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1 Introduction

Although it has been well established by neutrino oscillation experiments that neutrinos
are massive particles and lepton flavors are significantly mixed [1], the dynamical origin
of neutrino mass generation and lepton flavor mixing is yet unknown [2-7]. Among a
number of theoretical models for tiny neutrino masses, the simplest and most elegant one
should be the canonical seesaw model [8-12], in which the standard model (SM) is extended
with right-handed neutrino singlets N, and the gauge-invariant Lagrangian relevant for
neutrino masses and lepton flavor mixing reads

_ . 1

where ¢; and H = iocg H* stand respectively for the left-handed lepton and Higgs dou-
blets, E; and Ny are the right-handed charged-lepton and neutrino singlets, Y; and Y,
are the charged-lepton and Dirac neutrino Yukawa coupling matrices, My is the Majo-
rana mass matrix of right-handed neutrino singlets. After the Higgs field acquires its
vacuum expectation value (vev), i.e., v = (H) ~ 174 GeV, and the gauge symmetry is
spontaneously broken, the charged-lepton and Dirac neutrino mass matrices are given by
M, = Yv and My, = Y,v, respectively. Consequently, the effective neutrino mass matrix
is M, = MDMglMg and the lightness of active neutrinos O(M,,) ~ 0.1 eV can be as-
cribed to the heaviness of right-handed Majorana neutrinos O(Mp) ~ 10 GeV, given
O(Mp) ~ 100 GeV at the electroweak scale.



However, the general seesaw model involves a large number of free parameters mainly
arising from the Dirac neutrino Yukawa coupling matrix Y, in the flavor basis, where the
charged-lepton and right-handed neutrino mass matrices M; = Ml = Diag{m,,m,,m,}
and My = ]/\/[\R = Diag{M,, My, M3} are diagonal. In order to reduce the number of free
parameters in a successful seesaw model, one may consider the so-called minimal version
of only two right-handed neutrinos, which was first proposed by one of us in refs. [13, 14],
focussing on the decoupling case of M3 > M, > M, and with one texture zero in the Dirac
neutrino mass matrix Mp. Therefore, the lightest neutrino is massless, namely, m; = 0
in the case of normal neutrino mass hierarchy (NH, i.e., m; < my < my) and mg = 0
in the case of inverted neutrino mass hierarchy (IH, i.e., mg < m; < m,). A further
simplification of the minimal seesaw model has been considered by Frampton, Glashow and
Yanagida [15], who assume two texture zeros in the Dirac neutrino mass matrix M}, and
demonstrate that both neutrino masses and the cosmological matter-antimatter asymmetry
can be explained in this economical setup via the seesaw and leptogenesis mechanisms [16].
The phenomenology of the minimal seesaw model was subsequently fully explored in the
literature [17-23]. In particular, the NH case in the Frampton-Glashow-Yanagida model
has been shown to be already excluded by the latest neutrino oscillation data [22, 23].

More recently, the Littlest Seesaw (LS) model was put forward in refs. [24-28], where
two right-handed neutrino singlets N3™ and ]\71—.5{01 are introduced into the SM and a simple
but viable structure of the Dirac neutrino Yukawa coupling matrix is conjectured as

0 beln/2 0 beln/2
Case A: Y, =|a nbe"? or CaseB: Y, =|a (n—2)be"? (1.2)
a (n — 2)bel/? a  nbe/?

With a,b 1 being three real parameters and n an integer. In the flavor basis where M, =
M and MR = Diag{ M,
parameters at the electroweak scale AEW ~ O(100 GeV) can be derived by diagonalizing the

atms M} are diagonal, neutrino masses and lepton flavor mixing
effective neutrino mass matrix M, =Y, M 1YT 2. The low-energy phenomenology in the
LS model case A has been studied in detail both numerically [24, 25] and analytically [26],
where it has been found that the best fit to experimental data of neutrino oscillations
is obtained for n = 3 for a particular choice of phase n ~ 27/3, while for case B the
preferred choice is for n = 3 and n ~ —2n/3 [24, 28]. The prediction for the baryon
number asymmetry in our Universe via leptogenesis within case A is also studied [27],
while a successful realization of the flavor structure of Y, for case B in eq. (1.2) through
an S, x U(1) flavor symmetry is recently achieved in ref. [28], where the symmetry fixes
n =3 and n = £27/3.

With the parameters n = 3 and n = £27/3 fixed, there are only two remaining real
free Yukawa parameters in eq. (1.2), namely a,b, so the LS predictions then depend on
and m, = b*v?/M_,
which all neutrino masses and the PMNS matrix are determined. For instance, if m, and

only two real free input combinations m, = a?v?/M, in terms of

atm
my, are chosen to fix mo and mg, then the entire PMNS mixing matrix, including phases,
is determined with no free parameters. It turns out that the LS model predicts close to
maximal atmospheric mixing at the high scale, 053 &~ 46° for case A , or fs3 = 44° for



case B [28], where both predictions are challenged by the latest NOvA results in the v,
disappearance channel [29, 30] which indicates that 633 = 45° is excluded at the 2.5 o CL,
although T2K measurements in the same channel continue to prefer maximal mixing [31].

In view of the great simplicity and high predictivity of the LS model, we are well
motivated to consolidate its theoretical predictions by investigating the renormalization-
group (RG) running of neutrino masses and lepton flavor mixing parameters, which is
necessary to be taken into account as the seesaw scale is as high as Agq = 1019715 GeV,
close to the scale of grand unified theories A yp = 2x10'° GeV. In particular, the threshold
effects caused by the decoupling of two heavy right-handed neutrinos are examined in an
analytical way. We demonstrate that the predictions for neutrino mixing angles and CP-
violating phases are rather stable against the radiative corrections. For example, we find
that the LS model including RG corrections for both cases A and B, both with and without
supersymmetry, predicts maximal atmospheric mixing in the range 623 = 45° 4+ 1°. Both
numerical and analytical calculations are implemented to understand our observations.
The results are expected to be indicative of a large class of seesaw models with a strong
mass hierarchy that predict close to maximal atmospheric mixing, so we conclude that
RG corrections are not generally sufficient to rescue such models if maximal atmospheric
mixing becomes excluded.

The remaining part of our paper is organized as follows. In section 2, the general
formalism for RG running of neutrino parameters and the treatment of seesaw threshold
effects are briefly reviewed. After a brief review on the basic idea of the LS model in
section 3, the radiative corrections are calculated and discussed in section 4. Finally, we

summarize our main results in section 5.

