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Abstract: The problem of state-space modelling of 2D-trajectories from exponential data can
be solved using a duality approach. Finding a minimal complexity model, i.e. one having the
minimal number of state variables among those unfalsified by the data, can be transformed to a
rank-minimization problem involving constant matrices computed from the data. We illustrate
a Gröbner basis approach to solve such problem.
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1. INTRODUCTION

Consider N 2D w-dimensional vector-exponential trajec-
tories wi(•, •), whose value at (t1, t2) ∈ R× R is

wi(t1, t2) = wie
λi
1t1eλ

i
2t2 , (1)

where λij ∈ C, i = 1, . . . , N , j = 1, 2, and we use the
overline notation wi ∈ Cw to indicate vectors. In this
paper we assume that an input-output partition w =
col(u, y) of the variables is known. We also assume that the
system generating the data is controllable in the behavioral
sense (see sect. 4 of Zerz (2004) for a definition), so
that its input-output behavior, described by the transfer
function, uniquely determines the system. In the following
we use such crucial assumption to conclude that the data-
generating system has a well-defined dual, defined in sect.
2.1 of this paper. Finally, we assume that every entry of
the p×m rational matrix describing the transfer function is

of the form n(s1,s2)
d(s1,s2)

=

∑m

i=0
ni(s1)s

i
2∑n

j=0
dj(s1)s

j
2

for some nonnegative

integers m and n (dependent on the entry) with the
univariate polynomials nm(s1), dn(s1) 6= 0 satisfying the
following three properties:

(1) m ≤ n
(2) deg(dn(s1) ≥ deg(ni(s1)), i = 0, . . . ,m− 1
(3) deg(dn(s1)) ≥ deg(di(s1)), i = 0, . . . , n .

Using the terminology of the discrete case, we call rational
functions of this type “quarter-plane causal”.

Under such assumptions, the data-generating system can
be represented by a Roesser representation: ∂

∂t1
x1

∂

∂t2
x2

=

[
A11 A12

A21 A22

] [
x1
x2

]
+

[
B1

B2

]
u

y = [C1 C2]

[
x1
x2

]
+Du , (2)

where A ∈ R(n1+n2)×(n1+n2), B := col(B1, B2) ∈
R(n1+n2)×m, C := [C1 C2] ∈ Rp×(n1+n2), D ∈ Rp×m, and
the external variable w := col(u, y). Such representations
were introduced in Roesser (1975) in the discrete case; in
the continuous case they can be used to describe physical
phenomena such as the Darboux equation arising in gas
absorption and water evaporation; transmission lines; and
thermal processes (see Kaczorek (1985)).

The trajectory col(x1, x2) in (2) is called the state trajec-
tory corresponding to w. We call the dimension n1 + n2
of the state variable x = col(x1, x2) the complexity of the
model (2).

The problem of state-modelling of (1) consists in finding
matrices A, B, C and D such that (2) are satisfied by
some trajectories xi : R × R → Rn1+n2 and the data
wi = col(ui, yi), i = 1, . . . , N in (1).

In the paper Rapisarda and Antoulas (2016), the authors
proposed a duality-based approach to solve such identifi-
cation problem, whose main features we illustrate in sect.
2.3 of this paper. A crucial step in such approach is the
solution of a 2D matrix Sylvester equation involving a
constant matrix L derived from (1) and its “dual” data,
and diagonal matrices Mi,Λi, i = 1, 2 associated with the
frequencies µki and λki , i = 1, 2, k = 1, . . . , N of the primal
and dual data:

L = M∗1S1 + S1Λ1 +M∗2S2 + S2Λ2 , (3)

where Si, i = 1, 2 are the unknown matrices. Factorizing
in a rank-revealing way the solutions Si of (3), state
trajectories can be computed corresponding to the data.
The matrices A, B, C and D can then be computed in a
straightforward way solving a system of linear equations.

It can be shown that the dimension n of the state variable
x = col(x1, x2) of an unfalsified model computed by our
procedure equals rank(S1) + rank(S2). Consequently, if a
low, ideally minimal complexity model for (1) is sought,
the problem arises of how to find solutions Si, i = 1, 2 to



(3) such that rank(S1)+rank(S2) is low (or minimal). This
is an affine rank minimization problem:

Minimize rank S1 + rank S2

subject to A(S1, S2) = b , (4)

where A is a linear map obtained in a straightforward way
from the right-hand side of (3), and b is a vector obtained
from the Loewner matrix L∗JR.

