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Abstract: A causal link between increased intake of omega-6 (n-6) polyunsaturated fatty acids
(PUFAs) and increased incidence of allergic disease has been suggested. This is supported by
biologically plausible mechanisms, related to the roles of eicosanoid mediators produced from
the n-6 PUFA arachidonic acid. Fish and fish oils are sources of long chain omega-3 (n-3) PUFAs.
These fatty acids act to oppose the actions of n-6 PUFAs particularly with regard to eicosanoid
synthesis. Thus, n-3 PUFAs may protect against allergic sensitisation and allergic manifestations.
Epidemiological studies investigating the association between maternal fish intake during pregnancy
and allergic outcomes in infants/children of those pregnancies suggest protective associations, but the
findings are inconsistent. Fish oil provision to pregnant women is associated with immunologic
changes in cord blood. Studies performed to date indicate that provision of fish oil during pregnancy
may reduce sensitisation to common food allergens and reduce prevalence and severity of atopic
eczema in the first year of life, with a possible persistence until adolescence. A recent study reported
that fish oil consumption in pregnancy reduces persistent wheeze and asthma in the offspring at ages
3 to 5 years. Eating oily fish or fish oil supplementation in pregnancy may be a strategy to prevent
infant and childhood allergic disease.

Keywords: allergy; asthma; eczema; polyunsaturated fatty acid; omega-6; omega-3; inflammation;
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1. Introduction

Epidemiological studies strongly suggest that early life environmental exposures are important
determinants of health and disease in later life [1,2]. Nutrition has been identified as one important
exposure that influences early development and later outcomes [3,4]. Considerable development of
the human immune system occurs in utero and in the weeks and months after birth [5–7], and there is
evidence that early immune development can be influenced by nutritional factors [8]. Epidemiological,
ecological, and case-control studies have associated differences in the patterns of exposure to
omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) with differences in the incidence
and prevalence of atopic sensitisation or its clinical manifestations (allergies, atopic eczema, hayfever,
allergic asthma) [9,10]. A molecular and cellular mechanism has been proposed to explain this
association [9,10], thus making a causal relationship between fatty acid exposures and risk of allergic
disease. In this article, the mechanisms that are proposed to underlie the causal link between early
exposure to n-6 or n-3 PUFAs and altered risk of developing allergic diseases will be described, as will
the literature relating early exposure to the different PUFAs to allergic diseases or to relevant immune
outcomes. This is an update of an earlier discussion of this topic [11].
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2. Polyunsaturated Fatty Acids: Metabolic Relationships, Dietary Sources, and Typical Intakes

There are two main families of PUFAs, the n-6 and the n-3 families. The simplest members of
these families are linoleic acid (18:2n-6; LA) and α-linolenic acid (18:3n-3; ALA), respectively. LA and
ALA cannot be synthesized by mammals, including humans, and so they are described as essential
fatty acids. Both are synthesised by plants and are therefore found in plant tissues, like leaves, nuts,
seeds, and seed oils. LA is found in significant quantities in many commonly consumed vegetable
oils, like corn, sunflower, and soybean oils, and in products made from such oils, like margarines.
ALA is found in green plant tissues, in some common vegetable oils, including soybean and rapeseed
(canola) oils, in some nuts (e.g., walnuts), and in flaxseeds (also known as linseeds), and flaxseed oil.
LA and ALA together contribute over 95% of PUFAs in most Western diets, with LA intake most often
being in considerable excess of ALA intake. The intake of LA in Western countries increased greatly
over the second half of the 20th century, following the introduction and marketing of cooking oils and
margarines as an alternative to animal based fats and spreads [12]. The changed pattern of consumption
of LA during the 20th century resulted in a marked increase in the ratio of n-6 to n-3 PUFAs in the
Western diet, with this ratio currently being between 5 and 20 in most Western populations.

