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ABSTRACT
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Doctor of Philosophy

BOUNDARY-LAYER RECEPTIVITY AND BREAKDOWN MECHANISMS FOR
HYPERSONIC FLOW OVER BLUNT LEADING-EDGE CONFIGURATIONS

by Adriano Cerminara

Direct numerical simulations have been performed to study receptivity and breakdown
mechanisms for hypersonic flow over blunt leading-edge configurations with imposed
freestream acoustic disturbances. Both two-dimensional (2D) and three-dimensional
(3D) fast and slow acoustic wave models have been used. The former has been adopted
for 2D simulations over a blunt-nose wedge probe designed to measure freestream noise
levels in hypersonic wind tunnels; the latter has been used to perform 3D simulations
for a span-periodic blunt wedge in unswept and swept configurations, and for a three-
dimensional generic forebody model. In the 2D wedge simulations, an analysis of the
post-shock wave structure shows that fast acoustic waves are efficiently transmitted
across the shock as refracted waves, while slow acoustic waves generate convected waves.
The wall response to the fast mode highlights a resonance-modulation behaviour in the
nose region. An estimation of the freestream noise levels in the DLR high-enthalpy
(HEG) and low-enthalpy (RWG) hypersonic wind tunnels has been performed, showing
higher noise levels for the HEG wind tunnel at high Mach numbers. The 3D wedge sim-
ulations have been used to study the characteristics of the receptivity and breakdown
mechanisms associated with different wave types (fast/slow), disturbance amplitudes,
and sweep angles. The fast-mode induced transition has been observed to be a much
more rapid and powerful process than the slow-wave related transition, because of the
role played by the fast-mode resonance mechanism at the leading edge. Finally, the
numerical simulations performed for a generic forebody geometry have enabled compar-
ison with a recent transition experiment carried out in the Mach 6 Purdue hypersonic
wind tunnel in noisy conditions. In this case, slow acoustic waves show the most sim-
ilar transition patterns to the experimental case, and, in particular, are more efficient
than fast waves in triggering nonlinear growth of streamwise streaks, related to crossflow

inflectional instabilities located in the off-centerline leading-edge region.
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Chapter 1

Introduction

The aim of the research described in this thesis is to further increase understanding
of transition in high-speed flows, using high-resolution numerical simulations to help
understand all the stages of transition, from receptivity to breakdown. In this chapter the
challenges are explained and previous literature is reviewed, so that specific objectives

of the present study can be formulated.

1.1 Motivation

Laminar-turbulent transition plays a fundamental role in the aerodynamic performance
of flying vehicles, due to its impact on the skin friction coefficient and on the boundary-
layer capability to stay attached to the body surface. However, at hypersonic speeds (i.e.
conventionally at Mach numbers above 5, Anderson[1]) it assumes an even more critical
role, as it also determines the structural integrity of the vehicle itself due to the effect on
the wall heat-transfer rate. The hypersonic flow environment is, in fact, characterised by
very high values of heat transfer, which comes from the large amount of kinetic energy
gradually dissipated within the boundary layer through viscous effects, and converted
into thermal energy. This high amount of internal energy produces high temperature
peaks inside the boundary layer at small normal distances from the wall, which provide,
in turn, high temperature gradients at the wall, namely high values of the surface heat
flux. In order to reduce the heating effects, the hypersonic vehicles need an appropriate
thermal protection system (TPS) capable of storing, or radiating/dissipating outwards,
the high heat load coming from the boundary-layer flow, thus keeping the surface tem-
perature of the internal structure within tolerable values. Boundary-layer transition
causes a dramatic increase of the wall heat-transfer rates, as a result of the turbulent
mixing enhancing the mass and energy transport between different flow layers inside a
turbulent boundary layer. As a consequence, an unpredicted transition to turbulence in

regions of particularly high heat-transfer rates (e.g. the nose region) might result in a

1
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failure of the structure. In particular, the slender leading-edge geometries are the most
exposed to this risk, as they are characterised by the highest heat-transfer rates, since
the heat flux at the stagnation point (gsp) is inversely proportional to the square root
of the leading-edge nose radius (i.e. g5 m, Anderson[1]). Thus, an appropriate
aero-thermal design is necessary for any hypersonic vehicle, which involves the design
of a suitable geometry in accordance with the mission-dependent requirements of aero-
dynamic efficiency and wall heat-flux reduction, along with the choice of the materials
and structures used for the thermal protection system. In this context, the prediction
of the transition point is a requirement of crucial importance. Indeed, the knowledge
of the point (or the region) where the flow becomes turbulent allows the prediction of
surface heating and skin friction coefficient along the wall, and, hence, the optimisation
of the vehicle geometry and thickness of the TPS, aimed at reducing weights and costs.
Unfortunately, the prediction of transition at hypersonic speeds is not straightforward,
but, on the contrary, is a very challenging problem, on which the research community
has been working for several decades, accumulating a certain amount of experimental
data as well as numerical results, which, however, do not yet clarify unambiguously
critical aspects of the problem. The main aspects that make transition at high Mach
numbers so difficult to understand and control are the complexity of the hypersonic
flow in the leading-edge region, and the multiple poorly controlled factors that strongly
influence transition in the experimental ground tests, including noise, the presence of

small undetected angles of attack, surface roughness, etc. (Schneider|[2]).

Hypersonic flow adds a further degree of complexity with respect to subsonic/low-
supersonic flows. The different physical phenomena (Anderson[l], Park[3]), which can
be considered as the principal features of a generic hypersonic flow, can be summarised
as follows: (i) an entropy-vorticity layer downstream of the bow shock in front of a
blunt-nosed body, (ii) a thin shock layer due to the high Mach number, (iii) a thick
boundary layer, due to the usually very low freestream density values (corresponding
to low Reynolds numbers) characterising this flow regime and to the high temperature
levels reached inside a hypersonic boundary layer (which in turn provide low density
levels), with the possibility at very high Mach numbers of a merging of the shock wave
itself with the boundary layer, (iv) the viscous interaction phenomenon on the leading-
edge region of a slender body, and (v) the chemical reactions happening inside the shock
layer for very high Mach numbers. Although the intensity of these phenomena depends
on the particular case, i.e. on the specific Mach number, Reynolds number, total en-
thalpy of the freestream, and the particular shape of the body, the presence of each one
of them increases the complexity of the flow, making it less predictable with respect to
the lower-speed flows. Consequently, the complexity of the mathematical models used
to describe this types of flow increases as well. Additional complexity of hypersonic
flows influences transition, resulting in the growth mechanism of the boundary layer
instabilities being different and more complicated than the transition mechanism for

subsonic/low-supersonic flows.
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In the past decades, several efforts by the scientific community have been made in order
to describe the transition mechanism in hypersonic boundary layers, through theoret-
ical models coming from the linear stability theory (LST)(Fedorov[4]), direct numeri-
cal simulations (DNS) (Balakumar and Owens[5], Ma and Zhong[6, 7, 16], Zhong and
Ma[17], Balakumar and Kegerise[18]) and by means of flight and experimental data
(Schneider[2, 19, 20]). In some cases (e.g. Zhong and Ma[17]), the DNS results agree
well with the results of the linear stability theory, especially when it is possible to
neglect most of the physical phenomena listed above; but a certain discrepancy with
experimental data still remains. The lack of correlation between numerical, theoretical
and experimental results lead us to discuss other aspects, in addition to those quoted
above, that make transition at hypersonic speeds so difficult to describe. This includes
the poor reliability of the ground test experimental results. It is well known that the
acoustic noise generated in the freestream by the turbulent boundary layer on the nozzle
walls of a wind tunnel strongly affects the transition mechanism on the body wall, as
it determines the initial conditions of the receptivity process inside the boundary layer
(namely amplitude, frequencies and wavenumbers of the disturbances internalised inside
the boundary layer). Any small change in the initial conditions will result in a change
in the whole transition mechanism, and in a shift of the transition point (Schneider[2]).
This is actually due to the nature of turbulence itself, that makes it a phenomenon
strongly dependent on the initial and boundary conditions. For example, two appar-
ently equal initial data sets for the flow into a wind tunnel will produce in general two
different flowfields at the same point in the space, at each instant of time. It is for this
reason that the mathematical description of turbulence requires a stochastic approach.
However, the onset of turbulence is linked to the presence in the initial conditions of
small undetected factors, like roughness, geometrical imperfections, etc., that strongly
influence the flowfield everywhere. The noise generated in the wind tunnel is one of
these poorly controlled factors, as it is generated by the transition process on the walls
of the nozzle, which is in turn affected by surface roughness, geometrical imperfections,
or unexpected variations in the operation conditions of the wind tunnel. Moreover, any
change in the tunnel configuration or test conditions will change the tunnel noise, result-
ing in uncertainties in the comparison of experimental data from two different facilities
(Schneider[2]). Besides the wind tunnel noise, there are other local factors influencing
transition, that are relative to the body, such as the roughness of the body surface, small
angles of attack, shape imperfections, and so on; all of them are potentially poorly con-
trolled. Taking also into account the fact that any wind tunnel cannot simulate exactly
the atmospheric environment, it is not sensible to rely on the ground-test measurements
in order to make transition predictions relevant to flight, even in the case of low-noise
wind tunnels. The only way to develop a reliable method to predict transition is to
understand the whole mechanism that leads to transition, and how it is influenced by

the external disturbances.

In this scenario, direct numerical simulation is a very useful tool to study, for controlled
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external disturbances, the leading-edge mechanism of generation of the boundary-layer
modes and their downstream evolution until transition is induced, thus overcoming the
limit imposed by the experimental measurements of only detecting the transition point.
Also, DNS makes it possible to extend the study of the transition mechanism to high-
disturbance environments, thus overcoming the limit of the LST, which gives reliable
results only for small environmental disturbances. A typical limit of any numerical
simulation is represented by the need to impose a freestream disturbance field, which
cannot reproduce exactly the unknown real-world environmental noise of a hypersonic
wind tunnel, since it is, in general, very difficult or impossible to measure completely
(Schneider[21]). For this reason, a cross-validation study with reproducible experimental
measurements is needed in order to appropriately calibrate the freestream disturbance
field. A different approach, already used in some numerical studies (e.g. Duan et al.[12]),
consists of computing the freestream disturbance field through a separate numerical
simulation, aimed, for example, at reproducing the acoustic noise generated by the
turbulent boundary layer over the nozzle walls. However, this approach is limited too,
primarily by the fact of not accounting for the noise generated elsewhere in the wind
tunnel (for example the noise coming from the reservoir), and secondly due to the
difficulty in reproducing the three-dimensional effects of a real wind-tunnel environment
as well as the morphology of the nozzle surface, i.e. isolated and distributed roughness,
and other geometrical discontinuities, which can differently affect the characteristics
of the radiated noise. Another limit, specific to the direct numerical simulations, is
represented by their high computational cost, which has led most of the DNS studies so
far to mainly consider two-dimensional (2D) mean flows or very simple three-dimensional
(3D) flows (e.g. the flow over a sphere-cone, or a flat plate with 3D disturbances, etc.).
However, in order to obtain results of more practical interest for flying vehicles, complex

3D mean-flow effects and their related instabilities should be taken into account.

The main aim of the present research is to contribute to the development of a reliable
method to predict transition at hypersonic speeds, by studying the physical breakdown-
transition mechanism corresponding to a certain receptivity mechanism in the leading-
edge region, and its link with the characteristics of the freestream disturbance field (in
terms of type of wave, frequencies and wavenumbers), as well as with the propagation
features of the waves induced downstream of the shock and interacting with the bound-
ary layer. To achieve this goal, the challenges concerning the above mentioned limits of
the direct numerical simulations are tackled by i) designing a 2D /3D multi-frequency
model of the acoustic noise (which is the most relevant type of disturbance in a hyper-
sonic wind tunnel), to which random phases in both the longitudinal and the spanwise
directions are applied, in order to simulate the random nature of the real-world noise,
as well as different freestream disturbance amplitude levels, in order to study the ampli-
tude effect on the transition mechanism for different types of the acoustic waves (namely

fast and slow waves); ii) setting up a computational tool, consisting of an appropriate
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shock-capturing scheme, showing a good compromise between numerical stability, solu-
tion accuracy and convergence rate, in conjunction with an adaptive shock-aligned grid,
allowing good solution quality in each particular numerical case; and iii) performing a
parametric study for different flow conditions, characteristics of the freestream distur-
bances, and geometrical configurations with gradually increasing degree of complexity
(i.e. a 2D cylinder-wedge with 2D disturbances, a planar span-periodic cylinder-wedge
with 3D disturbances in unswept and swept configurations, and the 3D geometry of a
generic forebody model), in order to map the different receptivity characteristics and
transition scenarios observed in the different cases. Thus, the present thesis provides
a set of computational receptivity-transition data useful for realistic hypersonic vehicle
shapes, with different geometrical configurations, that can be used for the validation of
both ground-test and flight-test results. Moreover, a combined numerical-experimental
study is shown, aimed at estimating the freestream noise levels in different hypersonic
wind tunnels, which represents a basis for the gradual path towards a full characteri-
sation of the environmental noise, and for a more accurate calibration of the wave-field

model for future numerical investigations.

1.2 General aspects of boundary-layer transition

Boundary layer transition is the process through which the boundary layer evolves from
an initial laminar state to a final turbulent state, by means of the generation of boundary
layer instabilities and their downstream growth and amplification. External disturbances
leading to the generation of the boundary layer instabilities include atmospheric turbu-
lence, acoustic waves, entropy spottiness, particulates, etc. In the case of small amplitude
disturbances, which is the case of most practical importance for the atmospheric flight,
the path to turbulence consists of three stages (Kachanov[22], Zhong and Wang[23]):

receptivity, linear eigenmode growth, and nonlinear breakdown to turbulence.

Receptivity is the process by which the external disturbances enter the boundary layer
and are converted into internal boundary layer waves travelling downstream. Initial
amplitudes, frequencies and phase velocities of these waves depend, in general, on the
properties of the disturbances interacting with the boundary layer and on the character-
istics of the receptivity process itself (e.g. leading-edge receptivity, roughness receptivity,
etc.), and represent the initial conditions for the downstream growth mechanism of the
boundary-layer instabilities up to the nonlinear breakdown (Saric et al.[24]). Indeed,
the whole process leading to breakdown depends on the initial conditions established
by the receptivity mechanism. The receptivity process is, in turn, affected by param-
eters related to the flow conditions, such as the Mach and Reynolds numbers, by the
type of the external forcing, including frequencies, wavenumbers, and amplitudes of the
environmental disturbances, and by local-flow patterns, including nose bluntness, sur-

face roughness and waviness, and non-parallel effects. The way in which these factors
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influence receptivity has led to the division of the receptivity theory into two main
classes, on the basis of the wavenumber spectrum of the forcing mechanism: ‘forced
receptivity’, and ‘natural receptivity’. In forced receptivity, the forcing mechanism is
a localised source of vibrations, such as a vibrating ribbon or wall suction/blowing. In
this case, the wavenumber spectrum of the forcing disturbance is broad enough to in-
clude the wavenumber of the instability waves, thus leading to the direct excitation of
a boundary-layer wave (Saric et al.[24]). In contrast, in the natural receptivity process
the wavenumbers of the freestream forcing mechanism, consisting of acoustic, vortical,
or entropy waves, are in general significantly different to the instability wavenumbers.
Therefore, in the latter case, a process of energy transfer from the wavelength of the
freestream disturbances to that of the internal wave is needed in order to generate an
instability wave in the boundary layer (this process can be defined as a wavelength con-
version process). The transfer of energy between the different wavelengths is, in turn,
allowed in regions where short-scale streamwise variations of the mean flow occur, as
was shown by Goldstein [25], i.e. in regions where small-scale non-parallel effects are
important. Such regions are the body leading edge, localised zones of short-scale vari-
ation in surface geometry, due for example to curvature discontinuities, roughness and

wall humps, or locations of shock/boundary-layer interaction.

The study of the leading-edge effects on the boundary-layer receptivity has been a subject
of several investigations. Lin et al.[26], for example, performed a numerical study of the
leading-edge receptivity to freestream sound for an incompressible flow over a flat plate
with an elliptic and a polynomial-smoothed elliptic leading edge, for different aspect
ratios of the ellipse, and found that a sharper leading edge is less receptive, and that
the effect of smoothing the curvature discontinuity at the ellipse-flat-plate junction is
to significantly reduce the receptivity. Schrader et al.[27] investigated numerically the
receptivity to vortical disturbances for an incompressible flow over a flat plate with
elliptic leading edge, and showed that the leading-edge bluntness enhances a non-modal
instability mechanism, which consists in the generation of stramwise vorticity through
the interaction of vertical freestream vortices with the boundary layer at the leading
edge. A similar mechanism had been observed by Nagarajan et al.[28] in the numerical
simulations of a compressible flow over a flat plate with a super-ellipse leading-edge,
for the case of bypass transition induced by strong freestream vortices and enhanced
by increasing bluntness. Ma and Zhong [7], and Malik and Balakumar [29] performed
numerical simulations of the receptivity to acoustic waves in a Mach 4.5 flow over a
flat plate with sharp and blunt (super-ellipse) leading edge respectively, for the same
freestream conditions and frequency of the acoustic waves. From an analysis of their
results, the response in the early nose region is about three times higher for the blunt
leading-edge case, compared to the sharp flat plate, suggesting that a blunt leading edge
enhances the receptivity mechanism to acoustic disturbances at high Mach numbers
(which will be described later in this chapter). Both leading-edge receptivity theory and

localised receptivity theory were reviewed in detail by Saric et al.[24].
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The second stage consists in the downstream propagation of the small-amplitude insta-
bility waves, which can be either amplified, in the case of unstable boundary layer, or
attenuated. The amplification or attenuation of the instability waves corresponds to the
boundary-layer linear stability problem (Mack[30]). The linear growth of instabilities
occurs over relatively long streamwise length scales. It is, in general, modulated by local
flow conditions (Saric et al.[24]), like pressure gradients, temperature gradients, surface
mass transfer, the presence of an entropy layer beyond the boundary-layer thickness (and
consequently the generation of inflection points in the profile of the streamwise velocity
along the wall-normal direction outside of the boundary layer), and non-parallel effects,
resulting either in a stabilising or destabilising effect. For example, the presence of inflec-
tion points in the boundary-layer velocity profile always provides a destabilising effect
(Kachanov[22], Zhong and Ma[17]). A study of the non-parallel stability can be found
in the work of Fasel and Konzelmann [31]. LST, in which the linear growth of instabili-
ties is studied by solving the eigenvalue problem of the homogeneous linearised stability
equations, is helpful in identifying the unstable modes and predicting their downstream
amplification, and hence is used as a method to predict transition. In the context of
LST, the €™ method, which integrates the normal-mode growth rates, is commonly used
for boundary-layer transition predictions (Zhong and Ma[l7]). Besides the absence of
nonlinear effects, a limitation of the e method is the fact that it does not consider the
initial generation of the instability modes, which is the receptivity mechanism. However,
for the subsonic/low-supersonic regime, the e™ method provides in general satisfactory
results, due to the presence of a relatively simple receptivity mechanism, which satisfies
the assumption of negligible interactions between the different wave modes generated
in the nose region (Fedorov[4]). Instead, in the hypersonic flow regime, the receptiv-
ity mechanism is significantly more complex (Fedorov[4]|, Zhong and Wang[23], Fedorov
and Khokhlov[32]), so that the interactions between the different modes generated in
the leading-edge region need to be taken into account. Hence, any transition prediction

by the e™ method is in general not reliable at hypersonic speeds.

When the amplitudes of the instability waves reach significant values, the flow enters the
last stage of the path to transition, where three-dimensional and nonlinear effects take
place, for example as secondary instabilities. These effects cause a very rapid growth
of disturbances, and lead to nonlinear breakdown, randomisation, and a final transition
into a turbulent state. Nonlinear breakdown has been studied for nearly sixty years, but
some aspects of the final transition to a fully developed turbulent state remain still un-
solved. Two fundamental experimental studies for low speeds, conducted by Klebanoff
et al.[33] and by Kachanov et al.[34], showed the existence of two main regimes of nonlin-
ear breakdown: the K-regime and the N-regime (according to Kachanov’s terminology,
Kachanov[22]). The K-regime, corresponding to the transition mechanism observed in
the experiment by Klebanoff et al.[33], consists of a strong downstream amplification
of the weak natural uncontrolled spanwise modulation of the mean flow (thinking for

example of the flow over a flat plate), along with the appearance, at the points where the
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streamwise velocity fluctuations are maximum (peaks), of high-frequency disturbances
(spikes), whose nonlinear amplification quickly leads to breakdown and randomisation.
In contrast, the N-breakdown (Kachanov([34]) starts with the appearance of a broad
spectrum of low-frequency 3D oscillations of the fundamental wave (including subhar-
monics of the fundamental wave), which are amplified further downstream until three-
dimensional randomisation is reached. In particular, the key-mechanism that leads to
the generation and amplification of these 3D low-frequency fluctuations (and hence to
the N-breakdown mechanism) is a subharmonic resonant interaction between the quasi-
subharmonic 3D disturbances and the 2D fundamental wave. Moreover, the N-regime
of transition is usually observed for small values of the initial fundamental-wave ampli-
tude. So, the K and N regimes are essentially different in terms of the frequencies of
the nonlinear disturbances leading to breakdown, but both types of transition clearly
show the three-dimensional nature of breakdown. Kachanov[22] illustrated in details
the N-breakdown mechanism, highlighting the decisive role played by resonant wave

interactions in the transition process.

The three stages described above represent the path to transition in the case of weak
environmental disturbances. As disturbance amplitudes increase, the nonlinear effects
become increasingly important, until, for sufficiently high disturbance levels, the lin-
ear growth stage is bypassed completely, and the initial receptivity stage is followed by
direct nonlinear breakdown and transition to turbulence. A characteristic feature of
this direct mechanism is the formation of turbulent spots (Emmons[35]). The spot is
a arrow-head fluid structure with a turbulent core, and with a constant lateral growth
rate. An important characteristic of these structures is that they grow even in a sur-
rounding stable laminar flow. Indeed, the boundary layer downstream the breakdown
can show, within a region of a certain length, an intermittent turbulent behaviour, with
a sequence of turbulent spots, interspersed among laminar regions, as shown in the work
of Schneider[2] in a Mach 4.3 transition experiment. Intermittent turbulence of this
type precedes the final fully turbulent state, but, as it occurs over an extended region,
contributes to making detailed prediction difficult. In this context, Redford et al.[36]
carried out an investigation of the sensitivity of the growth rates of turbulent spots to
Mach number and wall temperature, along with a detailed study of the fundamental
mechanisms of the spot growth. In particular, they found two different mechanisms
of spot growth: one involving the advection of turbulent structures from the spot core
outwards along lateral jets; the other consisting in the creation of new structures by
destabilisation of the surrounding flow. Increasing Mach number and wall cooling were
found to play an important stabilising role in the spot growth rate, especially in relation

to the latter mechanism.