2 Renormalisation group running

As is well known [32], neutrino masses and flavor mixing parameters at the low-energy scale
are governed by the dimension-five Weinberg operator #(¢; - H)(H™ - £§)/2, which can be
derived by integrating out the heavy Majorana neutrinos. The effective neutrino coupling
matrix # is related to the neutrino mass matrix as M, = xv? in SM or M, = xv?sin? 3
in the minimal supersymmetric standard model (MSSM), where tan 5 denotes the ratio
between the vev’s of two Higgs doublets in MSSM. If the mass spectrum of heavy Majorana
neutrinos is not strongly hierarchical, it is an excellent approximation that all of them are
simultaneously integrated out at a common seesaw scale, namely, Aqq = M; < M, < M,.
In the case of M| < M, < Mj, however, we have to decouple the heavy Majorana neutrino
one by one and carefully deal with the matching between the effective theory below M,
(for ¢ = 1,2,3) and the other one above. The detailed discussions on the RG running of
neutrino parameters and threshold effects in the canonical seesaw model can be found in
refs. [33, 35, 36, 39].

Above the seesaw thresholds, the one-loop RG equations of model parameters have
been derived in refs. [33, 35, 36] and are collected as below

ay;

L= (u+clm+on,)y, (2.1)



div = (o, +CLH+CIH) Y, | (2.2)
i = [ (123 + () ] &

where ¢ = In(u/Agy)/(167%) with p being the renormalization scale, H ;= YfoJr for
f =1, v,u,d, and the relevant coefficients (C’ll,Cl”,Cll,,CZ,C’R) =(3/2,-3/2,-3/2,3/2,1)
in the SM while (C!,C¥,C,CY%,Cg) = (3,1,1,3,2) in the MSSM. As indicated by eq. (2.1),
even if we start with a diagonal matrix Y} at the initial energy scale, it may become non-
diagonal because of the contribution from H,. In this case, one has to diagonalize both
Y, and the effective neutrino mass matrix M, to obtain lepton flavor mixing matrix and
extract mixing parameters. The flavor-independent coefficients «; and «,, in egs. (2.1),
(2.2) and (2.3) read

9 9
alETT(?’Hu"i_ng_‘_Hl—i'Hy)_<4g%+4g%> ; (2.4)
o, = Tr(3H, +3H, + H, + H,) — 92,9 2.5

v = U d l v 2091 492 ’ ()

in the SM; and the corresponding results in the MSSM are

9

op = Tr(3Hy + Hy) — <5Q% + 39%) : (2.6)
3

a, =Tr(3H,+ H,) — (59% + 3g%> ) (2.7)

The one-loop RG equations of gauge couplings g, and g, in the SM and MSSM can be
found in the literature and should be solved together with those in egs. (2.1)—(2.3). For
later convenience, one can also define the effective neutrino coupling matrix x =Y, Mg ly
above the seesaw thresholds and its RG equation can be obtained by using eqs. (2.1)—(2.3).
More explicitly, we have

d T
£ = 20,k + (c@H, + ch,,) K+ K (CZKHZ + C};H,,) , (2.8)
where (CL,CY) = (—3/2,1/2) in the SM while (C%, C¥) = (1,1) in the MSSM.

Below the seesaw scale, i.e., < M, the model parameters for leptons contain only Y,
and k. In the effective theory, the one-loop RG equations are [34-36]

dYy, -

ditl = (az + Clez> Y, (2.9)
de l T

T a.k+ Cy (Hik+kH; ) (2.10)

where the flavor-independent coefficients are defined as

. 9 9
& = Te (3H, + 3H, + H,) - (49% " 4g§> 7 (2.11)
a, = Tr (6H, +6H, + 2H,) — (3¢5 — A) , (2.12)



with A being the quartic Higgs coupling in the SM; and

. 9
a, = Tr (3H, + H)) — <5g‘f + 395) : (2.13)
a, = Tr(6H,) — (gg% + Gg§> : (2.14)

in the MSSM. Note that C! and C. in egs. (2.9) and (2.10) are the same as those in
eq. (2.1) and (2.8). It is worthwhile to note that if Y] is taken to be diagonal at p = M, it
remains to be diagonal all the way down to the electroweak scale, as indicated by eq. (2.9).
Hence, the lepton flavor mixing parameters are solely determined by the effective neutrino
coupling matrix k.

Finally, we have to deal with the RG running between any two seesaw thresholds and
specify the matching conditions. Between the i-th and (¢ — 1)-th thresholds (namely, for
M, | < p < M,), the effective neutrino mass matrix is given by [35-38]

M) =02 |x@ 4 yOu Yo" (2.15)
in the SM, while v? should be replaced by v?sin? 8 in the MSSM. Here x() arises from the
decoupling of the right-handed Majorana neutrinos of masses equal to or heavier than M,
while the second term in the parentheses on the right-hand side of eq. (2.15) is obtained by
manually removing the parameters corresponding to decoupled heavy neutrinos. It should
be emphasized that in the SM the RG running behaviors of those two terms are governed
by two different sets of RG equations, resulting in the so-called “threshold effects”. We
will discuss such effects in detail in section 4.

Since the hierarchical mass spectrum M; < M, < M; is assumed in the LS model and
the contribution from the heaviest Majorana neutrino /N; to neutrino masses is negligible,
we simply ignore the decoupling of N5 and consider the RG running started from the initial
energy scale p, = Agyp, where the Dirac neutrino Yukawa coupling matrix takes either
form given in eq. (1.2). Then the RG running and threshold effects characterized by M,
and M, are treated as described above.

3 The littlest seesaw model

Before considering the running effects in the LS model [26], we briefly recall its predictions
for neutrino masses and flavor mixing when ignoring the RG running. First of all, given
Y, in case A in eq. (1.2) and assuming My = Diag{M,

tm> M1}, one can immediately get

the effective neutrino mass matrix via the seesaw formula

000 1 n n—2
MA=m, | 011 | +me™ | n n? nn-2)1, (3.1)
011 n—2mn(n—2) (n—2)?

and m, = b*v? /M,

where m,, for @ = e,u, 7 are the charged-lepton masses, neutrino masses m; (for i =

where m, = a*v?/M,,,, o- Since M; = Diag{m,,m,,m } is diagonal,



1,2,3) and the lepton flavor mixing matrix U can be found by diagonalizing Mf, namely,
U TMZ‘,AU* = Diag{0,my, m3}. In practice, we first perform a basis transformation via
M), = U%BMfU{B, where Upp stands for the tri-bimaximal mixing pattern [40-43]

2 1L
V6 V3
S B S a2
V6 V3 V2
1 1 1
V6 V3 V2
After this transformation, we have
0 0 0 000
M, =1|o0 3myeln Veme(n — 1) =|0zvy]|, (3.3)
0 V6mue(n—1) 2[m, +mye(n—1)?] 0y =z

which can be further diagonalized by a rotation U, (¢) in the 2-3 complex plane. The
corresponding rotation angle @ is given by tan 20 = 2|zy* + y2*|/(|z|> — |z|?), and thus the
mixing matrix is U = UpgU,(6). As the lightest neutrino is massless, i.e., m; = 0, the
lepton flavor mixing matrix U can be parametrized in terms of three mixing angles 6,; for
ij = 12,13,23, one Dirac-type CP-violating phase ¢ and one Majorana-type CP-violating
phase o, namely,

—id
C12€13 C13512 S13€ 100
_ id id io
U= | —cy3812 — €12513593€""  C19Ca3 — S12513593€ C13523 0e? 0], (3.4)
is is
812523 = C12C23513€ "  —C12823 = C23512513¢" C13Ca3 001

where ¢;; = cos0,; and s;; = sinf;; have been defined. As shown in ref. [26], neutrino
masses {my, ms}, flavor mixing angles {65, 6,3,053}, and CP-violating phases {d,c} can
be exactly calculated in terms of the model parameters m,, m, and 7.