Although they are not synthesized by humans, LA and ALA can be metabolized to other fatty
acids by humans (Figure 1). This metabolic conversion, which mainly occurs in the liver, involves the
insertion of new double bonds into the hydrocarbon chain, called desaturation, and the elongation
of this chain (Figure 1). This pathway enables the conversion of LA to γ-linolenic acid (18:3n-6),
di-homo-γ-linolenic acid (20:3n-6) and arachidonic acid (20:4n-6; AA) (Figure 1). The same pathway
and the same enzymes enable the conversion of ALA to eicosapentaenoic acid (20:5n-3; EPA). Both AA
and EPA can be further metabolised. EPA can be converted to docosapentaenoic acid (22:5n-3) and on
to docosahexaenoic acid (22:6n-3; DHA) (Figure 1). Dietary intakes of AA, EPA, and DHA are much
lower than intakes of LA and ALA [13].
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Figure 1. Overview of the pathway of conversion of linoleic and α-linolenic acids to longer chain more
unsaturated n-6 and n-3 polyunsaturated fatty acids (PUFAs).

In contrast to their precursors, AA, EPA, and DHA are not found in high amounts in plant tissues.
Instead, they are found in animal tissues. The most important sources of AA are eggs, meat, and organ
meats (offal). The daily intake of AA is estimated to be between 50 and 500 mg among adults in
Western countries, with higher intake in people who eat alot of red meat compared to those who do
not. EPA and DHA are found in most seafoods, and in the highest amounts in so-called “oily” or
“fatty” fish like tuna, salmon, mackerel, herring, and sardines. One serving of oily fish can provide
between 1.5 and 3.5 g of EPA plus DHA [13]. A lean fish serving (e.g., of cod) can provide about one
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tenth of this amount. Fish oil supplements also contain EPA and DHA. A standard fish oil supplement
contains about 30% EPA plus DHA; thus, a one gram capsule of such a supplement would contain
about 300 mg of EPA plus DHA. In the absence of oily fish consumption or use of fish oil supplements,
the dietary intake of EPA and DHA together is likely to be <100 mg/day [13].

3. Arachidonic Acid, Lipid Mediators, Inflammation, and Allergic Disease

PUFAs are important components of the phospholipids found in all cell membranes.
Phospholipids and their constituent PUFAs play roles in providing the environment that enables
membrane proteins to function, by influencing membrane order (“fluidity”) and by promoting specific
protein–lipid and protein–protein interactions. As a result of these actions, PUFAs regulate cell
signaling, gene expression, and cellular function. Through such membrane-mediated actions, PUFAs
can modulate immune cell function [14–16], including the inflammatory component [17], and may
influence the development and manifestations of allergic diseases [18,19]. However, the key link
between PUFAs and the immunological processes related to allergic diseases are the eicosanoids.
Eicosanoids are a family of lipid mediators synthesised from 20-carbon PUFAs released from membrane
phospholipids upon cell stimulation. Eicosanoids include prostaglandins (PGs), thromboxanes (TXs),
and leukotrienes (LTs) (Figure 2). Immune cell membranes usually contain a high proportion of
the n-6 PUFA AA and low proportions of other 20-carbon PUFAs like EPA. Therefore, the major
substrate for synthesis of eicosanoids is usually AA. PGs and TXs are synthesised from the precursor
PUFA by the cyclooxygenase (COX) pathway while LTs are synthesised by lipoxygenase (LOX)
pathways (Figure 2). The precise mixture of eicosanoids that is produced is determined by the
nature, timing, and duration of the initiating stimulus and by the particular cell involved [20–23].
Some eicosanoids, including PGE2, play a role in promoting sensitisation to allergens as a result of
their actions on dendritic cells, on T cell differentiation and on immunoglobulin (Ig) class switching
in B cells [9,10,18,24]. Other eicosanoids, like the 4-series LTs, are involved in the immunologic features
and clinical manifestations of allergic diseases, as a result of their actions on inflammatory, smooth
muscle and epithelial cells [9,10,18]. Animal models of allergic inflammation involve increased
production of PGs and LTs from AA, suggesting a role of these eicosanoids in the pathology of allergy.
However, individual PGs might have different effects, with some enhancing, and others suppressing,
allergic inflammation. For example, while PGD2, PGF2α, and TXA2 appear to increase allergic
inflammation, PGE2 and PGI2 appear to inhibit it [25–27]. Mast cells and activated macrophages are
important sources of PGD2. PGD2 is a potent bronchoconstrictor, promotes vascular permeability,
and activates eosinophils and a pro-allergic Th2-type response [27]. TXA2 is a bronchoconstrictor and
stimulates acetylcholine release. PGE2 is a vasodilator, promotes vascular permeability, inhibits the
production of Th1-type cytokines, and primes naïve T cells to produce pro-allergic interleukin (IL)-4
and IL-5 [24]. PGE2 also promotes Ig class switching in uncommitted B cells towards the production of
pro-allergic IgE [24]. Despite these effects, which are suggestive that PGE2 would promote allergic
responses, it seems to be protective towards inflammation of the airways [25,26]. It is possible that PGE2

