
Journal of Computational Mathematics

Vol.xx, No.x, 2017, 1–17.
http://www.global-sci.org/jcm

doi:??

An Inexact Smoothing Newton Method for Euclidean Distance
Matrix Optimization Under Ordinal Constraints*

Qingna Li

School of Mathematics and Statistics and Beijing Key Laboratory on MCAACI, Beijing Institute of

Technology, Beijing, 100081, China.

Email: qnl@bit.edu.cn

Houduo Qi

School of Mathematics, The University of Southampton, Highfield, Southampton SO17 1BJ, UK.

Email: hdqi@soton.ac.uk

Abstract

When the coordinates of a set of points are known, the pairwise Euclidean distances

among the points can be easily computed. Conversely, if the Euclidean distance matrix

is given, a set of coordinates for those points can be computed through the well known

classical Multi-Dimensional Scaling (MDS). In this paper, we consider the case where

some of the distances are far from being accurate (containing large noises or even missing).

In such a situation, the order of the known distances (i.e., some distances are larger than

others) is valuable information that often yields far more accurate construction of the points

than just using the magnitude of the known distances. The methods making use of the

order information is collectively known as non-metric MDS. A challenging computational

issue among all existing nonmetric MDS methods is that there are often a large number of

ordinal constraints. In this paper, we cast this problem as a matrix optimization problem

with ordinal constraints. We then adapt an existing smoothing Newton method to our

matrix problem. Extensive numerical results demonstrate the efficiency of the algorithm,

which can potentially handle a very large number of ordinal constraints.

Mathematics subject classification: 90C30, 90C26, 90C90.

Key words: Nonmetric multidimensional scaling, Euclidean distance embedding, Ordinal

constraints, Smoothing Newton method.

1. Introduction

Suppose that we are given the coordinates of a set of points, namely {x1, . . . ,xn} with

xi ∈ IRr. It is straightforward to compute the pairwise Euclidean distances: dij = ‖xi − xj‖,
i, j = 1, . . . , n. The matrix D = (d2

ij) is known as the (squared) Euclidean Distance Matrix

(EDM) of those points. However, the inverse problem is more interesting and important (and

challenging). Suppose D is given. The method of the classical Multi-Dimensional Scaling

(cMDS) generates a set of such coordinates that preserve the pairwise distances in D. We give

a short description of it below. Let

J := I − 1

n
11T and B := −1

2
JDJ,

where I is the n × n identity matrix and 1 is the (column) vector of all ones in IRn. In

literature, J is known as the centralization matrix and B is the double-centralized matrix of D

* Received September 21, 2016 / Revised version received February 14, 2017 / Accepted February 07, 2017 /

2 Q.L. Li AND H.D. Qi

(also the Gram matrix of D because B is positive semidefinite). Suppose B admits the spectral

decomposition:

B = [p1, . . . ,pr]

 λ1

. . .

λr


 pT1

...

pTr

 , (1.1)

where λ1, . . . , λr are positive eigenvalues of B (the rest are zero) and p1, . . . ,pr are the corre-

sponding orthonormal eigenvectors. Then the following coordinates x1, . . . ,xn obtained by

[x1,x2, . . . ,xn] :=


√
λ1

. . . √
λr


 pT1

...

pTr

 (1.2)

preserve the known distances in the sense that ‖xi − xj‖ = dij for all i, j = 1, . . . , n. This is

the well known cMDS. We refer to [16, 25, 30, 31] and [4, 7, 8] for detailed description of cMDS

and its generalizations.

In almost all applications, D is not fully given or contains noise and in this case D is often

denoted by ∆. When ∆ is not far from a true EDM, cMDS works fairly well. This has been

justified in various situations including [28] on manifold learning and [9] where the noises can

be bounded. Instead of directly applying cMDS on ∆, one may also modify ∆ so as for it to be

a true EDM. Research on this line were mainly contributed from numerical linear algebra and

optimization and include e.g., [1,3,15,21,23,29]. Those methods, in addition to those discussed

in [4], belong to the category of metric MDS, which means that the magnitudes of the known

distances are far more important than the rest information. Metric MDS works well when the

noise in D is not at a very high level.

When D contains inaccurate distances whose errors cannot be regarded to be from random

noises, the magnitudes of the erroneous distances may have a disastrous effect on the embedding

constructions. Let us take a look at a simple example, which clearly demonstrates the undesired

effect. Network (a) in Fig. 1.1 is a true square network with the first point being in the center.

The true distance matrix is

D =


0 1 1 1 1

1 0 2 4 2

1 2 0 2 4

1 4 2 0 2

1 2 4 2 0

 .
Now suppose the distances from the center to the rest points are messed up with other distances.

For example, D12 = D14 = 2 and D13 = D15 = 4. Comparing with the true distance, which is

1, the errors are large. We apply several well-known methods to the corresponding ∆ matrix

and the reconstructed networks are shown from (b) to (f) in Fig. 1.1. It can be seen that the

smoothing Newton method proposed in this paper is the only one which correctly recovers the

true network topology. In our experiments, we enforced the ordinal constraints:

D13 ≤ D12, D13 ≤ D14, D15 ≤ D12, D15 ≤ D14.

We note that those ordinal constraints are obeyed by the true network, but are violated by

the erroneous D. It is those explicitly enforced ordinal constraints that distinguish our method

from the rest.

