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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aerodynamics and Flight Mechanics

Doctor of Philosophy

BOUNDARY-LAYER RECEPTIVITY AND BREAKDOWN MECHANISMS FOR

HYPERSONIC FLOW OVER BLUNT LEADING-EDGE CONFIGURATIONS

by Adriano Cerminara

Direct numerical simulations have been performed to study receptivity and breakdown

mechanisms for hypersonic flow over blunt leading-edge configurations with imposed

freestream acoustic disturbances. Both two-dimensional (2D) and three-dimensional

(3D) fast and slow acoustic wave models have been used. The former has been adopted

for 2D simulations over a blunt-nose wedge probe designed to measure freestream noise

levels in hypersonic wind tunnels; the latter has been used to perform 3D simulations

for a span-periodic blunt wedge in unswept and swept configurations, and for a three-

dimensional generic forebody model. In the 2D wedge simulations, an analysis of the

post-shock wave structure shows that fast acoustic waves are efficiently transmitted

across the shock as refracted waves, while slow acoustic waves generate convected waves.

The wall response to the fast mode highlights a resonance-modulation behaviour in the

nose region. An estimation of the freestream noise levels in the DLR high-enthalpy

(HEG) and low-enthalpy (RWG) hypersonic wind tunnels has been performed, showing

higher noise levels for the HEG wind tunnel at high Mach numbers. The 3D wedge sim-

ulations have been used to study the characteristics of the receptivity and breakdown

mechanisms associated with different wave types (fast/slow), disturbance amplitudes,

and sweep angles. The fast-mode induced transition has been observed to be a much

more rapid and powerful process than the slow-wave related transition, because of the

role played by the fast-mode resonance mechanism at the leading edge. Finally, the

numerical simulations performed for a generic forebody geometry have enabled compar-

ison with a recent transition experiment carried out in the Mach 6 Purdue hypersonic

wind tunnel in noisy conditions. In this case, slow acoustic waves show the most sim-

ilar transition patterns to the experimental case, and, in particular, are more efficient

than fast waves in triggering nonlinear growth of streamwise streaks, related to crossflow

inflectional instabilities located in the off-centerline leading-edge region.
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Chapter 1

Introduction

The aim of the research described in this thesis is to further increase understanding

of transition in high-speed flows, using high-resolution numerical simulations to help

understand all the stages of transition, from receptivity to breakdown. In this chapter the

challenges are explained and previous literature is reviewed, so that specific objectives

of the present study can be formulated.

1.1 Motivation

Laminar-turbulent transition plays a fundamental role in the aerodynamic performance

of flying vehicles, due to its impact on the skin friction coefficient and on the boundary-

layer capability to stay attached to the body surface. However, at hypersonic speeds (i.e.

conventionally at Mach numbers above 5, Anderson[1]) it assumes an even more critical

role, as it also determines the structural integrity of the vehicle itself due to the effect on

the wall heat-transfer rate. The hypersonic flow environment is, in fact, characterised by

very high values of heat transfer, which comes from the large amount of kinetic energy

gradually dissipated within the boundary layer through viscous effects, and converted

into thermal energy. This high amount of internal energy produces high temperature

peaks inside the boundary layer at small normal distances from the wall, which provide,

in turn, high temperature gradients at the wall, namely high values of the surface heat

flux. In order to reduce the heating effects, the hypersonic vehicles need an appropriate

thermal protection system (TPS) capable of storing, or radiating/dissipating outwards,

the high heat load coming from the boundary-layer flow, thus keeping the surface tem-

perature of the internal structure within tolerable values. Boundary-layer transition

causes a dramatic increase of the wall heat-transfer rates, as a result of the turbulent

mixing enhancing the mass and energy transport between different flow layers inside a

turbulent boundary layer. As a consequence, an unpredicted transition to turbulence in

regions of particularly high heat-transfer rates (e.g. the nose region) might result in a

1



2 Chapter 1 Introduction

failure of the structure. In particular, the slender leading-edge geometries are the most

exposed to this risk, as they are characterised by the highest heat-transfer rates, since

the heat flux at the stagnation point (qsp) is inversely proportional to the square root

of the leading-edge nose radius (i.e. qsp ∝
√

1/R, Anderson[1]). Thus, an appropriate

aero-thermal design is necessary for any hypersonic vehicle, which involves the design

of a suitable geometry in accordance with the mission-dependent requirements of aero-

dynamic efficiency and wall heat-flux reduction, along with the choice of the materials

and structures used for the thermal protection system. In this context, the prediction

of the transition point is a requirement of crucial importance. Indeed, the knowledge

of the point (or the region) where the flow becomes turbulent allows the prediction of

surface heating and skin friction coefficient along the wall, and, hence, the optimisation

of the vehicle geometry and thickness of the TPS, aimed at reducing weights and costs.

Unfortunately, the prediction of transition at hypersonic speeds is not straightforward,

but, on the contrary, is a very challenging problem, on which the research community

has been working for several decades, accumulating a certain amount of experimental

data as well as numerical results, which, however, do not yet clarify unambiguously

critical aspects of the problem. The main aspects that make transition at high Mach

numbers so difficult to understand and control are the complexity of the hypersonic

flow in the leading-edge region, and the multiple poorly controlled factors that strongly

influence transition in the experimental ground tests, including noise, the presence of

small undetected angles of attack, surface roughness, etc. (Schneider[2]).

Hypersonic flow adds a further degree of complexity with respect to subsonic/low-

supersonic flows. The different physical phenomena (Anderson[1], Park[3]), which can

be considered as the principal features of a generic hypersonic flow, can be summarised

as follows: (i) an entropy-vorticity layer downstream of the bow shock in front of a

blunt-nosed body, (ii) a thin shock layer due to the high Mach number, (iii) a thick

boundary layer, due to the usually very low freestream density values (corresponding

to low Reynolds numbers) characterising this flow regime and to the high temperature

levels reached inside a hypersonic boundary layer (which in turn provide low density

levels), with the possibility at very high Mach numbers of a merging of the shock wave

itself with the boundary layer, (iv) the viscous interaction phenomenon on the leading-

edge region of a slender body, and (v) the chemical reactions happening inside the shock

layer for very high Mach numbers. Although the intensity of these phenomena depends

on the particular case, i.e. on the specific Mach number, Reynolds number, total en-

thalpy of the freestream, and the particular shape of the body, the presence of each one

of them increases the complexity of the flow, making it less predictable with respect to

the lower-speed flows. Consequently, the complexity of the mathematical models used

to describe this types of flow increases as well. Additional complexity of hypersonic

flows influences transition, resulting in the growth mechanism of the boundary layer

instabilities being different and more complicated than the transition mechanism for

subsonic/low-supersonic flows.
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In the past decades, several efforts by the scientific community have been made in order

to describe the transition mechanism in hypersonic boundary layers, through theoret-

ical models coming from the linear stability theory (LST)(Fedorov[4]), direct numeri-

cal simulations (DNS) (Balakumar and Owens[5], Ma and Zhong[6, 7, 16], Zhong and

Ma[17], Balakumar and Kegerise[18]) and by means of flight and experimental data

(Schneider[2, 19, 20]). In some cases (e.g. Zhong and Ma[17]), the DNS results agree

well with the results of the linear stability theory, especially when it is possible to

neglect most of the physical phenomena listed above; but a certain discrepancy with

experimental data still remains. The lack of correlation between numerical, theoretical

and experimental results lead us to discuss other aspects, in addition to those quoted

above, that make transition at hypersonic speeds so difficult to describe. This includes

the poor reliability of the ground test experimental results. It is well known that the

acoustic noise generated in the freestream by the turbulent boundary layer on the nozzle

walls of a wind tunnel strongly affects the transition mechanism on the body wall, as

it determines the initial conditions of the receptivity process inside the boundary layer

(namely amplitude, frequencies and wavenumbers of the disturbances internalised inside

the boundary layer). Any small change in the initial conditions will result in a change

in the whole transition mechanism, and in a shift of the transition point (Schneider[2]).

This is actually due to the nature of turbulence itself, that makes it a phenomenon

strongly dependent on the initial and boundary conditions. For example, two appar-

ently equal initial data sets for the flow into a wind tunnel will produce in general two

different flowfields at the same point in the space, at each instant of time. It is for this

reason that the mathematical description of turbulence requires a stochastic approach.

However, the onset of turbulence is linked to the presence in the initial conditions of

small undetected factors, like roughness, geometrical imperfections, etc., that strongly

influence the flowfield everywhere. The noise generated in the wind tunnel is one of

these poorly controlled factors, as it is generated by the transition process on the walls

of the nozzle, which is in turn affected by surface roughness, geometrical imperfections,

or unexpected variations in the operation conditions of the wind tunnel. Moreover, any

change in the tunnel configuration or test conditions will change the tunnel noise, result-

ing in uncertainties in the comparison of experimental data from two different facilities

(Schneider[2]). Besides the wind tunnel noise, there are other local factors influencing

transition, that are relative to the body, such as the roughness of the body surface, small

angles of attack, shape imperfections, and so on; all of them are potentially poorly con-

trolled. Taking also into account the fact that any wind tunnel cannot simulate exactly

the atmospheric environment, it is not sensible to rely on the ground-test measurements

in order to make transition predictions relevant to flight, even in the case of low-noise

wind tunnels. The only way to develop a reliable method to predict transition is to

understand the whole mechanism that leads to transition, and how it is influenced by

the external disturbances.

In this scenario, direct numerical simulation is a very useful tool to study, for controlled
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external disturbances, the leading-edge mechanism of generation of the boundary-layer

modes and their downstream evolution until transition is induced, thus overcoming the

limit imposed by the experimental measurements of only detecting the transition point.

Also, DNS makes it possible to extend the study of the transition mechanism to high-

disturbance environments, thus overcoming the limit of the LST, which gives reliable

results only for small environmental disturbances. A typical limit of any numerical

simulation is represented by the need to impose a freestream disturbance field, which

cannot reproduce exactly the unknown real-world environmental noise of a hypersonic

wind tunnel, since it is, in general, very difficult or impossible to measure completely

(Schneider[21]). For this reason, a cross-validation study with reproducible experimental

measurements is needed in order to appropriately calibrate the freestream disturbance

field. A different approach, already used in some numerical studies (e.g. Duan et al.[12]),

consists of computing the freestream disturbance field through a separate numerical

simulation, aimed, for example, at reproducing the acoustic noise generated by the

turbulent boundary layer over the nozzle walls. However, this approach is limited too,

primarily by the fact of not accounting for the noise generated elsewhere in the wind

tunnel (for example the noise coming from the reservoir), and secondly due to the

difficulty in reproducing the three-dimensional effects of a real wind-tunnel environment

as well as the morphology of the nozzle surface, i.e. isolated and distributed roughness,

and other geometrical discontinuities, which can differently affect the characteristics

of the radiated noise. Another limit, specific to the direct numerical simulations, is

represented by their high computational cost, which has led most of the DNS studies so

far to mainly consider two-dimensional (2D) mean flows or very simple three-dimensional

(3D) flows (e.g. the flow over a sphere-cone, or a flat plate with 3D disturbances, etc.).

However, in order to obtain results of more practical interest for flying vehicles, complex

3D mean-flow effects and their related instabilities should be taken into account.

The main aim of the present research is to contribute to the development of a reliable

method to predict transition at hypersonic speeds, by studying the physical breakdown-

transition mechanism corresponding to a certain receptivity mechanism in the leading-

edge region, and its link with the characteristics of the freestream disturbance field (in

terms of type of wave, frequencies and wavenumbers), as well as with the propagation

features of the waves induced downstream of the shock and interacting with the bound-

ary layer. To achieve this goal, the challenges concerning the above mentioned limits of

the direct numerical simulations are tackled by i) designing a 2D/3D multi-frequency

model of the acoustic noise (which is the most relevant type of disturbance in a hyper-

sonic wind tunnel), to which random phases in both the longitudinal and the spanwise

directions are applied, in order to simulate the random nature of the real-world noise,

as well as different freestream disturbance amplitude levels, in order to study the ampli-

tude effect on the transition mechanism for different types of the acoustic waves (namely

fast and slow waves); ii) setting up a computational tool, consisting of an appropriate
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shock-capturing scheme, showing a good compromise between numerical stability, solu-

tion accuracy and convergence rate, in conjunction with an adaptive shock-aligned grid,

allowing good solution quality in each particular numerical case; and iii) performing a

parametric study for different flow conditions, characteristics of the freestream distur-

bances, and geometrical configurations with gradually increasing degree of complexity

(i.e. a 2D cylinder-wedge with 2D disturbances, a planar span-periodic cylinder-wedge

with 3D disturbances in unswept and swept configurations, and the 3D geometry of a

generic forebody model), in order to map the different receptivity characteristics and

transition scenarios observed in the different cases. Thus, the present thesis provides

a set of computational receptivity-transition data useful for realistic hypersonic vehicle

shapes, with different geometrical configurations, that can be used for the validation of

both ground-test and flight-test results. Moreover, a combined numerical-experimental

study is shown, aimed at estimating the freestream noise levels in different hypersonic

wind tunnels, which represents a basis for the gradual path towards a full characteri-

sation of the environmental noise, and for a more accurate calibration of the wave-field

model for future numerical investigations.

1.2 General aspects of boundary-layer transition

Boundary layer transition is the process through which the boundary layer evolves from

an initial laminar state to a final turbulent state, by means of the generation of boundary

layer instabilities and their downstream growth and amplification. External disturbances

leading to the generation of the boundary layer instabilities include atmospheric turbu-

lence, acoustic waves, entropy spottiness, particulates, etc. In the case of small amplitude

disturbances, which is the case of most practical importance for the atmospheric flight,

the path to turbulence consists of three stages (Kachanov[22], Zhong and Wang[23]):

receptivity, linear eigenmode growth, and nonlinear breakdown to turbulence.

Receptivity is the process by which the external disturbances enter the boundary layer

and are converted into internal boundary layer waves travelling downstream. Initial

amplitudes, frequencies and phase velocities of these waves depend, in general, on the

properties of the disturbances interacting with the boundary layer and on the character-

istics of the receptivity process itself (e.g. leading-edge receptivity, roughness receptivity,

etc.), and represent the initial conditions for the downstream growth mechanism of the

boundary-layer instabilities up to the nonlinear breakdown (Saric et al.[24]). Indeed,

the whole process leading to breakdown depends on the initial conditions established

by the receptivity mechanism. The receptivity process is, in turn, affected by param-

eters related to the flow conditions, such as the Mach and Reynolds numbers, by the

type of the external forcing, including frequencies, wavenumbers, and amplitudes of the

environmental disturbances, and by local-flow patterns, including nose bluntness, sur-

face roughness and waviness, and non-parallel effects. The way in which these factors
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influence receptivity has led to the division of the receptivity theory into two main

classes, on the basis of the wavenumber spectrum of the forcing mechanism: ‘forced

receptivity’, and ‘natural receptivity’. In forced receptivity, the forcing mechanism is

a localised source of vibrations, such as a vibrating ribbon or wall suction/blowing. In

this case, the wavenumber spectrum of the forcing disturbance is broad enough to in-

clude the wavenumber of the instability waves, thus leading to the direct excitation of

a boundary-layer wave (Saric et al.[24]). In contrast, in the natural receptivity process

the wavenumbers of the freestream forcing mechanism, consisting of acoustic, vortical,

or entropy waves, are in general significantly different to the instability wavenumbers.

Therefore, in the latter case, a process of energy transfer from the wavelength of the

freestream disturbances to that of the internal wave is needed in order to generate an

instability wave in the boundary layer (this process can be defined as a wavelength con-

version process). The transfer of energy between the different wavelengths is, in turn,

allowed in regions where short-scale streamwise variations of the mean flow occur, as

was shown by Goldstein [25], i.e. in regions where small-scale non-parallel effects are

important. Such regions are the body leading edge, localised zones of short-scale vari-

ation in surface geometry, due for example to curvature discontinuities, roughness and

wall humps, or locations of shock/boundary-layer interaction.

The study of the leading-edge effects on the boundary-layer receptivity has been a subject

of several investigations. Lin et al.[26], for example, performed a numerical study of the

leading-edge receptivity to freestream sound for an incompressible flow over a flat plate

with an elliptic and a polynomial-smoothed elliptic leading edge, for different aspect

ratios of the ellipse, and found that a sharper leading edge is less receptive, and that

the effect of smoothing the curvature discontinuity at the ellipse-flat-plate junction is

to significantly reduce the receptivity. Schrader et al.[27] investigated numerically the

receptivity to vortical disturbances for an incompressible flow over a flat plate with

elliptic leading edge, and showed that the leading-edge bluntness enhances a non-modal

instability mechanism, which consists in the generation of stramwise vorticity through

the interaction of vertical freestream vortices with the boundary layer at the leading

edge. A similar mechanism had been observed by Nagarajan et al.[28] in the numerical

simulations of a compressible flow over a flat plate with a super-ellipse leading-edge,

for the case of bypass transition induced by strong freestream vortices and enhanced

by increasing bluntness. Ma and Zhong [7], and Malik and Balakumar [29] performed

numerical simulations of the receptivity to acoustic waves in a Mach 4.5 flow over a

flat plate with sharp and blunt (super-ellipse) leading edge respectively, for the same

freestream conditions and frequency of the acoustic waves. From an analysis of their

results, the response in the early nose region is about three times higher for the blunt

leading-edge case, compared to the sharp flat plate, suggesting that a blunt leading edge

enhances the receptivity mechanism to acoustic disturbances at high Mach numbers

(which will be described later in this chapter). Both leading-edge receptivity theory and

localised receptivity theory were reviewed in detail by Saric et al.[24].



Chapter 1 Introduction 7

The second stage consists in the downstream propagation of the small-amplitude insta-

bility waves, which can be either amplified, in the case of unstable boundary layer, or

attenuated. The amplification or attenuation of the instability waves corresponds to the

boundary-layer linear stability problem (Mack[30]). The linear growth of instabilities

occurs over relatively long streamwise length scales. It is, in general, modulated by local

flow conditions (Saric et al.[24]), like pressure gradients, temperature gradients, surface

mass transfer, the presence of an entropy layer beyond the boundary-layer thickness (and

consequently the generation of inflection points in the profile of the streamwise velocity

along the wall-normal direction outside of the boundary layer), and non-parallel effects,

resulting either in a stabilising or destabilising effect. For example, the presence of inflec-

tion points in the boundary-layer velocity profile always provides a destabilising effect

(Kachanov[22], Zhong and Ma[17]). A study of the non-parallel stability can be found

in the work of Fasel and Konzelmann [31]. LST, in which the linear growth of instabili-

ties is studied by solving the eigenvalue problem of the homogeneous linearised stability

equations, is helpful in identifying the unstable modes and predicting their downstream

amplification, and hence is used as a method to predict transition. In the context of

LST, the en method, which integrates the normal-mode growth rates, is commonly used

for boundary-layer transition predictions (Zhong and Ma[17]). Besides the absence of

nonlinear effects, a limitation of the en method is the fact that it does not consider the

initial generation of the instability modes, which is the receptivity mechanism. However,

for the subsonic/low-supersonic regime, the en method provides in general satisfactory

results, due to the presence of a relatively simple receptivity mechanism, which satisfies

the assumption of negligible interactions between the different wave modes generated

in the nose region (Fedorov[4]). Instead, in the hypersonic flow regime, the receptiv-

ity mechanism is significantly more complex (Fedorov[4], Zhong and Wang[23], Fedorov

and Khokhlov[32]), so that the interactions between the different modes generated in

the leading-edge region need to be taken into account. Hence, any transition prediction

by the en method is in general not reliable at hypersonic speeds.

When the amplitudes of the instability waves reach significant values, the flow enters the

last stage of the path to transition, where three-dimensional and nonlinear effects take

place, for example as secondary instabilities. These effects cause a very rapid growth

of disturbances, and lead to nonlinear breakdown, randomisation, and a final transition

into a turbulent state. Nonlinear breakdown has been studied for nearly sixty years, but

some aspects of the final transition to a fully developed turbulent state remain still un-

solved. Two fundamental experimental studies for low speeds, conducted by Klebanoff

et al.[33] and by Kachanov et al.[34], showed the existence of two main regimes of nonlin-

ear breakdown: the K-regime and the N-regime (according to Kachanov’s terminology,

Kachanov[22]). The K-regime, corresponding to the transition mechanism observed in

the experiment by Klebanoff et al.[33], consists of a strong downstream amplification

of the weak natural uncontrolled spanwise modulation of the mean flow (thinking for

example of the flow over a flat plate), along with the appearance, at the points where the
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streamwise velocity fluctuations are maximum (peaks), of high-frequency disturbances

(spikes), whose nonlinear amplification quickly leads to breakdown and randomisation.

In contrast, the N-breakdown (Kachanov[34]) starts with the appearance of a broad

spectrum of low-frequency 3D oscillations of the fundamental wave (including subhar-

monics of the fundamental wave), which are amplified further downstream until three-

dimensional randomisation is reached. In particular, the key-mechanism that leads to

the generation and amplification of these 3D low-frequency fluctuations (and hence to

the N-breakdown mechanism) is a subharmonic resonant interaction between the quasi-

subharmonic 3D disturbances and the 2D fundamental wave. Moreover, the N-regime

of transition is usually observed for small values of the initial fundamental-wave ampli-

tude. So, the K and N regimes are essentially different in terms of the frequencies of

the nonlinear disturbances leading to breakdown, but both types of transition clearly

show the three-dimensional nature of breakdown. Kachanov[22] illustrated in details

the N-breakdown mechanism, highlighting the decisive role played by resonant wave

interactions in the transition process.

The three stages described above represent the path to transition in the case of weak

environmental disturbances. As disturbance amplitudes increase, the nonlinear effects

become increasingly important, until, for sufficiently high disturbance levels, the lin-

ear growth stage is bypassed completely, and the initial receptivity stage is followed by

direct nonlinear breakdown and transition to turbulence. A characteristic feature of

this direct mechanism is the formation of turbulent spots (Emmons[35]). The spot is

a arrow-head fluid structure with a turbulent core, and with a constant lateral growth

rate. An important characteristic of these structures is that they grow even in a sur-

rounding stable laminar flow. Indeed, the boundary layer downstream the breakdown

can show, within a region of a certain length, an intermittent turbulent behaviour, with

a sequence of turbulent spots, interspersed among laminar regions, as shown in the work

of Schneider[2] in a Mach 4.3 transition experiment. Intermittent turbulence of this

type precedes the final fully turbulent state, but, as it occurs over an extended region,

contributes to making detailed prediction difficult. In this context, Redford et al.[36]

carried out an investigation of the sensitivity of the growth rates of turbulent spots to

Mach number and wall temperature, along with a detailed study of the fundamental

mechanisms of the spot growth. In particular, they found two different mechanisms

of spot growth: one involving the advection of turbulent structures from the spot core

outwards along lateral jets; the other consisting in the creation of new structures by

destabilisation of the surrounding flow. Increasing Mach number and wall cooling were

found to play an important stabilising role in the spot growth rate, especially in relation

to the latter mechanism.

Hence, different types of transition exist, depending on the amplitude of the environ-

mental disturbances. On the basis of what has been said above, it is clear that a key
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factor determining the mechanism of transition is the way the instability waves are gen-

erated in the boundary layer. The presence of either the K-regime or the N-regime in the

nonlinear breakdown phase, and the evolution of the instabilities in the linear growth

phase are strongly dependent on initial conditions. Thus, it is neceessary to understand

how the freestream disturbances are entrained into the boundary layer, and create the

initial amplitude and spectral characteristics of the instability waves.

1.3 Characteristics of the environmental noise in hyper-

sonic wind tunnels

The environmental noise of a hypersonic wind tunnel can be considered as composed

of all the types of waves, namely acoustic waves, entropy waves, and vorticity waves.

The acoustic waves represent adiabatic compression and expansion waves, which produce

perturbations of pressure and density with the same sign (namely in phase), and velocity

disturbances with the same or opposite sign, dependent on the acoustic waves being of

the type of fast or slow respectively. In particular, in a supersonic flow, the fast acoustic

waves are acoustic disturbances moving at the speed of sound relative to the flow and

propagating in the direction of the flow, so that their phase speed is the sum of the

streamwise mean velocity of the flow (U) and the speed of sound (a), namely U + a.

In contrast, the slow acoustic waves are oriented in the opposite direction of the mean

flow, thus their phase speed is the difference between the flow velocity and the speed of

sound, i.e. U − a. The entropy waves, instead, are related to temperature spottiness at

constant pressure, which provide density perturbations, accordingly to the equation of

state (which will be presented in Chapter 2), with no velocity disturbances; while the

vorticity waves are linked to perturbations in the velocity components transverse to the

mean flow direction, with no disturbances of the thermodynamic variables. Moreover,

the entropy and vorticity waves are convected by the flow, so their propagation speed is

coincident with the flow velocity (U).

The intrinsic inhomogeneity of the environmental noise in hypersonic wind tunnels makes

the disturbance field itself very difficult to measure with the current experimental tech-

niques (Schneider [8]). The degree of complexity of the freestream disturbance field is

further increased by the inhomogeneity of the amplitude and orientation of the different

types of waves, dependent on the particular section of the wind tunnel from which the

waves are generated. For example, waves coming from the reservoir and waves radiated

from the nozzle walls will have, in general, different amplitude and orientation, aside

from pertaining to a different class of waves. Entropy and vorticity waves contribute to

the noise coming from the upstream section of the wind tunnel, while acoustic waves are

the dominant disturbances radiated by the turbulent boundary layer on the nozzle walls

(e.g. Schneider [9, 10], Masutti et al.[11]). Moreover, the natural three-dimensionality
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and irregularity in the structure of the disturbance field makes it substantially unpre-

dictable.

Despite its high complexity, some simplifications of the disturbance field can be made,

according to numerical and theoretical studies available in the literature. For example,

in a recent numerical study, Duan et al.[12] showed that the noise generated by a fully

turbulent boundary layer in a flow at Mach 2.5 over a flat plate is mainly characterised

by acoustic disturbances with wavefront orientation and phase speed belonging to the

class of slow acoustic waves. This is an indication that slow acoustic modes are effi-

ciently produced by turbulent boundary layers on the wind tunnel walls. On the other

hand, considering the effect of the non-acoustic type of disturbances, it was shown by

the theoretical study of McKenzie and Westphal [13] on the interaction of freestream

disturbances with an oblique shock, which was then extended to the case of a shock

attached to a wedge by Duck et al.[14, 15], that incident entropy/vorticity waves can

generate intense acoustic waves behind the oblique shock. This was proved by Ma and

Zhong [16] from a numerical study of the receptivity for a Mach 4.5 flow over a flat plate

to different types of freestream disturbances, in which it was observed that, in the case

of freestream entropy and vorticity waves, the boundary-layer disturbances are mainly

induced by fast acoustic waves generated behind the shock by the freestream forcing

waves.

In the light of these considerations, the acoustic disturbances, pertaining to both the

classes of fast and slow acoustic waves, have been considered as the main forcing distur-

bances in the present numerical study.

1.4 Receptivity to freestream disturbances at hypersonic

speeds

As we have seen, the whole process leading to breakdown depends on the initial con-

ditions established by the receptivity mechanism. This is why receptivity plays a role

of primary importance in the study of the growth mechanism of the boundary-layer

instability modes, and hence in the prediction of the transition point. The receptivity

process is, in turn, affected by mean-flow parameters (e.g. Mach number, Reynolds

number, angle of attack, etc.), properties of the external forcing (type, amplitude, fre-

quency, phase speed and orientation), local-flow patterns and geometrical factors. The

Mach number, in particular, plays an crucial role in the main characteristics of the

receptivity process, meaning that the generation mechanism of the internal modes by

external small-amplitude disturbances shows some fundamental differences depending

on the particular flow regime. These differences can be summarised as follows:

a) In subsonic/low-supersonic boundary layers, the receptivity mechanism consists es-

sentially in the excitation, by the freestream disturbances, of the Tollmien-Schlichting
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waves, which represent the first instability mode. This is the characteristic unstable

mode of this flow regime; all the other modes generated in the boundary layer are stable,

and their interaction with the first mode can be neglected. In contrast, in the hypersonic

regime, besides the first mode, there is the presence of other higher-frequency instabil-

ity modes, so-called Mack modes, that can coexist in the boundary layer, as shown by

Mack[30], making the internal instability spectrum significantly more complex than at

moderate Mach numbers. Stetson et al.[37] observed the second-mode instability in a

Mach 8 transition experiment over a cone, which showed that the second (Mack) mode

plays a major role in the transition process.

b) In the low-subsonic flow regime, as the wavenumber spectrum of the external distur-

bances is very different to that of the boundary-layer instability modes, the excitation

of waves inside the boundary layer always happens by means of a wavelength match-

ing mechanism, as explained above in the context of the natural receptivity. In con-

trast, at supersonic Mach numbers the wavelength conversion mechanism is no longer

needed, as the excitation of the boundary-layer modes in this flow regime is essentially

due to a direct resonant-interaction mechanism between the internal waves and the

freestream disturbances, as shown in several theoretical and numerical studies (Fedorov

and Khokhlov[32], Fedorov[4], Balakumar[38], Zhong and Ma[17], Zhong and Wang[23]).

These different phenomena result in the receptivity mechanism at hypersonic speeds

being significantly more complicated than at lower Mach numbers. In particular, the

resonance/synchronisation mechanism is a key-aspect of the receptivity of hypersonic

boundary layers to environmental disturbances, as it determines the generation of the

instability modes, by synchronisation of these, either with the external modes or with

other stable internal modes, dependent on the external disturbances (for example fast

or slow acoustic waves). This means that another distinction about the receptivity

mechanism has to be made, concerning the type of environmental disturbances. In

this context, considering the case of a blunt body in a hypersonic flow, the shock -

freestream-wave interaction plays a major role for the establishment of the disturbances

generated behind the curved shock and interacting with the boundary layer. Ma and

Zhong [16] numerically studied the receptivity for a Mach 4.5 flow over a flat plate to

different types of freestream disturbances, and observed that, in the case of freestream

entropy and vorticity waves, the boundary-layer disturbances are mainly induced by

fast acoustic waves generated behind the shock by the freestream forcing waves. The

theoretical studies by Fedorov and Khokhlov[32], and Fedorov[4] showed that freestream

fast acoustic, entropy and vorticity waves produce a similar receptivity mechanism, while

slow acoustic waves interact with the boundary layer in a different way. In particular, if

the waves interacting with the boundary layer are of the type of fast acoustic, entropy or

vorticity waves, a stable internal mode (mode F, or fast mode) is generated at the leading

edge through a resonance mechanism, namely due to the synchronisation between mode

F and the forcing waves. This mode then leads, in a region further downstream along the

wall, to the excitation of a lower phase-speed mode (mode S, or slow mode), representing
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the class of the instability modes, including both the first instability mode and the Mack

modes. The excitation of mode S is due to another synchronisation mechanism, which

now involves mode F, whose phase speed gradually decreases downstream, and mode S.

Further downstream, mode S becomes unstable and grows very rapidly, corresponding to

the excitation of the second instability mode. On the other hand, if the waves interacting

with the boundary layer are slow acoustic waves, the resonance mechanism at the leading

edge with the external waves leads directly to the generation of mode S, which becomes

unstable and grows further downstream.

Figure 1.1: Sketch of a blunt body in a hypersonic flow with freestream distur-
bances

This mechanism has been numerically investigated through DNS computations by dif-

ferent authors, e.g. Zhong and Ma[17] (for the case of the flow over a cone with fast

acoustic waves), Balakumar[38] (for the interaction of 3D fast and slow acoustic waves

with a blunted flat plate), and Kara et al.[39] (for the flows over a cone and a wedge

with both fast and slow acoustic waves). Tumin et al.[40] performed a joint numerical-

theoretical study of the receptivity to 2D perturbations in a Mach 8 flow over a sharp

wedge, in which a multimode decomposition technique was used to decompose the nu-

merical perturbation field into normal modes and identify the discrete modes F and S.

Malik and Balakumar[29] also studied numerically the bluntness effect on the receptivity

to fast and slow acoustic waves over a blunted flat plate with three different leading-edge

thicknesses. Moreover, the angle of incidence of the acoustic waves can play an impor-

tant role in the features of the perturbation field near the leading edge, as shown in the

numerical work of Egorov et al.[41] for the case of the boundary-layer receptivity over

a flat plate. The following figure shows an illustrative scheme of the mode S excitation

mechanism for different freestream disturbance types. The resonance/synchronisation

causes the generation of mode F and mode S at the leading edge, dependent on the type

of freestream disturbance, and is also the leading mechanism of the intermodal exchange
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from mode F to mode S further downstream (for the case of fast acoustic, entropy or

vorticity waves), where mode S is excited.

Figure 1.2: Scheme of mode S excitation mechanism

Mode F is always stable and is characterised, as shown in the works of Ma and Zhong

[16] and Zhong and Wang [23], by the appearance in sequence of multiple modes of

increasing frequencies (mode I, II, III, etc., using Ma and Zhong’s [16] notation). Each

of these modes is first amplified (due to the above mentioned resonance mechanism),

and then decays, with a decreasing phase speed, until approaching the phase speed

of mode S (synchronisation with mode S). Mode S is, in contrast, characterised by the

appearance in sequence of a first mode (corresponding to the Tollmien-Schlichting waves)

in the leading-edge region, and by multiple higher-frequency Mack modes (2nd mode,

3rd mode, etc., according to their appearance order), excited after the decay of each of

the above mentioned series of fast modes. This receptivity process will be discussed in

more detail in the next chapters of the present thesis, for the results of the numerical

cases with freestream fast acoustic waves. In the case of slow acoustic waves, mode S

follows the same evolution cycle described above (with the appearance in sequence of

the first mode, the second mode, etc.) without the presence of mode F, because mode S

is directly excited at the leading edge through the resonance mechanism with the slow

acoustic waves. Among the instability modes pertaining to mode S, the dominant mode

in hypersonic boundary layers is the second mode, whose amplitude and growth rate

determine the position of the transition point. However, the second-mode amplitude

and growth rate depend on the interaction mechanisms preceding the point where it is

excited (the first mode F - mode S synchronisation point). This means that the field

can be divided into two regions: upstream of the first mode F - mode S synchronisation

point, namely in the leading-edge region, where the initial resonance mechanism between

external disturbances and internal modes takes place, and downstream, where the second

mode gets in and is amplified (Fedorov[32]). Therefore, in order to be able to predict
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the amplitude of the instability waves inside a hypersonic boundary layer, and make

some transition predictions, we need to study the upstream region, which is the early

part of the receptivity process. At the same time, the downstream region needs to

be treated without any particular simplifying assumptions, in order to include possible

further interactions between forcing disturbances and boundary-layer waves, that can

lead to a strong modulation of the internal modes. These needs lead us towards the use

of the DNS as an appropriate tool to accurately simulate the evolution of the instabilities

inside the boundary layer of hypersonic vehicles, and to predict transition, as well as a

method to validate LST results.

The receptivity process for hypersonic vehicles is, in general, influenced also by other

effects, such as the nose bluntness, entropy layer, wall temperature and chemical nonequi-

librium effects. Nose bluntness and entropy-layer effects were studied in the experiment

by Stetson et al.[37]; the results showed that increasing bluntness, below a certain limit

value, delays transition, but this trend is reversed above this limit. DNS studies of the

hypersonic flow over blunt cones with nose bluntness effects and wall temperature effects

were conducted by Kara et al.[39, 42]. Hornung et al. [43] carried out experiments on

hypersonic transition with chemical nonequilibrium effects, that become relevant at very

high Mach numbers. Theoretical, numerical and/or joint computational-experimental

investigations of chemical and/or vibrational nonequilibrium effects on the boundary-

layer receptivity and transition in hypersonic flow are represented by, e.g., the works of

Stuckert and Reed [44], Ma and Zhong [45], Stemmer [46], Parsons et al.[47], Jewell et

al.[48] and Mortensen and Zhong [49]. In particular, the DNS study of Ma and Zhong

[45], concerning the receptivity to freestream disturbances in a Mach 10 oxygen flow,

showed that the second mode is destabilised by real gas effects, thus confirming the the-

oretical predictions of Stuckert and Reed [44] for the linear stability of a Mach 25 flow

over a sharp cone. In the computational-experimental study of Jewell et al.[48] the pres-

ence of carbon dioxide in a hypersonic flow over a cone was shown to delay significantly

transition, compared to a pure air flow, while, more recently, the theoretical study of

Mortensen and Zhong [49] for a Mach 15.99 hypersonic flow over a blunt cone, includ-

ing thermochemical nonequilibrium and surface graphite ablation, showed that blowing

destabilises a real-gas flow, and the second mode is slightly stabilised by the carbon

species. Although several other authors have conducted DNS studies in these areas, the

problem of the receptivity of hypersonic nonequilibrium flows, along with the transition

reversal problem due to entropy-layer effects, are still unresolved, and are beyond the

scope of the present investigation.
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1.5 Effect of oblique disturbances

The resonance mechanism, upon which the receptivity to freestream disturbances in

hypersonic flows is based, is strongly influenced by the orientation of the incident waves,

with important consequences on the transition process. Fasel et al.[50] performed a

DNS of the complete transition to turbulence through oblique breakdown for a flat

plate at Mach 3 , introducing a pair of oblique waves in the boundary layer. In their

work it is shown that the oblique instability waves are strongly amplified until oblique

breakdown is triggered, which can then lead to a fully developed turbulent boundary

layer. In the works of Berlin et al.[51] and Berlin and Henningson[52], the response to

oblique freestream waves in combination with a nonlinear mechanism was found to be

a powerful process leading to a different transition scenario, namely oblique transition,

which is characterised by nonmodal growth of the disturbances and requires lower initial

amplitudes compared to the case of transition caused by two-dimensional instabilities.

