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1. INTRODUCTION

The usual approach to port-Hamiltonian systems is
representation-oriented, especially in state space terms
(see van der Schaft and Jeltsema (2014)). Such approach
captures the underlying principles and unveils an accu-
rate mathematical representation of physical systems in
terms of power and energy quantities, and consequently
it has been largely successful in the analysis of dynami-
cal systems in the linear and nonlinear setting (see e.g.
Duindam et al. (2009); Ortega et al. (2002)). Motivated
by the fact that, in many cases, state space models and
variables are not necessarily a given, in this paper we de-
velop a trajectory-oriented approach to port-Hamiltonian
systems. For instance energy-balance equations obtained
by modelling physical systems are often in higher-order
terms, since they derive from accounting for energy ex-
change between subsystems, themselves modelled in terms
of higher-order differential equations (see Willems (2007)
and Willems (2010)). Moreover, in many real-life scenarios
the state variables of the system are not necessarily known
(see e.g. Mazloum et al. (2016) and Raju and Khaitan
(2012)). Another common situation, e.g. in electrical sys-
tems involves the study of grids whose impedance speci-
fication (in higher-order terms) is directly identified from
phasor-measurements (see e.g. Ardakanian et al. (2017)),
but its state space structure is generally unknown, e.g.
due to the fact that node voltages and mesh currents are
not necessarily state variables. For such reasons, in this
paper we develop a framework in which we can use the
port-Hamiltonian system formalism, and simultaneously
accommodate first principle models in the form of sets of
higher-order differential equations.
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Another inspiration to develop a higher-order, trajectory-
based approach to linear port-Hamiltonian systems is
stimulated by recent results in the switched linear differ-
ential systems (SLDS ) framework developed by the au-
thors (see Mayo-Maldonado and Rapisarda (2016a,b, 2013,
2014); Mayo-Maldonado et al. (2014); Rocha et al. (2011)).
While such approach offers some advantages over the
classical state-space based one, several important issues
are still open. Among these is the automatic derivation
of gluing conditions and related reset rules from phys-
ical principles (e.g. conservation of energy). In van der
Schaft and Çamlibel (2009) a compelling mathematical
formalization of state transfer principles for switched port-
Hamiltonian systems has been given. We plan to explore
similar ideas to solve the above mentioned open problems
in the SLDS framework; this work is preparatory to such
end.

We study port-Hamiltonian systems from the behavioral
viewpoint, see Polderman and Willems (1997). We define
the variables of such a system as observables induced by
higher-order polynomial differential operators acting on an
auxiliary variable. Each such observable has associated a
conjugate one, just as in the classical framework each flow
has associated a corresponding effort variable. The observ-
ables obey certain constitutive relations (power conserva-
tion, dissipativity, etc.) expressed in terms of bilinear- and
quadratic differential forms (see Willems and Trentelman
(1998)). We describe properties of such variables that can
be derived from the constitutive relations, and we intro-
duce the concept of a dual port-Hamiltonian behaviour,
that satisfies an “anti-dissipative” constitutive relation.

2. BACKGROUND MATERIAL

A thorough treatment of the notions illustrated in this sec-
tion can be found, respectively, in Polderman and Willems
(1997), Rapisarda and Willems (1997); van der Schaft and
Rapisarda (2011) and in Willems and Trentelman (1998).



2.1 Notation

The space of n dimensional real vectors is denoted by Rn;
that of m× n real matrices by Rm×n; and R•×m denotes the
space of real matrices with m columns and an unspecified
finite number of rows. Given matrices A,B ∈ R•×m,
col(A,B) denotes the matrix obtained by stacking A over
B. The ring of polynomials with real coefficients in the
indeterminate s is denoted by R[s]; the ring of two-variable
polynomials with real coefficients in the indeterminates ζ
and η is denoted by R[ζ, η]. Rr×w[s] denotes the set of all
r×w matrices with entries in s, and Rn×m[ζ, η] that of n×m
polynomial matrices in ζ and η. The set of rational m× n
matrices is denoted by Rm×n(s). Given G = G> ∈ Rm×m,
σ+(G) denotes the number of positive eigenvalues of G.
The set of infinitely differentiable functions from R to Rw is
denoted by C∞(R,Rw). D(R,Rw) is the subset of C∞(R,Rw)
consisting of compact support functions.