Euclidean Distance Matrix Optimization Under Ordinal Constraints 3

Fig. 1.1. A square network with large erroneous distances. Figure (a) is the true network; (b) is

reconstructed by the smoothing Newton method in this paper; (c) is by the nearest EDM method

in [21]; (d) is by cMDS (matlab built-in function cmdscale); (e) is by nonmetric MDS (matlab built-in

function mdscale); (f) is by the matlab built-in function cmdscale with the criterion of metricsstress.

In general, MDS methods that deal with ordinal constraints (in various forms) are referred

as nonmetric MDS. The default option of mdscale in Fig. 1.1 is such a method known to be the

Shepard-Kruskal method [17, 18, 26, 27]. The purpose of this paper is to take advantage of the

recent progress on matrix optimization [12–14,21,22] to investigate efficient numerical methods

belonging to the category of nonmetric MDS. So why shall we consider a matrix optimization

model for this widely studied problem? A short answer is that the matrix model proposed

in this paper has already outperformed several leading models in Fig. 1.1, though on a small

network problem.

A deep reason is that the matrix model has an obvious convex relaxation, whereas the

traditional vector models do not enjoy such a property. For example, the famous squared stress

criterion used in Fig. 1.1 (f) has the objective:

min
x1,··· ,xn∈IRr

∑
i6=j

(
δ2
ij − ‖xi − xj‖2

)2

,

where δij are known inaccurate distances in ∆ matrix. Obviously, the objective is not convex

and it is convex if and only if the embedding dimension is as high as (n− 1) (usually r � n).

That is, its convex relaxation would render very high-dimensional embedding. It is of course to

be avoided in practice. Other vector models well described in [4] also suffer a similar drawback.

We omit details to save space.

The organization of the paper is as follows. In Section 2, we will derive the Euclidean distance

matrix optimization model with ordinal constraints. In Section 3, we describe the inexact

smoothing Newton method to solve our model and the general H-weighted model. In Section

4 Q.L. Li AND H.D. Qi

4, we illustrate some key implementation issues (to reduce the computational complexity) and

report some numerical results, which demonstrate the efficiency of our algorithm. We conclude

in Section 5.

Notations. Let Sn be the set of symmetric matrices of n × n, Sn+ be the set of positive

semidefinite matrices. We use X � 0 to mean that X ∈ Sn is negative semidefinite. ΠΩ(·)
denotes the projection onto set Ω. pi denotes the i-th column of matrix P , and ei is the i-th

column of identity matrix I. ’◦’ denotes the Hardmard product. yi:j denotes the components

of vector y from i to j, and {y}⊥ denotes the orthogonal space of y. diag(X) is the vector

formed by the diagonal entries of X ∈ Sn, and Diag(y) is the diagonal matrix with y as the

diagonal entries. ‖ · ‖ denotes the Frobenius norm for matrices.

2. An EDM Optimization Model with Ordinal Constraints

Suppose we are given an inaccurate distance matrix, denoted by ∆, and an index set C
consisting of quadruple indices (i, j, k, l) such that

Dij ≤ Dkl, (i, j, k, l) ∈ C (ordinal constraints). (2.1)

Our purpose is to compute a true EDM D such that it is as close to ∆ as possible, but under

the constraints (2.1). This gives rise to the following problem:

min
D∈Sn

1

2
‖D −∆‖2 s.t. D is EDM and (2.1).

Our matrix optimization problem is a full characterization of the above.

It is well-known [25,31] that D is an EDM if and only if

diag(D) = 0 and D ∈ Kn− := {Y ∈ Sn | JY J � 0} ,

where Kn− is known as the almost negative semidefinite cone. Moreover, a set of points xi ∈ IRr

i = 1, . . . , n can be obtained through cMDS (1.1) and (1.2). The embedding dimension r is

given by

r = rank(JDJ).

Therefore, our full matrix optimization model takes the following form:

minD∈Sn
1
2‖D −∆‖2

s.t. diag(D) = 0, Dij ≤ Dkl (i, j, k, l) ∈ C,
D ∈ Kn−,
rank(JDJ) ≤ r.

(2.2)

We highlight two computational difficulties in this model. One is that the rank constraint

makes the problem nonconvex. Fortunately, dropping the constraint straightforwardly yields

the convex relaxation:

minD∈Sn
1
2‖D −∆‖2

s.t. diag(D) = 0, Dij ≤ Dkl (i, j, k, l) ∈ C,
D ∈ Kn−.

(2.3)

It is this model that we are going to solve. The other difficulty is that there might be too many

ordinal constraints in (2.1). The order can be as high as O(n4). It still remains a challenging

Euclidean Distance Matrix Optimization Under Ordinal Constraints 5

question as to how to choose C given ∆. In a simpler case where ∆ contains the true ordinal

information, the number of ordinal constraints can be reduced to O(n2). Another issue that is

worth to emphasize is that the problem (2.2) is always feasible. A trivial solution is the zero

solution, i.e., D is the zero matrix. That is, all embedding points crash to just one point. This

could happen if too many ordinal constraints (even constricting constraints) are enforced in the

model (2.3). This degenerate solution also explains the often observed “crowding phenomenon”

when there are too many ordinal constraints. The remaining part is to solve (2.3).

3. Inexact Smoothing Newton Method

In this section, we will adapt the inexact smoothing Newton method of Gao and Sun [13]

to solve (2.3). Smoothing Newton methods have been the major methods to solve nonlinear

complementarity problem (NCP) (see the celebrated paper by Qi et al. [24]). It was extended

to solving a correlation matrix optimization problem by Gao and Sun [13]. Below we first

reformulate (2.3) to nonlinear equations where a smoothing Newton method applies, and we

then propose a variant version of the method in order to deal with a large number of ordinal

constraints. Finally, we discuss the general weighted model for missing data case.

