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Abstract

Providing a mathematics curriculum that makes proof accessible to school students
appears to be difficult. This paper describes work carried out in a secondary school
mathematics class in which students worked on tasks designed to enable them to experience
the necessity of certain geometrical facts that are true in Euclidean geometry. In these
tasks, the students were asked to construct figures using the dynamic geometry package
Cabri-Geometre such that each figure was invariant when any basic object used in the
construction was dragged. It is argued that working on these tasks provided the students
with suitable experiences to enable them to explain why these geometrical facts are
necessarily true. The changing quality of the students’ mathematical analysis suggests that
working on suitable tasks with a dynamic geometry package may allow some students to
develop an appreciation of proof as explanation.

Introduction

Mathematical proof is the essential component of mathematics and is arguably what
distinguishes mathematics from other disciplines. Yet providing a mathematics curriculum
that makes proof accessible to school students appears to be difficult. Proving, it seems,
either appears as an obscure ritual or it disappears in a series of innocuous classroom tasks
in which students learn to “spot patterns’. Schoenfeld (1989), for instance, reports that even
when students can reproduce a formally taught Euclidean proof, a significant proportion
conjecture a solution to the corresponding geometrical construction problem that “flatly
violates the results they have just proven” (emphasis added). On the other hand, when the
chosen proof contexts are data-driven, with students expected to form generalised
conjectures and search for counter examples, Coe and Ruthven (1994) find that “students’
proof strategies were primarily empirical”. In this case, the generation of numerical data
becomes the object of the exercise and any notion of deductive argument appears
abandoned. Balacheff (1988, p 222) similarly reports the occurrence of what he refers to as
“naive empiricism”.

It seems that to begin creating a more meaningful experience of proof for school students
we firstly need contexts for proof with which students can engage. Secondly, we need ways
of working in the classroom that provide opportunities for students to explain why they

! Cite as: Jones, K. (1995). Dynamic geometry contexts for proof as explanation. In L. Healy and C. Hoyles (Eds),
Justifying and proving in school mathematics (pp142-54). London: Institute of Education.
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obtain a particular outcome. Some initial findings from my work in a secondary
mathematics class suggests that the use of a dynamic geometry package such as Cabri-
Géometre may provide an opportunity for some students to consider the “why” in addition to
the “what if..” and the “what if not...”. Such an approach demands the provision of appropriate
tasks and in designing them there have been two (connected) issues. The first issue involves
ensuring the students experience the necessity of geometrical facts that are true in Euclidean
geometry. The second concerns providing the students with suitable experiences to allow
them to explain why these geometrical facts are necessarily true.

In this paper | describe the approach that | have been developing with a lower secondary
school mathematics class (students aged 12). My approach has been to seek to provide the
students with opportunities to experience what I will call “proof as explanation’. In the next
section | will explain what | mean by “proof as explanation” and in a following section
describe the development of some dynamic geometry tasks that might usefully support such
an approach to proof. The quality of the students’ mathematical analysis, | will argue,
suggests that the use of a dynamic geometry package such as Cabri-Géometre, coupled with
suitable tasks, may provide an opportunity for some students to develop the basis for a fuller
appreciation of the nature and purpose of mathematical proof.

Proof as Explanation

Proofs are often thought of solely as standardised linear deductive presentations. The form
of two-column proofs taught in a number of countries precisely fits such a model. Proof
can, however, take a number of forms. Balacheff (1988, p 216), for instance, contrasts what
he calls pragmatic and conceptual proof. From a different perspective, Leron (1985) talks
about “direct” and “indirect” proofs. In this paper | will employ the distinction suggested by
Hanna (1989), that there are proofs that prove (and do no more) and proofs that explain.
This latter form of proof demonstrates not only that a statement is true, but also why it is
true. As an example, Hanna contrasts two proofs for the following:

Prove that the sum of the first n positive integers, S(n), is equal to n(n+1)/2

She argues that, while a proof by induction is mathematically satisfactory, the format
suggested by Gauss (employing a geometrical representation) not only provides a
satisfactory proof but also explains why the proof is true. It is this form of proof - proof as
explanation - that is the focus of this paper. When proof is viewed as explanation, such a
proof may be more successful as a means of communication and a way of convincing
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others. Given such an approach, proof as experienced by school students might be more
meaningful for all concerned.