has opposing roles, promoting sensitisation via its effects on T cell phenotype and B cells, but protecting
against the subsequent manifestations of inflammation upon re-exposure to allergen. PGI2 can suppress
the activity of Th2 lymphocytes and recruitment of eosinophils, explaining its “anti-allergy” effects.
LTB4 is chemotactic for leukocytes, increases vascular permeability, induces the release of lysosomal
enzymes and reactive oxygen species by neutrophils and of inflammatory cytokines (e.g., tumour
necrosis factor-α) by macrophages, and promotes IgE production by B cells. The cysteinyl-LTs (LTC4, D4

and E4) may be either vasoconstrictors or vasodilators depending upon the situation and the location of
their synthesis. They cause smooth muscle contraction and bronchoconstriction, and promote vascular
permeability, eosinophil recruitment, and mucus secretion. The central role of these eicosanoids in
allergic inflammation is indicated by the effective treatment of asthma by LT antagonists. The complex
nature of the role of eicosanoids in allergic disease is further illustrated by the interactions that
exist amongst these mediators. For example, PGE2 inhibits 5-LOX activity so down-regulating LT
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production [28]. This may be one mechanism by which PGE2 is protective towards established
allergic disease. Furthermore, PGE2 induces 15-LOX, leading to production of lipoxin A4 which is
anti-inflammatory [29–31].
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The role of AA as the main substrate for the synthesis of eicosanoids and the link between these
eicosanoids and inflammation, have lead to suggestions of a causal association between the increased
dietary intake of n-6 PUFA (mainly as the AA precursor LA) during the second half of the 20th
century [12], and the increased incidence and prevalence of allergic diseases over that period [9,10].
The proposed link between dietary n-6 PUFA, cell membrane AA, and pro-atopic and pro-allergic
eicosanoids is summarised in Figure 3.

In support of the proposed biological mechanism (Figure 3), a high dietary intake of LA has
been linked with increased risk of allergic diseases in several studies. Differences in the prevalence
of asthma and allergic rhinitis and differences in blood concentrations of allergen-specific IgE in
former East and West Germany were related to differences in consumption of LA-poor butter and
LA-rich margarine in the two countries [32]. Differences in the prevalence of bronchial asthma, allergic
rhinitis, and atopic dermatitis among Finnish schoolchildren were related to levels of LA in plasma
cholesteryl esters, an indicator of dietary LA intake [33]. Margarine consumption among German
schoolchildren was associated with higher hayfever risk compared with not consuming margarine [34].
Margarine consumption was higher among Australian schoolchildren with atopic dermatitis or with
other manifestations of allergic disease compared with controls [35] and high PUFA consumption was
associated with increased risk of recent asthma compared with low PUFA consumption [36]. In another
study, boys with high margarine consumption were at increased risk of allergic sensitization and of
allergic rhinitis compared with those who did not consume margarine [37]. For reasons that are not
clear, this relationship was not seen in girls [37]. Swedish children with high consumption of PUFA-rich
oils had increased risk of wheeze than those with low consumption [38], while a high dietary n-6 to
n-3 PUFA ratio was associated with increased risk of asthma in Australian schoolchildren [39]. Each of
these studies has associated dietary intake and disease at the same point in time. Few studies have
attempted to associate early LA exposure to later allergic disease, although there are some studies
reporting that LA is higher in breast milk consumed by infants who go on to develop allergic disease
in infancy, although not all such studies have found this reviewed in Ref [40]. Furthermore, umbilical
cord lipids from neonates who go on to develop allergic disease in early childhood contain a higher
amount of LA than normally seen [40], suggesting an early programming effect of higher, compared
with lower, LA exposure. A more recent Finnish study reported that a higher ratio of n-6 to n-3 PUFAs
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in the diet of pregnant women was associated with higher risk of rhino-conjunctivitis in the offspring
at 5 years of age [41].Nutrients 2017, 9, 784 5 of 17 
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4. Omega-3 Fatty Acids, Lipid Mediators, and Inflammatory Processes

