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Abstract 
Providing a mathematics curriculum that makes proof accessible to school students 
appears to be difficult. This paper describes work carried out in a secondary school 
mathematics class in which students worked on tasks designed to enable them to experience 
the necessity of certain geometrical facts that are true in Euclidean geometry. In these 
tasks, the students were asked to construct figures using the dynamic geometry package 
Cabri-Géomètre such that each figure was invariant when any basic object used in the 
construction was dragged.  It is argued that working on these tasks provided the students 
with suitable experiences to enable them to explain why these geometrical facts are 
necessarily true. The changing quality of the students’ mathematical analysis suggests that 
working on suitable tasks with a dynamic geometry package may allow some students to 
develop an appreciation of proof as explanation. 

Introduction 

Mathematical proof is the essential component of mathematics and is arguably what 

distinguishes mathematics from other disciplines. Yet providing a mathematics curriculum 

that makes proof accessible to school students appears to be difficult. Proving, it seems, 

either appears as an obscure ritual or it disappears in a series of innocuous classroom tasks 

in which students learn to `spot patterns’. Schoenfeld (1989), for instance, reports that even 

when students can reproduce a formally taught Euclidean proof, a significant proportion 

conjecture a solution to the corresponding geometrical construction problem that “flatly 

violates the results they have just proven” (emphasis added). On the other hand, when the 

chosen proof contexts are data-driven, with students expected to form generalised 

conjectures and search for counter examples, Coe and Ruthven (1994) find that “students’ 

proof strategies were primarily empirical”. In this case, the generation of numerical data 

becomes the object of the exercise and any notion of deductive argument appears 

abandoned. Balacheff (1988, p 222) similarly reports the occurrence of what he refers to as 

“naive empiricism”. 

It seems that to begin creating a more meaningful experience of proof for school students 

we firstly need contexts for proof with which students can engage. Secondly, we need ways 

of working in the classroom that provide opportunities for students to explain why they 

1 Cite as: Jones, K. (1995). Dynamic geometry contexts for proof as explanation. In L. Healy and C. Hoyles (Eds), 
Justifying and proving in school mathematics (pp142-54). London: Institute of Education. 
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obtain a particular outcome. Some initial findings from my work in a secondary 

mathematics class suggests that the use of a dynamic geometry package such as Cabri-

Géomètre may provide an opportunity for some students to consider the “why”  in addition to 

the “what if..” and the “what if not...”. Such an approach demands the provision of appropriate 

tasks and in designing them there have been two (connected) issues. The first issue involves 

ensuring the students experience the necessity of geometrical facts that are true in Euclidean 

geometry. The second concerns providing the students with suitable experiences to allow 

them to explain why these geometrical facts are necessarily true.  

 

In this paper I describe the approach that I have been developing with a lower secondary 

school mathematics class (students aged 12). My approach has been to seek to provide the 

students with opportunities to experience what I will call `proof as explanation’. In the next 

section I will explain what I mean by `proof as explanation’ and in a following section 

describe the development of some dynamic geometry tasks that might usefully support such 

an approach to proof. The quality of the students’ mathematical analysis, I will argue, 

suggests that the use of a dynamic geometry package such as Cabri-Géomètre, coupled with 

suitable tasks, may provide an opportunity for some students to develop the basis for a fuller 

appreciation of the nature and purpose of mathematical proof. 

 

Proof as Explanation 

 

Proofs are often thought of solely as standardised linear deductive presentations. The form 

of two-column proofs taught in a number of countries precisely fits such a model. Proof 

can, however, take a number of forms. Balacheff (1988, p 216), for instance, contrasts what 

he calls pragmatic and conceptual proof. From a different perspective, Leron (1985) talks 

about “direct” and “indirect” proofs. In this paper I will employ the distinction suggested by 

Hanna (1989), that there are proofs that prove (and do no more) and proofs that explain. 

This latter form of proof demonstrates not only that a statement is true, but also why it is 

true. As an example, Hanna contrasts two proofs for the following:  

 

Prove that the sum of the first n positive integers, S(n), is equal to n(n+1)/2 

 

She argues that, while a proof by induction is mathematically satisfactory, the format 

suggested by Gauss (employing a geometrical representation) not only provides a 

satisfactory proof but also explains why the proof is true. It is this form of proof - proof as 

explanation - that is the focus of this paper. When proof is viewed as explanation, such a 

proof may be more successful as a means of communication and a way of convincing 
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others. Given such an approach, proof as experienced by school students might be more 

meaningful for all concerned. 