In developing a more meaningful approach to proof for school students, | want to
emphasise the importance of the choice of context. The traditional context for proof in the
school curriculum has been geometry, while in University it has been analysis. Neither
context has so far proved wholly successful. Indeed, within school mathematics, geometry
as a context for proof has not, it seems, been successful either when the dominant emphasis
is on the abstract and technical aspects of proof or when it is on gathering data. It appears
that proof activities do not work because either the property is so obvious that it is hard for
the students to see why a proof is needed, or that while a generalisation can be ascertained
and no counter-examples found, a mathematical proof is beyond almost all the students.

Schoenfeld (1985), for example, argues that, when proof is taught formally, then, for most
students “mathematical proof is irrelevant to both the discovery and (personal, rather than
formal) verification process”. He goes on to say that if a student finds that a proof is
“absolutely necessary - that is, the teacher demands it - [the student] can probably verify a
result using proof techniques. But this is simply playing the rules of the game, verifying
under duress those things that one already knows to be correct” (p 160- 161). From the
empirically-based, data-driven, perspective, an analysis of student responses to such tasks
by Coe and Ruthven (1994) found that only two pieces of student work out of 60 “could be
said to contain a strong deductive proof”. The remainder contained “at best empirical
proof, and in one or two cases, not even that”.

Thus, as Hoyles, Healy and Noss (1995 p 101) summarise, many students:

e fail to appreciate the crucial distinction between empirical and deductive arguments
e show a preference for empirical arguments

e behave as if deductive proof provides no more than contributory evidence

e regard proof as an irrelevant activity

This suggests that we need to continue to look for ways of laying the foundation for a
deeper appreciation of the role of proof. There are a number of reasons why using a
dynamic geometry package such as Cabri-Géometre may present us with an opportunity to
look afresh at our way of approaching proof with secondary school students. Firstly, a
dynamic geometry package allows direct manipulation of geometrical objects (or, at least,
the appearance of such direct manipulation). The drawing on the screen can be
manipulated by means of the mouse. Objects can be ‘dragged’ while, all the time, all the
geometric properties used to construct the drawing are preserved.
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Underpinning a package such as Cabri is the idea of geometric relationships which require
clear definition. As Laborde (1993 p 57) observes “explicit description leads to an emphasis
on the functional and analytic aspects of geometry”.

Hoyles, Healy and Noss (1995 p 102) confirm that “the computer may offer just such a new
context” for proof as long as, they stress, tasks are carefully designed to provide students
with what they call “the bones of a proof” (ibid p 104). The remainder of this paper
describes the design and use of a series of dynamic geometry tasks created in an attempt to
take advantage of the potential offered by a dynamic geometry package.

Developing Dynamic Geometry Contexts

Given the above discussion, the aim of developing such a series of tasks was based on the
following factors all of which were considered critical:

e encouraging the students to make conjectures

e focusing on the relationships between geometrical objects

e providing the means for the students to explain their actions and results

It has been observed before that starting out in an English mathematics classroom with a
dynamic geometry package such as Cabri is far from straightforward. Constructions in
Cabri are based in the Euclidean tradition, something that has not been a significant part of
the UK mathematics curriculum since the early 1970s (Fielker 1986). Consequently, several
authors (including Ainley and Pratt (1995), Healy et al (1994), and Winbourne and Wrigley
(1993),) have suggested a logo-like start with students being introduced to some of the
menu items in Cabri. The students are then free to choose their own goals.

However, as Healy et al (1994) observe, there are risks in such an approach in that it can
allow students “to avoid interacting with mathematics at all”” (op cit). To counteract this
possibility, Healy et al introduced to their students the idea of “messing up” (or, more
accurately, not messing up). They defined “messing up” in the following way: “After a
figure was drawn it could be dragged to see if it became unrecognisable, that is whether the
different objects within the design moved together in a sensible way or not” (op cit). They
conclude (in Holzl et al 1994) that, while they commend the idea of “messing up”, the idea
of functional dependency may be difficult for students to grasp.