2.2 Linear differential behaviors

A linear differential behavior is a linear subspace B ⊆
C∞(R,Rw) consisting of the solutions of a finite system of
constant-coefficient linear differential equations. Such a set
can be represented as

B =

{
w ∈ C∞(R,Rw) | R

(
d

dt

)
w = 0

}
= ker R

(
d

dt

)
,

(1)
with R ∈ Rg×w[s]. Equation (1) is called a kernel repre-
sentation of B. We denote by Lw the set of linear time-
invariant differential behaviors with w variables.

The property of controllability is discussed in sect. 5.2 of
Polderman and Willems (1997); if B is controllable, it
can be also represented in image form , i.e. there exist
M ∈ Rw×m[s] and an auxiliary variable ` such that

B =

{
w | ∃ ` ∈ C∞(R,Rm) s.t. w = M

(
d

dt

)
`

}
= im M

(
d

dt

)
. (2)

The number of input variables (see Def. 3.3.1 of Polderman
and Willems (1997)) of a behavior B is denoted by m(B);
the remaining p(B) := w− m(B) variables are outputs.

2.3 State maps

An auxiliary variable x is a state variable for B if B has
a representation of first order in x and zeroth order in
w, i.e. there exist E,F ∈ R•×•, G ∈ R•×w such that
B =

{
w | ∃ x s.t. E d

dtx+ Fx+Gw = 0
}

. The minimal
number of state variables needed to represent B in such
way is called the McMillan degree of B, denoted by n(B).

A state variable for B can be computed as the image
of a polynomial differential operator called a state map
(see Rapisarda and Willems (1997),van der Schaft and
Rapisarda (2011)). Algebraic characterizations of state
maps and minimal state maps for systems in kernel and
image form are given Rapisarda and Willems (1997);
van der Schaft and Rapisarda (2011).

2.4 Bilinear and quadratic differential forms

Let Φ ∈ Rw1×w2 [ζ, η]; then Φ(ζ, η) =
∑

h,k Φh,kζ
hηk, where

Φh,k ∈ Rw1×w2 and the sum is finite. Φ(ζ, η) induces the
bilinear differential form (BDF) LΦ from C∞(R,Rw1) ×
C∞(R,Rw2) to C∞(R,R) defined by

LΦ(w1, w2) :=
∑
h,k

(
dhw1

dth

)>
Φh,k

dkw2

dtk
.

Φ ∈ Rw×w[ζ, η] also induces a quadratic differential form
(QDF) QΦ from C∞(R,Rw) to C∞(R,R) defined by
QΦ(w) := LΦ(w,w). Associated to Φ ∈ Rw1×w2 [ζ, η] is

its coefficient matrix defined by Φ̃ := [Φi,j ]i,j=0,1,2.... Φ̃
is an infinite matrix with only a finite number of nonzero
entries. Φ(ζ, η) is called symmetric if Φ(ζ, η) = Φ(η, ζ)>,

or equivalently if Φ̃ = Φ̃>.

The derivative of QΨ is the QDF QΦ defined by QΦ(w) :=
d
dt (QΨ(w)) for all w ∈ C∞(R,Rw); this holds if and only
if Φ(ζ, η) = (ζ + η)Ψ(ζ, η) (see Willems and Trentelman
(1998), p. 1710).

QΦ is nonnegative along B ∈ Lw, denoted by QΦ

B
≥ 0 if

QΦ(w) ≥ 0 for all w ∈ B; and positive along B, denoted

by QΦ

B
> 0, if QΦ

B
≥ 0 and [QΦ(w) = 0] =⇒ [w = 0].