Hence, different types of transition exist, depending on the amplitude of the environ-

mental disturbances. On the basis of what has been said above, it is clear that a key
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factor determining the mechanism of transition is the way the instability waves are gen-
erated in the boundary layer. The presence of either the K-regime or the N-regime in the
nonlinear breakdown phase, and the evolution of the instabilities in the linear growth
phase are strongly dependent on initial conditions. Thus, it is neceessary to understand
how the freestream disturbances are entrained into the boundary layer, and create the

initial amplitude and spectral characteristics of the instability waves.

1.3 Characteristics of the environmental noise in hyper-

sonic wind tunnels

The environmental noise of a hypersonic wind tunnel can be considered as composed
of all the types of waves, namely acoustic waves, entropy waves, and vorticity waves.
The acoustic waves represent adiabatic compression and expansion waves, which produce
perturbations of pressure and density with the same sign (namely in phase), and velocity
disturbances with the same or opposite sign, dependent on the acoustic waves being of
the type of fast or slow respectively. In particular, in a supersonic flow, the fast acoustic
waves are acoustic disturbances moving at the speed of sound relative to the flow and
propagating in the direction of the flow, so that their phase speed is the sum of the
streamwise mean velocity of the flow (U) and the speed of sound (a), namely U + a.
In contrast, the slow acoustic waves are oriented in the opposite direction of the mean
flow, thus their phase speed is the difference between the flow velocity and the speed of
sound, i.e. U — a. The entropy waves, instead, are related to temperature spottiness at
constant pressure, which provide density perturbations, accordingly to the equation of
state (which will be presented in Chapter 2), with no velocity disturbances; while the
vorticity waves are linked to perturbations in the velocity components transverse to the
mean flow direction, with no disturbances of the thermodynamic variables. Moreover,
the entropy and vorticity waves are convected by the flow, so their propagation speed is

coincident with the flow velocity (U).

The intrinsic inhomogeneity of the environmental noise in hypersonic wind tunnels makes
the disturbance field itself very difficult to measure with the current experimental tech-
niques (Schneider [8]). The degree of complexity of the freestream disturbance field is
further increased by the inhomogeneity of the amplitude and orientation of the different
types of waves, dependent on the particular section of the wind tunnel from which the
waves are generated. For example, waves coming from the reservoir and waves radiated
from the nozzle walls will have, in general, different amplitude and orientation, aside
from pertaining to a different class of waves. Entropy and vorticity waves contribute to
the noise coming from the upstream section of the wind tunnel, while acoustic waves are
the dominant disturbances radiated by the turbulent boundary layer on the nozzle walls

(e.g. Schneider [9, 10], Masutti et al.[11]). Moreover, the natural three-dimensionality
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and irregularity in the structure of the disturbance field makes it substantially unpre-
dictable.

Despite its high complexity, some simplifications of the disturbance field can be made,
according to numerical and theoretical studies available in the literature. For example,
in a recent numerical study, Duan et al.[12] showed that the noise generated by a fully
turbulent boundary layer in a flow at Mach 2.5 over a flat plate is mainly characterised
by acoustic disturbances with wavefront orientation and phase speed belonging to the
class of slow acoustic waves. This is an indication that slow acoustic modes are effi-
ciently produced by turbulent boundary layers on the wind tunnel walls. On the other
hand, considering the effect of the non-acoustic type of disturbances, it was shown by
the theoretical study of McKenzie and Westphal [13] on the interaction of freestream
disturbances with an oblique shock, which was then extended to the case of a shock
attached to a wedge by Duck et al.[14, 15], that incident entropy/vorticity waves can
generate intense acoustic waves behind the oblique shock. This was proved by Ma and
Zhong [16] from a numerical study of the receptivity for a Mach 4.5 flow over a flat plate
to different types of freestream disturbances, in which it was observed that, in the case
of freestream entropy and vorticity waves, the boundary-layer disturbances are mainly
induced by fast acoustic waves generated behind the shock by the freestream forcing

waves.

In the light of these considerations, the acoustic disturbances, pertaining to both the
classes of fast and slow acoustic waves, have been considered as the main forcing distur-

bances in the present numerical study.

1.4 Receptivity to freestream disturbances at hypersonic

speeds

As we have seen, the whole process leading to breakdown depends on the initial con-
ditions established by the receptivity mechanism. This is why receptivity plays a role
of primary importance in the study of the growth mechanism of the boundary-layer
instability modes, and hence in the prediction of the transition point. The receptivity
process is, in turn, affected by mean-flow parameters (e.g. Mach number, Reynolds
number, angle of attack, etc.), properties of the external forcing (type, amplitude, fre-
quency, phase speed and orientation), local-flow patterns and geometrical factors. The
Mach number, in particular, plays an crucial role in the main characteristics of the
receptivity process, meaning that the generation mechanism of the internal modes by
external small-amplitude disturbances shows some fundamental differences depending
on the particular flow regime. These differences can be summarised as follows:

a) In subsonic/low-supersonic boundary layers, the receptivity mechanism consists es-

sentially in the excitation, by the freestream disturbances, of the Tollmien-Schlichting
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waves, which represent the first instability mode. This is the characteristic unstable
mode of this flow regime; all the other modes generated in the boundary layer are stable,
and their interaction with the first mode can be neglected. In contrast, in the hypersonic
regime, besides the first mode, there is the presence of other higher-frequency instabil-
ity modes, so-called Mack modes, that can coexist in the boundary layer, as shown by
Mack[30], making the internal instability spectrum significantly more complex than at
moderate Mach numbers. Stetson et al.[37] observed the second-mode instability in a
Mach 8 transition experiment over a cone, which showed that the second (Mack) mode
plays a major role in the transition process.

b) In the low-subsonic flow regime, as the wavenumber spectrum of the external distur-
bances is very different to that of the boundary-layer instability modes, the excitation
of waves inside the boundary layer always happens by means of a wavelength match-
ing mechanism, as explained above in the context of the natural receptivity. In con-
trast, at supersonic Mach numbers the wavelength conversion mechanism is no longer
needed, as the excitation of the boundary-layer modes in this flow regime is essentially
due to a direct resonant-interaction mechanism between the internal waves and the
freestream disturbances, as shown in several theoretical and numerical studies (Fedorov
and Khokhlov([32], Fedorov[4], Balakumar([38], Zhong and Ma[17], Zhong and Wang[23]).

These different phenomena result in the receptivity mechanism at hypersonic speeds
being significantly more complicated than at lower Mach numbers. In particular, the
resonance/synchronisation mechanism is a key-aspect of the receptivity of hypersonic
boundary layers to environmental disturbances, as it determines the generation of the
instability modes, by synchronisation of these, either with the external modes or with
other stable internal modes, dependent on the external disturbances (for example fast
or slow acoustic waves). This means that another distinction about the receptivity
mechanism has to be made, concerning the type of environmental disturbances. In
this context, considering the case of a blunt body in a hypersonic flow, the shock -
freestream-wave interaction plays a major role for the establishment of the disturbances
generated behind the curved shock and interacting with the boundary layer. Ma and
Zhong [16] numerically studied the receptivity for a Mach 4.5 flow over a flat plate to
different types of freestream disturbances, and observed that, in the case of freestream
entropy and vorticity waves, the boundary-layer disturbances are mainly induced by
fast acoustic waves generated behind the shock by the freestream forcing waves. The
theoretical studies by Fedorov and Khokhlov[32], and Fedorov[4] showed that freestream
fast acoustic, entropy and vorticity waves produce a similar receptivity mechanism, while
slow acoustic waves interact with the boundary layer in a different way. In particular, if
the waves interacting with the boundary layer are of the type of fast acoustic, entropy or
vorticity waves, a stable internal mode (mode F, or fast mode) is generated at the leading
edge through a resonance mechanism, namely due to the synchronisation between mode
F and the forcing waves. This mode then leads, in a region further downstream along the

wall, to the excitation of a lower phase-speed mode (mode S, or slow mode), representing



12 Chapter 1 Introduction

the class of the instability modes, including both the first instability mode and the Mack
modes. The excitation of mode S is due to another synchronisation mechanism, which
now involves mode F, whose phase speed gradually decreases downstream, and mode S.
Further downstream, mode S becomes unstable and grows very rapidly, corresponding to
the excitation of the second instability mode. On the other hand, if the waves interacting
with the boundary layer are slow acoustic waves, the resonance mechanism at the leading
edge with the external waves leads directly to the generation of mode S, which becomes

unstable and grows further downstream.

Freestream waves

Post-shock BL edge
A\ o waves
_7_/'_> ] > = BLwave

W/

Wall

Figure 1.1: Sketch of a blunt body in a hypersonic flow with freestream distur-
bances

This mechanism has been numerically investigated through DNS computations by dif-
ferent authors, e.g. Zhong and Ma[l7] (for the case of the flow over a cone with fast
acoustic waves), Balakumar[38] (for the interaction of 3D fast and slow acoustic waves
with a blunted flat plate), and Kara et al.[39] (for the flows over a cone and a wedge
with both fast and slow acoustic waves). Tumin et al.[40] performed a joint numerical-
theoretical study of the receptivity to 2D perturbations in a Mach 8 flow over a sharp
wedge, in which a multimode decomposition technique was used to decompose the nu-
merical perturbation field into normal modes and identify the discrete modes F and S.
Malik and Balakumar[29] also studied numerically the bluntness effect on the receptivity
to fast and slow acoustic waves over a blunted flat plate with three different leading-edge
thicknesses. Moreover, the angle of incidence of the acoustic waves can play an impor-
tant role in the features of the perturbation field near the leading edge, as shown in the
numerical work of Egorov et al.[41] for the case of the boundary-layer receptivity over
a flat plate. The following figure shows an illustrative scheme of the mode S excitation
mechanism for different freestream disturbance types. The resonance/synchronisation
causes the generation of mode F and mode S at the leading edge, dependent on the type

of freestream disturbance, and is also the leading mechanism of the intermodal exchange
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from mode F to mode S further downstream (for the case of fast acoustic, entropy or

vorticity waves), where mode S is excited.

(Fast acoustic waveé/s 'Entropylvorlicity waves Slow acoustic waves
Mode F (stable mode |, 1, etc.) \ Mode S (instability mode)

'

/ ‘ Intermodal exchange
v

Excitation of the unstable Instability growth ‘
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branching point, through a l

resonant/synchronisation

: Onset of non-linear breakdown ‘
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Figure 1.2: Scheme of mode S excitation mechanism

Mode F is always stable and is characterised, as shown in the works of Ma and Zhong
[16] and Zhong and Wang [23], by the appearance in sequence of multiple modes of
increasing frequencies (mode I, II, III, etc., using Ma and Zhong’s [16] notation). Each
of these modes is first amplified (due to the above mentioned resonance mechanism),
and then decays, with a decreasing phase speed, until approaching the phase speed
of mode S (synchronisation with mode S). Mode S is, in contrast, characterised by the
appearance in sequence of a first mode (corresponding to the Tollmien-Schlichting waves)

274 mode,

in the leading-edge region, and by multiple higher-frequency Mack modes (
3" mode, etc., according to their appearance order), excited after the decay of each of
the above mentioned series of fast modes. This receptivity process will be discussed in
more detail in the next chapters of the present thesis, for the results of the numerical
cases with freestream fast acoustic waves. In the case of slow acoustic waves, mode S
follows the same evolution cycle described above (with the appearance in sequence of
the first mode, the second mode, etc.) without the presence of mode F, because mode S
is directly excited at the leading edge through the resonance mechanism with the slow
acoustic waves. Among the instability modes pertaining to mode S, the dominant mode
in hypersonic boundary layers is the second mode, whose amplitude and growth rate
determine the position of the transition point. However, the second-mode amplitude
and growth rate depend on the interaction mechanisms preceding the point where it is
excited (the first mode F - mode S synchronisation point). This means that the field
can be divided into two regions: upstream of the first mode F - mode S synchronisation
point, namely in the leading-edge region, where the initial resonance mechanism between
external disturbances and internal modes takes place, and downstream, where the second

mode gets in and is amplified (Fedorov[32]). Therefore, in order to be able to predict
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the amplitude of the instability waves inside a hypersonic boundary layer, and make
some transition predictions, we need to study the upstream region, which is the early
part of the receptivity process. At the same time, the downstream region needs to
be treated without any particular simplifying assumptions, in order to include possible
further interactions between forcing disturbances and boundary-layer waves, that can
lead to a strong modulation of the internal modes. These needs lead us towards the use
of the DNS as an appropriate tool to accurately simulate the evolution of the instabilities
inside the boundary layer of hypersonic vehicles, and to predict transition, as well as a
method to validate LST results.

The receptivity process for hypersonic vehicles is, in general, influenced also by other
effects, such as the nose bluntness, entropy layer, wall temperature and chemical nonequi-
librium effects. Nose bluntness and entropy-layer effects were studied in the experiment
by Stetson et al.[37]; the results showed that increasing bluntness, below a certain limit
value, delays transition, but this trend is reversed above this limit. DNS studies of the
hypersonic flow over blunt cones with nose bluntness effects and wall temperature effects
were conducted by Kara et al.[39, 42]. Hornung et al. [43] carried out experiments on
hypersonic transition with chemical nonequilibrium effects, that become relevant at very
high Mach numbers. Theoretical, numerical and/or joint computational-experimental
investigations of chemical and/or vibrational nonequilibrium effects on the boundary-
layer receptivity and transition in hypersonic flow are represented by, e.g., the works of
Stuckert and Reed [44], Ma and Zhong [45], Stemmer [46], Parsons et al.[47], Jewell et
al.[48] and Mortensen and Zhong [49]. In particular, the DNS study of Ma and Zhong
[45], concerning the receptivity to freestream disturbances in a Mach 10 oxygen flow,
showed that the second mode is destabilised by real gas effects, thus confirming the the-
oretical predictions of Stuckert and Reed [44] for the linear stability of a Mach 25 flow
over a sharp cone. In the computational-experimental study of Jewell et al.[48] the pres-
ence of carbon dioxide in a hypersonic flow over a cone was shown to delay significantly
transition, compared to a pure air flow, while, more recently, the theoretical study of
Mortensen and Zhong [49] for a Mach 15.99 hypersonic flow over a blunt cone, includ-
ing thermochemical nonequilibrium and surface graphite ablation, showed that blowing
destabilises a real-gas flow, and the second mode is slightly stabilised by the carbon
species. Although several other authors have conducted DNS studies in these areas, the
problem of the receptivity of hypersonic nonequilibrium flows, along with the transition
reversal problem due to entropy-layer effects, are still unresolved, and are beyond the

scope of the present investigation.
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1.5 Effect of oblique disturbances

The resonance mechanism, upon which the receptivity to freestream disturbances in
hypersonic flows is based, is strongly influenced by the orientation of the incident waves,
with important consequences on the transition process. Fasel et al.[50] performed a
DNS of the complete transition to turbulence through oblique breakdown for a flat
plate at Mach 3 , introducing a pair of oblique waves in the boundary layer. In their
work it is shown that the oblique instability waves are strongly amplified until oblique
breakdown is triggered, which can then lead to a fully developed turbulent boundary
layer. In the works of Berlin et al.[51] and Berlin and Henningson[52], the response to
oblique freestream waves in combination with a nonlinear mechanism was found to be
a powerful process leading to a different transition scenario, namely oblique transition,
which is characterised by nonmodal growth of the disturbances and requires lower initial
amplitudes compared to the case of transition caused by two-dimensional instabilities.
Ma and Zhong[7] also studied the receptivity to freestream fast acoustic waves on a flat
plate at different angles of incidence, and obtained the highest amplitude response for
an incidence angle of about 26°. Egorov et al.[41] studied the response to fast and slow
acoustic waves over a 2D flat plate for different angles of incidence of the wave vector
with respect to the streamwise direction. The receptivity to three-dimensional acoustic
waves with assigned inclination angles and wavenumbers in the spanwise direction was
studied numerically by Balakumar[38] for a blunt flat plate at Mach number 3.5 in the
linear regime. In his work, the amplification of the instability waves downstream of the

neutral point agrees very well with PSE (Parabolized Stability Equations) predictions.

1.6 Effect of a sweep angle

In the case of a swept leading edge, the receptivity to external acoustic disturbances,
and the resulting transition process, can be strongly affected by the presence of the
crossflow instability, which is related to the generation, due to the inflectional instability
of the crossflow boundary-layer profiles, of streamwise-oriented co-rotating vortices. In
particular, the inflection of the boundary-layer crossflow profile originates in regions of
pressure gradients (e.g. the leading edge), and is essentially due, as described by Saric et
al. [53], to an imbalance, occurring inside the boundary layer, between the centripetal
acceleration, linked to the curvilinear trajectory of the streamlines in a flow over a
swept body, which decreases inside the boundary layer due to the gradual reduction
of the streamwise velocity up to the zero value at the wall, and the pressure gradient,
which, in contrast, remains unchanged in the boundary layer. This imbalance generates
a boundary-layer velocity component perpendicular to the streamwise and the wall-
normal directions (namely the crossflow), which reaches a peak at a certain wall-normal

distance, before going to zero at the wall, thus causing an inflection point.
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The crossflow instability in swept leading edges has been investigated both experimen-
tally and numerically by several authors. A review of the three-dimensional boundary-
layer stability and transition with a focus on the effects of the crossflow instability on
swept wings and rotating disks is presented in the work of Saric et al. [53]. Experimental
studies showing the role of the crossflow instabilities on the transition process in three-
dimensional boundary layers can be found in the works of White and Saric [54], Bippes
[55], Cattafesta et al. [56] and Creel et al. [57]. Tokugawa et al. [58] conducted a tran-
sition experiment on an axisymmetric body at Mach 1.2 and incidence angles of 1° and
2°, and detected stationary crossflow vortices in the region where the foremost transition
occurred. An eigenvalue analysis was used by Li and Choudhari [59] to study the spatial
instabilities in crossflow dominated swept-wing boundary layers, while a linear stability
analysis was performed by Nomura [60] to study the effects of crossflow instabilities on
the spatial growth of first-mode waves for the three-dimensional supersonic boundary
layer over an infinite swept wing. Paredes and Theofilis [61] and Paredes et al.[62] per-
formed spatial BiGlobal linear stability analyses in hypersonic flow over an elliptic cone
model, showing the importance of instability modes localised along the centerline of the
body (so called centerline modes), and classified as shear-layer instabilities, as a result
of a mushroom-like fluid structure formed along the centerline. Finally, DNS studies
were performed by Balakumar and King [63], Pruett et al. [64] and Speer et al. [65], to
investigate the effects of the crossflow instabilities in supersonic flows over swept wings
at Mach 3, 3.5 and 5.1 respectively.

1.7 Objectives of the present study

The objective of the present work is to perform direct numerical simulations of the full
transition process from imposed freestream disturbances over blunt leading-edge geome-
tries, and use the results to clarify mechanisms of hypersonic transition. This is of
fundamental importance to link the final breakdown mechanism to the characteristics
of the freestream disturbances, without any arbitrary intermediate simplification. The
freestream disturbances are introduced as an inflow boundary condition in the computa-
tional domain, through an acoustic-wave model that will be described later. This direct
approach, along with a cross-validation with available data from transition experiments,
can also play an important role in calibrating the model to reliably reproduce the main

characteristics of the wind-tunnel noise.

A better interpretation of the several physical mechanisms leading to transition in the
experimental facilities is needed, i.e. an understanding of how the receptivity and break-
down mechanisms are affected by key factors that influence transition in the ground-test
experiments, including Mach number, Reynolds number, angle of attack, sweep angle,
amplitude and orientation of the incident waves, shock-disturbance interaction, leading-

edge shape, etc. For this reason, the present work has been carried out in three main



Chapter 1 Introduction 17

stages, considering different geometries and disturbance models for the study of i) the re-
ceptivity mechanism for a 2D wedge-shaped geometry, representative of a measurement
probe used in recent experimental investigations, with 2D acoustic waves, ii) the recep-
tivity and breakdown mechanisms for a 2D wedge-shaped geometry with 3D acoustic
disturbances in both unswept and swept configurations, iii) the receptivity and break-
down mechanisms for the 3D geometry of a generic forebody model, recently tested in

a hypersonic wind tunnel, with 3D acoustic disturbances.

In the first stage, two-dimensional numerical simulations are performed for a cylinder-
wedge geometry inserting planar fast and slow acoustic waves with multiple frequencies
as freestream disturbances. These numerical cases cover a set of non-transitional ex-
periments carried out at DLR on a probe (Wagner et al. [84]) designed to measure
the disturbance levels in high and low enthalpy hypersonic wind tunnels. The main

objectives of these numerical simulations are the following:

e to determine the characteristics of the transmitted waves (i.e. the wave structure)
behind of the shock,

e to determine the characteristics of the response along the wall,

e to assess the sensitivity of the leading-edge receptivity to the angle of attack and

the angle of incidence of the acoustic waves,

e to estimate the freestream noise levels in the different wind tunnels and flow condi-
tions relative to the DLR experiments, through a combination of the numerically
obtained transfer functions (i.e. freestream-to-wall disturbance level) and the ex-

perimental data for the disturbance levels on the wall.

In the second stage, another cylinder-wedge geometry is considered, with half-wedge
angle equal to that of the generic forebody shape used in the third stage, but three-
dimensional simulations are performed in this case, with a 3D acoustic-wave model
accounting for multiple spanwise wavenumbers. The simulations are carried out at the
same Mach number (Mach 6) for fast and slow acoustic waves with different freestream
disturbance amplitude levels, in order to consider both linear and nonlinear cases, and
for both unswept and swept leading-edge configurations. In this case, the main goal is
to analyse the different transition scenarios reached for different wave-type - amplitude-
level - leading-edge-configuration (i.e. swept/unswept) combinations, with the following

objectives:

e to deduce the different receptivity mechanisms to freestream fast and slow acoustic

waves, with and without nonlinearities,
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e to determine the resonance mechanism at the leading edge between the internal
modes and the external forcing, including an assessment of the relevance of previous
theoretical approaches (Fedorov and Khokhlov([32]),

e to determine the extent of influence of crossflow instabilities generated at the

leading edge due to the presence of a sweep angle.

Finally, in the third stage, a full three-dimensional geometry is considered, representative
of a generic forebody model that was used in recent transition experiments performed
by MBDA in the Purdue hypersonic wind tunnel at Mach 6 (Durant et al. [89]). For
this case, direct numerical simulations are performed making use of the same three-
dimensional acoustic-wave model used in the second stage, for both fast and slow acoustic

waves, with the following objectives:

e to compare the simulations with the experimental results, thus assessing the suit-
ability of the acoustic-wave model, and the dominant disturbances in the Purdue

hypersonic wind tunnel,

e to determine the main transition mechanism on the geometry of a generic forebody.