The students in the present study were unfamiliar with Cabri and so a similar approach to
that suggested by Healy et al was adopted. Pairs of students were introduced to some of the
menu items in Cabri and then allowed to choose their own goal. The notion of “messing
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up” was introduced with the students being encouraged to formulate mathematically
challenging goals. These introductory sessions did mean that the students gained some
familiarity with Cabri but it became clear that the students would need more explicit
mathematical goals if they were not going to use Cabri solely as a drawing tool rather than
a tool for constructing geometrical figures.

It is important, here, to stress the importance of distinguishing between drawing and figure.
Laborde (1993 p49) makes clear the distinction in the following way: “drawing refers to the
material entity while figure refers to a theoretical object”. In terms of a dynamic geometry
package, a drawing can be a juxtaposition of geometrical objects resembling closely the
intended construction. In contrast, a figure additionally captures the relationships between
the objects in such a way that the figure is invariant when any basic object used in the
construction is dragged. As | shall subsequently argue, the ability to check a construction by
dragging appears to be particularly important part of experiencing the necessity of relevant
geometrical facts.

The search for a suitable context for work on “proof as explanation” led to a focus on the
analysis of static figures and their construction in the dynamic Cabri environment. In other
words, tasks would be designed which asked the students to construct, given a geometrical
figure drawn on paper, the corresponding geometric figure in Cabri such that the Cabri
figure can not be “messed up”.

Another important consideration was to utilise some of the students existing mathematical
knowledge and document how this developed as the students used Cabri. A long-standing
component of the primary geometry curriculum in the UK is the recognising and sorting of
various simple plane shapes. This entails such matters as identifying circles and various
specific triangles and quadrilaterals. In the secondary curriculum, students are expected to
know and use the properties of quadrilaterals and be able to classify them on the basis of
their properties. Given these factors, and the fact that there has been both discussion about
the classification of quadrilaterals (for example, de Villiers 1994) and research involving
students’ ability to classify them (for instance, Fuys et al 1988), the ‘family of
quadrilaterals’ evolved as the choice of context for the Cabri tasks.

In constructing quadrilaterals, a key idea is the use of the circle as a length-carrier. This, in
turn, depends on the locus definition of the circle. Just as the idea of functional dependency
may not be easy for lower secondary school students to grasp, neither might the locus
definition of the circle (or, at least, it contrasts with what is claimed by Bishop (1983) to be
the notion of the circle commonly-held by upper primary and lower secondary pupils: that
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is, that a circle is a disc). Some way was required to introduce the students to using the
circle in the construction of other geometrical objects.

What might be a promising solution to this problem, illustrated by the work of one pair of
pupils on a selection of the resulting Cabri tasks, is described in the next section.

Children working on Dynamic Geometry Contexts

The students reported on here are 12 year olds with no previous experience of using a
dynamic geometry package although they had all used various drawing packages and other
IT resources. The class is an above-average mathematics class in a city comprehensive
school whose results in mathematics at age 16 are at the national average. The mathematics
teachers use a resource-based approach to teaching mathematics and the students usually
work in pairs or small groups. The class has three 50-minute mathematics lessons per week.
At the beginning of the study, computer use for Cabri was restricted to one computer in the
classroom (the students have access to computer laboratories for other computer
applications). This meant that, as student pairs took it in turn to use the computer, it was
often several weeks between sessions for particular pairs. Towards the end of the study, up
to four machines were able to be used at the same time in the classroom. The version of
Cabri used was Cabri | for the PC.

Each of the classroom tasks requires the students, in pairs, to analyse a figure presented on
paper. The students are asked to construct the figure using Cabri such that the figure is
invariant when any basic point used in the construction is dragged. This means that the
students have to focus on the relationship between the basic objects (points, lines and
circles) necessary to construct the figure.