If B = C∞(R,Rw), then we call QΦ simply nonnegative,
respectively positive. Algebraic characterisations of such
properties are on pp. 1712-1713 of Willems and Trentel-
man (1998).

2.5 Dissipative linear differential behaviors

Let B ∈ Lw be controllable and let Φ ∈ Rw×w[ζ, η]. B
is called Φ-dissipative if for all w ∈ B ∩ D(R,Rw) it
holds that

∫∞
−∞QΦ(w)dt ≥ 0. The QDF QΦ is called a

supply rate. A QDF QΨ is a storage function for B with
respect to a supply rate QΦ if d

dtQΨ(w) ≤ QΦ(w) for
all w ∈ B. A QDF Q∆ is a dissipation function for B
with respect to QΦ if Q∆(w) ≥ 0 for all w ∈ B and∫∞
−∞QΦ(w)dt =

∫∞
−∞Q∆(w)dt for all w ∈ B ∩ D(R,Rw).

QΦ, QΨ and Q∆ are related to each other through the
dissipation equality (see Trentelman and Willems (1997),
Th. 4.3.): d

dtQΦ = QΦ − Q∆. If B = C∞(R,Rw), such
equality holds true if and only if

(ζ + η)Ψ(ζ, η) = Φ(ζ, η)−∆(ζ, η) .

It follows from Prop. 5.2 of Willems and Trentelman (1998)
that the inequality

∫∞
−∞QΦ(w)dt ≥ 0 is equivalent with

the condition Φ(−jω, jω) ≥ 0 ∀ ω ∈ R. Consequently
a dissipation function can be computed by factorising
Φ(−s, s) = D(−s)>D(s) with D ∈ R•×w[s] and defining
∆(ζ, η) := D(ζ)>D(η).

3. HIGHER-ORDER LINEAR PORT-HAMILTONIAN
BEHAVIORS

Let Ex, Fx ∈ Rnx×m[s], Ep, Fp ∈ Rnp×m[s], Er, Fr ∈
Rnr×m[s]. Such polynomial matrices induce polynomial
differential operators acting on free trajectories ` ∈
C∞(R,Rm) that define the following effort- and flow vari-
ables:



ex := Ex

(
d

dt

)
` , ep := Ep

(
d

dt

)
` , er := Er

(
d

dt

)
`

fx := Fx

(
d

dt

)
` , fp := Fp

(
d

dt

)
` , fr := Fr

(
d

dt

)
` .(3)

We call ex and fx the state effort and flow variables, ep
and fp the port effort and flows, and er and fr the resistive
effort and flow variables. Define

Me(s) := col (Ex(s), Ep(s), Er(s), Fx(s), Fp(s), Fr(s)) ;
(4)

then we call Be = im
(
Me

(
d
dt

))
the efforts and flows

behaviour. The projection πr(Be) of Be on the resistive
variables is defined by

πr : Be → C∞(R,R2nr )

πr (col (ex, ep, er, fx, fp, fr)) := col (er, fr) . (5)

The projections on the port variables are defined analo-
gously. Such maps define the resistive- and port behaviours
Br := πr (Be) and Bp := πp (Be), respectively.

We assume that Be satisfies constitutive relations induced
by bilinear- or quadratic functionals of the efforts and
flows. Define

Je :=

[
0 Inx+np+nr

Inx+np+nr 0

]
The power relation is

col
(
e1
x, e

1
p, e

1
r, f

1
x , f

1
p , f

1
r

)>
Je col

(
e2
x, e

2
p, e

2
r, f

2
x , f

2
p , f

2
r

)
= 0 ,

(6)
for all col

(
eix, e

i
p, e

i
r, f

i
x, f

i
p, f

i
r

)
∈ Be, i = 1, 2. The storage

relation is

e1>
x f2

x + f1>
x e2

x = − d

dt

(
e1>
x e2

x

)
, (7)

for all col
(
eix, f

i
x

)
∈ πx (Be), i = 1, 2. The dissipative

relation is
e1>
r f2

r + f1>
r e2

r ≤ 0 , (8)
for all col

(
eir, f

i
r

)
∈ πr (Be), i = 1, 2; and the anti-

dissipative relation is

e1>
r f2

r + f1>
r e2

r ≥ 0 , (9)

for all col
(
eir, f

i
r

)
∈ πr (Be), i = 1, 2. If Be satisfies (6)-(7)

and one or both of (8) and (9), we call it a dissipative-,
respectively anti-dissipative port-Hamiltonian behavior.