Ma and Zhong[7] also studied the receptivity to freestream fast acoustic waves on a flat

plate at different angles of incidence, and obtained the highest amplitude response for

an incidence angle of about 26◦. Egorov et al.[41] studied the response to fast and slow

acoustic waves over a 2D flat plate for different angles of incidence of the wave vector

with respect to the streamwise direction. The receptivity to three-dimensional acoustic

waves with assigned inclination angles and wavenumbers in the spanwise direction was

studied numerically by Balakumar[38] for a blunt flat plate at Mach number 3.5 in the

linear regime. In his work, the amplification of the instability waves downstream of the

neutral point agrees very well with PSE (Parabolized Stability Equations) predictions.

1.6 Effect of a sweep angle

In the case of a swept leading edge, the receptivity to external acoustic disturbances,

and the resulting transition process, can be strongly affected by the presence of the

crossflow instability, which is related to the generation, due to the inflectional instability

of the crossflow boundary-layer profiles, of streamwise-oriented co-rotating vortices. In

particular, the inflection of the boundary-layer crossflow profile originates in regions of

pressure gradients (e.g. the leading edge), and is essentially due, as described by Saric et

al. [53], to an imbalance, occurring inside the boundary layer, between the centripetal

acceleration, linked to the curvilinear trajectory of the streamlines in a flow over a

swept body, which decreases inside the boundary layer due to the gradual reduction

of the streamwise velocity up to the zero value at the wall, and the pressure gradient,

which, in contrast, remains unchanged in the boundary layer. This imbalance generates

a boundary-layer velocity component perpendicular to the streamwise and the wall-

normal directions (namely the crossflow), which reaches a peak at a certain wall-normal

distance, before going to zero at the wall, thus causing an inflection point.
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The crossflow instability in swept leading edges has been investigated both experimen-

tally and numerically by several authors. A review of the three-dimensional boundary-

layer stability and transition with a focus on the effects of the crossflow instability on

swept wings and rotating disks is presented in the work of Saric et al. [53]. Experimental

studies showing the role of the crossflow instabilities on the transition process in three-

dimensional boundary layers can be found in the works of White and Saric [54], Bippes

[55], Cattafesta et al. [56] and Creel et al. [57]. Tokugawa et al. [58] conducted a tran-

sition experiment on an axisymmetric body at Mach 1.2 and incidence angles of 1◦ and

2◦, and detected stationary crossflow vortices in the region where the foremost transition

occurred. An eigenvalue analysis was used by Li and Choudhari [59] to study the spatial

instabilities in crossflow dominated swept-wing boundary layers, while a linear stability

analysis was performed by Nomura [60] to study the effects of crossflow instabilities on

the spatial growth of first-mode waves for the three-dimensional supersonic boundary

layer over an infinite swept wing. Paredes and Theofilis [61] and Paredes et al.[62] per-

formed spatial BiGlobal linear stability analyses in hypersonic flow over an elliptic cone

model, showing the importance of instability modes localised along the centerline of the

body (so called centerline modes), and classified as shear-layer instabilities, as a result

of a mushroom-like fluid structure formed along the centerline. Finally, DNS studies

were performed by Balakumar and King [63], Pruett et al. [64] and Speer et al. [65], to

investigate the effects of the crossflow instabilities in supersonic flows over swept wings

at Mach 3, 3.5 and 5.1 respectively.

1.7 Objectives of the present study

The objective of the present work is to perform direct numerical simulations of the full

transition process from imposed freestream disturbances over blunt leading-edge geome-

tries, and use the results to clarify mechanisms of hypersonic transition. This is of

fundamental importance to link the final breakdown mechanism to the characteristics

of the freestream disturbances, without any arbitrary intermediate simplification. The

freestream disturbances are introduced as an inflow boundary condition in the computa-

tional domain, through an acoustic-wave model that will be described later. This direct

approach, along with a cross-validation with available data from transition experiments,

can also play an important role in calibrating the model to reliably reproduce the main

characteristics of the wind-tunnel noise.

A better interpretation of the several physical mechanisms leading to transition in the

experimental facilities is needed, i.e. an understanding of how the receptivity and break-

down mechanisms are affected by key factors that influence transition in the ground-test

experiments, including Mach number, Reynolds number, angle of attack, sweep angle,

amplitude and orientation of the incident waves, shock-disturbance interaction, leading-

edge shape, etc. For this reason, the present work has been carried out in three main
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stages, considering different geometries and disturbance models for the study of i) the re-

ceptivity mechanism for a 2D wedge-shaped geometry, representative of a measurement

probe used in recent experimental investigations, with 2D acoustic waves, ii) the recep-

tivity and breakdown mechanisms for a 2D wedge-shaped geometry with 3D acoustic

disturbances in both unswept and swept configurations, iii) the receptivity and break-

down mechanisms for the 3D geometry of a generic forebody model, recently tested in

a hypersonic wind tunnel, with 3D acoustic disturbances.

In the first stage, two-dimensional numerical simulations are performed for a cylinder-

wedge geometry inserting planar fast and slow acoustic waves with multiple frequencies

as freestream disturbances. These numerical cases cover a set of non-transitional ex-

periments carried out at DLR on a probe (Wagner et al. [84]) designed to measure

the disturbance levels in high and low enthalpy hypersonic wind tunnels. The main

objectives of these numerical simulations are the following:

• to determine the characteristics of the transmitted waves (i.e. the wave structure)

behind of the shock,

• to determine the characteristics of the response along the wall,

• to assess the sensitivity of the leading-edge receptivity to the angle of attack and

the angle of incidence of the acoustic waves,

• to estimate the freestream noise levels in the different wind tunnels and flow condi-

tions relative to the DLR experiments, through a combination of the numerically

obtained transfer functions (i.e. freestream-to-wall disturbance level) and the ex-

perimental data for the disturbance levels on the wall.

In the second stage, another cylinder-wedge geometry is considered, with half-wedge

angle equal to that of the generic forebody shape used in the third stage, but three-

dimensional simulations are performed in this case, with a 3D acoustic-wave model

accounting for multiple spanwise wavenumbers. The simulations are carried out at the

same Mach number (Mach 6) for fast and slow acoustic waves with different freestream

disturbance amplitude levels, in order to consider both linear and nonlinear cases, and

for both unswept and swept leading-edge configurations. In this case, the main goal is

to analyse the different transition scenarios reached for different wave-type - amplitude-

level - leading-edge-configuration (i.e. swept/unswept) combinations, with the following

objectives:

• to deduce the different receptivity mechanisms to freestream fast and slow acoustic

waves, with and without nonlinearities,



18 Chapter 1 Introduction

• to determine the resonance mechanism at the leading edge between the internal

modes and the external forcing, including an assessment of the relevance of previous

theoretical approaches (Fedorov and Khokhlov[32]),

• to determine the extent of influence of crossflow instabilities generated at the

leading edge due to the presence of a sweep angle.

Finally, in the third stage, a full three-dimensional geometry is considered, representative

of a generic forebody model that was used in recent transition experiments performed

by MBDA in the Purdue hypersonic wind tunnel at Mach 6 (Durant et al. [89]). For

this case, direct numerical simulations are performed making use of the same three-

dimensional acoustic-wave model used in the second stage, for both fast and slow acoustic

waves, with the following objectives:

• to compare the simulations with the experimental results, thus assessing the suit-

ability of the acoustic-wave model, and the dominant disturbances in the Purdue

hypersonic wind tunnel,

• to determine the main transition mechanism on the geometry of a generic forebody.

The results obtained in this work serve as an assessment of the freestream disturbance

levels and of the dominant type of disturbances characterising the environmental noise in

hypersonic wind tunnels, providing at the same time a further understanding of the main

physical mechanisms leading to transition in the hypersonic wind tunnels for different

flow conditions, disturbance characteristics and geometrical configurations. This can

shed light on the ambiguity still present in transition experiments (Schneider [8]), and

help to set-up a transition prediction method.
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Numerical method

2.1 Governing equations

We consider numerical solutions of the three-dimensional Navier-Stokes equations for

compressible flows, written in conservation form, under the assumption of perfect gas.

The set of non-dimensional conservation equations in Cartesian coordinates can be writ-

ten as
∂Q

∂t
+
∂Fj

∂xj
= 0 , (2.1)

In the equation above, Q is the vector of the conservative variables, while Fj is the

vector of the fluxes in Cartesian coordinates. The components of the vectors of the

system in conservative form are

Q =


ρ

ρu

ρv

ρw

ρE

 , (2.2)

Fj =



ρuj

ρuuj + δ1jp− 1
Reτ1j

ρvuj + δ2jp− 1
Reτ2j

ρwuj + δ3jp− 1
Reτ3j

ρ
(
E + p

ρ

)
uj − 1

Re

(
uτ1j + vτ2j + wτ3j + µ

(γ−1)PrM2
∂T
∂xj

)


(2.3)

The terms ρ, ρu, ρv, ρw and ρE are the conservative variables of the system of equations,

where ρ is the density, u, v and w are the velocity components respectively in the x,

y and z directions, and E is the total energy per unit mass. In the flux vectors, the

terms p, T , τij , and µ are respectively the pressure, the temperature, the components

19
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of the viscous stress tensor, and the dynamic viscosity of the flow. The non-dimensional

quantities are obtained through normalisation of the dimensional variables with their

freestream reference values: the velocity components are normalised with the freestream

main velocity (U∗∞), the density is normalised with the freestream density (ρ∗∞), the

viscosity is normalised with the freestream dynamic viscosity (µ∗∞), the temperature

is normalised with the freestream temperature (T ∗∞), the total energy is normalised

with the square of the freestream main velocity (U∗2∞ ), while the pressure and viscous

stresses are normalised with the term ρ∗∞U
∗2
∞ , related to the freestream dynamic pressure

(12ρ
∗
∞U

∗2
∞ ). Note that the superscript (∗) is used to denote dimensional values. The

nose radius (R∗) is chosen as the characteristic length to normalise the length scales,

while the time scales are normalised with respect to the fluid-dynamic characteristic

time (R∗/U∗∞), based on the velocity of the undisturbed flow and on the characteristic

length. The terms Re, Pr, M, and γ are respectively the Reynolds, Prandtl and Mach

numbers, and the constant-pressure to constant-volume specific heat ratio (γ = c∗p/c
∗
v),

i.e. the dimensionless parameters of the flow. The Reynolds number is defined with

respect to the nose radius, as Re = (ρ∗∞U
∗
∞R

∗)/µ∗∞; the Prandtl number is set to 0.72

for air, and γ is equal to 1.4, as we are considering a perfect gas model. The dynamic

viscosity is, in turn, expressed in terms of temperature by Sutherland’s law

µ = T 3/2 1 + C

T + C
, (2.4)

where the constant C represents the ratio between the Sutherland’s constant (set to 110.4

K) and the freestream reference temperature (T ∗∞). The viscous stresses are defined in

terms of the velocity derivatives, under the assumption of a Newtonian fluid, as

τij = µ

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

]
. (2.5)

We also need a relation linking the total energy to the temperature, which in non-

dimensional form can be expressed as

E =
T

γ(γ − 1)M2
+

1

2

(
u2 + v2 + w2

)
. (2.6)

Finally, the system of equations is closed by the equation of state for a perfect gas

p =
1

γM2
ρT . (2.7)

The system of equations in Cartesian coordinates is transformed into a system of equa-

tions in curvilinear coordinates (ξ, η, ζ) as

∂Q̄

∂t
+
∂F̄j

∂ξj
= 0 . (2.8)
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The relations between the vectors in curvilinear and Cartesian coordinates are expressed

by

Q̄ = JQ, F̄j = JFi
∂ξj
∂xi

, (2.9)

with J = det ||∂(x, y, z)/∂(ξ, η, ζ)|| being the Jacobian of the transformation matrix.

2.2 Two-dimensional acoustic-wave model

Figure 2.1 shows a sketch of the planar acoustic waves travelling in the direction of the

wave vector k, with an inclination angle θxy in the xy-plane with respect to the positive

x-axis of the Cartesian reference system. The freestream perturbations of the physical

quantities are expressed relative to the freestream density perturbation (ρ′) by means of

the following relations, derived from the linearised dimensionless Euler equations under

the assumption of small perturbations,

u′∞ = ± 1

M
ρ′∞ cos θxy , v

′
∞ = ± 1

M
ρ′∞ sin θxy , p

′
∞ =

1

M2
ρ′∞ , (2.10)

E′∞ =
1

M
ρ′∞

(
1

γM
+ cosα cos θxy + sinα sin θxy

)
, (2.11)

where α denotes the angle of attack. The inclination angle of the acoustic waves (θxy)

is considered positive for waves impinging from below (as represented in the sketch of

figure 2.1). In the relations for the velocity component perturbations, the ‘+’ sign is

used for fast acoustic waves, while the ‘−’ sign applies to slow acoustic waves, as fast

waves would be oriented in the same sense indicated by the wave vector in figure 2.1,

while slow waves would be oriented in the opposite sense, thus producing an opposite-

sign perturbation (with respect to the sign of ρ′∞) for both the velocity components.

The relations for the fluctuations of the velocity components and pressure are consistent

with the relations used by Egorov et al.[41] for their 2D acoustic-wave model (with the

exception of the inclination angle being considered positive for waves coming from above

in their work), while the derivation of the total energy perturbation is shown in Section

2.3.

The freestream density perturbation as a function of time and Cartesian coordinates,

for the case of multiple frequencies, is expressed as

ρ′∞(x, y, t) = A
N∑
n=1

cos (knxx+ knyy − ωnt+ ψn) , (2.12)

where A is the assigned amplitude, knx and kny are the wavenumbers respectively in the

x and y directions, ωn is the angular frequency, ψn is the phase angle, N represents the
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Figure 2.1: Sketch of the planar acoustic waves and of the computational domain
near the nose region. The solution shown here, for illustration purposes, is the
u velocity field

total number of frequencies of the wave spectrum, and the subscript ‘n’ indicates the

nth frequency. The wavenumbers and the angular frequency are, in turn, expressed by

knx = |kn| cos θxy ; kny = |kn| sin θxy ; |kn| =
ωn

cos θxy ± 1/M
; ωn = nω1 = 2πnf1 .

(2.13)

Here, |kn| is the magnitude of the wave vector for the nth frequency, which depends on

the angle θxy, since the convection velocity of the acoustic waves is the projection of the

mean freestream velocity along the wave propagation direction, while f1 is the smallest

frequency of the complete spectrum. From the relation for the angular frequency it is

evident that each frequency is a multiple of the lowest frequency. Again, the plus sign

in the denominator of |kn| indicates fast acoustic waves, while the minus sign is for slow

acoustic waves.

In the unsteady computations, the acoustic waves are, then, inserted into the computa-

tional domain by imposing, at each point along the inflow boundary and at each instant

of time, the following form of the vector of the conservative variables,

QU =


ρ∞ + ρ′∞

(ρ∞ + ρ′∞)(u∞ + u′∞)

(ρ∞ + ρ′∞)(v∞ + v′∞)

(ρ∞ + ρ′∞)(E∞ + E′∞)

 , (2.14)

in which each physical quantity in the freestream is expressed as a sum of a steady base

flow and a fluctuation term, for which equations 2.10, 2.11, 2.12, and 2.13 apply.
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2.3 Equation for the total energy perturbation

Let us consider the relation for the dimensionless total energy in the freestream,

E∞ =
T∞

γ(γ − 1)M2
+

1

2

(
u2∞ + v2∞

)
. (2.15)

By applying the Reynolds decomposition we get

E∞ + E′∞ =
T∞ + T ′∞
γ(γ − 1)M2

+
1

2

[
(u∞ + u′∞)2 + (v∞ + v′∞)2

]
, (2.16)

from which, by expanding the terms, and neglecting higher-order terms (on the assump-

tion of small perturbations), we obtain

E∞ + E′∞ =
T∞

γ(γ − 1)M2
+

1

2

(
u2∞ + v2∞

)
+

T ′∞
γ(γ − 1)M2

+ u∞u
′
∞ + v∞v

′
∞ . (2.17)

The sum of the first two terms of the right hand side is, by definition, the freestream

mean total energy. Hence, the fluctuation of the total energy is given by

E′∞ =
T ′∞

γ(γ − 1)M2
+ u∞u

′
∞ + v∞v

′
∞ . (2.18)

The mean velocity components in the x and y directions can be expressed as a function

of the angle of attack (α) as u∞ = cosα and v∞ = sinα (considering that the magni-

tude of the dimensionless freestream mean velocity, U∞, is 1). The velocity perturbation

components, induced by the acoustic wave travelling in the direction of the wave vector,

are given by u′∞ = U ′∞ cos θxy and v′∞ = U ′∞ sin θxy, where θxy is the inclination angle

of the acoustic waves with respect to the x-axis, and U ′∞ is the magnitude of the ve-

locity fluctuation in the wave-vector direction, which is, in turn, related to the density

perturbation by

U ′∞ =
1

M
ρ′∞ . (2.19)

By substituting the above relations for the velocity components into the formula for the

total energy, we get

E′∞ =
T ′∞

γ(γ − 1)M2
+

1

M
ρ′∞ (cosα cos θxy + sinα sin θxy) . (2.20)

At this point, in order to express the temperature perturbation as a function of the

density perturbation, we consider the equation of state for a perfect gas, in which the

Reynolds decomposition has been applied,

p∞ + p′∞ =
1

γM2

(
ρ∞ + ρ′∞

) (
T∞ + T ′∞

)
. (2.21)
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In the above equation the pressure terms are normalised with the term ρ∞U
2
∞. By ex-

panding the right hand side, neglecting higher-order terms, and subtracting the freestream

mean pressure, we obtain

p′∞ =
1

γM2

(
ρ∞T

′
∞ + T∞ρ

′
∞
)
. (2.22)

In terms of the temperature fluctuation, and considering that ρ∞ and T∞ (dimensionless

freestream mean density and temperature respectively) are equal to 1, we obtain

T ′∞ = γM2p′∞ − ρ′∞ . (2.23)

Substituting, in the above relation, the equation (2.10) relating the freestream pressure

fluctuation to the density fluctuation, p′∞ = ρ′∞/M
2, we obtain

T ′∞ = (γ − 1)ρ′∞ . (2.24)

Finally, by substituting this relation into the formula of the total energy, we obtain the

total energy fluctuation amplitude as a function of the density fluctuation amplitude,

the angle of attack and the angle of incidence of the acoustic waves, as

E′∞ =
1

M
ρ′∞

(
1

γM
+ cosα cos θxy + sinα sin θxy

)
. (2.25)

2.4 Three-dimensional acoustic-wave model

The three-dimensional wave system consists of a main two-dimensional wave and pairs

of opposite-angle oblique waves of lower amplitude. The oblique acoustic waves are

considered as planar waves travelling with an angle θxz in the xz-plane. The freestream

perturbations of x- and z-velocity components, pressure and total energy in terms of the

freestream density fluctuation are still expressed by equations 2.10 and 2.11, provided

we replace θxy with θxz, and v′∞ with w′∞. Note that, in this case, we do not consider

an inclination angle in the xy-plane, i.e. θxy = 0, and, as a consequence, the freestream

velocity component in the vertical direction is v′∞ = 0. Also, as the oblique waves have

an opposite angle in the xz-plane, their added contribution to the spanwise velocity is

zero.

The freestream perturbation of the density as a function of time and Cartesian coordi-

nates, for the case of multiple frequencies, is expressed as

ρ′(x, z, t) =
M∑
m=0

N∑
n=1

Am cos (βmz + φm) cos (αnx− ωnt+ ψn) , (β0 = φ0 = 0) , (2.26)
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where αn and βm are the wavenumbers, respectively, in the x and z directions, ωn is

the angular frequency, Am is the amplitude of each wave mode, φm and ψn are random

phase angles (an exception has to be made for m = 0, for which φm is fixed to zero), N

and M represent the total number of frequencies and (non-zero) spanwise wavenumbers

respectively, while the subscripts ‘m’ and ‘n’ indicate the mth spanwise wave mode and

the nth frequency respectively. In the present study N = 10, indicating a spectrum of

10 different frequencies, and M = 2, thus giving 2 multiple spanwise wavenumbers for

the oblique waves, according to the relation βm = 2πm/Lz (with Lz being the length

of the domain in the z direction). Note that m = 0 provides a 2D wave in the body

reference system, as β0 = 0 and φ0 = 0, namely a wave whose wave vector is aligned

with the x-axis of the body reference system. However, as x is perpendicular to the

leading edge, for swept cases such a wave mode (m = 0) represents an oblique wave with

respect to the streamwise direction, with an inclination angle equal to the sweep angle

(Λ) of the leading edge. An illustrative example of an infinite swept leading edge and of

our domain geometry (in the xz-plane) is shown in figure 2.2.

Figure 2.2: Illustrative example of an infinite swept leading edge (Λ = 45◦).
The black lines indicate the edges of our computational domain on the body
surface in the xz-plane. The contours are relative to a solution for the wall
pressure fluctuations

The wavenumber in the x-direction αn is linked to the angular frequency ωn through

the relation αn = ωn/(1 ± 1/M), with ωn = 2πfn, being fn the nth frequency of the

forcing spectrum. The term 1 ± 1/M represents the dimensionless phase speed along

the x-axis of the freestream waves, where the plus sign indicates fast acoustic waves,

while the minus sign stands for slow acoustic waves. Hence, an oblique acoustic wave

travelling with an inclination angle θxz with respect to the x-axis has a wavenumber α

in the x direction equal to the corresponding wavenumber of the dominant 2D fast or

slow acoustic wave. The value of A0 determines the amplitude of the main 2D wave,

while the amplitude of each pair of oblique waves for m = 1, 2 is linked to that of the 2D

wave through the relation A1 = A2 = 1
2A0. For each non-zero spanwise wavenumber two
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oblique acoustic waves with equal and opposite angles θxz are forced, and the amplitude

Am (for m = 1, 2) represents the sum of the amplitudes of the two opposite-angle waves,

such that each single oblique wave has an amplitude equal to 1
4A0.

Summarising, the system of forced waves consists of a superposition of a dominant 2D

wave (m = 0) and two (m = 1, 2) pairs of equal and opposite angle (θxz and−θxz) oblique

waves, each wave having an amplitude of one fourth of the main 2D wave amplitude.

The value of the inclination angle of the forced oblique waves in the xz-plane for each

spanwise wavenumber (m) and for each frequency (n) is given by

θm,nxz = ± arctan

(
βm
αn

)
. (2.27)

Finally, the vector of the conservative variables at the inflow boundary in the unsteady

3D computations is

QU =


ρ∞ + ρ′∞

(ρ∞ + ρ′∞)(u∞ + u′∞)

(ρ∞ + ρ′∞)(v∞ + v′∞)

(ρ∞ + ρ′∞)(w∞ + w′∞)

(ρ∞ + ρ′∞)(E∞ + E′∞)

 . (2.28)

It is reminded that (as already said above) in the considered problem, as the two

opposite-angle waves travel in opposite directions along the z-axis, their freestream

z-velocity perturbation cancels, so that w′∞ = 0 identically. Also, the freestream per-

turbation of the y-velocity component v′∞ is fixed to zero, as all the waves are travelling

in the direction parallel to the xz-plane.

2.5 Code features

The code we use to carry out our DNS computations is the SBLI (Shock-Boundary-

Layer-Interaction) code, developed over a number of years at the University of Southamp-

ton. In order to perform the computations for compressible flows in the presence of shock

waves, the SBLI code uses a shock-capturing method, which is applied as a filter step to

the solution obtained through the base scheme at the end of each time integration step.

The base scheme is, in turn, based on a fourth-order central finite difference scheme

for space discretization, and makes use of an entropy-splitting method (Yee et al.[66])

to improve the nonlinear stability of the high-order central scheme, thus requiring less

numerical dissipation than the un-split approach. At the wall either a fourth order Car-

penter boundary scheme (Carpenter et al.[67]) or a lower-order scheme can be chosen.

For time integration, a third-order Runge-Kutta scheme is used. The shock-capturing
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scheme consists of a second-order TVD (total variation diminishing)-type algorithm,

with a particular compression method (Yee et al.[68]), which restricts the artificial dissi-

pation to the shock region, thus providing minimum dissipation in the smooth regions.

Furthermore, the scheme is supplemented with the Ducros sensor (Ducros et al.[69]),

which turns off the artificial dissipation in the vortical region (i.e. the boundary layer).

A favourable feature of this sensor is that it does not require any a-priori knowledge of

the shock position. The code works using MPI libraries, and has been set up to run in

parallel, by dividing the domain into a number of sub-domains, and assigning each of

them to a particular processor. A validation of the code can be found in the work of

De Tullio et al.[82], where DNS results are compared with PSE (Parabolized Stability

Equations) results for the case of transition induced by a discrete roughness element in

a boundary layer at Mach 2.5.

2.6 Shock-capturing scheme

A characteristic filter (Yee et al.[68]), activated at the final step of each Runge-Kutta

time integration cycle, allows the shock to be captured with minimum numerical dissi-

pation. The characteristic filter consists of a second-order Harten-Yee TVD-type shock-

capturing scheme, with imposed flux limiters that limit the anti-diffusive terms of the

flux derivatives in order to satisfy the TVD stabilising condition in each direction, whilst

minimising the numerical dissipation. In particular, the TVD condition in a certain di-

rection requires that the total variation of a discrete solution in that direction, i.e.∑
i |qi+1 − qi|, where q denotes a generic conservative variable, cannot increase with

time. In order to describe the algorithm used in the filter step, we consider for simplic-

ity the one-dimensional governing equations,

∂Q

∂t
+
∂F

∂x
= 0 . (2.29)

Using a finite-volume concept, we denote with i − 1, i, i + 1 three consecutive points

of the one-dimensional computational domain, and with i − 1
2 , i + 1

2 the points at the

interface between points i − 1, i, and points i, i + 1, respectively. In the finite volume

approach, the time variation of a generic conservative variable ql (with l = 1, ..3, for a

one-dimensional system of conservation equations) is equal to the net-flux of the physical

quantity through the interfaces i − 1
2 and i + 1

2 (i.e. the edges of the control volume

of the fluid particle centred on the point i). Following this approach, and using a 1st-

order forward differencing discretization for the time derivatives, we obtain the vector

of conservative variables at the point i and at the time n+ 1, as

Qn+1
i = Qn

i +
∆t

∆x

(
F̃i− 1

2
− F̃i+ 1

2

)
, (2.30)
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where ∆t and ∆x are the time step and the spacing between i − 1
2 and i + 1

2 , while

the terms F̃i− 1
2

and F̃i+ 1
2

denote the numerical fluxes at the interfaces of the control

volume. The numerical flux vector F̃i+ 1
2

is cast in the form

F̃i+ 1
2

=
1

2

(
Fi+1 + Fi + Ri+ 1

2
Φi+ 1

2

)
, (2.31)

where 1
2 (Fi+1 + Fi) represents the central differencing portion of the numerical flux, and

1
2

(
Ri+ 1

2
Φi+ 1

2

)
is the nonlinear dissipation term, with Ri+ 1

2
being, for characteristic-

based methods, the right eigenvector matrix of the matrix ∂F
∂Q evaluated using a sym-

metric average between Qi and Qi+1 (i.e. Roe’s approximate average state, described by

Roe[70]). The term Φi+ 1
2

will be described in detail later. The numerical flux expressed

in equation 2.31 represents an average between states i and i + 1, as the flux at the

interface can be derived both from the flux at point i through the form

F̃i+ 1
2

= Fi + ∆F̃
−
i+ 1

2
, (2.32)

and from the flux at point i+ 1 through the form

F̃i+ 1
2

= Fi+1 −∆F̃
+
i+ 1

2
, (2.33)

where ∆F̃
−
i+ 1

2
and ∆F̃

+
i+ 1

2
are the flux jumps respectively from the left state (i) and from

the right state (i + 1) to the internal (or intermediate) state (i + 1
2) across the system

of waves generated in a Riemann problem at the intermediate point. Performing the

arithmetic average between equations 2.32 and 2.33, equation 2.31 is obtained. Following

this approach, the nonlinear dissipation term can be expressed as

∆F̃i+ 1
2

=
1

2

(
∆F̃

−
i+ 1

2
−∆F̃

+
i+ 1

2

)
=

1

2

(
Ri+ 1

2
Φi+ 1

2

)
, (2.34)

where, for characteristic-based methods, the term Φi+ 1
2

contains the characteristic speeds

(the elements of the diagonal matrix of the system of governing equations in characteris-

tic form) of the waves travelling both leftwards and rightwards in the Riemann problem

originated at i+ 1
2 , each one multiplied with the jump (between point i+ 1 and i) of the

corresponding characteristic variable (elements of the variable vector of the diagonalised

system of equations in characteristic form).

If Roe’s first-order upwind scheme (in a modified version, as in Yee et al.[68]) is used

for the dissipation term, the elements of the vector Φi+ 1
2

can be expressed as

φl
i+ 1

2

= −ψ(al
i+ 1

2

)αl
i+ 1

2

, (2.35)

where al
i+ 1

2

(Qi,Qi+1) (that should not be confused with the unsubscripted variable

denoting the speed of sound) are the elements of the diagonal matrix of the system in

characteristic form (i.e. the characteristic speeds), computed through Roe’s approximate



Chapter 2 Numerical method 29

average state, and αl
i+ 1

2

are the elements of the vector of characteristic jumps, given by

αi+ 1
2

= R−1
i+ 1

2

(
Qi+1 −Qi

)
, (2.36)

with R−1
i+ 1

2

the left eigenvector matrix of ∂F
∂Q , evaluated through Roe’s approximate

average state. In some regions of the flowfield (e.g. the sonic regions) some wave speeds

can approach zero, thus providing close-to-zero values for the numerical dissipation, with

the possibility of numerical instabilities and non-physical solutions. For this reason, a

correction to the characteristic speeds is used (the so called entropy correction), in order

to prevent the wave speeds from reaching too small values, and can be expressed as

ψ(al
i+ 1

2

) =


|al
i+ 1

2

| |al
i+ 1

2

| ≥ δ1
(al

i+1
2

)2+δ21

2δ1
|al
i+ 1

2

| < δ1.
(2.37)

Here, δ1 is a parameter whose numerical value is problem dependent, and typical values

are in the range 0.05 − 0.25. For the simulations in the present work a more suitable

form of δ1 for hypersonic blunt-body flows has been chosen, which is the form suggested

by Yee et al.[71]

(δ1)i+ 1
2

= δ̃
(
|ui+ 1

2
|+ |vi+ 1

2
|+ ci+ 1

2

)
, (2.38)

where we remind that c denotes the speed of sound in this section, and that the subscript

i + 1
2 denotes quantities computed on the intermediate point through Roe’s average

intermediate state (Roe[70]). The term δ̃ is a constant set to 0.25 in all our simulations.

The scheme in equation 2.35 is first-order accurate, which means that it produces dif-

fusive solutions that smear the high gradients. For this reason, many extensions have

been made over the decades in order to make the shock-capturing schemes second-order

accurate. The way to achieve high resolution consists of introducing perturbation terms

in the first-order scheme, which increase the overall accuracy of the scheme. These terms

can be described as anti-diffusive terms, as their effect is to reduce the amount of nu-

merical dissipation added by the scheme. An example of higher-order shock-capturing

scheme, which is the scheme used in our numerical simulations, is the following

φl
i+ 1

2

= −ψ
(
al
i+ 1

2

)(
αl
i+ 1

2

− sl
i+ 1

2

)
, (2.39)

where sl
i+ 1

2

is, in general, a function of the characteristic jumps at i + 1
2 and at the

neighbouring interface points (i.e. sl
i+ 1

2

= sl
i+ 1

2

(αl
i− 1

2

, αl
i+ 1

2

, αl
i+ 3

2

)). The term sl
i+ 1

2

represents an anti-diffusive function, as it reduces the numerical dissipation. However,

in order to prevent the scheme from generating spurious oscillations, it is necessary

that the amount of dissipation added is sufficient for the scheme to satisfy the TVD

condition; hence, the anti-diffusive term has to be limited by means of limiter functions

(Piperno and Depeyre[72], Toro and Billett[73]). Thus, the flux-limiter approach sets in
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general the accuracy of the scheme at a middle point between a low-order scheme and a

high-order scheme, namely it increases the accuracy of a first-order scheme, decreasing

the amount of added numerical dissipation, and limits, at the same time, the anti-

diffusive terms in order to constrain the scheme to stay inside the valid region of the

TVD condition. In practice, with reference to equation 2.39, the term sl
i+ 1

2

contains the

limiter in the form of a minmod function, which is equal, for a list of arguments, to the

smallest number in absolute value if the arguments are of the same sign, or is equal to

zero if any arguments are of opposite sign. Examples of limiter functions are (Yee et

al.[71])

sl
i+ 1

2

= minmod
(
αl
i− 1

2

, αl
i+ 1

2

)
+ minmod

(
αl
i+ 1

2

, αl
i+ 3

2

)
− αl

i− 1
2

(2.40)

sl
i+ 1

2

= minmod
(
αl
i− 1

2

, αl
i+ 1

2

, αl
i+ 3

2

)
(2.41)

sl
i+ 1

2

= minmod

[
2αl

i− 1
2

, 2αl
i+ 1

2

, 2αl
i+ 3

2

,
1

2

(
αl
i− 1

2

+ αl
i+ 3

2

)]
(2.42)

Limiter functions 2.40, 2.41 and 2.42 are listed in order of decreasing diffusivity and

increasing accuracy. However, as the less diffusive limiters are also the less stable, and

have a lower convergence rate, limiter 2.41 is chosen for our computations, which provides

a good trade-off between accuracy and stability.

The scheme in equation 2.39, together with one of the three limiter forms 2.40, 2.41,

and 2.42, represents the Harten-Yee second-order symmetric TVD-type scheme (Yee et

al.[71]), and has been implemented by the author of the present thesis in the version

of the SBLI code used for our numerical simulations, showing good results in terms of

both resolution and stability. The implementation of the Harten-Yee symmetric scheme

was motivated by the need of solving numerical issues related to the original version

of the TVD filter applied to our numerical case. In particular, the previous version

of the SBLI code was equipped with a different type of Harten-Yee scheme, namely

the second-order upwind TVD-type scheme (Yee et al.[68]), which showed very good

results in several DNS studies (e.g. Sansica [79] and Van Den Eynde [77]) based on flat-

plate-like computational boxes (with or without roughness elements), but which proved

to be unsuitable for our cylinder-wedge geometry, as it produced asymmetric solutions

(between the upper and the lower side of the wedge) in preliminary 2D test cases (set up

with zero angle of attack and without freestream disturbances). The above mentioned

upwind scheme, in its original implementation, is reported here, as follows

φl
i+ 1

2

=
1

2
ψ
(
al
i+ 1

2

)(
gli+1 + gli

)
− ψ

(
al
i+ 1

2

+ γl
i+ 1

2

)
αl
i+ 1

2

, (2.43)
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γl
i+ 1

2

=
1

2
ψ(al

i+ 1
2

)


(
gli+1 − gli

)
/αl

i+ 1
2

αl
i+ 1

2

6= 0

0 αl
i+ 1

2

= 0,
(2.44)

where gli and gli+1 are the anti-diffusive terms, and need to be limited. An example of

limiter function gli is (Yee et al.[68])

gli = minmod

[
2αl

i− 1
2

, 2αl
i+ 1

2

,
1

2

(
αl
i+ 1

2

+ αl
i− 1

2

)]
; (2.45)

other possible forms for gli can be found in the work of Yee et al.[68]. The upwind

scheme 2.43 is, in general, more accurate than the symmetric scheme 2.39, however,

while the symmetric scheme is independent from the sign of the characteristic speeds, in

the upwind scheme the numerical dissipation terms depend on the wave-speed sign, due

to the second entropy correction term in equation 2.43, which involves the sum of the

wave speed al
i+ 1

2

and the wave speed γl
i+ 1

2

, related to the jump of the added function

g between points i and i + 1. This is indeed, the source of the asymmetric patterns

observed in the solution of our preliminary 2D test cases.

Apart from implementing in the SBLI code the symmetric scheme, which provides sym-

metric solutions due its property of independence from the wave-speed sign, a modi-

fication of the upwind scheme has been proposed by the author of the present thesis,

concerning the entropy correction term for the two different wave speeds. The idea

consists in removing the dependence from the wave-speed sign by applying the entropy

correction, in the form expressed by equation 2.37, separately for each wave speed, rather

than on their sum. Following this approach, the upwind scheme has been recast in the

following form

φl
i+ 1

2

=
1

2
ψ
(
al
i+ 1

2

)(
gli+1 + gli

)
−
[
ψ
(
al
i+ 1

2

)
+ ψ

(
γl
i+ 1

2

)]
αl
i+ 1

2

. (2.46)

This modified version of the upwind scheme has shown the capability of providing sym-

metric solutions for our cylinder-wedge geometry, with a resolution comparable to that

of the original upwind scheme 2.43. However, the symmetric scheme, expressed by equa-

tions 2.39 and 2.41, has been preferred because of its higher robustness and convergence

rate, and is used for all the calculations in the present thesis.