 

In developing a more meaningful approach to proof for school students, I want to 

emphasise the importance of the choice of context. The traditional context for proof in the 

school curriculum has been geometry, while in University it has been analysis. Neither 

context has so far proved wholly successful. Indeed, within school mathematics, geometry 

as a context for proof has not, it seems, been successful either when the dominant emphasis 

is on the abstract and technical aspects of proof or when it is on gathering data. It appears 

that proof activities do not work because either the property is so obvious that it is hard for 

the students to see why a proof is needed, or that while a generalisation can be ascertained 

and no counter-examples found, a mathematical proof is beyond almost all the students. 

 

Schoenfeld (1985), for example, argues that, when proof is taught formally, then, for most 

students “mathematical proof is irrelevant to both the discovery and (personal, rather than 

formal) verification process”. He goes on to say that if a student finds that a proof is 

“absolutely necessary - that is, the teacher demands it - [the student] can probably verify a 

result using proof techniques. But this is simply playing the rules of the game, verifying 

under duress those things that one already knows to be correct” (p 160- 161). From the 

empirically-based, data-driven, perspective, an analysis of student responses to such tasks 

by Coe and Ruthven (1994) found that only two pieces of student work out of 60 “could be 

said to contain a strong deductive proof”.  The remainder contained “at best empirical 

proof, and in one or two cases, not even that”. 

 

Thus, as Hoyles, Healy and Noss (1995 p 101) summarise, many students: 

 fail to appreciate the crucial distinction between empirical and deductive arguments 

 show a preference for empirical arguments 

 behave as if deductive proof provides no more than contributory evidence  

 regard proof as an irrelevant activity 

 

This suggests that we need to continue to look for ways of laying the foundation for a 

deeper appreciation of the role of proof. There are a number of reasons why using a 

dynamic geometry package such as Cabri-Géomètre may present us with an opportunity to 

look afresh at our way of approaching proof with secondary school students. Firstly, a 

dynamic geometry package allows direct manipulation of geometrical objects (or, at least, 

the appearance of such direct manipulation). The drawing on the screen can be 

manipulated by means of the mouse. Objects can be ‘dragged’ while, all the time, all the 

geometric properties used to construct the drawing are preserved.  
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Underpinning a package such as Cabri is the idea of geometric relationships which require 

clear definition. As Laborde (1993 p 57) observes “explicit description leads to an emphasis 

on the functional and analytic aspects of geometry”. 

 

Hoyles, Healy and Noss (1995 p 102) confirm that “the computer may offer just such a new 

context” for proof as long as, they stress, tasks are carefully designed to provide students 

with what they call “the bones of a proof” (ibid p 104). The remainder of this paper 

describes the design and use of a series of dynamic geometry tasks created in an attempt to 

take advantage of the potential offered by a dynamic geometry package. 

 

Developing Dynamic Geometry Contexts 

Given the above discussion, the aim of developing such a series of tasks was based on the 

following factors all of which were considered critical: 

 encouraging the students to make conjectures  

 focusing on the relationships between geometrical objects 

 providing the means for the students to explain their actions and results 

 

It has been observed before that starting out in an English mathematics classroom with a 

dynamic geometry package such as Cabri is far from straightforward. Constructions in 

Cabri are based in the Euclidean tradition, something that has not been a significant part of 

the UK mathematics curriculum since the early 1970s (Fielker 1986). Consequently, several 

authors (including Ainley and Pratt (1995), Healy et al (1994), and Winbourne and Wrigley 

(1993),) have suggested a logo-like start with students being introduced to some of the 

menu items in Cabri. The students are then free to choose their own goals.  

 

However, as Healy et al (1994) observe, there are risks in such an approach in that it can 

allow students “to avoid interacting with mathematics at all” (op cit). To counteract this 

possibility, Healy et al introduced to their students the idea of “messing up” (or, more 

accurately, not messing up). They defined “messing up” in the following way: “After a 

figure was drawn it could be dragged to see if it became unrecognisable, that is whether the 

different objects within the design moved together in a sensible way or not” (op cit). They 

conclude (in Holzl et al 1994) that, while they commend the idea of “messing up”, the idea 

of functional dependency may be difficult for students to grasp. 