This section presents the work of one pair of pupils, H and R, as they progress from the
initial exploratory session through two of a series of “starter’ tasks to one task from a series
on quadrilaterals. Four sessions will be described in total. They took place over a period of
five months. During that time all students in the class used Cabri and the work they did was
sometimes shared. Certainly, students discussed between themselves the work they did.
Also during that time, of course, the students continued with their regular mathematics
programme. This included some work on certain aspects of “shape and space’ although
none of it could be said to be directly relevant to the area of the mathematics curriculum
that was the focus of the Cabri work.

As described above, the initial session introduced the students to some of the menu items of
Cabri and the students were then free to choose their own goal.
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The Exploratory Session

After being introduced to the creation menu and told that the idea was to use these
geometric objects to construct other geometric objects, H and R agreed to start with basic
point and work their way down the menu trying out each item. In this way they created a
juxtaposition of shapes. After clearing this design they embarked on creating a picture that
they called "the crooked house’ (see figure 1).

Figure 1
While H and R enjoyed themselves and became competent at using the basic components
of Cabri, their project involved little mathematics and certainly did not seem to challenge
them in any serious mathematical way. None of the critical factors itemised at the start of
the previous section were present. To include these factors, a series of suitable tasks were
designed and H and R tackled the first of these some four weeks after their introductory
session.

The “Starter’ Tasks

The “starter’ tasks consisted of a series of simple patterns made up of lines and circles. The
students were asked to construct the patterns so that they could not be “messed up”. In this
section, | describe first how H and R tackle the pattern shown in figure 2.
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Figure 2
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H and R discuss the pattern and begin constructing it using basic circles starting from the
left. They form three basic circles of approximately the correct size and drag them into
approximately the correct orientation. With three circles in place, | point to the instruction
on the sheet (in the transcripts that follow, | stands for interviewer/researcher):

I: Before you do any more, it says here “so they can not be messed up”. What does that
mean?

H; They can’t overlap if they are not supposed to.

I: What else could it mean?

R: It shouldn’t get muddled up.

I invite them to drag one of the circles away. One of the students immediately exclaims

R: So, you can mess it up!

I: You have to find a way so that you can’t mess it up.

Having used basic circle and failed, they try using circle by centre and radius point. They
begin by constructing two circles such that the radius point of the first circle is the centre of
the second circle. This illustrates that H and R have some understanding of the relationship
between the objects they need to construct. Then, importantly, they check by dragging one
of the points and find that their figure can not be "messed up’. At this point they are not

sure how to proceed. After being referred back to the figure on paper, they construct the
line and thence confidently complete the task.

I: Why can’t it be messed up?

H: Because they [the circles] are all linked with points.

R: The line links them all up.

The pair is pleased with their result. Through this task, they were beginning to appreciate

the need to focus on the relationship between the objects they were creating. This focus
developed in the next task they tackled, figure 3, some four weeks later.

Figure 3
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H and R confidently create two circles that could not be “messed up” but, rather than using
a point of intersection (in Cabri I) they use point on object to create the centre of the third
circle. As a result, their final construction could still be “messed up” albeit not drastically.
Nevertheless, the pair is aware that something about their construction is unsatisfactory.
After being reminded of their previous work, they looked again at the construction menu
and this time correctly chose point of intersection. In this way, they show that they are still
becoming accustomed to the special nature of relationships in Cabri | and of the notion of
not “messing up”.

Following work on these “starter’ tasks, H and R embarked on a series of tasks that focused
on the “family of quadrilaterals’. The next section describes them tackling one of the tasks.
The lesson occurred after a long school holiday.

A Quadrilateral Task
The students are asked to construct the figure given in figure 4.

Figure 4
and thereby obtain figure 5

Figure 5

H and R tackle this with consummate ease, checking after each individual action that the
figure does not mess up. They are expected not only to construct the figure but also to
explain why the shape is a rhombus. Although the task refers to the shape as a rhombus, in
part of their explanation, they refer to it as a diamond. This is what they say:
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The sides are all the same because, if the centre is in the right place, the sides are
bound to be the same.