The form expressed by equation 2.39 is not actually the final form of the TVD scheme

used for the computations. The numerical dissipation term φl
i+ 1

2

is, in fact, pre-multiplied

by another term, so called Harten switch (Yee et al.[68]), which distributes the dissipa-

tion in the flowfield in an efficient way, minimising it in the smooth regions. Thus, the

numerical dissipation assumes the following form
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φl∗
i+ 1

2

= kθl
i+ 1

2

φl
i+ 1

2

, (2.47)

where k is a problem-dependent parameter, and θl
i+ 1

2

is the Harten switch. For smooth

flows k can be very small, while in the presence of strong shock waves it has to assume

higher values. The common range of k, considering different problems, is 0.03 ≤ k ≤ 2

(Yee et al.[68]). In our numerical simulations, the value of k is set in the range between

1.5 and 2, in which the higher values are used for the higher Mach number flows. The

function θl
i+ 1

2

is the key-mechanism for distributing the dissipation in a efficient way,

achieving high accuracy in regions where minimum numerical dissipation is needed (e.g.

the boundary layer), and can be expressed as

θl
i+ 1

2

= max
(
θ̂li, θ̂

l
i+1

)
, (2.48)

θ̂li =

∣∣∣∣∣∣αl
i+ 1

2

∣∣∣− ∣∣∣αl
i− 1

2

∣∣∣∣∣∣∣∣∣∣αli+ 1
2

∣∣∣∣+

∣∣∣∣αli− 1
2

∣∣∣∣ . (2.49)

In conclusion, the shock-capturing algorithm used for our numerical simulations consists

of the second-order symmetric Harten-Yee TVD-type scheme 2.39, in conjunction with

the limiter function 2.41 and the Harten switch, expressed by equations 2.47, 2.48 and

2.49. The shock-capturing algorithm, which has been described for a one-dimensional

case here, has to be solved in all the other directions for 2D and 3D problems.

2.7 LES approach: Mixed-Time Scale Model

The main feature of the DNS is the capability of resolving all the length scales of the

flow, but it requires very fine grids to resolve the smallest length scales. The basic idea

of the Large Eddy Simulation (LES) approach, instead, is to resolve only the largest

length scales of the flow, and to remove the smallest ones, by applying a low-pass filter

to the governing equations 2.2, which reduces the computational cost of the numerical

simulation. However, the unresolved smallest length scales have an important effect on

the flowfield, which needs to be modelled. A detailed description of the LES methodology

is given by Sagaut [78].

As a first step, the governing equations are filtered by means of a low-pass convolution

filter applied onto the variable vector Q, as

Q(x, y, z, t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Q(x̃, ỹ, z̃, t)G(x̃− x, ỹ − y, z̃ − z)dx̃dỹdz̃ (2.50)
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where Q is the filtered variable vector, and G is the filter convolution kernel, which has

a cutoff length scale (or characteristic length scale) ∆. All the length scales smaller than

∆ are not resolved, and are called sub-grid scales (SGS). From the above definition of

the low-pass filter, the flowfield Q can be considered as a sum between the filtered field

(Q) and a sub-filtered field (Q′, i.e. the unresolved portion).

The use of the spatial filter 2.50 leads to the filtered conservative governing equations,

to which another filter, i.e. the Favre filter, is applied. The Favre filter is defined as

φ̃ =
ρφ

ρ
, (2.51)

where φ is any physical quantity. For example, the continuity equation with the filters

2.50 and 2.51 is

∂ρ

∂t
+
∂ρũi
∂xi

= 0 , (2.52)

in which the filter 2.51 has been applied to the term ρui. The derivation of the complete

set of the Favre-filtered equations is beyond the scope of the present thesis, and can be

found in the work of Sansica [79].

The second step is to model the SGS terms that are present in the Favre-filtered equa-

tions. Some of these terms can be neglected, as shown in the work of Touber and

Sandham [80], and the remaining SGS terms that need to be modelled are the SGS

stress tensor,

σij = ρ(ũiuj − ũiũj) , (2.53)

and the SGS heat flux,

Θi = T̃ ui − T̃ ũi . (2.54)

The SGS stress tensor is modelled as

σij −
1

3
δijσkk = −2ρνtS̃

∗
ij , (2.55)

while the SGS heat flux is modelled as

Θi = − νt
Prt

∂T̃

∂xi
. (2.56)
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In equations 2.55 and 2.56, νt represents the eddy viscosity, Prt the turbulent Prandtl

number, which is assumed constant and equal to 1, while the term S̃∗ij is the deviatoric

part of the strain-rate tensor, which is given by

S̃∗ij = S̃ij −
1

3
δijS̃kk , (2.57)

and

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (2.58)

The eddy viscosity νt is, then, obtained through the mixed-time scale (MTS) model

(Inagiki et al. [81]) as

νt = CMTSkesTS , (2.59)

in which kes is the SGS turbulent kinetic energy, given by

kes =
[
ũi − ˜̃ui

] [
ũi − ˜̃ui

]
, ˜̃ui =

ρũi
ρ

, (2.60)

TS is the mixed-time scale, defined as

TS =

(
∆√
kes

)−1
+

(
CT

|S̃∗|

)−1
, (2.61)

while CMTS and CT are two constants, which in our simulations have been set to 0.03

and 10 respectively (as in Touber and Sandham [80]).

The main advantages of the MTS model are that it does not need a wall-damping func-

tion, as the eddy viscosity decreases near the wall, and that the eddy viscosity vanishes

in the laminar regions of the flow, as the turbulent kinetic energy (kes) approaches zero

here.

Finally, it should be mentioned that the spatial filter (equation 2.50) used in the SBLI

code has a characteristic length scale (or width), ∆, equal to the grid spacing, and is

applied only in the streamwise and spanwise directions.



Chapter 3

Grid features and numerical noise

reduction

In this Chapter we will describe the main properties of the grids used in our simulations,

as well as numerical issues related to the grid quality and concerning the production of

spurious oscillations. The effect of this numerical noise on the physical solution and its

sensitivity to the grid refinement will be shown through a grid resolution study applied

to one of the 2D cases relative to the DLR experiments. A grid-adaptation methodology,

along with a local shock refinement technique, aimed at reducing the numerical noise,

which have been used for some of our simulations (including the 3D cases), will be

presented here and tested on 2D cases. All the results shown in this Chapter, which

are relative to the set of 2D numerical cases simulating the DLR experiments, serve

to illustrate and validate the above mentioned grid properties and techniques. For the

complete set of results of our 2D simulations, and a more detailed discussion about their

physical relevance, the reader should refer to Chapter 4.

3.1 Computational domain and source of numerical oscil-

lations

Figure 3.1 shows an example of a typical grid used for the numerical simulations, in

non-dimensional coordinates.

35
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Figure 3.1: Example of mesh used for preliminary numerical simulations. Size
= 360 × 150, grid plotted every 5 and 2 points in the wall-normal and wall-
tangential directions respectively

The length of the domain in figure 3.1 is about 10 nose radii, which is the dimension

used for our preliminary 2D simulations, and corresponds to the nose region of the

20◦ half-wedge angle cylinder-wedge domain considered in Chapter 4 to reproduce the

geometry of the measurement probe used in the DLR experiments. Figure 3.2 shows the

details of the mesh in the nose region close to the stagnation point. As can be seen, the

computational domain is made of two families of curves, one in the direction tangential

to the wall (which is denoted by the index j), and the other in the wall-normal direction

(denoted by the index i). The grid generation method, based on the approach adopted

by Bianchi et al.[83], adapts the computational domain to the shape of the approximated

shock resulting, for a given Mach number, from Billing’s correlations (Anderson[1]). A

stretching function increases the density of points towards the wall in the i direction, so

that to resolve the boundary-layer region. Stretching is also provided towards the outer

edge of the domain, in order to provide higher resolution near the bow shock wave.
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Figure 3.2: Details of the mesh in the nose region. Size = 360×150, grid plotted
every 2 points in the wall-normal direction

Figure 3.3 shows an example of the grid (of size 2240 × 150) used for the numerical

cases simulating the DLR wind-tunnel experiments. The domain extends up to about

400 nose radii downstream, thus covering the length within which a series of pressure

transducers have been placed on the wall of the measurement probe (only the upper half

of the domain is shown in the figure, due to the symmetry).

Figure 3.3: Example of computational domain used in the six numerical cases
concerning the DLR wind-tunnel experiments, in non-dimensional coordinates.
Only half of the domain is shown due to the symmetry of the geometry. Size
= 2240 × 150, grid plotted every 5 and 10 points in the wall-normal and wall-
tangential directions respectively
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Preliminary unsteady simulations contained high levels of numerical noise affecting the

solution both behind the shock and on the wall. In particular, the results showed that

if the amplitude of the freestream acoustic waves (in terms of the density fluctuation

amplitude) was below a certain order of magnitude (1 × 10−2) the fluctuation levels

downstream of the shock were strongly affected by numerical noise that seemed to come

from the nose region. As a consequence, the solution of the fluctuation quantities inside

the boundary layer was not reliable, and this imposed the need to find the source of

the numerical noise as well as an affordable way to suppress, or at least reduce, it to

an acceptable level. The cause of the numerical noise was found to be in shock-grid

misalignment, which is a known problem in the literature (Lee and Zhong[74]). In

particular, the j-curves in proximity to the shock should be closely aligned with the

curved shock in order not to generate spurious numerical oscillations of the physical

quantities behind the shock (theoretically, the best situation would be that of a unique

grid line following the shock shape). The problem is illustrated in figure 3.4, where

the density fluctuation field (obtained by inserting fast acoustic waves with a density

fluctuation amplitude of 1× 10−4 in the freestream) in the nose region is shown for one

of the six numerical cases relative to the DLR experiments (M = 6, Re = 630, α = 0◦,

the conditions for all the cases are given in Chapter 4). As can be seen, density spikes

are formed just behind the shock curve (corresponding to the blue region), giving rise

to oscillations in the density field that are convected downstream and along the wall.

Figure 3.5 shows a close up on the points where the problem originates.

Figure 3.4: Example of numerical oscillations in the density fluctuation field.
Mach 6 case
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Figure 3.5: Example of numerical oscillations in the density fluctuation field.
Close up on the shock-grid misalignment points. Mach 6 case

The green line with circular markers, in figure 3.5, is the locus of the grid points (mark-

ers) where the shock is located (corresponding to the points where the pressure gradient,

computed through a fourth-order central finite difference scheme, is maximum). It can

be seen from the figure how, at some points (those shown with purple circles), the shock

jumps from one j-grid line to another, and in correspondence of these points a density

oscillation is released into the flowfield. This demonstrates that the problem of the nu-

merical oscillations (or spikes) is correlated to a shock-grid misalignment problem. The

poorer is the alignment, the higher are the density spikes and the oscillations affecting

the solution on the wall.

Another example of misalignment problem is shown in figure 3.6, for a case at M = 7.3,

and Re = 440. In this figure it is evident a strong spike of density fluctuations is seen

at a point just behind the shock, at x ≈ 205. Figure 3.7 shows a close up of the point

of interest, where it is evident that the shock jumps from a grid line to another, due to

the misalignment, and a density spike is formed.
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Figure 3.6: Example of numerical oscillations in the density fluctuation field.
Mach 7.3 case

The problem of the shock-grid misalignment and the origin of post-shock oscillations was

examined by Lee and Zhong[74], who also considered the effect of the grid resolution

on the numerical noise generation. In particular, they showed that the intensity of the

post-shock oscillations was more significantly influenced by the shock-grid alignment

than the grid resolution, which, in contrast, affects the wavelength of the oscillations

(which increases for coarser grids). A grid resolution study shown in the next Section

of the present Chapter will demonstrate a very good agreement with the results of Lee

and Zhong[74] concerning the role of the grid resolution on the numerical noise.

Figure 3.7: Example of numerical oscillations in the density fluctuation field.
Close up on the misalignment point. Mach 7.3 case
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The problem of the post-shock oscillations generated by shock-capturing schemes was

also studied from a mathematical point of view by Arora and Roe[75], and Zaide and

Roe[76], who addressed the cause of the spurious numerical oscillations in the case of

slowly moving shocks (which is relevant to our case, as the shock oscillates slightly due

to the interaction with the acoustic waves) to the nonlinearity of the Rankine-Hugoniot

jump conditions, and to the presence in the numerical solution of intermediate shock

states (states in the middle between the left state and the right state of a shock), which

results in an ambiguity of the shock position. The ambiguity in the shock position

consists in the fact that, depending on whether we apply the conservation of the density

or the conservation of the energy to estimate the shock position, we will obtain two

different estimates (Zaide and Roe[76]). Moreover, this ambiguity seems to be Mach-

number dependent, increasing for higher Mach numbers. The main consequence of this

problem appears to be the generation of a spike of the momentum behind the shock,

giving rise to numerical oscillations of the physical variables.

On the basis of the observations above, there are two practical ways to reduce the post-

shock numerical noise: (i) adding more numerical dissipation by the shock-capturing

scheme, (ii) aligning as much as possible the grid with the shock shape. The first target

can be achieved by simply imposing a higher value for the coefficient k that multiplies

the numerical dissipation term in equation 2.47. This is indeed the approach we used in

all our numerical simulations, by setting, as already said in Chapter 2, the value of k in

the range between 1.5 and 2, which represents the maximum value suggested by Yee et

al.[68]. This method has allowed us to obtain good solutions for the receptivity of the

fluctuation quantities along the body wall for the 2D numerical cases with zero angle

of attack, although, as will be shown in Section 3.2, numerical oscillations of limited

amplitude are still present, in particular in the nose region, which, however, do not

affect the physical solution (this applies in general to all the results shown in Chapter

4). In contrast, when an asymmetric case (with an angle of attack equal to 10◦) is

considered, adding more numerical dissipation was not enough to reduce the numerical

noise up to an acceptable level. Thus, in this case, as will be shown in Section 3.3, a grid-

alignment technique on both the wedge sides was necessary in order to obtain sensible

results. A discussion about the application of the shock-grid alignment methodology in

our 3D cases (considered in Chapters 5 and 6) will be given as well in Section 3.3 of the

present Chapter.
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3.2 Grid resolution study for the case M = 6, Re = 630 and

α = 0◦, for the wedge with two-dimensional acoustic

waves

In this Section, we present a resolution study for one of the six numerical test cases

(M = 6, Re = 630 and α = 0◦), in which we compare the pressure fluctuation amplitude

distributions along the wall at different frequencies (obtained through a Fast Fourier

Transform approach) between two different grid levels. Among these, one is the same

grid size we have used for the results that will be shown in Chapter 4 (2244×150), which

we refer to as the fine grid, and the other is a coarser grid, whose size is lowered by 1/3

in both directions with respect to the fine grid. For time saving purposes, the domain

for the coarse grid is half of the domain used for the results shown Chapter 4, and

corresponds to a length in the streamwise direction of approximately 200 nose radii, so

that the coarse grid size is 908×100 (1496×100 would be the size for the full 400 nose

radii length domain; while 908 points in the wall-tangential direction correspond to half

of the domain length with the point distribution being denser in the nose region). The

simulations have been run with freestream fast acoustic waves, at an amplitude of 10−4

(relative to the freestream density disturbance), and for 10 multiple frequencies (from

50 kHz to 500 kHz).

Figure 3.8 shows the wall response for the two grid levels, while figure 3.9 shows a close-

up in the nose region. The wall pressure fluctuation amplitudes (p′w) are normalised with

the pressure fluctuation amplitude imposed in the freestream (p′∞). Note that, to sim-

plify the notation, from now on we will refer to the fluctuation amplitudes omitting the

absolute value symbols (| |). A good agreement of the results between the two grid levels

is shown at all the frequencies, indicating that the overall trend of the response along the

wall can be considered, within a certain tolerance, as grid independent. However, the

results show the presence of numerical oscillations, pertaining to the noise coming from

the shock and affecting the solution at the wall, especially in the nose region. Further-

more, these oscillations are grid dependent at all the frequencies. In particular, it can

be seen that the grid resolution has a strong influence on the phase and the wavelength

of such oscillations, with the wavelength decreasing as the grid size is increased. This is

evident by looking closely at the oscillations in the nose region shown in figure 3.9, and

by comparing the distance between two consecutive peaks for the solution obtained with

the coarse and the fine mesh. The amplitude is affected as well by the grid resolution,

but, while in the nose region it is decreased by refining the grid, as expected, further

downstream this effect is lost, and the oscillation amplitude seems no longer be reduced

by a higher grid resolution (figure 3.8).

These results for the numerical oscillations agree qualitatively very well with the results

shown by Lee and Zhong[74] on the post-shock spurious numerical oscillations using

shock-capturing schemes. In particular, in their work it is highlighted that a higher
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grid resolution decreases the wavelength of such oscillations, but provides only a slight

reduction of their amplitude, which, in turn, seems to be much more sensible to the

shock-grid alignment, as will be shown in Section 3.4.

Figure 3.8: Pressure fluctuation distribution along the wall at the lower fre-
quencies (a), and the higher frequencies (b), for two different grid levels

Figure 3.9: Close-up in the nose region of the wall pressure fluctuation distribu-
tion at the lower frequencies (a), and the higher frequencies (b), for two different
grid levels
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In conclusion, in the light of our grid resolution study, it emerges that the overall response

along the wall agrees very well between the two different grid levels, thus confirming a

good grid independence of the physical information provided by our numerical results.

The numerical oscillations are, in contrast, significantly sensitive to the grid resolution,

in terms of their phase and wavelength, and slightly grid dependent relative to their

amplitude.

3.3 Shock-adapted grid methodology

In this Section a new method to obtain grids aligned with the computational shock is

presented. Our default grid generation method (Bianchi et al.[83]) consists of adapting

the shape of the internal grid lines in proximity of the domain outer edge with the shock

shape estimated by Billing’s correlations (Anderson[1]) in function of the Mach number

and the radius of the circle for a cylinder-wedge geometry. However, although Billing’s

correlations provide a good approximation of the shock shape, there will be in general

a difference between the estimated shock shape by Billing’s correlations and the shape

obtained by the direct numerical simulations. This means that adapting the domain to

the shock shape estimated by Billing’s correlations will in general result in a certain level

of misalignment between the shock and the grid. For this reason, in order to suppress or

at least reduce in amplitude the grid-dependent post-shock oscillations, a new method

based on adapting the grid to the shape of the shock obtained in a previous numerical

simulation has been developed. The method consists of three steps: (i) first, computing

the baseflow of a particular numerical case by means of a grid obtained by Billing’s

correlations; (ii) then, computing the shock shape by identifying the points of maximum

spatial pressure gradient in the wall-normal direction, and finding a numerical fit to the

computed shock shape; (iii) finally, obtaining a new grid adapted to the shock shape, and

repeating the simulation from the previously computed solution. The final steady-state

solution contains a shock that is well aligned with the grid. This solution will then be

the starting solution for the unsteady simulations. As a first test of the methodology,

the equation used to fit the shock shape is the analytic equation of an east-west opening

hyperbola centred at the point (h, g) in a Cartesian coordinate system,

(x− h)2

a2
− (y − g)2

b2
= 1 , (3.1)

where h = −a − δst (with δst being the shock stand-off distance along the stagnation

line), g = 0, a is the distance between the centre of the hyperbola (intersection point

between its two asymptotes) and the vertex of each branch, and b is linked to a through

the relation b = a tan θ, with θ being the inclination angle of the asymptotes with the

hyperbola transverse axis (which is the x-axis in our case). Figure 3.10 shows, for

illustration purposes, the example of an east-west opening hyperbola centred at the
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origin of the Cartesian coordinate system. Among the two branches (blue curves) of the

hyperbola shown in figure 3.10, we take the one on the right hand side, along the positive

x-semi-axis. The value of h translates the hyperbola vertex (the intersection with the

x-axis) to the point on the negative x-semi-axis where the shock is located along the

stagnation line. In fact, in our non-dimensional Cartesian reference system the centre of

the circular leading edge is at the origin of the axes and the stagnation point is located

at (-1,0) (as evident in figure 3.2).

Figure 3.10: Illustration of an east-west opening hyperbola centred at the origin
of the coordinate system

From the first baseflow solution, the stand-off distance (δst) along the stagnation line

and the inclination angle (θ) of the shock shape at a large distance from the nose (at

a theoretically infinite distance it is equal to the inclination angle of the oblique weak

shock formed on a ramp with the same inclination angle as the half-wedge angle) can

be evaluated. Finally, the parameter a is varied until the value that provides the best

fit between the hyperbola and the shock shape is found. Once all the coefficients in

equation 3.1 are known, they are used in the grid generation process. The resulting

adapted grid will then contain a j-line exactly following the analytical hyperbola fitting

the computational shock. This method has proved good capabilities of noise reduction,

which make it suitable for the purposes of our 2D simulations, namely the laminar

wall-response analysis to freestream disturbances. In particular, the effectiveness of this

shock-grid alignment technique, applied to a 2D Mach 6 case with an angle of attack,

will be shown in Section 3.4.

The shock-adapted grid obtained through the method of the analytical hyperbola de-

scribed above provides, in general, a good overall shock-grid alignment through the whole

length of the shock curve, but can still allow the presence of small local misalignments,

in particular in the curvilinear part of the bow shock. This happens, for example, in

cases where the numerical solution is affected by some oscillations or ‘bump’ along the

shock curve, which may be due to the presence of a small background numerical noise,
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unsteadiness of the solution, a poor initial grid resolution, or geometrical imperfections

of the wall, as in the case of localised roughness (which is not treated in the present

study). In all these cases, it is more practical to use a method that does not force

the grid to follow a regular shape according to an analytical formula. For this reason,

a method based on a spline interpolation has also been developed. This method fits a

spline curve, computed over all the x points of our grid resolution, through some selected

points along the computational shock, in order to obtain a smooth curve with y coor-

dinates adjusted to guarantee a local shock-grid alignment also in the irregular regions

of the numerical shock. Then, through an iterative procedure (after each computation

a spline-based shock-adapted grid is obtained, which will be the grid of a successive

simulation, and so on), a smoother computational shock is obtained. The smoother is

the shock, the more regular will be the next-step adapted grid. The final result will be

a properly smooth highly shock-aligned grid, along with a high-quality baseflow to be

used as restart solution of the unsteady simulations. Figure 3.11 shows an example of

one application of the spline-based method (for a symmetric Mach 6 case). As can be

seen, a very good alignment is obtained everywhere along the shock.

Figure 3.11: Example of shock-adapted j- grid line in the curvilinear part of
the shock, obtained through a spline interpolation

Due to the above mentioned multi-step procedure, this method requires, in general,

more computational efforts compared to the analytic-hyperbola-based method, which,

in contrast, provides a regular grid straight from the beginning. For this reason, the

spline-based method is used only for the 3D span-periodic wedge simulations (that will

be treated in Chapter 5), in which the analysis of the breakdown-transition process,
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especially at the low freestream disturbance amplitudes, requires very low levels of

numerical-noise contamination. In particular, for these cases, the shock-grid alignment

is achieved through 2D simulation of the corresponding baseflow (the geometry is a pla-

nar span-periodic wedge), in both swept and unswept cases. The 2D shock-adapted grid

is then extruded in the third dimension, and unsteady simulations with 3D freestream

disturbances are carried out. For the 3D simulations relative to the Mach 6 generic

forebody geometry (Chapter 6), instead, none of the above described method is used,

as the shock-grid alignment methodology was not extended to a generic 3D geometry.

However, for the 3D generic forebody case, an excellent shock-grid alignment is not re-

quired, as, due to a small half-wedge angle (4◦) and to very high values of the sweep

angle reached by the leading edge in the off-centerline region (see geometry details in

Chapter 6), a relatively weak shock is formed in front of the body, which producing

very small noise levels not affecting the physical solution. For this reason, and as the

unsteady simulations have been performed only at high freestream amplitude levels, the

effect of post-shock numerical oscillations on the boundary-layer solution is negligible in

this case. Hence, the standard method, based on Billing’s correlations, has been used

to generate the 3D grid in the generic forebody case.

3.4 Effect of the shock-grid alignment. Application to the

case M = 6, Re = 630 and α = 10◦, for the wedge with

two-dimensional acoustic waves

In this Section we show an application of the shock-adapted grid method based on the

analytic hyperbola to a case with an angle of attack of 10◦, whose solution is affected

by the shock-grid misalignment problem, particularly on the windward side (the bottom

side of the wedge). The problem of the numerical noise generated behind the shock is

seen in figure 3.12, which shows the density fluctuation field obtained by inserting fast

acoustic waves in the flow direction with an amplitude of 10−4. As can be seen, on the

windward side (where the shock is stronger) there are strong post-shock oscillations (or

density spikes) originating from the shock and travelling downstream. This numerical

noise corrupts the solution of the wall pressure fluctuation distribution along the bottom

side of the body for each acoustic frequency (a set of 10 frequencies from 50 kHz to 500

kHz with different phase), as shown in figure 3.13 (the wall pressure fluctuations p′w are

normalised with the freestream pressure fluctuation p′∞).
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Figure 3.12: Density fluctuation field with the initial non-adapted grid

Figure 3.13: Pressure fluctuation distribution along the wall at different fre-
quencies on the windward side, with the initial non-adapted grid, for the lower
frequencies (a) and the higher frequencies (b)
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Figure 3.14 shows the comparison between the computed shock shape, the shape of the

initial grid and that of the shock-adapted grid obtained through the analytic-hyperbola

method described in Section 3.3. The shape of the initial grid corresponds to the grid

line that follows the shock shape estimated by Billing’s correlations (for zero angle of

attack), while the one concerning the adapted grid corresponds to the grid line following

the analytical hyperbola used in this example to fit the computed shock. Clearly, there

is a significant misalignment issue on the lower side with the initial grid, while the new

method provides a very good fitting both on the upper and the lower side.

Figure 3.14: Shock shape computed with the initial grid, compared to both the
initial and the new adapted grid shapes

Due to the asymmetry of this particular case, two different hyperbolic functions (with

different angle θ and parameter a) have been used separately to fit the shock shapes on

the upper and the bottom sides of the body. The result is a asymmetric shock-adapted

grid, as shown by figure 3.15 in the nose region. Figure 3.16 shows the details of the

new adapted grid along the lower side of the wedge, and the alignment with the shock

curve (red line) computed with the initial grid.
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Figure 3.15: Details of the asymmetric shock-adapted grid in the nose region.
The red line indicates the curve of the shock computed with the initial grid.
Size = 2240 × 200, grid plotted every 4 and 3 points in the wall-normal and
wall-tangential directions respectively

Figure 3.16: Asymmetric shock-adapted grid along the lower side of the wedge.
The red line indicates the curve of the shock computed with the initial grid.
Size = 2240 × 200, grid plotted every 5 and 20 points in the wall-normal and
wall-tangential directions respectively
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Figure 3.17 shows the effect of the grid alignment on the shock shape on a certain

portion of the shock along the bottom wedge. In particular, a comparison between the

locations of the points on the shock computed with the initial grid and those on the shock

computed with the new aligned grid is shown. The shape of the analytic hyperbola used

to generate the adapted grid is plotted as well. It is evident that the alignment has a

significant beneficial effect on the shock shape, which now follows very well the curve

corresponding to the hyperbola.

Figure 3.17: Effect of the grid alignment on the shock jumps, over a particular
portion of the shock along the bottom wedge

The new aligned grid provides much better solutions both for the density fluctuation field

and for the wall pressure distribution along the bottom side of the wedge, as shown by fig-

ures 3.18 and 3.19. It is, finally, important to mention that the regular high-wavelength

oscillations shown for the higher frequencies in figure 3.19 represent a physical behaviour

that will be explained in detail in the Chapter dedicated to the results of each numerical

simulation (Chapter 4).
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Figure 3.18: Density fluctuation field with the new shock-adapted grid

Figure 3.19: Pressure fluctuation distribution along the wall at different fre-
quencies on the windward side, with the new shock-adapted grid, for the lower
frequencies (a) and the higher frequencies (b)
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3.5 Local grid refinement on the shock

In addition to the shock-grid alignment, a method to redistribute the grid points inside

the computational domain to increase the point density locally on the shock has been

developed. This method is based on a new stretching function, different to the one

used by default in the grid generation procedure (described in Section 3.1, look for

example at figure 3.1), which is able to smoothly distribute the points along the wall-

normal direction increasing their density both in the boundary-layer region and near

the shock. The stretching function is a function of the variable j (grid point number)

along the direction normal to the wall, which multiplies the distance of the outer edge

of the domain from the wall for each value of i (i.e. for each wall-normal grid line),

thus assigning the position of each grid point along the j (normal) direction between

the wall and the outer edge. For example, when the stretching function is equal to 0

the points are assigned on the wall, when it is 1 the points are assigned on the outer

edge, while when it is 1/(1 + d) (where d is a number between 0 and 1 that represents

the percentage of the shock stand-off distance by which the domain outer edge has to be

shifted outwards from the shock, e.g. 0.2 stands for the 20 % of the stand-off distance)

it is the shock position.

The above mentioned stretching function is of the form

S(j) =
fs(j)

fs(Ny)
, (3.2)

with

fs(j) = 2
(
η2 + aη

)
− tanh(b(η − c)) + tanh(bc)

tanh(b(1− c)) + tanh(bc)

+
4bηe2bc

[tanh(b(1− c)) + tanh(bc)] (1 + e2bc)2
,

(3.3)

in which a is the control parameter of the gradient at the wall (which is set to 0.2 in

our simulations), b is the stretching coefficient (a usual value is, e.g., b = 4), c is a

control parameter (between 0 and 1) for the position (along the j direction) of the local

refinement region, whose value needs to be appropriately assigned in order to centre the

refinement zone on the j location of the shock computed in a previous simulation, and

Ny is the total number of grid points in the normal direction. The function η is defined

as

η =
j − 1

Ny − 1
, j = 1, .., Ny . (3.4)
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The stretching function S(j) distributes the points following the trend shown in figure

3.20.

Figure 3.20: Example of point distribution (or stretching) function along the
wall-normal (j) direction

In figure Figure 3.20, yn is the distance from the wall for each point j, and δ denotes

the distance of the outer edge of the domain from the wall. In this example the shock is

located at 0.58 times the outer-edge distance, which means that the domain outer edge

is shifted outwards from the shock by a factor of 0.72 times the shock stand-off distance.

As is evident from the figure, the local refinement in the boundary layer and in the

shock region is obtained by smoothly varying the function gradient in the j direction, so

that to reduce it when crossing the boundary layer and the shock regions and increase it

elsewhere. In particular, the lowest values of the gradient are reached at the wall and at

the shock location; these, in turn, represent two parameters that can be tuned in order

to control the stretching intensity (or density of points) towards the wall and on the

shock. This method gives a sharper shock, thus increasing the quality of the solution,

for a limited number of grid points in the wall-normal direction.

In figure 3.21 an example of a shock-aligned grid (with the method of the analytical hy-

perbola), with local refinement on the shock obtained by the stretching function describe

above, is shown.
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Figure 3.21: Example of shock-adapted mesh with refinement on the shock.
Size = 560 × 200, grid plotted every 3 and 2 points in the wall-normal and
wall-tangential directions respectively

This mesh has been tested for the case (among those considered in Chapter 4) with

M = 6, Re = 630, and α = 0◦ (which is the same considered in the resolution study in

Section 3.2), inserting fast acoustic waves with a set of 10 frequencies (from 50 to 500

kHz) and a freestream disturbance amplitude (for the density) of 1× 10−4. Figures 3.22

and 3.23 show respectively the results of the mean pressure field and the mean Mach

number field, highlighting the shock sharpness and the smooth solution downstream of

the shock.
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Figure 3.22: Mean pressure field. M = 6, Re = 630, α = 0◦

Figure 3.23: Mean Mach number field. M = 6, Re = 630, α = 0◦. Only half
domain is shown, due to the symmetry of the solution

Figure 3.24 shows a comparison between the wall pressure fluctuation distributions

(along the wedge) obtained with the shock-adapted locally-refined grid (with grid size
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560×200) and those obtained with the original grid (e.g. without local refinement on the

shock, and based on Billing’s correlations for the shock shape). In particular, the result

for the original grid is the same result shown in the resolution study in Section 3.2 for

the finer grid (with grid size 2244×150). Hence, the considered test represents a further

grid resolution study of the same numerical case, but focused on the early leading-edge

region and involving both the effects of shock-grid alignment and local refinement on

the wall-response solution.

Figure 3.24: Wall pressure fluctuation distribution for the lower frequencies (a)
and the higher frequencies (b). M = 7.3, Re = 440, α = 0◦

It is evident from figure 3.24 that the shock-grid alignment along with the local refine-

ment on the shock provide a significantly smoother solution along the wall in the nose

region for all frequencies, without the presence of the numerical oscillations which affect

the solution on the original mesh.

The method of the local refinement on the shock imposes strict limits on the effective time

needed to perform a simulation run. In particular, the minimum ∆x in the shock region

along the stagnation line can significantly reduce the minimum allowable time step of the

simulation (even of one or two orders of magnitude), if the point density on the shock is

too high. This means that the stretching on the shock has to be controlled properly, so

that to impose a gradient of the point distribution function on the shock (see figure 3.20)

that is not lower than a certain threshold value, which, in turn, is problem dependent.

This clearly increases the complexity of the grid generation process. Another limit of
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this method is represented by the fact that changing significantly, through the shock

refinement, the internal morphology of the grid, with respect to an initial mesh with a

different point distribution, will result in the shock assuming a slightly different position

in the new simulation with respect to the initial solution. As a consequence, a multi-step

procedure is required for the shock-grid alignment method to allow convergence of the

adapted grid to the final computed shock shape.

Due to above described challenges, the local shock refinement method has been used,

in conjunction with the spline-based shock-grid alignment method described in Section

3.3, only in our 3D simulations for the span-periodic wedge (whose results will be shown

in Chapter 5), in which, as already mentioned in Section 3.3, the analysis of the full

receptivity-breakdown-transition process in the presence of small-amplitude freestream

disturbances requires the solution inside the boundary layer to have minimal levels of

numerical noise.



Chapter 4

Results for the wedge probe with

two-dimensional acoustic waves

In this Chapter we will present the results obtained for the set of 2D numerical simu-

lations concerning the DLR experiments on the wedge probe. Six different freestream

conditions have been considered overall, with Mach number ranging from 3 to 7.3. As

already mentioned in Chapter 3, for all the cases with a symmetric mean flow (5 out of 6

cases) the standard grid generation method based on Billing’s correlations has been used,

while for an asymmetric case (the case with 10◦ angle of attack), shock-grid alignment

has been provided through the method based on the analytical hyperbola.

4.1 Flow conditions for the 2D numerical cases

Table 4.1 shows the flow conditions for the numerical cases studied, namely freestream

Mach number (M), unit Reynolds number (Rem), stagnation temperature (T ∗0 ), freestream

temperature (T ∗∞), freestream pressure (p∗∞), wall temperature ratio (T ∗w/T
∗
∞), angle of

attack (α), and angle of incidence of the acoustic waves (θ). These represent the same

flow conditions as a set of experiments carried out at DLR on a probe (Wagner et al.

[84]) designed to measure the disturbance levels in a high and low enthalpy hypersonic

wind tunnels. The nose radius is R∗ = 0.1 mm, and the half-wedge angle is set to 20◦.

In particular, cases 1 to 3 are relative to the tests in the Göttingen High Enthalpy Shock

Tunnel (HEG), and cases 4 to 6 are relative to the tests performed in the DNW Ludwieg

Tube (RWG).

Each of the six cases in table 4.1 has been simulated with both fast and slow acoustic

waves as freestream disturbances, giving a total of 12 numerical simulations.

59



60 Chapter 4 Results for the wedge probe with two-dimensional acoustic waves

Table 4.1: Flow conditions of the six numerical simulations

Case M Rem (1/m) T ∗0 (K) T ∗∞ (K) p∗∞ (Pa) T ∗w/T
∗
∞ α (◦) θ (◦)

1 7.3 4.4×106 2740 234.034 2004.301 1.273 0 0
2 7.3 1.4×106 2680 228.909 619.337 1.302 0 0
3 7.3 1.4×106 2680 228.909 619.337 1.302 0 10
4 6.0 6.3×106 559 68.571 588.852 4.346 0 0
5 6.0 6.3×106 559 68.571 588.852 4.346 10 0
6 3.0 12.0×106 258 92.538 3588.5 3.22 0 0

Preliminary simulations were carried out for case 1 with fast acoustic waves, over a

small domain (grid size 360 × 150) with streamwise length equal to 10 nose radii, and

geometry presented in figure 4.1, in order to check the linearity of the pressure response

along the wall, with disturbance amplitudes ranging from 10−1 to 10−4. The imposed

single frequency in the preliminary simulations is high enough to provide a wavelength

comparable with the size of the domain.

Figure 4.1: Computational domain

Figure 4.2 shows the amplitude of the pressure fluctuations at different points along the

wall versus the amplitude of the imposed density fluctuations in the freestream. An

excellent linearity trend of the wall pressure response between the different freestream

amplitudes at all the different points along the wall is shown. In figure 4.3 the instanta-

neous density fluctuation field for the amplitude 1.0×10−2 is presented. Here, the results

show that the waves travelling along the wedge form two detached wave peaks of the

same sign, one located in the boundary layer, the other behind the shock. This pattern
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is qualitatively in good agreement with results found in literature (e.g. Kara et al.[39]),

and indicates the presence of boundary-layer perturbations developing downstream.