In the following example we illustrate a modelling proce-
dure for flows an efforts as in (3) using first principles.

Example 1. Consider the following impedance:

Z1(s) :=
v1(s)

i1(s)
=

2s2 + 0.2s+ 100

10s+ 1
.

To unveil the port-Hamiltonian structure of a circuit with
such impedance, we use the Brune synthesis (see Wing
(2008), Ch. 7). Such procedure enables modelling of flows
and efforts directly in higher-order terms, using funda-
mental physical principles. We illustrate the steps of the
Brune synthesis in Fig. 1; the procedure consists in remov-
ing poles/zeros at infinity, equivalently in removing series
inductors and shunt capacitors. We thus obtain a circuit
with impedance Z1(s), and we also obtain in intermediate
stages the following impedances as remainders:

Z2(s) =
v2(s)

i1(s)
=

100

10s+ 1
; Z3(s) =

v2(s)

i2(s)
= 100 .

Fig. 1. Circuit synthesis of impedance Z1(s).

Z1(s), Z2(s) and Z3(s) can be represented in image form
(see Willems and Trentelman (2002), Sec. VI) i.e.[

i1
v1

]
=

 10
d

dt
+ 1

2
d2

dt2
+ 0.2

d

dt
+ 100

 i2 ;

[
i1
v2

]
=

[
10
d

dt
+ 1

100

]
i2 ;

[
i2
v2

]
=

[
1

100

]
i2 .

Using these equations and following the traditional physi-
cal definition of flows and efforts for electric and magnetic
components (see App. B of van der Schaft and Jeltsema
(2014)), we obtain the following set of variables as in (3)

ep : = v1 =

(
2
d2

dt2
+ 0.2

d

dt
+ 100

)
i2 ;

fp : = i1 =

(
10
d

dt
+ 1

)
i2 ;

ex : =

[
i1
v2

]
=

[
10
d

dt
+ 1

100

]
i2 ;

fx : =

[
v1 − v2

i1 − i2

]
=

2
d2

dt2
+ 0.2

d

dt

10
d

dt

 i2 ;

er : = v2 = 100i2 ;

fr : = i2 .

It is a matter of straightforward verification that such
effort- and flow- variables satisfy the relations (6)-(8).

4. FLOW- AND EFFORT VARIABLES

Our first result follows directly from (6)-(8).

Proposition 1. Assume that Be satisfies (6)-(8). Then its
port behavior Bp = πp (Be) is dissipative with respect to
the supply rate induced by

Jp :=

[
0 Inp

Inp
0

]
.

The functionals e>x ex and e>r fr + f>r er are respectively a
storage- and associated dissipation function for πp (Be).

Proof. It follows from the constitutive relations that
e>p fp + f>p ep = d

dt

(
e>x ex

)
−
(
e>r fr + f>r er

)
for all tra-

jectories in Be, and that (8) holds. Consequently Bp is
Jp-dissipative. The rest of the claim is straightforward.



Analogously, if Be satisfies (6)-(7) and (9), then Bp is Jp-

anti-dissipative, meaning that e>p fp + f>p ep = d
dt

(
e>x ex

)
−

e>r fr − f>r er (equivalently, Bp is (−Je)-dissipative).

We now show that ex is a linear function of the state
of Bp and that under suitable assumptions on the input
cardinality of Bp, it is a state variable for Bp.