The diagonals of the diamond cross in the middle, though they are different sizes
[lengths]. The diagonals bisect each other. The angles [where the diagonals cross]
are the same. They are right angles.

The opposite angles [of the rhombus] are the same. Two are more than 90 degrees
but less than 180 degrees, and the others are less than 90 degrees but more than zero
degrees.

This shape is a rhombus because the sides are the same, the diagonals bisect at right
angles and the opposites have the same angles.

In order to write down their explanation, H and R needed appropriate support. The task on
paper contained certain prompts. For instance, the task suggested that attention be paid to
the sides, the angles, and the diagonals. | also prompted the pair by focusing their attention
on these attributes and providing technical language (such as bisect) when appropriate in
order to assist the precision of their explanation.

Discussion

The above provides some illustration of how the quality of these particular students’
mathematical analysis of such geometrical figures improved significantly and observably
within three sessions using Cabri. Nevertheless, it has to be stressed that this experience is
founded on the following factors: a well-established and carefully-nurtured classroom
culture that values mathematical thinking, a sequence of carefully selected tasks, and a
range of appropriate prompts from the researcher and teacher (and possibly other
classmates). It might well be that, without this combination of factors, the outcome would
have been very different.

It is also worth noting that H and R are but one study-pair in the class and not the most able
mathematically. In addition, their experience was spread over several months. Again, the
influence of factors such as these on the outcome is unknown. It may be that the time
sequence was an important factor; or it might be that the same outcome would have been
achieved if the students had completed the same tasks within a much shorter period. Only
further investigation can address that particular issue.

Of course, a further, and perhaps, critical factor is the mediating effect of the computer.
Papert has claimed that, in the right circumstances, the computer can “help bridge the gap
between formal knowledge and intuitive understanding” (Papert 1980 p 145). It does this,
Turkle and Papert (1991 p 162) suggest, by standing "betwixt and between the world of formal
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systems and physical things: it has the ability to make the abstract concrete”. From this
perspective, a dynamic geometry package such as Cabri provides the semblance of direct
manipulation of abstract geometrical objects. Yet in Cabri (or, more accurately, in Cabri I),
there is a need to be both precise and explicit about the relationships between geometrical
objects in the figure being created. This means that, in the design of Cabri I, it became
necessary to have different types of point: basic point, point on object, and point of
intersection. Consequently, it could be argued, the nature of the specification of relationships
in Cabri | is overly particular to Cabri I. This is another factor that demands further
investigation (given the release of Cabri Il where the demands for precision are different).

All the above factors need to be borne in mind in any evaluation of the results of the
empirical work described in this paper. After all, only the experience of one pair of pupils is
documented here. Nevertheless, | would suggest that through working on tasks such as the
ones described above, the students gained some insight into the structure of plane geometry.
For H and R this meant that they were able to explain the properties of a rhombus. For other
pairs it meant, for example, that when they came to constructing a square they not only
knew that the shape had to be a square but they also knew why.

In this process, both of experiencing the necessity of a result (for H and R, that the figure
has to be a rnombus) and of coming to know why that particular result is obtained, the
ability to check by dragging appears to be particularly important. This facility allows
conjectures to be tested by focusing attention on the relationships between the geometrical
objects that have been constructed. In my work, the commands Delete object (and the
object’s dependants), together with undo, have also shown themselves to be useful in a
similar way. My argument is that experiencing the necessity of such geometrical facts
involves perceiving (at some level) the axioms of the mathematical structure of plane
geometry. Explaining why these geometrical facts are necessarily true involves constructing
chains of reasoning. These are two of the essential components in a meaningful experience
of proof.

I am carrying out further classroom work with these able 12 year olds and also doing some
parallel work with a class of 14 year olds. From the evidence so far gathered in this study, it
may be that carefully chosen tasks using a dynamic geometry package provide a suitable
context for some students to develop an appreciation of mathematical proof. In order to see
how this view of proof as explanation develops further in the classroom, the process of
acceptance within such a setting is a vital aspect. In due course, attention will need to be
paid to that process and to how this contributes to developing in students the basis for a fuller
appreciation of the nature and purpose of mathematical proof.
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