However, in the sequential-dominance approximation, implying m, > m, and |z| >
|z], |y|, the neutrino masses turn out to be

m; =0, my=3my,, mg~2m,, (3.5)

while the mixing angles are
tan 260

23

2 tan 260

V6

sin 5 ~ tanf, = (1- 3 sin’ 013)1/2 , tanby,y ~1+ cosw ,

1
V2
(3.6)
where tan 20 ~ v6m,(n — 1)/ |m, + mye"(n —1)?| and w = arg [m, + m,e(n — 1)%] —n.
It is worthwhile to notice that the correlation between 6, and 0,5 in the above equation is
exact, as a salient feature of the LS model. In addition, two CP-violating phases are [26]

24m3m3(n — 1
sind ~ ——; N 5 b ) 5 sing
MyM3AaM35515C19523C23513C73
mgmy, [4mg — m(2n + 1)*(n — 2)?]

2 2 2 2 2
MyMg AM39C15CT5C53553

sinoc ~ +

sinn , (3.7)

where Am?i = m? — mf is the neutrino mass-squared difference.



If the form of Y, in case B in eq. (1.2) is taken, the corresponding effective neutrino
mass matrix MP is related to that in case A via MP = P,; M PJh, where Py, denotes the
elementary transformation matrix that exchanges the second and third columns or rows of
an arbitrary 3 x 3 matrix. While M2 = U - Diag{0,my, m3} - UT has been archived, we
immediately arrive at M} = (Py3U)-Diag{0, my, ms}-(PysU)T. Then, it is straightforward
to verify that such a transformation leads to the following relations between two sets of
mixing parameters

T

0%, =00, 0% =04, 95325—993, B=r—064, oB=n—0. (38

Therefore, it is unnecessary to explicitly diagonalize M2, and all the mixing parameters
can be calculated by using the above relations while neutrino mass eigenvalues remain the

same. Some comments on the model predictions are in order:

e Two predictive ansdtze of Y,, with n = 3 will be considered. The first one is Y,, in case
A, and n = 27/3, together with m, = 25.67 meV and m, = 2.684 meV, is assumed.
One can exactly diagonalize M/ and find out neutrino masses {m,,my, ms} =
{0,8.59,49.8} meV, {6,5,0,5,055} = {34.3°,8.67°,45.8°} and § = —86.7°, which are
in perfect agreement with the global-fit results [44-46] for m; = 0. The second one is
Y, in case B with n = 3 and n = —27/3, and the same parameters m, = 25.67 meV
and m, = 2.684 meV are adopted. Consequently, we have MB = P23M1§*P21;),
implying the same mass eigenvalues, {6;,,0;5,053} = {34.3°,8.67°,44.2°} and 0 =
—93.3° [28]. The prediction for § = —86.7° or —93.3° is compatible with the recent
hints from T2K and NOvA experiments on a nearly maximal CP-violating phase.

e As m; =0 is implied in the LS, neutrino mass hierarchy is obviously normal. In this
case, the effective neutrino mass for neutrinoless double-beta decays is as small as
mgg = m;, = 2.684 meV, which is impossible to measure in the foreseeable future.
These conclusions are applicable to both case A with n = 27/3 and case B with
n=—2n/3.

e For the chosen input parameters, the baryon number asymmetry is found to be
Yy ~ 8.4 x 107! can be reproduced for M; ~ 3.9 x 109 GeV [25]. As indicated
by eq. (3.7), the CP violation in neutrino oscillations and that for the cosmological
matter-antimatter asymmetry are determined by the same parameter n. For a dif-
ferent value of 7, the heavy neutrino masses M, and M, can be changed by choosing
suitable parameters a and b, without spoiling the low-energy predictions for neutrino
masses and mixing angles.

Since the seesaw scale is extremely high, one may be worried about whether the RG running
effects can significantly modify the above conclusions. This problem will be addressed in
the following section.



4 Renormalisation group corrections to the littlest seesaw model predic-
tions

The RG running effects on neutrino mixing parameters in the SM and in the NH case
are expected to be rather small. However, the strongly hierarchical mass spectrum M; <
M, implies that the seesaw threshold effects can be important, depending on the flavor
structure of Dirac neutrino Yukawa coupling matrix Y,,. On the other hand, if the LS model
is supersymmetrized, a large value of tan § leads to an increase of charged-lepton Yukawa
couplings, which may enhance the RG running effects. Therefore, we are motivated to
carry out a detailed study of those effects. Since the analysis is almost identical for both
case A and B, for definiteness we only consider the RG corrections in full detail for one of
the two cases, namely case A, then later highlight the differences which are important for
case B.

4.1 Case A from AGUT to M,

First of all, we need to specify the input parameters at the initial scale pq = Agyp.
In this subsection, we focus on the form of Y, in case A, and the other scenario will be
considered later. We first consider the mass ordering of right-handed neutrinos M7 = Matm,
My = Mgy, where by definition M; < Ms. Later we shall consider the results for the
alternative mass ordering. Note that the low energy effective neutrino mass matrix is
independent of this heavy right-handed neutrino mass ordering, but the RG corrections in
the heavy threshold region dependent on it.

To be consistent with the consequential dominance, we take M; = 10'2 GeV and
M, = 10" GeV for illustration, implying M, > M;. Furthermore, as shown in the
previous section, the global-fit results of neutrino mixing parameters can be well reproduced
for n = 3, together with m, = 25.67 meV, m, = 2.684 meV and n = 27 /3. In this case,
Y, (1) is given by eq. (1.2) with a ~ 0.03 and b ~ 0.3, satisfying b > a. Therefore, it is
interesting to notice a strong hierarchy among the matrix elements of Y, and [ (Y,,) 5 | = 3b
is the largest one. Note that such a choice of Y, (y,) also implies that we are in the flavor
basis at this initial boundary scale, namely, both Y;(u,) and Mg (1) are diagonal.

Since the lepton flavor mixing matrix arises from the mismatch between the diagonal-
ization of charged-lepton Yukawa matrix Y; and that of the neutrino mass matrix M,,, we
therefore pay particular attention to the RG running of both Y, and M,,. It is well known
that below the seesaw threshold (i.e., u < M), Y; would always stay diagonal at one-loop
level if it is diagonal initially at the boundary [see eq. (2.9)]. However, this is no longer
the case when considering the RG running above the seesaw threshold, due to the term
involving Y, in eq. (2.1). In the following we then trace the evolution of both Y; and M,
analytically for the running between Ay and M,.