Proposition 2. Let Be be a port-Hamiltonian behavior,
and let x be a minimal state variable for Bp. Then ex
is a linear function of x, i.e. there exists L ∈ Rnx×n(Bp)

such that ex = Lx.

If m(Bp) = np, then Ex

(
d
dt

)
is a state map for Bp, and L

has full column rank.

Proof. Let X
(

d
dt

)
be a minimal state map for Bp acting

on ` and producing x. Since e>x ex is a storage function
for Bp, there exists K = K> ∈ Rn(Bp)×n(Bp), K ≥ 0,
such that Ex(ζ)>Ex(η) = X(ζ)>KX(η) (see Th. 5.5 of

Willems and Trentelman (1998)). Conclude that Ẽx

>
Ẽx =

X̃>KX̃, with X̃ of full row rank because x is minimal.
Factorize K = F>F in a rank-revealing way; it follows

that
(
X̃>F>

)(
FX̃

)
is a rank-revealing factorization of

Ẽx

>
Ẽx. It follows that rowspanR Ẽx = rowspanR FX̃ ⊆

rowspanR X̃ and the first claim (choose L = F ).

We prove the second part of the claim. An argument
analogous to that in the proof of (4) ⇐⇒ (7) of Th.
6.4 p. of Willems and Trentelman (1998) shows that
since X(ζ)>KX(η) induces a nonnegative storage func-
tion and m(Bp) = np = σ+(Jp), K is not only semi-
definite positive, but also positive-definite. It follows that

rowspanR FX̃ = rowspanR X̃ = rowspanR Ẽx, which is
equivalent with rowspanR X(s) = rowspanR Ex(s). The
claim on L having full column rank follows from such
equality.

We prove an important consequence of (7).

Proposition 3. Let Be be a port-Hamiltonian behavior.
Let x be a minimal state map for Bp = πp (Be),

and let L ∈ Rnx×n(Bp) be as in Prop. 2. Let L⊥ ∈
Rnx×(nx−rank(L)) be a basis matrix for im(L).

There exists Gx ∈ R(nx−rank(L))×m[s] such that Fx(s) +
sEx(s) = L⊥Gx(s).

Proof. From the storage relation conclude that for every

col(ex, fx) ∈ πx(Be) it holds that
(
fx + d

dtex
)>
ex =

0. From ex = Lx and the minimality of x con-
clude that for every col(ex, fx) ∈ πx(Be) it holds that(
fx(0) + L d

dtx(0)
)>
L = 0. Let col(V1, V2) be a basis ma-

trix for the set of all col(v1, v2) ∈ R2nx for which there
exists col(ex, fx) ∈ πx(Be) such that col

(
d
dtex(0), fx(0)

)
=

col(v1, v2). Then L>V1 + L>V2 = 0, from which it follows
that there exists H ∈ R•×• such that V2 = −V1 + L⊥H.
Denote by Vj,k the k-th column of Vj , j = 1, 2, and by `k an

auxiliary variable trajectory such that d
dtEx

(
d
dt

)
`k(0) =

V1,k and Fk

(
d
dt

)
`k(0) = V2,k. It is straightforward to

see that there exists G ∈ R(nx−rank(L))×m[s] such that
G
(

d
dt

)
`k(0) = Hk, the k-th column of H. Conclude that

for every ` ∈ C∞(R,Rm) it holds that d
dtEx

(
d
dt

)
`(0) +

Fx

(
d
dt

)
`(0) = L⊥G

(
d
dt

)
`(0); this yields the claim.

In physical port-Hamiltonian systems the relation between
ex and fx is often differential or integral in nature, i.e.
G(s) = 0 in Prop. 3. In the rest of the paper we will
assume that this is the case.

Now define Vr to be the set consisting of all col(v1, v2) ∈
R2nr for which there exists col(er, fr) ∈ πr(Be) such that
col(er(0), fr(0)) = col(v1, v2). Let col(V1, V2) ∈ R2nr×• be
a basis matrix for Vr. If the equality V >1 V2 = V >2 V1 holds
true for any such basis matrix, we say that Be is resistively
symmetric. The resistive symmetry condition is implied by
the property of reciprocity satisfied by e.g. a large class
of electrical circuits. We call the resistive effort- and flow
variables faithful if er(0)>fr(0) + fr(0)>er(0) = 0 implies
that er(0) = 0 and fr(0) = 0.