In this paper we illustrate a procedure based on symbolic
algebra and Gröbner basis computations to solve this prob-
lem, which computes a parametrization of all solutions
(S1, S2) to (3) with a given rank, opening up the possibility
of exploring such parameter space in order to compute
unfalsified models with special properties.

Notation

We denote by Cm×n the set of all m × n matrices with
entries in C. C•×n denotes the set of matrices with n
columns and an unspecified (finite) number of rows. Given
A ∈ Cm×n, we denote by A∗ its conjugate transpose and
by A† its Moore-Penrose inverse. If A, B are matrices
with the same number of columns, col(A,B) is the matrix
obtained stacking A on top of B. eλ1•eλ2• denotes the
function from R2 to C whose value at (t1, t2) is eλ1t1eλ2t2 .

2. FROM DATA TO STATE MODEL

2.1 Duality and divergence of fields of state variables

We associate to a Roesser representation (2) its dual one,
defined by the equations: ∂

∂t1
x′1

∂

∂t2
x′2

=−A>
[
x′1
x′2

]
+

[
C>1
C>2

]
u′

y′ =
[
B>1 B>2

] [x′1
x′2

]
−D>u′ . (5)

It can be shown that the set B′ of external trajectories
w′ := col(u′, y′) corresponding to the state-representation
(5) is also controllable (see Rapisarda and Antoulas
(2016)).

Theorem 1. Let B,B′ be the input-output behaviors cor-
responding to the state representations (2) and (5), respec-
tively. Let w = col (u, y) ∈ B and w′ = col (u′, y′) ∈ B′,
with associated state trajectories x = col(x1, x2) and
x′ = col(x′1, x

′
2), respectively. Then

[u∗ y∗]

[
0m×p Im
Ip 0p×m

]
︸ ︷︷ ︸

J:=

[
u′

y′

]
=

∂

∂t1
(x∗1x

′
1) +

∂

∂t2
(x∗2x

′
2) .(6)

Proof. The claim is a matter of straightforward verifica-
tion using the equations (2) and (5). 2

Th. 1 is a crucial result: the J-inner product of input-
output trajectories of the primal and the dual system is
the divergence of a field, whose components are the inner
products of the state trajectories of the primal and the
dual system in the first- and second independent variable.

2.2 The 2D matrix Sylvester equation

In the rest of the paper we assume that a set of N dual
trajectories is known; such assumption is not restrictive,
since dual trajectories can be readily computed from
primal ones (see Rem. 1 below). Consider the primal and
dual data:

wi(•, •) = col(u, y)(•, •) =

[
ui
yi

]
eλ

i
1•eλ

i
2• ∈ B , (7)

w′i(•, •) = col(u′, y′)(•, •) =

[
u′i
y′i

]
eµ

i
1•eµ

i
2• ∈ B′ ,

i = 1, . . . , N . It is easy to verify from (2), (5) that
to such trajectories correspond vector-exponential state
trajectories

xie
λi
1•eλ

i
2• , x′je

µj
1•eµ

j
2• , (8)

where x′i, xi ∈ Cn, i, j = 1, . . . , N . We partition x′i =:
col(x′i,1, x

′
i,2) and xi =: col(xi,1, xi,2) according to the

partition of the state trajectories in (5) and (2).

Define from (7), (8) the matrices

L :=
[
w′1 . . . w

′
N

]
∈ Cw×N , R := [w1 . . . wN ] ∈ Cw×N

Λi := diag(λki )k=1,...,N Mi := diag(µki )k=1,...,N i = 1, 2 (9)

X ′ :=
[
x1
′ . . . xN ′

]
=:

[
X ′1
X ′2

]
, X := [x1 . . . xN ] =:

[
X1

X2

]
.

The next result shows that matrices computed from the
external data and matrices computed from the internal
(i.e. state) ones are related.