The results obtained in this work serve as an assessment of the freestream disturbance
levels and of the dominant type of disturbances characterising the environmental noise in
hypersonic wind tunnels, providing at the same time a further understanding of the main
physical mechanisms leading to transition in the hypersonic wind tunnels for different
flow conditions, disturbance characteristics and geometrical configurations. This can
shed light on the ambiguity still present in transition experiments (Schneider [8]), and

help to set-up a transition prediction method.



Chapter 2

Numerical method

2.1 Governing equations

We consider numerical solutions of the three-dimensional Navier-Stokes equations for
compressible flows, written in conservation form, under the assumption of perfect gas.
The set of non-dimensional conservation equations in Cartesian coordinates can be writ-

ten as

0Q | oF,

= 2.1
ot 61’j 0 ’ ( )

In the equation above, Q is the vector of the conservative variables, while F; is the
vector of the fluxes in Cartesian coordinates. The components of the vectors of the

system in conservative form are

pu

pw

pU;j
puu; + 01;p — ReT1j
F; = puuj + Gojp — R (23)
pwu; + 03;p — 4T3
1 orT
| (B+2) s — g (umy +vomy +wmy + i 92 )

The terms p, pu, pv, pw and pE are the conservative variables of the system of equations,
where p is the density, u, v and w are the velocity components respectively in the x,
y and z directions, and F is the total energy per unit mass. In the flux vectors, the

terms p, T, 75, and p are respectively the pressure, the temperature, the components

19
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of the viscous stress tensor, and the dynamic viscosity of the flow. The non-dimensional
quantities are obtained through normalisation of the dimensional variables with their
freestream reference values: the velocity components are normalised with the freestream
main velocity (UZ), the density is normalised with the freestream density (p%, ), the
viscosity is normalised with the freestream dynamic viscosity (u},), the temperature
is normalised with the freestream temperature (7% ), the total energy is normalised
with the square of the freestream main velocity (UZ*2), while the pressure and viscous
stresses are normalised with the term p* U2, related to the freestream dynamic pressure
(2p5.UZ2). Note that the superscript (*) is used to denote dimensional values. The
nose radius (R*) is chosen as the characteristic length to normalise the length scales,
while the time scales are normalised with respect to the fluid-dynamic characteristic
time (R*/UZ,), based on the velocity of the undisturbed flow and on the characteristic
length. The terms Re, Pr, M, and ~ are respectively the Reynolds, Prandtl and Mach
numbers, and the constant-pressure to constant-volume specific heat ratio (v = ; /),
i.e. the dimensionless parameters of the flow. The Reynolds number is defined with
respect to the nose radius, as Re = (p5 UX R*)/uk,; the Prandtl number is set to 0.72
for air, and + is equal to 1.4, as we are considering a perfect gas model. The dynamic

viscosity is, in turn, expressed in terms of temperature by Sutherland’s law

_ T3/2ﬂ

2.4
T+C’ (2:4)

where the constant C represents the ratio between the Sutherland’s constant (set to 110.4
K) and the freestream reference temperature (77%). The viscous stresses are defined in

terms of the velocity derivatives, under the assumption of a Newtonian fluid, as

_ | 0w 0w 2, Ouk
— b Oxr; Ox; 3 Y Oz,

(2.5)

Tij

We also need a relation linking the total energy to the temperature, which in non-

dimensional form can be expressed as

T 1
F=— 4+ = (d? 2 3. 2.6
7(7_1)M2+2(u + v 4+ w?) (2.6)

Finally, the system of equations is closed by the equation of state for a perfect gas

1
= T .
p FYMQP

(2.7)

The system of equations in Cartesian coordinates is transformed into a system of equa-
tions in curvilinear coordinates (&, 1, () as
0Q  OF;

o tae =0 (2.8)
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The relations between the vectors in curvilinear and Cartesian coordinates are expressed

by
o&;
axi ’

with J = det||0(x,y, 2)/0(&,n, ¢)|| being the Jacobian of the transformation matrix.

Q=JQ, F;=JF; (2.9)

2.2 Two-dimensional acoustic-wave model

Figure 2.1 shows a sketch of the planar acoustic waves travelling in the direction of the
wave vector k, with an inclination angle 6., in the xy-plane with respect to the positive
z-axis of the Cartesian reference system. The freestream perturbations of the physical
quantities are expressed relative to the freestream density perturbation (p') by means of
the following relations, derived from the linearised dimensionless Euler equations under

the assumption of small perturbations,

1 1 1
ul, = iMp'oo oSOy , Vb = iﬂpgo sinfyy , ph = ngo , (2.10)
/ 1 / 1 . .
E = WS Y] + cos acos Uy +sinasinfyy, | (2.11)

where o denotes the angle of attack. The inclination angle of the acoustic waves (6,)
is considered positive for waves impinging from below (as represented in the sketch of
figure 2.1). In the relations for the velocity component perturbations, the ‘+’ sign is

used for fast acoustic waves, while the ‘—’

sign applies to slow acoustic waves, as fast
waves would be oriented in the same sense indicated by the wave vector in figure 2.1,
while slow waves would be oriented in the opposite sense, thus producing an opposite-
sign perturbation (with respect to the sign of p. ) for both the velocity components.
The relations for the fluctuations of the velocity components and pressure are consistent
with the relations used by Egorov et al.[41] for their 2D acoustic-wave model (with the
exception of the inclination angle being considered positive for waves coming from above
in their work), while the derivation of the total energy perturbation is shown in Section

2.3.

The freestream density perturbation as a function of time and Cartesian coordinates,

for the case of multiple frequencies, is expressed as

N
pho(z,y,t) = A Z 08 (kna® + knyy — wnt +¥n) (2.12)
n=1

where A is the assigned amplitude, k,,; and k,,,, are the wavenumbers respectively in the

x and y directions, w, is the angular frequency, 1, is the phase angle, N represents the
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Figure 2.1: Sketch of the planar acoustic waves and of the computational domain
near the nose region. The solution shown here, for illustration purposes, is the
u velocity field

total number of frequencies of the wave spectrum, and the subscript ‘n’ indicates the

nt? frequency. The wavenumbers and the angular frequency are, in turn, expressed by

Wn

Y = nwy = 2Ty
cos Oy £ 1/M "’ wn = nwy = 2y

(2.13)

Here, |k,| is the magnitude of the wave vector for the n‘" frequency, which depends on

kng = |kn| cos by 5 kny = |kn|sinbyy ; |ks| =

the angle 6,,, since the convection velocity of the acoustic waves is the projection of the
mean freestream velocity along the wave propagation direction, while f; is the smallest
frequency of the complete spectrum. From the relation for the angular frequency it is
evident that each frequency is a multiple of the lowest frequency. Again, the plus sign
in the denominator of |k,| indicates fast acoustic waves, while the minus sign is for slow

acoustic waves.

In the unsteady computations, the acoustic waves are, then, inserted into the computa-
tional domain by imposing, at each point along the inflow boundary and at each instant

of time, the following form of the vector of the conservative variables,

Poo T p/oo
(Poo + Pho) (Uoo + 1)
(Poo + Pho) (Voo + 1)
(Poo + Poo) (Boo + EZ)

QY = , (2.14)

in which each physical quantity in the freestream is expressed as a sum of a steady base

flow and a fluctuation term, for which equations 2.10, 2.11, 2.12, and 2.13 apply.
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2.3 Equation for the total energy perturbation

Let us consider the relation for the dimensionless total energy in the freestream,

Lo +1( 2o+ . (2.15)

Boo=——2
Tty -1M? 2

By applying the Reynolds decomposition we get

Too + T2,

Eo +E = -1 0
oo+ Foo v(y —1)M?

+ = [(oo + ube)? + (veo + V50)?] (2.16)

1
2
from which, by expanding the terms, and neglecting higher-order terms (on the assump-

tion of small perturbations), we obtain

T 1

Bo+Elg=—"2 -
SRR IO VR

T/
(uZ, +v3) + S ~ + Usolhg + VooVl - (2.17)

(y—1)M?
The sum of the first two terms of the right hand side is, by definition, the freestream

mean total energy. Hence, the fluctuation of the total energy is given by

T

Bl = —__
= oty -1)M?

+ Uoolhg + VooVl - (2.18)
The mean velocity components in the x and y directions can be expressed as a function
of the angle of attack (a) as us, = cosa and v = sina (considering that the magni-
tude of the dimensionless freestream mean velocity, Us, is 1). The velocity perturbation
components, induced by the acoustic wave travelling in the direction of the wave vector,
are given by ul, = Ul cosb,, and v, = Ul sinf,,, where 6, is the inclination angle
of the acoustic waves with respect to the z-axis, and U/  is the magnitude of the ve-
locity fluctuation in the wave-vector direction, which is, in turn, related to the density
perturbation by

Ul = %pgo : (2.19)

By substituting the above relations for the velocity components into the formula for the

total energy, we get

T 1
= + —pl (cos acos Oy + sinasinbyy) . (2.20)

E_ = "% _
oy 1)M?2 M

At this point, in order to express the temperature perturbation as a function of the
density perturbation, we consider the equation of state for a perfect gas, in which the

Reynolds decomposition has been applied,

1
Poo + D, = Ve (poo + ph) (Too +TL) (2.21)
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In the above equation the pressure terms are normalised with the term po UZ2,. By ex-
panding the right hand side, neglecting higher-order terms, and subtracting the freestream

mean pressure, we obtain

1
Poo = gz (PocToo + Toolo) - (2.22)
In terms of the temperature fluctuation, and considering that po, and T, (dimensionless

freestream mean density and temperature respectively) are equal to 1, we obtain
T, = yM?pl, — ply, - (2.23)

Substituting, in the above relation, the equation (2.10) relating the freestream pressure

fluctuation to the density fluctuation, pl, = pl /M?, we obtain
To = (v = 1)peo - (2.24)

Finally, by substituting this relation into the formula of the total energy, we obtain the
total energy fluctuation amplitude as a function of the density fluctuation amplitude,
the angle of attack and the angle of incidence of the acoustic waves, as

L,

1
E. = Mpoo (W + cos a cos O, + sin asin ny> . (2.25)

2.4 Three-dimensional acoustic-wave model

The three-dimensional wave system consists of a main two-dimensional wave and pairs
of opposite-angle oblique waves of lower amplitude. The oblique acoustic waves are
considered as planar waves travelling with an angle 6., in the zz-plane. The freestream
perturbations of z- and z-velocity components, pressure and total energy in terms of the
freestream density fluctuation are still expressed by equations 2.10 and 2.11, provided
we replace 0, with 0,., and v  with w/_. Note that, in this case, we do not consider
an inclination angle in the xy-plane, i.e. 0., = 0, and, as a consequence, the freestream
velocity component in the vertical direction is v, = 0. Also, as the oblique waves have
an opposite angle in the xz-plane, their added contribution to the spanwise velocity is

Zero.

The freestream perturbation of the density as a function of time and Cartesian coordi-

nates, for the case of multiple frequencies, is expressed as

M N

o (x,2,t) = Z ZAm o8 (Bmz + ¢m) cos (anx — wpt + 1) , (Bo = ¢o =0), (2.26)

m=0n=1
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where «,, and (,, are the wavenumbers, respectively, in the x and z directions, w,, is
the angular frequency, A,, is the amplitude of each wave mode, ¢,, and 1, are random
phase angles (an exception has to be made for m = 0, for which ¢,, is fixed to zero), N
and M represent the total number of frequencies and (non-zero) spanwise wavenumbers
respectively, while the subscripts ‘m’ and ‘n’ indicate the m‘* spanwise wave mode and
the n'* frequency respectively. In the present study N = 10, indicating a spectrum of
10 different frequencies, and M = 2, thus giving 2 multiple spanwise wavenumbers for
the oblique waves, according to the relation 3, = 2rm/L, (with L, being the length
of the domain in the z direction). Note that m = 0 provides a 2D wave in the body
reference system, as By = 0 and ¢¢9 = 0, namely a wave whose wave vector is aligned
with the z-axis of the body reference system. However, as x is perpendicular to the
leading edge, for swept cases such a wave mode (m = 0) represents an oblique wave with
respect to the streamwise direction, with an inclination angle equal to the sweep angle
(A) of the leading edge. An illustrative example of an infinite swept leading edge and of

our domain geometry (in the xz-plane) is shown in figure 2.2.
A

—_—

7
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Figure 2.2: Illustrative example of an infinite swept leading edge (A = 45°).
The black lines indicate the edges of our computational domain on the body
surface in the xz-plane. The contours are relative to a solution for the wall
pressure fluctuations

The wavenumber in the z-direction «, is linked to the angular frequency w, through
the relation a,, = w,/(1 & 1/M), with w, = 27 f,, being f,, the n!* frequency of the
forcing spectrum. The term 1 + 1/M represents the dimensionless phase speed along
the z-axis of the freestream waves, where the plus sign indicates fast acoustic waves,
while the minus sign stands for slow acoustic waves. Hence, an oblique acoustic wave
travelling with an inclination angle 6., with respect to the x-axis has a wavenumber «
in the x direction equal to the corresponding wavenumber of the dominant 2D fast or
slow acoustic wave. The value of Ay determines the amplitude of the main 2D wave,
while the amplitude of each pair of oblique waves for m = 1, 2 is linked to that of the 2D

wave through the relation 41 = Ay = %AO. For each non-zero spanwise wavenumber two
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oblique acoustic waves with equal and opposite angles 6,., are forced, and the amplitude
Ay, (for m = 1,2) represents the sum of the amplitudes of the two opposite-angle waves,

such that each single oblique wave has an amplitude equal to %AO.

Summarising, the system of forced waves consists of a superposition of a dominant 2D
wave (m = 0) and two (m = 1, 2) pairs of equal and opposite angle (0, and —6,) oblique
waves, each wave having an amplitude of one fourth of the main 2D wave amplitude.
The value of the inclination angle of the forced oblique waves in the xz-plane for each
spanwise wavenumber (m) and for each frequency (n) is given by
07" = + arctan <5m> . (2.27)
Qp
Finally, the vector of the conservative variables at the inflow boundary in the unsteady
3D computations is
Poo + P

(Poo + Pio) (Uoo + Ul)

(oo + )0 + ) | - (2.28)

(Poo + Pio) (Weo + W)
L (P + Poc)(Boo + E) |

QU

It is reminded that (as already said above) in the considered problem, as the two
opposite-angle waves travel in opposite directions along the z-axis, their freestream
z-velocity perturbation cancels, so that w/, = 0 identically. Also, the freestream per-
turbation of the y-velocity component v/ is fixed to zero, as all the waves are travelling

in the direction parallel to the xz-plane.

2.5 Code features

The code we use to carry out our DNS computations is the SBLI (Shock-Boundary-
Layer-Interaction) code, developed over a number of years at the University of Southamp-
ton. In order to perform the computations for compressible flows in the presence of shock
waves, the SBLI code uses a shock-capturing method, which is applied as a filter step to
the solution obtained through the base scheme at the end of each time integration step.
The base scheme is, in turn, based on a fourth-order central finite difference scheme
for space discretization, and makes use of an entropy-splitting method (Yee et al.[66])
to improve the nonlinear stability of the high-order central scheme, thus requiring less
numerical dissipation than the un-split approach. At the wall either a fourth order Car-
penter boundary scheme (Carpenter et al.[67]) or a lower-order scheme can be chosen.

For time integration, a third-order Runge-Kutta scheme is used. The shock-capturing
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scheme consists of a second-order TVD (total variation diminishing)-type algorithm,
with a particular compression method (Yee et al.[68]), which restricts the artificial dissi-
pation to the shock region, thus providing minimum dissipation in the smooth regions.
Furthermore, the scheme is supplemented with the Ducros sensor (Ducros et al.[69]),
which turns off the artificial dissipation in the vortical region (i.e. the boundary layer).
A favourable feature of this sensor is that it does not require any a-priori knowledge of
the shock position. The code works using MPI libraries, and has been set up to run in
parallel, by dividing the domain into a number of sub-domains, and assigning each of
them to a particular processor. A validation of the code can be found in the work of
De Tullio et al.[82], where DNS results are compared with PSE (Parabolized Stability
Equations) results for the case of transition induced by a discrete roughness element in

a boundary layer at Mach 2.5.

2.6 Shock-capturing scheme

A characteristic filter (Yee et al.[68]), activated at the final step of each Runge-Kutta
time integration cycle, allows the shock to be captured with minimum numerical dissi-
pation. The characteristic filter consists of a second-order Harten-Yee TVD-type shock-
capturing scheme, with imposed fluz limiters that limit the anti-diffusive terms of the
flux derivatives in order to satisfy the TVD stabilising condition in each direction, whilst
minimising the numerical dissipation. In particular, the TVD condition in a certain di-
rection requires that the total variation of a discrete solution in that direction, i.e.
> i lgi+1 — ¢i|, where ¢ denotes a generic conservative variable, cannot increase with
time. In order to describe the algorithm used in the filter step, we consider for simplic-

ity the one-dimensional governing equations,

9Q , IF

= . 2.2
o "or = (2.29)

Using a finite-volume concept, we denote with ¢ — 1, 4, ¢ + 1 three consecutive points

of the one-dimensional computational domain, and with i — 1, i + % the points at the

2
interface between points ¢ — 1, i, and points ¢, ¢ + 1, respectively. In the finite volume
approach, the time variation of a generic conservative variable ¢! (with I = 1,..3, for a
one-dimensional system of conservation equations) is equal to the net-flux of the physical
quantity through the interfaces i — % and ¢ + % (i.e. the edges of the control volume
of the fluid particle centred on the point 7). Following this approach, and using a 1%-
order forward differencing discretization for the time derivatives, we obtain the vector

of conservative variables at the point ¢ and at the time n + 1, as

At /- .
o Qr4+ = (F,_.—F,
Q" =Q + Ax (Fl,é FH%), (2.30)
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where At and Ax are the time step and the spacing between i — % and 7 + %, while
the terms Fi_ 1 and f‘i 41 denote the numerical fluxes at the interfaces of the control
2 2

volume. The numerical flux vector F,_ 1 is cast in the form
2

+

~ 1
Fiy=g (P + Rt Ry y), (2:31)

where % (Fiy1 + F;) represents the central differencing portion of the numerical flux, and

% R, 1®, 1) is the nonlinear dissipation term, with R, 1 being, for characteristic-
2 2 2

based methods, the right eigenvector matrix of the matrix g—g evaluated using a sym-
metric average between Q, and Q;; (i.e. Roe’s approximate average state, described by
Roe[70]). The term @, 1 will be described in detail later. The numerical flux expressed
in equation 2.31 represents an average between states ¢ and ¢ 4+ 1, as the flux at the

interface can be derived both from the flux at point ¢ through the form

Fi1=F;+ AF;, 1, (2.32)

and from the flux at point ¢ + 1 through the form

=+
FH_% - Fi+1 - AFi+%7 (233)

where Af‘; +1 and AF;:_ 1 are the flux jumps respectively from the left state (i) and from
the right state (i + 1) to the internal (or intermediate) state (i + 3) across the system
of waves generated in a Riemann problem at the intermediate point. Performing the
arithmetic average between equations 2.32 and 2.33, equation 2.31 is obtained. Following

this approach, the nonlinear dissipation term can be expressed as
- 1 - 4 1
A =3 <AFH% - AFH%) =3 (RH%@H%) , (2.34)

where, for characteristic-based methods, the term @, 1 contains the characteristic speeds
(the elements of the diagonal matrix of the system of governing equations in characteris-
tic form) of the waves travelling both leftwards and rightwards in the Riemann problem
originated at 7 + %, each one multiplied with the jump (between point i+ 1 and i) of the
corresponding characteristic variable (elements of the variable vector of the diagonalised

system of equations in characteristic form).

If Roe’s first-order upwind scheme (in a modified version, as in Yee et al.[68]) is used

for the dissipation term, the elements of the vector ®, 1 can be expressed as

+3

l _ l l
¢i+ - —TIZ)(CLZ-_F%)O(H_é, (235)
where aéJr 1(Q;,Q;41) (that should not be confused with the unsubscripted variable
denoting tfle speed of sound) are the elements of the diagonal matrix of the system in

characteristic form (i.e. the characteristic speeds), computed through Roe’s approximate
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average state, and O‘i L1 are the elements of the vector of characteristic jumps, given by
2

Q1= R;rl% (Qiy1 — Qi) - (2.36)

with R;_:; the left eigenvector matrix of 2—5, evaluated through Roe’s approximate

average state. In some regions of the flowfield (e.g. the sonic regions) some wave speeds
can approach zero, thus providing close-to-zero values for the numerical dissipation, with
the possibility of numerical instabilities and non-physical solutions. For this reason, a
correction to the characteristic speeds is used (the so called entropy correction), in order

to prevent the wave speeds from reaching too small values, and can be expressed as

. ‘GIH%’ ‘aé+%’ > 01
V@) =9 @ e (2.37)

Here, 97 is a parameter whose numerical value is problem dependent, and typical values
are in the range 0.05 — 0.25. For the simulations in the present work a more suitable
form of 7 for hypersonic blunt-body flows has been chosen, which is the form suggested
by Yee et al.[71]

(013 =3 (lugsa |+ o1l +eip1) (2.38)

where we remind that ¢ denotes the speed of sound in this section, and that the subscript
7+ % denotes quantities computed on the intermediate point through Roe’s average

intermediate state (Roe[70]). The term 4 is a constant set to 0.25 in all our simulations.

The scheme in equation 2.35 is first-order accurate, which means that it produces dif-
fusive solutions that smear the high gradients. For this reason, many extensions have
been made over the decades in order to make the shock-capturing schemes second-order
accurate. The way to achieve high resolution consists of introducing perturbation terms
in the first-order scheme, which increase the overall accuracy of the scheme. These terms
can be described as anti-diffusive terms, as their effect is to reduce the amount of nu-
merical dissipation added by the scheme. An example of higher-order shock-capturing

scheme, which is the scheme used in our numerical simulations, is the following

¢2+§ =Y (a§+%) (O‘iJr% - 82+%) ’ (2.39)

b1 is, in general, a function of the characteristic jumps at 7 + % and at the
2

l l l l l
. = s o, .
1,+% ’L-‘r% 1,—%’ z—i—%’ l—i—%
represents an anti-diffusive function, as it reduces the numerical dissipation. However,

l

where s

neighbouring interface points (i.e. s (« a§+§)). The term s
2

in order to prevent the scheme from generating spurious oscillations, it is necessary

that the amount of dissipation added is sufficient for the scheme to satisfy the TVD

condition; hence, the anti-diffusive term has to be limited by means of limiter functions

(Piperno and Depeyre[72], Toro and Billett[73]). Thus, the flux-limiter approach sets in
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general the accuracy of the scheme at a middle point between a low-order scheme and a
high-order scheme, namely it increases the accuracy of a first-order scheme, decreasing
the amount of added numerical dissipation, and limits, at the same time, the anti-
diffusive terms in order to constrain the scheme to stay inside the valid region of the
i 1 contains the
limiter in the form of a minmod function, which is equal, for a list of arguments, to the

TVD condition. In practice, with reference to equation 2.39, the term s

smallest number in absolute value if the arguments are of the same sign, or is equal to
zero if any arguments are of opposite sign. Examples of limiter functions are (Yee et
al.[71])

L 1 1 : 1 1 1
Siy1 = minmod (aiié,apr%) + minmod (aH%,aH%) &1 (2.40)
st 1 =minmod (! 1,0l 1,0l . (2.41)
L LI '
s, = minmod |20) 1,200 1,200 4. (ol | +a (2.42)
= -3 200y 2505 (0 H oy '

Limiter functions 2.40, 2.41 and 2.42 are listed in order of decreasing diffusivity and
increasing accuracy. However, as the less diffusive limiters are also the less stable, and
have a lower convergence rate, limiter 2.41 is chosen for our computations, which provides

a good trade-off between accuracy and stability.