Proposition 4. Let Be be a port-Hamiltonian behavior.
Assume it is resistively symmetric and that the resistive
variables are faithful. Then there exists R = R> ∈ Rnr×nr ,
R ≥ 0 such that Fr(s) = REr(s).

Proof. Let col(V1, V2) ∈ R2nr×• be a basis matrix for Vr.
It follows from the properties of dissipativity and resistive
symmetry that

−V >1 V2 − V >2 V1 = −2V >1 V2 ≥ 0 .

We now prove that V >1 V2 is nonsingular. Assume by
contradiction that there exists v 6= 0 such that V >1 V2v = 0;

then it also holds that (V1v)
>

(V2v) = 0. Faithfulness
implies that V1v = 0 and V2v = 0; since col(V1, V2) is
a basis matrix, this implies v = 0, a contradiction.

It follows that V >1 V2 is nonsingular. Factor it as V >1 V2 =
F>F with F nonsingular. Define V ′i := ViF

−1, i = 1, 2;
then col(V ′1 , V

′
2) is a basis for Vr, and moreover V ′>1 V ′2 =

V ′>2 V ′1 = −I. It follows that −V ′2V ′>2 V ′1 = V ′2 .

Define R := V ′2V
′>
2 ; an argument similar to that used

at the end of the proof of Prop. 3 shows that Fr(s) =
−REr(s).

We call the resistive effort variables independent if they
are not related to each other by algebraic relations. It
is straightforward to prove that if a port-Hamiltonian
behavior is resistively symmetric, then the resistive efforts

are independent if and only if Ẽr is surjective.

From Prop. 1 and Th. 5.5 of Willems and Trentelman
(1998) it follows that ex is a function of a state of Bp,
and er is a function of a state and the input of Bp. If the
resistive variables are faithful, then it follows from Prop.
4 that also fr is a function of the state and input of Bp.
If Gx(s) in Prop. 3 is zero, then also fx is a function of
a state of Bp. Under such assumptions it follows that the
number m of auxiliary variables on which the polynomial
differential operators (3) act equals m(Bp), the number of
inputs of Bp. We will assume this to be the case in the
rest of this paper.

5. DUAL PORT-HAMILTONIAN BEHAVIORS

We now define a port-Hamiltonian behavior constructed
from the dual of Bp.



5.1 Dual linear differential systems

Bp is Jp-strictly dissipative if for all col(ep, fp) ∈ Bp ∩
D
(
R,R2np

)
it holds that∫ +∞

−∞
e>p fp + f>p ep dt = 0 =⇒ col(ep, fp) = 0 .

The following is an algebraic characterization of strict
dissipativity.

Proposition 5. Let Be be a port-Hamiltonian behavior.
The following statements are equivalent:

(1) Bp is strictly dissipative;
(2) For all col (ex, ep, er, fx, fp, fr) ∈ Be of compact

support∫ +∞

−∞
e>r fr + f>r er dt = 0 =⇒ col(ep, fp) = 0 ;

(3) (a) Ep(−iω)>Fp(iω)+Fp(−iω)>Ep(iω) ≥ 0 ∀ ω ∈ R;
(b) det

(
Ep(−s)>Fp(s) + Fp(−s)>Ep(s)

)
6= 0;

(4) (a) Er(−iω)>Fr(iω)+Fr(−iω)>Er(iω) ≥ 0 ∀ ω ∈ R;
(b) det

(
Er(−s)>Fr(s) + Fr(−s)>Er(s)

)
6= 0;

(5) There exists Gp ∈ Rm×m[s] nonsingular such that

Ep(−s)>Fp(s) + Fp(−s)>Ep(s) = Gp(−s)>Gp(s) .