Let us start with the RG running of M,,. Above the seesaw threshold ;1 = M,, the RG
running of the would-be neutrino mass matrix M, = xv? in the SM (or M, = kv?sin? 3 in
the MSSM) is governed by eq. (2.8). Neglecting the relatively small contribution from Y,



the evolution of the flavor structure in M,, is mainly driven by the term involving

000
H, =YY~ |0o9?0], (4.1)
000

where the approximation a < b < 3b has been made in Y, to simplify our analytical discus-
sions. If the second column of Y, is fully kept, H,, will be a 3 x 3 real and symmetric matrix
without any vanishing elements, and it is difficult to deal with the radiative corrections to
neutrino mixing angles in an analytical way. In the approximation made in eq. (4.1), it is
straightforward to solve the eq. (2.8) and obtain

100 100
M,t)y=I1,lo1,0| M |01I,0], (4.2)
001 001

where all the parameters at the initial scale py = Agyp are denoted by a subscript or
superscript “0”. More explicitly, we have defined MY = M, (t,), and the evolution functions
I, and I, are found to be

I, = exp [/tt 2a, () dt’] , (4.3)

0

I, = exp [/tt %b(t’)2 dt'] : (4.4)

0

Assuming that b(t) does not run much from the initial value b, = b(t,) = 0.3, then we
have I, ~ 1 — ¢, with ¢, = 9b3(¢t, — t)/2. At the threshold p = M, = 10> GeV, one can
obtain ¢, — ¢t = In(Aqyr/M,)/(1672) 2 0.02 and thus €, &~ 7.7 x 1073, which serves as an
excellent perturbation parameter. Therefore, we arrive at

0 (M) 0
M, (t)/1, = M) =, | (M2)ue Q(MB):u (MD)r | +0(€D) (4.5)
0 (M) 0O

with (Ml(,])aﬁ for o, B = e, u, T being the matrix elements of MY?. It is interesting to note
that the one-loop RG corrections to M, are quite similar to those for x below the seesaw
threshold, where the dominant corrections from the tau Yukawa coupling y._ modify the
third row and column of x.

To extract the RG corrections to three mixing angles, we have to diagonalize the mass
matrix in eq. (4.5). This can be achieved perturbatively in two steps. First, as shown in
the previous section, the leading-order mass matrix M? can be diagonalized by a unitary
matrix Uy = UpgU,,, namely, UOVTMSU(’)’* = D¥ = Diag{0,m9, m$} with both m} and m}
real and positive. Here Uy is the tri-bimaximal mixing matrix given in eq. (3.2), and

1 1 0 0 1
U, = el? 0 cosf sinf elb2/2 : (4.6)
1 0 —sinf cosf el9s/2



Both ¢ and 0 can be obtained by diagonalizing Mng with My, = U%BMBU:EB, namely,
¢ = arg[ry*+yz*] and tan 20 = 2|xy* +yz*|/(|z|*—|z|?), where x, y, 2 have been introduced
in eq. (3.3). In addition, ¢, and ¢, are obtained by requiring both mJ and m3 to be real
and positive. More details on the diagonalization of M? can be found in the previous
section and in ref. [26].

Second, after the unitary transformation Uj ", ()15 NUg* = MY, we are left with a
mass matrix M, which is almost diagonal except for small corrections proportional to €
in both diagonal and off-diagonal entries. As we are interested in the radiative corrections
to neutrino mixing angles, it is sufficient to find out a unitary matrix that diagonalize
MI’jMf;T, Le., UST(MI;’MST)UPV* = Diag{0, m3,m3}. The unitary matrix U can be found
by using the standard perturbation theory [47], and the final mixing matrix in the neutrino
sector is given by U, = UyU} up to one physical Majorana-type CP-violating phase.

Having obtained the mixing matrix U, for the neutrino mass matrix M, at M,, we
then focus on the mixing matrix from the charged-lepton Yukawa matrix Y;. To this end,
we first study the evolution of Y, from Agy to M, with the help of eq. (2.1). Unlike the
above discussions on the evolution of M, now we can keep all the non-zero elements in
H,,, owing to the simpler structure of the RG equation for Y}, namely,

131

a1y, 3

thl: al—§b2 393|1Y;. (4.7)
131

Since we are interested in the flavor mixing induced by Y;, the first term with a flavor-
independent coefficient «; in the above RG equation can be neglected. Then, we solve
it analytically, with a diagonal form of Y} at the high-energy boundary A . In view
of the strong hierarchy 32 < yi < 92, the unitary matrix U, defined by UZTYlYlTUl =
Diag{y?, yﬁ, y2} turns out to be

0 3 V10 sin 6,
U~1+¢ -3 0 V10cosb, | , (4.8)

—x/ﬁsin@l —\/E(:osel 0

where ¢, = 3b3(t, — t)/2 serves as another small parameter for expansion, and 6, =
arctan(3/4)/2 stems from the diagonalization of H,,, which is needed to solve eq. (4.7)
analytically.

With U, in eq. (4.8), we obtain the lepton mixing matrix U = UZTUI, at the scale of
M,. Thus, three neutrino mixing angles at y = M, can be exacted in the leading-order
approximation

0
! a0 my V3
s =~ 013 — €, [\/ﬁmg cos(p + ¢y — ¢3) — T

- g [3 cos(6Y + p) sin 695 + v/10 cos 695 cos(6° — p) sin 6, | ,

09, cot 6%, | cos 69,
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913(deg) 012(deg) 923(deg)

Exact, at pg 8.67 34.32 45.77
Exact, at M, 8.57 34.04 44.89
Exact, at M, 8.11 34.13 44.39

Approximation in eq. (4.5), at M, 8.58 34.18 44.79
Approximation in eq. (4.9), at M, 8.59 34.18 44.80
Approximation in eq. (4.18), at M, 8.01 34.11 44.49

Table 1. Comparison between the numerical and analytical results of three neutrino mixing angles
at different energy scales. The initial values at g = Agyp = 2 x 101 GeV are given in the first
row, while the exact values at u = M, = 10" GeV and u = M; = 10'? GeV are calculated by
solving the full set of RG equations and are listed in the second and third rows, respectively. The
approximate analytical results are shown in the last three rows.

tan @, ~ L - 3(0(1)3)2 €y . %
PTV2 2v2 2V 2

3

tan 03 ~ tan 95 — 2\\2 sec? 095 cos 0y €, — V10 cos(2p) cos 0, sec 695 ¢ ,
where {6),,0]5,053} stand for the mixing angles at u = M,, while {69,,6%,,609,,5°} for
those at y1y = Agyp. In addition, the approximations tan 6y ~ [1 — 3(9?3)2/ 2]/v2 and
sin @ ~ v/3sin 65/(v/2tan 69,) have been made, and p = arg [cos §/v/2 + sin fe'? /v/3] has

been defined.