The scheme in equation 2.39, together with one of the three limiter forms 2.40, 2.41,
and 2.42, represents the Harten-Yee second-order symmetric TVD-type scheme (Yee et
al.[71]), and has been implemented by the author of the present thesis in the version
of the SBLI code used for our numerical simulations, showing good results in terms of
both resolution and stability. The implementation of the Harten-Yee symmetric scheme
was motivated by the need of solving numerical issues related to the original version
of the TVD filter applied to our numerical case. In particular, the previous version
of the SBLI code was equipped with a different type of Harten-Yee scheme, namely
the second-order upwind TVD-type scheme (Yee et al.[68]), which showed very good
results in several DNS studies (e.g. Sansica [79] and Van Den Eynde [77]) based on flat-
plate-like computational boxes (with or without roughness elements), but which proved
to be unsuitable for our cylinder-wedge geometry, as it produced asymmetric solutions
(between the upper and the lower side of the wedge) in preliminary 2D test cases (set up
with zero angle of attack and without freestream disturbances). The above mentioned

upwind scheme, in its original implementation, is reported here, as follows

1
! l ! l ! l l
¢i+ = §¢J <ai+%> (92‘4-1 + gi) — <@i+% + 7i+%) Qi L (2.43)
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where gé and gﬁ 41 are the anti-diffusive terms, and need to be limited. An example of

limiter function ¢! is (Yee et al.[68])

1
20,1, 5( 1 %+a§%)]; (2.45)

gf = minmod [204 1 1
2 2
other possible forms for g} can be found in the work of Yee et al.[68]. The upwind
scheme 2.43 is, in general, more accurate than the symmetric scheme 2.39, however,
while the symmetric scheme is independent from the sign of the characteristic speeds, in
the upwind scheme the numerical dissipation terms depend on the wave-speed sign, due
to the second entropy correction term in equation 2.43, which involves the sum of the
wave speed ai. 11 and the wave speed 75; L1 related to the jump of the added function
g between points ¢ and ¢ + 1. This is indeed, the source of the asymmetric patterns

observed in the solution of our preliminary 2D test cases.

Apart from implementing in the SBLI code the symmetric scheme, which provides sym-
metric solutions due its property of independence from the wave-speed sign, a modi-
fication of the upwind scheme has been proposed by the author of the present thesis,
concerning the entropy correction term for the two different wave speeds. The idea
consists in removing the dependence from the wave-speed sign by applying the entropy
correction, in the form expressed by equation 2.37, separately for each wave speed, rather
than on their sum. Following this approach, the upwind scheme has been recast in the

following form

= 3o (o) (s o) - [o () ro ()] ey 200

This modified version of the upwind scheme has shown the capability of providing sym-
metric solutions for our cylinder-wedge geometry, with a resolution comparable to that
of the original upwind scheme 2.43. However, the symmetric scheme, expressed by equa-
tions 2.39 and 2.41, has been preferred because of its higher robustness and convergence

rate, and is used for all the calculations in the present thesis.

The form expressed by equation 2.39 is not actually the final form of the TVD scheme
used for the computations. The numerical dissipation term QSI 1 is, in fact, pre-multiplied
by another term, so called Harten switch (Yee et al.[68]), Wthh distributes the dissipa-
tion in the flowfield in an efficient way, minimising it in the smooth regions. Thus, the

numerical dissipation assumes the following form
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Cbl* 1= k‘el 1¢ (2.47)

z+1’

where k is a problem-dependent parameter, and 6! i1 is the Harten switch. For smooth
flows k can be very small, while in the presence of Strong shock waves it has to assume
higher values. The common range of k, considering different problems, is 0.03 < k < 2
(Yee et al.[68]). In our numerical simulations, the value of £ is set in the range between
1.5 and 2, in which the higher values are used for the higher Mach number flows. The
function 91+ ; is the key-mechanism for distributing the dissipation in a efficient way,
achieving hlgh accuracy in regions where minimum numerical dissipation is needed (e.g.

the boundary layer), and can be expressed as

0§+% = max (011,9il+1> , (2.48)
I !

. ‘a. S (S P |

[ e (2.49)
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In conclusion, the shock-capturing algorithm used for our numerical simulations consists
of the second-order symmetric Harten-Yee TVD-type scheme 2.39, in conjunction with
the limiter function 2.41 and the Harten switch, expressed by equations 2.47, 2.48 and
2.49. The shock-capturing algorithm, which has been described for a one-dimensional

case here, has to be solved in all the other directions for 2D and 3D problems.

2.7 LES approach: Mixed-Time Scale Model

The main feature of the DNS is the capability of resolving all the length scales of the
flow, but it requires very fine grids to resolve the smallest length scales. The basic idea
of the Large Eddy Simulation (LES) approach, instead, is to resolve only the largest
length scales of the flow, and to remove the smallest ones, by applying a low-pass filter
to the governing equations 2.2, which reduces the computational cost of the numerical
simulation. However, the unresolved smallest length scales have an important effect on
the flowfield, which needs to be modelled. A detailed description of the LES methodology
is given by Sagaut [78].

As a first step, the governing equations are filtered by means of a low-pass convolution

filter applied onto the variable vector Q, as

Q(x,vy,2,t) / / / Q(z,79,2,t)G(& —x,9 — y, Z — 2)dTdydz (2.50)
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where Q is the filtered variable vector, and G is the filter convolution kernel, which has
a cutoff length scale (or characteristic length scale) A. All the length scales smaller than
A are not resolved, and are called sub-grid scales (SGS). From the above definition of
the low-pass filter, the flowfield Q can be considered as a sum between the filtered field
(Q) and a sub-filtered field (Q’, i.e. the unresolved portion).

The use of the spatial filter 2.50 leads to the filtered conservative governing equations,

to which another filter, i.e. the Favre filter, is applied. The Favre filter is defined as

: (2.51)

ASS
I
>3

where ¢ is any physical quantity. For example, the continuity equation with the filters
2.50 and 2.51 is

ot " o

=0, (2.52)

in which the filter 2.51 has been applied to the term pu;. The derivation of the complete
set of the Favre-filtered equations is beyond the scope of the present thesis, and can be

found in the work of Sansica [79].

The second step is to model the SGS terms that are present in the Favre-filtered equa-
tions. Some of these terms can be neglected, as shown in the work of Touber and
Sandham [80], and the remaining SGS terms that need to be modelled are the SGS

stress tensor,

oij = p(uity — Uit;) (2.53)

and the SGS heat flux,

@i = Tui — Tﬂi . (2.54)

The SGS stress tensor is modelled as

1 ~
05 — géijakk = —251/755';-; R (2.55)

while the SGS heat flux is modelled as

Vi GT

0, = —— .
Pr; 0x;

(2.56)
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In equations 2.55 and 2.56, v; represents the eddy viscosity, Pr; the turbulent Prandtl
number, which is assumed constant and equal to 1, while the term gl*j is the deviatoric

part of the strain-rate tensor, which is given by

- - 1 ~
S;Fj =S — gfsijskk , (2.57)
and
- 1(0m 0
i = = . 2.
S] 2 <a$] + (9331) ( 58)

The eddy viscosity vy is, then, obtained through the mixed-time scale (MTS) model
(Inagiki et al. [81]) as

v = CyrskesTs (2.59)

in which k. is the SGS turbulent kinetic energy, given by

a (2.60)

Tyg is the mixed-time scale, defined as

- ( })1 + <|§T|>1 , (2.61)

while Cyrs and Cp are two constants, which in our simulations have been set to 0.03

and 10 respectively (as in Touber and Sandham [80]).

The main advantages of the MTS model are that it does not need a wall-damping func-
tion, as the eddy viscosity decreases near the wall, and that the eddy viscosity vanishes
in the laminar regions of the flow, as the turbulent kinetic energy (k.s) approaches zero

here.

Finally, it should be mentioned that the spatial filter (equation 2.50) used in the SBLI
code has a characteristic length scale (or width), A, equal to the grid spacing, and is

applied only in the streamwise and spanwise directions.



Chapter 3

Grid features and numerical noise

reduction

In this Chapter we will describe the main properties of the grids used in our simulations,
as well as numerical issues related to the grid quality and concerning the production of
spurious oscillations. The effect of this numerical noise on the physical solution and its
sensitivity to the grid refinement will be shown through a grid resolution study applied
to one of the 2D cases relative to the DLR experiments. A grid-adaptation methodology,
along with a local shock refinement technique, aimed at reducing the numerical noise,
which have been used for some of our simulations (including the 3D cases), will be
presented here and tested on 2D cases. All the results shown in this Chapter, which
are relative to the set of 2D numerical cases simulating the DLR experiments, serve
to illustrate and validate the above mentioned grid properties and techniques. For the
complete set of results of our 2D simulations, and a more detailed discussion about their

physical relevance, the reader should refer to Chapter 4.

3.1 Computational domain and source of numerical oscil-

lations

Figure 3.1 shows an example of a typical grid used for the numerical simulations, in

non-dimensional coordinates.

35
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Figure 3.1: Example of mesh used for preliminary numerical simulations. Size

360 x 150, grid plotted every 5 and 2 points in the wall-normal and wall-

tangential directions respectively

The length of the domain in figure 3.1 is about 10 nose radii, which is the dimension

and corresponds to the nose region of the

i

used for our preliminary 2D simulations

20° half-wedge angle cylinder-wedge domain considered in Chapter 4 to reproduce the

geometry of the measurement probe used in the DLR experiments. Figure 3.2 shows the

details of the mesh in the nose region close to the stagnation point. As can be seen, the

one in the direction tangential

I

computational domain is made of two families of curves

to the wall (which is denoted by the index j),

and the other in the wall-normal direction

based on the approach adopted

(denoted by the index 7). The grid generation method,

by Bianchi et al.[83], adapts the computational domain to the shape of the approximated

shock resulting, for a given Mach number, from Billing’s correlations (Anderson[1]). A

stretching function increases the density of points towards the wall in the ¢ direction, so

that to resolve the boundary-layer region. Stretching is also provided towards the outer

edge of the domain, in order to provide higher resolution near the bow shock wave.
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Figure 3.2: Details of the mesh in the nose region. Size = 360 x 150, grid plotted
every 2 points in the wall-normal direction

Figure 3.3 shows an example of the grid (of size 2240 x 150) used for the numerical
cases simulating the DLR wind-tunnel experiments. The domain extends up to about
400 nose radii downstream, thus covering the length within which a series of pressure
transducers have been placed on the wall of the measurement probe (only the upper half

of the domain is shown in the figure, due to the symmetry).

200+
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20+
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Figure 3.3: Example of computational domain used in the six numerical cases
concerning the DLR wind-tunnel experiments, in non-dimensional coordinates.
Only half of the domain is shown due to the symmetry of the geometry. Size
= 2240 x 150, grid plotted every 5 and 10 points in the wall-normal and wall-
tangential directions respectively
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Preliminary unsteady simulations contained high levels of numerical noise affecting the
solution both behind the shock and on the wall. In particular, the results showed that
if the amplitude of the freestream acoustic waves (in terms of the density fluctuation
amplitude) was below a certain order of magnitude (1 x 1072) the fluctuation levels
downstream of the shock were strongly affected by numerical noise that seemed to come
from the nose region. As a consequence, the solution of the fluctuation quantities inside
the boundary layer was not reliable, and this imposed the need to find the source of
the numerical noise as well as an affordable way to suppress, or at least reduce, it to
an acceptable level. The cause of the numerical noise was found to be in shock-grid
misalignment, which is a known problem in the literature (Lee and Zhong[74]). In
particular, the j-curves in proximity to the shock should be closely aligned with the
curved shock in order not to generate spurious numerical oscillations of the physical
quantities behind the shock (theoretically, the best situation would be that of a unique
grid line following the shock shape). The problem is illustrated in figure 3.4, where
the density fluctuation field (obtained by inserting fast acoustic waves with a density
fluctuation amplitude of 1 x 10™% in the freestream) in the nose region is shown for one
of the six numerical cases relative to the DLR experiments (M = 6, Re = 630, a = 0°,
the conditions for all the cases are given in Chapter 4). As can be seen, density spikes
are formed just behind the shock curve (corresponding to the blue region), giving rise
to oscillations in the density field that are convected downstream and along the wall.

Figure 3.5 shows a close up on the points where the problem originates.

Figure 3.4: Example of numerical oscillations in the density fluctuation field.
Mach 6 case
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Figure 3.5: Example of numerical oscillations in the density fluctuation field.
Close up on the shock-grid misalignment points. Mach 6 case

The green line with circular markers, in figure 3.5, is the locus of the grid points (mark-
ers) where the shock is located (corresponding to the points where the pressure gradient,
computed through a fourth-order central finite difference scheme, is maximum). It can
be seen from the figure how, at some points (those shown with purple circles), the shock
jumps from one j-grid line to another, and in correspondence of these points a density
oscillation is released into the flowfield. This demonstrates that the problem of the nu-
merical oscillations (or spikes) is correlated to a shock-grid misalignment problem. The
poorer is the alignment, the higher are the density spikes and the oscillations affecting

the solution on the wall.

Another example of misalignment problem is shown in figure 3.6, for a case at M = 7.3,
and Re = 440. In this figure it is evident a strong spike of density fluctuations is seen
at a point just behind the shock, at x ~ 205. Figure 3.7 shows a close up of the point
of interest, where it is evident that the shock jumps from a grid line to another, due to

the misalignment, and a density spike is formed.
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Figure 3.6: Example of numerical oscillations in the density fluctuation field.
Mach 7.3 case

The problem of the shock-grid misalignment and the origin of post-shock oscillations was
examined by Lee and Zhong[74], who also considered the effect of the grid resolution
on the numerical noise generation. In particular, they showed that the intensity of the
post-shock oscillations was more significantly influenced by the shock-grid alignment
than the grid resolution, which, in contrast, affects the wavelength of the oscillations
(which increases for coarser grids). A grid resolution study shown in the next Section
of the present Chapter will demonstrate a very good agreement with the results of Lee

and Zhong[74] concerning the role of the grid resolution on the numerical noise.

Figure 3.7: Example of numerical oscillations in the density fluctuation field.
Close up on the misalignment point. Mach 7.3 case



Chapter 3 Grid features and numerical noise reduction 41

The problem of the post-shock oscillations generated by shock-capturing schemes was
also studied from a mathematical point of view by Arora and Roe[75], and Zaide and
Roe[76], who addressed the cause of the spurious numerical oscillations in the case of
slowly moving shocks (which is relevant to our case, as the shock oscillates slightly due
to the interaction with the acoustic waves) to the nonlinearity of the Rankine-Hugoniot
jump conditions, and to the presence in the numerical solution of intermediate shock
states (states in the middle between the left state and the right state of a shock), which
results in an ambiguity of the shock position. The ambiguity in the shock position
consists in the fact that, depending on whether we apply the conservation of the density
or the conservation of the energy to estimate the shock position, we will obtain two
different estimates (Zaide and Roe[76]). Moreover, this ambiguity seems to be Mach-
number dependent, increasing for higher Mach numbers. The main consequence of this
problem appears to be the generation of a spike of the momentum behind the shock,

giving rise to numerical oscillations of the physical variables.

On the basis of the observations above, there are two practical ways to reduce the post-
shock numerical noise: (i) adding more numerical dissipation by the shock-capturing
scheme, (ii) aligning as much as possible the grid with the shock shape. The first target
can be achieved by simply imposing a higher value for the coefficient k& that multiplies
the numerical dissipation term in equation 2.47. This is indeed the approach we used in
all our numerical simulations, by setting, as already said in Chapter 2, the value of &k in
the range between 1.5 and 2, which represents the maximum value suggested by Yee et
al.[68]. This method has allowed us to obtain good solutions for the receptivity of the
fluctuation quantities along the body wall for the 2D numerical cases with zero angle
of attack, although, as will be shown in Section 3.2, numerical oscillations of limited
amplitude are still present, in particular in the nose region, which, however, do not
affect the physical solution (this applies in general to all the results shown in Chapter
4). In contrast, when an asymmetric case (with an angle of attack equal to 10°) is
considered, adding more numerical dissipation was not enough to reduce the numerical
noise up to an acceptable level. Thus, in this case, as will be shown in Section 3.3, a grid-
alignment technique on both the wedge sides was necessary in order to obtain sensible
results. A discussion about the application of the shock-grid alignment methodology in
our 3D cases (considered in Chapters 5 and 6) will be given as well in Section 3.3 of the

present Chapter.
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3.2 Grid resolution study for the case M = 6, Re = 630 and
a = 0°, for the wedge with two-dimensional acoustic

waves

In this Section, we present a resolution study for one of the six numerical test cases
(M =6, Re = 630 and o = 0°), in which we compare the pressure fluctuation amplitude
distributions along the wall at different frequencies (obtained through a Fast Fourier
Transform approach) between two different grid levels. Among these, one is the same
grid size we have used for the results that will be shown in Chapter 4 (2244x150), which
we refer to as the fine grid, and the other is a coarser grid, whose size is lowered by 1/3
in both directions with respect to the fine grid. For time saving purposes, the domain
for the coarse grid is half of the domain used for the results shown Chapter 4, and
corresponds to a length in the streamwise direction of approximately 200 nose radii, so
that the coarse grid size is 908100 (1496x100 would be the size for the full 400 nose
radii length domain; while 908 points in the wall-tangential direction correspond to half
of the domain length with the point distribution being denser in the nose region). The
simulations have been run with freestream fast acoustic waves, at an amplitude of 10~%
(relative to the freestream density disturbance), and for 10 multiple frequencies (from
50 kHz to 500 kHz).

Figure 3.8 shows the wall response for the two grid levels, while figure 3.9 shows a close-
up in the nose region. The wall pressure fluctuation amplitudes (p},) are normalised with
the pressure fluctuation amplitude imposed in the freestream (p.,). Note that, to sim-
plify the notation, from now on we will refer to the fluctuation amplitudes omitting the
absolute value symbols (] |). A good agreement of the results between the two grid levels
is shown at all the frequencies, indicating that the overall trend of the response along the
wall can be considered, within a certain tolerance, as grid independent. However, the
results show the presence of numerical oscillations, pertaining to the noise coming from
the shock and affecting the solution at the wall, especially in the nose region. Further-
more, these oscillations are grid dependent at all the frequencies. In particular, it can
be seen that the grid resolution has a strong influence on the phase and the wavelength
of such oscillations, with the wavelength decreasing as the grid size is increased. This is
evident by looking closely at the oscillations in the nose region shown in figure 3.9, and
by comparing the distance between two consecutive peaks for the solution obtained with
the coarse and the fine mesh. The amplitude is affected as well by the grid resolution,
but, while in the nose region it is decreased by refining the grid, as expected, further
downstream this effect is lost, and the oscillation amplitude seems no longer be reduced

by a higher grid resolution (figure 3.8).

These results for the numerical oscillations agree qualitatively very well with the results
shown by Lee and Zhong[74] on the post-shock spurious numerical oscillations using

shock-capturing schemes. In particular, in their work it is highlighted that a higher
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grid resolution decreases the wavelength of such oscillations, but provides only a slight
reduction of their amplitude, which, in turn, seems to be much more sensible to the

shock-grid alignment, as will be shown in Section 3.4.
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Figure 3.8: Pressure fluctuation distribution along the wall at the lower fre-
quencies (a), and the higher frequencies (b), for two different grid levels
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Figure 3.9: Close-up in the nose region of the wall pressure fluctuation distribu-
tion at the lower frequencies (a), and the higher frequencies (b), for two different
grid levels
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In conclusion, in the light of our grid resolution study, it emerges that the overall response
along the wall agrees very well between the two different grid levels, thus confirming a
good grid independence of the physical information provided by our numerical results.
The numerical oscillations are, in contrast, significantly sensitive to the grid resolution,
in terms of their phase and wavelength, and slightly grid dependent relative to their

amplitude.

3.3 Shock-adapted grid methodology

In this Section a new method to obtain grids aligned with the computational shock is
presented. Our default grid generation method (Bianchi et al.[83]) consists of adapting
the shape of the internal grid lines in proximity of the domain outer edge with the shock
shape estimated by Billing’s correlations (Anderson|[1]) in function of the Mach number
and the radius of the circle for a cylinder-wedge geometry. However, although Billing’s
correlations provide a good approximation of the shock shape, there will be in general
a difference between the estimated shock shape by Billing’s correlations and the shape
obtained by the direct numerical simulations. This means that adapting the domain to
the shock shape estimated by Billing’s correlations will in general result in a certain level
of misalignment between the shock and the grid. For this reason, in order to suppress or
at least reduce in amplitude the grid-dependent post-shock oscillations, a new method
based on adapting the grid to the shape of the shock obtained in a previous numerical
simulation has been developed. The method consists of three steps: (i) first, computing
the baseflow of a particular numerical case by means of a grid obtained by Billing’s
correlations; (ii) then, computing the shock shape by identifying the points of maximum
spatial pressure gradient in the wall-normal direction, and finding a numerical fit to the
computed shock shape; (iii) finally, obtaining a new grid adapted to the shock shape, and
repeating the simulation from the previously computed solution. The final steady-state
solution contains a shock that is well aligned with the grid. This solution will then be
the starting solution for the unsteady simulations. As a first test of the methodology,
the equation used to fit the shock shape is the analytic equation of an east-west opening

hyperbola centred at the point (h, g) in a Cartesian coordinate system,

=1, (3.1)

where h = —a — 04 (with dg being the shock stand-off distance along the stagnation
line), g = 0, a is the distance between the centre of the hyperbola (intersection point
between its two asymptotes) and the vertex of each branch, and b is linked to a through
the relation b = atan, with 6 being the inclination angle of the asymptotes with the
hyperbola transverse axis (which is the z-axis in our case). Figure 3.10 shows, for

illustration purposes, the example of an east-west opening hyperbola centred at the
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origin of the Cartesian coordinate system. Among the two branches (blue curves) of the
hyperbola shown in figure 3.10, we take the one on the right hand side, along the positive
x-semi-axis. The value of h translates the hyperbola vertex (the intersection with the
x-axis) to the point on the negative z-semi-axis where the shock is located along the
stagnation line. In fact, in our non-dimensional Cartesian reference system the centre of
the circular leading edge is at the origin of the axes and the stagnation point is located
at (-1,0) (as evident in figure 3.2).