Proposition 2. Define the matrices L, R, Λi, Mi, X
′, X by

(9). Define L := L∗JR; then

L = M∗1X
′∗
1 X1 +X ′∗1 X1Λ1 +M∗2X

′∗
2 X2 +X ′∗2 X2Λ2 . (10)

Proof. Compute the value at (0, 0) of equation (6) on the
external data and their associated state trajectories.

Remark 1. Given a set of external trajectories of the
primal, it is straightforward to compute a set of external
trajectories of the dual, as the following result shows.

Proposition 3. Let B be a 2D controllable behavior, and
J ∈ Rw×w be an involution. Let weλ1•eλ2• ∈ B, and let
v ∈ Cw satisfy v∗w = 0. Then Jve−λ

∗
1•e−λ

∗
2• is an external

trajectory of the dual system.

Proof. See Prop. 5.5 of Rapisarda and Antoulas (2016).

Prop. 3 is at the heart of the mirroring technique already
applied successfully to 1D interpolation and modelling
problems, see Kaneko and Rapisarda (2003, 2007); Rapis-
arda and Willems (1997). �

2.3 From data to state trajectories

The following result follows from Prop. 2.

Theorem 4. Let B,B′ be the external behaviors corre-
sponding to the state representations (2) and (5). Let data
(7) be given. Define L,R, Λi,Mi, i = 1, 2 by (9) and
L := L∗JR. Define

U := [u1 . . . uN ] ∈ Cm×N , Y := [y1 . . . yN ] ∈ Cp×N

U ′ :=
[
u′1 . . . u

′
N

]
∈ Cp×N , Y ′ :=

[
y′1 . . . y

′
N

]
∈ Cm×N .(11)



There exist ni ∈ N, and matrices Xi, X
′
i ∈ Cni×N i = 1, 2,

such that (10) holds. Moreover, there exist Aij ∈ Rni×nj ,
i = 1, 2, Ci ∈ Rp×ni , Bi ∈ Rni×m, i = 1, 2 such that the
following equations hold:[

X1Λ1

X2Λ2

]
=

[
A11 A12

A21 A22

] [
X1

X2

]
+

[
B1

B2

]
U

Y = [C1 C2]

[
X1

X2

]
+DU ,[

X ′1M1

X ′2M2

]
=−

[
A>11 A

>
21

A>12 A
>
22

] [
X ′1
X ′2

]
+

[
C>1
C>2

]
U ′

Y ′ =
[
B>1 B>2

] [X ′1
X ′2

]
−D>U ′ . (12)

Given such matrices Aij , Bi, Ci, i, j = 1, 2, equations (2)
and (5) define unfalsified Roesser models for the data (7).

Proof. Denote by xi = col(x1,i, x2,i), x
′
i = col(x′1,i, x

′
2,i),

the state trajectories associated in the state representa-
tions of the primal, respectively dual system, with wi,
respectively w′i, i = 1, . . . , N . Now consider the value
at (0, 0) of (2) and (5) with such external- and state
trajectories, and define[

X1

X2

]
:=

[
x1,1(0, 0) . . . x1,N (0, 0)
x2,1(0, 0) . . . x2,N (0, 0)

]
,

and

[
X ′1
X ′2

]
analogously. Evidently the state-, input- and

output matrices of the primal and the dual state represen-
tations satisfy (12). This argument proves the first part of
the theorem and the equations (12). The last part of the
claim is straightforward. 2

Based on Th. 4, in Rapisarda and Antoulas (2016) the
following 2D identification procedure was proposed. The
first step consists in constructing the Loewner matrix L
from the data (7). In the second step, one computes a
pair (S1, S2) of solutions to the linear matrix equation (3).
The third step consists in the rank-revealing factorization
of Sk = F ′>k Fk, i.e. rank(Sk) = rank(Fk) = rank(F ′k),
k = 1, 2. Then, defining U and Y as in (11), an unfalsified
Roesser module for the data is computed solving for Aij ,
Bi, Ci, i, j = 1, 2 and D in[

F1Λ1

F2Λ2

Y

]
=

[
A11 A12 B1

A21 A22 B2

C1 C2 D

][
F1

F2

U

]
. (13)

Note that the dimension ni of the xi variable of the model
computed with such procedure equals rank(Si), i = 1, 2. It
follows that to compute low-complexity unfalsified models
for the primal data it is crucial to find low-rank solutions
Si, i = 1, 2 to equation (3).