3.1. Smoothing nonlinear equations

In this part, we mainly explain how the problem can be solved by a smoothing method.

We first derive a nonsmooth-equation reformulation of our problem, then choose a smoothing

function to get a smooth approximation of the nonlinear equation. Finally, we describe the

smoothing algorithm.

(a) Nonsmooth equation reformulation. To ease our description, we define the linear

operator A : Sn −→ IRp+q by

A(Y) :=

 〈Ai, Y 〉
...

〈Ap+q, Y 〉

 =

[
〈A1, Y 〉
〈A2, Y 〉

]
=

[
diag(Y)

(Yij − Ykl)(i,j,k,l)∈C

]
, b = 0 ∈ IRp+q,

where p = n and q are the numbers of equality and inequality constraints, respectively. The

adjoint operator A∗ : IRp+q −→ Sn is defined by A∗y =
∑p+q
i=1 yiAi. Then (2.3) can be

equivalently written as

minD∈Sn
1
2‖D −∆‖2

s.t. A(D)− b ∈ Q := {0}p × IRq
+,

D ∈ Kn−.
(3.1)

The (Lagrangian) dual problem of (3.1) (we omit the details of the derivation) is

miny∈IRp+q θ(y) = ‖ΠKn
−

(∆ +A∗y)‖2 − yTb

s.t. y ∈ Q∗ := IRp × IRq
+,

(3.2)

where ΠKn
−

(Y) is the orthogonal projection of Y ∈ Sn onto the cone Kn−. It follows from [11, Eq.

29]

ΠKn
−

(Y) = Y −ΠSn
+

(JY J), ∀ Y ∈ Sn. (3.3)

6 Q.L. Li AND H.D. Qi

If y∗ is the optimal solution to (3.2), the optimal solution to (3.1) is given by D∗ = ΠKn
−

(∆ +

A∗y∗). Note that θ(·) is convex and continuously differentiable. Moreover, its gradient is given

by

∇θ(y) = A(ΠKn
−

(∆ +A∗y))− b = A(∆ +A∗y −ΠSn
+

(J(∆ +A∗y)J))− b. (3.4)

Since the dual problem (3.2) is convex, it is equivalent to solving its KKT condition:

(∇θ(y))i ≥ 0, i = p+ 1, . . . , p+ q,

y ∈ Q∗, 〈y, ∇θ(y)〉 = 0.

By using the plus operator t+ := max(0, t), the KKT condition is equivalent to (see [10])

F (y) := y −ΠQ∗(y −∇θ(y)) = 0, (3.5)

where ΠQ∗(x) : IRp+q 7→ IRp+q is defined as

(
ΠQ∗(x)

)
i

=

{
xi, if i = 1, · · · , p,
(xi)+, if i = p+ 1, · · · , p+ q.

(3.6)

(b) Smoothing equation approximation. In (3.5), there are two parts that give rise

to non-differentiability, namely ΠQ∗(·) and ΠSn
+

(·). Fortunately, those two types of nonsmooth

functions can be well approximated by many smoothing functions. We use the Huber smoothing

function as in [13] for (t)+:

φ(ε, t) =


t, if t ≥ |ε|2 ,

1
2|ε| (t+ |ε|

2)2, if − |ε|2 < t < |ε|
2 ,

0, otherwise,

(3.7)

where ε > 0 is the smoothing parameter. Hence, the smoothing function for ΠQ∗(x) is given

by ψ(ε,x) ∈ IRp+q, whose elementwise component is given by

ψi(ε,x) =

{
xi, if i = 1, · · · , p,
φ(ε, xi) if i = p+ 1, · · · , p+ q.

(3.8)

We now describe how to approximate ΠSn
+

(X). For X ∈ Sn with spectral decomposition

X = PDiag(λ1, · · · , λn)PT , (3.9)

where λ1 ≥ · · · ≥ λn are its eigenvalues and P consists of the corresponding orthonormal

eigenvectors of X, we know that ΠSn
+

(X) = PDiag((λ1)+, · · · , (λn)+)PT . The smoothing

function for ΠSn
+

(X) is

Φ(ε,X) := PDiag(φ(ε, λ1), · · · , φ(ε, λn))PT , (3.10)

with

Φ′ε(ε,X) = PDiag(φ′ε(ε, λ1), · · · , φ′ε(ε, λn))PT (3.11)

and for H ∈ Sn,

Φ′X(ε,X)(H) = P (Ω(ε, λ) ◦ (PTHP))PT , (3.12)

Euclidean Distance Matrix Optimization Under Ordinal Constraints 7

where Ω(ε, λ) is defined as

Ω(ε, λ)ij :=

{
φ(ε,λi)−φ(ε,λj)

λi−λj
∈ [0, 1], if λi 6= λj ,

φ′(λi) ∈ [0, 1], otherwise.
(3.13)

Denote Z := ∆ +A∗y. Let g(ε,y) be the smoothing function for ∇θ(y), i.e.,

g(ε,y) := A(Z − Φ(ε, JZJ))− b. (3.14)

The smoothing function for F (y) is

Υ(ε,y) := y − ψ(ε,y − g(ε,y)),

and the smoothing equation we are going to solve is:

E(ε,y) =

[
ε

G(ε,y)

]
:=

[
ε

Υ(ε,y) + κ|ε|y

]
= 0, (3.15)

where κ > 0 is the regularization parameter.

