and yt = 0.483.
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Figure 4: The evolution of three mixing angles {θ12, θ13, θ23}, two CP-violating phases

{δ, σ} and neutrino masses {m2, m3} within the SM (left) and MSSM with tanβ = 30

(right) for the form of Yν in Case D given in Eq. (49). The initial values for the most

relevant parameters at the high-energy scale µ0 include g1 = 0.579, g2 = 0.521, g3 = 0.527,

λ = 0.5 (only for the SM), yτ = 0.010 and yt = 0.483.
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Figure 5: Predicted mixing angles θ12 (left), θ13 (middle) and θ23 (right) at the ΛEW =

103 GeV in Case A/C within the cases of SM (top panel) and MSSM with tan β = 30

(bottom panel), allowing both Matm and Msol to vary between 1010 GeV and 1015 GeV.

Boundary values of other model parameters, which yield θ13 = 8.67◦, θ12 = 34.32◦ and

θ23 = 45.77◦ at ΛGUT, are chosen to be the same as those in Tables 2 and 4. Dark and

light gray areas respectively correspond to 1σ and 3σ allowed regions, according to the

global-fit results in Ref. [40].
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Figure 6: Predicted mixing angles θ12 (left), θ13 (middle) and θ23 (right) at the ΛEW =

103 GeV in Case B/D within the cases of SM (top panel) and MSSM with tan β = 30

(bottom panel), allowing both Matm and Msol to vary between 1010 GeV and 1015 GeV.

Boundary values of other model parameters, which yield θ13 = 8.67◦, θ12 = 34.32◦ and

θ23 = 44.22◦ at ΛGUT, are chosen to be the same as those in Tables 3 and 5. Dark and

light gray areas respectively correspond to 1σ and 3σ allowed regions, according to the

global-fit results in Ref. [40].

31


	1 Introduction
	2 Renormalisation Group Running 
	3 The Littlest Seesaw Model
	4 Renormalisation Group Corrections to the Littlest Seesaw Model Predictions
	4.1 Case A from GUT to M2
	4.2 Case A from M2 to M1
	4.3 Case B
	4.4 Alternative Ordering of Matm and Msol
	4.5 Varying Matm and Msol

	5 Summary