Figure 4.2: Pressure fluctuation amplitude at different points along the wall,
from the stagnation point to the position x = 7 (with the outlet at x = 9), for
increasing freestream amplitudes of the acoustic waves

Figure 4.3: Instantaneous density fluctuation field
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The boundary conditions applied to all the cases listed in table 4.1 are the following:

• fixed inflow boundary condition, with all the physical quantities set to their freestream

values, applied until convergence to the steady state is reached;

• time periodic inflow condition corresponding to the 2D acoustic-wave inflow de-

scribed in Section 2.2, applied to the steady base flow solution, in the unsteady

computations, until periodic convergence is reached everywhere in the flowfield;

• no-slip and isothermal boundary conditions at the wall, with values of the wall

temperature ratio listed in table 4.1;

• zero-gradient outflow boundary condition (at both the outflow boundaries) applied

along the direction of the j-grid lines.

Finally, it should be mentioned that the initial state of the steady-state simulations

corresponds to a uniform freestream flow at all the points inside the domain.

4.2 Preliminary validation of the code

Another preliminary simulation was performed in order to validate our results for the

unsteady quantities with those numerically obtained at Langley Research Centre by

Balakumar (private communication) for case 1 (M = 7.3, Re = 440), with slow acoustic

waves as freestream forcing. For the present validation test case, only one frequency

(150 kHz) of the slow planar acoustic waves was considered. The length of the domain

is, in this case, 400 nose radii. The results of this validation test case are presented in

figure 4.4, which shows a comparison of the results for the instantaneous wall pressure

fluctuation distribution (here both positive and negative values are shown, not the am-

plitude) obtained by Balakumar and those obtained through our computations. In both

cases, the wall pressure fluctuations have been normalised with the corresponding pres-

sure amplitude imposed in the freestream. Our numerical results are shown for both a

non-aligned grid (red solid curve), namely a grid obtained through the standard method

based on Billing’s correlations, and a shock-aligned grid (black dotted line) obtained

through the spline-based method, already discussed in Section 3.3.
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Figure 4.4: Wall pressure fluctuations for the frequency 150 kHz with freestream
slow acoustic waves. Case1, M = 7.3, Re = 440

As can be seen, there is a very good agreement in the wall response between Balaku-

mar’s data and our numerical results, for both the aligned and non-aligned grids. This

demonstrates the capability of the SBLI code, as well as the suitability of both grid

types, to provide physical results for the considered numerical simulations. The aligned

grid shows in general a slightly smoother profile compared to the non-aligned grid, es-

pecially in the nose region (x = 0− 150), but is still affected by a small numerical noise

further downstream. This is mainly due to the fact that, although a high shock-grid

alignment level is achieved for the mean flow, in the unsteady simulations the physical

oscillations of the shock wave, induced from the interaction with the freestream acoustic

waves, result in the alignment being lost locally and numerical oscillations being released

downstream of the shock, which are higher in the coarser part of the domain (namely

the downstream region). Also, in this case, the presence of a relatively strong shock,

due to the high values of the Mach number (7.3) and the half-wedge angle (20◦), makes

the unsteady solution very sensitive to the misalignment effects. The standard (i.e.

non-aligned) grid, in contrast, provides slightly more pronounced numerical oscillations

everywhere in the wall response, which, however, do not influence the physical solution,

as was already shown in the resolution study in Section 3.2.

In the light of these results, the noise level produced by the standard grid can be con-

sidered acceptable for the purposes of the present set of 2D simulations, thus motivating

the use of the standard (and less numerically expensive) grid generation method based

on Billing’s correlations for all the cases with symmetric mean flow (in which a fairly

good approximation of the shock shape is obtained through the standard method).
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As already said in Chapter 3, the spline-based shock-grid alignment method is used

for all our 3D numerical cases in Chapter 5 (for the span-periodic wedge), where the

downstream propagation of small numerical oscillations present in the wall response

might affect significantly the transition mechanism. Moreover, in order to suppress the

residual oscillations present in the solution obtained through the adapted (i.e. aligned)

grid (as shown in figure 4.4), a local grid refinement on the shock is used as well for the

3D cases in Chapter 5, which provides a further improvement of the solution quality, as

shown in Section 3.5.

4.3 Results for the 2D unsteady simulations

In this section we present numerical results for the cases listed in table 4.1 with planar

fast and slow acoustic waves in the flowfield, with multiple frequencies and a density

perturbation amplitude of 1 × 10−4 at each frequency. The dimensionless frequency is

normalised with the nose radius and the freestream velocity as f = f∗R∗/U∗∞. For all

the cases with fast acoustic waves, a set of 10 multiple frequencies ranging from 50 kHz

to 500 kHz has been imposed; while, for slow acoustic waves, the frequency range is

case dependent. In particular, considering the numerical simulations with slow acoustic

waves, 10 frequencies have been inserted from 20 kHz to 200 kHz for case 1, from 25 kHz

to 250 kHz for cases 2 and 3, and from 50 kHz to 500 kHz for cases 4, 5 and 6. These

ranges were chosen in order to increase the frequency resolution at lower frequencies

for the HEG cases (namely cases 1 to 3) with slow acoustic waves. The phases φn in

equation 2.12 are chosen as fixed random numbers in the range 0 to 2π. The overall

amplitude level (rms of ρ′∞) of the multi-frequency signal imposed in the freestream is

2.24× 10−2 for each case.

The domain length is 400R and the grid size for cases 1, 2, 3 and 4 in table 4.1 is

2244×150, while the grid size for cases 5 and 6 is 2244×200. As already said before,

the grids for cases 1 to 4, and 6 were obtained through the standard (based on Billing’s

correlations) method, while for case 5 the analytical-hyperbola-based method has been

used to provide shock-grid alignment. Numerical results are presented for the instanta-

neous density fluctuation field, and for the pressure fluctuation amplitude distribution

along the wall at different frequencies, the latter having been computed through a Fast

Fourier Transform approach. The wall pressure fluctuation amplitude is normalised with

respect to the freestream pressure fluctuation amplitude at each frequency (i.e. p′w/p
′
∞).

For the symmetric cases (case 1, 2, 4, 6), the results are presented on the top side of the

wedge, while for the asymmetric cases (case 3, 5), the corresponding values are plotted

for both the upper and the lower sides.

It is important to mention that wall temperature fluctuations are not considered in

our numerical simulations, as the wall temperature is fixed to a constant value by the



Chapter 4 Results for the wedge probe with two-dimensional acoustic waves 65

isothermal boundary condition, which applies to the experiments in hypersonic wind

tunnels, where the short duration of the test does not cause significant changes in the

wall temperature.

4.3.1 Structure of the disturbance field

The structure of the disturbance field behind the shock wave is first qualitatively anal-

ysed through plots of the density fluctuation field for two different Mach numbers, the

highest (Mach 7.3) and the lowest (Mach 3) of those considered. Figures 4.5 and 4.6

show the density fluctuation field for the Mach 7.3 case (case 1) with fast and slow

acoustic waves respectively, while figures 4.7 and 4.8 show the corresponding results for

the Mach 3 case (case 6). While for case 6 the frequency range for fast and slow acoustic

waves is the same (50-500 kHz), for case 1 the frequency ranges considered for fast and

slow acoustic waves are different, being 50-500 kHz for fast waves, and 20-200 kHz for

slow waves.

For case 1 and fast acoustic waves (figure 4.5), the waves downstream of the shock form

with a lower wavelength (an effect of the higher frequency range), compared to the slow

wave case (figure 4.6), and with a clear inclination angle of the wave fronts with respect

to the y-axis, suggesting a delay of the waves that have crossed the shock with respect

to the freestream wave fronts.

Figure 4.5: Density fluctuation field for fast acoustic waves. For the symmetry
of the solution, only half the domain is shown. Case 1, Mach = 7.3
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Figure 4.6: Density fluctuation field for slow acoustic waves. For the symmetry
of the solution, only half the domain is shown. Case 1, Mach = 7.3

For slow acoustic waves, the post-shock wave fronts appear more compact and with a

lower inclination angle, namely they are more aligned with the y-axis (and with the

freestream wave fronts), suggesting in turn a more uniform propagation speed of the

disturbances downstream of the shock. This difference between the fast and slow acoustic

wave structure in the post-shock region is more evident in figures 4.7 and 4.8 for case

6 at Mach 3. In particular, the wave structure behind the shock appears to be more

complex in the case of fast waves (figure 4.7), with a system of different waves with

opposite inclination angles.
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Figure 4.7: Density fluctuation field for fast acoustic waves. For the symmetry
of the solution, only half the domain is shown. Case 6, Mach = 3

Figure 4.8: Density fluctuation field for slow acoustic waves. For the symmetry
of the solution, only half the domain is shown. Case 6, Mach = 3

Figure 4.9 shows a sketch of the inclination angles and phase speeds of the wave fronts

upstream and downstream of the shock, illustrating the characteristics of the propagation

of the main waves in the post-shock region. A generic freestream wave front (depicted

by a black dashed line aligned in the vertical direction) is labelled as wt and wt+δt at the



68 Chapter 4 Results for the wedge probe with two-dimensional acoustic waves

instants of time t and t+δt respectively. The blue oblique dot-dashed line along the shock

indicates the shock direction, and σ the angle of the oblique shock with respect to the

x-axis. The angle β represents the inclination angle of the wave front in the post-shock

region with respect to the wall direction, and δ = 20◦ is the half-wedge angle. The vectors

in the x-direction, denoted by c∞ and cps, represent respectively the freestream and the

post-shock phase speed of the disturbances in the x-direction (the main propagation

direction of the imposed waves), which for a time unit δt = 1 are coincident with the

x-displacement vectors of two different points on the same wave front upstream and

downstream of the shock. The lower length of the vector cps indicates that the portion

of the wave front that has crossed the shock is propagating with a lower streamwise phase

speed, compared with the portion of the wave front still upstream of the shock, so that,

after the time delay δt, the post-shock wave front reaches a point that is upstream of the

point reached by the freestream wave front. These two points are located on the inclined

black dashed line connecting the shock to the wall, which represents the deflected (or

‘dragged’) wave front due to the lower phase speed in the post-shock region. As the

geometry is two-dimensional and the region of the computational domain considered in

figure 4.9 is far enough away from the leading-edge (thus from the curvilinear part of the

shock), the flowfield and the disturbance field behind the shock outside the boundary

layer can be considered as approximately uniform, which explains why the post-shock

dragged waves appear as oblique straight lines running from the shock to the boundary

layer.

Figure 4.9: Expanded view of the density fluctuation field for fast acoustic
waves, and sketch of the propagation features of the wave fronts upstream and
downstream of the shock (Case 6, Mach = 3)
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For the specific flow conditions of case 6 (Mach 3), the freestream phase speed is c∞ =

u∞ + a∞ = 1 + 1/M = 1.33. A theoretical estimation of the phase speed behind the

shock, cps, can be made through the inviscid oblique shock theory, which links the x-

convection velocity ups and the local speed of sound aps to the normal (to the shock)

freestream Mach number through the normal shock jump relations. From the knowledge

of the angle σ of the oblique shock for a supersonic flow at Mach 3 over a wedge of δ = 20◦

half-wedge angle (σ = 37.7◦), the normal freestream Mach number can be computed as

Mn = M sinσ = 1.83, and, by applying the shock jump relations, we compute a value

for the post-shock x-wise phase speed equal to cps = ups + aps = 1.195. From the values

of c∞ and cps, the inclination angle of the wave front in the post-shock region with

respect to the x-axis (αx) can be computed through the relation

αx = tan−1
(
c∞ tanσ

c∞ − cps

)
, (4.1)

which gives a theoretical estimation of the wave front inclination angle of αx = 82.5◦.

This angle represents the sum of the angle β (see figure 4.9) and the half-wedge angle.

The numerical value of αx corresponding to the results shown in figure 4.9 (i.e. inclina-

tion of the wave front in the post-shock region) is αx = β + δ ≈ 81◦, which is close to

the theoretical estimation (with a relative error of 1.8% between the theoretical and the

numerical results), indicating that the inclined wave fronts behind the shock in figure

4.9 are indeed dragged waves propagating with the velocity of the local fast acoustic

waves behind the shock.

The presence of another type of wave with an opposite inclination can be noticed in

figure 4.7 (whose direction is indicated by a red dashed line) close to the boundary

layer. These waves can be considered as waves generated by the interaction of the main

dragged waves with the surface and then reflected downstream. The fronts of these waves

form an angle of about 135◦ with respect to the x-axis (considering angles starting from

zero at the x-axis and increasing anticlockwise). This value corresponds in turn to an

inclination of about 45◦ of the wave vector (normal to the wave fronts) of the reflected

waves, which, subtracting the wall inclination angle (δ), provides a propagation direction

of approximately 25◦ with respect to the local flow direction. This value is slightly lower

than the local Mach angle, which is equal to 30◦ at the boundary-layer edge. Hence, this

second type of waves appear to be reflected fast waves propagating downstream with an

angle close to the local Mach angle.

Case 6 with slow acoustic waves, depicted in figure 4.8, shows a significantly different

structure of the waves behind the shock, made up of wave fronts deflected in an opposite

angle compared to the fast-wave case. This indicates that the post-shock wave struc-

ture is dominated by transmitted waves travelling with a phase speed higher than the

freestream phase speed of the slow acoustic waves. Applying the same method used for

the fast acoustic wave case, the post-shock propagation speed of the wave fronts, cps,
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can be evaluated from the numerical results, by the knowledge of the freestream phase

speed of the slow acoustic waves (c∞ = 1 − 1/M = 0.66), the numerical result for the

oblique shock angle (σ = 38.5◦, compared to the theoretical value of σ = 37.7◦ given

above), and the inclination angle of a generic wave front (αx = 112◦, with respect to

the x-axis), as cps = c∞(1 + tanσ/ tan(αx− 90)) = 0.87. This value has been computed

by assuming waves travelling in the x-direction, which is the preferential direction of

the imposed acoustic waves. From the numerical results, the x-direction velocity just

downstream of the shock is ups = 0.774 (computed at x = 200), and the speed of sound

at the same point is aps = 0.419, which gives a value, for the local x-wise phase speed

of fast acoustic waves, of cFps = ups + aps = 1.193, and, for slow acoustic waves, a value

of cSps = ups − aps = 0.355. The disagreement of both the post-shock phase speeds of

fast and slow acoustic waves with the estimated value of cps = 0.87 suggests that the

transmitted waves are neither fast nor slow acoustic waves, but that they might repre-

sent convected waves travelling in the local flow direction (approximately tangential to

the wall). By repeating the same procedure based on the inclination of the wave fronts,

but assuming post-shock waves propagating in the local flow direction (namely with the

wave vector inclined at 20◦ with respect to the x-axis), we obtain an estimated value for

the x-component of the post-shock phase speed of cps = 0.76, which is much closer to the

x-wise convection velocity component of 0.774. We have not considered the effect of the

boundary-layer displacement thickness on the streamline direction, so the relative error

of 1.8% between cps and ups is small enough to conclude that in this case the post-shock

waves are convected waves (including vortical and entropy waves) travelling in the local

flow direction, which are generated downstream of the shock through the interaction

with the freestream disturbances.

Another feature of the post-shock generated disturbance field for our considered cases is

that the slow waves induce a significantly lower amplitude response downstream of the

shock than the fast waves, for both case 1 (figures 4.5 and 4.6) and case 6 (4.7 and 4.8).

Again, this difference is more pronounced in the lower Mach number case (case 6).

Hence, a decreasing Mach number is seen to enhance the difference in the wave propa-

gation features downstream of the shock between fast and slow acoustic waves. This is

because the lower the Mach number, the higher is the difference in phase speed between

fast and slow waves, due to the higher contribution of the sound speed on the propaga-

tion velocity, while for a theoretically infinite Mach number the phase speeds of the two

wave types would collapse to the same value (1 + 1/M = 1− 1/M , for M =∞). This is

one of the main Mach number effects on the boundary-layer receptivity characteristics,

and explains why, at the high Mach numbers, the discrete internal modes (mode F and

mode S) have similar values of the phase speed and are already synchronised with the

continuous spectrum of external acoustic waves.
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4.3.2 Validation of the numerical results through the linear interaction

theory

The numerical results for the structure of the disturbance field in the post-shock region

and the theoretical approach for the estimation of the transmitted wave class (illustrated

in Section 4.3.1 for the Mach 3 case) can be compared with the interaction theory of linear

freestream disturbances with oblique shock waves, described by McKenzie and Westphal

[13]. They formulated Snell’s laws of refraction for plane acoustic and nonacoustic

waves striking an oblique shock, in the hypothesis of small disturbances. In particular,

considering an incident wave striking the shock from ahead with a certain inclination

angle and at a generic frequency, the inclination angle of the diverging wave generated

behind the shock was obtained by imposing the continuity of the frequency (ω) and of

the component of the wave vector tangential to the shock (kτ ) between the incident and

the diverging wave, namely, ω∞ = ωps and kτ,∞ = kτ,ps, where the subscript ‘τ ’ indicates

the tangential-to-the-shock direction. Following this approach, McKenzie and Westphal

[13] derived an equation giving the inclination angle of the diverging wave in the case of

an incident acoustic wave generating an acoustic wave downstream of the shock as

cosλps,ac =
−(aps/a∞)2 sin2 λ∞Mn,ps + {Θ[Θ− (aps/a∞)2 sin2 λ∞(1−M2

n,ps)]}1/2

(aps/a∞)2 sin2 λ∞M2
n,ps + Θ

,

(4.2)

Θ = (1 +Mn,∞ cosλ∞)2 , (4.3)

and in the case of an acoustic wave generating an entropy/vorticity wave downstream

of the shock as

tanλps,ev =
(aps/a∞)2Mn,ps(± sinλ∞)

1±Mn,∞ cosλ∞
, (4.4)

where λ is the inclination angle of the wave vector (k) with respect to the shock-normal

direction, as illustrated in figure 4.10, the subscripts ‘∞’ and ‘ps’ indicate quantities in

the freestream and in the post-shock region respectively, Mn is the Mach number in the

shock normal direction, and the subscripts ‘ac’ and ‘ev’ refer respectively to acoustic and

entropy/vorticity waves generated downstream of the shock. Equation 4.2 applies to an

incident fast acoustic wave generating a fast wave behind the shock, while in equation

4.4 the +(−) sign applies to fast (slow) incident waves. The refraction law for incident

slow acoustic waves generating slow waves behind the shock is given by equation 4.2

provided the terms sinλ∞ and cosλ∞ are replaced by − sinλ∞ and − cosλ∞. In figure

4.10, k∞ is the wave vector of the incident wave, which, for the considered case (Mach
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3 case), is aligned with the flow direction, the versors τ̂ and n̂ indicate the tangential

and the normal directions to the oblique shock (inclined of the angle σ with respect to

the flow direction), while kps is the wave vector of the refracted wave behind the shock.

From the numerical results for the considered case, the value of the oblique shock angle

is σ = 38.5◦, thus the value of the angle of the incident free-stream waves we use as input

in equations 4.2, 4.3 and 4.4 (with reference to figure 4.10) is λ∞ = 90◦− 38.5◦ = 51.5◦.

Similarly, for the input terms Mn,ps and aps, we use the numerically obtained values,

while the terms Mn,∞ and a∞ simply represent free-stream conditions of the considered

numerical case.

By applying equations 4.2 and 4.3 for the Mach 3 case with fast acoustic waves, whose

wave structure behind the shock is shown in figure 4.7, we obtain a refraction angle of the

fast wave equal to λps,ac = 41.04◦, which is very close to the numerical refraction angle

of λps,ac = αx − σ = 42.5◦ (with αx = 81◦). This indicates that the transmitted waves

behind the shock are indeed refracted fast acoustic waves, as was previously deducted

from the theoretical estimation method based on the length of the streamwise phase

speed vectors upstream and downstream of the shock.

In the same way, applying equation 4.4 to the Mach 3 incident slow-wave case gives a

theoretical refraction angle for the generated entropy/vorticity waves of λps,ev = 74.53◦,

corresponding to a wave vector pointing upstream, which shows again a very good

agreement with the numerical result (shown in figure 4.8) of λps,ev = αx − σ = 73.5◦

(with αx = 112◦). This confirms that the main waves generated behind the shock due to

the interaction with incident freestream slow acoustic waves are indeed entropy/vorticity

waves.

Figure 4.10: Sketch of the incidence and refraction wave angles in the shock-
wave reference system
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In summary, the application of the linear interaction theory to our considered case

demonstrates the validity of our numerical results and, at the same time, of the theo-

retical method used to estimate the nature of the transmitted waves behind the shock,

based on the relative length of the phase speed vectors upstream and downstream of the

shock and on the inviscid oblique shock theory. The results obtained using the linear

interaction theory described by McKenzie and Westphal [13] confirm that, for the con-

sidered Mach 3 case, the dominant waves transmitted behind the shock from incident

fast acoustic waves are refracted (or dragged) fast acoustic waves, while the dominant

waves generated behind the shock from incident slow acoustic waves are entropy/vortic-

ity waves.

4.3.3 Response along the wall: resonance-modulation behaviour

In this Section the response along the wall for the pressure fluctuations is considered

for cases 2, 4 and 6 (see Table 4.1), in order to study the main characteristics of the

leading-edge receptivity mechanism, namely the generation, interaction and downstream

evolution of the induced boundary-layer modes, for different Mach numbers.

Figures 4.11, 4.13 and 4.15 show the pressure fluctuation amplitudes along the wall at

different frequencies respectively for cases 2, 4 and 6 with fast acoustic waves, while

figures 4.12, 4.14 and 4.16 show the corresponding results for the same cases with slow

acoustic waves. As can be seen, in case 2 the wall pressure fluctuation amplitude at each

frequency gradually increases with the distance from the leading edge for fast acoustic

waves (figure 4.11), while gradually decreasing for the slow wave cases (figure 4.12). The

rates of growth and decay (respectively for the fast and slow wave cases) increase with

the frequency, so that downstream along the wedge the higher frequencies reach higher

response levels for fast waves, and lower levels for slow waves. This difference between

fast and slow acoustic waves is the effect of a stronger resonance mechanism for fast

waves, namely the synchronisation between the forcing mode of the fast acoustic waves

and the internal boundary-layer fast mode (mode F, according to Fedorov [4]’s notation)

that is generated at the leading edge. This leads to an initial amplification of mode F

well upstream of the first neutral point of the second instability mode, which is not

included in the computational domain, in contrast with a weaker resonance mechanism

in the case of slow acoustic waves, leading to the generation and initial decay of the

boundary-layer slow mode (mode S).

The difference in the resonance mechanisms is due to the characteristics of the wave

transmission and propagation in the post-shock region, which determine the disturbance

field forcing the boundary layer. As described in the previous Section, in the case of

fast waves the transmission of the freestream acoustic waves across the shock appears

to be more efficient, with the main freestream wave fronts being deflected as they cross

the shock, due to the difference in phase speed upstream and downstream of the shock,
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and amplified according to the pressure increase downstream of the shock wave. In

the slow wave case, in contrast, the post-shock wave structure is dominated by lower

amplitude convected waves travelling faster than the freestream waves. These waves are

not synchronised with the slow mode generated at the leading edge. The interaction

of the slow mode with the forcing waves of the post-shock region does not produce an

efficient resonance mechanism, thus the response in the early nose region shows an initial

decay.

Figures 4.13 and 4.14, for case 4 with fast and slow waves respectively, show a pronounced

frequency-dependent oscillatory behaviour of the wall response for the fast wave case,

and a substantially flat response (after an initial decay) for the slow-wave case. This

is again due to the different interaction mechanism between the discrete boundary-

layer modes and the forcing disturbance field for fast and slow waves. However, in this

case, the wall response for both fast and slow waves appears as a continuation of the

initial (growth/decay) response shown by 4.11 and 4.12 for case 2 for fast and slow waves

respectively. This is essentially because, as U∞ decreases with decreasing Mach numbers

(for the considered cases, see table 4.1), the nondimensional frequencies increase, for the

same dimensional frequency range.

The large-wavelength oscillations shown in the fast-wave case are due to a modulation

process between mode F and the forcing acoustic mode, since after the initial synchroni-

sation the two are no longer coupled. Owing to the absence of a synchronisation with the

forcing mode, mode F decays in this region, according to its stable nature. This region

is known in the literature (e.g. Zhong and Ma[17]) to precede the region of synchroni-

sation between mode F and mode S, and the consequent excitation of mode S (which is

located downstream of our domain). We can describe the modulation mechanism with

a simplified model involving two different modes, in which the distance (∆x) between

two consecutive peaks of the oscillations, at a certain frequency f , is linked to the phase

speeds of the two competing modes (modes a and b) by the following relation (De Tullio

and Sandham [85])

∆x =
cacb

f |ca − cb|
, (4.5)

where ca and cb are the phase speeds of the two modes. Considering the wall response

at the frequency f=500 kHz in figure 4.13, the distance between two consecutive peaks

downstream (located at x = 262.5 and x = 372.5) is ∆x = 110. Assuming ca to

be coincident with the phase speed of the fast acoustic waves computed in the post-

shock region (ca = cps = 1.1), the phase speed of mode b, by applying equation 4.5 is

cb = 0.9179. Hence, in the downstream region the fast acoustic wave mode is modulated

by a mode whose phase speed is lower than the phase speed of the fast acoustic waves,
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and higher than the phase speed of the slow acoustic waves in the freestream (1−1/M =

0.83). This is consistent with the downstream decay of mode F, whose phase speed is

continuously decreasing from the leading edge, relative to the fast acoustic waves, until

it approaches the value of the phase speed relative to mode S beyond the length of our

computational domain. Hence the two competing modes in the modulation region can

be attributed to the forcing fast acoustic wave mode and the desynchronised mode F.

Figure 4.11: Wall response for case
2 (Mach 7.3) with fast waves

Figure 4.12: Wall response for case
2 (Mach 7.3) with slow waves

Figure 4.13: Wall response for case
4 (Mach 6) with fast waves

Figure 4.14: Wall response for case
4 (Mach 6) with slow waves

Figure 4.15: Wall response for case
6 (Mach 3) with fast waves

Figure 4.16: Wall response for case
6 (Mach 3) with slow waves

This modulation is even more evident in figure 4.15, for case 6 with fast acoustic waves.

Here, the frequency of 500 kHz shows a prolonged region of oscillation cycles due to the
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modulation process, downstream of the first peak (reached at about x = 50), with a

gradual decay in amplitude, which is caused by mode F being no longer synchronised

with the fast acoustic wave mode.

In contrast, figures 4.14 and 4.16, for cases 4 and 6 with slow acoustic waves, show a

faster initial decay, and a flat overall response at each frequency, with a significantly

lower amplitude compared to the fast wave cases. This suggests that mode S does

not combine with the forcing waves in the same way as mode F, but maintains a low

amplitude for an extended distance downstream, with a weaker modulation effect due

to the weak forcing waves (with different phase speed) in the post-shock region, without

becoming unstable within the computational domain. Due to the absence of a strong

resonance mechanism, the receptivity to slow acoustic waves in the nose region is lower

than to fast acoustic waves, and the difference in the amplitude level between the fast

and slow mode response along the wall is seen to increase as the Mach number reduces.

Finally, it should be mentioned that for each case, as seen in all the figures above, the

wall response starts from a high maximum value at the stagnation point, and decreases

rapidly along the circle until approaching (at the circle-wedge junction) the level assumed

along the wedge. This is due to the amplification of the waves when crossing the strong

normal shock along the stagnation line. Figures 3.4 and 4.3 in Sections 3.1 and 4.1

respectively show a qualitative example of the wave patterns close to the nose. The

freestream planar wave front is bent by the bow shock in front of the blunt leading

edge, while the disturbance amplitude downstream of the shock varies along the curved

wave front, assuming the highest values in the normal shock region. This produces

significantly higher values of the wall response along the circle, compared to the values

assumed by the response along the wedge, which is, in contrast, affected by the wave

propagation patterns downstream of the oblique shock.

4.3.4 Effect of wave inclination angle and angle of attack

In this Section we present the results for cases 3 and 5, namely the asymmetric cases,

which show the effect of the angle of incidence of the acoustic waves (case 3) and the

angle of attack (case 5) on the receptivity characteristics of a hypersonic flow over a

wedge. With reference to table 4.1 and to figure 2.1, in case 3 the fast and slow acoustic

waves are introduced in the computational domain with an inclination angle θ (angle

between the wave vector and the x-axis, taken in the anti-clockwise sense of rotation,

starting from zero on the x-axis) of 10◦ with respect to the freestream (which is aligned

with the x-axis). In case 5, on the other hand, the wave vector of the acoustic waves

is aligned with the freestream, which is at an angle of attack of 10◦ (taken in the anti-

clockwise sense of rotation) to the symmetric axis of the geometry (aligned with the

x-axis). In both cases 3 and 5 the bottom side of the wedge is the windward side, and

the top side is the leeward side. Since for case 5 the flowfield is asymmetric due to the
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angle of attack, an asymmetric shock-adapted grid has been used, shaped in such a way

to provide a good shock-grid alignment on both the sides of the wedge. In particular, the

adapted grid has been obtained through the method based on the analytical hyperbola

described in Section 3.3.

Figures 4.17 and 4.18 show the density fluctuation field for case 3 with fast and slow

acoustic waves respectively, while figures 4.19 and 4.20 show the corresponding results

for case 5. As can be seen, the results for case 3 (figures 4.17 and 4.18) show a slight

difference between the post-shock wave structure on the windward side and the lee side

with both fast and slow acoustic waves, which suggests a small effect of an incidence

angle of 10◦ on the receptivity patterns. In contrast, figures 4.19 and 4.20 for case 5

reveal a significant effect of the angle of attack (10◦) on the structure of the disturbance

field downstream of the shock on the windward and the lee sides for both fast and slow

waves.

Figure 4.17: Density fluctuation field
for case 3 (Mach 7.3) with fast waves

Figure 4.18: Density fluctuation field
for case 3 (Mach 7.3) with slow waves



78 Chapter 4 Results for the wedge probe with two-dimensional acoustic waves

Figure 4.19: Density fluctuation field
for case 5 (Mach 6) with fast waves

Figure 4.20: Density fluctuation field
for case 5 (Mach 6) with slow waves

For non-zero angle of attack, the post-shock disturbances on the windward side (in

figures 4.19 and 4.20) have a significantly higher amplitude than the waves crossing the

shock on the lee side, which is due to the shock being stronger on the windward side

and amplifying the waves in both the fast and the slow wave cases. The lee side shows

the presence of dragged waves in the fast-wave case (figure 4.19) and low amplitude

transmitted waves with higher phase speed than the freestream waves in the slow-wave

case (figure 4.20), as discussed in Section 4.3.1. In contrast, the windward side shows a

complex system of dragged and reflected waves between the shock wave and the boundary

layer for the fast-wave case, and a reversal (with respect to the lee side) of the post-shock

phase speed in the slow-wave case, with the presence of high amplitude dragged waves

travelling with lower phase speed than the freestream waves.

The different wave structures between the lee and the windward side have a strong effect

on the boundary-layer receptivity characteristics, as is shown in figures 4.21 and 4.22 for

the wall pressure fluctuation amplitudes of case 3, with fast and slow waves respectively,

and similarly in figures 4.23 and 4.22 for case 5. In each case, the results are shown

at two different frequencies and on both the lee and the windward sides. For case 3

with fast acoustic waves (figure 4.21), the response at the lower frequency (100 kHz) is

very similar between the two sides of the wedge, being slightly higher on the windward

side. At the higher frequency (500 kHz), the response is higher on the windward side in

the nose region up to the station x = 250, while downstream of this point a reversal is

observed, as the response on the windward side starts decaying after the peak reached

at about x = 250, and the response on the lee side continues growing along the wall,
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reaching very high values close to the outer edge. Thus, at the higher frequencies the

wave inclination angle appears to amplify the downstream response along the lee side

for fast acoustic waves, which is in a good qualitative agreement with the results of

Egorov et al. [41]. This behaviour suggests that the wave inclination angle enhances the

resonance mechanism for mode F on the lee side at high frequencies.

An opposite trend is shown for the slow wave case, whose results are presented figure

4.22. Here, a higher response is observed on the lee side at the lower frequency (50 kHz),

while a reversal is shown at the higher frequency (250 kHz), for which the response on

the lee side is higher than on the windward side in a small region extending up to about

x = 100. Further downstream the response on the windward side shows higher values

than on the lee side, due to a higher decay rate shown by the wall pressure fluctuations

on the lee side in the region x = 100− 200.

The results for case 5, presented in figures 4.23 and 4.24 for fast and slow waves re-

spectively, quantify the strong effect of the angle of attack on the receptivity. For both

fast and slow acoustic waves, the response on the windward side is significantly higher

than on the lee side, due to the stronger shock wave on the windward side and the

consequently higher amplification of disturbances traversing the shock. In the fast-wave

case at the highest frequency (500 kHz) the leading-edge resonance and downstream

modulation mechanism discussed in Section 4.3.3 are seen. For slow acoustic waves, in

contrast, a modulation behaviour is revealed by the long-wavelength oscillations shown

at the lower frequency (20 kHz) on the windward side (red line in figure 4.24), which

is probably due to the post-shock wave structure on the windward side (figure 4.20)

being characterised by high amplitude dragged wave fronts, similarly to the case of fast

acoustic waves.

Figure 4.21: Wall response for case
3 (Mach 7.3) with fast waves

Figure 4.22: Wall response for case
3 (Mach 7.3) with slow waves
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Figure 4.23: Wall response for case
5 (Mach 6) with fast waves

Figure 4.24: Wall response for case
5 (Mach 6) with slow waves

4.3.5 Estimation of the freestream noise levels

To help interpret the experimental results, we now focus on the behaviour at a transducer

location (x = 297.3). Figure 4.25 shows frequency spectra of the wall pressure fluctuation

amplitudes for Cases 1 to 3 (HEG), with fast and slow acoustic waves, in the frequency

ranges described previously. This shows the effects of Reynolds number (Rem = 4.4×106

m−1 for case 1, Rem = 1.4 × 106 m−1 for cases 2 and 3) and angle of incidence of the

acoustic waves (θ = 10◦ for case 3). For case 3 (Mach=7.3, Re=140, θ = 10◦) the results

are shown on both the lee (upper) and the windward (lower) side. As can be seen, for

all the cases considered in figure 4.25, the results show a significantly higher response for

fast acoustic waves than for slow waves at all frequencies, which is due to the stronger

resonance mechanism at the leading edge, characterising the receptivity to fast acoustic

waves. The amplitude of the response to fast acoustic waves is seen to increase gradually

with frequency, while the slow waves decrease in amplitude, with the minimum value

being reached at the highest frequency. For fast acoustic waves, an angle of incidence of

10◦ (the dashed curves in figure 4.25) is seen to produce a slightly higher response on the

windward side, and a slightly lower response on the leeward side, except for frequencies

higher than 450 kHz. For slow acoustic waves, an opposite trend is observed, with the

response on the lee side being higher, and the response on the windward side lower in

the lower frequency range. However, as discussed in the previous Section, at higher

frequencies (higher than 100 kHz), there is a reversal, so that the windward side shows

higher amplitudes. The Reynolds number is seen to have only a slight effect on the

amplitude of the wall response between cases 1 and 2 at all the frequencies.
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Figure 4.25: Frequency spectrum of the pressure fluctuation amplitudes at the
transducer position (x = 297.3) for cases 1 to 3 (HEG) with both fast and
slow acoustic waves. Mach=7.3, Rem = 4.4 × 106 m−1 (case 1), Mach=7.3,
Rem = 1.4× 106 m−1 (cases 2 and 3). For case 3, an inclination angle θ = 10◦

of the incident waves is considered

Figures 4.26, 4.27 and 4.28 show a comparison between the frequency spectra at the

station x = 297.3 for case 1, 5 and 6 respectively. Since the modulation behaviour de-

scribed earlier may lead to locally very low amplitudes at certain points on the surface,

and these points would be expected to move around in experiments due to small varia-

tions in free stream conditions, the figures also include a spatial average over the region

x = 200− 400. The results for case 5 (Mach 6, α = 10◦) in figure 4.27 correspond to the

wall response on the windward side, where the pressure transducers were located in the

DLR experiments. Also, it should be noticed that the frequency spectra for case 4 (with

reference to table 4.1) are not shown, as the measurements at Mach 6 were conducted

only for the case with angle of attack (i.e. case 5). All the cases show a significantly

higher-amplitude response for fast acoustic waves, compared to slow waves. Case 1, in

figure 4.26, shows the features already discussed in connection with figure 4.25 and a

very small effect of the space average on the frequency spectrum of the wall response.
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Figure 4.26: Frequency spectra for case 1 (HEG) with both fast and slow acous-
tic waves, with and without space average. Mach=7.3, Rem = 4.4× 106 m−1

Figure 4.27: Frequency spectra for case 5 (RWG) with both fast and slow
acoustic waves, with and without space average. Mach=6, Rem = 6.3 × 106

m−1

For the RWG case at Mach 6 (case 5, in figure 4.27), the wall response shows a substan-

tially flat trend with frequency for both the fast and the slow mode, as can be observed

for the curves relative to the averaged spectra. In this case, the space average produces

a slight change in the shape of the response for fast waves, and almost the same profile

of the unaveraged spectrum for slow waves.
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The response for case 6 (RWG, Mach 3, figure 4.28), for both fast and slow acoustic

waves, is significantly lower than for the higher Mach number cases. Additionally, the

discrepancy in the amplitude between the fast and the slow mode response is much higher

compared to the other cases. This clearly indicates, as already said in Section 4.3.1, an

important Mach number effect on the receptivity to acoustic waves in supersonic flows.