 

The students in the present study were unfamiliar with Cabri and so a similar approach to 

that suggested by Healy et al was adopted. Pairs of students were introduced to some of the 

menu items in Cabri and then allowed to choose their own goal. The notion of “messing 
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up” was introduced with the students being encouraged to formulate mathematically 

challenging goals. These introductory sessions did mean that the students gained some 

familiarity with Cabri but it became clear that the students would need more explicit 

mathematical goals if they were not going to use Cabri solely as a drawing tool rather than 

a tool for constructing geometrical figures. 

 

It is important, here, to stress the importance of distinguishing between drawing and figure. 

Laborde (1993 p49) makes clear the distinction in the following way: “drawing refers to the 

material entity while figure refers to a theoretical object”. In terms of a dynamic geometry 

package, a drawing can be a juxtaposition of geometrical objects resembling closely the 

intended construction. In contrast, a figure additionally captures the relationships between 

the objects in such a way that the figure is invariant when any basic object used in the 

construction is dragged. As I shall subsequently argue, the ability to check a construction by 

dragging appears to be particularly important part of experiencing the necessity of relevant 

geometrical facts. 

 

The search for a suitable context for work on “proof as explanation” led to a focus on the 

analysis of static figures and their construction in the dynamic Cabri environment. In other 

words, tasks would be designed which asked the students to construct, given a geometrical 

figure drawn on paper, the corresponding geometric figure in Cabri such that the Cabri 

figure can not be “messed up”.  

 

Another important consideration was to utilise some of the students existing mathematical 

knowledge and document how this developed as the students used Cabri. A long-standing 

component of the primary geometry curriculum in the UK is the recognising and sorting of 

various simple plane shapes. This entails such matters as identifying circles and various 

specific triangles and quadrilaterals. In the secondary curriculum, students are expected to 

know and use the properties of quadrilaterals and be able to classify them on the basis of 

their properties. Given these factors, and the fact that there has been both discussion about 

the classification of quadrilaterals (for example, de Villiers 1994) and research involving 

students’ ability to classify them (for instance, Fuys et al 1988), the ‘family of 

quadrilaterals’ evolved as the choice of context for the Cabri tasks. 

 

In constructing quadrilaterals, a key idea is the use of the circle as a length-carrier. This, in 

turn, depends on the locus definition of the circle. Just as the idea of functional dependency 

may not be easy for lower secondary school students to grasp, neither might the locus 

definition of the circle (or, at least, it contrasts with what is claimed by Bishop (1983) to be 

the notion of the circle commonly-held by upper primary and lower secondary pupils: that 
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is, that a circle is a disc). Some way was required to introduce the students to using the 

circle in the construction of other geometrical objects. 

 

What might be a promising solution to this problem, illustrated by the work of one pair of 

pupils on a selection of the resulting Cabri tasks, is described in the next section. 

 

Children working on Dynamic Geometry Contexts 

The students reported on here are 12 year olds with no previous experience of using a 

dynamic geometry package although they had all used various drawing packages and other 

IT resources. The class is an above-average mathematics class in a city comprehensive 

school whose results in mathematics at age 16 are at the national average. The mathematics 

teachers use a resource-based approach to teaching mathematics and the students usually 

work in pairs or small groups. The class has three 50-minute mathematics lessons per week. 

At the beginning of the study, computer use for Cabri was restricted to one computer in the 

classroom (the students have access to computer laboratories for other computer 

applications). This meant that, as student pairs took it in turn to use the computer, it was 

often several weeks between sessions for particular pairs. Towards the end of the study, up 

to four machines were able to be used at the same time in the classroom. The version of 

Cabri used was Cabri I for the PC. 

 

Each of the classroom tasks requires the students, in pairs, to analyse a figure presented on 

paper. The students are asked to construct the figure using Cabri such that the figure is 

invariant when any basic point used in the construction is dragged. This means that the 

students have to focus on the relationship between the basic objects (points, lines and 

circles) necessary to construct the figure. 

 

This section presents the work of one pair of pupils, H and R, as they progress from the 

initial exploratory session through two of a series of ‘starter’ tasks to one task from a series 

on quadrilaterals. Four sessions will be described in total. They took place over a period of 

five months. During that time all students in the class used Cabri and the work they did was 

sometimes shared. Certainly, students discussed between themselves the work they did. 

Also during that time, of course, the students continued with their regular mathematics 

programme. This included some work on certain aspects of `shape and space’ although 

none of it could be said to be directly relevant to the area of the mathematics curriculum 

that was the focus of the Cabri work.  

 

As described above, the initial session introduced the students to some of the menu items of 

Cabri and the students were then free to choose their own goal. 
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The sides are all the same because, if the centre is in the right place, the sides are 
bound to be the same. 
 