Numerically, we have made a comparison between the results from the analytical for-

3cos 69 cos p — V10cos psin#;sin ;| ,  (4.9)

mulas and those from solving exactly the RG equations. For illustration, the RG running
effects in the SM case are considered. The final results are shown in table 1. As one can
see, the approximate formulas in eq. (4.9) yield very good predictions (namely, the fifth
row in table 1) for 6,5 and 6,5. However, for 6,,, we obtain a slightly larger value, which
can be ascribed to the rough approximation at the very beginning, namely, keeping only
the dominant term in H,,. To see this point clearly, we calculate the mixing angles directly
from eq. (4.5), while the exact U, is obtained from the actual RG running, and show the
numerical results in the fourth row of table 1. An excellent agreement between the values
in the fourth and fifth rows validates the above perturbation method leading to eq. (4.9).

4.2 Case A from M, to M,

In this subsection we proceed with case A to consider the threshold effects due to the
decoupling of heavy right-handed neutrinos on the neutrino mixing angles. Since M, is
very close to Aqyp, it is reasonable to assume that the RG running effects of both Y, and
My, in the first stage are negligible. Therefore, we have the following light neutrino mass
matrix at p = M,, which can be decomposed into two terms

M. = M, +v*% (4.10)

with MV = UQ?VMl_lffVT and K = }A/VMQ_HA/VT, where Y, and Y, stand for the first and
second columns of Y, given in eq. (1.2), respectively. As we have shown in section 2, in the
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SM the RG equations of MV and x in the effective theory after the decoupling of N, have
different coefficients from the Higgs self-coupling and gauge coupling contributions, leading
to significant threshold effects for a hierarchical mass spectrum of heavy neutrinos. In the
MSSM, one has to replace v? with v2sin? 8 in eq. (4.7), but both My and K evolve in the
same way, which is not very interesting in view of threshold effects (although in the RG
equations we need to use 17” instead of Y,,). For this reason, we focus on the case of SM.

For clarity, we recap the RG equations of ]\7,/ and K in the SM, which have already
been given in egs. (2.8) and (2.10) and can be expressed as follows

dx 3 1~ 3 1~\"
G X+ -2H+-H ) X+X(-SH +-H 4.11

for X =% or ]\7,,. Here H, = Y, Y, and ay is given by

an = 2Tr[3H, +3H, + H,+ H,] + A\ — 33, (4.12)
oy = 2Tr[3Hu+3Hd+Hl+Hy] — Egl — 592 s (413)

In the case of M; = 10'? GeV and M, = 10' GeV under discussion, all three entries
in Y, are quite small, we thus neglect both H; and H, in the RG equations for both M,
and K. As an immediate consequence, the running of M, and ¥ only differ in the flavor-

independent coefficient ay. Following ref. [48], we can obtain the neutrino mass matrix
M) at p= M, as

M ~ (M) + €R) (4.14)
with
_ % &V/lﬁﬂ'z 5 _ % (&K—ay)/167r2 B 1 (4 15)

Hence, the radiative corrections to three neutrino mixing angles come from the 0% term,
which reflects how large the running effects are between M, and M;.

To start with, we can diagonalize the neutrino mass matrix at M, via a unitary trans-
formation, i.e., M/, = U'D,U'" with D! = Diag{0,m}, m}}. The unitary matrix U’ is
given by

ro o o —id
C12€13 €13512 S13€
! o Y Y A 7 LY B 1o o i /o
U = Pp —C93512 — C12513523€ C12C23 — S12513523€ 13893 | P s (4.16)
o roo s rol Y Y N 7 Y B
512523 = €12C93513€ —C12823 — C23512513€ C13Ca3
. B . ol . .
where P, = Diag{e'f1,e'P2,e'3} and P, = Diag{l,e“2,1} are diagonal phase matrices,

A
ij =
single prime indicate the parameters at the scale of M,, while those with double primes are

s sin 9§j and c;j = cos 02/-]- for ij = 12,13, 23 have been defined. Here the symbols with a

the parameters at M. Note that there in general will be two Majorana-type CP-violating
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phases in the last matrix on the right-hand side of eq. (4.13), of which however only one is
physical because of one massless neutrino (i.e., m; =0).

Next, we consider the flavor structure of x, which is reconstructed by the second column
of Y, and M,. Keeping all the elements of %, one can obtain

131
M// M/ .
—=—+e"|393]|, (4.17)
C_: ! !
My s 131

where € = b%0?¢ /(Mym}) would be a small expansion parameter. We then diagonalize M
perturbatively following the same procedure as that in the previous section. In the final
step, we multiply the obtained mixing matrix U] from the M, by the previously found U,
so as to construct the flavor mixing matrix at M, i.e., U(M;) = UlTUl’,’. Note that Y, does
not run much from M, to M;. The three mixing angles are then extracted as

Ty ~ 05 — [3 cos(8" — 415)shs + V10 cos(8" — 7 3)chy sin Gl] €

/ / !/ / -~
+ [cos B13Ca3 + 3 cos 612523] €,
/
N/ 3¢/ / 10 roslsind € m33/ / ro s~
12 ~ l1g — |9C93 COS7Y 9 — COS 713593 SN0 | —5 + —F [3ch3 cos agy — cos ay38H3)co€
€12 2
m/
+m—? [cos oy — 9c cos ol — 85 cos oy — 87ht5(3chs cos aljy — cos af35h3)
2
/ / / !~ /2 / / / / /
+6553¢h3 Cos g | t19€ — {3ch3 cos Bz + chy (9 cos Byy — cos B33)sh3

, o~
07z€

—3s03 [COS Ba3893 + (cos B3 — cos 512)0/122t/12]} @ ) (4.18)
iy = thy — V008 vy o0 €+ {8(1 — 1) cosoly + 245)
23
+ [9cos(n — 2p5) — cos(n — 2p5)] sh3chs } €,
where t;; = tan®; and t]; = tan®; have been introduced for ij = 12,23, and o}; =

n—p;—p;— 2wy, Bi; =0 +n—p;—pj, and 7;; = p} — p; have been defined for i, = 1,2, 3.
Note that only the leading-order contributions from €, mf/m/4 and 64 are kept in eq. (4.18),
except that for 67, we also include corrections of the order of ¢3¢ for better accuracy.

Numerical verification of our approximate formulas is also given in table 1. Using the
exact results of three mixing angles at M, as input, we compute the approximate results at
M, from eq. (4.18), which have been shown in the last row. In comparison with the exact
results in the third row, we can observe that the approximate formulas indeed capture the
major threshold effects.