.‘l.
asymptote z

Figure 3.10: Illustration of an east-west opening hyperbola centred at the origin
of the coordinate system

From the first baseflow solution, the stand-off distance (ds;) along the stagnation line
and the inclination angle (0) of the shock shape at a large distance from the nose (at
a theoretically infinite distance it is equal to the inclination angle of the oblique weak
shock formed on a ramp with the same inclination angle as the half-wedge angle) can
be evaluated. Finally, the parameter a is varied until the value that provides the best
fit between the hyperbola and the shock shape is found. Once all the coefficients in
equation 3.1 are known, they are used in the grid generation process. The resulting
adapted grid will then contain a j-line exactly following the analytical hyperbola fitting
the computational shock. This method has proved good capabilities of noise reduction,
which make it suitable for the purposes of our 2D simulations, namely the laminar
wall-response analysis to freestream disturbances. In particular, the effectiveness of this
shock-grid alignment technique, applied to a 2D Mach 6 case with an angle of attack,

will be shown in Section 3.4.

The shock-adapted grid obtained through the method of the analytical hyperbola de-
scribed above provides, in general, a good overall shock-grid alignment through the whole
length of the shock curve, but can still allow the presence of small local misalignments,
in particular in the curvilinear part of the bow shock. This happens, for example, in
cases where the numerical solution is affected by some oscillations or ‘bump’ along the

shock curve, which may be due to the presence of a small background numerical noise,
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unsteadiness of the solution, a poor initial grid resolution, or geometrical imperfections
of the wall, as in the case of localised roughness (which is not treated in the present
study). In all these cases, it is more practical to use a method that does not force
the grid to follow a regular shape according to an analytical formula. For this reason,
a method based on a spline interpolation has also been developed. This method fits a
spline curve, computed over all the x points of our grid resolution, through some selected
points along the computational shock, in order to obtain a smooth curve with y coor-
dinates adjusted to guarantee a local shock-grid alignment also in the irregular regions
of the numerical shock. Then, through an iterative procedure (after each computation
a spline-based shock-adapted grid is obtained, which will be the grid of a successive
simulation, and so on), a smoother computational shock is obtained. The smoother is
the shock, the more regular will be the next-step adapted grid. The final result will be
a properly smooth highly shock-aligned grid, along with a high-quality baseflow to be
used as restart solution of the unsteady simulations. Figure 3.11 shows an example of
one application of the spline-based method (for a symmetric Mach 6 case). As can be

seen, a very good alignment is obtained everywhere along the shock.
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Figure 3.11: Example of shock-adapted j- grid line in the curvilinear part of
the shock, obtained through a spline interpolation

Due to the above mentioned multi-step procedure, this method requires, in general,
more computational efforts compared to the analytic-hyperbola-based method, which,
in contrast, provides a regular grid straight from the beginning. For this reason, the
spline-based method is used only for the 3D span-periodic wedge simulations (that will

be treated in Chapter 5), in which the analysis of the breakdown-transition process,
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especially at the low freestream disturbance amplitudes, requires very low levels of
numerical-noise contamination. In particular, for these cases, the shock-grid alignment
is achieved through 2D simulation of the corresponding baseflow (the geometry is a pla-
nar span-periodic wedge), in both swept and unswept cases. The 2D shock-adapted grid
is then extruded in the third dimension, and unsteady simulations with 3D freestream
disturbances are carried out. For the 3D simulations relative to the Mach 6 generic
forebody geometry (Chapter 6), instead, none of the above described method is used,
as the shock-grid alignment methodology was not extended to a generic 3D geometry.
However, for the 3D generic forebody case, an excellent shock-grid alignment is not re-
quired, as, due to a small half-wedge angle (4°) and to very high values of the sweep
angle reached by the leading edge in the off-centerline region (see geometry details in
Chapter 6), a relatively weak shock is formed in front of the body, which producing
very small noise levels not affecting the physical solution. For this reason, and as the
unsteady simulations have been performed only at high freestream amplitude levels, the
effect of post-shock numerical oscillations on the boundary-layer solution is negligible in
this case. Hence, the standard method, based on Billing’s correlations, has been used

to generate the 3D grid in the generic forebody case.

3.4 Effect of the shock-grid alignment. Application to the
case M = 6, Re = 630 and o = 10°, for the wedge with

two-dimensional acoustic waves

In this Section we show an application of the shock-adapted grid method based on the
analytic hyperbola to a case with an angle of attack of 10°, whose solution is affected
by the shock-grid misalignment problem, particularly on the windward side (the bottom
side of the wedge). The problem of the numerical noise generated behind the shock is
seen in figure 3.12, which shows the density fluctuation field obtained by inserting fast
acoustic waves in the flow direction with an amplitude of 107%. As can be seen, on the
windward side (where the shock is stronger) there are strong post-shock oscillations (or
density spikes) originating from the shock and travelling downstream. This numerical
noise corrupts the solution of the wall pressure fluctuation distribution along the bottom
side of the body for each acoustic frequency (a set of 10 frequencies from 50 kHz to 500
kHz with different phase), as shown in figure 3.13 (the wall pressure fluctuations pl, are

normalised with the freestream pressure fluctuation p.).
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Figure 3.12: Density fluctuation field with the initial non-adapted grid

80

60

A
Dy g0}
!

oQ

—50 kHz

—100 kHz
——150 kHz
——200 kHz
——250 kHz

20| cae

50

40|

r 30

— 300 kHz T \ T
——350 kHz
—— 400 kHz
——450 kHz

Py
Phe 20

10

——500 kHz

| 1 | 1 |
50 100 150 200 250 300

T

1 |
350 400

Figure 3.13: Pressure fluctuation distribution along the wall at different fre-
quencies on the windward side, with the initial non-adapted grid, for the lower
frequencies (a) and the higher frequencies (b)



Chapter 3 Grid features and numerical noise reduction 49

Figure 3.14 shows the comparison between the computed shock shape, the shape of the
initial grid and that of the shock-adapted grid obtained through the analytic-hyperbola
method described in Section 3.3. The shape of the initial grid corresponds to the grid
line that follows the shock shape estimated by Billing’s correlations (for zero angle of
attack), while the one concerning the adapted grid corresponds to the grid line following
the analytical hyperbola used in this example to fit the computed shock. Clearly, there
is a significant misalignment issue on the lower side with the initial grid, while the new

method provides a very good fitting both on the upper and the lower side.
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Figure 3.14: Shock shape computed with the initial grid, compared to both the
initial and the new adapted grid shapes

Due to the asymmetry of this particular case, two different hyperbolic functions (with
different angle 6 and parameter a) have been used separately to fit the shock shapes on
the upper and the bottom sides of the body. The result is a asymmetric shock-adapted
grid, as shown by figure 3.15 in the nose region. Figure 3.16 shows the details of the
new adapted grid along the lower side of the wedge, and the alignment with the shock

curve (red line) computed with the initial grid.
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Figure 3.15: Details of the asymmetric shock-adapted grid in the nose region.
The red line indicates the curve of the shock computed with the initial grid.
Size = 2240 x 200, grid plotted every 4 and 3 points in the wall-normal and
wall-tangential directions respectively
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Figure 3.16: Asymmetric shock-adapted grid along the lower side of the wedge.
The red line indicates the curve of the shock computed with the initial grid.
Size = 2240 x 200, grid plotted every 5 and 20 points in the wall-normal and
wall-tangential directions respectively



Chapter 3 Grid features and numerical noise reduction 51

Figure 3.17 shows the effect of the grid alignment on the shock shape on a certain
portion of the shock along the bottom wedge. In particular, a comparison between the
locations of the points on the shock computed with the initial grid and those on the shock
computed with the new aligned grid is shown. The shape of the analytic hyperbola used
to generate the adapted grid is plotted as well. It is evident that the alignment has a
significant beneficial effect on the shock shape, which now follows very well the curve

corresponding to the hyperbola.
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Figure 3.17: Effect of the grid alignment on the shock jumps, over a particular
portion of the shock along the bottom wedge

The new aligned grid provides much better solutions both for the density fluctuation field
and for the wall pressure distribution along the bottom side of the wedge, as shown by fig-
ures 3.18 and 3.19. It is, finally, important to mention that the regular high-wavelength
oscillations shown for the higher frequencies in figure 3.19 represent a physical behaviour
that will be explained in detail in the Chapter dedicated to the results of each numerical

simulation (Chapter 4).
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Figure 3.18: Density fluctuation field with the new shock-adapted grid
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Figure 3.19: Pressure fluctuation distribution along the wall at different fre-

quencies on the windward side, with the new shock-adapted grid, for the lower
frequencies (a) and the higher frequencies (b)
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3.5 Local grid refinement on the shock

In addition to the shock-grid alignment, a method to redistribute the grid points inside
the computational domain to increase the point density locally on the shock has been
developed. This method is based on a new stretching function, different to the one
used by default in the grid generation procedure (described in Section 3.1, look for
example at figure 3.1), which is able to smoothly distribute the points along the wall-
normal direction increasing their density both in the boundary-layer region and near
the shock. The stretching function is a function of the variable j (grid point number)
along the direction normal to the wall, which multiplies the distance of the outer edge
of the domain from the wall for each value of i (i.e. for each wall-normal grid line),
thus assigning the position of each grid point along the j (normal) direction between
the wall and the outer edge. For example, when the stretching function is equal to 0
the points are assigned on the wall, when it is 1 the points are assigned on the outer
edge, while when it is 1/(1 + d) (where d is a number between 0 and 1 that represents
the percentage of the shock stand-off distance by which the domain outer edge has to be
shifted outwards from the shock, e.g. 0.2 stands for the 20 % of the stand-off distance)

it is the shock position.

The above mentioned stretching function is of the form

with

_ tanh(b(n — ¢)) + tanh(bc)

tanh(b(1 — ¢)) + tanh(bc)
Abnebe

* [tanh(b(1 — ¢)) + tanh(bc)] (1 + e2b¢)2

fs(G) =2 (* + an)
(3.3)

in which a is the control parameter of the gradient at the wall (which is set to 0.2 in
our simulations), b is the stretching coefficient (a usual value is, e.g., b = 4), ¢ is a
control parameter (between 0 and 1) for the position (along the j direction) of the local
refinement region, whose value needs to be appropriately assigned in order to centre the
refinement zone on the j location of the shock computed in a previous simulation, and
N, is the total number of grid points in the normal direction. The function 7 is defined

as

j=1,.,N,. (3.4)
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The stretching function S(j) distributes the points following the trend shown in figure
3.20.
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Figure 3.20: Example of point distribution (or stretching) function along the
wall-normal (j) direction

In figure Figure 3.20, y,, is the distance from the wall for each point j, and J denotes
the distance of the outer edge of the domain from the wall. In this example the shock is
located at 0.58 times the outer-edge distance, which means that the domain outer edge
is shifted outwards from the shock by a factor of 0.72 times the shock stand-off distance.
As is evident from the figure, the local refinement in the boundary layer and in the
shock region is obtained by smoothly varying the function gradient in the j direction, so
that to reduce it when crossing the boundary layer and the shock regions and increase it
elsewhere. In particular, the lowest values of the gradient are reached at the wall and at
the shock location; these, in turn, represent two parameters that can be tuned in order
to control the stretching intensity (or density of points) towards the wall and on the
shock. This method gives a sharper shock, thus increasing the quality of the solution,

for a limited number of grid points in the wall-normal direction.

In figure 3.21 an example of a shock-aligned grid (with the method of the analytical hy-
perbola), with local refinement on the shock obtained by the stretching function describe

above, is shown.
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Figure 3.21: Example of shock-adapted mesh with refinement on the shock.
Size = 560 x 200, grid plotted every 3 and 2 points in the wall-normal and
wall-tangential directions respectively

This mesh has been tested for the case (among those considered in Chapter 4) with
M =6, Re = 630, and « = 0° (which is the same considered in the resolution study in
Section 3.2), inserting fast acoustic waves with a set of 10 frequencies (from 50 to 500
kHz) and a freestream disturbance amplitude (for the density) of 1 x 107%. Figures 3.22
and 3.23 show respectively the results of the mean pressure field and the mean Mach
number field, highlighting the shock sharpness and the smooth solution downstream of
the shock.
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Figure 3.22: Mean pressure field. M = 6, Re = 630, a = 0°

Figure 3.23: Mean Mach number field. M = 6, Re = 630, a = 0°. Only half
domain is shown, due to the symmetry of the solution

Figure 3.24 shows a comparison between the wall pressure fluctuation distributions

(along the wedge) obtained with the shock-adapted locally-refined grid (with grid size
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560 x 200) and those obtained with the original grid (e.g. without local refinement on the
shock, and based on Billing’s correlations for the shock shape). In particular, the result
for the original grid is the same result shown in the resolution study in Section 3.2 for
the finer grid (with grid size 2244 x 150). Hence, the considered test represents a further
grid resolution study of the same numerical case, but focused on the early leading-edge
region and involving both the effects of shock-grid alignment and local refinement on

the wall-response solution.
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Figure 3.24: Wall pressure fluctuation distribution for the lower frequencies (a)
and the higher frequencies (b). M = 7.3, Re = 440, a = 0°

It is evident from figure 3.24 that the shock-grid alignment along with the local refine-
ment on the shock provide a significantly smoother solution along the wall in the nose
region for all frequencies, without the presence of the numerical oscillations which affect

the solution on the original mesh.

The method of the local refinement on the shock imposes strict limits on the effective time
needed to perform a simulation run. In particular, the minimum Az in the shock region
along the stagnation line can significantly reduce the minimum allowable time step of the
simulation (even of one or two orders of magnitude), if the point density on the shock is
too high. This means that the stretching on the shock has to be controlled properly, so
that to impose a gradient of the point distribution function on the shock (see figure 3.20)
that is not lower than a certain threshold value, which, in turn, is problem dependent.

This clearly increases the complexity of the grid generation process. Another limit of
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this method is represented by the fact that changing significantly, through the shock
refinement, the internal morphology of the grid, with respect to an initial mesh with a
different point distribution, will result in the shock assuming a slightly different position
in the new simulation with respect to the initial solution. As a consequence, a multi-step
procedure is required for the shock-grid alignment method to allow convergence of the

adapted grid to the final computed shock shape.

Due to above described challenges, the local shock refinement method has been used,
in conjunction with the spline-based shock-grid alignment method described in Section
3.3, only in our 3D simulations for the span-periodic wedge (whose results will be shown
in Chapter 5), in which, as already mentioned in Section 3.3, the analysis of the full
receptivity-breakdown-transition process in the presence of small-amplitude freestream
disturbances requires the solution inside the boundary layer to have minimal levels of

numerical noise.



Chapter 4

Results for the wedge probe with

two-dimensional acoustic waves

In this Chapter we will present the results obtained for the set of 2D numerical simu-
lations concerning the DLR experiments on the wedge probe. Six different freestream
conditions have been considered overall, with Mach number ranging from 3 to 7.3. As
already mentioned in Chapter 3, for all the cases with a symmetric mean flow (5 out of 6
cases) the standard grid generation method based on Billing’s correlations has been used,
while for an asymmetric case (the case with 10° angle of attack), shock-grid alignment

has been provided through the method based on the analytical hyperbola.

4.1 Flow conditions for the 2D numerical cases

Table 4.1 shows the flow conditions for the numerical cases studied, namely freestream
Mach number (M), unit Reynolds number (Re,, ), stagnation temperature (77), freestream
temperature (77%), freestream pressure (pl,), wall temperature ratio (7,/7% ), angle of
attack (a), and angle of incidence of the acoustic waves (). These represent the same
flow conditions as a set of experiments carried out at DLR on a probe (Wagner et al.
[84]) designed to measure the disturbance levels in a high and low enthalpy hypersonic
wind tunnels. The nose radius is R* = 0.1 mm, and the half-wedge angle is set to 20°.
In particular, cases 1 to 3 are relative to the tests in the Gottingen High Enthalpy Shock
Tunnel (HEG), and cases 4 to 6 are relative to the tests performed in the DNW Ludwieg
Tube (RWG).

Each of the six cases in table 4.1 has been simulated with both fast and slow acoustic

waves as freestream disturbances, giving a total of 12 numerical simulations.

59
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Table 4.1: Flow conditions of the six numerical simulations

Case M Re, (1/m) Ty (K) Tx (K) pi (Pa) Tr5/T% o (°) 6(°)
1 73 4.4x10° 2740 234.034 2004.301 1.273 0 0
2 73 1.4x108 2680 228.909  619.337 1.302 0 0
3 7.3 1.4x108 2680 228.909  619.337 1.302 0 10
4 6.0 6.3x10° 559  68.571  588.852 4.346 0 0
5 6.0 6.3x106 559  68.571  588.852 4.346 10 0
6 3.0 12.0x106 258  92.538 3588.5 3.22 0 0

Preliminary simulations were carried out for case 1 with fast acoustic waves, over a
small domain (grid size 360 x 150) with streamwise length equal to 10 nose radii, and
geometry presented in figure 4.1, in order to check the linearity of the pressure response
along the wall, with disturbance amplitudes ranging from 10~! to 10~. The imposed
single frequency in the preliminary simulations is high enough to provide a wavelength

comparable with the size of the domain.
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M

y of

QOutlet

Figure 4.1: Computational domain

Figure 4.2 shows the amplitude of the pressure fluctuations at different points along the
wall versus the amplitude of the imposed density fluctuations in the freestream. An
excellent linearity trend of the wall pressure response between the different freestream
amplitudes at all the different points along the wall is shown. In figure 4.3 the instanta-
neous density fluctuation field for the amplitude 1.0 x 102 is presented. Here, the results
show that the waves travelling along the wedge form two detached wave peaks of the

same sign, one located in the boundary layer, the other behind the shock. This pattern
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is qualitatively in good agreement with results found in literature (e.g. Kara et al.[39]),

and indicates the presence of boundary-layer perturbations developing downstream.
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Figure 4.2: Pressure fluctuation amplitude at different points along the wall,
from the stagnation point to the position 2z = 7 (with the outlet at x = 9), for
increasing freestream amplitudes of the acoustic waves

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

Figure 4.3: Instantaneous density fluctuation field
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The boundary conditions applied to all the cases listed in table 4.1 are the following;:

e fixed inflow boundary condition, with all the physical quantities set to their freestream

values, applied until convergence to the steady state is reached;

e time periodic inflow condition corresponding to the 2D acoustic-wave inflow de-
scribed in Section 2.2, applied to the steady base flow solution, in the unsteady

computations, until periodic convergence is reached everywhere in the flowfield;

e no-slip and isothermal boundary conditions at the wall, with values of the wall

temperature ratio listed in table 4.1;

e zero-gradient outflow boundary condition (at both the outflow boundaries) applied

along the direction of the j-grid lines.

Finally, it should be mentioned that the initial state of the steady-state simulations

corresponds to a uniform freestream flow at all the points inside the domain.

4.2 Preliminary validation of the code

Another preliminary simulation was performed in order to validate our results for the
unsteady quantities with those numerically obtained at Langley Research Centre by
Balakumar (private communication) for case 1 (M = 7.3, Re = 440), with slow acoustic
waves as freestream forcing. For the present validation test case, only one frequency
(150 kHz) of the slow planar acoustic waves was considered. The length of the domain
is, in this case, 400 nose radii. The results of this validation test case are presented in
figure 4.4, which shows a comparison of the results for the instantaneous wall pressure
fluctuation distribution (here both positive and negative values are shown, not the am-
plitude) obtained by Balakumar and those obtained through our computations. In both
cases, the wall pressure fluctuations have been normalised with the corresponding pres-
sure amplitude imposed in the freestream. Our numerical results are shown for both a
non-aligned grid (red solid curve), namely a grid obtained through the standard method
based on Billing’s correlations, and a shock-aligned grid (black dotted line) obtained
through the spline-based method, already discussed in Section 3.3.
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Figure 4.4: Wall pressure fluctuations for the frequency 150 kHz with freestream
slow acoustic waves. Casel, M = 7.3, Re = 440

As can be seen, there is a very good agreement in the wall response between Balaku-
mar’s data and our numerical results, for both the aligned and non-aligned grids. This
demonstrates the capability of the SBLI code, as well as the suitability of both grid
types, to provide physical results for the considered numerical simulations. The aligned
grid shows in general a slightly smoother profile compared to the non-aligned grid, es-
pecially in the nose region (x = 0 — 150), but is still affected by a small numerical noise
further downstream. This is mainly due to the fact that, although a high shock-grid
alignment level is achieved for the mean flow, in the unsteady simulations the physical
oscillations of the shock wave, induced from the interaction with the freestream acoustic
waves, result in the alignment being lost locally and numerical oscillations being released
downstream of the shock, which are higher in the coarser part of the domain (namely
the downstream region). Also, in this case, the presence of a relatively strong shock,
due to the high values of the Mach number (7.3) and the half-wedge angle (20°), makes
the unsteady solution very sensitive to the misalignment effects. The standard (i.e.
non-aligned) grid, in contrast, provides slightly more pronounced numerical oscillations
everywhere in the wall response, which, however, do not influence the physical solution,

as was already shown in the resolution study in Section 3.2.

In the light of these results, the noise level produced by the standard grid can be con-
sidered acceptable for the purposes of the present set of 2D simulations, thus motivating
the use of the standard (and less numerically expensive) grid generation method based
on Billing’s correlations for all the cases with symmetric mean flow (in which a fairly

good approximation of the shock shape is obtained through the standard method).



64 Chapter 4 Results for the wedge probe with two-dimensional acoustic waves

As already said in Chapter 3, the spline-based shock-grid alignment method is used
for all our 3D numerical cases in Chapter 5 (for the span-periodic wedge), where the
downstream propagation of small numerical oscillations present in the wall response
might affect significantly the transition mechanism. Moreover, in order to suppress the
residual oscillations present in the solution obtained through the adapted (i.e. aligned)
grid (as shown in figure 4.4), a local grid refinement on the shock is used as well for the
3D cases in Chapter 5, which provides a further improvement of the solution quality, as

shown in Section 3.5.

4.3 Results for the 2D unsteady simulations

In this section we present numerical results for the cases listed in table 4.1 with planar
fast and slow acoustic waves in the flowfield, with multiple frequencies and a density
perturbation amplitude of 1 x 10™* at each frequency. The dimensionless frequency is
normalised with the nose radius and the freestream velocity as f = f*R*/UZ,. For all
the cases with fast acoustic waves, a set of 10 multiple frequencies ranging from 50 kHz
to 500 kHz has been imposed; while, for slow acoustic waves, the frequency range is
case dependent. In particular, considering the numerical simulations with slow acoustic
waves, 10 frequencies have been inserted from 20 kHz to 200 kHz for case 1, from 25 kHz
to 250 kHz for cases 2 and 3, and from 50 kHz to 500 kHz for cases 4, 5 and 6. These
ranges were chosen in order to increase the frequency resolution at lower frequencies
for the HEG cases (namely cases 1 to 3) with slow acoustic waves. The phases ¢, in
equation 2.12 are chosen as fixed random numbers in the range 0 to 2w. The overall
amplitude level (rms of p. ) of the multi-frequency signal imposed in the freestream is
2.24 x 1072 for each case.