Moreover, in contrast to the other cases, the non-averaged frequency spectra for the

Mach 3 case (case 6) show a local minimum, at 250 kHz for fast waves, and at 200

kHz for slow waves, compared to the average value of the amplitude level at the other

frequencies. As mentioned before, this is a consequence of the modulation mechanism

of the pressure fluctuation response along the wall described in Section 4.3.3.

Figure 4.28: Frequency spectra for case 6 (RWG) with both fast and slow
acoustic waves, with and without space average. Mach=3, Rem = 12 × 106

m−1

The effect of receptivity can now be assessed by combining the numerical transfer func-

tions (p′∞/p
′
w), relating the freestream disturbance to the wall disturbance, with the

wall pressure fluctuation data from the experiments. We do this in two stages, first

by comparing the effect on the spectral shape, which turns out to be small, and then

considering combinations of fast and slow modes.

Figures 4.29, 4.30 and 4.31 show the experimental frequency spectra of wall pressure

fluctuation levels (p′w), integrated over a window of 50 kHz for each frequency, and

the same frequency spectra projected to the freestream using the numerical transfer

functions (p′∞/p
′
w), through the relation p′∞,est = p′w,exp(p

′
∞/p

′
w), namely the estimated

freestream noise levels, for case 1 (HEG Mach 7.3, Rem = 4.4× 106 m−1), case 5 (RWG

Mach 6) and case 6 (RWG Mach 3) respectively. The results are normalised with the

values of the freestream mean pressure (p∗∞) relative to each case, shown in Table 4.1.
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For each case, the transfer functions used to obtain the estimated noise levels are the

inverse functions of the corresponding wall-to-freestream pressure fluctuation frequency

spectra relative to the averaged response, shown in figures 4.26, 4.27 and 4.28. To better

compare the shapes of the spectra, each curve of the estimated noise levels, in figures

4.29, 4.30 and 4.31, is anchored to the curve of the wall values through multiplication

by a scaling factor computed at 200 kHz. The corresponding scaling factors for fast and

slow acoustic waves are indicated with the terms aF and aS respectively on the figures.

Figure 4.29: Experimental and numerical profiles of the wall response. Nu-
merical profiles adjusted to the experimental data through the scaling factors
aF = 6.3227 (fast waves) and aS = 44.3943 (slow waves). HEG, Mach 7.3.

Figure 4.30: Experimental and numerical profiles of the wall response. Nu-
merical profiles adjusted to the experimental data through the scaling factors
aF = 1.6747 (fast waves) and aS = 5.9515 (slow waves). RWG, Mach 6.
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Figure 4.31: Experimental and numerical profiles of the wall response. Nu-
merical profiles adjusted to the experimental data through the scaling factors
aF = 0.3237 (fast waves) and aS = 37.0909 (slow waves). RWG, Mach 3.

As can be seen, for each case the shape of the estimated noise level curves is very similar

to the shape of the experimental curve, for both fast and slow acoustic waves, due to

the flatness of the frequency responses shown in figures 4.26, 4.27 and 4.28. Exceptions

need to be made for the results observed for slow waves at the frequency 50 kHz in

cases 1 and 6 (in figures 4.29 and 4.31 respectively). This suggests that the receptivity

plays a marginal role in the shape of the spectra at the wall, which, then, represents

approximately the spectral shape of the noise in the freestream.

The significantly higher scaling factors (given in figures 4.29, 4.30 and 4.31 for each

case) for slow acoustic waves, compared to those for fast acoustic waves, indicate that

a much higher freestream noise level would be needed, in the case of a freestream noise

composed by only slow acoustic waves, to produce the same experimental wall response.

Moreover, the difference in the scaling factors between fast and slow acoustic waves is

distinctly higher for the Mach 3 case (figure 4.31), with aF being higher than as by two

orders of magnitude, which shows, again, that there are strong Mach number effects.

In practice we may consider the freestream acoustic disturbances to be a mixture of

fast and slow acoustic waves. To investigate these effects, two arbitrary freestream

wave combinations, namely 90% fast-10% slow and 10% fast-90% slow, are considered.

Table 4.2 shows the estimated noise levels obtained at a frequency of 200 kHz for the

different facilities (HEG and RWG) at the considered Mach numbers (Mach 7.3 for

HEG, Mach 6 and 3 for RWG). The values for the different combinations were obtained

by summing the numerical transfer functions (p′∞/p
′
w) relative to fast and slow acoustic

waves, each one multiplied with a coefficient indicating the percentage contribution. The

composite transfer functions are indicated in table 4.2 as TF90F−10S and TF10F−90S , and

the corresponding estimated noise levels, obtained through multiplication of the mixed
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Table 4.2: Estimated free-stream noise levels for different combinations of the
free-stream disturbances, at the reference frequency of 200 kHz.

Facility (p′w/p∞)Exp TF90F,10S TF10F,90S (p′∞/p∞)90F,10S (p′∞/p∞)10F,90S
HEG M7 0.0188 0.0754 0.302 0.0014 0.0057
RWG M6 0.0047 0.0625 0.1642 0.000294 0.000773
RWG M3 0.000208 2.687 22.4435 0.00056 0.0047

transfer functions with the experimental pressure values, (p′w/p∞)Exp, are indicated as

(p′∞/p∞)90F−10S and (p′∞/p∞)10F−90S . The estimated noise levels range from 1.4×10−3

to 5.7 × 10−3 for the HEG facility at Mach 7.3, from 2.9 × 10−4 to 7.7 × 10−4 for the

RWG at Mach 6, and from 5.6 × 10−4 to 4.7 × 10−3 for the RWG at Mach 3. Higher

estimates are observed for the slow-mode dominated cases.

The higher noise levels estimated for a slow-wave-dominated freestream are due to the

lower wall-response levels (resulting in the higher scaling factors in figures 4.29, 4.30 and

4.31) observed in general for slow acoustic waves in all the considered numerical cases,

compared to the response to fast acoustic waves. The values listed in table 4.2 indicate

higher freestream noise levels in the HEG facility at the highest Mach number (7.3),

as was expected, but reveal also an unexpected increase of the noise levels (for both

fast- and slow-wave-dominated freestreams) in the RWG wind tunnel when decreasing

the Mach number from 6 to 3. This can be explained considering that the location of

the measurement probe inside the wind tunnel can play an important role on the wall

disturbance level as well, relative to the acoustic noise radiated by the nozzle walls and

inclined of the Mach angle with respect to the local flow direction. In fact, for different

Mach numbers, the value of the Mach angle will be different, thus the acoustic waves

will, in general, impinge on the object at different longitudinal positions, as well as with

a different inclination angle. This means that the wall response depends, in general,

not only on the inclination angle of the incident acoustic waves, but also on the actual

percentage of the total noise radiated by the nozzle walls (through the whole wall length)

impinging on the object, which depends, in turn, on the Mach angle and the position of

the probe.

Overall, the estimated noise levels in table 4.2 can be considered as realistic, as they

are relatively close to the freestream pressure fluctuation level (3.96×10−3), normalised

with the freestream mean value, computed by Duan et al.[12] in a DNS study on the

acoustic noise generated by a turbulent boundary layer over a flat plate in a Mach 2.5

flow. Moreover, Duan et al.[12] found that the acoustic noise radiated by the turbulent

boundary layer pertained to the class of slow acoustic waves. The freestream noise

level we obtained for the Mach 3 case (which is the most comparable case with the

study of Duan et al.[12] in terms of the Mach number) with dominant slow acoustic

waves (4.7 × 10−3) is, then, very consistent with the results of Duan et al.[12], which

suggests that slow acoustic waves were most likely the dominant disturbances in the
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Mach 3 experiment. Furthermore, the work of Masutti et al.[11] indicates that freestream

pressure disturbance levels (normalised with the time-averaged value) as high as 1% are

usually observed in noisy hypersonic wind tunnels. The higher noise levels obtained, for

each case, for the slow-wave-dominated freestream (see table 4.2) are closer to the typical

experimental values, compared to the values relative to fast-wave-dominated freestream,

which suggests that slow acoustic waves were most likely the dominant disturbances in

all the DLR experiments, both in the HEG and RWG facilities.

4.4 Summary of the results

The receptivity to fast and slow freestream acoustic waves with multiple frequencies at

supersonic/hypersonic speeds over a 2D cylinder-wedge geometry, for a set of six flow

conditions with different Mach number, Reynolds number, angle of attack, and angle of

incidence of the acoustic waves, has been studied through DNS. The present study has

focused on the immediate leading-edge region (upstream of the region of second-mode

instability), which is characterised by the generation and interaction of the induced

boundary-layer modes. As a result, no second mode instability is observed along the

wall for all the considered frequencies.

Three main aspects of the leading-edge receptivity to acoustic freestream disturbances

in high speed flow have been analysed, namely a) the structure of the disturbance field in

the post-shock region, b) the response along the wall, with emphasis on the resonance-

modulation mechanism, and c) the effect of an inclination angle of the acoustic waves

and an angle of attack. Preliminary simulations confirmed the linearity of the wall

pressure perturbations at increasing freestream amplitudes of the acoustic waves, up to

amplitudes as high as 10−1 for the freestream density.

The numerical results show that, when planar fast acoustic waves are inserted into

the domain, the wave structure downstream of the shock is characterised by amplified

‘dragged’ waves, pertaining to the main forcing fast acoustic waves traversing the shock

and being deflected due to the lower local phase speed in the post-shock region, plus

reflected waves from the boundary-layer edge travelling downstream at the local Mach

angle. For slow acoustic waves, in contrast, the disturbance field downstream of the shock

is composed of transmitted waves with lower amplitude compared to the freestream

amplitude, and travelling with a higher phase speed than the freestream slow waves.

These waves have been shown to have the property of local convected waves (including

entropy and vortical waves) generated downstream of the shock from the interaction

with the freestream slow waves. A decreasing Mach number is seen to enhance the

difference in the wave propagation features downstream of the shock between fast and

slow acoustic waves, consistent with the higher gap in phase speed between fast and

slow acoustic waves at the lower Mach numbers.
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The fast acoustic waves produce a higher response along the wall than the slow waves,

which is due to the different wave structure induced downstream of the shock and a

stronger resonance mechanism at the leading edge. For each Mach number this mech-

anism produces an early amplification of mode F until a first peak is reached. A lower

Mach number (for the same dimensional frequency range) and a higher frequency are

seen to decrease the distance at which the first peak of Mode F is reached. For the Mach

3 and Mach 6 cases, the response further downstream is characterised by a frequency-

dependent oscillatory behaviour, representing mode F (which is no longer synchronised

with the forcing mode) being modulated by the forcing fast acoustic mode. The re-

sponse to slow acoustic waves, in contrast, shows a frequency-dependent early decay,

caused by the absence of a strong resonance mechanism, which is in turn due to the

waves transmitted in the post-shock region and interacting with the boundary layer

being desynchronised with the slow mode generated at the leading edge. Further down-

stream the slow mode is then seen to keep a substantially constant low amplitude.

An angle of incidence of the fast acoustic waves of 10◦ is seen to amplify the response

along the lee side at the higher frequencies, thus suggesting an enhancement of the

leading-edge resonance mechanism for mode F, whilst an opposite behaviour of the wall

response is shown for slow acoustic waves, with a decaying amplitude downstream along

the wall at all frequencies.

An angle of attack of 10◦ is shown to provide a significantly higher response along the

windward side compared to the lee side, for both fast and slow acoustic waves, along

with a substantially different post-shock wave structure between the two wedge sides. In

particular, high-amplitude dragged waves downstream of the shock are observed for both

fast and slow acoustic waves on the windward side, in contrast to the wave structure

formed by the slow acoustic waves on the lee side, which consists of low-amplitude

transmitted waves travelling with higher phase speed with respect to the freestream

slow waves.

For all the Mach numbers, the numerical frequency spectra of the wall response showed

a relatively flat profile compared to the decreasing trend of the experimental frequency

spectra, for a constant amplitude of the freestream disturbances imposed at all the

frequencies, which proves that, for the considered cases, the receptivity does not play a

significant role in the shape of the frequency spectra of the wall response. As a result, the

shape of the estimated freestream noise level spectra, obtained through a combination

of the experimental wall pressure fluctuation levels and the numerical freestream-to-

wall transfer functions, appeared substantially unaltered relative to the shape of the

experimental wall pressure spectra.

Considering the freestream noise as a mixture of fast and slow acoustic waves, the

estimated freestream noise levels corresponding to two arbitrary wave combinations (i.e.

90% fast-10% slow and 90% slow-10% fast) were obtained. The values were found in
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the ranges: i) from 1.4 × 10−3 to 5.7 × 10−3 for the HEG facility at Mach 7.3, ii) from

2.9×10−4 to 7.7×10−4 for the RWG at Mach 6, and iii) from 5.6×10−4 to 4.7×10−3 for

the RWG at Mach 3, as moving from a freestream dominated by fast acoustic waves to a

freestream dominated by slow acoustic waves. These values agree reasonably well with

other numerical and experimental values available in the literature, thus representing

realistic noise levels in hypersonic wind tunnels, and indicate that the HEG wind tunnel

is noisier, in general, than the RWG wind tunnel, and that the slow acoustic waves are

dominant in the typical environment of a hypersonic wind tunnel.





Chapter 5

Results for the wedge with

three-dimensional acoustic waves

In this Chapter we will present the results of the simulations for the planar span-periodic

wedge geometry with 3D fast and slow acoustic waves. The receptivity mechanism at the

leading edge for two different amplitude levels of the freestream disturbances is investi-

gated, along with the effects on the downstream breakdown mechanism. The analysis of

the receptivity-breakdown mechanism is performed for two different leading-edge con-

figurations, namely an unswept and a swept (with 45◦ sweep angle) case. Moreover,

a preliminary 2D numerical study, in conjunction with an LST analysis, is conducted,

which provides an assessment of the relevance of previous theoretical studies available

in the literature, concerning the receptivity process in hypersonic flows.

5.1 Flow conditions for the 3D numerical cases

A total of 10 numerical simulations have been carried out including two Reynolds num-

bers. For the lower Reynolds number, Re = 1400 (based on the nose radius), only the

receptivity to fast acoustic waves has been investigated, for two different amplitudes,

5× 10−3 and 5× 10−2 at each frequency. For the higher Reynolds number, Re = 5625,

which is in the range of the Reynolds numbers considered in the transition experiments

of Durant et al. [89], the receptivity to both fast and slow acoustic waves has been

studied, and for each case both higher amplitude and smaller amplitude freestream dis-

turbances have been applied, so that 4 cases have been run overall at this Reynolds

number in an unswept configuration. Finally, a further 4 cases, comprising fast and slow

freestream acoustic waves at two different amplitudes, have been run at Re = 5625 in a

swept configuration. The sweep angle (angle between the freestream direction and the

x-axis of the body) has been set to 45◦, corresponding to the sweep angle studied in

some experimental and numerical cases for supersonic flow found in literature (Speer et

91
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Table 5.1: Settings of the numerical simulations

Case Re A∞ Λ (◦) type

1 1400 5×10−3 0 Fast
2 1400 5×10−2 0 Fast
3 5625 5×10−3 0 Fast
4 5625 5×10−2 0 Fast
5 5625 5×10−3 0 Slow
6 5625 5×10−2 0 Slow
7 5625 5×10−3 45 Fast
8 5625 5×10−2 45 Fast
9 5625 5×10−3 45 Slow

10 5625 5×10−2 45 Slow

al.[65], Creel et al. [57]). Table 5.1 shows the details of the 10 numerical cases just men-

tioned. For each case the Reynolds number based on the nose radius Re is given along

with the overall amplitude of the freestream disturbance A∞ (being A∞ = A0 +A1 +A2

the sum of the density fluctuation amplitudes of the 2D wave and the oblique waves for

each frequency), the sweep angle Λ, and the type of acoustic wave used as freestream

disturbance.

For each case the Mach number is M = 6, the freestream temperature is set to T∞ = 51.7

K, and an isothermal boundary condition is used on the wall, with wall temperature fixed

to the value Tw = 300 K. These conditions are intended to simulate the freestream condi-

tions of a typical low enthalpy hypersonic wind tunnel. Ten different frequencies are in-

serted in the freestream forcing, each one an integer multiple of the base non-dimensional

frequency f0 = 3.509× 10−3. Note that the non-dimensional frequency f takes the form

of a Strouhal number, f = f∗R∗/U∗∞, where f∗ is the dimensional frequency. In par-

ticular the spectrum of the 10 forced frequencies spans from f1 = 5f0 to f10 = 14f0.

The non-dimensional frequency in its standard definition, Fs = 2πf∗µ∗∞/(ρ
∗
∞U

∗2
∞ ), can

be obtained from Fs = 2πf/Re. The frequency spectrum considered in the present

computations is based on linear stability studies conducted by De Tullio and Sandham

[85] for a flow at Mach 6 over a flat plate with a Reynolds number comparable with our

Re = 1400 case. In particular, the frequencies from f5 to f10 covers the range of the

most unstable second mode frequencies. The overall freestream amplitude levels for the

density perturbation (rms of ρ′∞) of the multi-frequency 3D-wave inflow are 0.0064 and

0.064 for low and high amplitude disturbances respectively, and the corresponding levels

for the x-wise velocity component u′∞ are 0.001 and 0.01 respectively. The rms levels of

v′∞ and w′∞ are identically zero in the freestream, as the imposed acoustic waves prop-

agate in the xz-plane with a 2D component (namely a wave oriented along the x-axis)

and two pairs of oblique waves with the same amplitude and opposite angle (namely θxz

and −θxz).
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The computational domain geometry, in a generic xy-plane is shown in figure 5.1, and

consists of a cylinder-wedge shaped wall boundary, with non-dimensional nose radius

R = 1 and half-wedge angle of 4◦, an inlet boundary shaped in such a way to allow

internal shock-grid alignment (by applying the spline-based method described in Section

3.3), an outlet boundary normal to the wall direction, and another boundary (not visible

in the figure) going from the inlet to the stagnation point on the wall along the x-axis,

where a symmetric boundary condition is applied due to the condition of zero angle of

attack and with symmetric disturbances assumed.

Consistent with the boundary conditions described in Section 4.1 for the 2D cases, a

fixed inflow boundary condition of a uniform freestream is imposed at each point on the

inflow boundary surface for the 3D cases, in order to compute the baseflow first, then

a time-periodic disturbance is added to the inflow (in the form shown in the Section

2.4) to carry out the unsteady simulations. On the wall the standard no-slip condition

is applied, along with the isothermal condition described above. The isothermal wall

boundary condition requires the effects of wall temperature fluctuations to be neglected,

which applies to ground-test experiments of laminar-turbulent transition in hypersonic

flows, where the short duration of the test does not cause significant changes in the

wall temperature. The flow at the outlet is treated with a zero-gradient boundary

condition. After the two-dimensional base flow has been computed on a single xy-plane,

the computational domain in figure 5.1 is extruded in the z-direction in order to create

a 3D cylinder-wedge geometry to study the three-dimensional effects of the system of

forced acoustic waves on the flowfield. At the side boundaries of the domain a periodic

boundary condition is applied, in order to simulate an object with an infinite length in

the spanwise direction.

The main dimensions of the 3D computational domain are Lx = 1000 along the x-axis

and Lz = 55 along the z-axis, and Ly = 352 along the y-axis (with all the lengths

normalised with the nose radius). The grid contains 7920 points in the tangential-to-

the-wall direction, 150 points in the normal-to-the-wall direction, and 100 points in the

spanwise direction. The distribution of the grid points in the wall-normal direction is

controlled through a function that provides clustering in the shock region and towards

the wall in order to solve the captured shock wave and the boundary layer, as described

in Chapter 3
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Figure 5.1: Computational domain geometry in the xy-plane

5.2 Preliminary two-dimensional results at Re = 1400: fast

vs slow wave receptivity characteristics

5.2.1 Wave structure patterns behind the shock

For the case at Re = 1400 some preliminary two-dimensional unsteady simulations

looking at the receptivity effects to fast and slow waves were performed first. These

results served to verify the main differences in the propagation of fast and slow acoustic

waves downstream of the shock and in their response on the wall, and can be used as

reference 2D results when evaluating the effects of three-dimensional disturbances for the

present case and for the next cases with higher Re. Figures 5.2 and 5.3 show the density

fluctuation field of the flow downstream of the shock wave with freestream fast and slow

acoustic waves respectively, for an amplitude of the disturbance equal to 5 × 10−3 at

each frequency.
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Figure 5.2: Density fluctuation field (ρ′) for the case of fast acoustic waves: 2D
result, A∞ = 5× 10−3

Figure 5.3: Density fluctuation field (ρ′) for the case of slow acoustic waves: 2D
result, A∞ = 5× 10−3

The two figures highlight an important difference in the way in which fast and slow

acoustic waves are transmitted through the shock wave and propagate downstream. In

particular, it is evident that for the fast wave case the waves downstream of the shock

are almost perfectly aligned with the freestream forcing waves, which indicates that

the disturbance phase speed behind the shock is very similar to the phase speed in the

freestream. This is reasonable for the present case with fast acoustic waves, for two

main reasons: i) the Mach number is sufficiently high (M = 6) that the contribution

of the streamwise convection speed (u) to the fast wave phase speed (u + a, with a

being the local speed of sound) is significantly more important than the contribution of

the speed of sound, and ii) a small value of the half-wedge angle (δ = 4◦) causes the

shock far enough from the nose region to be weak, with only a small decrease of the

streamwise velocity downstream of the shock wave. The small decrease of the streamwise

convection speed is partially balanced by the increase of the speed of sound downstream

of the shock due to the temperature increase, which provides a minor difference in phase

speed between the freestream and the post-shock flow.
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This result can also be verified through the inviscid oblique shock wave theory for a

shock formed on a sharp wedge of 4◦ inclination angle, which predicts a phase speed

in the streamwise (x) direction for the fast waves in the post-shock region of cps =

ups+aps = 1.1661 , a value that is very close to that of the freestream streamwise phase

speed of the forced waves, c∞ = U∞ + a∞ = 1.1666. From the computational results,

by selecting a point just downstream of the shock far enough from the nose region (e.g.

x = 460) we compute a x-phase speed of 1.1651, which proves the validity of the oblique

shock theory for this case.

In contrast, in the case with slow waves, it appears that two different families of waves,

not aligned with the freestream waves, are generated from the interaction with the

shock: a first one, with wave fronts at an inclination angle αx < 90◦ to the x-axis,

which seems to be the dominant type of wave in the immediate post-shock region, and

a second one, with an inclination angle αx > 90◦ and a lower amplitude, which interacts

with the boundary layer downstream. On the basis of the results shown in Section

4.3.1 for the characteristics of the post-shock wave structure, the former type of waves

can be referred to as dragged waves, representing wave fronts of the main freestream

forced waves crossing the shock and being deflected by the delay accumulated while

travelling downstream with a phase speed lower than the freestream phase speed. This

also explains the higher amplitude of these waves in the immediate post-shock region.

The latter type of waves represents, instead, convected waves generated downstream of

the shock from the interaction with the freestream slow waves. From the computational

results at a point located just downstream of the shock at x = 460, the x-direction

phase speed for slow acoustic waves is about cps = 0.73, while the phase speed of the

slow waves in the freestream is c∞ = 0.83. Evaluating the percentage difference between

the freestream and the post-shock streamwise phase speeds (ε = |(c∞ − cps)/c∞|) from

the computed values given above for both the fast and slow wave cases, the value for the

fast waves is εF = 4.28 × 10−4, and for the slow waves εS = 0.12, i.e. for the fast-wave

case the post-shock phase speed is lower than the corresponding freestream value by

about a 0.04%, while for the slow-wave case the difference is about the 12%, which is no

longer a negligible value. This explains the pronounced deflection of the dragged wave

fronts in the post-shock region for the slow-wave case.

As already seen in Chapter 4, the difference between fast and slow acoustic waves in

the propagation downstream of the shock has strong effects on the boundary layer re-

ceptivity and the wall response. In particular, for fast acoustic waves, as the post-shock

flowfield is dominated by a single wave mode consisting of the main forced fast waves

crossing the shock, the dominant disturbances internalised in the boundary layer at the

leading edge are synchronised with the post-shock disturbances. Hence, they undergo a

strong resonance mechanism with the forcing waves, which in turn leads to a significant

amplification of the fluctuations along the wall as long as the internal and external wave

modes are synchronised. The internal mode amplified in the leading-edge region through
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the resonance mechanism described above is known in the literature as Mode F (Fedorov

[4]), or Mode I (Zhong and Ma [17]), and is predicted to be stable by LST, despite its

strong initial growth.

5.2.2 Characteristics of the wall response

The effects on the wall response for fast acoustic waves are shown in figure 5.4, which

depicts the distribution of the wall pressure fluctuation amplitudes along the wedge

at all the considered frequencies, obtained through a Fast Fourier Transform (FFT)

approach. As can be seen, the response to fast acoustic waves is characterised by an

early strong amplification of mode F, due to the resonance mechanism discussed in

Section 4.3.3, with a peak reached at a decreasing distance from the leading edge at

increasing frequencies. The initial peak is then followed by a rapid decay, which is a

result of the decrease of mode F phase speed along the wall (as shown in figure 5.5) and

the consequent desynchronisation of mode F from the forcing fast acoustic waves. In

particular, with reference to figure 5.5, at the leading edge, the phase speed (relative to

the pressure fluctuation signal along the wall at the frequency f6) assumes a value very

close to the phase speed of the fast acoustic waves (thus indicating synchronisation of the

internal mode, mode F, with the fast waves at the leading edge). Then, the phase speed

reduces gradually until the internal mode (mode F) enters a modulation process with the

forcing fast waves (as described in Section 4.3.3), which is shown by strong oscillations

in the phase-speed curve, as well as in the corresponding curve of the wall-pressure

fluctuation amplitude at the frequency f6 (in figure 5.4). In the region x = 600 − 700,

the phase speed has almost approached the value relative to the slow acoustic waves

(synchronisation between mode F and mode S), which provides the excitation of mode

S. In our case, mode S is still stable, as will be shown by an LST study presented in the

next Section, so it does not show a strong growth, but a modulation, instead, with the

forcing fast acoustic waves downstream of x = 700.
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Figure 5.4: Wall pressure fluctuations for fast waves: 2D result, A∞ = 5×10−3.
The blue and red dash-dot curves, indicating frequencies f6 and f10 respectively,
are the reference frequencies of the LST analysis in Section 5.2.3

Figure 5.5: Phase-speed evolution of the pressure fluctuation signal along the
wall at the frequency f6: 2D result, A∞ = 5 × 10−3. The red dashed lines
represent the phase-speed values of fast and slow acoustic waves, and convected
waves in the freestream

Downstream of x = 800, the phase speed suddenly increases and starts oscillating around

the value relative to the fast acoustic waves, which represents a further synchronisa-

tion with the forcing fast acoustic waves, and provides the generation and downstream

resonance-induced amplification of the second mode F (or mode II). This is observed
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more clearly for frequency f10 in figure 5.4, whose pronounced growth downstream of

x = 600 represents the amplification of the second mode F (mode II) due to the second

resonance mechanism with the fast acoustic waves. The smoothness of the curve (rela-

tive to frequency f10 in figure 5.4) in the growth region of mode II indicates that mode

II is the dominant mode in this region. These results are in a very good qualitative

agreement with Fedorov’s [4] theoretical predictions and with the numerical results of

Zhong and Ma [17] and Zhong and Wang [23], and will be compared with the results of

a linear stability analysis shown in Section 5.2.3.

In the case of slow acoustic waves (figure 5.6), in contrast, the trend of the pressure fluc-

tuation amplitude appears to correspond to a modulation mechanism between different

modes straight from the leading edge.

Figure 5.6: Wall pressure fluctuations for slow waves: 2D result, A∞ = 5×10−3

The overall amplitude is lower by about an order of magnitude compared to fast acoustic

waves for all the frequencies, due to the absence of a strong resonance mechanism at the

leading edge (as discussed in Section 4.3.3), which is consistent with the energy of the

freestream slow acoustic waves being transferred to a system of waves with different phase

speeds after crossing the shock (namely ‘dragged’ and convected waves, as described in

Section 5.2.1). Thus, in this case the slow mode (Mode S) is directly generated at

the leading edge by means of the family of waves in the post-shock region with lower

phase speed (pertaining to slow acoustic waves). However, as soon as it is generated, it

undergoes a modulation process with the external waves of different phase speed and the

other internalised boundary layer modes. This system of mixed forcing modes causes the

response at the wall to be very similar for all the frequencies, with the positions of the first
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peak at the different frequencies being located in a very narrow region (x = 150− 200)

close to the leading edge.

These 2D results show that in the early leading-edge region the receptivity to fast acous-

tic waves can lead to a much higher amplification of the internal boundary-layer modes,

due to the resonance mechanism with the mode of the fast acoustic waves, compared

to slow acoustic waves. In the following Sections we will study the effects of this be-

haviour on the receptivity and breakdown mechanisms in the presence of high-amplitude

freestream disturbances and oblique acoustic forcing, for unswept and swept configura-

tions.

5.2.3 Comparison with Linear Stability Theory

The numerical results previously described for the Fourier transformed wall pressure fluc-

tuations and the phase speed of the signal along the wall are here compared with results

obtained through a local temporal linear stability analysis, performed at several points

along the wedge. The linear stability analysis was performed using the NoSTRANA

(Nonlocal Stability and Transitional Analysis) code by Sansica[79].

5.2.3.1 Method for the Local Linear Analysis

As a first step the governing equations 2.2 are rewritten in non-conservative form, with

q =


ρ

u

v

w

T

 (5.1)

as the vector of the primitive variables. The temperature (T ) represents here the vari-

able in the equation of the internal energy, which is in turn obtained subtracting the

contribution of the mechanical energy, given by the scalar product between the momen-

tum equation and the velocity vector (u), from the total energy equation, in which the

relation

E =
T

γ(γ − 1)M2
+

1

2

(
u2 + v2 + w2

)
(5.2)

is applied, where the first term represents the dimensionless internal energy. With this

arrangement the governing equations assume the following form,
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∂ρ

∂t
+ uj

∂ρ

∂xj
+ ρ

∂uj
∂xj

= 0 , (5.3)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

+
1

γM2

(
T
∂ρ

∂xi
+ ρ

∂T

∂xi

)
− 1

Re

∂τij
∂xj

= 0 , (5.4)

ρ
∂T

∂t
+ ρuj

∂T

∂xj
+ (γ − 1)ρT

∂uj
∂xj
− γ(γ − 1)

M2

Re
τij
∂ui
∂xj

+
γ

RePr

∂

∂xj

(
µ∂T

∂xj

)
= 0 , (5.5)

where the viscous stresses (τij) are linked to the spatial velocity derivatives through rela-

tion 2.5, and the pressure in both momentum and energy equations have been expressed

in terms of the density and temperature through the equation of state 2.7.

The second step consists of superimposing small amplitude disturbances on the vector

of the primitive variables, which will assume the form

q(x, y, z, t) = q̄(x, y, z) + q′(x, y, z, t) , (5.6)

where q̄(x, y, z) represents the boundary-layer solution vector in the unperturbed flow,

while q′(x, y, z, t) is the disturbance vector. By applying this decomposition for the

vector of the primitive variables the governing equations for the perturbed quantities

can be obtained. Let us consider, for example, the continuity equation 5.7; by applying

the relation 5.6 the resulting perturbed continuity equation is

∂ρ̄

∂t
+ ūj

∂ρ̄

∂xj
+ ρ̄

∂ūj
∂xj

+
∂ρ′

∂t
+ ūj

∂ρ′

∂xj
+u′j

∂ρ̄

∂xj
+ ρ̄

∂u′j
∂xj

+ ρ′
∂ūj
∂xj

= −u′j
∂ρ′

∂xj
− ρ′

∂u′j
∂xj

, (5.7)

in which the first three terms of the left hand side cancel out, as their sum represents the

continuity equation for the unperturbed flow, while the two terms at the right hand side

are nonlinear terms, which, in turn, are neglected for the assumption of small amplitude

perturbations, namely the linearity assumption. So, the linear perturbed continuity

equation is

∂ρ′

∂t
+ ūj

∂ρ′

∂xj
+ u′j

∂ρ̄

∂xj
+ ρ̄

∂u′j
∂xj

+ ρ′
∂ūj
∂xj

= 0 , (5.8)

At this point, another simplification assumption is made, namely the assumption of

parallel flow, which states that the unperturbed flow does not vary along the streamwise

direction. Hence, considering the streamwise direction coincident to the x-direction, the
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adoption of the parallel flow assumption results in the unperturbed primitive variables

being dependent on the y-direction only, namely

ρ̄ = ρ̄(y), ū = ū(y), T̄ = T̄ (y), v̄ = w̄ = 0 . (5.9)

Repeating the same procedure for all the other equations provides a linear system of

equations in terms of the disturbance variables with coefficients depending on the in-

dependent variable y, known as linearised disturbance equations, or Orr-Sommerfeld

equations. For the derivation of the full system of the linearised disturbance equations,

which is beyond the purposes of the present study, the reader can refer to the work of

Sansica [79].

The next step is to perform a separation of variables between the independent variable

y and the other independent variables x, z and t, namely

q′(x, y, z, t) = q̂(y) · g(x, z, t) . (5.10)

By introducing the variable separation 5.10 in the system of the linearised disturbance

equations, and by imposing for the function g(x, z, t) a periodic function in both the

space variables and in time, corresponding to the wave solution

q′(x, y, z, t) = q̂(y) · e(i(αx+βz−ωt)) , (5.11)

in which α represents the streamwise wavenumber in this Section (not to be confused

with the symbol indicating the angle of attack in the other Sections), β the spanwise

wavenumber, and ω the angular frequency of the periodic wave perturbation, the linear

system of partial differential equations reduces to a linear system of ordinary differential

equations in the variable y, which can be expressed as

Lq̂ = ωKq̂ . (5.12)

In equation 5.12, L is a matrix containing the y-dependent coefficients of the system,

the wavenumbers α, β, and the y-derivatives of the components of the variable vector

q̂; while K is a diagonal matrix containing the terms multiplied by ω, which come out

from the time derivatives of the function g(x, z, t) in all the equations.

System 5.12 represents an eigenvalue problem. The resolution of this eigenvalue problem,

at a particular x-location along the wall, will provide a certain number of eigenvalues ω,

representing the frequencies of the different modes, and the corresponding eigenvectors

q̂(y), containing the eigenfunctions ρ̂(y), û(y), v̂(y), ŵ(y), T̂ (y), representing, in turn,
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the shape of each mode inside the boundary layer at that particular x location. The

discretisation of the system in the wall-normal direction is made through a Chebyshev

collocation method. Sansica [79] derives all the components of the matrices L and K in

system 5.12, and gives a description of the Chebyshev discretisation method.

Two different approaches can be adopted for the local stability analysis, namely a tem-

poral and a spatial approach. The temporal approach consists of imposing a certain real

value for the streamwise wavenumber (α) and for the spanwise wavenumber (β), which

is set to zero for 2D waves, and performing the analysis described above to obtain as

output the eigenvalues ω of the system, which have a real and an imaginary part. The

real part (ωr) represents the angular frequency of a single mode, while the imaginary

part (ωi) represents the temporal growth rate. A positive sign of ωi indicates a stable

mode, while a negative sign indicates an unstable mode. The spatial approach works the

other way round, namely a real frequency ω is given as an input, along with an initial

guess for α and β, and complex values of α and β are obtained, for all the modes found

at the given frequency ω, with the real part indicating the corresponding wavenumber,

and the imaginary part representing the spatial growth rate. In the present work only

the temporal approach is considered, and the analysis is performed at several x stations

along the wedge, for different streamwise wavenumbers (α) among the forcing wavenum-

bers of the freestream acoustic wave inflow in our unsteady numerical simulations. The

spanwise wavenumber (β), in contrast, is set equal to zero, as we consider 2D waves. In

order to perform the linear stability analysis, the boundary-layer solution vector of the

baseflow (q̄) is extracted from our numerical simulations at all the considered x stations,

and used as input in the temporal analysis. In order to guarantee a quicker convergence

of the method, two bounds of the phase speed (cph) are imposed as input for the anal-

ysis, so that only complex eigenvalues ω within the specified range of phase speeds are

returned, for each given value of α, according to the relation cph = ωr/α.