In order to compute real models (2), (5), in the rest of this
paper we will assume that the data sets D′ := {w′i}i=1,...,N

and D := {wi}i=1,...,N are closed under conjugation, i.e.
that

wi(•, •) = wiλ
•
1,iλ
•
2,i ∈ D =⇒w∗i (•, •) = w∗i λ

∗•
1,iλ
∗•
2,i ∈ D

w′i(•, •) = w′iµ
•
1,iµ
•
2,i ∈ D′ =⇒w

′∗
i (•, •) = w′∗i µ

∗•
1,iµ
∗•
2,i ∈ D′ .

Such assumptions guarantee that the least squares solution
of (13) consists of real matrices.

Remark 2. Ramos and his collaborators pioneered an
identification approach based on the idea of computing 2D
state-trajectories from data and subsequently using them,
together with the input-output trajectories, to compute
state-equations (see Farah et al. (2014); Ramos (1994)).
Such approach is fundamentally based on shift-invariance,
while we exploit the pairing relation (6), as in the 1D
Loewner framework. See Antoulas and Rapisarda (2015);
Rapisarda and Antoulas (2015) for more details. �

3. THE 2D MATRIX SYLVESTER EQUATION

The 2D matrix Sylvester equation (3) is linear in the un-
knowns Si, i = 1, 2. It follows that we can find all solutions
to (3) by computing a particular one, and summing to it
the general form of the corresponding homogeneous 2D
matrix Sylvester equation.

Using standard results in the theory of matrix Sylvester
equations (see e.g. Peeters and Rapisarda (2006)) it can
be shown that if the spectra of Λi and −M∗i are disjoint,
then for every choice of the right-hand side Q there exist
solutions Si to the i-th 1D matrix Sylvester equation

M∗i Si + SiΛi = Q , (14)

i = 1, 2. If Q = 1
2L and if Si solves the 1D Sylvester

equation (14), i = 1, 2, then summing up the two 1D
Sylvester equations it follows that the pair (S1, S2) solves
(3). From such discussion it follows that under the as-
sumption σ(Λi) ∩ σ(Mi) = ∅, a special solution of the 2D
matrix Sylvester equation can always be computed solv-
ing two 1D Sylvester equations. Note that such spectral
assumption is non-restrictive as long as the frequencies of
the experimental data can be freely chosen.

To find all solutions of (3), consider the homogeneous 2D
matrix Sylvester equation

0 = M∗1S
′
1 + S′1Λ1 +M∗2S

′
2 + S′2Λ2 , (15)

in the unknowns S′i, i = 1, 2. The fact that for given Λi,
Mi matrices, i = 1, 2, equation (15) has nontrivial (i.e.
nonzero) solutions can be verified using standard linear
algebra arguments 1 .

The following result is a straightforward consequence of
this discussion.

Proposition 5. Assume that λi1+µj∗1 6= 0 and λi2+µj∗2 6= 0,

i, j = 1, . . . , N . There exist solutions Si, i = 1, 2, to (14)
when Q = 1

2L. Define

S := {(S′1, S′2) | S′1 and S′2 solve (15)} . (16)

(S1, S2) ∈ RN×N ×RN×N is a solution to (3) if and only if

there exists (S
′
1, S
′
2) ∈ S such that Si = Si + S

′
i, i = 1, 2.

A parametrization of S defined in (16) is straightforward
to derive from the following result.

Proposition 6. Denote the (k, j)-th entry of S′i in (15) by
S′i(k, j), i = 1, 2, k, j = 1, . . . , N . A pair (S′1, S

′
2) is a

solution of (15) if and only if

S′1(k, j)
(
λj1 + µk∗1

)
+ S′2(k, j)

(
λj2 + µk∗2

)
= 0 ,

1 One can reach the same conclusion observing that (3) arises from
(6), and that there exist non-zero fields that have zero divergence.



k, j = 1, . . . , N . Assume that λj1+µk∗1 6= 0, k, j = 1, . . . , N ;
then (S′1, S

′
2) solves (15) if and only if

S′1(k, j) = −S′2(k, j)
λj2 + µk∗2

λj1 + µk∗1
= 0 , (17)

k, j = 1, . . . , N .

Proof. Straightforward.