We emphasize that the main reason that we described the smoothing equation (3.15) with

the smoothing function is that we are going to use them to simplify the heavy computations in

the next section.

(c) Inexact smoothing Newton method (ISNM). The last part in this subsection is

to apply the inexact smoothing Newton method [13] on (3.15). We omit the repeat of the

algorithm, but only cite its quadratic convergence result below.

Theorem 3.1. Let (ε̄, ȳ) be an accumulation point of the infinite sequence {(εk,yk)} generated

by the inexact smoothing Newton method [13]. Assume that the constraint nondegeneracy holds

at Y . Then the whole sequence {(εk,yk)} converges to (ε̄, ȳ) quadratically, i.e.,

‖(εk+1 − ε̄,yk+1 − ȳ)‖ = O(‖(εk − ε̄,yk − ȳ)‖2).

3.2. A variant for a large number of ordinal constraints

As mentioned in Section 2, the number of inequality constraints could be O(n4), leading to

an extremely high computational cost as n grows. To reduce this number, a reasonable way is

to run ISNM iteratively, and add the violated ordinal constraints step by step. Recall C denotes

the set of ordinal constraints. At the beginning, we start with an initial subset of C, denoted

by C0. An obvious choice is C0 = ∅, as used below. But we could start with a small subset from

C. We refer to the following variant of ISNM as vISNM.

Algorithm 3.1. vISNM

S0 j := 0, let Cj = ∅.

S1 Replace C in (3.1) with ordinal constraint set Cj and solve it by ISNM to get Dj+1.

S2 Check whether Dj+1 satisfies the ordinal constraints in C. Denote the set of violated

constraints as Cv(Dj+1). If Cv(Dj+1) = ∅, stop, otherwise, let Cj+1 = Cj ∪ Cv(Dj+1),

j := j + 1, go to S1.

8 Q.L. Li AND H.D. Qi

As we will show in the numerical part, vISNM can be a good alternative of ISNM, par-

ticularly for a large number of ordinal constraints. One particular reason for the effectiveness

of vISNM is that we used a warm-start strategy where we used the iterate obtained from the

previous step as the starting point at the current step. The convergence of vISNM is given as

follows.

Theorem 3.2. Let {Dj} be generated by vISNM, i.e., Dj is the optimal solution of (Pj)

minD∈Sn
1
2‖D −∆‖2 := f(D)

(Pj) s.t. diag(D) = 0, D ∈ Kn−,
Dis ≤ Dkl (i, s, k, l) ∈ Cj .

(3.16)

Suppose vISNM stops at j = m, i.e., Cv(Dm) = ∅. Then Dm is an optimal solution of (2.3).

Proof. For contradiction, suppose Dm is not an optimal solution of (2.3). Let D∗ 6= Dm be

an optimal solution of (2.3). Note that Cv(Dm) = ∅ implies that Dm is a feasible point of

(2.3). Therefore, f(D∗) < f(Dm). On the other hand, C1 ⊆ · · · ⊆ Cm ⊆ C implies that D∗ is

a feasible point of (Pm). There is f(D∗) ≥ f(Dm), which contradicts with f(D∗) < f(Dm).

Consequently, Dm is an optimal solution of (2.3). The proof is finished. �

3.3. The general weighted case

The proposed method can be extended to a more general case where some of the elements

in ∆ could be missing. For example, define the symmetric matrix H ∈ Sn by

Hij :=

{
0 if δij is missing,

1 otherwise.

Then our H-weighted problem takes the following form:

minD∈Sn
1
2‖H ◦ (D −∆)‖2 := f(D)

s.t. A(D)− b ∈ Q, D ∈ Kn−.
(3.17)

The majorization approach proposed in [14,21] can be borrowed to solve (3.17). Given Dj ,

the majorization approach is to minimize the majorization function fj(D) at each iteration to

get Dj+1:

fj(D) := f(Dj) + 〈H ◦H ◦ (Dj −∆), D −Dj〉+
1

2
‖W 1

2 (D −Dj)W
1
2 ‖2 (3.18)

where W := Diag(w), wi = max{τ,max{His, s = 1, · · · , n}}, i = 1, · · · , n, τ > 0 is a constant.

That is to solve the following diagonally weighted problem in each outer iteration:

minD∈Sn
1
2‖W

1
2 (D −∆j)W

1
2 ‖2

s.t. A(D)− b ∈ Q, D ∈ Kn−,
(3.19)

where ∆j := Dj −W−1(H ◦H ◦ (Dj −∆))W−1. The iterates stop if Dj+1 = Dj . Denote the

resulting algorithm as majorized inexact smoothing Newton method (referred as mISNM) for

(3.17).

Euclidean Distance Matrix Optimization Under Ordinal Constraints 9

Problem (3.19) can be solved in a similar fashion as (3.1). Indeed, let D̃ = W
1
2DW

1
2 ,

∆̃ = W
1
2 ∆jW

1
2 , Knw = {X ∈ Sn, X � 0 on {W 1

21}⊥}. (3.19) is equivalent to the following

problem

minD̃∈Sn
1
2‖D̃ − ∆̃‖2

s.t. Ã(D̃)− b ∈ Q, D̃ ∈ Knw,
(3.20)

where

Ã(D̃) :=

[
diag(D̃)

(w
− 1

2
i w

− 1
2

t D̃it − w
− 1

2

l w
− 1

2
s D̃ls)(i,t,l,s)∈C

]
.