5.2.3.2 LST results

The results of the local stability analysis, using the temporal approach, have been ob-

tained at different points along the wedge for two different streamwise wavenumbers,

corresponding to the forcing wavenumbers at the frequencies f6 and f10 for the case of

fast acoustic waves. The wavenumbers were computed by considering the local value

of the wall-tangential fast-wave phase speed at the boundary-layer edge resulting from

the numerical solution for the baseflow, namely cph = ue + ae, where ue and ae are

the velocity components in the wall-tangential direction and the speed of sound at the

boundary-layer edge respectively. Thus, the wavenumber to be used as input in the

temporal LST analysis is computed through the relation α = 2πf/cph. Figure 5.7 shows

the spectrum of the complex eigenvalues at different positions along the wedge for the

frequency f10. The analysis has been performed in a phase-speed range spanning from
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the slow-wave to the fast-wave acoustic phase speed. Moving from low to high values

of ωr in the spectrum corresponds to moving from lower phase speeds to higher phase

speeds. The two horizontal branches of modes at ωi ≈ 0 positioned at the left and

right extremes of the graph represent the slow and the fast acoustic wave continuous

spectrum respectively. The branch of modes positioned in the middle of the graph, at

approximately ωr = 0.26, represents the entropy/vorticity wave continuous spectrum.

As can be seen, performing the LST analysis at several x positions is equivalent to track-

ing the movement of some discrete modes of interest in the spectrum. The evolution

of the different discrete modes in the complex plane can, in turn, help understand the

corresponding trend of the numerically obtained pressure fluctuation amplitude distribu-

tion along the wall shown in figure 5.4 at the frequency f10. In particular, in the region

of the first peak of wall response (x ≈ 150), as seen in figure 5.4, figure 5.7 shows the

presence of a discrete stable mode close to the continuous spectrum of the fast acoustic

waves (blue star symbol, indicating the position x = 143, with ωr = 0.294). This mode

corresponds to mode F, which is synchronised with the forcing fast acoustic waves in

the leading-edge region, thus experiencing a resonance-induced strong amplification, as

shown by the numerical results in figure 5.4. However, as is evident in figure 5.7, mode F

gradually moves away from the fast acoustic wave continuous spectrum, corresponding

to a desynchronisation, resulting in a downstream decay of the wall response, due to the

decay of mode F, which decreases its phase speed (as it moves towards lower values of

ωr) and becomes more stable (moving towards higher negative values of ωi).

In the region x ≈ 400 − 500, characterised by a modulation behaviour shown by the

oscillatory wall response in figure 5.4, mode F traverses the entropy/vorticity wave

continuous spectrum, and, at the same time, another discrete mode, close to the slow

acoustic wave continuous spectrum, starts moving rapidly from very low values of ωi

to higher values, thus becoming less stable, with increasing phase speed. This mode

corresponds to mode S, which is excited due to a synchronisation with the decaying

mode F, after crossing the convected wave continuous spectrum.
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Figure 5.7: Spectrum of the eigenvalues at the frequency f10

Between x = 500 and x = 700 the leftwards path of mode F in the eigenvalue spectrum

is replaced by the leftwards path of a different discrete mode, namely a Mack mode,

which first appears at x = 641 (indicated by a green square symbol) as a consequence of

the previous wavelength exchange (or synchronisation) mechanism between mode F and

mode S, and the progressive growth of mode S, moving towards the higher frequency

(ωr) and the higher (closer to zero) growth rate (ωi) values. The Mack mode is generated

at higher frequencies than mode S, however, as we move further downstream, it shows a

decreasing frequency (and phase speed), and becomes progressively less stable. In this

region, the continuous growth of mode S, due to the synchronisation with the decaying

mode F, followed by the generation and progressive growth of the Mack mode, results

in a growth of the wall response, as shown in figure 5.4, whose oscillatory behaviour

indicates a modulation process between the forcing fast acoustic waves and the above

mentioned internal competing modes.

Downstream of x = 700 figure 5.4 shows another growth of the wall response, which is

now much smoother than the growth in the previous region, thus indicating that there

is a dominant mode in this region. This mode is again mode F, which grows as a con-

sequence of a second resonance-induced amplification cycle, due to the synchronisation

with the fast acoustic waves. For this reason, we refer to this mode as the second fast

mode, or mode F II. The downstream evolution of the second fast mode is represented

by a short branch very close to the fast acoustic wave continuous spectrum in the top

right corner of figure 5.7.

Similar characteristics to those described above for the eigenvalue spectrum at the fre-

quency f10 have been observed for the corresponding spectrum at the frequency f6, with
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the exception that the evolution path of the different modes along the wall extends up to

approximately the position where mode F traverses the convected wave continuous spec-

trum. This means that the branches of the Mack mode and of the second fast mode are

not present in the eigenvalue spectrum at the frequency f6. In other words, the down-

stream generation-evolution path of the boundary-layer modes at the higher frequencies

is quicker than at the lower frequencies, and results in the mode F - mode S wavelength

exchange mechanism taking place closer to the leading edge. This effect can be observed

in figure 5.8, which shows a comparison between the DNS and the LST results for the

internal mode phase speed at both the frequencies f6 and f10 (the curve relative to the

numerical result for the frequency f6 is the same shown in figure 5.5). The phase speed

from the DNS results has been computed through the fast Fourier transformed wall

pressure fluctuations, using the relation for the streamwise wavenumber

α(x, f) = αr + αi =
1

ip′w(x, f)

∂p′w(x, f)

∂x
, (5.13)

and then applying the relation cph = 2πf/αr. As can be seen, for both the frequencies,

the numerical phase speed (represented by blue and red solid lines for the frequencies f6

and f10 respectively) starts at a value of about 1.12 in the early nose region (x = 20−40),

which is slightly lower than the local fast acoustic wave phase speed of about 1.16. This

may be due to non-parallel effects related to the presence of the strong bow shock,

significantly affecting the flowfield and the wave propagation speed in the early leading-

edge region. The LST analysis performed at the distance x = 50 from the leading edge

provides, instead, phase speed values for mode F of about 1.165 for the frequency f6

and 1.15 for the frequency f10, which are much closer to the local fast acoustic wave

phase speed. Thus, the internal mode generated at the leading edge is mode F. Overall,

both DNS results and LST results for mode F show a good agreement in the decay part

of the numerical phase speed, thus indicating that the internal mode decaying from the

leading-edge towards downstream is indeed mode F. In particular, the numerical phase

speed decreases up to about x = 300 at the frequency f10, while it keeps decaying up to

about x = 750 at the frequency f6. Downstream of these two points mode F traverses the

convected wave continuous spectrum, the numerical phase speed shows a rapid increase,

and a second synchronisation with the local fast acoustic waves is reached (as already

mentioned in Section 5.2.2). Downstream of this synchronisation point (x = 370 at

the frequency f10, and x = 830 at the frequency f6), the numerical phase speed no

longer follows the LST result for mode F, but, in contrast, agrees very well with the

LST result for mode F II, as can be seen further downstream for the frequency f10

(at the lower frequency, f6, mode F II would be reached further downstream of the

computational domain outer edge). During the decay of mode F, when the phase speed

drops below the value of 0.9, strong oscillations of the numerical solution are observed, as

a consequence of the mode F phase speed approaching the phase speed of mode S, which

results in an initial growth of mode S, as is shown by the LST curves representing mode
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S (blue and red dash-dot curves with square symbols). These oscillations represent, in

fact, the modulation process between the forcing fast acoustic waves and the emerging

mode S, which can be further validated, as described in Section 4.3.3, using relation

4.5. Assuming for the phase speed of the known mode (ca) the value of the local fast-

acoustic wall-tangential phase-speed at the location x = 700, namely 1.168, and taking

the distance between the two consecutive peaks of the wall pressure response curve at

x = 696 and x = 787 (within the modulation region), with reference to figure 5.4 for the

frequency f6, i.e. ∆x = 91, the value of the second competing mode in the modulation

process is cb = 0.855, which is very close to the LST results for mode S phase speed

shown in figure 5.8 in the considered region.

Strong oscillations are observed also further downstream, after the second synchronisa-

tion with the fast acoustic waves, representing a modulation between the growing mode

S, with increasing phase speed, and the emerging mode F II. As shown by the frequency

f10, these oscillations reduce further downstream until disappearing when mode F II

becomes the dominant mode inside the boundary layer. Furthermore, downstream of

the intersection point between mode F and mode S LST phase speeds (i.e. the mode F

- mode S synchronisation point) at the frequency f10, the Mack mode is generated and

develops downstream with an initial decrease of the phase speed, as a continuation of

the mode F branch, but with increasing growth rate. These results are qualitatively in

a very good agreement with the results of Zhong and Wang [23].

Figure 5.8: Phase speed of the boundary-layer modes along the wall for the
frequencies f6 and f10. Comparison between DNS and LST results. The dotted
horizontal blue lines indicate the local phase-speed values of the fast and slow
acoustic waves, and the entropy/vorticity waves
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Figure 5.9 shows the corresponding LST results for the growth rates of the internal

modes at both the frequencies. As can be seen, all the fast modes, namely Mode F and

Mode F II, have a decreasing growth rate, as they are damped modes. The slow modes,

namely Mode S and the Mack mode (which can be considered as a second, or higher

frequency, slow mode), show in contrast an increasing growth rate, as they represent the

instability modes, although they are still stable (negative ωi) in this case. The arrow

illustrates the exchange mechanism between the decaying fast mode (Mode F) and the

Mack mode (or second instability mode) taking place at the synchronisation (or phase-

speed intersection, as shown in figure 5.8) point between Mode F and Mode S. This

mechanism is also evident in figure 5.7, where Mode F (blue) and Mode S (red) arrows

illustrate the movement of either mode in frequency (hence in phase speed) towards each

other, then, when their frequencies match, the Mack mode is excited and replaces Mode

F in the path towards decreasing frequencies.

Figure 5.9: Growth rates of the boundary-layer modes along the wall for the
frequencies f6 and f10, obtained through LST

A further comparison between the DNS and the LST results, as well as a more detailed

identification of the internal modes, is made by considering the eigenfunctions of the

different modes at several positions along the wall. Figure 5.10 shows the temperature

and wall-tangential velocity eigenfunctions for the frequency f6 at x = 259, which is

the position where the first peak of the wall pressure fluctuation amplitude is reached

due to the leading-edge fast-acoustic - mode F resonance mechanism (with reference to

figure 5.4). At this position mode F is the dominant mode inside the boundary layer,

which is proved by the good agreement between the DNS results for T̂ and û, namely the

fast Fourier transformed temperature and wall-tangential velocity fluctuation amplitudes
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along the wall-normal direction, and the LST eigenfunctions for mode F. As can be seen,

the shape of mode F is characterised by a high peak near the wall. These results are

also in a good qualitative agreement with the numerical and LST results of Zhong [86]

for the eigenfunctions of mode F. It shall be noted that the fluctuation amplitudes are

normalised with the maximum inside the boundary layer (A/Amax).

Figure 5.11 shows the corresponding eigenfunctions for the frequency f6 at the position

x = 700, which is within the modulation region, and in particular at about the location

of a peak of the wall response. Here, the DNS results are compared with the LST results

for Mode S at this position, which represents one the competing modes in the modulation

region, as said above. As can be observed, the numerical eigenfunctions are characterised

in general by the typical patterns of the fast acoustic wave mode, namely the maximum

peak near the wall. However, the numerical temperature perturbation shows also a high

peak close to the boundary-layer edge, which is a pattern of the eigenfunctions for mode

S, as shown by the LST results. This is reasonable, as in the modulation region, as

described above, the two competing modes are represented by the forcing fast acoustic

waves and the growing mode S.

Finally, figures 5.12 and 5.13 show the eigenfunctions for the frequency f10 at the posi-

tions x = 641 and x = 940 respectively. In figure 5.12 the LST eigenfunctions for the

Mack mode are shown, which has been observed at the corresponding position (x = 641)

in the eigenvalue spectrum in figure 5.7, while the LST results in figure 5.13 correspond

to mode F II, which is the dominant mode in the downstream region. The numerical

results at the position x = 641 show the strong influence of the external fast acoustic

waves, which can be noticed also by the fact that both temperature and velocity per-

turbations do not approach zero outside the boundary layer (yn > 20). This is due to

the second synchronisation with the fast acoustic waves characterising this flow region,

as shown by figure 5.8, which provides the second amplification of the fast mode. As

the resonance mechanism with the fast acoustic waves leads again to a strong growth of

the fast mode, the Mack mode, which is generated in this region, can be considered as

covered by the fast mode. The fast mode, in turn, keeps growing further downstream

forming mode F II, whose shape is shown in figure 5.13. Here a good agreement between

the DNS results and the LST results for mode F II is observed, with mode F II being

characterised by two consecutive peaks near the wall, as also shown in the work of Zhong

[86]. This proves that mode F II, resulting from the second resonant interaction with

the fast acoustic waves, has become the dominant mode in the downstream region.

In conclusion, the present numerical and theoretical results show the main characteristics

of the leading-edge receptivity mechanism at hypersonic speeds, and are in qualitative

agreement with other theoretical and numerical studies available in the literature, for

different flow conditions.
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Figure 5.10: Temperature and wall-tangential velocity eigenfunctions for the
frequencies f6 at the position x = 259

Figure 5.11: Temperature and wall-tangential velocity eigenfunctions for the
frequencies f6 at the position x = 700
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Figure 5.12: Temperature and wall-tangential velocity eigenfunctions for the
frequencies f10 at the position x = 641

Figure 5.13: Temperature and wall-tangential velocity eigenfunctions for the
frequencies f10 at the position x = 940
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5.3 Results for the unswept configuration

5.3.1 Cases 1-2, Re = 1400, fast waves: streak instability mode

We start to illustrate the results of the 3D simulations for the cases at lower Reynolds

number with fast acoustic waves as freestream disturbances. Figures 5.14 and 5.15

show contours of the real part of the Fourier-transformed wall pressure fluctuations

at all the considered frequencies (from f1 at the top to f10 at the bottom) for cases

at lower and higher freestream disturbance amplitude respectively (cases 1 and 2 in

table 5.1). Moving from top to bottom in both figures, the effect of frequency on the

resonance mechanism can be seen, with the peak wall disturbance amplitude moving

towards the leading edge as the frequency is increased. In the lower amplitude case

(figure 5.14) the wall disturbances appear to be dominated by a 2D mode through the

whole length of the computational domain; in contrast, in the higher amplitude case

(figure 5.15) the 2D mode seems to be the most amplified mode only in the leading-

edge region, namely in the early region of increasing amplitude, and, once the peak has

been achieved, 3D modes (with non-zero spanwise wavenumber) emerge and become

the dominant wave structures further downstream. The solution in the nose region

(x = 0 − 200) is qualitatively very similar between the two different amplitude cases

at all the frequencies, with the amplitude scaled by an order of magnitude as for the

forcing, i.e. (unsurprisingly) the solution can be reasonably considered as linear in the

early region of the computational domain. Further downstream, the solution becomes

different between the cases at different amplitude, meaning that nonlinearities for the

higher amplitude case are no longer negligible and become more and more important as

going downstream.
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Figure 5.14: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the different forced frequencies. Case 1, A∞ = 5× 10−3. The labels of
the vertical (z) and horizontal (x) axis have been purposely omitted
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Figure 5.15: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the different forced frequencies. Case 1, A∞ = 5× 10−2. The labels of
the vertical (z) and horizontal (x) axis have been purposely omitted

Figure 5.16 shows the trend of the wall pressure fluctuation amplitudes along the wedge

for the modes β = 0, 1, 2 at the frequency f2 for both high and low amplitude cases,

obtained through a FFT in time and in the spanwise direction. The wall pressure

fluctuation amplitudes for each mode are normalised with the value of the freestream

pressure fluctuation amplitude (i.e. as p′w/p
′
∞) pertaining to the specific mode (e.g.,

the wall perturbation relative to the 2D mode is divided by the imposed freestream

perturbation amplitude for the 2D mode). As can be seen, the wall response very close

to the leading edge does not show a significant disagreement between case 1 and case

2 , due to the nonlinear effects being relatively small in this region. In the second



Chapter 5 Results for the wedge with three-dimensional acoustic waves 115

half of the computational domain, in contrast, the high nonlinear effects in the case of

higher freestream disturbance amplitude (case 2) provide markedly different behaviours

between cases 1 and 2. In particular, the β = 2 mode decays to very low values in case

1, whilst, in case 2, is strongly excited in the second half of the domain. Also, it is

evident that the rapid growth of the β = 2 mode starts at a position very close to the

point where the peak of the 2D mode F is reached, thus suggesting that the resonance

mechanism at the leading edge might play an important role in the excitation of 3D

boundary-layer instabilities.

Figure 5.16: Extracted modes (β = 0, 1, 2) of the wall pressure fluctuation
amplitudes at the frequency f2, for case 1 and case 2

By looking at figure 5.17, which shows an instantaneous contour of the streamwise

(tangential to the wall) velocity component (ut) along the j = 10 grid line inside the

boundary layer, it is evident that the excitation of the β = 2 mode at the different forcing

frequencies corresponds to the generation and downstream development of streaks in

the streamwise direction inside the boundary layer. In particular, the figure reveals

the presence of two low velocity streaks generated approximately in the region x =

400 − 500 and growing downstream, which correspond to the pair of high temperature

streaks shown in figure 5.18, depicting the temperature contour along the same grid

line j = 10. Figure 5.19 shows a cross-section of the streamwise velocity in the zyn-

plane (where yn represents the normal distance from the wall) at the position x = 940,

that highlights the boundary layer distortion at the location of the streaks. In between

the low-velocity streaks (namely at about z = 25) the streamwise velocity assumes

higher values, compared to those assumed inside the streaks, which is consistent with
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the streaks being formed by a pair of counter-rotating vortices that take high-speed

cold fluid from the upper layers towards the wall. The streaks represent a stationary

instability, which can be referred to as the (0,2) mode (indicating with 0 the frequency,

as they are stationary, and with 2 the spanwise wavenumber β).

Figure 5.17: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (ut) along the grid line j = 10 inside the boundary layer.
Case 2, A∞ = 5× 10−2

Figure 5.18: Instantaneous temperature contour (T ) along the grid line j = 10
inside the boundary layer. Case 2, A∞ = 5× 10−2

Figure 5.19: Instantaneous contour of the streamwise velocity component (ut)
on the zyn-plane at the position x = 940. yn is the distance from the wall along
the local normal direction. Case 2, A∞ = 5× 10−2
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5.3.2 Cases 3-4, Re = 5625, fast waves: streak breakdown mechanism

Cases 3 and 4 pertain to the higher Re = 5625 and freestream fast acoustic waves in the

unswept configuration. For the case of higher freestream disturbance amplitude (case 4),

due to numerical instability issues, the computation has been performed through DNS

up to the station x = 400, and then continued from this point up to x = 750 through

a Large Eddy Simulation (LES), using the Mixed-Time Scale approach (described in

Section 2.7). For case 3, the results in terms of the main wave structures forming in

the boundary layer are similar to the corresponding low freestream amplitude case at

lower Reynolds number (case 1), as the wall response is mainly dominated by the 2D

fast mode. Figure 5.20 shows the real part of the Fourier-transformed wall pressure

fluctuations at the frequency f8 for case 3. The figure reveals a superposition along

the whole length of the computational domain between the 2D mode and the oblique

β = 1, 2 modes, which are all evolving from the resonance mechanism in the nose region

and the modulation mechanism further downstream, with the 2D mode being dominant.

A similar trend is shown for all the other frequencies (which are not shown for reasons

of brevity). For this case (case 3) at lower amplitude, as also for the corresponding

case at lower Reynolds number (case 1), there is no streak formation due to negligible

nonlinearity effects. Figure 5.21 shows the wall pressure fluctuation field at the same

frequency f8 for case 4. Here, the 2D mode is shown to be dominant in the region

200 ≤ x ≤ 300, while downstream of x = 400 the response is characterised by streaks,

which in this case are seen to start breaking down for x > 500.

Figure 5.20: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f8. Case 3, A∞ = 5× 10−3

Figure 5.21: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f8. Case 4, A∞ = 5× 10−2

Evidence of the breakdown mechanism can be found in figures 5.22 and 5.23, showing

the instantaneous streamwise velocity and temperature contours along the j = 10 grid

line inside the boundary layer. In these figures, two low velocity streaks are clearly seen

to form around x = 350. These streaks grow further downstream remaining laminar up

to about x = 500, and finally break down in the region 500 ≤ x ≤ 550. Moreover, in the
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region 400 ≤ x ≤ 500 the streak structures appear strongly distorted by the interaction

with the wave fronts of the 2D mode, which seems to cause oscillations of the streak,

streak bending and even bifurcation. The streak located at 0 ≤ z ≤ 25 appears to

develop a curvature along its longitudinal path in the region 450 ≤ x ≤ 500, while, at the

same position (around x = 450), another thinner (secondary) streak (located at about

z = 25) seems to detach from the main streak. This then develops downstream with

an inclination angle with respect to the main streak oriented along the x-axis. At the

same time, the second main streak (25 ≤ z ≤ 55) deviates from the original x-oriented

path at about x = 500 and continues downstream with a slight inclination angle. These

phenomena that modify the streak structures are coincident with a superposition of the

streaks and highly amplified 2D modes, as seen in figure 5.21 in the region 450 ≤ x ≤ 500.

Namely, the interaction between the amplified 2D modes in the leading-edge region and

the streak mode leads rapidly to the streak breakdown. Figure 5.24 shows a cross section

of the streamwise velocity (ut) in the boundary layer at x = 500. It is evident that the

streak structure consists of two main low velocity streaks, with cores located at z = 15

and z = 40, and a secondary smaller streak located at z = 22 that is detaching from

the first main streak (z = 15). As in the lower Reynolds number case (case 2), the

intermediate regions between two adjacent streaks are characterised by much higher

values of the streamwise velocity, corresponding to areas where the cold high speed fluid

of the upper layers is brought towards the wall by means of a pair of counter-rotating

streamwise vortices.

Figure 5.22: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (ut) along the grid line j = 10 inside the boundary layer.
Close-up in the region 300 ≤ x ≤ 750 to highlight the streak evolution. Case 4,
A∞ = 5× 10−2

Figure 5.23: Instantaneous temperature contour (T ) along the grid line j = 10
inside the boundary layer. Close-up in the region 300 ≤ x ≤ 750 to highlight
the streak evolution. Case 4, A∞ = 5× 10−2
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Figure 5.24: Instantaneous contour of the streamwise velocity component (ut)
on the zyn-plane at the position x = 500. yn is the distance from the wall along
the local normal direction. Case 4, A∞ = 5× 10−2

The particularly rapid generation and growth of the streak mode observed in figures

5.16, 5.17 and 5.18, for the lower Reynolds number case, and the corresponding rapid

breakdown observed in figures 5.22 and 5.23, for the higher Reynolds number case,

suggest that in the presence of high-amplitude freestream disturbances nonlinear effects

may become dominant already in the early leading-edge region, thus leading to a violent

fully-nonlinear transition process further downstream. However, previous studies (e.g.

Andersson et al.[87] and Brandt and Hennigson [88] for the case of an incompressible flow

over a flat plate) showed that the physical mechanism behind the generation, growth and

breakdown of streamwise streaks, can be associated to a transient growth of the streak

instability mode. In particular, based on these studies, a lift-up effect associated to

vortices in the streamwise direction (representing the initial disturbances in the leading-

edge region) is at the basis of the generation and non-modal growth of elongated streaks,

whose early breakdown is induced by secondary instabilities that take place once the

amplitude of the streaks grows up to a sufficiently large value.

The present numerical results have shown that the resonance mechanism of the 2D

fast mode at the leading edge can enhance the mechanism of generation, growth and

breakdown of the streaks, however the question relative to whether this is associated to

a fully nonlinear process or to a transient growth mechanism is still open and requires

a more in-depth analysis, which we address to a future investigation.
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5.3.3 Cases 5-6, Re = 5625, slow waves

For the slow wave cases at Re = 5625 in the unswept configuration (cases 5 and 6), we

show representative results at two different frequencies (f4 and f10). Figures 5.25 and

5.26 show the wall pressure fluctuation field for case 5 (lower freestream amplitude) at

frequencies f4 and f10 respectively, while figures 5.27 and 5.28 show the corresponding

results for case 6 (higher freestream amplitude) at the same frequencies. It can be seen

that the change in freestream disturbance amplitude level does not produce significant

changes in the wave structure of the wall response, due to the weaker amplification rates

shown by the response to slow acoustic waves in the leading-edge region compared to fast

acoustic waves, which has been previously discussed, thus proving a much lower degree of

nonlinearity in the receptivity to slow acoustic waves compared to the receptivity to fast

acoustic waves. At all the frequencies the wall response consists of three-dimensional

wave structures over the whole domain length, which means that in the case of slow

acoustic waves there is no clearly dominant mode among the forced β = 0, 1, 2 modes.

Figure 5.25: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f4. Case 5, A∞ = 5× 10−3

Figure 5.26: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f10. Case 5, A∞ = 5× 10−3

Figure 5.27: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f4. Case 6, A∞ = 5× 10−2
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Figure 5.28: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f10. Case 6, A∞ = 5× 10−2

Figures 5.29 and 5.30 show the distribution of the pressure fluctuation amplitude along

the wall for the modes β = 0, 1, 2 at the frequencies f4 and f10, for cases 5 and 6

respectively. In both cases the oblique modes (β = 1, 2) show a higher amplification

than the 2D mode at both the considered frequencies. In particular, at the higher

frequency (f10), for which all the modes show a considerably higher amplitude than

the corresponding modes for the f4 frequency in the leading-edge region, the oblique

mode β = 2 is the most amplified mode, with an amplitude (p′w/p
′
∞) of about twice the

amplitude of the 2D mode and 1.4 times the amplitude of the β = 1 mode at the position

of its maximum (x = 350). This proves that, in contrast to the fast waves, in the case

of slow acoustic waves the absence of a strong resonance mechanism at the leading edge

causes the 2D mode not to be the dominant mode in the nose region, and the oblique

modes, on the contrary, are eventually more amplified, dependent on the frequency, than

the 2D mode, such that the overall response along the wall surface consists of a mix of

2D and 3D competing modes.

Figure 5.29: Extracted modes (β = 0, 1, 2) of the wall pressure fluctuation
amplitudes at two forced frequencies (f4 and f10). Red and blue colours are
used to indicate the f4 and f10 frequencies respectively. Solid, dashed and dotted
lines are used for the β = 0 (i.e. 2D), β = 1 and β = 2 modes respectively. Case
5, A∞ = 5× 10−3
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Figure 5.30: Extracted modes (β = 0, 1, 2) of the wall pressure fluctuation
amplitudes at two forced frequencies (f4 and f10). Red and blue colours are
used to indicate the f4 and f10 frequencies respectively. Solid, dashed and dotted
lines are used for the β = 0 (i.e. 2D), β = 1 and β = 2 modes respectively. Case
6, A∞ = 5× 10−2

Moreover, the growth of the wall fluctuations (at both low and high freestream am-

plitude, in figures 5.29 and 5.30 respectively) for the β = 1 mode at the frequency f4

through the whole domain length, and for the β = 2 mode at the higher frequency f10

in the first half of the domain, might be connected to oblique first mode linear instabil-

ities present in particular regions of the domain, in the considered range of frequencies.

However, in contrast to the fast wave case, the receptivity to slow waves is seen not to

produce streak instability. This is due to the absence, for slow waves, of a strong res-

onance mechanism between the external forcing mode and the internal boundary layer

modes. Thus, in the presence of high freestream noise levels, the fast acoustic waves

can be more dangerous than the slow waves, as they appear to be more efficient in the

generation of streaks in the leading-edge region and in leading the boundary layer to

transition.
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5.4 Results for the infinitely swept configuration (Λ = 45◦)

5.4.1 Crossflow instability in the mean flow

For the swept case, with reference to the sketch in figure 5.31 and the illustration given

in figure 2.2, a sweep angle of Λ = 45◦, between the streamwise direction of the flow and

the leading edge, was considered. At the side boundaries of the computational domain a

periodic boundary condition is applied, in order to simulate an infinitely swept leading

edge.

Figure 5.31: Sketch of a swept leading edge

Before showing the results for our unsteady simulations, we present some numerical re-

sults for the mean flow, which show the presence of a crossflow inflection point in the

swept configuration. Figure 5.32 shows the mean pressure trend along the wall, showing

a streamwise gradient that is still present up to high distances downstream along the

wedge. Indeed, figure 5.33, depicting the crossflow boundary-layer profiles at different

distances from the leading edge along the wall, shows that the crossflow boundary-layer

profile is characterised by inflectional profiles from the leading-edge region, where it

assumes higher values due to the higher pressure gradient, up to high distances down-

stream. This proves that in the swept configuration the boundary layer is likely to be

subjected to a crossflow instability along the whole length of the wedge.
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Figure 5.32: Mean pressure trend along the wall

Figure 5.33: Mean crossflow boundary-layer profiles at several distances from
the leading edge

5.4.2 Cases 7-8, Re = 5625, fast waves: fast-mode breakdown mecha-

nisms

For the infinite swept case we show results at representative frequencies f2 and f10, based

on the general physical aspects we want to highlight. In particular, f2 is representative
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of a lower frequency range (from f1 to f5), as the results reached at this frequency are

quite similar to those of the other low frequencies, whilst, for the same reason, f10 is

to be considered as representative of a higher frequency range (from f6 to f10). As in

case 4, the results of case 8 (fast waves, high disturbance amplitude) have been achieved

through a mixed DNS/LES approach, with DNS up to x = 550, then from this station

up to the domain outer edge the computation has been continued by means of an LES,

using the Mixed-Time Scale approach (described in Section 2.7).

5.4.2.1 Crossflow-instability-related breakdown mechanism

Figures 5.34 and 5.35 depict the wall pressure fluctuation field for case 7 (low freestream

amplitude) at the frequencies f2 and f10 respectively. At both the frequencies, the β = 0

waves are dominant close to the leading edge, namely in the region of early growth of

mode F. For the swept case the β = 0 mode (whose wave vector is aligned with the

x-axis) has to be considered carefully, as the streamwise direction is now inclined of 45◦

with respect to the x-axis, pointing towards the increasing values of x and z. Thus,

the β = 0 mode represents actually an oblique mode with respect to the freestream

direction. At both the frequencies, the β = 0 fast mode appears to be modulated by

wave fronts (more visible at the higher frequency, f10) approximately aligned in the

streamwise direction (thus with a wave vector in the crossflow direction), which pertain

to a weak crossflow mode superimposed onto the forced β = 0 mode.

Figure 5.34: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f2. Case 7, A∞ = 5× 10−3

Figure 5.35: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f10. Case 7, A∞ = 5× 10−3

An interesting result is observed in figures 5.36 and 5.37 for the streamwise velocity and

temperature contours along the j = 10 grid line inside the boundary layer for case 7

(lower disturbance amplitude), which show that in the swept configuration fast acoustic

waves with low freestream amplitude level are able to lead the flow to early breakdown

very close to the domain outer edge. In this case, the mechanism leading to breakdown
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seems to originate from high-wavenumber oscillations (representing secondary instabili-

ties of the crossflow mode), as is evident from the thin streamwise oriented wavy struc-

tures forming at about x = 750 and growing downstream until starting breaking down

at about x = 850. In the last section of the domain, downstream of x = 900, the wavy

structures appear to lose their regular structure, being slightly thicker and more oscil-

latory along the streamwise direction (i.e. they appear to be destabilised), but do not

show a high degree of fragmentation, which may indicate that the flow has reached the

early stage of a gradual breakdown process, which would develop further downstream of

the domain edge. The early breakdown stage reached in the low amplitude case proves

that the boundary layer in the swept configuration is much more unstable than in the

unswept configuration, where the breakdown was reached only at the high amplitude

level of the freestream disturbances.

The mesh resolution in the downstream region (where the grid is coarser along the wall-

normal and wall-tangential directions, compared to the nose region) consists of about

30 points inside the boundary layer (e.g. at the position x = 900) in the wall-normal

direction, a x-wise spacing in the wall-tangential direction of approximately 0.3, and a

(constant) spanwise spacing of 0.55. Considering that the smallest dimensionless distur-

bance wavelengths relative to the freestream forcing are about 24 and 17 for fast and

slow acoustic waves respectively in the x-wise direction, and 27.5 in the spanwise direc-

tion, the present downstream grid resolution can be considered as suitable to capture the

initial breakdown-transition process (consistent with the quality of the solution shown

in figures 5.36 and 5.37). However it is believed that a grid refinement would be needed

for fully turbulent simulations (which are not the purpose of the present study).

Figure 5.36: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (ut) along the grid line j = 10 inside the boundary layer.
Contour region starting from x = 700. Case 7, A∞ = 5× 10−3



Chapter 5 Results for the wedge with three-dimensional acoustic waves 127

Figure 5.37: Instantaneous temperature (T ) contour along the grid line j = 10
inside the boundary layer. Contour region starting from x = 700. Case 7,
A∞ = 5× 10−3

An evidence that the breakdown mechanism observed in figures 5.36 and 5.37 is induced

by crossflow instabilities is given in figure 5.38, which shows the boundary-layer profiles

of mean crossflow velocity (ucross), wall-normal velocity fluctuation (v′), first and second

derivatives of the mean crossflow velocity (∂ucross/∂yn, ∂2ucross/∂y
2
n), at z = 27 and

x = 500. It should be mentioned that all the quantities plotted along the horizontal axis

are normalised with their corresponding maximum value inside the boundary layer. As

can be seen, the peak of the wall-normal velocity fluctuation is reached at the distance

from the wall yn = 2, which is approximately the same position along the wall-normal

direction of an inflection point, namely a point where the second derivative of ucross

is zero. Thus, this inflection point (corresponding to a change in concavity happen-

ing between the wall and the peak of ucross) represents an inviscid instability of the

crossflow, which grows downstream leading to breakdown. This is further confirmed by

considering that the profile of ucross, between the wall and the negative peak, satisfies

both Rayleigh’s and Fjortoft’s necessary conditions for instability. Rayleigh’s condition

requires the presence of an inflection point for a boundary layer to be considered as

potentially unstable, which is satisfied in our case by ∂2ucross/∂y
2
n = 0 at yn = 2, which

is corresponding to a peak in the first derivative (∂ucross/∂yn, namely the spanwise vor-

ticity). Fjortoft’s criterion adds a further constrain to Rayleigh’s condition, namely, if

ucross(yn) is a monotonic function with an inflection point (considering, for example, the

curve of ucross from the wall to the negative peak), a necessary condition for instability

is that (∂2ucross/∂y
2
n)(ucross − uI) < 0 inside the boundary layer, in which uI is the

crossflow velocity at the inflection point. The validity of this criterion, applied to our

case, is shown by the dashed curve in 5.38, which assumes negative values above yn = 2.

Hence, the boundary layer contains a crossflow instability, which induces secondary

instabilities downstream leading to nonlinear breakdown.
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Figure 5.38: Profiles, along the wall-normal direction, of mean crossflow velocity
(ucross), wall-normal velocity fluctuation (v′), first and second derivatives of
the mean crossflow velocity (∂ucross/∂yn, ∂2ucross/∂y

2
n), and Fjortoft’s stability

condition, at z = 27 and x = 500. Case 7, A∞ = 5× 10−3

5.4.2.2 Resonance-related by-pass mechanism

Figures 5.39 and 5.40 show the wall pressure fluctuation results for case 8 (high freestream

amplitude) at the same frequencies. In particular, in case 8, at the higher frequency (f10),

the crossflow mode appears strongly amplified in the region 400 ≤ x ≤ 650 and com-

petes with the β = 0 mode, with marked high wavelength oscillations in the spanwise

direction perpendicular to the freestream flow.

Figure 5.39: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f2. Case 8, A∞ = 5× 10−2
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Figure 5.40: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f10. Case 8, A∞ = 5× 10−2

This interaction between the crossflow mode and the highly amplified β = 0 mode (the

dominant forced mode), due to the leading-edge resonance mechanism, leads to a by-

pass-type early breakdown mechanism starting at about x = 650, which is possible to

see in figures 5.41 and 5.42, showing the contours of the streamwise velocity (inclined of

the sweep angle with respect to the x-axis) and of the temperature along the grid line

j = 10 in the boundary layer.

Figure 5.41: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (ut) along the grid line j = 10 inside the boundary layer.
Contour region starting from x = 300. Case 8, A∞ = 5× 10−2

Figure 5.42: Instantaneous temperature (T ) contour along the grid line j = 10
inside the boundary layer. Contour region starting from x = 300. Case 8,
A∞ = 5× 10−2

As can be seen, low-velocity high-wavelength streaks oriented in the streamwise direction

are observed in the early leading edge region. These streaks are related to a crossflow

instability mode, as seen for the previous low-amplitude case, and undertake a rapid

nonlinear growth in the region of interaction with the resonance-amplified β = 0 waves,

until starting breaking down at around x = 650. In this case the breakdown is much

more rapid than in case 7 (at the low freestream disturbance amplitude), and leads

the boundary layer into fully turbulent flow downstream. As in case 4 (unswept case),

freestream high amplitude fast acoustic waves are efficient in leading the boundary layer

to an earlier transition in the nose region.

Figures 5.43 and 5.44 show results of case 8 for the zyn-plane cross-sections of the

streamwise velocity inside the boundary layer at two different positions along the wall,

x = 500, and x = 800.
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Figure 5.43: Instantaneous contour of the streamwise velocity component (ut)
on the zyn-plane at the position x = 500. yn is the distance from the wall along
the local normal direction. Case 8, A∞ = 5× 10−2

Figure 5.44: Instantaneous contour of the streamwise velocity component (ut)
on the zyn-plane at the position x = 800. yn is the distance from the wall along
the local normal direction. Case 8, A∞ = 5× 10−2

At x = 500, spanwise oscillations with a certain orientation, consistent with the presence

of streamwise low-velocity streaks, are observed. Then, at x = 800, where the flow is in

the later stages of transition, the boundary layer streaks still appear, but are much more

fragmented and with other secondary streaks forming at different spanwise positions.