Increased consumption of EPA and DHA (in studies this is usually through use of fish oil
supplements) results in enhanced incorporation of EPA and DHA into the phospholipids of immune
cell membranes resulting in an elevated proportion of these fatty acids [42–45]. The incorporation of
EPA and DHA into human immune cells is partly at the expense of n-6 PUFAs, including AA [42–44,46].
This decreases the amount of substrate available for synthesis of 2-series PGs and TXs and 4-series
LTs [17,47]. In addition to the reduced production of eicosanoids from AA, EPA is a substrate for
COX and LOX enzymes, producing eicosanoids with a slightly different structure to those formed
from AA, and the EPA-derived eicosanoids are frequently much less potent than the AA-derived
ones [17,47,48]. As an example, LTB5 is 10- to 100-fold less potent as a neutrophil chemotactic agent
than LTB4. In addition to n-3 PUFAs decreasing the metabolism of AA to eicosanoids and to EPA
acting as substrate for the generation of alternative eicosanoids, another family of lipid mediators is
produced from EPA and DHA (Figure 4). This family, termed specialised pro-resolving mediators,
includes the D- and E-series resolvins, produced from DHA and EPA, respectively, as well as protectins
and maresins produced from DHA. All of these compounds have potent anti-inflammatory and
inflammation resolving properties [49–51].

The role of some resolvins in allergic inflammation has been examined in animal models.
Transgenic fat-1 mice can endogenously synthesise n-3 PUFAs from n-6 PUFAs, a process that is
not usually possible in animals [52]. Compared with wild-type mice, fat-1 mice that had been
sensitized to ovalbumin had lower infiltration of leukocytes into the airways, lower concentrations
of a range of pro-allergic cytokines including IL-5 and IL-13 in lung lavage fluid, increased resolvin
E1 and D1 in lung tissue, and showed resistance of the airways to methacholine challenge [53].
These observations suggest that n-3 PUFAs might be protective towards allergic inflammation as
a result of the synthesis and actions of resolvins. Some other studies have assessed the therapeutic role
of resolvins in ovalbumin-sensitised Balb/C mice. In one study resolvin E1 decreased infiltration of
eosinophils and lymphocytes into the airways, decreased production of the Th2 cytokine IL-13, lowered
circulating ovalbumin-specific IgE concentrations, and reduced airway hyperresponsiveness to inhaled
methacholine [54]. In another study, resolvin E1 promoted the resolution of inflammatory airway
responses by directly suppressing the production of IL-23 and IL-6 in the lung [55]. More recently
resolvin D1 and its epimer aspirin-triggered resolvin D1 were both shown to decrease eosinophil
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recruitment to the airways, to reduce the production of pro-allergic cytokines and to improve airway
hyperresponsiveness to methacholine challenge [56]. These observations suggest that, in contrast
to the effects of high intake of n-6 PUFAs, a high intake of EPA and DHA will be protective against
allergic diseases perhaps acting in part through pro-resolving mediators.
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from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Abbreviations used:
AT, aspirin-triggered; MaR, maresin; PD, protectin D; Rv, resolvin.

5. Omega-3 Fatty Acids and Allergic Disease in Infants and Children

There is some evidence that higher intake of fish, especially fatty fish, in pregnant women is
associated with lower risk of allergic disease in the offspring during infancy and childhood [57], but not
all studies show this [58]. A Finnish study reported that a low intake of ALA or of total n-3 PUFAs in
pregnancy was associated with an increased risk of asthma in the offspring at the age of 5 years [59].
Likewise, Miyake et al. [60] found that high maternal ALA intake was associated with reduced risk
of wheeze in 16 to 24 months old Japanese children. Pike et al. [61] reported that higher EPA, DHA,
and total n-3 PUFAs in blood plasma of women in late pregnancy was associated with reduced risk of
non-atopic persistent/late wheeze in the offspring. A small number of studies found that infants who
go on to develop allergic diseases in infancy consume breast milk with lower EPA and DHA than those
who remain healthy, but this finding is not consistent across all studies [40]. Furthermore, umbilical
cord blood lipids from neonates who went on to develop allergic disease in early childhood often had
lower than normal amounts of EPA and DHA [40].