(6) There exists Gr ∈ Rm×m[s] nonsingular such that

Er(−s)>Fr(s) + Fr(−s)>Er(s) = −Gr(−s)>Gr(s) .

Proof. To prove the equivalence of (1) and (2), observe
that since Be is port-Hamiltonian, for all its trajectories
e>p fp + f>p ep = d

dt

(
e>x ex

)
− e>r fr − f>r er. For each such

trajectory of compact support, integrate both sides of the

equality, obtaining
∫ +∞
−∞ e>p fp + f>p ep dt = −

∫ +∞
−∞ e>r fr +

f>r er dt. The claim follows.

The equivalence of (1) and (3) follows from statement (ii)
of Prop. 5.2 in Willems and Trentelman (1998).

The equivalence of (3) and (4) is straightforward using
the calculus of BDFs. The equivalence of (3) and (5)
follows from standard results on symmetric factorization
of para-Hermitian polynomial matrices nonnegative on the
imaginary axis (see e.g. Coppel (1972)). The equivalence
of (5) and (6) follows from the two-variable version,
Φ(ζ, η) := Me(ζ)>JeM(η) = 0, of the power relation by
substitution of −s in place of ζ and s in place of η.

Let Be be port-Hamiltonian and assume that m(Bp) =
σ+(Jp) = np; then Mp(s) = col (Ep(s), Fp(s)) ∈
R2np×np [s]. Let Rp ∈ Rnp×2np [s] induce a minimal ker-

nel representation of Bp = im Mp

(
d
dt

)
. The behavior

B′p := im JpRp

(
− d

dt

)>
is called the Jp-dual of Bp (see

sect. 10 of Willems and Trentelman (1998)). The following
result holds.

Proposition 6. Let X
(

d
dt

)
be a minimal state map for Bp.

There exists a minimal state map Z
(

d
dt

)
for B′p such that

Rp(−ζ)>Mp(η) = (ζ + η)Z(ζ)>X(η) . (10)

Proof. Follows from Prop. 10.1 of Willems and Trentel-
man (1998).

A state map Z
(

d
dt

)
for B′p satisfying (10) is called matched

with X
(

d
dt

)
.

Proposition 7. Let Be be port-Hamiltonian. Assume that
m(Bp) = σ+(Jp) = np and that Bp is strictly Jp-
dissipative. Then B′p is strictly (−Jp)-dissipative.

Let X
(

d
dt

)
be a minimal state map for Bp, and let Z

(
d
dt

)
be a matched state map for B′p. If X(ζ)>KX(η) is a
storage function, then K is nonsingular, and the quadratic
functional induced by Z(ζ)> (−K)

−1
Z(η) is a storage

function for B′p.

Proof. The first claim follows from statement (ii) in Th.
10.2 of Willems and Trentelman (1998). The second claim
follows from statement (iv) of Th. 10.2 ibid.

In the rest of this section, we assume that m(Bp) =
σ+(Jp) = np, that the resistive efforts are flows are faith-
ful, and that Bp is strictly Jp-dissipative. We proceed to
define a dual port-Hamiltonian system of Be by construct-
ing effort- and flow-variables from the representation of B′p
and the effort- and flow-variables of Be.

5.2 Dual port efforts and flows

Partition
Rp(−s) =:

[
F ′>p (s) E′>p (s)

]
(11)

with E′p, F
′
p ∈ Rnp×np [s]. We define the dual port efforts by

e′p := E′p
(

d
dt

)
`′ and the dual port flows by f ′p := F ′p

(
d
dt

)
`′,

with `′ ∈ C∞(R,Rm).

5.3 Dual state efforts and flows

Let X
(

d
dt

)
be a minimal state map for Bp, and let

L ∈ Rnx×n(Bp) be a full column rank matrix such that
Ex(s) = LX(s) (see Prop. 2). Recall that Ex(ζ)>Ex(η) =
X(ζ)>L>LX(η) is a positive-definite storage function.
Factorize L>L = F>F with F square, and define X ′(s) :=
FX(s). X ′

(
d
dt

)
is also a minimal state map, and Ex(s) =

LF−1X ′(s). Moreover, Ex(ζ)>Ex(η) = X ′(ζ)>X ′(η) is a
storage function for Bp.