An illustration of the time evolution of the high-wavelength streamwise streaks observed

in figures 5.41 and 5.42 is given in figure 5.45, in which the temperature contours along

the j = 10 grid line inside the boundary layer are plotted consecutively for different

instants of time (t=0, 1/4T, 1/2T, 3/4T, T) over the base period T of the freestream

acoustic waves. In particular, figure 5.45 reveals that these streaks remain in the same

position for different time instants, thus suggesting that they are stationary streaks.
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Also, it is possible to notice the growth in time of the streaks along their relative direc-

tion, which gives a clearer representation of the transition process over an infinite swept

wedge.

Figure 5.45: Evolution of the temperature (T ) streaks at different instants of
time (t=0, 1/4T, 1/2T, 3/4T, T) over the base period T of the freestream
acoustic waves. The solution is relative to the region x = 400 − 900 of the
computational domain. Time increasing upwards. Case 8, A∞ = 5× 10−2
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5.4.3 Cases 9-10, Re = 5625, slow waves: slow-mode breakdown mech-

anisms

Figures 5.46 and 5.47 show the wall pressure fluctuation field for case 9 (low freestream

amplitude) at the frequencies f2 and f10 respectively, while figures 5.48 and 5.49 show the

corresponding results for case 10 (high freestream amplitude) at the same frequencies.

Here, it is evident how, in contrast with the fast wave cases (7 and 8), the β = 0

mode is not the only mode to be excited in the early nose region at each frequency, and

the solution is seen to be much more frequency dependent and diverse in terms of wave

structure, with different modes excited at different frequencies and in different regions of

the flow. At the lower frequency (f2), the response of the early nose region is dominated

by wave fronts approximately perpendicular to the flow direction. Downstream of x =

200, the wave structure changes and gradually modifies the incidence angle until the

structures develop a streamwise orientation. Figure 5.50 shows a close up of this wave

structure in the region 400 ≤ x ≤ 700 for case 10 (and frequency f2). This wave structure

seems to indicate a crossflow instability mode excited in the boundary layer, which leads

the flow to transition further downstream (x = 800 for the low amplitude, case 9, and

x = 700 for the high amplitude, case 10).

Figure 5.46: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f2. Case 9, A∞ = 5× 10−3

Figure 5.47: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f10. Case 9, A∞ = 5× 10−3

Figure 5.48: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f2. Case 10, A∞ = 5× 10−2
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Figure 5.49: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f10. Case 10, A∞ = 5× 10−2

Figure 5.50: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at the frequency f2. Close up in the region 400 ≤ x ≤ 700. Case 10,
A∞ = 5× 10−2

At the higher frequency (f10), in figures 5.47 and 5.49, the β = 0 mode appears to be the

dominant mode in the nose region up to about x = 400 for both case 9 and 10, but, at

the same time, it is seen to be significantly disturbed by the crossflow mode immediately

after the leading edge. Downstream of x = 400 the β = 0 mode seems to decay, while

traces of the streamwise oriented oscillations are still visible until the final transition.

However, at this frequency, a significant difference can be noticed between case 9 and case

10, namely in the low-amplitude case (case 9), in figure 5.47, there is a strong excitation,

in the region 550 ≤ x ≤ 750, of a mode with wave fronts approximately aligned with the

crossflow direction (namely a 2D mode, relative to the flow direction), which is actually

not present in the case of higher freestream noise level due to nonlinear effects. In fact,

in case 10 the response in this region seems to be characterised by the crossflow mode

superimposed onto a decaying β = 0 mode. Figures 5.51 and 5.52 highlight the thin

streamwise oriented wave structures in the streamwise velocity and temperature fields

respectively, for case 9. These structures are generated in the region 700 ≤ x ≤ 750 and

appear as narrow streaks aligned with the streamwise direction. These streaks then grow

between x = 800 and x = 875, where they finally enter an early breakdown stage, leading

to the generation of streamwise-oscillating higher-wavelength structures still oriented in

the streamwise direction further downstream. Thus, the crossflow instabilities lead to an

early breakdown stage, as it was shown for the swept fast-wave case with low freestream

disturbance amplitude (case 7).

Figures 5.53 and 5.54 show the corresponding results for case 10 (higher freestream

amplitude). In this case the mechanism leading to breakdown seems to be the same of

case 9 (and of case 7, with fast acoustic waves). However, due to the higher amplitude,

the breakdown of the narrow streamwise streaky structures is reached at an earlier
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location (x = 750), and there is a rapid breakdown of fragmented larger-scale structures,

which leads the boundary layer to a final transition stage.

Figure 5.51: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (ut) along the grid line j = 10 inside the boundary layer.
Contour region starting from x = 600. Case 9, A∞ = 5× 10−3

Figure 5.52: Instantaneous temperature (T ) contour along the grid line j = 10
inside the boundary layer. Contour region starting from x = 600. Case 9,
A∞ = 5× 10−3

Figure 5.53: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (ut) along the grid line j = 10 inside the boundary layer.
Contour region starting from x = 600. Case 10, A∞ = 5× 10−2

Figure 5.54: Instantaneous temperature (T ) contour along the grid line j = 10
inside the boundary layer. Contour region starting from x = 600. Case 10,
A∞ = 5× 10−2
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Figure 5.55 shows the boundary-layer profiles of mean crossflow velocity (ucross), wall-

normal velocity fluctuation (v′) relative to case 10, first and second derivatives of the

mean crossflow velocity (∂ucross/∂yn, ∂2ucross/∂y
2
n), normalised with their correspond-

ing maximum value inside the boundary layer, at z = 27 and x = 280. Through the same

approach used in Section 5.4.2.1 for the fast-wave low-amplitude case, we find that the

mean crossflow boundary layer at this position on the wedge presents, at about yn = 2,

an inflection point satisfying Fjortoft’s stronger condition for instability, as shown by

the negative values assumed by the dashed curve. Moreover, as can be seen, the maxi-

mum absolute value of the wall-normal velocity perturbation inside the boundary layer

is reached at a wall distance close to this inflection point. This again indicates that the

flow is dominated by crossflow instabilities, whose growth induces secondary instabili-

ties (represented by the narrow streamwise-oriented streaky structures observed in the

downstream region) and final breakdown.

Figure 5.55: Profiles, along the wall-normal direction, of mean crossflow velocity
(ucross), wall-normal velocity fluctuation (v′), first and second derivatives of
the mean crossflow velocity (∂ucross/∂yn, ∂2ucross/∂y

2
n), and Fjortoft’s stability

condition, at z = 27 and x = 280. Case 10, A∞ = 5× 10−2

The process leading from small-wavelength oscillations to the formation of more frag-

mented large-wavelength structures is also visible in the streamwise velocity cross-section

contours at the positions x = 700 (shown in figure 5.56) and x = 800 (shown in figure

5.57) for case 10.
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Figure 5.56: Instantaneous contour of the streamwise velocity component (ut)
on the zyn-plane at the position x = 700. yn is the distance from the wall along
the local normal direction. Case 10, A∞ = 5× 10−2

Figure 5.57: Instantaneous contour of the streamwise velocity component (ut)
on the zyn-plane at the position x = 800. yn is the distance from the wall along
the local normal direction. Case 10, A∞ = 5× 10−2

Hence, for the cases of slow acoustic waves, only one type of breakdown mechanism

is observed for both the amplitude levels, namely a breakdown initiated by secondary

instabilities of the crossflow mode, which grow very rapidly in the downstream region

leading to the fragmentation process of the boundary-layer structures. This mechanism

is the same that was observed for the fast-wave case at the low disturbance amplitude

(case 7), and indicates that for the slow-wave case there is no by-pass mechanism even

for the high amplitude level of the freestream disturbances. However, in the slow-wave

case at the high amplitude level, the breakdown process is more rapid and leads to a

fully transitional stage close to the domain outflow boundary.
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5.4.4 Skin friction profiles for the breakdown/transitional cases

Finally, figure 5.58 shows the trend of the span-averaged skin friction coefficient from

the station x = 300 downstream for all the swept cases (cases 7,8,9,10) and for the tran-

sitional unswept case (case 4). For each case, the profile of the skin-friction coefficient

was obtained through a time average (over the base period T) based on a limited number

of samples, which explains the oscillations observed in each curve. The cases with high

freestream disturbance amplitude (cases 4, 8, 10) show an evident transition process,

with the skin friction increasing by almost a factor of 3 for the two swept cases (cases 8

and 10) and a factor of 2 for the unswept case (case 4). The unswept case (represented

by a black dashed line) shows earlier transition compared to the swept cases, while,

among the swept cases with high amplitude, the case with fast waves (case 8, blue solid

line) shows boundary-layer transition further upstream (by a distance of about 200)

compared to the corresponding case with slow waves (case 10, red solid line).

Figure 5.58: Span averaged skin friction coefficient downstream of x = 300 for
all the swept cases (7, 8, 9, 10) and the transitional unswept case (case 4). For
case 4 (black dashed line) the curve reaches x = 750, as this is the outer edge
in the mixed DNS/LES approach for this case

The case with slow waves and high amplitude (case 10) shows a faster increase in the

skin friction coefficient, thus proving that the breakdown mechanism for this case is very

rapid. For the two swept cases at low freestream amplitude (cases 7 and 9, the blue

and red dashed lines respectively in figure 5.58) the skin friction follows the laminar

trend through all the domain length, thus proving that the boundary layer has not yet

reached a transition stage. However, figures 5.36, 5.37, 5.51 and 5.52, shown previously
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for the streamwise velocity and temperature contours along the j = 10 grid line in

the boundary layer for the swept fast wave and slow wave cases respectively with low

freestream amplitude, clearly show the initial stage of a breakdown process starting

downstream of x = 850. This breakdown mechanism, at the low amplitudes, is not as

strong as the breakdown at the higher amplitudes, that would lead to boundary-layer

transition downstream of the domain outflow boundary.

5.5 Summary of the results

A set of ten simulations have been carried out for a blunt cylinder-wedge geometry in a

hypersonic flow at Mach 6, for unswept and swept configurations. The main objective of

this study was to investigate the effect of three-dimensional disturbances on the leading-

edge receptivity to fast and slow acoustic waves at different amplitude levels, and on

the induced breakdown mechanism in an unswept configuration and in the presence of

a sweep angle.

Preliminary 2D simulations have shown the effects on the wall response of the frequency-

dependent resonance-modulation mechanism associated with the generation and down-

stream evolution of the fast mode (mode F) in the case of fast acoustic waves. A set of

temporal linear stability analyses, carried out at different points along the wall and for

two different frequencies, have provided results in very good quantitative agreement with

the numerical results, illustrating and supporting Fedorov’s theory about the resonance-

induced leading-edge generation and amplification of mode F, the wavelength-exchange

mechanism between mode F and mode S in the synchronisation region, as well as the

second resonant-interaction cycle leading to mode F II at the higher frequencies. The

results are also in a very good qualitative agreement with several of Zhong’s numerical

results.

In the unswept configuration and at a low freestream amplitude level, fast acoustic

waves have been found to induce a response substantially dominated by a 2D mode

pertaining to mode F through all the domain length, due to the strong amplification

of the main (two-dimensional) boundary layer fast mode (mode F), which is generated

by the resonance mechanism with the forcing fast acoustic wave mode at the leading

edge. On the contrary, at the higher freestream disturbance amplitudes, the response

includes low-velocity streamwise streaks, which produce a significant distortion of the

boundary layer causing transport of high-velocity cold fluid (in between the streaks)

from the upper layers towards the wall, due to the local action of two counter-rotating

vortices. While at the lower Reynolds number the streaks remain laminar, in the higher

Reynolds number case they start breaking down. In the case of slow acoustic waves, no

streaks are formed, and no boundary layer breakdown is reached; which is probably due

to the lower amplification rates of the wall response in the leading-edge region. This is
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in turn caused by the absence of a strong resonance mechanism between internal and

external modes at the leading edge. The effect of this different receptivity characteristic

for slow waves is the generation of a more complex three-dimensional wave structure

straight from the leading edge, consisting of a mix of different 2D and 3D competing

modes, but without any evident early amplification mechanism for each one of them.

Hence, our results for the unswept case show that a freestream disturbance characterised

by fast acoustic waves and high amplitude levels can be more dangerous (depending on

the disturbance environment) than slow acoustic waves, as it can easily lead to streak

formation and early breakdown in the leading-edge region.

In the case of a sweep angle of Λ = 45◦, both fast and slow acoustic waves, even with low

freestream disturbance amplitudes, lead to breakdown downstream along the wedge. In

the cases with high freestream amplitudes a final transition stage is reached, while in

the cases with low amplitudes the flow is shown to reach an early breakdown stage close

to the outflow boundary. The cases of slow acoustic waves with high and low freestream

amplitude and the case of fast waves with low freestream amplitude seem to have in

common the same kind of breakdown mechanism, being characterised by the generation

of small-wavelength elongated streaks oriented in the streamwise direction, which are due

to a crossflow instability originating in the nose region and growing downstream, thus

destabilising the boundary layer. The case of fast acoustic waves with high freestream

amplitudes is significantly different. For this case, the wall response is dominated in the

nose region by the forced β = 0 mode due to the resonance mechanism, which appears

to be strongly disturbed further downstream by a growing crossflow mode coming from

the leading edge. The interaction of the amplified β = 0 mode and the crossflow mode

leads to the direct generation and rapid growth of long-wavelength streamwise streaks

(with approximately the same wavelength of the crossflow waves) in the middle of the

domain. These streaks then break down to an earlier position with respect to the other

swept cases, leading quickly to boundary-layer transition.





Chapter 6

Results for the 3D forebody

model

6.1 Geometry and mesh

As a final application of our receptivity-to-breakdown approach, we consider now the

three-dimensional geometry of a generic forebody model, proposed by MBDA, for which

transition experiments were performed recently in the Mach 6 hypersonic wind tunnel

of the Purdue University (Durant et al. [89]). Figure 6.1 shows different views of the

geometry. It consists essentially of a wedge with a rounded leading-edge shape, a nose

radius of 1.25 mm (in the xy-plane), a length of 340 mm, a maximum width along the

z-axis of 120 mm, a maximum height along the y-axis of 50 mm, and a half-wedge angle

(in the xy-plane, with reference to the side view in 6.1) of 4◦.

In our numerical simulations we consider a case with zero angle of attack and zero yaw

angle, namely the flow direction is aligned with the x-axis of the body, and symmetry

with respect to both the xy and xz planes (considering the origin of the reference system

on the tip of the body) is assumed, including the upstream disturbances. Figures 6.2

and 6.3 show respectively the section of the body that we consider and an example of

a coarse mesh for the surface. To simplify the mesh generation, the side boundary of

the computational domain is obtained by cutting the geometry along the longitudinal

direction at a particular spanwise distance from the symmetry axis. Figure 6.4 shows

the mesh details, in the xz-plane, on the surface in the leading-edge region. As can

be seen, the point distribution is denser near the leading-edge, in order to resolve the

high gradients characterising this zone of the flowfield, and gets coarser downstream.

The internal grid lines are wrapped to the leading-edge in such a way to follow the

shape of three-dimensional shock. None of the shock-grid alignment methods described

in Chapter 3 was used, as they were not extended to the general 3D case. However,

as noted in Section 3.3, the results for this case have not been observed to be affected

141
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by numerical noise (as will be shown later in the present Chapter), due both to the

relatively weak shock wave (as a result of the small half-wedge angle and the large local

sweep angles along the leading edge) and to the fact that only high-amplitude acoustic

waves have been considered as freestream disturbance in the numerical simulations.

Figure 6.1: Lateral view, isometric view and lower surface view on the xz-plane
of the MBDA forebody geometry.

Figure 6.2: Wall shape of the computational domain in the nose region. Due to
the symmetry of the body on the xy and xz planes, considering a flow aligned
in the longitudinal (x) axis of the body, only one quarter of the full geometry
is studied in our numerical simulations
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Figure 6.3: Example of a coarse mesh on the surface. Note that the side has
been obtained by cutting the geometry along the longitudinal (x-axis, that is
the symmetry axis) direction

Figure 6.4: Example of a coarse mesh in the leading-edge region of the compu-
tational domain

As mentioned above, the computational domain in the width dimension is obtained by

truncating the domain along the x-direction at a certain z-distance from the body xy-

symmetry plane. The side boundary condition consists of a zero-gradient condition,

which sets the gradients of each quantity along the grid lines to zero, namely ∂()
∂τ = 0,

with τ indicating the direction tangential to the k-grid lines. The use of the zero-gradient

boundary condition is motivated by the assumption that at sufficiently high distances

from the centerline (z = 0) the gradients of the physical quantities in the tangential

direction are small enough to be neglected. Figures 6.5 and 6.6 show the surface density

field for a body with a width of 40 mm. In both figures the minimum density value is

0.23, however in figure 6.5 the maximum magnitude has been set to 1, while in figure

6.6 it has been restricted to 0.4, in order to allow the reader to distinguish between the
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high-gradient and the small-gradient regions along the wall surface. As expected, the

high gradients are confined in the near-centerline region, while the off-centerline region

is characterised by much smaller gradients.

Figure 6.5: Density field on the wall surface. Magnitude range: 0.23− 1

Figure 6.6: Density field on the wall surface. Magnitude range: 0.23− 0.4

The above described approach to obtain the computational domain presents the following

advantages,

• it provides a uniform spanwise resolution everywhere, so that both the leading-

edge region, which is crucial for the receptivity mechanism, and the downstream

region, zone of nonlinearities and boundary-layer breakdown, are treated with the

same spanwise resolution;

• it increases the computational time efficiency, by limiting the number of points in

the required leading-edge region, and avoiding at the same time a too small (thus

CFL constraining) z-spacing downstream, which would be the main issue of a grid

built through grid lines following the radial (normal to the leading edge) direction.

The disadvantage of this domain configuration is the presence of a side boundary effect

on the internal solution, which needs to be quantified (as will be shown in Section 6.5)

in order to guarantee reliable results for the leading-edge receptivity and breakdown

mechanisms.
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6.2 Flow conditions and settings of the numerical simula-

tions

The flow conditions of the present numerical case reproduce the freestream of the Mach

6 low-enthalpy wind tunnel of the Purdue University. The experiments were carried

out for different values of the unit Reynolds number (Rem), ranging from 2.3 × 106 to

13 × 106. In our numerical study a unit Reynolds number of 4.6 × 106 is considered,

corresponding to one of the transitional cases in the experiments. The flow conditions

are listed as follows,

• freestream Mach number: M = 6,

• unit Reynolds number: Rem = 4.6× 106,

• freestream temperature: T ∗∞ = 51.7K,

• stagnation temperature: T0 = 424K,

• wall temperature ratio: T ∗w/T
∗
∞ = 5.8 (corresponding to an isothermal condition

with wall temperature assumed equal to 300K).

On the xy and xz symmetric planes a symmetric boundary condition is adopted. A

fixed uniform inflow boundary condition (corresponding to the freestream conditions for

the baseflow computation) is set on the inlet boundary, and a zero-gradient boundary

condition is used on both the side and the outlet boundaries. When unsteady simula-

tions are performed, the three-dimensional acoustic-wave model described in Section 2.4

is used as inflow on the inlet boundary. Thus, in our numerical study, the disturbance

field is also assumed to be symmetric with respect to both the xy and xz symmetry

planes of the body. Two unsteady numerical simulations have been run for each domain

width, one with fast acoustic waves, and the other with slow acoustic waves as freestream

disturbances, with a freestream disturbance amplitude of 10−2 (for the density fluctu-

ation), corresponding to the high-amplitude level considered in the three-dimensional

numerical cases of Chapter 5. For both the cases, the transition patterns are analysed

and compared with the available experimental data (Durant et al. [89]).
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6.3 Laminar base flow in the leading-edge region

In this Section we present preliminary numerical results obtained for the mean flow

on a narrow (L∗z = 20 mm) and short (L∗x = 53.75 mm) domain, showing the main

characteristics of the baseflow in the leading-edge region. The grid size is 620×300×200

(in the x, y and z direction respectively, with indices i, j and k). The preliminary

simulations for this domain size represent the first step of a process in which the domain

is gradually extended and the grid size gradually increased both in the x and z directions,

in order to increase numerical stability and steady-state convergence rate for the solution

of a higher domain size by starting from the converged solution of a smaller domain.

At the same time, this process allowed us to perform a sensitivity study of the solution

relative to the effect of the side boundary condition (zero gradient), by comparing the

solutions of domains with different width, with results presented later in this Chapter.

Figure 6.7 shows the density field on the surface in the leading-edge region. Here, a

significant decrease of the density along the leading edge is observed towards the side

boundary, which indicates that the region close to the tip of the body is characterised

by higher gradients compared to the side region. The shape of the bow shock in the

symmetry plane can be seen in figure 6.8, showing the pressure field in a xy-slice at

the symmetry plane. Figures 6.9, 6.10 and 6.11 show cross-sections in the yz-plane of

temperature, streamwise velocity component (u) and spanwise velocity component (w)

respectively, at a longitudinal distance of x = 45 mm from the tip. In particular, the

left boundary of the figures (z = 0 mm) corresponds to the symmetry plane, while the

right boundary corresponds to the side of the domain (z = 20 mm). As can be seen, the

boundary layer is thicker at the symmetry plane, and gets thinner moving towards the

side. The figures show also the curvilinear edge of the shock, with a stand-off distance

decreasing along the spanwise direction.

Figure 6.7: Density mean field on the surface in the leading-edge region
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Figure 6.8: Pressure mean field in the symmetry plane of the body

The result for the spanwise velocity in figure 6.11 is particularly important, as it shows

that negative values of the spanwise velocity are obtained inside the boundary layer close

to the wall, while positive values are reached at the boundary-layer edge and outside

the boundary layer (note that positive values indicate flow in the direction away from

the centerline). This means that the flow in the leading-edge zone is characterised by a

region of inflectional crossflow boundary-layer profiles, extending from the side up to a

small distance from the symmetry plane (where the spanwise velocity is uniformly zero).

This was expected, due to the high values of the local leading-edge sweep angle close to

the side boundary.

Figure 6.9: Temperature mean field on a cross-section in the yz-plane at the
distance x = 45 mm from the leading edge
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Figure 6.10: Streamwise velocity (u) mean field on a cross-section in the yz-
plane at the distance x = 45 mm from the leading edge

Figure 6.11: Spanwise velocity (w) mean field on a cross-section in the yz-plane
at the distance x = 45 mm from the leading edge
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6.4 Experimental observations and domain sizing

The observation of the experimental results of Durant et al. [89], at the target unit

Reynolds number (Rem = 4.6 × 106), allows us to set the minimum required size of

the computational domain (in both the x and z directions) in order to solve the most

relevant flow regions for the receptivity-breakdown mechanism as well as to be able to

capture the main transition patterns obtained in the experiments. In figure 6.12 the

dimensional wall heat flux (kW/m2) obtained in the transition experiments of Durant

et al. [89], for the unit Reynolds number Rem = 4.6× 106, is shown. This experimental

case was performed under noisy wind tunnel conditions. As can be seen, the highest

heat-flux values are reached in the front leading-edge region, as is expected from the

high temperature values characterising the flow inside the shock layer in the nose region

(note that in the experimental reference system the body tip, which is not shown, is

located at the position x = −100 mm). In the downstream region, the wall heat flux

assumes low values at the centerline, thus suggesting that the boundary layer near the

symmetry plane is laminar through the whole domain length; however, the off-centerline

region is characterised by high heat flux values, starting from about x = 50 mm, which

suggests, in contrast, that the boundary layer here undergoes transition to turbulence.

Figure 6.12: Experimental result for the wall heat flux (kW/m2) shown in the
work of Durant et al. [89]. Rem = 4.6× 106

From the wall heat-flux experimental results the following observations can be made,

• transition appears to start at a streamwise distance from the tip between about 140

mm and 150 mm, and at a distance approximately of 20 mm from the centerline;

• the transition front spreads downstream forming a wedge initially symmetric with

respect to the x-axis, as indicated by the black dashed lines drawn along the edges

of the early transition front;
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• thus, transition might be induced downstream by disturbances coming from the

early leading-edge region and developing downstream at a distance from the cen-

terline of approximately one-third of the maximum half-body width (L∗z/2 = 60

mm).

These considerations allow us to shape the computational domain in such a way to be

suitable for solving the main mechanism inducing transition. Figure 6.13 shows the edges

of two additional computational domains we chose to perform our numerical simulations,

drawn over the contour plot of the experimental wall heat flux. The red lines indicate

the lateral and backwards edges of a domain with a spanwise width of 30 mm and a

longitudinal length of about 200 mm (which, from now on, we shall refer to as the small

domain), while the black lines represent the corresponding edges of a 40 mm wide and

250 mm long domain (representing the large domain).

Figure 6.13: Edges of two different computational domains superimposed on
the experimental result for the wall heat flux (kW/m2) shown in the work of
Durant et al. [89]. Rem = 4.6× 106
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6.5 Baseflow solution sensitivity to the side boundary ef-

fect

The computational domains described in Section 6.4 allow us to perform sensitivity study

to quantify the effect of the zero-gradient lateral boundary condition on the internal

solution. Numerical simulations of the mean flow have been carried out for both the

computational domains. The mesh size of the small domain (30 mm width) is 2120 ×
300 × 300 (corresponding to the x, y and z direction number of points respectively),

while the mesh size for the large domain (40 mm width) is 2120× 300× 400. Note that

the same uniform spanwise resolution is used in both the domains.

Figures 6.14 and 6.15 show the surface heat flux for the 30 mm and the 40 mm wide

domains respectively. A very good agreement is observed between the two results, with

the exception of a small region adjacent to the lateral boundary, corresponding to the

region beyond the horizontal dashed line in figure 6.14, where the heat-flux contours

differ from the result for the wider domain in figure 6.15. This effect can be seen more

clearly in figure 6.16, showing a zoomed view of the heat-flux contours. The edge of the

affected region (dashed line in figure 6.14) is located at about z = 28.3 mm, meaning

that the internal solution is influenced by the boundary condition within about a 5.6%

of the domain width (for the 30 mm wide domain). For comparison, the zoomed view of

the same region for the 40 mm wide domain is shown in figure 6.17. Here, the heat-flux

contour lines show a monotonic profile near the position z = 30 mm, in contrast with the

result shown for the 30 mm wide domain in figure 6.14, in which the contour line profiles

reach a peak near the side, and then approach the boundary with a reverse trend.

Figure 6.14: Surface heat-flux (kW/m2) contours for the 30 mm wide domain

Figure 6.15: Surface heat-flux (kW/m2) contours for the 40 mm wide domain
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Figure 6.16: Surface heat-flux (kW/m2) contours for the 30 mm wide domain.
Zoom on the lateral boundary to highlight the boundary condition effect

Figure 6.17: Surface heat-flux (kW/m2) contours for the 40 mm wide domain.
Zoom near the position z = 30 mm

These results show that only a limited portion of the domain is affected by the side

boundary condition, which suggests that the zero-gradient boundary condition, based on

the assumption of small gradients along the k-grid line tangential direction (described in

Section 6.1), is suitable for the present simulations. As shown in the preliminary results

for the cross-section contours of the spanwise velocity in figure 6.11 of Section 6.3, the

off-centerline flowfield is characterised by a region of negative (namely inwards) spanwise

velocity inside the boundary layer, and a region of positive (namely outwards) spanwise

velocity outside the boundary layer. The inwards flow, in particular, may be critical for

the accuracy and reliability of the internal solution. For this reason, it is necessary to

evaluate the region adjacent to the lateral boundary which would be influenced by the

flow entering the domain from the side.
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Figure 6.18 shows the streamlines computed on the j = 3 grid line inside the boundary

layer, for the small domain. As can be seen, the streamlines coming from the leading

edge are inclined towards the centerline by a variable angle along the leading edge. This

is an effect of the local sweep angle and the high pressure gradients of the leading edge

region, which cause the curvilinear motion of the boundary-layer streamlines around the

leading edge. The boundary-layer flow going around the leading edge gets deflected,

with a small radius of curvature, towards the centerline, as can be seen in more detail

in figure 6.19, showing a close-up of the streamlines (along with the relative vectors) on

the leading edge in the near centerline region. Consequently, the region adjacent to the

side boundary which is not traversed by the streamlines originating from the leading

edge (with reference to figure 6.18) represents the region affected by the presence of the

side boundary.

Figure 6.18: Streamlines on the j = 3 grid lines for the 30 mm wide domain

Figure 6.19: Streamlines on the j = 3 grid lines for the 30 mm wide domain.
Close-up on the leading edge near the symmetry plane
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Figures 6.20 and 6.21 show the streamlines for the 40 mm wide domain computed inside

the boundary layer on the j = 3 and j = 16 grid lines respectively. As can be seen

in figure 6.20, for the large domain the inclination angle of the streamline originating

at z = 40 mm is higher than the corresponding lateral streamline of the small domain,

originating at z = 30 mm, shown in figure 6.18, thus proving that away from the

centerline the inwards deflection of the streamlines increases with the local sweep angle.

However, the transition point, which appears to be located approximately at the position

indicated by a red circle in figure 6.20, as observed in the experimental results shown

in figure 6.12, is well inside the zone not affected by the presence of the side boundary,

suggesting that the large domain should capture the main physical mechanism leading

to transition, as well as the early stage of the transition process. Furthermore, as seen

in figure 6.21, the streamlines at a higher distance from the wall inside the boundary

layer show a smaller inwards deflection angle at z = 40 mm, suggesting that the inwards

deflection angle decreases as we move away from the wall until it becomes negative (i.e.

outwards flowing) outside of the boundary layer. This is consistent with the results

presented in figure 6.11 for the cross-section contours of the w velocity component at a

certain x location, showing that the flow entering the domain from the side boundary

is confined in a near-wall region inside the boundary layer, while outside the boundary

layer the flow is in the outwards direction.

Figure 6.20: Streamlines on the j = 3 grid lines for the 40 mm wide domain.
The red circle indicates approximately the point where transition appears to
start in the experimental results

Figure 6.21: Streamlines on the j = 16 grid lines for the 40 mm wide domain
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6.6 Wedge-junction effect: crossflow inflectional profiles

and reverse heat flux

The wedge junction to the circular leading edge is a critical zone determining the general

characteristics of the flowfield over the entire wedge (e.g. the streamline orientation),

and in particular the boundary-layer stability properties. This is due to the strong

expansion taking place at the wedge junction and to the associated streamline deflection.

In fact, the near-wall flow entering the wedge with an inwards (towards the centerline)

orientation, in combination with the outwards orientation of the outer boundary-layer

flow, generates inflectional crossflow boundary-layer profiles in the zone of the wedge

junction, as can be observed in figures 6.22 and 6.23, showing respectively the crossflow

boundary-layer profiles at several x positions within the circle-wedge junction zone and

the contours of the crossflow velocity (w) on the xy-plane, at z = 30 mm. The crossflow

boundary-layer profiles show the presence of an inflectional profile due to the inwards

(i.e negative w) flow direction near the wall, corresponding to the blue region located

at the wedge junction shown in the w contour plot. The flow inside the shock layer

downstream of the bow shock shows, in contrast, a high positive w velocity, namely

oriented towards the positive values of z, which is due to the inclination of the shock

with respect to the xy-plane and the resulting deflection of the flow crossing the shock.

This is also the reason why the crossflow profiles in figure 6.22 do not approach zero

outside the boundary layer, but a positive value instead.

Figure 6.22: Crossflow boundary-layer profiles at different streamwise locations
and at the spanwise position z = 30 mm
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Figure 6.23: Crossflow (w) contours in the xy-plane at the spanwise position
z = 30 mm

The inflectional profiles of the crossflow boundary layer have, of course, an impact

on the boundary-layer stability characteristics downstream. However, there is another

important effect of the wedge junction, which is a direct consequence of the crossflow

inside the boundary layer and plays a significant role on the local wall heat flux. This

effect consists of the boundary layer being very thin at the wedge junction, as a result of

the mass conservation equation in conjunction with the strong localised 3D flow effects in

the high crossflow region (the dark blue zone in figure 6.23), as can be seen in the contour

plot of temperature in the xy-plane at z = 30 mm shown in figure 6.24. As a result,

the cold fluid flow outside the boundary layer gets very close to the wall, so that the

constant temperature at the wall (where an isothermal boundary condition is applied)

is higher than the temperature values reached at every point inside the boundary layer.

This produces, in turn, a reverse of the wall heat flux, such that the fluid is heated by

the wall in this region.

Figure 6.24: Temperature (T ) contours in the xy-plane at the spanwise position
z = 30 mm. Note the very thin boundary layer at the circle-wedge junction
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Figure 6.25: Temperature (T ) boundary-layer profiles at different streamwise
locations and at the spanwise position z = 30 mm

Figure 6.25 shows the temperature boundary-layer profiles at the same points of the

crossflow profiles as figure 6.22. At x = 65 mm, which is still in the circle behind the

wedge junction, the maximum temperature is reached at a certain normal distance (yn)

from the wall, but as soon as the wedge junction is approached and the negative crossflow

originates, the boundary-layer thickness decreases dramatically and the temperature

gradient at the wall becomes negative. In figure 6.26, showing a close-up of the wall

heat flux at the leading edge, a narrow region of high negative (blue) heat-flux values,

corresponding to the wedge-junction zone, is observed.

Figure 6.26: Close-up of the wall heat flux (kW/m2) in the leading-edge region.
The blue stripe of high negative values corresponds to the wedge junction.
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Figures 6.27 and 6.28 show the temperature and crossflow velocity (w) cross sections (in

the zyn-plane) respectively, at the streamwise position x = 40 mm. The right edge of the

plots corresponds to the wedge-junction z position, where the minimum boundary-layer

thickness is observed. The figures highlight how the boundary layer gets rapidly thinner

along the spanwise direction as the wedge junction is approached. The result shown

in figure 6.28 is particularly interesting, as it shows the high inwards crossflow velocity

magnitudes reached at the wedge junction, which indicate that a stream coming from

the leading edge and flowing towards the centerline is released by the wedge junction

into the flowfield over the wedge surface.

Figure 6.27: Temperature (T ) contours in the zyn-plane at the streamwise po-
sition x = 40 mm

Figure 6.28: Crossflow (w) contours in the zyn-plane at the streamwise position
x = 40 mm

The reversal of the surface heat flux at the wedge junction can significantly affect the

aerodynamic and thermal-protection performances of a hypersonic vehicle, thus it has

to be taken into consideration in the aero-thermal design process.

6.7 Results for the unsteady simulations

6.7.1 transition patterns with 3D fast and slow acoustic waves

We now present numerical results for the unsteady simulations with three-dimensional

fast and slow acoustic waves as freestream disturbances. The aim of these simulations is

to understand the physical mechanism leading to transition downstream, starting from
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the internalisation of the freestream disturbances and the generation of boundary-layer

instabilities at the leading edge. The numerical results will then be compared with the

experimental results.

The acoustic model used to carry out the unsteady simulations is the 3D model described

in Section 2.4, consisting of a 2D wave plus two pairs of opposite angle oblique waves

with multiple spanwise wavenumbers. In particular, the considered spanwise wavenum-

bers in this case are β2 = 2 · 2πLz
and β4 = 4 · 2πLz

, with Lz = 32 (corresponding to 40 mm

in dimensional scale). The corresponding spanwise wavelengths of the oblique waves are

one-half and one-quarter of the domain width. This particular choice of the spanwise

wavenumbers has been made in order to provide a disturbance wavelength across the

span comparable with the spanwise off-centerline distance within which transition is

expected to take place (approximately 20 mm, namely half the domain width), on the

basis of the experimental observations in Section 6.4. The choice of the wavenumbers β2

and β4 is consistent with the corresponding spanwise wavenumbers used in the 3D sim-

ulations for the extruded cylinder-wedge geometry in unswept and swept configurations

described in Chapter 5 (namely β1 and β2). However, while for the 3D wedge simula-

tions the oblique waves were introduced with a random phase in the spanwise direction,

in this case a fixed phase, φm = 0, is used for each mth spanwise wavenumber (βm),

with reference to equation 2.26, so that to guarantee the symmetry of the freestream

disturbance field with respect to the body symmetry plane (z = 0) at each x position

along the domain length.

Furthermore, in order to reduce disturbance reflection effects from the side boundary

into the internal flowfield, a z-dependent hyperbolic-tangent based damping function

(h(z)) has been applied over the 3D wave model 2.26 which gradually damps out the

amplitude of all the imposed freestream disturbance waves (both 2D and oblique) along

the z-direction from a certain position (z0) to the side boundary. The 3D wave model

used in this case is expressed by,

ρ′(x, z, t) =
M∑
m=0

N∑
n=1

Amh(z) cos (βmz + φm) cos (αnx− ωnt+ ψn) , (6.1)

h(z) = 1− 1

2

(
tanh

(
S(z − z0)
L∗z − z0

)
+ 1

)
(6.2)

in which S = 10, and z0 = 26.5 mm. This value of z0 guarantees the resulting signal

to be coincident to the corresponding non-damped signal (given by equation 2.26) for

z = 0− 20 mm.