As is well known, the running effects of neutrino mixing parameters below the seesaw
scale 1 = M, are insignificant, in particular for the NH case. On the other hand, even
in the leading-order approximation, it is complicated to derive any analytical results for
the CP-violating phases and neutrino masses. Therefore, in order to fully address the RG
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SM MSSM (tan 3 = 30)

Agur M, M, Apw Agur M, M, Apw
015(deg) | 8.67 857 8.1 8.11 8.67 868 870 877 | 8.46701:
deg) | 34.32  34.04 3413 3413 | 3432 3450 34.53  34.63 | 33.727070
s(deg) | 45.77  44.89 4440 4440 | 4577 4560 4566 4592 | 41573
5(deg) | —86.7 —91.4 —93.7 —93.7 | —-86.7 —87.0 —87.0 -87.0 | 71738
o(deg) | —144.0 —144.7 —143.2 —143.2 | —144.0 —143.5 —143.5 —143.5 —
my(meV) | 13.4 12.6 11.9 8.72 11.4 10.7 10.6 8.74 | 8.657070

(meV) | 778 724 720 526 | 658  6L1  60.3  49.6 | 50.267032
my/ms | 0172 0.174  0.165  0.166 | 0.173  0.175  0.176  0.176 | 0.172+0953

Best fit

Table 2. Three mixing angles {65, 0,3,055}, two CP-violating phases {d,c} and non-zero light
neutrino masses {ms,, ms} at various energy scales according to two scenarios in Case A given in
figure 1. For comparison, we also show the best-fit results from ref. [44] in the last column.

running effects from Agyr = 2 X 106 GeV to Apw = 103 GeV, we numerically solve
the full set of RG equations with the REAP package [35] for three neutrino mixing angles
{0,9,0,3,053}, two CP-violating phases {6,0}, and two neutrino masses {my, ms}. The
final results are depicted in figure 1 (together with numerical values at various energy
scales in table 2), and the main features are summarized as follows: (1) All the mixing
angles and CP-violating phases are rather stable against the RG corrections. The largest
deviation from the initial value is observed for 6,3, but even in this case the deviation is
only around one degree. Therefore, the theoretical predictions for mixing angles and CP-
violating phases in the LS model can be applied at both low- and high-energy scales. (2)
However, it should be noticed that the running of absolute neutrino masses is remarkable.
To be consistent with neutrino oscillation data, the initial values of Y,, should be multiplied
by a factor of 1.25 (or 1.15) for SM (or MSSM), which has already been taken into account
in figure 1. This overall scaling of Y, does not alter the results for three flavour mixing
angles at the high-energy boundary, but it does modify the absolute values of Y,,, leading
to slightly larger a and b.

4.3 Case B

We now discuss case B in eq. (1.2) with n = 3 and n = —27/3. It has been found [24,
28] that this alternative scenario of Y, also yields a phenomenologically successful and
predictive description of neutrino masses and lepton mixing parameters, if RG corrections
are ignored [28]. Following a similar treatment as in the previous case, we now study the
RG running effects given this new form of Y,. The analytical formulas for flavour mixing
angles are almost the same as before, except for two differences.

(1) During the running from Agyp to M,, we shall take a form of H,, as

00 0
H,~|00 0 |, (4.19)
0 0 952
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Figure 1. The evolution of three mixing angles {05, 03,655}, two CP-violating phases {4, 0} and
neutrino masses {m,, ms} within the SM (left) and MSSM with tan 8 = 30 (right) for the form of Y,
in Case A given in eq. (1.2). The initial values for the most relevant parameters at the high-energy
scale i include g; = 0.579, g, = 0.521, g5 = 0.527, A = 0.5 (only for the SM), y, = 0.010 and
y, = 0.483.

instead of that in eq. (4.1). Consequently, in order to obtain M, at M,, we need to
consider corrections to the third row and column of MY at Agyp. In this case, we
have to replace eq. (4.5) with the following

0 0 (M))er
M,/ Iy =M)—¢,| 0 0 (M) | +0(). (4.20)
(MD)re (MD)ry 2(MD)7r

v

Adopting the previous diagonalization procedure, we find that the analytical formulas
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for 05 and 6, remain the same as those in eq. (4.9), while for 6,; we have

tan f; ~ tan 69, + 2\\//% sec? 095 cos 89y €, — /10 cos 2p cos 6, sec? 095 ¢, , (4.21)
where all the parameters follow the same definitions as in the previous subsections.
It is worthwhile to point out that the correction proportional to €, in the above
equations has an opposite sign to that in eq. (4.9), which can be used to explain
the difference between the running behavior of decreasing 53 in case A and that of
increasing 055 in case B.

(2) For threshold effects arising from the running between M, and M, the modification
on the previous analytical study shows up in eq. (4.17), namely,

113
Ml/ M/ .

v v |13 . (4.22)
Cmy - mg 339

It is straightforward to verify that such a modification leads to slightly different
analytical formulas for three flavour mixing angles:

13 ~ 013 — {3 cos(8" — 715)sh3 + V10 cos(8" — 73)chy sin 91} €
+ (3 cos B13chs + cos Blash3) €,

€
/T / / / / . [
tiy = 19 — [3023 cosyio — V 10 cosy 3593 sin Ol] —
€12
/ /
ms. / g~ M3 1 / 12 12
—I-W [c93 COS A9 — 3 COS A73893]C]9€ + oy [6523623 COS (tg3 — Cg3 COS (o
2 2

12 / 12 41 / / / / !~
—9s55 cos Ay — STat]o(Chs cos aly — 3cos ayshs) + cos al | o€

; o~
_ [36/223 cos Bhs + chs(cos Bhe — 9 cos B3)shy — 3shs cos 6533’23] —Clgg ,
12
cosf
ths & the — /10 cos yésch €+ {3(1 — t5}) cos(ahg + 2wh)
23
+ [cos(n — 205) — 9cos(n — 23] shachs } (4.23)

where the relevant parameters have been defined below eq. (4.18). Comparing be-
tween eq. (4.18) and eq. (4.23), one can observe that only the coefficients in front of
a few terms are different.

Numerical RG evolution of this alternative form of Y, is also performed in figure 2,
with the same input parameters as those in figure 1 except for the sign of 7. Also, we
show the detailed numerical values for three mixing angles, two CP-violating phases and
neutrino masses at various energy scales in table 3. As one can see, RG corrections to
mixing angles and phases are quite stable as in the previous case, and similar running
behaviours are also observed for neutrino masses.
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Figure 2. The evolution of three mixing angles {05, 03,055}, two CP-violating phases {d,c} and
neutrino masses {m,, ms} within the SM (left) and MSSM with tan 8 = 30 (right) for the form of Y,
in Case B given in eq. (1.2). The initial values for the most relevant parameters at the high-energy
scale i include g; = 0.579, g, = 0.521, g5 = 0.527, A = 0.5 (only for the SM), y, = 0.010 and
y, = 0.483.