The following consequence of Prop. 6 is instrumental in our
procedure for computing low-rank solutions to equation
(3).

Corollary 7. Assume that λj1 + µk∗1 6= 0, k, j = 1, . . . , N .

Denote by Si, i = 1, 2, the unique solution to (14) when
Q = 1

2L. Then (S1, S2) is a solution of (3) if and only if
there exist S′2(k, j) ∈ R, k, j = 1, . . . , N , such that

S1(k, j) = S1(k, j)− S′2(k, j)
λj2 + µk∗2

λj1 + µk∗1

S2(k, j) = S2(k, j)− S′2(k, j)
λj2 + µk∗2

λj1 + µk∗1
, (18)

k, j = 1, . . . , N .

4. GRÖBNER BASES AND LOW-RANK SOLUTIONS
TO THE 2D MATRIX SYLVESTER EQUATION

In Cor. 7 we obtained a parametrization of all solutions
to (3) by choosing S′2 freely in RN×N . Defining the
polynomial ring R[{ξkj}k,j=1,...,N ] and identifying ξkj with
the free parameter S′2(k, j), the matrices S1 and S2 defined
in (18) are associated in a natural way with polynomial
matrices in the ring R[{ξkj}k,j=1,...,N ]N×N .

To state our procedure to find minimal rank solutions to
(3) we use the following notation. If S is a subset of a
polynomial ring, we denote by I(S) the ideal generated
by S; and if I is an ideal, we denote by G(I) the Gröbner
basis (in some well-ordering) of I. Moreover, we denote by
V(I) the algebraic variety of a polynomial ideal I.

Algorithm

For n = 1, . . . , N do
For all (n1, n2) ∈ {(n1, n2) ∈ N× N | n1 + n2 = n} do
Compute Mi := {(ni + 1)-minors of Si}, i = 1, 2
Compute Gi := G(I(Mi)), i = 1, 2
If G := G(G1 ∪ G2) 6= {1} then

Choose v ∈ V(I(G))
Return (S1(v), S2(v))

Else n := n+ 1
End for

End for

Proposition 8. Assume that λj1+µk∗1 6= 0 and λj2+µk∗2 6= 0,
k, j = 1, . . . , N . Then the algorithm provides a solution
pair (S1, S2) to (3) such that rank(S1) + rank(S2) is
minimal.

Proof. A matrix has rank less than or equal to ni if
and only if all its minors of order ni + 1 or higher are
zero. Consequently, values for the free parameters S′2(k, j)
such that the matrices defined in (18) have rank less than
or equal to ni exist if and only if the two systems of

polynomial equations in the indeterminates ξkj , k, j =
1, . . . , N obtained from such minors condition have a
common solution.

It follows from standard Gröbner basis considerations that
such systems of polynomial equations have a common
solution if and only if the ideal generated by the basis
G is nontrivial, equivalently if and only if G 6= {1}.
To conclude the proof, note that there exist solutions
of rank N to (3), since the disjoint spectra condition
guarantees the existence of solutions to the 1D Sylvester
equation (14) with right-hand side Q = L; from any such
solution S1 one can construct a pair (S1, 0N×N ) to (3).
Thus the procedure terminates after a finite number of
steps. �

We conclude this section with some remarks.

Remark 3. The innermost For loop iteration can be per-
formed in a total-degree lexicographic way, i.e. searching
the space of possible model complexities (n1, n2) as in Fig.
1, and giving priority to models with lower dimension of
the x1-variable.

n1

n2

Fig. 1. Total degree lexicographic search in complexity
space

Remark 4. Once a pair (S1, S2) has been computed
through the above procedure, the (generically satisfied)
sufficient conditions stated in Th. 5.8 of Rapisarda and
Antoulas (2016) can be checked:

im Y ′∗ ∩ im U ′∗ = {0}
im S1 ∩ im S2 = {0}

[S1 S2] ∩ im U ′∗ = {0} ,
where Y ′ and U ′ are defined in (11). An unfalsified model
for the data can be computed as follows.