The domain length is 400R and the grid size for cases 1, 2, 3 and 4 in table 4.1 is
2244 %150, while the grid size for cases 5 and 6 is 2244x200. As already said before,
the grids for cases 1 to 4, and 6 were obtained through the standard (based on Billing’s
correlations) method, while for case 5 the analytical-hyperbola-based method has been
used to provide shock-grid alignment. Numerical results are presented for the instanta-
neous density fluctuation field, and for the pressure fluctuation amplitude distribution
along the wall at different frequencies, the latter having been computed through a Fast
Fourier Transform approach. The wall pressure fluctuation amplitude is normalised with
respect to the freestream pressure fluctuation amplitude at each frequency (i.e. pl,/pL.).
For the symmetric cases (case 1, 2, 4, 6), the results are presented on the top side of the
wedge, while for the asymmetric cases (case 3, 5), the corresponding values are plotted

for both the upper and the lower sides.

It is important to mention that wall temperature fluctuations are not considered in

our numerical simulations, as the wall temperature is fixed to a constant value by the
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isothermal boundary condition, which applies to the experiments in hypersonic wind
tunnels, where the short duration of the test does not cause significant changes in the

wall temperature.

4.3.1 Structure of the disturbance field

The structure of the disturbance field behind the shock wave is first qualitatively anal-
ysed through plots of the density fluctuation field for two different Mach numbers, the
highest (Mach 7.3) and the lowest (Mach 3) of those considered. Figures 4.5 and 4.6
show the density fluctuation field for the Mach 7.3 case (case 1) with fast and slow
acoustic waves respectively, while figures 4.7 and 4.8 show the corresponding results for
the Mach 3 case (case 6). While for case 6 the frequency range for fast and slow acoustic
waves is the same (50-500 kHz), for case 1 the frequency ranges considered for fast and
slow acoustic waves are different, being 50-500 kHz for fast waves, and 20-200 kHz for

slow waves.

For case 1 and fast acoustic waves (figure 4.5), the waves downstream of the shock form
with a lower wavelength (an effect of the higher frequency range), compared to the slow
wave case (figure 4.6), and with a clear inclination angle of the wave fronts with respect
to the y-axis, suggesting a delay of the waves that have crossed the shock with respect

to the freestream wave fronts.
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Figure 4.5: Density fluctuation field for fast acoustic waves. For the symmetry
of the solution, only half the domain is shown. Case 1, Mach = 7.3



66 Chapter 4 Results for the wedge probe with two-dimensional acoustic waves

200t
15
180}
160} 11
140} . 1 105
120}
Yy 0
100}
80t . 1l 4-05
60}
-1
a0t
1.5
20t e
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 2
0 50 100 150 200 250 300 350 400

T

Figure 4.6: Density fluctuation field for slow acoustic waves. For the symmetry
of the solution, only half the domain is shown. Case 1, Mach = 7.3

For slow acoustic waves, the post-shock wave fronts appear more compact and with a
lower inclination angle, namely they are more aligned with the y-axis (and with the
freestream wave fronts), suggesting in turn a more uniform propagation speed of the
disturbances downstream of the shock. This difference between the fast and slow acoustic
wave structure in the post-shock region is more evident in figures 4.7 and 4.8 for case
6 at Mach 3. In particular, the wave structure behind the shock appears to be more
complex in the case of fast waves (figure 4.7), with a system of different waves with

opposite inclination angles.
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Figure 4.7: Density fluctuation field for fast acoustic waves. For the symmetry
of the solution, only half the domain is shown. Case 6, Mach = 3
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Figure 4.8: Density fluctuation field for slow acoustic waves. For the symmetry
of the solution, only half the domain is shown. Case 6, Mach = 3

Figure 4.9 shows a sketch of the inclination angles and phase speeds of the wave fronts
upstream and downstream of the shock, illustrating the characteristics of the propagation
of the main waves in the post-shock region. A generic freestream wave front (depicted

by a black dashed line aligned in the vertical direction) is labelled as w; and wys; at the
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instants of time ¢ and ¢+t respectively. The blue oblique dot-dashed line along the shock
indicates the shock direction, and o the angle of the oblique shock with respect to the
z-axis. The angle S represents the inclination angle of the wave front in the post-shock
region with respect to the wall direction, and § = 20° is the half-wedge angle. The vectors
in the z-direction, denoted by co and c,s, represent respectively the freestream and the
post-shock phase speed of the disturbances in the z-direction (the main propagation
direction of the imposed waves), which for a time unit 6t = 1 are coincident with the
z-displacement vectors of two different points on the same wave front upstream and
downstream of the shock. The lower length of the vector ¢, indicates that the portion
of the wave front that has crossed the shock is propagating with a lower streamwise phase
speed, compared with the portion of the wave front still upstream of the shock, so that,
after the time delay dt, the post-shock wave front reaches a point that is upstream of the
point reached by the freestream wave front. These two points are located on the inclined
black dashed line connecting the shock to the wall, which represents the deflected (or
‘dragged’) wave front due to the lower phase speed in the post-shock region. As the
geometry is two-dimensional and the region of the computational domain considered in
figure 4.9 is far enough away from the leading-edge (thus from the curvilinear part of the
shock), the flowfield and the disturbance field behind the shock outside the boundary
layer can be considered as approximately uniform, which explains why the post-shock

dragged waves appear as oblique straight lines running from the shock to the boundary

layer.
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Figure 4.9: Expanded view of the density fluctuation field for fast acoustic
waves, and sketch of the propagation features of the wave fronts upstream and
downstream of the shock (Case 6, Mach = 3)
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For the specific flow conditions of case 6 (Mach 3), the freestream phase speed is coo =
Uoo + oo = 1+ 1/M = 1.33. A theoretical estimation of the phase speed behind the
shock, ¢ps, can be made through the inviscid oblique shock theory, which links the -
convection velocity u,s and the local speed of sound aps to the normal (to the shock)
freestream Mach number through the normal shock jump relations. From the knowledge
of the angle o of the oblique shock for a supersonic flow at Mach 3 over a wedge of § = 20°
half-wedge angle (¢ = 37.7°), the normal freestream Mach number can be computed as
M, = M sinog = 1.83, and, by applying the shock jump relations, we compute a value
for the post-shock z-wise phase speed equal to cps = ups + aps = 1.195. From the values
of ¢ and c¢ps, the inclination angle of the wave front in the post-shock region with

respect to the z-axis (ay) can be computed through the relation

t
oy = tan ! (cooano> , (4.1)

Coo — Cps

which gives a theoretical estimation of the wave front inclination angle of a, = 82.5°.
This angle represents the sum of the angle 3 (see figure 4.9) and the half-wedge angle.
The numerical value of a, corresponding to the results shown in figure 4.9 (i.e. inclina-
tion of the wave front in the post-shock region) is o, = 8 + 6 =~ 81°, which is close to
the theoretical estimation (with a relative error of 1.8% between the theoretical and the
numerical results), indicating that the inclined wave fronts behind the shock in figure
4.9 are indeed dragged waves propagating with the velocity of the local fast acoustic

waves behind the shock.

The presence of another type of wave with an opposite inclination can be noticed in
figure 4.7 (whose direction is indicated by a red dashed line) close to the boundary
layer. These waves can be considered as waves generated by the interaction of the main
dragged waves with the surface and then reflected downstream. The fronts of these waves
form an angle of about 135° with respect to the z-axis (considering angles starting from
zero at the z-axis and increasing anticlockwise). This value corresponds in turn to an
inclination of about 45° of the wave vector (normal to the wave fronts) of the reflected
waves, which, subtracting the wall inclination angle (¢), provides a propagation direction
of approximately 25° with respect to the local flow direction. This value is slightly lower
than the local Mach angle, which is equal to 30° at the boundary-layer edge. Hence, this
second type of waves appear to be reflected fast waves propagating downstream with an

angle close to the local Mach angle.

Case 6 with slow acoustic waves, depicted in figure 4.8, shows a significantly different
structure of the waves behind the shock, made up of wave fronts deflected in an opposite
angle compared to the fast-wave case. This indicates that the post-shock wave struc-
ture is dominated by transmitted waves travelling with a phase speed higher than the
freestream phase speed of the slow acoustic waves. Applying the same method used for

the fast acoustic wave case, the post-shock propagation speed of the wave fronts, cps,
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can be evaluated from the numerical results, by the knowledge of the freestream phase
speed of the slow acoustic waves (¢oo = 1 — 1/M = 0.66), the numerical result for the
oblique shock angle (o = 38.5°, compared to the theoretical value of o = 37.7° given
above), and the inclination angle of a generic wave front (o, = 112°, with respect to
the z-axis), as ¢ps = coo(1 +tano/tan(o, —90)) = 0.87. This value has been computed
by assuming waves travelling in the z-direction, which is the preferential direction of
the imposed acoustic waves. From the numerical results, the x-direction velocity just
downstream of the shock is u,s = 0.774 (computed at z = 200), and the speed of sound
at the same point is aps = 0.419, which gives a value, for the local z-wise phase speed
of fast acoustic waves, of crps = ups + aps = 1.193, and, for slow acoustic waves, a value
of csps = Ups — aps = 0.355. The disagreement of both the post-shock phase speeds of
fast and slow acoustic waves with the estimated value of c,; = 0.87 suggests that the
transmitted waves are neither fast nor slow acoustic waves, but that they might repre-
sent convected waves travelling in the local flow direction (approximately tangential to
the wall). By repeating the same procedure based on the inclination of the wave fronts,
but assuming post-shock waves propagating in the local flow direction (namely with the
wave vector inclined at 20° with respect to the z-axis), we obtain an estimated value for
the x-component of the post-shock phase speed of ¢,; = 0.76, which is much closer to the
x-wise convection velocity component of 0.774. We have not considered the effect of the
boundary-layer displacement thickness on the streamline direction, so the relative error
of 1.8% between ¢p, and u, is small enough to conclude that in this case the post-shock
waves are convected waves (including vortical and entropy waves) travelling in the local
flow direction, which are generated downstream of the shock through the interaction

with the freestream disturbances.

Another feature of the post-shock generated disturbance field for our considered cases is
that the slow waves induce a significantly lower amplitude response downstream of the
shock than the fast waves, for both case 1 (figures 4.5 and 4.6) and case 6 (4.7 and 4.8).

Again, this difference is more pronounced in the lower Mach number case (case 6).

Hence, a decreasing Mach number is seen to enhance the difference in the wave propa-
gation features downstream of the shock between fast and slow acoustic waves. This is
because the lower the Mach number, the higher is the difference in phase speed between
fast and slow waves, due to the higher contribution of the sound speed on the propaga-
tion velocity, while for a theoretically infinite Mach number the phase speeds of the two
wave types would collapse to the same value (1+1/M =1—1/M, for M = oo). This is
one of the main Mach number effects on the boundary-layer receptivity characteristics,
and explains why, at the high Mach numbers, the discrete internal modes (mode F and
mode S) have similar values of the phase speed and are already synchronised with the

continuous spectrum of external acoustic waves.
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4.3.2 Validation of the numerical results through the linear interaction
theory

The numerical results for the structure of the disturbance field in the post-shock region
and the theoretical approach for the estimation of the transmitted wave class (illustrated
in Section 4.3.1 for the Mach 3 case) can be compared with the interaction theory of linear
freestream disturbances with oblique shock waves, described by McKenzie and Westphal
[13]. They formulated Snell’s laws of refraction for plane acoustic and nonacoustic
waves striking an oblique shock, in the hypothesis of small disturbances. In particular,
considering an incident wave striking the shock from ahead with a certain inclination
angle and at a generic frequency, the inclination angle of the diverging wave generated
behind the shock was obtained by imposing the continuity of the frequency (w) and of
the component of the wave vector tangential to the shock (k) between the incident and
the diverging wave, namely, wo, = wps and kr oo = k7 55, Where the subscript ‘77 indicates
the tangential-to-the-shock direction. Following this approach, McKenzie and Westphal
[13] derived an equation giving the inclination angle of the diverging wave in the case of

an incident acoustic wave generating an acoustic wave downstream of the shock as

—(aps/aoo)2 sin® AooMp ps + {O[O — (aps/aoo)2 sin? Moo (1 — M%ps)]}lﬂ

(aps/aoo)? sin® Ao M2 . + © ’
(4.2)

COS A\ps,ac =

O = (1 4+ My 0008 Aoo)? (4.3)

and in the case of an acoustic wave generating an entropy/vorticity wave downstream
of the shock as

(aps/aoo)2Mn7ps(i sin A\oo)

tan A = ,
psev 1 £ M, o0 €OS Ao

(4.4)

where ) is the inclination angle of the wave vector (k) with respect to the shock-normal
direction, as illustrated in figure 4.10, the subscripts ‘oo’ and ‘ps’ indicate quantities in
the freestream and in the post-shock region respectively, M, is the Mach number in the
shock normal direction, and the subscripts ‘ac’ and ‘ev’ refer respectively to acoustic and
entropy/vorticity waves generated downstream of the shock. Equation 4.2 applies to an
incident fast acoustic wave generating a fast wave behind the shock, while in equation
4.4 the +(—) sign applies to fast (slow) incident waves. The refraction law for incident
slow acoustic waves generating slow waves behind the shock is given by equation 4.2
provided the terms sin A\, and cos Ao, are replaced by —sin Ao, and — cos Ay In figure

4.10, ko is the wave vector of the incident wave, which, for the considered case (Mach
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3 case), is aligned with the flow direction, the versors 7 and 7 indicate the tangential
and the normal directions to the oblique shock (inclined of the angle o with respect to
the flow direction), while ks is the wave vector of the refracted wave behind the shock.
From the numerical results for the considered case, the value of the oblique shock angle
is 0 = 38.5°, thus the value of the angle of the incident free-stream waves we use as input
in equations 4.2, 4.3 and 4.4 (with reference to figure 4.10) is Ao = 90° — 38.5° = 51.5°.
Similarly, for the input terms M, ,s and a,s, we use the numerically obtained values,
while the terms M, o and a, simply represent free-stream conditions of the considered

numerical case.

By applying equations 4.2 and 4.3 for the Mach 3 case with fast acoustic waves, whose
wave structure behind the shock is shown in figure 4.7, we obtain a refraction angle of the
fast wave equal to A,s qc = 41.04°, which is very close to the numerical refraction angle
of A\ps.ac = ag — 0 = 42.5° (with «, = 81°). This indicates that the transmitted waves
behind the shock are indeed refracted fast acoustic waves, as was previously deducted
from the theoretical estimation method based on the length of the streamwise phase

speed vectors upstream and downstream of the shock.

In the same way, applying equation 4.4 to the Mach 3 incident slow-wave case gives a
theoretical refraction angle for the generated entropy /vorticity waves of Apg e, = 74.53°,
corresponding to a wave vector pointing upstream, which shows again a very good
agreement with the numerical result (shown in figure 4.8) of \ps ¢y = apy — 0 = 73.5°
(with o, = 112°). This confirms that the main waves generated behind the shock due to
the interaction with incident freestream slow acoustic waves are indeed entropy /vorticity

waves.

Figure 4.10: Sketch of the incidence and refraction wave angles in the shock-
wave reference system
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In summary, the application of the linear interaction theory to our considered case
demonstrates the validity of our numerical results and, at the same time, of the theo-
retical method used to estimate the nature of the transmitted waves behind the shock,
based on the relative length of the phase speed vectors upstream and downstream of the
shock and on the inviscid oblique shock theory. The results obtained using the linear
interaction theory described by McKenzie and Westphal [13] confirm that, for the con-
sidered Mach 3 case, the dominant waves transmitted behind the shock from incident
fast acoustic waves are refracted (or dragged) fast acoustic waves, while the dominant
waves generated behind the shock from incident slow acoustic waves are entropy /vortic-

ity waves.

4.3.3 Response along the wall: resonance-modulation behaviour

In this Section the response along the wall for the pressure fluctuations is considered
for cases 2, 4 and 6 (see Table 4.1), in order to study the main characteristics of the
leading-edge receptivity mechanism, namely the generation, interaction and downstream

evolution of the induced boundary-layer modes, for different Mach numbers.

Figures 4.11, 4.13 and 4.15 show the pressure fluctuation amplitudes along the wall at
different frequencies respectively for cases 2, 4 and 6 with fast acoustic waves, while
figures 4.12, 4.14 and 4.16 show the corresponding results for the same cases with slow
acoustic waves. As can be seen, in case 2 the wall pressure fluctuation amplitude at each
frequency gradually increases with the distance from the leading edge for fast acoustic
waves (figure 4.11), while gradually decreasing for the slow wave cases (figure 4.12). The
rates of growth and decay (respectively for the fast and slow wave cases) increase with
the frequency, so that downstream along the wedge the higher frequencies reach higher
response levels for fast waves, and lower levels for slow waves. This difference between
fast and slow acoustic waves is the effect of a stronger resonance mechanism for fast
waves, namely the synchronisation between the forcing mode of the fast acoustic waves
and the internal boundary-layer fast mode (mode F, according to Fedorov [4]’s notation)
that is generated at the leading edge. This leads to an initial amplification of mode F
well upstream of the first neutral point of the second instability mode, which is not
included in the computational domain, in contrast with a weaker resonance mechanism
in the case of slow acoustic waves, leading to the generation and initial decay of the

boundary-layer slow mode (mode S).

The difference in the resonance mechanisms is due to the characteristics of the wave
transmission and propagation in the post-shock region, which determine the disturbance
field forcing the boundary layer. As described in the previous Section, in the case of
fast waves the transmission of the freestream acoustic waves across the shock appears
to be more efficient, with the main freestream wave fronts being deflected as they cross

the shock, due to the difference in phase speed upstream and downstream of the shock,
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and amplified according to the pressure increase downstream of the shock wave. In
the slow wave case, in contrast, the post-shock wave structure is dominated by lower
amplitude convected waves travelling faster than the freestream waves. These waves are
not synchronised with the slow mode generated at the leading edge. The interaction
of the slow mode with the forcing waves of the post-shock region does not produce an
efficient resonance mechanism, thus the response in the early nose region shows an initial

decay.

Figures 4.13 and 4.14, for case 4 with fast and slow waves respectively, show a pronounced
frequency-dependent oscillatory behaviour of the wall response for the fast wave case,
and a substantially flat response (after an initial decay) for the slow-wave case. This
is again due to the different interaction mechanism between the discrete boundary-
layer modes and the forcing disturbance field for fast and slow waves. However, in this
case, the wall response for both fast and slow waves appears as a continuation of the
initial (growth/decay) response shown by 4.11 and 4.12 for case 2 for fast and slow waves
respectively. This is essentially because, as Uy, decreases with decreasing Mach numbers
(for the considered cases, see table 4.1), the nondimensional frequencies increase, for the

same dimensional frequency range.

The large-wavelength oscillations shown in the fast-wave case are due to a modulation
process between mode F and the forcing acoustic mode, since after the initial synchroni-
sation the two are no longer coupled. Owing to the absence of a synchronisation with the
forcing mode, mode F decays in this region, according to its stable nature. This region
is known in the literature (e.g. Zhong and Ma[l7]) to precede the region of synchroni-
sation between mode F and mode S, and the consequent excitation of mode S (which is
located downstream of our domain). We can describe the modulation mechanism with
a simplified model involving two different modes, in which the distance (Azx) between
two consecutive peaks of the oscillations, at a certain frequency f, is linked to the phase
speeds of the two competing modes (modes a and b) by the following relation (De Tullio
and Sandham [85])

CaCp

Ax = ————
f’ca_cb

, (4.5)

where ¢, and ¢, are the phase speeds of the two modes. Considering the wall response
at the frequency f=500 kHz in figure 4.13, the distance between two consecutive peaks
downstream (located at z = 262.5 and = = 372.5) is Az = 110. Assuming ¢, to
be coincident with the phase speed of the fast acoustic waves computed in the post-
shock region (¢, = ¢ps = 1.1), the phase speed of mode b, by applying equation 4.5 is
cp = 0.9179. Hence, in the downstream region the fast acoustic wave mode is modulated

by a mode whose phase speed is lower than the phase speed of the fast acoustic waves,
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and higher than the phase speed of the slow acoustic waves in the freestream (1—1/M =

0.83). This is consistent with the downstream decay of mode F, whose phase speed is

continuously decreasing from the leading edge, relative to the fast acoustic waves, until

it approaches the value of the phase speed relative to mode S beyond the length of our

computational domain. Hence the two competing modes in the modulation region can

be attributed to the forcing fast acoustic wave mode and the desynchronised mode F.
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Figure 4.11: Wall response for case
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This modulation is even more evident in figure 4.15, for case 6 with fast acoustic waves.

Here, the frequency of 500 kHz shows a prolonged region of oscillation cycles due to the
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modulation process, downstream of the first peak (reached at about z = 50), with a
gradual decay in amplitude, which is caused by mode F being no longer synchronised

with the fast acoustic wave mode.

In contrast, figures 4.14 and 4.16, for cases 4 and 6 with slow acoustic waves, show a
faster initial decay, and a flat overall response at each frequency, with a significantly
lower amplitude compared to the fast wave cases. This suggests that mode S does
not combine with the forcing waves in the same way as mode F, but maintains a low
amplitude for an extended distance downstream, with a weaker modulation effect due
to the weak forcing waves (with different phase speed) in the post-shock region, without
becoming unstable within the computational domain. Due to the absence of a strong
resonance mechanism, the receptivity to slow acoustic waves in the nose region is lower
than to fast acoustic waves, and the difference in the amplitude level between the fast

and slow mode response along the wall is seen to increase as the Mach number reduces.

Finally, it should be mentioned that for each case, as seen in all the figures above, the
wall response starts from a high maximum value at the stagnation point, and decreases
rapidly along the circle until approaching (at the circle-wedge junction) the level assumed
along the wedge. This is due to the amplification of the waves when crossing the strong
normal shock along the stagnation line. Figures 3.4 and 4.3 in Sections 3.1 and 4.1
respectively show a qualitative example of the wave patterns close to the nose. The
freestream planar wave front is bent by the bow shock in front of the blunt leading
edge, while the disturbance amplitude downstream of the shock varies along the curved
wave front, assuming the highest values in the normal shock region. This produces
significantly higher values of the wall response along the circle, compared to the values
assumed by the response along the wedge, which is, in contrast, affected by the wave

propagation patterns downstream of the oblique shock.