Let Z ′
(

d
dt

)
be a state map for B′p matched with X ′

(
d
dt

)
;

since m(Bp) = σ+(Jp), it follows from Prop. 7 that
−Z ′(ζ)>Z ′(η) = Z ′(ζ)>(−I)Z ′(η) is a storage function
for B′p. Define the dual state efforts matrix by

E′x(s) := LF−1Z ′(s) . (12)

It follows from the series of equalities −E′x(ζ)>E′x(η) =
−Z ′(ζ)>F−>L>LF−1Z ′(η) = −Z ′(ζ)>Z ′(η) that the
polynomial matrix −E′x(ζ)>E′x(η) induces a storage func-
tion for B′p.

The dual state flows f ′x are defined by

F ′x(s) := −sE′x(s) . (13)

5.4 Dual resistive efforts and flows

From the fact that −E′x(ζ)>E′x(η) is a storage function for
B′p and from Prop. 7 it follows that there exists a semi-

definite negative ∆′ ∈ Rnp×np [ζ, η] such that

R(−ζ)JpR(−η)>− (ζ+ η)E′x(ζ)>E′x(η) = ∆′(ζ, η) . (14)



The result of Prop. 5 implies that there exists G′r ∈
Rnp×np [s] nonsingular such that ∆′(ζ, η) = −G′r(ζ)>G′r(η).
Now denote the dissipation function corresponding to the
storage function Ex(ζ)>Ex(η) of Bp by

∆(ζ, η) := Ep(ζ)>Fp(η)+Fp(ζ)>Ep(η)−(ζ+η)Ex(ζ)>Ex(η) .

Since Bp is strictly Jp-dissipative, from Prop.5 it follows
that ∆(ζ, η) admits a factorization Gr(ζ)>Gr(η) with
Gr ∈ Rnp×np [s] nonsingular. Use Prop. 4 to conclude that
there exists R ≥ 0 such that ∆(ζ, η) = Er(ζ)>REr(η).

Consequently, the coefficient-matrix equality Ẽ>r RẼr =

G̃>r G̃r holds. Note that G̃r has full row-rank, since Gr(s)

is nonsingular. Define N := G̃>r

(
G̃rG̃

>
r

)−1

∈ R•×m(Bp);

then N>Ẽ>r RẼrN = Im(Bp).

The dual resistive efforts e′r are defined by

E′r(s) := ẼrNG
′
r(s) . (15)

The dual resistive flows f ′r are defined by

R′ := R and F ′r(s) := R′E′r(s) . (16)

The following is the main result of this paper.

Theorem 8. Assume that m(Bp) = σ+(Jp) = np, that Bp

is strictly Jp-dissipative, and that the resistive flows and
efforts are faithful. Define

M ′e(s) := col
(
E′x(s), E′p(s), E′r(s), F ′x(s), F ′p(s), F ′r(s)

)
,

(17)
where E′p, F

′
p are defined in (11), F ′x is defined in (13), E′r

is defined in (15), and F ′r is defined in (16).

B′e = im M ′e
(

d
dt

)
is an anti-dissipative port-Hamiltonian

behaviour.

Proof. Use the definitions (15) and (16) of E′r(s) and of
R′ to conclude that the anti-dissipation function ∆′(ζ, η)
corresponding to the storage function E′x(ζ)>E′x(η) can be
written as ∆′(ζ, η) = −G′r(ζ)>G′r(η) = −E′r(ζ)>R′E′r(η) =
F ′r(ζ)>E′r(η) + E′r(ζ)>F ′r(η).

The power relation for B′e follows from (14). The storage-
and anti-dissipation relations are also satisfied. The claim
is proved.
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