The dual problem of (3.20) is

miny∈IRp+q θw(y) := ‖ΠKn
w

(∆̃ + Ã∗y)‖2 − yTb

s.t. y ∈ Q∗,
(3.21)

where ΠKn
w

(Y) := Y −ΠSn
+

(J̃Y J̃), J̃ := I − 1
wT e

w
1
2 (w

1
2)T . By modifying the input matrix ∆̃,

Ã(Y) and J̃Y J̃ , ISNM can be extended to the diagonally weighted case (3.20).

4. Implementations and Numerical Test

In order for the smoothing Newton method to work, one has to resolve the heavy com-

putation being involved in the multiplications between matrices, encountered in the Newton

equation in the method. In this part, we first illustrate a few technical tricks that significantly

reduce the computational cost. We note that some of the matrices are very sparse. The second

part includes some of numerical results. One test problem is from real data; while the others

are standard test problems used in wireless sensor network localization.

4.1. Key implementation issues

In ISNM, BiCGStab with diagonal preconditioner is used to solve the following linear system

G(εk,yk) +G′y(εk,yk)∆yk = 0 (4.1)

in an inexact way, where ∆yk is the Newton step. One may worry about the complicated

calculation of the Jacobian matrix as well as the potential high computational cost due to the

presence of ordinal constraints. However, it turns out that ordinal constraints enjoy some nice

properties which can be explored to further simplify the calculations. Below, we pick up a

couple of key observations to show how the computational cost can be reduced.

The Jacobian G′y(εk,yk) is characterized in the following implicit way. Let X := JZJ , and

z := y − g(ε,y). For h ∈ IRp+q (we drop the superscript k for simplicity),

G′y(ε,y)h = Υ′y(ε,y)h + κ|ε|h
= h− ψ′z(ε, z) ◦ (h−A(A∗h− Φ′X(ε,X)(JA∗hJ))) + κ|ε|h

=

{
〈Ai,A∗h− Φ′X(ε,X)(JA∗hJ)〉+ κ|ε|hi, i ≤ p,
hi − ψ′zi(ε, zi) (hi − 〈Ai,A∗h− Φ′X(ε,X)(JA∗hJ)〉) + κ|ε|hi, i ≥ p+ 1.

Furthermore, with (3.12), we have

〈Ai, Φ′X(ε,X)(JA∗hJ)〉 = 〈Ai, P (Ω(ε, λ) ◦ (PTJA∗hJP))PT 〉
= 〈PTAiP, Ω(ε, λ) ◦ (PTJA∗hJP)〉

10 Q.L. Li AND H.D. Qi

and

PTJA∗hJP = PTA∗hP − 1

n
PT11TA∗hP − 1

n
PTA∗h11TP +

1

n2
(1TA∗h1)PT11TP

:= PTA∗hP −M −MT +N. (4.2)

We focus on how to simplify M and N . This is heavily based on the following key observations.

(i) Let i ≥ p+ 1. Suppose Ai = 1
2 (erie

T
ji

+ ejie
T
ri − esie

T
ti − etie

T
si). There is

1TAihi =
1

2
hi(eri + eji − esi − eti), (4.3)

1TAihi1 = 0, (4.4)

which gives

1TA∗2hp+1:p+q1 =

p+q∑
i=p+1

1Aihi1
T = 0.

(ii) Recall PDiag(λ1, · · · , λn)PT = J(∆ + A∗y)J . Note that J1 = 0, J(∆ + A∗y)J has an

eigenvalue 0 with eigenvector 1√
n
1. Suppose 0 is the l-th eigenvalue and the corresponding

eigenvector is pl. We have pl = 1√
n
1 or pl = − 1√

n
1. For simplicity, we denote pl =

sign(pl)1. Consequently,

PT1 = sign(pl)
√
nel, P

T1(1TA∗hP) = sign(pl)
√
nel(1

TA∗hP) =

 0

1TA∗hP
0

 .
(iii) Based on (4.3), there is

1TA2hp+1:p+qP =

p+q∑
i=p+1

hi(eri + eji − esi − eti)P =

p+q∑
i=p+1

hi(pri + pji − psi − pti).

Consequently,

M =
1

n
PT11TA∗hP =

1√
n

sign(pl)el(h
T
1:nP +

p+q∑
i=p+1

hi(pri + pji − psi − pti))

N =
1

n2
(1TA∗h1)PT11TP =

1

n
(hT1)ele

T
l .

One can observe that M is a sparse matrix with only the l-th row nonempty, and N is a sparse

matrix with only (l, l) entry nonzero. Further, the computational cost for M is O(max(p +

q, n)n), and for N is O(n).

4.2. Numerical results

One typical application of nonmetric MDS is the sensor network localization problem, where

the position of some points are known (referred as anchors), and the rest are unknown (referred

as sensors). Very often, the observed dissimilarities δij ’s are monotonically in distances, such as

the time of arrival (TOA) or received signal strength (RSS). Therefore, nonmetric MDS model

Euclidean Distance Matrix Optimization Under Ordinal Constraints 11

is more appropriate in this situation. Given dissimilarities δij , i, j = 1, · · · , n, we run ISNM

with ∆ = (δ2
ij) to get D, then the estimated location of points X ∈ IRr×n is obtained by cMDS

(1.1) and (1.2). Procrustes process is used to get the final estimated location X. To evaluate

the result, we compare the Root Mean Squared Distance (RMSD), which is given by

RMSD =

√
‖X −Xtrue‖2

n
, (4.5)

where Xtrue ∈ IRr×n are the true positions.

We ran all the tests in Matlab 2013b on a computer with Pentium(R)D CPU 2.30GHz, RAM

4GB. For ISNM, the linear system (4.1) is solved by BiCGStab with diagonal preconditioner.