A small number of studies of maternal fish oil supplementation during pregnancy have been
conducted in the context of early immune responses and allergic outcomes in the offspring (studies
reporting clinical outcomes [62–70] are summarised in Table 1). Several studies have reported that
maternal fish oil modifies immune markers in umbilical cord blood [62,71–74]. These immunologic
effects might modify allergic sensitization and the risk of allergic diseases. Indeed, Dunstan et al. [62]
reported less severe atopic dermatitis and lower risk of sensitisation to egg in one year old infants
whose mothers had consumed fish oil supplements during pregnancy. Some other clinical outcomes
were numerically lower in the infants whose mothers had taken fish oil, but the differences were
not statistically significant. Olsen et al. [63] reported that fish oil supplementation in late pregnancy
was associated with a marked reduction in asthma-related diagnoses in the offspring at age 16 years,
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suggesting a long term effect of any immunologic changes that occurred in pregnancy and early
life. Furthermore, follow-up at age 24 years showed a reduced likelihood of having been prescribed
anti-asthma medication in the fish oil group [64], suggesting a long term effect of any immunologic
changes that occurred in pregnancy and early life. Fish oil supplementation during both pregnancy
and lactation resulted in lower PGE2 production by stimulated maternal blood [75], which might
influence Th2 polarization in the fetus. In the same study, infants whose mothers had taken fish oil had
a lower risk of developing allergic sensitization to egg, less IgE-associated eczema and less food allergy
during the first year of life [65]. Over the period of 0 to 24 months there was a lower risk of developing
any IgE-mediated disease or IgE-associated eczema or being sensitised to egg or to any allergen that
was tested [66]. Palmer et al. [67] found less sensitisation to hens’ egg at age 12 months in offspring
of mothers who consumed a DHA-rich oil during pregnancy. There was also a strong trend to less
IgE-associated eczema, but there was no difference in “any IgE-mediated disease”. Over the period
to age 3 years there was no effect of the DHA-rich oil on any clinical outcome including asthma [68].
However, sensitization to one species of house dust mite was lower at age 6 years [69]. In 2016
Best et al. [76] reported a meta-analysis of offspring clinical outcomes from trials of maternal fish oil
supplementation in pregnancy. The results are summarised in Table 2. They identified that maternal
fish oil supplementation results in a lower risk of atopic eczema, and less likelihood of having a positive
skin prick test to any allergen tested, to hens’ egg, or to any food extract, all in the first 12 months
of life. Recently, Bisgaard et al. [70] reported significantly reduced incidence of persistent wheeze or
asthma at ages 3 to 5 years in children whose mothers took fish oil during pregnancy (Figure 5). The
higher dose of EPA + DHA used, especially of EPA, may explain why these recent findings [70] differ
from those of Palmer et al. [67,68] and Best et al. [69]. Furthermore, the studies of Palmer et al. [67,68]
and Best et al. [69] reported disease with sensitization (i.e., atopic disease), as opposed the study of
Bisgaard et al. [70] which reported wheeze irrespective of sensitization as skin prick testing was only
conducted at 6 and 18 months of age. One interesting finding from Bisgaard et al. [70] is that the
beneficial effect of maternal EPA + DHA on offspring persistent wheeze or asthma (Figure 5) was
seen mainly in the subset of children whose mothers had the lowest EPA + DHA status at study entry,
but was less apparent in the subset of children whose mothers had the highest EPA + DHA status at
study entry. This observation suggests that n-3 PUFAs will be of most benefit to those with the lowest
status and may be less effective in those who already have a high status.

Table 1. Summary of randomized controlled trials of n-3 PUFAs in pregnancy reporting on allergic
outcomes in the offspring.

Publication Particpants Intervention Details Outcomes Differences from Control in
n-3 PUFA Group

Dunstan et al. [62]
atopic, non-

smoking pregnant
women (n = 98)

fish oil providing 3.7 g n-3
PUFAs daily including

1.02 g EPA and 2.07 g DHA;
control group received olive

oil; from 20 weeks of
gestation until delivery

skin prick test positivity (hens’
egg; cows’ milk; peanut; house
dust mite; cat), asthma, atopic

eczema, food allergy all at
12 months of life

less sensitisation to hens’ egg
(odds ratio 0.34; p = 0.05); less

severe atopic eczema (odds
ratio 0.09; p = 0.045); less

recurrent wheeze, persistant
cough and diagnosed asthma
but these were not significant