The diagonals of the diamond cross in the middle, though they are different sizes 
[lengths]. The diagonals bisect each other. The angles [where the diagonals cross] 
are the same. They are right angles. 
 
The opposite angles [of the rhombus] are the same. Two are more than 90 degrees 
but less than 180 degrees, and the others are less than 90 degrees but more than zero 
degrees. 
 
This shape is a rhombus because the sides are the same, the diagonals bisect at right 
angles and the opposites have the same angles. 

 
In order to write down their explanation, H and R needed appropriate support. The task on 
paper contained certain prompts. For instance, the task suggested that attention be paid to 
the sides, the angles, and the diagonals. I also prompted the pair by focusing their attention 
on these attributes and providing technical language (such as bisect) when appropriate in 
order to assist the precision of their explanation. 
 
Discussion 
 
The above provides some illustration of how the quality of these particular students’ 
mathematical analysis of such geometrical figures improved significantly and observably 
within three sessions using Cabri. Nevertheless, it has to be stressed that this experience is 
founded on the following factors: a well-established and carefully-nurtured classroom 
culture that values mathematical thinking, a sequence of carefully selected tasks, and a 
range of appropriate prompts from the researcher and teacher (and possibly other 
classmates). It might well be that, without this combination of factors, the outcome would 
have been very different. 
 
It is also worth noting that H and R are but one study-pair in the class and not the most able 
mathematically. In addition, their experience was spread over several months. Again, the 
influence of factors such as these on the outcome is unknown. It may be that the time 
sequence was an important factor; or it might be that the same outcome would have been 
achieved if the students had completed the same tasks within a much shorter period. Only 
further investigation can address that particular issue. 
 
Of course, a further, and perhaps, critical factor is the mediating effect of the computer. 
Papert has claimed that, in the right circumstances, the computer can “help bridge the gap 
between formal knowledge and intuitive understanding” (Papert 1980 p 145). It does this, 
Turkle and Papert (1991 p 162) suggest, by standing "betwixt and between the world of formal 
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systems and physical things: it has the ability to make the abstract concrete". From this 
perspective, a dynamic geometry package such as Cabri provides the semblance of direct 
manipulation of abstract geometrical objects. Yet in Cabri (or, more accurately, in Cabri I), 
there is a need to be both precise and explicit about the relationships between geometrical 
objects in the figure being created. This means that, in the design of Cabri I, it became 
necessary to have different types of point: basic point, point on object, and point of 
intersection. Consequently, it could be argued, the nature of the specification of relationships 
in Cabri I is overly particular to Cabri I. This is another factor that demands further 
investigation (given the release of Cabri II where the demands for precision are different). 
 
All the above factors need to be borne in mind in any evaluation of the results of the 
empirical work described in this paper. After all, only the experience of one pair of pupils is 
documented here. Nevertheless, I would suggest that through working on tasks such as the 
ones described above, the students gained some insight into the structure of plane geometry. 
For H and R this meant that they were able to explain the properties of a rhombus. For other 
pairs it meant, for example, that when they came to constructing a square they not only 
knew that the shape had to be a square but they also knew why.  
 
In this process, both of experiencing the necessity of a result (for H and R, that the figure 
has to be a rhombus) and of coming to know why that particular result is obtained, the 
ability to check by dragging appears to be particularly important. This facility allows 
conjectures to be tested by focusing attention on the relationships between the geometrical 
objects that have been constructed. In my work, the commands Delete object (and the 
object’s dependants), together with undo, have also shown themselves to be useful in a 
similar way. My argument is that experiencing the necessity of such geometrical facts 
involves perceiving (at some level) the axioms of the mathematical structure of plane 
geometry. Explaining why these geometrical facts are necessarily true involves constructing 
chains of reasoning. These are two of the essential components in a meaningful experience 
of proof. 
 
I am carrying out further classroom work with these able 12 year olds and also doing some 
parallel work with a class of 14 year olds. From the evidence so far gathered in this study, it 
may be that carefully chosen tasks using a dynamic geometry package provide a suitable 
context for some students to develop an appreciation of mathematical proof. In order to see 
how this view of proof as explanation develops further in the classroom, the process of 
acceptance within such a setting is a vital aspect. In due course, attention will need to be 
paid to that process and to how this contributes to developing in students the basis for a fuller 
appreciation of the nature and purpose of mathematical proof.  
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