This set-up of the 3D wave model is the final result of a series of preliminary tests

aimed at verifying that the boundary-layer solution in the internal domain region where
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the early transition process is expected to be located (as well as the whole correspond-

ing upstream region, location of the receptivity process) is not affected by reflections

of disturbances (reaching the lateral edge within a certain x distance) from the side

boundary.

The overall freestream amplitude of the wave system (the sum between the amplitudes

of the 2D and oblique waves) is set to A∞ = 5 × 10−2, as in the high-amplitude 3D

wedge cases of Chapter 5, in order to simulate noisy conditions and capture nonlinear

effects. A set of 10 multiple frequencies were introduced, ranging from f1 = 0.0105 to

f10 = 0.105, which correspond to the dimensional values of f∗1 = 7.3 kHz and f∗10 = 73

kHz. This frequency range has been chosen in order to adapt the streamwise wavelength

scale of the disturbances at the higher frequencies to the boundary-layer thickness in the

region that is susceptible to the crossflow inflectional instabilities, as shown in Section

6.6. In particular, the minimum streamwise wavelength, corresponding to the highest

frequency (f10), of the 3D wave inflow is about λmin = 10 mm for slow acoustic waves,

and about λmin = 13.75 mm for fast acoustic waves. The boundary-layer thickness near

z = 20 mm, at a streamwise distance of x = 50 mm from the nose tip, is δ ≈ 1.6 mm,

thus the smallest streamwise wavelength of the inflow 3D wave for both slow and fast

acoustic waves is about 6.25 times higher than the reference boundary-layer thickness

over the wedge near the nose region. This is also the smallest scale we can afford

in our numerical simulations, namely the lowest wavelength we can resolve accurately

(considering a minimum of about 60 points per wavelength) based on the restrictions

imposed by the mesh resolution in the downstream (coarser) region of the domain. Any

smaller wavelength (namely higher frequency) would have required a further increase of

the mesh resolution and of the computational cost.

Figure 6.29 shows the overall amplitude levels (rms of ρ′∞ and u′∞) of the multi-frequency

signal imposed in the freestream along the spanwise direction. As can be seen, due to

the fixed value of the phase (φm = 0) for each spanwise wavenumber, the imposed noise

level in the freestream is z dependent, with the maxima located at z = 0 and z = 20 mm.

As mentioned in Section 5.1, the freestream fluctuations of the vertical and spanwise

velocity components, v′∞ and w′∞, are identically zero.

Figures 6.30 and 6.31 show the time-averaged surface heat flux (in kW/m2) for fast and

slow acoustic waves respectively. As can be seen, the surface heat-flux structure in the

case of fast acoustic waves show the presence of wavefronts nearly perpendicular to the

flow direction, which is consistent, as discussed in Chapter 5, with the 2D fast mode

being the dominant mode in the nose region, due to the powerful resonance mechanism,

and leading to a modulated response further downstream. The case of slow acoustic

waves (figure 6.31) shows, in contrast, a fundamentally different structure, which is

characterised by the presence of elongated streamwise-oriented streaks generated in the

early leading-edge region. In particular, three streaky structures can be distinguished

(whose position and direction is indicated by arrows in figure 6.31) : i) one close to the
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centerline, near z = 10 mm, which forms between x = 50 mm and x = 100 mm, and

then decays rapidly downstream; ii) another, with higher spanwise size, located near

the side boundary at about z = 35 mm, forming just downstream of the leading edge

and gradually decaying downstream; iii) and a third one, originating in the leading-edge

zone at about z = 20 mm, which grows until it undergoes breakdown after x = 200 mm.

Another noticeable difference between the fast-wave and slow-wave results is observed

for the solution in the near-centerline region, which, in the slow-wave case, suggests

that the boundary layer along the symmetry plane is laminar through the whole domain

length, while showing, in the fast-wave case, a highly perturbed boundary layer which

reaches a transitional stage within the region x = 70 mm −150 mm. This is due to

the amplification of the 2D fast mode in the upstream nose region, leading to earlier

generation of nonlinear effects, compared to the slow-wave case, and consequent desta-

bilisation of the boundary layer in the near symmetry-plane zone, which is, in turn, the

most susceptible zone to the 2D modes (in fact, the baseflow here is essentially two-

dimensional, due to the very low sweep angles of the leading edge near the centerline

and the symmetry boundary condition).

Figure 6.29: Amplitude levels (rms of ρ′∞ and u′∞) of the imposed freestream
signal along the spanwise direction

Figure 6.30: Time-averaged surface heat flux (kW/m2) for fast acoustic waves
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Figure 6.31: Time-averaged surface heat flux (kW/m2) for slow acoustic waves.
The arrows indicate the path of the streamwise streaks

In figure 6.32 a zoomed view of the heat flux for the slow-wave case in the downstream

region is shown, which provides more details of the nonlinear growth of the streamwise

streak located at z = 20 mm. The main streak coming from the leading edge grows in

amplitude and spanwise size, also forming a secondary streak adjacent to the main one

at about x = 200 mm. This new streak grows very quickly in amplitude, reaching the

same values of the main streak within a distance of about 30 mm, and starts spreading

downstream, assuming a deflected path oriented towards the centerline.

Figure 6.32: Time-averaged surface heat flux (kW/m2) for slow acoustic waves.
Close-up in the downstream region

The results for the surface heat flux indicate that the solution obtained with slow acoustic

waves is closer to the experimental results observed in figure 6.12, which showed an off-

centerline transition core and a laminar boundary layer near the centerline. A direct

comparison between numerical and experimental results for the slow-wave solution is

shown in figure 6.33, where the experimental figure has been adapted to match the

scale of the numerical plot. Also, the same colorbar range of the experimental result

has been used for the numerical result. The comparison shows qualitatively similar

high heat-flux values reached along the leading edge and in the early nose region of

the wedge, and decreasing values towards the centerline, where the blue values indicate

a laminar boundary layer. However, the high (red) heat-flux zone near the leading

edge appears to cover a larger area in the numerical result, which might be due to

calibration effects of the experimental apparatus used to compute the heat flux, as well

as to uncertainties in the flow direction inside the wind tunnel test section which might
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have affected the freestream creating regions of slightly non-uniform flow. The main

difference between the numerical prediction and the experimental results is observed

downstream of x = 150 mm, where, in the experimental case, a wedge-shaped transition

front is seen to develop and spread symmetrically downstream, affecting also the near-

centerline region at long downstream distances. In contrast, in the numerical case, the

heat flux near the symmetry plane keeps decreasing through all the domain length and

no transition front is observed until the distance of about x = 230 mm is reached, where

the streamwise streak located at z = 20 mm begins the nonlinear breakdown process, as

discussed earlier, and starts spreading towards the centerline close to the outer boundary.

Figure 6.33: Numerical time-averaged surface heat flux (kW/m2) obtained for
slow acoustic waves (top half) compared to the corresponding experimental
results (bottom half). Both heat-flux magnitude and length scales have been
adapted in order to guarantee the matching between the numerical and the
experimental case

Hence, the experimental results show a more rapid transition process, which is most

likely due to a higher noise level of the wind tunnel, with respect to the freestream

disturbance amplitude used in the numerical simulations. In addition, the pressure

transducer placed upstream of the position x = 150 mm, and at approximately z = 20

mm, as figure 6.33 clearly shows, might have worked as a roughness element during the

experimental tests, thus enhancing the transition process downstream.

In order to see in more details the breakdown process taking place in the downstream

region in the numerical solution, we show in figure 6.34 the instantaneous contours of the

wall-tangential velocity component (ut) in the xy-plane along the j = 15 grid lines inside

the boundary layer. Here the main disturbances coming from the leading edge near the

z = 20 mm position and growing downstream, which are most probably correlated to

the crossflow inflectional instabilities shown in Section 6.6, are seen to reach very high

values just upstream of x = 150 mm, and to induce a transition process. This transition

process, in turn, is observed to spread downstream forming a series of strong velocity

spikes propagating towards the centerline with an inclination angle (indicated by the
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dashed line in the figure) close to the wedge-shaped transition front angle shown by the

experimental results.

Figure 6.34: Wall-tangential velocity (ut) on the j = 15 grid lines inside the
boundary layer, for slow acoustic waves.

Hence, contrary to the surface heat-flux results, the numerical results inside the bound-

ary layer show transition patterns more similar to those observed in the experimental

results. The numerical results show the transition process starting away from the wall,

and at about the same streamwise and spanwise positions over the wedge surface as in

the experimental case. This suggests that the perturbations related to the nonlinear

breakdown process, coming from the boundary-layer edge, have not yet approached the

wall.

Finally, the difference observed in the transition patterns between the cases of fast and

slow acoustic waves, namely the destabilisation of the boundary layer in the region of

the symmetry plane due to the highly amplified 2D fast mode in the fast-wave case, is a

further confirmation that the resonance mechanism at the leading edge for the fast mode

at the higher amplitude levels can strongly affect the transition mechanism, enhancing

the probability of by-pass transition, as was previously seen for the three-dimensional

cases in Chapter 5. For the specific case of the three-dimensional forebody geometry,

this difference between fast and slow acoustic waves can have significant effects on the

transition process to a final turbulent state further downstream of our computational

domain outflow boundary.

6.7.2 Slow-mode receptivity and streak evolution

As shown in Section 6.7.1, the numerical solution with slow acoustic waves is closer to the

experimental results in terms of transition patterns, so, in this Section, we focus on the

results for the slow-wave case. The receptivity process is studied through contours of the

Fourier transformed wall pressure fluctuations (real part) at different frequencies, from

f3 to f8, shown in figure 6.35. Both lower and higher frequencies show fluctuations in the

early nose region (e.g. see the first positive-negative-positive peaks just downstream of

the tip at the frequencies f3 and f4), corresponding to waves travelling in the direction

of the flow along the attachment line. Then, as soon as the position z = 20 mm is

approached, or, in other words, when a certain high-enough value of the sweep angle
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(Λ = 70◦ at z = 20 mm) is reached, the disturbances detach from the leading edge,

and propagate downstream towards the x-direction in the internal part of the wedge

(this path is illustrated by the dashed black line in figure 6.35 for the frequency f4).

The amplitude of the disturbances, as soon as they are released by the leading edge

into the internal domain near the z = 20 mm position, assumes very high values in the

early internal region, namely between x = 40 mm and x = 100 mm, which is a region

characterised by high crossflow inflectional profiles. Then, dependent on the frequencies,

the amplitude either decays downstream, or increases leading to the nonlinear growth

of a streamwise streak downstream of x = 200 mm.

Figures 6.36 and 6.37 show profiles of mean crossflow velocity (w), wall-normal velocity

fluctuation (v′), first and second derivatives of the mean crossflow velocity (∂w/∂yn,

∂2w/∂y2n), at z = 20 mm, and at the positions x = 50 mm and x = 60 mm respectively.

As seen in Chapter 4 for the 3D wedge in the swept configuration, also in this case

the peak of v′ (note that the quantities plotted on the x-axis are normalised with their

maximum value assumed in the wall-normal profile) inside the boundary layer is close to

an inflection point of the mean crossflow velocity profile. This is more evident in figure

6.37, in which the peak of v′ is almost coincident with the peak of ∂w/∂yn. However,

while in the swept wedge case the maximum absolute value of v′ was reached for the

first inflection point near the wall (with a negative value of the crossflow velocity first

derivative), in this case the peak of v′ is located (at both the x positions) at the inflection

point corresponding to a positive peak of ∂w/∂yn. In both figures the curve representing

Fjortoft’s stability condition is plotted as well, whose negative values indicate that the

boundary layer is potentially unstable at both the considered positions. Thus, we deduce

that crossflow instabilities are indeed responsible for the generation and downstream

evolution of the streamwise streaks.

Figure 6.38 shows the maximum absolute values at the inflection points (inside the

boundary layer) of the mean crossflow derivative (∂w/∂yn) in the leading-edge region,

which gives an indication of the strength of the crossflow on the body surface. As can

be seen, the highest values are reached near the wedge junction, as expected due to

the effect of the streamline deflection around the leading edge discussed in Section 6.6.

Downstream of the wedge junction, the crossflow derivative in the region z = 10 mm - 20

mm maintains high values up to longer x-wise distances compared to different spanwise

regions. The zone near the side boundary (z = 30 mm - 40 mm), which is the most

similar to the case of a swept wedge (with straight leading edge), due to very small

variations of the local sweep angle along the leading edge, as observed from the quasi-

2D trend of the crossflow derivative contours, shows, in contrast, a rapid decrease of

the wall-normal crossflow derivative downstream. This is an indication that the middle

region across the span (near z = 20 mm) is indeed the most susceptible to the crossflow

instability effects.
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Figure 6.35: Real part of the Fourier transformed wall pressure fluctuations
(p′w) at different forcing frequencies.

As shown in figure 6.35, the lower frequencies are characterised by the higher amplitude

levels, and are responsible for the nonlinear growth and bifurcation of the streamwise

streak downstream. Moreover, in the region downstream of x = 200 mm there is also

a strong increase in amplitude of the disturbances along the symmetry plane, which is
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consistent, as seen in Section 6.7.1, with the spreading towards the centerline of the

early nonlinear breakdown process.

Figure 6.36: Profiles, along the wall-normal direction, of mean crossflow velocity
(w), wall-normal velocity fluctuation (v′), first and second derivatives of the
mean crossflow velocity (∂w/∂yn, ∂2w/∂y2n), and Fjortoft’s stability condition,
at z = 20 mm and x = 50 mm

Figure 6.37: Profiles, along the wall-normal direction, of mean crossflow velocity
(w), wall-normal velocity fluctuation (v′), first and second derivatives of the
mean crossflow velocity (∂w/∂yn, ∂2w/∂y2n), and Fjortoft’s stability condition,
at z = 20 mm and x = 60 mm
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Figure 6.38: Contours of the maximum absolute values of the mean crossflow
derivative (∂w/∂yn) on the wedge in the leading-edge region

The streamwise-oriented streaks seen in figure 6.31 appear in a good qualitative agree-

ment with some numerical studies available in the literature, e.g. the work of Bartkowicz

et al. [90], showing the presence of crossflow-instability related streaks in a Mach 8 flow

over an elliptic cone in low-enthalpy wind tunnel conditions. Hence the crossflow insta-

bility mode represents the most likely source of generation and downstream development

of the streamwise streaks in our numerical solution.

Further evidence of the streamwise streaks belonging to a crossflow instability can be ob-

served in figures 6.39 and 6.40, which show the temperature and wall-tangential stream-

wise vorticity (ωx = 1/2[∂w/∂yn−∂vn/∂z], where vn is the wall-normal velocity compo-

nent) cross-sections in the zyn-plane at the streamwise positions x = 220 mm, x = 230

mm, x = 240 mm, namely in the region corresponding to the nonlinear growth and

bifurcation process of the streamwise-oriented streak. The temperature contours near

z = 20 mm have a similar orientation (i.e. a certain inclination of the oscillations with

respect to the yn-axis) at all the different streamwise locations, which is a common as-

pect of crossflow-instability-induced streaks (shown also in the results of Bartkowicz et

al. [90]).

The main streak is initially located at about z = 20 mm, as evident also in figure 6.32. As

it moves downstream, it spreads across the span and increases rapidly in amplitude. This

is shown more clearly in figure 6.40, where two zones of opposite vorticity are observed

across the boundary-layer thickness at x = 20 mm, both centred near z = 20 mm,

representing two indistinct vortices at this streamwise position. Further downstream

(x = 230 mm) two distinct co-rotating (negative vorticity) vortices appear, a weaker

(secondary) one located inside the region z = 15 mm −20 mm, and a stronger one,

with increased amplitude with respect to the upstream position, located in the region

z = 20 mm −25 mm, and consistent with the main streamwise streak. Finally, at

the position x = 240 mm, both the vortices show a higher amplitude, and appear

shifted to increasing z locations. The main vortex is also shifted upwards, providing the

pronounced deformation of the boundary-layer edge seen in figure 6.39. The formation

of another pair of counter-rotating secondary vortices is observed at about z = 13
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mm, corresponding to the streak deflection towards the centerline shown in figure 6.32.

Another much weaker secondary vortex (with negative sign) is seen to start forming at

the boundary layer edge alongside the main vortex, at about the position z = 27.5 mm.

This fragmentation of the boundary-layer structure corresponds to a breakdown process,

which started further upstream (x ≈ 140 mm), as seen in figure 6.34, where it involved

only the upper region of the boundary layer.

Figure 6.39: Temperature contours cross-sections in the zyn-plane at different
x positions.
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Figure 6.40: Streamwise vorticity contours cross-sections in the zyn-plane at
different x positions.

Finally, the results for the wall heat flux in the case of fast acoustic waves seen in figure

6.30, showing earlier transition induced along the centerline, appear in a good conceptual

agreement with the BiGlobal linear instability analysis results of the works of Paredes

et al. [62], and Paredes and Theofilis [61], in which it was found that, in hypersonic flow

over an elliptic cone, the centerline is sensitive to instability modes (centerline modes)

driven by the high shear-layer associated to a low-velocity streak away from the wall

(mushroom-like structure) formed at the centerline. These centerline instabilities can be

even more amplified than the crossflow instabilities, thus playing a more relevant role in

the transition process. Hence, our results for the fast waves suggest that the resonance

mechanism relative to the fast mode at the leading edge can efficiently contribute to the

generation and rapid growth of centerline instabilities leading to earlier transition.

In the case of slow acoustic waves, in contrast, the absence of a strong resonance mech-

anism leads to a laminar solution at the centerline, thus suggesting a much weaker
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interaction between slow modes and centerline instabilities. This can also be explained

considering that in our geometrical configuration the curvature effect of the elliptic cone

surface is not present. Hence, the thicker boundary layer formed at the centerline, as an

effect of the streamlines coming from the leading edge and converging on the centerline

(as seen in figures 6.20 and 6.21), does not form a pronounced mushroom-like structure

within the considered x-wise domain length (as seen in figure 6.39).

6.8 Summary of the results

Numerical simulations have been run in order to study transition scenarios for 3D fast

and slow acoustic freestream wave disturbances, for the MBDA 3D forebody model

tested in the Purdue Mach 6 hypersonic wind tunnel.

The mean flow in the leading-edge zone is found to be characterised by a region of

inflectional crossflow boundary-layer profiles, extending from the side up to a small

distance from the symmetry plane (where the spanwise velocity is uniformly zero). This

was expected, due to the high values of the local leading-edge sweep angle.

The wedge junction represents a critical zone affecting the characteristics of the internal

flowfield, due to the flow coming from near the leading-edge tip (along the attachment

line) going around the leading-edge curvature and being deflected, as a result of the high

centripetal acceleration, towards the centerline. This creates a stream inside the near-

wall boundary layer, released into the internal nose region through the wedge junction,

which flows towards the symmetry plane (thus with negative values of the spanwise

velocity). The main consequences of this physical behaviour are i) the generation of

inflectional crossflow boundary-layer profiles near the wedge junction, consistent with

the positive values of the spanwise velocity reached outside of the boundary layer (for the

flow in the shock layer being directed towards the side boundary), and ii) a strong 3D-

flow effect in the wedge junction zone, causing a pronounced thinning of the boundary

layer, with the external cold flow getting very close to the wall and producing a narrow

zone of reverse wall heat flux (i.e. the wall releases heat into the fluid).

The side boundary effect on the internal solution has been assessed, showing that only a

limited-size region adjacent to the lateral edge of the computational domain is affected

by the presence of the side boundary, which does not include the zone where transition

is seen to start in the experimental results. The 40 mm wide domain (in the spanwise

direction) has been proved to be suitable for obtaining reliable receptivity-transition

results in the flow region of interest.

The unsteady numerical simulations with fast and slow acoustic waves have been per-

formed at a high freestream amplitude level, in order to simulate the noisy wind tunnel
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conditions of the considered experimental case, and to trigger transition through rapid

generation and growth of nonlinearities. Two important differences are observed be-

tween the transition patterns in the fast and the slow acoustic wave cases. First, in

the fast-wave case the surface heat-flux structure shows signs of 2D oscillations, con-

sistent with the 2D fast mode being the dominant mode inside the boundary layer

due to the resonance mechanism at the leading edge; in the slow-wave case, instead,

the heat-flux structure is characterised by streamwise-oriented streaks. Moreover, in the

fast-wave case, the boundary layer adjacent to the symmetry plane is shown to be highly

destabilised by the forced disturbances and to undertake earlier transition at about a

distance of 70 mm from the nose tip; while, on the contrary, in the slow-wave case the

near-centerline boundary layer is substantially laminar through the whole length of the

domain. This difference is again due to the resonance-induced amplification of the 2D

fast mode, which plays a major role in the region near the symmetry plane, where the

mean flow is more two-dimensional. This is a further confirmation that the resonance

mechanism at the leading edge for the fast mode, at the higher amplitude levels, can

strongly affects the transition mechanism, enhancing the possibility of by-pass transition.

The results with slow acoustic waves provide a better correlation with the experiments,

which suggests that the wind tunnel noise was characterised mostly by slow acoustic

disturbances during the experimental tests. In particular, transition is induced by the

nonlinear growth of streamwise-oriented streaks generated in the nose region, at a cer-

tain spanwise distance from the centerline (about 20 mm) corresponding to high local

sweep angles and strong local inflectional crossflow profiles. The receptivity study has

shown that disturbances coming from the nose tip, and initially following the flow path

along the attachment line, are released through the wedge junction inside the internal

wedge surface 20 mm off the centerline, and then propagate downstream leading to the

generation of a main streamwise-oriented streak. The boundary-layer edge distortion is

consistent with a crossflow-instability related streak. Further downstream, due to the

high amplitudes, the streak undergoes nonlinear growth with bifurcation and generation

of secondary vortices which spread towards the centerline, thus initiating the breakdown

process. The initial stage of the nonlinear growth leading to transition is actually ob-

served inside the boundary layer further upstream (x ≈ 140 mm). However, at this

streamwise location, the nonlinear process is confined to the upper part of the boundary

layer, thus not involving yet the flow near the wall and the surface heat flux.

The disagreement between the numerical and experimental results in terms of the exact

location of the transition point is most probably related to a difference in the freestream

noise level inside the hypersonic wind tunnel, compared to the fixed disturbance ampli-

tude used in the numerical simulations, which would indicate that higher noise levels

were reached in the wind tunnel runs. However, the presence of the pressure transducers

over the wedge surface, which might have worked as roughness elements leading to a

more rapid transition process, may have been a contributing factor.
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Conclusions and future work

The present work has elaborated, through direct numerical simulations, details of the

receptivity and breakdown mechanisms for hypersonic flow over blunt leading-edge con-

figurations with imposed freestream acoustic disturbances. A two-dimensional and a

three-dimensional model of the freestream acoustic waves have been developed and used

in the numerical simulations. The former has been adopted in 2D simulations over the

geometry of a blunt-nose wedge probe designed by DLR to measure the freestream noise

level in hypersonic wind tunnels; the latter has been used to perform 3D simulations for a

blunt wedge in an unswept and a swept configuration, and for the full three-dimensional

geometry of a generic forebody model developed and tested by MBDA in the Purdue

hypersonic wind tunnel.

7.1 2D wedge probe

In the 2D simulations for the DLR wedge probe, performed for both fast and slow acous-

tic waves as freestream disturbances, the wave structure behind the shock, resulting from

the shock-disturbance interaction, and the characteristics of the wall response, related

to the boundary-layer receptivity mechanisms for the fast and the slow mode, have been

analysed and validated through theoretical estimations and other numerical results avail-

able in the literature. Furthermore, the sensitivity to different flow conditions, including

an angle of attack and an angle of incidence of the acoustic waves, has been assessed.

The set of two-dimensional simulations for the wedge probe has also provided the nu-

merical freestream-to-wall transfer functions for the pressure disturbances, that have

been used, in conjunction with the experimental data for the wall disturbance levels, to

estimate the freestream noise levels in the DLR high-enthalpy (HEG) and low-enthalpy

(RWG) hypersonic wind tunnels.

The objectives of these 2D simulations, which were stated in Section 1.7, are rewritten

below:

173
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• to determine the characteristics of the transmitted waves behind of the shock,

• to determine the characteristics of the response along the wall,

• to assess the sensitivity of the leading-edge receptivity to the angle of attack and

the angle of incidence of the acoustic waves,

• to estimate the freestream noise levels in the DLR wind tunnels.

The results obtained for the 2D numerical simulations, described in Section 4.3, allow

us to give the following conclusions:

• fast acoustic waves are efficiently transmitted across the shock as refracted waves,

while slow acoustic waves generate entropy/vorticity waves in the post-shock re-

gion;

• the receptivity to fast acoustic waves is characterised by a strong resonance mech-

anism at the leading edge, producing a significant amplification of the fast mode,

and a modulation further downstream between the decaying mode F and the ex-

ternal forcing; while in the slow-wave case, a much weaker response is observed,

which decays in the nose region and assumes a substantially constant amplitude

further downstream;

• a wave incidence angle of 10◦ amplifies the response along the lee side at the higher

frequencies for fast acoustic waves, while providing an opposite behaviour for slow

acoustic waves; in contrast, an angle of attack of 10◦ provides a significantly higher

response along the windward side, compared to the lee side, and a pronounced

difference in the post-shock wave structure between lee and windward sides, for

both fast and slow acoustic waves;

• the estimated freestream noise levels indicate higher levels in the HEG wind tun-

nel at the higher Mach numbers, compared to the RWG wind tunnel, a higher

contribution of slow acoustic waves in the wind-tunnel freestream disturbance

field (in agreement with the results of Duan et al.[12]), and a marginal role of

the leading-edge receptivity in the frequency-spectra shape at the wall, which is

mainly dependent on the shape of the spectra in the freestream.

7.2 3D wedge swept and unswept

The 3D simulations for the span-periodic wedge geometry with oblique acoustic distur-

bances, performed for a flow at Mach 6 and for two different Reynolds numbers, have

focused on the characteristics of the receptivity-breakdown mechanism associated with

fast and slow acoustic waves, in a linear and a nonlinear regime (namely for two different
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freestream disturbance amplitude levels), and for an unswept and a swept configuration.

These numerical simulations have assessed the role played by the fast-mode resonance

mechanism at the leading edge on the breakdown mechanism, and the effect of the

crossflow instabilities generated at the leading edge in the presence of a sweep angle.

Different transition scenarios have been observed, each one resulting from a specific lin-

ear/nonlinear receptivity mechanism to fast/slow acoustic waves in an unswept/swept

leading-edge configuration. Moreover, results of an LST analysis have been compared

with numerical results for the receptivity to 2D fast acoustic waves over the same wedge

geometry, showing a very good agreement, consistent with results present in the litera-

ture. In particular, the objectives we addressed to this set of 3D simulations in Section

1.7 were the following:

• to deduce the different receptivity mechanisms to freestream fast and slow acoustic

waves, with and without nonlinearities,

• to determine the resonance mechanism at the leading edge between the internal

modes and the external forcing, including an assessment of the relevance of previous

theoretical approaches (Fedorov and Khokhlov[32]),

• to determine the extent of influence of crossflow instabilities generated at the

leading edge due to the presence of a sweep angle.

From the results discussed in Sections 5.3 and 5.4, the following conclusions can be

drawn:

• the fast-wave receptivity is characterised by a dominant 2D fast mode in the

leading-edge region (due to the resonance mechanism with the incident fast acous-

tic waves), which, further downstream, remains the dominant mode inside the

boundary layer at the lower freestream disturbance amplitudes, while leading to the

generation and growth of streamwise streaks at the higher amplitudes. The slow-

wave receptivity is, in contrast, characterised, for both low and high freestream

disturbance amplitudes, by a combination of 2D and 3D modes (with no one

dominant mode), and a lower response (compared to the fast-wave case), as a

consequence of a mixed wave structure propagating in the post-shock region and

interacting with the boundary layer;

• the resonance mechanism between the incident fast waves and the boundary-layer

fast mode leads to subsequent amplification cycles of the fast mode, which hence

becomes the dominant mode in different regions of the flow (starting from the

leading edge). The intermediate regions are, in contrast, characterised by a decay

of the fast mode, and by a modulation between the forcing waves and the other

internal competing modes, including the fast mode itself and the slow mode (mode
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S). The latter grows when mode F - mode S synchronisation is reached, and leads to

the generation of a Mack mode. This mechanism was shown by previous theoretical

(Fedorov and Khokhlov[32], Fedorov’s [4]) and numerical (Zhong and Ma [17],

Zhong and Wang [23]) studies. Our results are consistent with those of the above

mentioned studies, and, in addition, have found that the resonance mechanism for

the fast mode at the leading edge is efficient in triggering, at the higher amplitudes,

the generation and rapid growth of instability modes (streaks) which lead quickly

to transition (in both the unswept and the swept configuration);

• the effect of a sweep angle is a more unstable boundary layer, which is subject

to crossflow instabilities originating in the leading-edge region. In both fast and

slow wave cases, the crossflow instability produces narrow streamwise streaks in

the downstream region, whose rapid nonlinear growth leads to final breakdown.

The fast-wave case at high amplitudes represents an exception, in which earlier

transition is induced through a by-pass mechanism related to the interaction, in

the leading-edge region, between the crossflow modes and the resonance-induced

β = 0 fast modes.

7.3 Generic forebody

The numerical simulations performed for the MBDA 3D forebody geometry have inves-

tigated the transition patterns for the cases of three-dimensional fast and slow acoustic

waves, serving as a validation of the transition experiments carried out for the forebody

model in the Mach 6 Purdue hypersonic wind tunnel, and have represented, relative to

the previous 3D numerical cases for the span-periodic wedge, an extension to a case with

a different leading-edge shape along the spanwise direction. The role of the receptivity

to fast and slow acoustic waves on the transition patterns has been analysed, and the

corresponding numerical results for the surface heat flux have been compared with the

experimental data.

The objectives of these 3D simulations were the following, as stated in Section 1.7:

• to compare the simulations with the experimental results, thus assessing the suit-

ability of the acoustic-wave model, and the dominant disturbances in the Purdue

hypersonic wind tunnel,

• to determine the main transition mechanism on the geometry of a generic forebody.

On the basis of the results discussed in Chapter 6, the main conclusions can be sum-

marised as follows:
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• the numerical results with slow acoustic waves provide similar transition patterns

to the experimental case, indicating that the wind tunnel noise was characterised

mostly by slow acoustic disturbances during the experimental tests, and, at the

same time, that the 3D acoustic-wave model described in Section 2.4 is suitable

to reproduce the main characteristics of the real disturbance field in hypersonic

wind tunnels. The more rapid transition observed in the experiments is most likely

due to a slightly higher freestream disturbance amplitude in the hypersonic wind

tunnel, and to the presence of the pressure transducers on the surface of the body,

which might have worked as roughness elements, thus inducing earlier transition;

• the main mechanism leading to transition consists of high-amplitude disturbances

released by the leading edge into the internal wedge surface near a particular

off-centerline position where a local sweep angle of about 70◦ is reached. These

disturbances trigger crossflow instability modes near the leading edge with the

generation of streamwise streaks, which grow downstream until nonlinear break-

down is reached. In particular, the lower frequencies (7.3 kHz - 36.5 kHz) have

been found to be responsible for the streak nonlinear growth.

7.4 Key contributions and future work

This work has identified the main mechanisms and parametric dependence of the leading-

edge receptivity to acoustic disturbances in several high-speed flow conditions, and has

shed light on the complex relations between types of acoustic disturbance, amplitude

level in the freestream, and receptivity/breakdown mechanism on the wall in a hyper-

sonic flow for different blunt leading-edge configurations. Hence, it represents a fun-

damental basis for the future development of transition-predictor methods aimed at

i) correlating the physical mechanism of the breakdown to the characteristics of the

leading-edge receptivity mechanism, and at ii) modelling the disturbance environment

of a conventional hypersonic wind tunnel through the computation of the receptivi-

ty/breakdown mechanism, in conjunction with the data of transition experiments in the

noisy environment of a generic hypersonic wind tunnel.

In particular, the main contributions of this research work to the advancement of the

knowledge in the hypersonic-transition field can be summarised in the following points:

• the combined experimental-numerical approach for the estimation of the noise

levels in the DLR experiments, as well as the comparison between our numerical

results and the transition experiments in the Purdue Mach 6 hypersonic wind

tunnel, have provided evidence of the relevance of slow acoustic waves in the real

disturbance field of hypersonic wind tunnels, thus confirming the purely numerical

predictions of Duan et al.[12].



178 Chapter 7 Conclusions and future work

• In addition to the assessment of the resonance mechanism at the leading edge,

which was shown by previous theoretical (Fedorov and Khokhlov[32], Fedorov’s

[4]) and numerical (e.g. Zhong and Ma [17]) studies, the present research work has

demonstrated the link between the receptivity mechanism at the leading edge and

the characteristics of the wave structure propagating behind the shock, and its fun-

damental implications on the transition mechanism. In particular, our study has

shown that fast acoustic waves are efficiently transmitted and amplified through

the shock, thus triggering a strong resonance mechanism (involving the internal

fast mode) when interacting with the boundary layer at the leading edge, and that

slow acoustic waves, in contrast, are in part transmitted with a lower amplitude

(compared to the freestream waves) and in part converted into a different type

of waves (convected waves) downstream of the shock, thus producing a weaker

and mixed (i.e. a combination of 2D and 3D modes) response on the wall. This

difference in the wall response has been shown, in turn, to provide significant dif-

ferences in the transition process downstream. Moreover, our study has shown

that the post-shock wave structure is strongly dependent on the angle of attack,

for both fast and slow acoustic waves, resulting in different propagation patterns

between the lee and the windward sides.

• In the literature, slow acoustic waves are known to be more dangerous than fast

waves, as previous studies (e.g. Kara et al.[39], Malik and Balakumar[29]) showed

that slow waves induce second instability modes of higher amplitude, compared to

the fast waves. However, this may only be true when considering linear instabilities

(which is the case of the above mentioned studies). The present numerical study

has demonstrated that in nonlinear cases (for high freestream disturbance levels),

in contrast, the fast-mode-induced transition is significantly more powerful than

the slow-mode-induced transition. The key mechanism of the fast-mode transition

is the leading-edge resonance mechanism, which triggers the generation and rapid

growth of streak instability modes, leading to earlier transition both in the unswept

and swept configurations. This represents important progress in the understanding

of the relative role played by fast and slow acoustic waves in the transition process

for different freestream disturbance levels, and can have important implications in

any (ground-test or in flight) conditions where fast acoustic waves may represent

a relevant contribution to the disturbance field (e.g. in the case of entropy waves

generating fast acoustic waves behind the shock).

These findings highlight the importance of a numerical approach aimed at simulating

the full transition process from freestream disturbances, in contrast with the traditional

approaches based on inserting prescribed disturbances into the boundary layer, for future

transition-prediction studies.

The most important studies yet to be addressed, on the basis of the computational

results, concern further theoretical analyses for the span-periodic wedge flow and the flow
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over the 3D generic forebody. For the span-periodic wedge in the unswept configuration,

the physical mechanism of the generation, growth and breakdown of the streamwise

streaks needs to be assessed through a more detailed analysis aimed at understanding

whether the streak breakdown can be associated to a purely nonlinear process or to a

transient-growth mechanism. In the cases of the swept span-periodic wedge and the 3D

generic forebody, the role of the crossflow inflectional instabilities, located in the near

leading-edge region, on the transition mechanism downstream, for both fast and slow

acoustic waves, needs to be assessed through an appropriate linear stability analysis. In

order to achieve this, an improvement of the existing version of the LST code needs to

be performed first, which takes into account also the crossflow modes. The new version

of the code will then need to be validated through validation test cases available in the

literature.

Moreover, as seen in Chapter 6, for the generic forebody geometry, the role of the pressure

transducers on the body surface on the transition mechanism, during the experimental

tests in the hypersonic wind tunnel, is not yet understood, and needs to be studied, in

order to shed light on the possible causes of the disagreement between the numerical

and the experimental results concerning the exact location of the transition point. This

will need a set of new numerical simulations, eventually more expensive in terms of

computational time, in which an isolated roughness element has to be located, and

opportunely discretised, in correspondence of the nearest position to the transition point

observed in the experimental results (i.e x ≈ 150 mm). The shape and size of the pressure

transducer will have to be provided by the experimentalists in order to appropriately

model the roughness element.

Finally, a list of other possible future applications and developments of our work is as

follows,

• study of the sensitivity of the receptivity mechanism, and the characteristics of the

full transition mechanism, in the presence of nonequilibrium chemical effects, e.g.

the dissociation and exchange reactions in the shock layer and the recombination

reactions in the boundary layer, for high Mach number flows (e.g. by developing

a nonequilibrium chemical effects version of the SBLI code);

• study of the receptivity-breakdown mechanism in the presence of wall blowing of

the gas species (with appropriate blowing profiles) produced by the ablation (sur-

face chemical reactions and/or internal pyrolysis) of the TPS (Thermal-Protection-

System) material, e.g. for the heat shield of a reentry probe, or the TPS of the

nozzle wall of a rocket;

• development of a theoretical predictor method of the receptivity-breakdown mech-

anism over blunt leading-edge configurations, on the basis of the results from the

direct numerical simulations and LST/PSE studies;
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• extension of the shock-grid alignment method, described in Section 3.3, to a generic

3D grid.
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