4.3.4 Effect of wave inclination angle and angle of attack

In this Section we present the results for cases 3 and 5, namely the asymmetric cases,
which show the effect of the angle of incidence of the acoustic waves (case 3) and the
angle of attack (case 5) on the receptivity characteristics of a hypersonic flow over a
wedge. With reference to table 4.1 and to figure 2.1, in case 3 the fast and slow acoustic
waves are introduced in the computational domain with an inclination angle 6 (angle
between the wave vector and the z-axis, taken in the anti-clockwise sense of rotation,
starting from zero on the z-axis) of 10° with respect to the freestream (which is aligned
with the z-axis). In case 5, on the other hand, the wave vector of the acoustic waves
is aligned with the freestream, which is at an angle of attack of 10° (taken in the anti-
clockwise sense of rotation) to the symmetric axis of the geometry (aligned with the
x-axis). In both cases 3 and 5 the bottom side of the wedge is the windward side, and

the top side is the leeward side. Since for case 5 the flowfield is asymmetric due to the
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angle of attack, an asymmetric shock-adapted grid has been used, shaped in such a way
to provide a good shock-grid alignment on both the sides of the wedge. In particular, the
adapted grid has been obtained through the method based on the analytical hyperbola

described in Section 3.3.

Figures 4.17 and 4.18 show the density fluctuation field for case 3 with fast and slow
acoustic waves respectively, while figures 4.19 and 4.20 show the corresponding results
for case 5. As can be seen, the results for case 3 (figures 4.17 and 4.18) show a slight
difference between the post-shock wave structure on the windward side and the lee side
with both fast and slow acoustic waves, which suggests a small effect of an incidence
angle of 10° on the receptivity patterns. In contrast, figures 4.19 and 4.20 for case 5
reveal a significant effect of the angle of attack (10°) on the structure of the disturbance
field downstream of the shock on the windward and the lee sides for both fast and slow

waves.
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For non-zero angle of attack, the post-shock disturbances on the windward side (in
figures 4.19 and 4.20) have a significantly higher amplitude than the waves crossing the
shock on the lee side, which is due to the shock being stronger on the windward side
and amplifying the waves in both the fast and the slow wave cases. The lee side shows
the presence of dragged waves in the fast-wave case (figure 4.19) and low amplitude
transmitted waves with higher phase speed than the freestream waves in the slow-wave
case (figure 4.20), as discussed in Section 4.3.1. In contrast, the windward side shows a
complex system of dragged and reflected waves between the shock wave and the boundary
layer for the fast-wave case, and a reversal (with respect to the lee side) of the post-shock
phase speed in the slow-wave case, with the presence of high amplitude dragged waves

travelling with lower phase speed than the freestream waves.

The different wave structures between the lee and the windward side have a strong effect
on the boundary-layer receptivity characteristics, as is shown in figures 4.21 and 4.22 for
the wall pressure fluctuation amplitudes of case 3, with fast and slow waves respectively,
and similarly in figures 4.23 and 4.22 for case 5. In each case, the results are shown
at two different frequencies and on both the lee and the windward sides. For case 3
with fast acoustic waves (figure 4.21), the response at the lower frequency (100 kHz) is
very similar between the two sides of the wedge, being slightly higher on the windward
side. At the higher frequency (500 kHz), the response is higher on the windward side in
the nose region up to the station x = 250, while downstream of this point a reversal is
observed, as the response on the windward side starts decaying after the peak reached

at about x = 250, and the response on the lee side continues growing along the wall,
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reaching very high values close to the outer edge. Thus, at the higher frequencies the
wave inclination angle appears to amplify the downstream response along the lee side
for fast acoustic waves, which is in a good qualitative agreement with the results of
Egorov et al. [41]. This behaviour suggests that the wave inclination angle enhances the

resonance mechanism for mode F on the lee side at high frequencies.

An opposite trend is shown for the slow wave case, whose results are presented figure
4.22. Here, a higher response is observed on the lee side at the lower frequency (50 kHz),
while a reversal is shown at the higher frequency (250 kHz), for which the response on
the lee side is higher than on the windward side in a small region extending up to about
x = 100. Further downstream the response on the windward side shows higher values
than on the lee side, due to a higher decay rate shown by the wall pressure fluctuations

on the lee side in the region z = 100 — 200.

The results for case 5, presented in figures 4.23 and 4.24 for fast and slow waves re-
spectively, quantify the strong effect of the angle of attack on the receptivity. For both
fast and slow acoustic waves, the response on the windward side is significantly higher
than on the lee side, due to the stronger shock wave on the windward side and the
consequently higher amplification of disturbances traversing the shock. In the fast-wave
case at the highest frequency (500 kHz) the leading-edge resonance and downstream
modulation mechanism discussed in Section 4.3.3 are seen. For slow acoustic waves, in
contrast, a modulation behaviour is revealed by the long-wavelength oscillations shown
at the lower frequency (20 kHz) on the windward side (red line in figure 4.24), which
is probably due to the post-shock wave structure on the windward side (figure 4.20)
being characterised by high amplitude dragged wave fronts, similarly to the case of fast

acoustic waves.
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4.3.5 Estimation of the freestream noise levels

To help interpret the experimental results, we now focus on the behaviour at a transducer
location (x = 297.3). Figure 4.25 shows frequency spectra of the wall pressure fluctuation
amplitudes for Cases 1 to 3 (HEG), with fast and slow acoustic waves, in the frequency
ranges described previously. This shows the effects of Reynolds number (Re,, = 4.4 x 10°
m~! for case 1, Re,, = 1.4 x 10° m~! for cases 2 and 3) and angle of incidence of the
acoustic waves (6 = 10° for case 3). For case 3 (Mach=7.3, Re=140, # = 10°) the results
are shown on both the lee (upper) and the windward (lower) side. As can be seen, for
all the cases considered in figure 4.25, the results show a significantly higher response for
fast acoustic waves than for slow waves at all frequencies, which is due to the stronger
resonance mechanism at the leading edge, characterising the receptivity to fast acoustic
waves. The amplitude of the response to fast acoustic waves is seen to increase gradually
with frequency, while the slow waves decrease in amplitude, with the minimum value
being reached at the highest frequency. For fast acoustic waves, an angle of incidence of
10° (the dashed curves in figure 4.25) is seen to produce a slightly higher response on the
windward side, and a slightly lower response on the leeward side, except for frequencies
higher than 450 kHz. For slow acoustic waves, an opposite trend is observed, with the
response on the lee side being higher, and the response on the windward side lower in
the lower frequency range. However, as discussed in the previous Section, at higher
frequencies (higher than 100 kHz), there is a reversal, so that the windward side shows
higher amplitudes. The Reynolds number is seen to have only a slight effect on the

amplitude of the wall response between cases 1 and 2 at all the frequencies.
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Figure 4.25: Frequency spectrum of the pressure fluctuation amplitudes at the
transducer position (x = 297.3) for cases 1 to 3 (HEG) with both fast and
slow acoustic waves. Mach=7.3, Re,, = 4.4 x 10° m~! (case 1), Mach=7.3,
Ren, = 1.4 x 105 m~! (cases 2 and 3). For case 3, an inclination angle 6 = 10°
of the incident waves is considered

Figures 4.26, 4.27 and 4.28 show a comparison between the frequency spectra at the
station x = 297.3 for case 1, 5 and 6 respectively. Since the modulation behaviour de-
scribed earlier may lead to locally very low amplitudes at certain points on the surface,
and these points would be expected to move around in experiments due to small varia-
tions in free stream conditions, the figures also include a spatial average over the region
x = 200 — 400. The results for case 5 (Mach 6, o = 10°) in figure 4.27 correspond to the
wall response on the windward side, where the pressure transducers were located in the
DLR experiments. Also, it should be noticed that the frequency spectra for case 4 (with
reference to table 4.1) are not shown, as the measurements at Mach 6 were conducted
only for the case with angle of attack (i.e. case 5). All the cases show a significantly
higher-amplitude response for fast acoustic waves, compared to slow waves. Case 1, in
figure 4.26, shows the features already discussed in connection with figure 4.25 and a

very small effect of the space average on the frequency spectrum of the wall response.
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Figure 4.26: Frequency spectra for case 1 (HEG) with both fast and slow acous-
tic waves, with and without space average. Mach=7.3, Re,, = 4.4 x 10 m~!
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Figure 4.27: Frequency spectra for case 5 (RWG) with both fast and slow

acoustic waves, with and without space average. Mach=6, Re,, = 6.3 x 10°
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For the RWG case at Mach 6 (case 5, in figure 4.27), the wall response shows a substan-
tially flat trend with frequency for both the fast and the slow mode, as can be observed
for the curves relative to the averaged spectra. In this case, the space average produces
a slight change in the shape of the response for fast waves, and almost the same profile

of the unaveraged spectrum for slow waves.
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The response for case 6 (RWG, Mach 3, figure 4.28), for both fast and slow acoustic
waves, is significantly lower than for the higher Mach number cases. Additionally, the
discrepancy in the amplitude between the fast and the slow mode response is much higher
compared to the other cases. This clearly indicates, as already said in Section 4.3.1, an
important Mach number effect on the receptivity to acoustic waves in supersonic flows.
Moreover, in contrast to the other cases, the non-averaged frequency spectra for the
Mach 3 case (case 6) show a local minimum, at 250 kHz for fast waves, and at 200
kHz for slow waves, compared to the average value of the amplitude level at the other
frequencies. As mentioned before, this is a consequence of the modulation mechanism

of the pressure fluctuation response along the wall described in Section 4.3.3.
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Figure 4.28: Frequency spectra for case 6 (RWG) with both fast and slow

acoustic waves, with and without space average. Mach=3, Re,, = 12 x 10°
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The effect of receptivity can now be assessed by combining the numerical transfer func-
tions (pl,/pl,), relating the freestream disturbance to the wall disturbance, with the
wall pressure fluctuation data from the experiments. We do this in two stages, first
by comparing the effect on the spectral shape, which turns out to be small, and then

considering combinations of fast and slow modes.

Figures 4.29, 4.30 and 4.31 show the experimental frequency spectra of wall pressure
fluctuation levels (pl,)), integrated over a window of 50 kHz for each frequency, and
the same frequency spectra projected to the freestream using the numerical transfer
functions (pl,/p,), through the relation piy . = Py exp(Poo/Ply), namely the estimated
freestream noise levels, for case 1 (HEG Mach 7.3, Re,, = 4.4 x 105 m™!), case 5 (RWG
Mach 6) and case 6 (RWG Mach 3) respectively. The results are normalised with the

values of the freestream mean pressure (p},) relative to each case, shown in Table 4.1.
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For each case, the transfer functions used to obtain the estimated noise levels are the
inverse functions of the corresponding wall-to-freestream pressure fluctuation frequency
spectra relative to the averaged response, shown in figures 4.26, 4.27 and 4.28. To better
compare the shapes of the spectra, each curve of the estimated noise levels, in figures
4.29, 4.30 and 4.31, is anchored to the curve of the wall values through multiplication
by a scaling factor computed at 200 kHz. The corresponding scaling factors for fast and

slow acoustic waves are indicated with the terms ar and ag respectively on the figures.
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Figure 4.29: Experimental and numerical profiles of the wall response. Nu-
merical profiles adjusted to the experimental data through the scaling factors
ar = 6.3227 (fast waves) and ags = 44.3943 (slow waves). HEG, Mach 7.3.
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Figure 4.30: Experimental and numerical profiles of the wall response. Nu-
merical profiles adjusted to the experimental data through the scaling factors
ap = 1.6747 (fast waves) and ag = 5.9515 (slow waves). RWG, Mach 6.
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Figure 4.31: Experimental and numerical profiles of the wall response. Nu-
merical profiles adjusted to the experimental data through the scaling factors
ar = 0.3237 (fast waves) and ag = 37.0909 (slow waves). RWG, Mach 3.

As can be seen, for each case the shape of the estimated noise level curves is very similar
to the shape of the experimental curve, for both fast and slow acoustic waves, due to
the flatness of the frequency responses shown in figures 4.26, 4.27 and 4.28. Exceptions
need to be made for the results observed for slow waves at the frequency 50 kHz in
cases 1 and 6 (in figures 4.29 and 4.31 respectively). This suggests that the receptivity
plays a marginal role in the shape of the spectra at the wall, which, then, represents

approximately the spectral shape of the noise in the freestream.

The significantly higher scaling factors (given in figures 4.29, 4.30 and 4.31 for each
case) for slow acoustic waves, compared to those for fast acoustic waves, indicate that
a much higher freestream noise level would be needed, in the case of a freestream noise
composed by only slow acoustic waves, to produce the same experimental wall response.
Moreover, the difference in the scaling factors between fast and slow acoustic waves is
distinctly higher for the Mach 3 case (figure 4.31), with ar being higher than as by two

orders of magnitude, which shows, again, that there are strong Mach number effects.

In practice we may consider the freestream acoustic disturbances to be a mixture of
fast and slow acoustic waves. To investigate these effects, two arbitrary freestream
wave combinations, namely 90% fast-10% slow and 10% fast-90% slow, are considered.
Table 4.2 shows the estimated noise levels obtained at a frequency of 200 kHz for the
different facilities (HEG and RWG) at the considered Mach numbers (Mach 7.3 for
HEG, Mach 6 and 3 for RWG). The values for the different combinations were obtained
by summing the numerical transfer functions (pl,/pl,) relative to fast and slow acoustic
waves, each one multiplied with a coefficient indicating the percentage contribution. The
composite transfer functions are indicated in table 4.2 as T Fygp_105 and T Figr_gos, and

the corresponding estimated noise levels, obtained through multiplication of the mixed
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Table 4.2: Estimated free-stream noise levels for different combinations of the
free-stream disturbances, at the reference frequency of 200 kHz.

Facility | (ply/Poc)Eap | TFoor108 | TFiore0s | (Pho/Poc)90r108 | (Phe/Poc)10F908

HEG M7 0.0188 0.0754 0.302 0.0014 0.0057
RWG M6 0.0047 0.0625 0.1642 0.000294 0.000773
RWG M3 0.000208 2.687 22.4435 0.00056 0.0047

transfer functions with the experimental pressure values, (p),/poc)Ezp, are indicated as
(Pl /Poo)o0F—10s and (Pl /Poo)10F—90s- The estimated noise levels range from 1.4 x 1073
to 5.7 x 1073 for the HEG facility at Mach 7.3, from 2.9 x 10~* to 7.7 x 10~ for the
RWG at Mach 6, and from 5.6 x 1074 to 4.7 x 1073 for the RWG at Mach 3. Higher

estimates are observed for the slow-mode dominated cases.

The higher noise levels estimated for a slow-wave-dominated freestream are due to the
lower wall-response levels (resulting in the higher scaling factors in figures 4.29, 4.30 and
4.31) observed in general for slow acoustic waves in all the considered numerical cases,
compared to the response to fast acoustic waves. The values listed in table 4.2 indicate
higher freestream noise levels in the HEG facility at the highest Mach number (7.3),
as was expected, but reveal also an unexpected increase of the noise levels (for both
fast- and slow-wave-dominated freestreams) in the RWG wind tunnel when decreasing
the Mach number from 6 to 3. This can be explained considering that the location of
the measurement probe inside the wind tunnel can play an important role on the wall
disturbance level as well, relative to the acoustic noise radiated by the nozzle walls and
inclined of the Mach angle with respect to the local flow direction. In fact, for different
Mach numbers, the value of the Mach angle will be different, thus the acoustic waves
will, in general, impinge on the object at different longitudinal positions, as well as with
a different inclination angle. This means that the wall response depends, in general,
not only on the inclination angle of the incident acoustic waves, but also on the actual
percentage of the total noise radiated by the nozzle walls (through the whole wall length)
impinging on the object, which depends, in turn, on the Mach angle and the position of

the probe.

Overall, the estimated noise levels in table 4.2 can be considered as realistic, as they
are relatively close to the freestream pressure fluctuation level (3.96 x 1073), normalised
with the freestream mean value, computed by Duan et al.[12] in a DNS study on the
acoustic noise generated by a turbulent boundary layer over a flat plate in a Mach 2.5
flow. Moreover, Duan et al.[12] found that the acoustic noise radiated by the turbulent
boundary layer pertained to the class of slow acoustic waves. The freestream noise
level we obtained for the Mach 3 case (which is the most comparable case with the
study of Duan et al[12] in terms of the Mach number) with dominant slow acoustic
waves (4.7 x 1073) is, then, very consistent with the results of Duan et al.[12], which

suggests that slow acoustic waves were most likely the dominant disturbances in the
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Mach 3 experiment. Furthermore, the work of Masutti et al.[11] indicates that freestream
pressure disturbance levels (normalised with the time-averaged value) as high as 1% are
usually observed in noisy hypersonic wind tunnels. The higher noise levels obtained, for
each case, for the slow-wave-dominated freestream (see table 4.2) are closer to the typical
experimental values, compared to the values relative to fast-wave-dominated freestream,
which suggests that slow acoustic waves were most likely the dominant disturbances in
all the DLR experiments, both in the HEG and RWG facilities.

4.4 Summary of the results

The receptivity to fast and slow freestream acoustic waves with multiple frequencies at
supersonic/hypersonic speeds over a 2D cylinder-wedge geometry, for a set of six flow
conditions with different Mach number, Reynolds number, angle of attack, and angle of
incidence of the acoustic waves, has been studied through DNS. The present study has
focused on the immediate leading-edge region (upstream of the region of second-mode
instability), which is characterised by the generation and interaction of the induced
boundary-layer modes. As a result, no second mode instability is observed along the

wall for all the considered frequencies.

Three main aspects of the leading-edge receptivity to acoustic freestream disturbances
in high speed flow have been analysed, namely a) the structure of the disturbance field in
the post-shock region, b) the response along the wall, with emphasis on the resonance-
modulation mechanism, and c) the effect of an inclination angle of the acoustic waves
and an angle of attack. Preliminary simulations confirmed the linearity of the wall
pressure perturbations at increasing freestream amplitudes of the acoustic waves, up to

amplitudes as high as 10! for the freestream density.

The numerical results show that, when planar fast acoustic waves are inserted into
the domain, the wave structure downstream of the shock is characterised by amplified
‘dragged’ waves, pertaining to the main forcing fast acoustic waves traversing the shock
and being deflected due to the lower local phase speed in the post-shock region, plus
reflected waves from the boundary-layer edge travelling downstream at the local Mach
angle. For slow acoustic waves, in contrast, the disturbance field downstream of the shock
is composed of transmitted waves with lower amplitude compared to the freestream
amplitude, and travelling with a higher phase speed than the freestream slow waves.
These waves have been shown to have the property of local convected waves (including
entropy and vortical waves) generated downstream of the shock from the interaction
with the freestream slow waves. A decreasing Mach number is seen to enhance the
difference in the wave propagation features downstream of the shock between fast and
slow acoustic waves, consistent with the higher gap in phase speed between fast and

slow acoustic waves at the lower Mach numbers.
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The fast acoustic waves produce a higher response along the wall than the slow waves,
which is due to the different wave structure induced downstream of the shock and a
stronger resonance mechanism at the leading edge. For each Mach number this mech-
anism produces an early amplification of mode F until a first peak is reached. A lower
Mach number (for the same dimensional frequency range) and a higher frequency are
seen to decrease the distance at which the first peak of Mode F is reached. For the Mach
3 and Mach 6 cases, the response further downstream is characterised by a frequency-
dependent oscillatory behaviour, representing mode F (which is no longer synchronised
with the forcing mode) being modulated by the forcing fast acoustic mode. The re-
sponse to slow acoustic waves, in contrast, shows a frequency-dependent early decay,
caused by the absence of a strong resonance mechanism, which is in turn due to the
waves transmitted in the post-shock region and interacting with the boundary layer
being desynchronised with the slow mode generated at the leading edge. Further down-

stream the slow mode is then seen to keep a substantially constant low amplitude.

An angle of incidence of the fast acoustic waves of 10° is seen to amplify the response
along the lee side at the higher frequencies, thus suggesting an enhancement of the
leading-edge resonance mechanism for mode F, whilst an opposite behaviour of the wall
response is shown for slow acoustic waves, with a decaying amplitude downstream along

the wall at all frequencies.

An angle of attack of 10° is shown to provide a significantly higher response along the
windward side compared to the lee side, for both fast and slow acoustic waves, along
with a substantially different post-shock wave structure between the two wedge sides. In
particular, high-amplitude dragged waves downstream of the shock are observed for both
fast and slow acoustic waves on the windward side, in contrast to the wave structure
formed by the slow acoustic waves on the lee side, which consists of low-amplitude
transmitted waves travelling with higher phase speed with respect to the freestream

slow waves.

For all the Mach numbers, the numerical frequency spectra of the wall response showed
a relatively flat profile compared to the decreasing trend of the experimental frequency
spectra, for a constant amplitude of the freestream disturbances imposed at all the
frequencies, which proves that, for the considered cases, the receptivity does not play a
significant role in the shape of the frequency spectra of the wall response. As a result, the
shape of the estimated freestream noise level spectra, obtained through a combination
of the experimental wall pressure fluctuation levels and the numerical freestream-to-
wall transfer functions, appeared substantially unaltered relative to the shape of the

experimental wall pressure spectra.

Considering the freestream noise as a mixture of fast and slow acoustic waves, the
estimated freestream noise levels corresponding to two arbitrary wave combinations (i.e.
90% fast-10% slow and 90% slow-10% fast) were obtained. The values were found in
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the ranges: i) from 1.4 x 1073 to 5.7 x 1073 for the HEG facility at Mach 7.3, ii) from
2.9x 107 to 7.7 x 10~* for the RWG at Mach 6, and iii) from 5.6 x 10~% to 4.7 x 1073 for
the RWG at Mach 3, as moving from a freestream dominated by fast acoustic waves to a
freestream dominated by slow acoustic waves. These values agree reasonably well with
other numerical and experimental values available in the literature, thus representing
realistic noise levels in hypersonic wind tunnels, and indicate that the HEG wind tunnel
is noisier, in general, than the RWG wind tunnel, and that the slow acoustic waves are

dominant in the typical environment of a hypersonic wind tunnel.






Chapter 5

Results for the wedge with

three-dimensional acoustic waves

In this Chapter we will present the results of the simulations for the planar span-periodic
wedge geometry with 3D fast and slow acoustic waves. The receptivity mechanism at the
leading edge for two different amplitude levels of the freestream disturbances is investi-
gated, along with the effects on the downstream breakdown mechanism. The analysis of
the receptivity-breakdown mechanism is performed for two different leading-edge con-
figurations, namely an unswept and a swept (with 45° sweep angle) case. Moreover,
a preliminary 2D numerical study, in conjunction with an LST analysis, is conducted,
which provides an assessment of the relevance of previous theoretical studies available

in the literature, concerning the receptivity process in hypersonic flows.