Olsen et al. [63] pregnant women;
n = 553

fish oil providing 2.7 g n-3
PUFAs daily including

0.86 g EPA and 0.62 g DHA;
control group received olive
oil; a third group received no
intervention; from 30 weeks
of gestation until delivery

asthma-related diagnoses at
16 years of life

less incidence of “any asthma”
(3.04% vs 8.08%; p = 0.03) and

“allegic asthma” (0.76% vs.
5.88%; p = 0.01)

Hansen et al. [64] as above as above
prescription of asthma or

allergic rhinitis medication at
age 24 years

less prescription of asthma
medication (hazard ratio 0.54;

p = 0.02); trend to less
prescription of allerfgic

rhinitis medication (hazard
ratio 0.70; p = 0.10)
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Table 1. Cont.

Publication Particpants Intervention Details Outcomes Differences from Control in
n-3 PUFA Group

Furuhjelm et al.
[65]

pregnant women
with fetus at high

allergic risk;
n = 145

fish oil providing 2.7 g n-3
PUFAs daily including 1.6 g
EPA and 1.1 g DHA; control
group received soybean oil;
from 25 weeks of gestation

until 3.5 months post-natally

skin prick test positivity (hens’
egg; cows’ milk; wheat),

IgE-antibodies (hens’ egg;
cows’ milk; wheat), food

allergy, eczema at 3, 6 and
12 months of life

less IgE-associated eczema up
to 6 months of life

(8% vs. 20%; p = 0.06); less
IgE-associated eczema

(7.7% vs. 20.8%; p = 0.02),
sensitisation to hens’ egg

(11.5% vs. 25.4%; p = 0.02), any
positive skin prick test (15,4%

vs. 31.7%; p = 0.04) up to
12 months of life

Furuhjelm et al.
[66] as above as above

skin prick test positivity (hens’
egg; cows’ milk; wheat; cat;

tomothy; birch), food allergy,
eczema at 24 months of life

less IgE-mediated disease
(11.1% vs. 30.6%; p = 0.01),

IgE-mediated food reactions
(5.6% vs. 21.5%; p = 0.01),
sensitisation to hens’ egg

(13.4% vs. 29.5%; p = 0.04), any
positive skin prick test

(19.2% vs. 36.1%; p = 0.048),
IgE-associated eczema

(9.3% vs. 23.8%; p = 0.04) up
to 24 months of life

Palmer et al. [67]
pregnant women
with fetus at high
atopy risk; n = 706

fish oil providing 0.9 g n-3
PUFAs daily including 0.1 g
EPA and 0.8 g DHA; control

group received mixed
vegetable oils; from

21 weeks of gestation
until delivery

skin prick test
positivity (hens’ egg;

cows’ milk; peanut; wheat;
tuna; grass pollen; perennial

ryegrass; olive tree pollen;
Alternaria tenuis; cat;

house dust mite), asthma,
food allergy, eczema at

12 months of life

less sensitisation to hens’ egg
(9% vs. 15%; p = 0.02); less

IgE-associated eczema
(7% vs. 12%; p = 0.06)

Palmer et al. [68] as above as above

skin prick test positivity (hens’
egg; cows’ milk; peanut;

wheat; tuna; cashew; sesame;
grass pollen; perennial

ryegrass; olive tree pollen;
alternaria tenuis; cat; house
dust mite), asthma, food
allergy, allergic rhinitis,
eczema at 3 years of life

-

Best et al. [69] as above as above

skin prick test positivity (hens’
egg; peanut; cashew; perennial

ryegrass pollen; olive tree
pollen; alternaria tenuis; cat;
dog; 2 species of house dust
mite), IgE-associated allergic
disease symptoms (eczema,

wheeze, or rhinitis) with
sensitization at 6 years of life

less sensitisation to one
species of house dust mite
(13.4% vs. 20.3%; p = 0.049)

Bisgaard et al. [70] pregnant women;
n = 736

fish oil providing 2.4 g n-3
PUFAs daily including

1.32 g EPA and 0.89 g DHA;
control group received olive

oil; from 24 weeks of
gestation until delivery

asthma, allergy, eczema;
parental report of lung, skin,

lower respiratory tract related
symptoms; skin prick test

positivity (hens’ egg; cows’
milk; cat; dog) at 6 and

18 months of life

less persistant wheeze/asthma
from 3 to 5 years of life

(hazard ratio 0.68; p = 0.02)

One study has looked at maternal fish oil supplementation during lactation and immune outcomes
in the offspring [77]. Mononuclear cells from 2.5 years old children of mothers who received fish
oil supplements during lactation produced higher amounts of interferon-γ. This observation was
interpreted by the authors to reflect faster maturation of the immune system. Unfortunately, the study
did not assess clinical outcomes.