The stopping criteria is res = ‖E(εk, yk)‖ ≤ tol, with tol = 10−6. Other parameters are set as

default.

Sensor network localization example [20]. This is a test problem from real data, whose

generating process is described in [20]. There are n = 44 points, with 4 anchors, and 40 unknown

sensors. The observed dissimilarity data δij is measured by TOA (δTOAij = TTOA × v p TOA)

or RSS (δRSSij = tilde d RSS) which can be download via http://web.eecs.umich.edu/ ∼
hero/localize/. The data contains large errors and hence this test problem has been challenging

for many metric- and nonmetric-MDS embedding methods.

For this example, the procrustes process is first done on the 4 anchors to get the trans-

formation information, and then map the rest 40 sensors to get the final estimated positions

according to the transformation information. This is contrast to many reported results, where

the procrustes process was done on all 44 sensors. This is not reasonable as we only know the

true positions of some sensors (called anchors). Doing a procrustes process on all the sensors

(using their true positions) usually leads to better RMSD results.

As for order information, there are different ways to obtain a list of ordinal constraints.

One way is to use the information given by δij . Note that δij may not stand for the true

ordinal information. For example, in Fig. 4.1, we plot the elements of true distances dij ’s in

an ascending order, and then plot the corresponding δTOAij in terms of dij ’s order. It turns out

that the order given by δTOAij is quite different from that given by dij .

Therefore, we use different ways of choosing ordinal constraints, and the results are reported

in Table 4.1, where ISNM0 did not use any ordinal information, ISNM uses the ordinal infor-

mation given by δij , ISNM1, ISNM2 and ISNM3 use 40, 70, and 100 percent of the true ordinal

constraints, respectively. From Table 4.1, one can easily get the following observations: (i)

Compared with ISNM0, which did not use ordinal constraints, ISNM and ISNM1-ISNM3 give

better localization results, showing that ordinal constraints do help in this situation; (ii) The

order information is also important in the sense that correct ordinal constraints help a lot, since

ISNM1-ISNM3 provide better embedding results than ISNM, by using some priori information

of true ordinal constraints. Typical embedding results are shown in Fig. 4.2-4.4.

We also compare our results with mdscal, SMACOF and SDP-SNL [3]. SDP-SNL is a

popular method based on semidefinite programming for sensor network localization [3]. For

SMACOF, we run ’mds’ Matlab package developed by Bronstein et al [5, 6] by choosing the

options ’smacof’. Since random point is used as the initial point in SMACOF, we run 50

times and report the averaged RMSD. Comparing with other methods, ISNM is as good as

mdscale, and performs better than SDN-SNL and SMACOF. ISNM1-ISNM3 outperform the

other methods, which verifies again the importance of the priori ordinal information.

Next we compare ISNM with vISNM. Fig. 4.5 shows the RMSDs and the number of ordinal

constraints used (denoted as |Cj |) in the outer iterations in vISNM. Compared with ISNM,

12 Q.L. Li AND H.D. Qi

0 200 400 600 800 1000
−5

0

5

10

15

20

d
ij

δ
ij

Fig. 4.1. Comparison of the order by dij and δTOA
ij .

Table 4.1: RMSDs by different methods.

SMACOF SDP-SNL mdscale ISNM0 ISNM ISMN1 ISNM2 ISMN3

TOA 1.18 1.18 1.19 1.44 1.18 0.57 0.15 0.05

RSS 2.91 2.56 2.05 2.47 2.08 1.24 0.43 0.07

vISNM reaches comparable RMSD and almost the same embedding result, see Fig. 4.6 (a).

The number of ordinal constraints in the last iteration j = 6 is about 800, which is smaller

than the total number 945. After j = 6, all ordinal constraints are satisfied. Therefore, by

selectively dealing with the violated ordinal constraints, we can reach almost the same output

as the original vISNM. This provides us a way to choose effective ordinal constraints instead

of tackling all ordinal constraints together. Furthermore, by taking care of the violated ordinal

constraints iteratively, the computational cost can be saved, leading to potentially an effective

way to deal with a large number of ordinal constraints. Therefore, we can run vISNM instead

of ISNM to reach the same output but with smaller computational cost. Fig. 4.5 also implies

that the most significant improvement happens at j = 1, 2, 3, meaning that we can run vISNM

for three outer iterations, to save more cputime and computational cost and also to reach a

comparable embedding, especially for large number of ordinal constraints. Similar performance

was observed for the RSS input data, which was omitted here to save space.

Random examples. We randomly generate some standard test examples used in sensor

network localization literature. n points in the square [−10a, 10a] × [−10a, 10a] are randomly

generated with a = n/100. The true ordinal constraint set C can be obtained according to the

position of points. ∆ ∈ Sn is generated by: ∆ = D + 20a ∗ rand(n, n); ∆ = 0.5(∆ + ∆′). The

results are reported in Table 4.2, where ISNM0 does not use any ordinal information, ISNM1

and ISNM2 use 30 and 100 percent of priori true ordinal information, respectively. vISNM1 and

vISNM2 are the variant version of ISNM1 and ISNM2. We run j = 3 outer iterations in vISNM.

Euclidean Distance Matrix Optimization Under Ordinal Constraints 13

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14

 RMSD = 1.18e+00

a

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14

 RMSD = 2.08e+00

b

Fig. 4.2. Embedding results by ISNM for (a) TOA and (b) RSS.