4.4 Alternative ordering of M, = and M_,

In the previous discussions, we have assumed the mass matrix of heavy right-handed neu-
trinos to be My = Diag{M,;,, M} and taken the normal mass ordering as M, =
M, = 10" GeV and M, = M, = 10" GeV. As we have mentioned, there exists an
alternative ordering, namely, M, = M, = 10" GeV and M, = M; = 10'? GeV. In this
case, in order to obtain the same neutrino masses and mixing angles as before, we require
m, = a®v?/My,, = 25.67 meV and m, = b*v?/M_, = 2.684 meV, implying a ~ 0.94
and b ~ 0.01. Although neutrino masses and mixing angles are kept unchanged, the RG
running and threshold effects should be quite different for the following reasons:
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SM MSSM (tan 3 = 30)
Agur M, M, Apw | Agur M, M, Apw
0,5(deg) | 867 857 811 811 | 867 867 867 867 | 8467013

(deg) | 34.32 34.03 34.13 34.13 | 34.32 34.50 34.54 34.65 | 33.72707%
Oo5(deg) | 44.22  43.94 44.40 44.40 | 44.22 4510 4519 4543 | 41.5%}3

) | —93.3 -87.6 -852 -852|-933 -93.6 -93.6 -93.7| -T1'¥
o(deg) | —36.0 -36.4 —37.8 -37.8| 360 -359 —359 -35.9 —
my(meV) | 13.4 12,6 119 872 | 114 107 106 874 | 8.6570%8
ms(meV) | 77.8 724 720 526 | 658 611 603  49.6 | 50.267037

my/my | 0172 0.174 0.165 0.166 | 0.173 0.175 0.176 0.176 | 0.1727003

Best fit

Table 3. Three mixing angles {05, 0;3,055}, two CP-violating phases {J,c} and non-zero light
neutrino masses {my,ms} at various energy scales according to two scenarios in Case B given in
figure 2. For comparison, we also show the best-fit results from ref. [44] in the last column.

1. Now that the mass ordering of two heavy Majorana neutrinos is inverted, we have to

exchange the two columns of Y, in eq. (1.2), namely,

beln/? 0 bein/? 0
Case C:Y, = nbe? g or CaseD:Y, = | (n—2)be"?q
(n — 2)bel"/? a nbe? g

(4.24)

When crossing the seesaw thresholds, we first decouple the heaviest neutrino at M,
(by ignoring the second column of Y, for u < M,), and then the second one at M.
It is evident that the flavour structure of Y, at each stage is distinct from that for
the normal ordering.

. During the running from A,y to M,, the evolution of neutrino mixing angles is
mainly governed by

000
H,~|0d?ad|, (4.25)
0 a? a?

where the dominant element a? =~ 0.88 is much larger than the others. Moreover, H,
is not diagonal, and thus affects greatly the flavour structure of M,. For the same
reason, it seems impossible to solve the RG equation of M, analytically.

. During the running from M, to M;, the reduced Yukawa coupling matrix involves
only the parameter b ~ 0.01, which is much smaller than that in the previous case.
Therefore, we expect insignificant running effects from the neutrino sector.

Instead of an analytical approach, we adopt the exact numerical approach to solve the

RG equations and show the final results in figures 3 and 4 for cases C and D, respectively.

The values at various energy scales are summarized in tables 4 and 5. Note that the same
scaling factor of 1.25 (1.15) has been applied to Y, for SM (MSSM) so as to obtain better
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Figure 3. The evolution of three mixing angles {05, 03,055}, two CP-violating phases {4, 0} and
neutrino masses {msy, ms} within the SM (left) and MSSM with tan 8 = 30 (right) for the form of
Y, in Case C given in eq. (4.24). The initial values for the most relevant parameters at the high-
energy scale i, include g; = 0.579, g, = 0.521, g5 = 0.527, A = 0.5 (only for the SM), y. = 0.010
and y, = 0.483.

agreement with low-energy data on neutrino masses. Some comments on the numerical

results are in order:

e Now we have more significant running effects on 6,5 and 643. For the previous or-
dering M, < M, the running for 6,5 and 0,5 is about 0.5° and 1.0° for case A,
respectively. The change of 6,5 for case B is even smaller, as indicated in table 3. In
the case of M, > M_,, as shown in table 4, both 0,5 and 6,5 get changed by about
1.0° for case C. However, for case D, the results of 6,5 have been given in table 5,

and the decrease of 0,5 about 3° is found for the SM, although the corrections in the
MSSM are again small.
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Figure 4. The evolution of three mixing angles {05, 03,055}, two CP-violating phases {d,c} and
neutrino masses {msy, ms} within the SM (left) and MSSM with tan 8 = 30 (right) for the form of
Y, in Case D given in eq. (4.24). The initial values for the most relevant parameters at the high-
energy scale i, include g; = 0.579, g, = 0.521, g5 = 0.527, A = 0.5 (only for the SM), y. = 0.010
and y, = 0.483.

e Regarding the running of 0,3 from Agyp to M, in the SM, one can observe from
tables 4 and 5 that the values of 6,5 decrease by about 2.0°, which is consistent with
our expectation from eq. (4.25). However, in the second stage from M, to M, O,
becomes increasing in case C, while it continues decreasing in case D. This opposite
running behaviour may be ascribed to the competition among different contributions

from both neutrino and charged-lepton sectors.

e When running towards low energies, the ratio of m,/m4 becomes increasing while in
the previous case it is decreasing. Moreover, the running of such a ratio is also more
appreciable, and becomes in contradiction with the data. This can be attributed
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SM MSSM (tan 8 = 30)
Best fit
AGUT ]WZ Ml AEW AGUT ]\42 ]\/[1 AEW
f15(deg) | 8.67 885 954 954 | 867 898  9.02  9.09 | 8467012
01o(deg) | 34.32 3427 3411  34.11 | 34.32 3426  34.28  34.38 | 33.727070
Oys(deg) | 45.77  44.08  44.79 4479 | 4577  46.98  47.09  47.35 | 41.577%
5(deg) | —86.7 845 818 —81.8 | —86.7 8.9 869 -869 | -717%
o(deg) | —144.0 —1458 —147.8 -143.2 | —144.0 -143.1 -143.1 -143.1 —
my(meV) | 134 122 121 875 114 105 104 863 | 8.6570%s
my(meV) | 77.8  68.1 63.6 459 | 658  57.0  56.3  46.7 | 50.2610%2
my/my | 0172 0179  0.190  0.190 | 0.173  0.184  0.185  0.185 | 0.172+)0%

Table 4. Three mixing angles {05, 03,055}, two CP-violating phases {J,c} and non-zero light
neutrino masses {my, m4} at various energy scales according to two scenarios in Case C given in
figure 3. The best-fit results from ref. [44] are shown in the last column.

SM MSSM (tan 8 = 30)
Best fit
Agur M, M, Apw | Agur M, M, Apw
0,5(deg) | 8.67 885 954 954 | 867 898 899 899 | 8467011
05(deg) | 34.32 3427 3411 3411 | 34.32 34.26 34.29 34.40 | 33.727579
0y5(deg) | 44.22 4230 41.54 4154 | 44.22 4504 45.14 4539 | 41573
5(deg) | —93.3 —92.0 —944 —944 | -933 -950 -950 —951 | —7113
o(deg) | —36.0 —37.7 —36.0 -36.0|—360 -35.0 —350 —35.0 —
my(meV) | 13.4 122 121 875 | 114 105 104  8.64 | 8.65707%s
mg(meV) | 77.8  68.1  63.6 459 | 658 57.0 563  46.7 | 50.26703
my/my | 0172 0.179  0.190 0.190 | 0.173 0.184 0.185 0.185 | 0.172739%3

Table 5. Three mixing angles {65, 0;3,055}, two CP-violating phases {d,c} and non-zero light
neutrino masses {my,ms} at various energy scales according to two scenarios in Case D given in
figure 4. The best-fit results from ref. [44] are shown in the last column.

to a more significant running of ms. In principle, we can adjust both m, and m,
such that neutrino masses are in good agreement with data, and even the tension of
mixing angles with observations may also get reduced. For this purpose, a complete
scan of model parameters should be carried out, which however is beyond the scope
of the present work.