One study has investigated the effect of fish oil given to infants from birth until 6 months
of age on immune outcomes [78] and allergic disease [79]. The infants were at high-risk of
developing allergy. Mononuclear cells from infants who had received fish oil produced less of the Th2
cytokine IL-13 when stimulated ex vivo with housedust mite [78]. They also produced more of the
Th1 cytokines interferon-γ and tumour necrosis factor when stimulated with phytohaemagglutinin.
These observations would suggest a favourable shift in the Th1 vs. Th2 balance with fish oil
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supplementation. The study found that low plasma DHA and low red blood cell EPA were both
predictive of eczema by age 12 months [78]. At 12 months of age, clinical outcomes (any allergic
disease, total or any specific sensitization, eczema, food allergy, wheeze) were not different between
infants who had received fish oil or placebo [79]. However, infants who were most complaint to the
intervention had a lower risk of eczema at age 12 months. Furthermore, infants with a higher red blood
cell EPA, red blood cell ratio of EPA to ARA or plasma DHA at 6 months of age were less likely to
develop eczema by 12 months of age [79]. Infants with higher plasma DHA or EPA + docosapentaenoic
acid + DHA at 6 months were less likely to develop recurrent wheeze by 12 months of age [79].

Table 2. Summary of the findings of the meta-analysis of Best et al. [76] of randomized controlled trials
of n-3 PUFAs in pregnancy reporting on allergic outcomes in the offspring.

Outcome Finding (Risk Ratio; 95%
Confidence Interval; p) Studies Included

atopic eczema (eczema with positive skin
prick test) in the first 12 months of life 0.53; 0.35–0.81; 0.004 [65,67]

any eczema (eczema with or without a
positive skin prick test) in the first

12 months of life
0.85; 0.67–1.07; 0.16 [65,67]

cumulative incidence of IgE-mediated
rhino-conjunctivitis (rhino-conjuctivitis

with a postive skin prick test) in the first
3 years of life

0.81; 0.44–1.47; 0.49 [66,68]

positive skin prick test to any allergen in the
first 12 months of life 0.68; 0.52–0.89; 0.006 [62,65,67]

positive skin prick test to hens’ egg in the
first 12 months of life 0.54; 0.39–0.75; 0.0003 [62,65,67]

positive skin prick test to any food extract
in the first 12 months of life 0.58; 0.45–0.75; <0.0001 [62,65,67]

One study has examined the long-term effect on allergic diseases of fish oil supplementation of
infants [80–84]. There was decreased prevalence of wheeze in the fish oil group at 18 months of age
and higher plasma n-3 PUFA levels were associated with less bronchodilator use [80,81]. At 3 years of
age the fish oil group had reduced cough, but not wheeze and there was no effect of fish oil on other
outcomes such as eczema, serum IgE concentration, or doctor diagnosis of asthma [82]. At 5 years
of age there was no significant effect of fish oil on any of the clinical outcomes relating to lung
function [32], allergy [83], or asthma [84]. Reasons for the lack of beneficial effects of long chain n-3
PUFAs at 5 years of age may be suboptimal adherence to the intervention (50% and 56% compliance
in the intervention and control group, respectively), the low dose of fish oil used, loss to follow-up,
and lack of power.

Taken together, these studies provide evidence that early exposure to the n-3 PUFAs EPA and
DHA induces immune effects that may be associated with reduced allergic sensitization and with
a reduction in allergic manifestations. However, the data available are not fully consistent and so it
is not possible to draw a certain conclusion at this stage. More studies in this area are needed and,
where these are interventions, it is important that they be sufficiently powered, that they measure
both immune and clinical outcomes where possible, and that dose of n-3 PUFAs and duration are
carefully considered.
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6. The Salmon in Pregnancy Study