RMSD, cputime t (hh:mm:ss), |C| for ISNM and the number of ordinal constraints |Cj | involved

in j = 3 for vISNM are reported in Table 4.2. It can be observed that comparing with ISNM0,

which did not use ordinal information, the rest four give better results with lower RMSDs. This

verifies again the importance of ordinal constraints. Given the same priori ordinal information,

vSNM1 performs not as good as ISNM1. However, vISNM2 gives fairly reasonable result with

much less cputime. For example, for n = 800, ISNM2 takes more than one hour dealing with

320, 000 ordinal constraints, whereas vISNM2 only used couple of minutes to handle half of the

ordinal constraints and returned fairly good RMSD. This indicates that vISNM is extremely

useful to handle a large number of ordinal constraints.

Missing data case. Our last test is the H-weighted case (3.17). The data is generated in

a similar way as above, where n points in [−10a, 10a]× [−10a, 10a] are randomly generated and

a = n/100. The missing data index matrix H is generated in the following way: H = ones(n, n),

u = rand(n, n), H(find(u > b)) = 0. The dissimilarity matrix ∆ ∈ Sn is generated by

∆ = D + 20a ∗ rand(n, n), ∆ = 0.5(∆ + ∆T), ∆ = ∆ ◦H. mISNM1 and mISNM2 use 30 and

60 percent of priori true ordinal information respectively. We choose b = 0.6 and b = 0.8. The

results are presented in Table 4.3, which show again the efficiency of mISNM.

5. Conclusions

In this paper, we mainly focused on one embedding situation, where the ordinal constraints

often play a more important role than the actual magnitude of the distances and need to

be obeyed. This class of methods generally belongs to non-metric methods. However, the

difficulty for many existing methods is that there are many ordinal constraints (can be as many

as O(n4), where n is the number of embedding points). Such situations arise when the observed

data contain significantly large errors when compared to the magnitudes of the true data. The

embedding problem has recently attracted lots of attention, see [2, 19] and references therein

for recent development.

Different from most of the existing publications, we propose a Euclidean distance matrix

14 Q.L. Li AND H.D. Qi

−5 0 5 10 15
−2

0

2

4

6

8

10

12

14

 RMSD = 5.74e−01

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14

 RMSD = 1.24e+00

Fig. 4.3. Embedding results by ISNM1 for TOA (left) and RSS (right).

optimization model. Taking advantage of the recent advances in conic matrix optimization, an

existing smoothing Newton method is used to solve the model. Further, to deal with the huge

number of inequality constraints for large scale problems, a practical algorithm is proposed

by adding the violation ordinal constraints step by step. Numerical results demonstrated the

efficiency of the proposed model.

This is our initial try on this challenging problem. Based on our promising numerical

results, we believe a couple of questions are worth further investigation. One is new strategies

on selecting the violated constraints. The second research question is how to add the rank

constraint to our numerical procedure. We plan to study those issues in our future work.

Acknowledgments. The authors would like to thank the editor for handling our submission

and two anonymous referees for their comments. The first author’s research was supported by

NSF grant (No. 11671036).

References

[1] A. Y. Alfakih, A. Khandani and H. Wolkowicz, Solving Euclidean distance matrix completion

problems via semidefinite programming, Comput. Optim. Appl., 12 (1999), 13-30.

[2] E. Arias-Castro, Some theory for ordinal embedding, Statistics, in press.

[3] P. Biswas, T. C. Liang, K. C. Toh, T. C. Wang and Y. Y. Ye, Semidefinite programming approaches

for sensor network localization with noisy distance measurements, IEEE Trans. Autom. Sci. Eng.,

3:4 (2006), 360-371.

[4] I. Borg and P. J. F. Groenen, Modern Multidimensional Scaling: Theory and Applications, 2nd

ed., Springer, New York, 2005.

[5] M. M. Bronstein, A. M. Bronstein and R. Kimmel, Numerical Geometry of Non-Rigid Shapes,

Springer, New York, 2009.

[6] M. M. Bronstein, A. M. Bronstein, R. Kimmel and I. Yavneh, Multigrid multidimensional scaling,

Numer. Linear Algebra Appl., 13:2-3 (2006), 149-171.

[7] T. F. Cox and M. A. A. Cox, Multidimensional Scaling, 2nd ed., Chapman and Hall/CRC, 2001.

Euclidean Distance Matrix Optimization Under Ordinal Constraints 15

−5 0 5 10 15
−2

0

2

4

6

8

10

12

14

 RMSD = 5.21e−02

−5 0 5 10 15
−2

0

2

4

6

8

10

12

14

 RMSD = 7.16e−02

Fig. 4.4. Embedding results by ISNM3 for TOA (left) and RSS (right).

[8] J. Dattorro, Convex Optimization and Euclidean Distance Geometry, Mεβoo Publishing, US, 2012.

[9] C. Ding and H. D. Qi, Convex Euclidean distance embedding for collaborative position localization

with NLOS mitigation, Comput. Optim. Appl., 66:1 (2017), 187-218.

[10] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity

Problems, Springer, New York, 2003.

[11] N. Gaffke and R. Mathar, A cyclic projection algorithm via duality, Metrika, 36 (1989), 29-54.

[12] Y. Gao, Structured Low Rank Matrix Optimization Problems: A Penalized Approach, PhD thesis,

National University of Singapore, 2010.

[13] Y. Gao and D. F. Sun, Calibrating least squares covariance matrix problems with equality and

inequality constraints, SIAM J. Matrix Anal. Appl., 31:3 (2009), 1432-1457.