Let Si = X ′∗i Xi, i = 1, 2 be rank-revealing factorizations.;
it is shown in Th. 5.8 of Rapisarda and Antoulas (2016)

that there exist a left inverse
[
X ′∗1 X ′∗2

]†
of
[
X ′∗1 X ′∗2

]
and F ∈ Cp×N such that

[
X ′∗1 X ′∗2

]†
U ′∗ = 0N×p and

F
[
Y ′∗ U ′∗

]
= [0p×m Ip]. The i/s/o matrices are computed

solving (13) in the least squares sense:

A :=−
[
X ′∗1 X ′∗2

]† [
M∗1X

′∗
1 M∗2X

′∗
2

]
, B :=

[
X ′∗1 X ′∗2

]†
Y ′∗

C := F
(
IN −

[
X ′∗1 X ′∗2

] [
X ′∗1 X ′∗2

]†) [
M∗1X

′∗
1 M∗2X

′∗
2

]
D := F

[
X ′∗1 X ′∗2

] [
X ′∗1 X ′∗2

]†
Y ′∗ .

Remark 5. We have implemented the above procedure in
Mathematica. Anecdotal evidence obtained dealing with



N larger than five or six suggests that it is difficult to
apply it to larger scale problems, since the use of Gröbner
bases is computationally rather intensive. Using heuristic
affine rank minimization algorithms could be more widely
applicable. The advantage of a Gröbner basis approach
is that it computes a parametrization of all solutions
(S1, S2) to (3) with a given complexity. It consequently
opens up the possibility of exploring such parameter space,
for example in order to computed unfalsified models with
desired properties. 2

5. EXAMPLE

The generating system is described by the SISO transfer
function G(s1, s2) = 1

s1s2−1 , considered in Ex. 2.2 of

Antoulas et al. (2012). We choose the interpolation points

{
(λi1, λ

i
2)
}
i=1,...,4

=

{
(4, 3), (5, 4), (9,

1

4
), (3, 2)

}
{

(µi1, µ
i
2)
}
i=1,...,4

=

{
(2,−1

2
), (2,−3

2
), (2,−1), (

1

2
,−1)

}
.

Such interpolation point correspond to the directions

{wi}i=1,...,4 =

{[
11
1

]
,

[
19
1

]
,

[
5
4

]
,

[
5
1

]}
{w′i}i=1,...,4 =

{[
−2
−1

]
,

[
−4
−1

]
,

[
−3
−1

]
,

[
−3
−2

]}
.

From such data we compute the Loewner matrix:

L =

−13 −21 −13 −7
−15 −23 −21 −9
−14 −22 −17 −8
−25 −41 −22 −13

 .

To parametrize all solutions to the 2D Sylvester equation
(3), we first compute solutions Si, i = 1, 2 to the 1D
Sylvester equation (14) with Q = 1

2L:

S1 =



−13

12
−3

2
−13

22
− 7

10

−5

4
−23

14
−21

22
− 9

10

−7

6
−11

7
−17

22
−4

5

−25

9
−41

11
−22

19
−13

7



S2 =



−13

5
−3 26 −7

3

−5 −23

5

42

5
−9

−7

2
−11

3

34

3
−4

−25

4
−41

6

44

3
−13

2


.

It can be verified that rank(S1) = 3 and rank(S2) = 4.
If state directions would be computed by factorizing Si,
i = 1, 2, they would have dimensions 3 and 2 respectively,
and the total complexity of the model would be 3+2=5.
We show that there exist lower complexity unfalsified
models.

Let gij ∈ R, i, j = 1, . . . , 4 be to-be-determined parame-
ters; it is a matter of straightforward verification to check
that the general solutions S′1, S′2 of (15) are (see Prop. 6):

S′1(gij) =



− 5

12
g11 −g12

2

g13
44
− 3

10
g14

−g21
4
− 5

14
g22

5g23
44

−g24
10

−g31
3

−3

7
g32

3g33
44

−g34
5

−4

9
g41 −

6

11
g42

3g43
38

−2

7
g44


S′2(gij) = [gij ]i,j=1,...,4 . (19)

From Cor. 7 it follows that any pair (S1(gij), S2(gij))
which is a solution of the 2D Sylvester equation (3) can
be written as (S1 +S′1(gij), S2 +S′2(gij)) for some S′1(gij),
S′2(gij) as in (19).