A systematic review published in 2011 identified that intake of fish, fatty fish, and omega-3 fatty
acids in pregnancy is associated with reduced risk of allergic disease in the offspring infants [57].
As with its advice to other adults, the UK Government advises that pregnant women should consume
two portions of fish per week, at least one of which should be fatty [85]. The Salmon in Pregnancy
Study was a randomised, controlled dietary intervention testing this advice in the context of offspring
allergic disease. Pregnant women who were low consumers of fatty fish and who were at risk of giving
birth to an infant who would become allergic were recruited [86]. The women were randomized to
two groups: one group maintained their habitual diet while the other included salmon twice per week
in their diet from week 19 of pregnancy until delivery. Women in the salmon group had a higher
dietary intake of EPA and DHA: intake of EPA + DHA from the diet was equivalent to 0.03 g/day
in the control group and was 0.4 g/day in the salmon group [86]. Women in the control group
showed a decline in the percentage of both EPA and DHA in plasma phosphatidylcholine from week
19 to week 38 pregnancy [86], consistent with other reports [87,88]. However, in the salmon group
this decline did not occur and EPA and DHA were seen to increase in plasma phosphatidylcholine
over the course of pregnancy [86]. Furthermore, both EPA and DHA were significantly higher in
the umbilical cord plasma phosphatidylcholine in the salmon group compared with the control
group [86]. Thus, by consuming salmon twice per week mothers were providing more EPA and DHA
to their growing fetus. There were also some differences in umbilical cord blood immune cell responses
between the two groups, including a lower production of pro-allergic PGE2 by cord blood mononuclear
cells in response to inflammatory stimuli in the salmon group [89]. Breast milk DHA was higher from
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women in salmon group at days 1, 5, 14, and 28 after birth, even though women ceased consuming
salmon at birth [90]. Thus, women in the salmon group were most likely able to provide a greater
amount of DHA to their newborn infant during the early weeks of lactation. Despite, these important
findings, at 6 months of age there was no significant difference between the two groups in the number
of infants with atopic eczema or in the severity of atopic eczema, in the number of infants showing
positive skin prick test responses to common allergens, or in various allergic manifestations [89].
However, the number of infants affected was low in both groups. It is possible that the amount of EPA
and DHA provided through two servings of salmon per week (equivalent to 0.4 g/day) was too low to
influence the clinical outcomes despite the higher n-3 PUFA status in cord blood and the altered cord
blood immune cell responses.

7. Summary and Conclusions

There are two main families of PUFAs, the n-6 and the n-3 families. Intake of the major plant n-6
PUFA LA increased over the second half of the 20th century. This increase in LA intake coincided
with increased incidence and prevalence of allergic diseases. A causal link between n-6 PUFA intake
and allergic disease has been suggested and this is supported by biologically plausible mechanisms,
largely related to the roles of eicosanoid mediators produced from the n-6 PUFA AA. There is some
evidence that high LA intake is associated with increased risk of allergic sensitization and allergic
manifestations. Fish and fish oils are sources of the long chain n-3 PUFAs EPA and DHA. These fatty
acids act to oppose the actions of n-6 PUFAs particularly with regard to eicosanoid synthesis. Thus, n-3
PUFAs may protect against allergic sensitisation and allergic manifestations. Epidemiological studies
investigating the association between maternal fish intake during pregnancy and allergic outcomes in
infants/children of those pregnancies suggest protective associations, but findings from these studies
are not consistent. Fish oil provision to pregnant women is associated with immunologic changes
in cord blood and such changes may persist. Studies performed to date indicate that provision of
fish oil during pregnancy may reduce sensitisation to common food allergens and reduce prevalence
and severity of atopic dermatitis in the first year of life, with a possible persistence until adolescence.
A recent study reported that fish oil consumption in pregnancy reduces persistent wheeze and asthma
in the offspring at ages 3 to 5 years. Eating oily fish or fish oil supplementation in pregnancy may be
a strategy to prevent infant and childhood allergic disease. Further studies of increased long chain
n-3 PUFA provision during pregnancy, lactation, and infancy are needed to more clearly identify
the immunologic and clinical effects in infants and children and to identify protective effects and
their persistence.
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The following abbreviations are used in this manuscript:

AA Arachidonic acid
ALA α-Linolenic acid
COX Cyclooxygenase
DHA Docosahexaenoic acid
EPA Eicosapentaenoic acid
Ig Immunoglobulin
IL Interleukin
LA Linoleic acid
LOX Lipoxygenase
LT Leukotriene
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PG Prostaglandin
PUFA Polyunsaturated fatty acid
TX Thromboxane
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