[14] Y. Gao and D. F. Sun, A majorized penalty approach for calibrating rank constrained correlation

matrix problems, Technical Report, National University of Singapore, 2010.

[15] W. Glunt, T. L. Hayden, S. Hong and J. Wells, An alternating projection algorithm for computing

the nearest Euclidean distance matrix, SIAM J. Marix Anal. Appl., 11:4 (1990), 589-600.

[16] J. C. Gower, Properties of Euclidean and non-Euclidean distance matrices, Linear Algebra Appl.,

67 (1985), 81-97.

[17] J. B. Kruskal, Multidimensional Scaling by optimizing goodness of fit to a nonmetric hypothesis,

Psychometrika, 29:1 (1964), 1-27.

[18] J. B. Kruskal, Nonmetric multidimensional scaling: a numerical method, Psychometrika, 29:2

(1964), 115-129.

[19] V. D. M. Nhat, D. Vo, S. Challa and S. Y. Lee, Nonmetric MDS for sensor localization, Interna-

tional Symposium on Wireless Pervasive Computing, IEEE, 2008, 396-400.

[20] N. Patwari, A. O. Hero, M. Perkins, N. S. Correal and R. J. O’Dea, Relative location estimation

in wireless sensor networks, IEEE Trans. Signal Process., 51:8 (2003), 2137-2148.

[21] H. D. Qi, A semismooth Newton method for the nearest Euclidean distance matrix problem, SIAM

J. Marix Anal. Appl., 34:1 (2013), 67-93.

[22] H. D. Qi and D. F. Sun, A quadratically convergent Newton method for computing the nearest

correlation matrix, SIAM J. Matrix Anal. Appl., 28:2 (2006), 360-385.

[23] H. D. Qi and X. M. Yuan, Computing the nearest Euclidean distance matrix with low embedding

dimensions, Math. Program., 147:1 (2014), 351-389.

16 Q.L. Li AND H.D. Qi

j
0 2 4 6

R
M

S
D

0

0.5

1

1.5
a

j
0 2 4 6

|C
j |

0

100

200

300

400

500

600

700

800

900
b

Fig. 4.5. (a) RMSD and (b) |Cj | by vISNM with TOA as input.

[24] L. Q. Qi, D. F. Sun and G. L. Zhou, A new look at smoothing Newton methods for nonlinear

complementarity problems and box constrained variational inequalities, Math. Program., 87:1

(2000), 1-35.

[25] I. J. Schoenberg, Remarks to Maurice Frechet’s Article “Sur La Definition Axiomatique D’Une

Classe D’Espace Distances Vectoriellement Applicable Sur L’Espace De Hilbert, Ann. Math., 36:3

(1935), 724-732.

[26] R. N. Shepard, The analysis of proximities: Multidimensional scaling with an unknown distance

function. I, Psychometrika, 27:2 (1962), 125-140.

[27] R. N. Shepard, The analysis of proximities: Multidimensional scaling with an unknown distance

function. II, Psychometrika, 27:3 (1962), 219-246.

[28] J. B. Tenenbaum, V. D. Silva and J. C. Langford, A global geometric framework for nonlinear

dimensionality reduction, Science, 290:5500 (2000), 2319-2323.

[29] K. C. Toh, An inexact path-following algorithm for convex quadratic SDP, Math. Program., 112:1

(2008), 221-254.

[30] W. S. Torgerson, Multidimensional Scaling: I. Theory and Method, Psychometrika, 17:4 (1952),

401-419.

[31] G. Young and A. S. Householder, Discussion of a set of points in terms of their mutual distances

Psychometrika, 3:1 (1938), 19-22.

Euclidean Distance Matrix Optimization Under Ordinal Constraints 17

−5 0 5 10
−2

0

2

4

6

8

10

12

14

 RMSD = 5.21e−02

a

−5 0 5 10
−2

0

2

4

6

8

10

12

14

 RMSD = 6.62e−02

b

Fig. 4.6. Embedding results for vISNM with (a) j=6, (b) j = 3 and with input TOA.

Table 4.2: Results for random examples.

n = 100 n = 200

Method |C|(|Cj |) RMSD t |C|(|Cj |) RMSD t

ISNM0 0 0.4427 1 0 0.3524 1

ISNM1 1979 0.3708 1 7970 0.2187 5

vSNM1 979 0.3535 2 4013 0.2360 10

ISNM2 4949 0.0299 32 19899 0.0237 4:44

vISNM2 2451 0.1168 4 9958 0.0599 18

n = 500 n = 800

Method |C|(|Cj |) RMSD t |C|(|Cj |) RMSD t

ISNM0 0 0.2199 3 0 0.1797 6

ISNM1 49918 0.0965 1:15 128248 0.0660 2:45

vSNM1 24947 0.1252 2:44 64100 0.0913 5:41

ISNM2 124749 0.0119 52:25 319599 0.0054 1:19:36

vISNM2 62566 0.0257 3:55 159903 0.0168 6:15

Table 4.3: Results by mISNM.

mISNM1 mISNM2 mISNM1 mISNM2

b = 0.6 b = 0.8

n RMSD t RMSD t RMSD t RMSD t

100 0.4636 1 0.5225 1 0.6140 1.7 0.6393 1.2

200 0.6955 5.4 0.6572 5.8 0.7536 5.9 0.8244 6.2

500 0.8173 2:53 0.7936 2:02 0.8169 3:01 0.8246 2:57

800 0.8128 19:00 0.8114 18:00 0.8059 23:01 0.8154 23:13