We apply the algorithm in sect. 4. For n = 1, the only pairs
(n1, n2) ∈ N×N such that n1+n2 = n are respectively (1, 0)
and (0, 1). When considering (1, 0) as possible complexity,
we compute the 2×2 minors of S1(gij) and the 1×1 minors
of S2(gij), and the respective Gröbner bases G1 and G2; it
can be verified that the Gröbner basis of G1 ∪ G2 is {1}.
An analogous situation occurs for (n1, n2) = (0, 1). From
this analysis it follows that there do not exist unfalsified
models with complexity n = 1.

For n = 2, (2, 0), (0, 2), and (1, 1) are the only possible
pairs of state dimensions. In the first case, we compute
the 3 × 3 minors of S1(gij) and the 1 × 1 minors of
S2(gij), and the respective Gröbner bases G1 and G2.
It can be verified that the Gröbner basis of G1 ∪ G2
is {1}; hence no unfalsified model exists with n1 = 2,
n2 = 0. Similar computations lead us to conclude that no
unfalsified models of complexity (0, 2) exist. To verify the
existence of models of complexity (1, 1), we compute the
2×2 minors of S1(gij) and the 2×2 minors of S2(gij); it can
be verified that the Gröbner basis of the ideal generated
by such polynomials in the parameters gij i, j = 1, . . . , 4
is

{
15− 32g44 + 4g244, 1934 + 21g43 − 228g44,

83 + 21g42 − 33g44, 67 + 28g41 − 36g44,

−9 + 14g34 − 10g44, 1060 + 21g33 − 132g44,

11 + 6g32 − 6g44, 13 + 14g31 − 12g44,−79 + 14g24 − 10g44,

1664 + 35g23 − 220g44, 9 + 10g22 − 10g44,−4 + 7g21 − 6g44,

43 + 42g14 − 30g44, 456 + 7g13 − 44g44, 5 + 2g12 − 2g44,

64 + 35g11 − 30g44} .

The variety associated with the ideal generated by such
polynomials consists of precisely two points, corresponding
respectively to

S′2 =



−7

5
−2 −62 −2

3

1 −2

5
−222

5
6

−1

2
−4

3
−142

3
1

−7

4
−19

6
−260

3

1

2


(20)

and



S′2 =



23

5
5 −18

13

3

7
33

5
−2

5
11

11

2

17

3
−10

3
6

29

4

47

6
−32

3

15

2


,

in the parametrization (19). The corresponding S′1 matri-
ces are computed as in the first equation in (19). Taking
S′2 equal to (20) and computing the corresponding S′1, a
solution pair (S1, S2) to (3) is

S1 =


−1

2
−1

2
−2 −1

2

−3

2
−3

2
−6 −3

2
−1 −1 −4 −1
−2 −2 −8 −2



S2 =

−4 −5 −36 −3
−4 −5 −36 −3
−4 −5 −36 −3
−8 −10 −72 −6


Recall that S1 and S2 have rank 1 by construction.

It is a matter of straightforward verification that the
sufficient conditions of Rem. 4 are satisfied. An SVD can
be performed on S1 and S2 to obtain the factorizations

S1 =

 0.631
1.892
1.262
2.523

 [−0.793 −0.793 −3.171 −0.793 ]︸ ︷︷ ︸
=:X1

S2 =

 3.724
3.724
3.724
7.448

 [−1.0742 −1.343 −9.667 −0.806 ]︸ ︷︷ ︸
=:X2

.

The matrices X1 and X2 define the first, respectively
second component of the state directions associated with
the given external trajectories.

The matrices A, B, C and D of a Roesser model can be
computed through the formulas at the end of Rem. 4, or
solving in the least squares sense the system of equations[

X1Λ1

X2Λ2

Y

]
=

[
A11 A12 B1

A21 A22 B2

C1 C2 D

][
X1

X2

U

]
. (21)

It can be verified that

A=

[
0 2.95164

0.338794 0

]
B =

[
0

−0.268543

]
C = [−1.2616 0 ]

D= 0 ,

solve such system of equations. The transfer function
associated with this model is

C

[
s1 −A11 −A12

−A21 s2 −A22

]−1
B =

1

s1s2 − 1
,

the one used to generate the data. 2

6. CONCLUSION

We presented a Gröbner basis approach to the solution of
a 2D matrix Sylvester equation arising in 2D identification
of Roesser models from frequency data.
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