It is very interesting to notice that a deviation of 655 from the maximal mixing by 3°
can only be realised in the case of M, > M_, and the flavour structure of Y,, takes the
form case D in eq. (4.24). In the other cases, we are left with a nearly maximal mixing
0y = 45° £ 1°, including the radiative corrections.

4.5 Varying M_, ~and M_

Finally, let us further expand our work to the scenario where both M, and M_, are

m
allowed to vary within certain ranges. We address this issue by evolving RG equations
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Figure 5. Predicted mixing angles 6, (left), 6,5 (middle) and 6,5 (right) at the Ay = 10° GeV in
Case A/C within the cases of SM (top panel) and MSSM with tan 8 = 30 (bottom panel), allowing
both M,,,, and M, to vary between 10'° GeV and 10'® GeV. Boundary values of other model
parameters, which yield 6,5 = 8.67°, 0, = 34.32° and 0,3 = 45.77° at Aqyr, are chosen to be the
same as those in tables 2 and 4. Dark and light gray areas respectively correspond to 1o and 3o

allowed regions, according to the global-fit results in ref. [44].

numerically, and choose the same boundary values of model parameters as those in tables 2—
5, while varying both M, and M_; between 10'0 GeV and 10" GeV. The obtained results
for the form of Y, as in Case A of eq. (1.2) and Case C of eq. (4.24) are presented in figure 5,
where both the cases of SM and MSSM with tan 8 = 30 are considered. To compare with

the current experimental data, we also include the 10 and 3¢ allowed regions according to

tm

the global-fit results in ref. [44]. Several observations are then made:

and M

sol?
mixing angles are all rather small, at most one degree for 6,5 and 60,5.

e In the entirely considered ranges of M, the running effects for the three

tm

e In comparison with the global-fit results, we see that having 6,5, to be compatible
with the data, even at the level of 1o, is easy to achieve. However, for 6,5 and 6,5,
although a 30 level of agreement is also not difficult, reaching a compatibility at the
1o level becomes impossible in 053, and for 6,5 it is only in the case of SM that there
exists some parameter space of M, and M_.

It should be pointed out that in figure 5 we also consider the case where M, and M_
are almost degenerate, while the previously derived analytical results are only applicable
to the hierarchical cases.
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Figure 6. Predicted mixing angles 6,, (left), 6,5 (middle) and 6,5 (right) at the Ay = 10° GeV in
Case B/D within the cases of SM (top panel) and MSSM with tan 8 = 30 (bottom panel), allowing
both M,,,, and M, to vary between 10'° GeV and 10'® GeV. Boundary values of other model

atm

parameters, which yield 6,5 = 8.67°, 0, = 34.32° and 0,3 = 44.22° at Aqyp, are chosen to be the
same as those in tables 3 and 5. Dark and light gray areas respectively correspond to 1o and 3o
allowed regions, according to the global-fit results in ref. [44].

We then turn to the other form of Y, namely, Case B in eq. (1.2) and Case D of
eq. (4.24). In figure 6 we show the numerical results obtained in the same way as the
above. As one can see, the running of three mixing angle is again rather insignificant,
except for 0,3 in the case of SM, for which the decrease of 0,3 around 3° can appear
when M, ~ 10'° GeV as discussed in the previous section. Therefore, we have extended
our previous conclusion, i.e., in the presence of radiative corrections a close to maximal
atmospheric mixing of 0,3 = 45° £1° can be achieved in most of cases, to the scenario that
both M,,, and M are varied in a wide range. Such a robust prediction on 6,5 calls for
scrutiny under future neutrino experimental results.

5 Summary

Seesaw models are able to explain simultaneously both tiny neutrino masses and the cosmo-
logical matter-antimatter asymmetry, but generally involve a large number of parameters.
By contrast, the LS model involves two right-handed neutrinos and a very constrained
Dirac mass matrix, involving one texture zero and two independent Dirac masses, leading
to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is
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successfully predicted in terms of just two real parameters. To be precise, we have consid-
ered two simple structures of the Dirac neutrino Yukawa coupling matrix Y, denoted as
cases A and B, with M,

atm << M, each of which contains only three real parameters a, b,

and 7, which may be fixed by symmetry arguments to be a cube root of unity, leading to
testable predictions for low-energy neutrino experiments. We also considered two related

cases C and D corresponding to M_ ; < M.

sol

Each case predicts a normal neutrino mass hierarchy with {m,, my, ms} = {0,8.6,50}
meV, where the effective neutrino mass m pg = 2.7 meV for neutrinoless double-beta decays
is so small that observation of such decays is impossible in the foreseeable future. The LS
model also predicts an almost maximal CP-violating phase § = —87° (cases A,C) or —93°
(cases B,D) which will be verified or ruled out in the future oscillation experiments. The
LS model also predicts close to maximal atmospheric mixing at the high scale, f23 ~ 46°
(cases A,C), or 93 ~ 44° (cases B,D), where both predictions are challenged by the latest
NOVA results in the v, disappearance channel which indicates that 623 = 45° is excluded
at the 2.5 ¢ CL, although T2K measurements in the same channel continue to prefer
maximal mixing.

In this paper, motivated by the simplicity and predictivity of the LS, we have calcu-
lated the RG corrections to the LS predictions, for both cases A and B, with and without
supersymmetry, including also the threshold effects induced by the decoupling of heavy
Majorana neutrinos both analytically and numerically. We also performed a numerical RG
analysis for cases C and D. In particular we have investigated the RG running of three
neutrino mixing angles, taking account of the threshold effects induced by the decoupling
of heavy Majorana neutrinos, including both possible mass orderings of right-handed neu-
trinos. Although the running effects are rather small both in the SM and in the MSSM
with tan 8 = 30, we have carried out an analytical treatment of the RG running between
two seesaw thresholds for cases A,B. We emphasise that the full numerical calculation was
performed to verify our analytical and approximate results. We find that the predictions
for neutrino mixing angles and mass ratios are rather stable under RG corrections. For
example we find that the LS model with RG corrections always predicts close to maximal
atmospheric mixing 23 = 45° + 1°, for most considered cases, which remains in tension
with the latest NOvA results. The one exception is case D for the SM, where 053 = 41.5°
after RG corrections.

Finally we mention that the techniques used here may be applied to other seesaw
models with a strong normal mass hierarchy. We hope that such future studies would
be helpful in revealing how the RG running modifies theoretical predictions for neutrino
mixing parameters, for other related neutrino mass models with flavour symmetries. In
particular, the results here are expected to be indicative of a large class of seesaw models
with a strong mass hierarchy that predict close to maximal atmospheric mixing, so we
conclude that RG corrections are not generally sufficient to rescue such models if maximal
atmospheric mixing becomes excluded.
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