5.1 Flow conditions for the 3D numerical cases

A total of 10 numerical simulations have been carried out including two Reynolds num-
bers. For the lower Reynolds number, Re = 1400 (based on the nose radius), only the
receptivity to fast acoustic waves has been investigated, for two different amplitudes,
5x 1073 and 5 x 1072 at each frequency. For the higher Reynolds number, Re = 5625,
which is in the range of the Reynolds numbers considered in the transition experiments
of Durant et al. [89], the receptivity to both fast and slow acoustic waves has been
studied, and for each case both higher amplitude and smaller amplitude freestream dis-
turbances have been applied, so that 4 cases have been run overall at this Reynolds
number in an unswept configuration. Finally, a further 4 cases, comprising fast and slow
freestream acoustic waves at two different amplitudes, have been run at Re = 5625 in a
swept configuration. The sweep angle (angle between the freestream direction and the
x-axis of the body) has been set to 45°, corresponding to the sweep angle studied in

some experimental and numerical cases for supersonic flow found in literature (Speer et

91
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Table 5.1: Settings of the numerical simulations

Case  Re A A (°) type
1 1400 5x1073 0 Fast
2 1400 5x1072 0 Fast
3 5625 5x1073 0 Fast
4 5625 5x1072 0 Fast
5 5625 5x1073 0 Slow
6 5625 5H5x1072 0 Slow
7 5625 5x1073 45  Fast
8 5625 5x1072 45  Fast
9 5625 5x1073 45  Slow

10 5625 5x1072 45  Slow

al.[65], Creel et al. [57]). Table 5.1 shows the details of the 10 numerical cases just men-
tioned. For each case the Reynolds number based on the nose radius Re is given along
with the overall amplitude of the freestream disturbance A, (being Ay, = Ag+ A1 + As
the sum of the density fluctuation amplitudes of the 2D wave and the oblique waves for
each frequency), the sweep angle A, and the type of acoustic wave used as freestream

disturbance.

For each case the Mach number is M = 6, the freestream temperature is set to T, = 51.7
K, and an isothermal boundary condition is used on the wall, with wall temperature fixed
to the value T, = 300 K. These conditions are intended to simulate the freestream condi-
tions of a typical low enthalpy hypersonic wind tunnel. Ten different frequencies are in-
serted in the freestream forcing, each one an integer multiple of the base non-dimensional
frequency fo = 3.509 x 1073. Note that the non-dimensional frequency f takes the form
of a Strouhal number, f = f*R*/UZ, where f* is the dimensional frequency. In par-
ticular the spectrum of the 10 forced frequencies spans from f; = 5fy to fig = 14fo.
The non-dimensional frequency in its standard definition, Fy = 27 f*uZ, /(pi UX2), can
be obtained from Fy; = 2w f/Re. The frequency spectrum considered in the present
computations is based on linear stability studies conducted by De Tullio and Sandham
[85] for a flow at Mach 6 over a flat plate with a Reynolds number comparable with our
Re = 1400 case. In particular, the frequencies from f5 to fig covers the range of the
most unstable second mode frequencies. The overall freestream amplitude levels for the
density perturbation (rms of p_) of the multi-frequency 3D-wave inflow are 0.0064 and
0.064 for low and high amplitude disturbances respectively, and the corresponding levels

for the x-wise velocity component u/_ are 0.001 and 0.01 respectively. The rms levels of

/

' and w/ are identically zero in the freestream, as the imposed acoustic waves prop-

v
agate in the zz-plane with a 2D component (namely a wave oriented along the z-axis)
and two pairs of oblique waves with the same amplitude and opposite angle (namely 6,

and —0,.).
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The computational domain geometry, in a generic xy-plane is shown in figure 5.1, and
consists of a cylinder-wedge shaped wall boundary, with non-dimensional nose radius
R =1 and half-wedge angle of 4°, an inlet boundary shaped in such a way to allow
internal shock-grid alignment (by applying the spline-based method described in Section
3.3), an outlet boundary normal to the wall direction, and another boundary (not visible
in the figure) going from the inlet to the stagnation point on the wall along the z-axis,
where a symmetric boundary condition is applied due to the condition of zero angle of

attack and with symmetric disturbances assumed.

Consistent with the boundary conditions described in Section 4.1 for the 2D cases, a
fixed inflow boundary condition of a uniform freestream is imposed at each point on the
inflow boundary surface for the 3D cases, in order to compute the baseflow first, then
a time-periodic disturbance is added to the inflow (in the form shown in the Section
2.4) to carry out the unsteady simulations. On the wall the standard no-slip condition
is applied, along with the isothermal condition described above. The isothermal wall
boundary condition requires the effects of wall temperature fluctuations to be neglected,
which applies to ground-test experiments of laminar-turbulent transition in hypersonic
flows, where the short duration of the test does not cause significant changes in the
wall temperature. The flow at the outlet is treated with a zero-gradient boundary
condition. After the two-dimensional base flow has been computed on a single xy-plane,
the computational domain in figure 5.1 is extruded in the z-direction in order to create
a 3D cylinder-wedge geometry to study the three-dimensional effects of the system of
forced acoustic waves on the flowfield. At the side boundaries of the domain a periodic
boundary condition is applied, in order to simulate an object with an infinite length in

the spanwise direction.

The main dimensions of the 3D computational domain are L, = 1000 along the z-axis
and L, = 55 along the z-axis, and L, = 352 along the y-axis (with all the lengths
normalised with the nose radius). The grid contains 7920 points in the tangential-to-
the-wall direction, 150 points in the normal-to-the-wall direction, and 100 points in the
spanwise direction. The distribution of the grid points in the wall-normal direction is
controlled through a function that provides clustering in the shock region and towards
the wall in order to solve the captured shock wave and the boundary layer, as described
in Chapter 3
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Figure 5.1: Computational domain geometry in the zy-plane

5.2 Preliminary two-dimensional results at Re = 1400: fast

vs slow wave receptivity characteristics

5.2.1 Wave structure patterns behind the shock

For the case at Re = 1400 some preliminary two-dimensional unsteady simulations
looking at the receptivity effects to fast and slow waves were performed first. These
results served to verify the main differences in the propagation of fast and slow acoustic
waves downstream of the shock and in their response on the wall, and can be used as
reference 2D results when evaluating the effects of three-dimensional disturbances for the
present case and for the next cases with higher Re. Figures 5.2 and 5.3 show the density
fluctuation field of the flow downstream of the shock wave with freestream fast and slow
acoustic waves respectively, for an amplitude of the disturbance equal to 5 x 1073 at

each frequency.
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Figure 5.2: Density fluctuation field (p’) for the case of fast acoustic waves: 2D
result, Aoo =5 x 1073
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Figure 5.3: Density fluctuation field (p’) for the case of slow acoustic waves: 2D
result, Aoo =5 x 1073

The two figures highlight an important difference in the way in which fast and slow
acoustic waves are transmitted through the shock wave and propagate downstream. In
particular, it is evident that for the fast wave case the waves downstream of the shock
are almost perfectly aligned with the freestream forcing waves, which indicates that
the disturbance phase speed behind the shock is very similar to the phase speed in the
freestream. This is reasonable for the present case with fast acoustic waves, for two
main reasons: i) the Mach number is sufficiently high (M = 6) that the contribution
of the streamwise convection speed (u) to the fast wave phase speed (u + a, with a
being the local speed of sound) is significantly more important than the contribution of
the speed of sound, and ii) a small value of the half-wedge angle (6 = 4°) causes the
shock far enough from the nose region to be weak, with only a small decrease of the
streamwise velocity downstream of the shock wave. The small decrease of the streamwise
convection speed is partially balanced by the increase of the speed of sound downstream
of the shock due to the temperature increase, which provides a minor difference in phase

speed between the freestream and the post-shock flow.
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This result can also be verified through the inviscid oblique shock wave theory for a
shock formed on a sharp wedge of 4° inclination angle, which predicts a phase speed
in the streamwise (z) direction for the fast waves in the post-shock region of ¢,s =
Ups +aps = 1.1661 , a value that is very close to that of the freestream streamwise phase
speed of the forced waves, cooc = Uy + @ = 1.1666. From the computational results,
by selecting a point just downstream of the shock far enough from the nose region (e.g.
x = 460) we compute a z-phase speed of 1.1651, which proves the validity of the oblique

shock theory for this case.

In contrast, in the case with slow waves, it appears that two different families of waves,
not aligned with the freestream waves, are generated from the interaction with the
shock: a first one, with wave fronts at an inclination angle a, < 90° to the z-axis,
which seems to be the dominant type of wave in the immediate post-shock region, and
a second one, with an inclination angle a, > 90° and a lower amplitude, which interacts
with the boundary layer downstream. On the basis of the results shown in Section
4.3.1 for the characteristics of the post-shock wave structure, the former type of waves
can be referred to as dragged waves, representing wave fronts of the main freestream
forced waves crossing the shock and being deflected by the delay accumulated while
travelling downstream with a phase speed lower than the freestream phase speed. This
also explains the higher amplitude of these waves in the immediate post-shock region.
The latter type of waves represents, instead, convected waves generated downstream of
the shock from the interaction with the freestream slow waves. From the computational
results at a point located just downstream of the shock at x = 460, the z-direction
phase speed for slow acoustic waves is about c,s = 0.73, while the phase speed of the
slow waves in the freestream is co, = 0.83. Evaluating the percentage difference between
the freestream and the post-shock streamwise phase speeds (€ = |(coo — ¢ps)/Co0|) from
the computed values given above for both the fast and slow wave cases, the value for the
fast waves is ep = 4.28 x 1074, and for the slow waves eg = 0.12, i.e. for the fast-wave
case the post-shock phase speed is lower than the corresponding freestream value by
about a 0.04%, while for the slow-wave case the difference is about the 12%, which is no
longer a negligible value. This explains the pronounced deflection of the dragged wave

fronts in the post-shock region for the slow-wave case.

As already seen in Chapter 4, the difference between fast and slow acoustic waves in
the propagation downstream of the shock has strong effects on the boundary layer re-
ceptivity and the wall response. In particular, for fast acoustic waves, as the post-shock
flowfield is dominated by a single wave mode consisting of the main forced fast waves
crossing the shock, the dominant disturbances internalised in the boundary layer at the
leading edge are synchronised with the post-shock disturbances. Hence, they undergo a
strong resonance mechanism with the forcing waves, which in turn leads to a significant
amplification of the fluctuations along the wall as long as the internal and external wave

modes are synchronised. The internal mode amplified in the leading-edge region through
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the resonance mechanism described above is known in the literature as Mode F (Fedorov
[4]), or Mode I (Zhong and Ma [17]), and is predicted to be stable by LST, despite its

strong initial growth.

5.2.2 Characteristics of the wall response

The effects on the wall response for fast acoustic waves are shown in figure 5.4, which
depicts the distribution of the wall pressure fluctuation amplitudes along the wedge
at all the considered frequencies, obtained through a Fast Fourier Transform (FFT)
approach. As can be seen, the response to fast acoustic waves is characterised by an
early strong amplification of mode F, due to the resonance mechanism discussed in
Section 4.3.3, with a peak reached at a decreasing distance from the leading edge at
increasing frequencies. The initial peak is then followed by a rapid decay, which is a
result of the decrease of mode F phase speed along the wall (as shown in figure 5.5) and
the consequent desynchronisation of mode F from the forcing fast acoustic waves. In
particular, with reference to figure 5.5, at the leading edge, the phase speed (relative to
the pressure fluctuation signal along the wall at the frequency fs) assumes a value very
close to the phase speed of the fast acoustic waves (thus indicating synchronisation of the
internal mode, mode F, with the fast waves at the leading edge). Then, the phase speed
reduces gradually until the internal mode (mode F) enters a modulation process with the
forcing fast waves (as described in Section 4.3.3), which is shown by strong oscillations
in the phase-speed curve, as well as in the corresponding curve of the wall-pressure
fluctuation amplitude at the frequency fg (in figure 5.4). In the region x = 600 — 700,
the phase speed has almost approached the value relative to the slow acoustic waves
(synchronisation between mode F and mode S), which provides the excitation of mode
S. In our case, mode S is still stable, as will be shown by an LST study presented in the
next Section, so it does not show a strong growth, but a modulation, instead, with the

forcing fast acoustic waves downstream of = 700.
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Figure 5.4: Wall pressure fluctuations for fast waves: 2D result, Ao, = 5 x 1073,
The blue and red dash-dot curves, indicating frequencies fg and fyo respectively,
are the reference frequencies of the LST analysis in Section 5.2.3
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Figure 5.5: Phase-speed evolution of the pressure fluctuation signal along the
wall at the frequency fg: 2D result, Ao = 5 x 1073, The red dashed lines
represent the phase-speed values of fast and slow acoustic waves, and convected
waves in the freestream

Downstream of x = 800, the phase speed suddenly increases and starts oscillating around
the value relative to the fast acoustic waves, which represents a further synchronisa-
tion with the forcing fast acoustic waves, and provides the generation and downstream

resonance-induced amplification of the second mode F (or mode II). This is observed
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more clearly for frequency fig in figure 5.4, whose pronounced growth downstream of
x = 600 represents the amplification of the second mode F (mode II) due to the second
resonance mechanism with the fast acoustic waves. The smoothness of the curve (rela-
tive to frequency fio in figure 5.4) in the growth region of mode II indicates that mode
IT is the dominant mode in this region. These results are in a very good qualitative
agreement with Fedorov’s [4] theoretical predictions and with the numerical results of
Zhong and Ma [17] and Zhong and Wang [23], and will be compared with the results of

a linear stability analysis shown in Section 5.2.3.

In the case of slow acoustic waves (figure 5.6), in contrast, the trend of the pressure fluc-
tuation amplitude appears to correspond to a modulation mechanism between different

modes straight from the leading edge.
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Figure 5.6: Wall pressure fluctuations for slow waves: 2D result, A, = 5x 1073

The overall amplitude is lower by about an order of magnitude compared to fast acoustic
waves for all the frequencies, due to the absence of a strong resonance mechanism at the
leading edge (as discussed in Section 4.3.3), which is consistent with the energy of the
freestream slow acoustic waves being transferred to a system of waves with different phase
speeds after crossing the shock (namely ‘dragged’ and convected waves, as described in
Section 5.2.1). Thus, in this case the slow mode (Mode S) is directly generated at
the leading edge by means of the family of waves in the post-shock region with lower
phase speed (pertaining to slow acoustic waves). However, as soon as it is generated, it
undergoes a modulation process with the external waves of different phase speed and the
other internalised boundary layer modes. This system of mixed forcing modes causes the

response at the wall to be very similar for all the frequencies, with the positions of the first
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peak at the different frequencies being located in a very narrow region (x = 150 — 200)

close to the leading edge.

These 2D results show that in the early leading-edge region the receptivity to fast acous-
tic waves can lead to a much higher amplification of the internal boundary-layer modes,
due to the resonance mechanism with the mode of the fast acoustic waves, compared
to slow acoustic waves. In the following Sections we will study the effects of this be-
haviour on the receptivity and breakdown mechanisms in the presence of high-amplitude
freestream disturbances and oblique acoustic forcing, for unswept and swept configura-

tions.

5.2.3 Comparison with Linear Stability Theory

The numerical results previously described for the Fourier transformed wall pressure fluc-
tuations and the phase speed of the signal along the wall are here compared with results
obtained through a local temporal linear stability analysis, performed at several points

along the wedge. The linear stability analysis was performed using the NoSTRANA
(Nonlocal Stability and Transitional Analysis) code by Sansica[79].

5.2.3.1 Method for the Local Linear Analysis

As a first step the governing equations 2.2 are rewritten in non-conservative form, with

(5.1)

N & < & o

as the vector of the primitive variables. The temperature (7') represents here the vari-
able in the equation of the internal energy, which is in turn obtained subtracting the
contribution of the mechanical energy, given by the scalar product between the momen-
tum equation and the velocity vector (u), from the total energy equation, in which the

relation

T 1
E=— "+~ (u®+? 2 5.2
7(7—1)M2+2( + 0% + w?) (5.2)
is applied, where the first term represents the dimensionless internal energy. With this

arrangement the governing equations assume the following form,
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where the viscous stresses (7;;) are linked to the spatial velocity derivatives through rela-
tion 2.5, and the pressure in both momentum and energy equations have been expressed

in terms of the density and temperature through the equation of state 2.7.

The second step consists of superimposing small amplitude disturbances on the vector

of the primitive variables, which will assume the form

q(x7 y? Z’ t) = q(x7 y? Z) +q,($7 y’ Z? t) Y (5'6)

where q(z,y, z) represents the boundary-layer solution vector in the unperturbed flow,
while q'(z,y, z,t) is the disturbance vector. By applying this decomposition for the
vector of the primitive variables the governing equations for the perturbed quantities
can be obtained. Let us consider, for example, the continuity equation 5.7; by applying

the relation 5.6 the resulting perturbed continuity equation is

op . 9p | Ou; O op  , Op ou;  om;  ,0p ,8%
ot 5 on, T Pan, ot T 0n, T aw, Pam, T on, T Yom, Pam, O

in which the first three terms of the left hand side cancel out, as their sum represents the
continuity equation for the unperturbed flow, while the two terms at the right hand side
are nonlinear terms, which, in turn, are neglected for the assumption of small amplitude
perturbations, namely the linearity assumption. So, the linear perturbed continuity

equation is

op’ op’ , Op 8u 0
o gy jax] o, (5.8)

At this point, another simplification assumption is made, namely the assumption of
parallel flow, which states that the unperturbed flow does not vary along the streamwise

direction. Hence, considering the streamwise direction coincident to the z-direction, the
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adoption of the parallel flow assumption results in the unperturbed primitive variables

being dependent on the y-direction only, namely

ﬁ:ﬁ(y),a:a(y),T:T(y),TJ:u_):O : (5'9)

Repeating the same procedure for all the other equations provides a linear system of
equations in terms of the disturbance variables with coefficients depending on the in-
dependent variable y, known as linearised disturbance equations, or Orr-Sommerfeld
equations. For the derivation of the full system of the linearised disturbance equations,
which is beyond the purposes of the present study, the reader can refer to the work of
Sansica [79].

The next step is to perform a separation of variables between the independent variable

y and the other independent variables x, z and ¢, namely

d'(z,y,2,t) =q(y) - g(z, 2,t) . (5.10)

By introducing the variable separation 5.10 in the system of the linearised disturbance
equations, and by imposing for the function g(z,z,t) a periodic function in both the

space variables and in time, corresponding to the wave solution

d'(z,y,2,t) = q(y) - elileethzmwt) (5.11)

in which « represents the streamwise wavenumber in this Section (not to be confused
with the symbol indicating the angle of attack in the other Sections), 8 the spanwise
wavenumber, and w the angular frequency of the periodic wave perturbation, the linear
system of partial differential equations reduces to a linear system of ordinary differential

equations in the variable y, which can be expressed as

Lg = wKq . (5.12)

In equation 5.12, L is a matrix containing the y-dependent coefficients of the system,
the wavenumbers «, 3, and the y-derivatives of the components of the variable vector
q; while K is a diagonal matrix containing the terms multiplied by w, which come out

from the time derivatives of the function g(z, z,t) in all the equations.

System 5.12 represents an eigenvalue problem. The resolution of this eigenvalue problem,
at a particular z-location along the wall, will provide a certain number of eigenvalues w,
representing the frequencies of the different modes, and the corresponding eigenvectors

q(y), containing the eigenfunctions p(y), u(y), v(y), w(y), T(y), representing, in turn,
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the shape of each mode inside the boundary layer at that particular x location. The
discretisation of the system in the wall-normal direction is made through a Chebyshev
collocation method. Sansica [79] derives all the components of the matrices L and K in

system 5.12, and gives a description of the Chebyshev discretisation method.

Two different approaches can be adopted for the local stability analysis, namely a tem-
poral and a spatial approach. The temporal approach consists of imposing a certain real
value for the streamwise wavenumber («) and for the spanwise wavenumber (), which
is set to zero for 2D waves, and performing the analysis described above to obtain as
output the eigenvalues w of the system, which have a real and an imaginary part. The
real part (w,) represents the angular frequency of a single mode, while the imaginary
part (w;) represents the temporal growth rate. A positive sign of w; indicates a stable
mode, while a negative sign indicates an unstable mode. The spatial approach works the
other way round, namely a real frequency w is given as an input, along with an initial
guess for a and 3, and complex values of o and 3 are obtained, for all the modes found
at the given frequency w, with the real part indicating the corresponding wavenumber,
and the imaginary part representing the spatial growth rate. In the present work only
the temporal approach is considered, and the analysis is performed at several = stations
along the wedge, for different streamwise wavenumbers («) among the forcing wavenum-
bers of the freestream acoustic wave inflow in our unsteady numerical simulations. The
spanwise wavenumber (/3), in contrast, is set equal to zero, as we consider 2D waves. In
order to perform the linear stability analysis, the boundary-layer solution vector of the
baseflow (g) is extracted from our numerical simulations at all the considered x stations,
and used as input in the temporal analysis. In order to guarantee a quicker convergence
of the method, two bounds of the phase speed (cp,) are imposed as input for the anal-
ysis, so that only complex eigenvalues w within the specified range of phase speeds are

returned, for each given value of «, according to the relation c,, = w;/a.

5.2.3.2 LST results

The results of the local stability analysis, using the temporal approach, have been ob-
tained at different points along the wedge for two different streamwise wavenumbers,
corresponding to the forcing wavenumbers at the frequencies fg and fig for the case of
fast acoustic waves. The wavenumbers were computed by considering the local value
of the wall-tangential fast-wave phase speed at the boundary-layer edge resulting from
the numerical solution for the baseflow, namely c,;, = ue + @, where u. and a. are
the velocity components in the wall-tangential direction and the speed of sound at the
boundary-layer edge respectively. Thus, the wavenumber to be used as input in the
temporal LST analysis is computed through the relation o = 27 f /cpy,. Figure 5.7 shows
the spectrum of the complex eigenvalues at different positions along the wedge for the

frequency f1p. The analysis has been performed in a phase-speed range spanning from



104 Chapter 5 Results for the wedge with three-dimensional acoustic waves

the slow-wave to the fast-wave acoustic phase speed. Moving from low to high values
of w, in the spectrum corresponds to moving from lower phase speeds to higher phase
speeds. The two horizontal branches of modes at w; ~ 0 positioned at the left and
right extremes of the graph represent the slow and the fast acoustic wave continuous
spectrum respectively. The branch of modes positioned in the middle of the graph, at

approximately w, = 0.26, represents the entropy/vorticity wave continuous spectrum.

As can be seen, performing the LST analysis at several = positions is equivalent to track-
ing the movement of some discrete modes of interest in the spectrum. The evolution
of the different discrete modes in the complex plane can, in turn, help understand the
corresponding trend of the numerically obtained pressure fluctuation amplitude distribu-
tion along the wall shown in figure 5.4 at the frequency fi1p. In particular, in the region
of the first peak of wall response (x &~ 150), as seen in figure 5.4, figure 5.7 shows the
presence of a discrete stable mode close to the continuous spectrum of the fast acoustic
waves (blue star symbol, indicating the position x = 143, with w, = 0.294). This mode
corresponds to mode F, which is synchronised with the forcing fast acoustic waves in
the leading-edge region, thus experiencing a resonance-induced strong amplification, as
shown by the numerical results in figure 5.4. However, as is evident in figure 5.7, mode F
gradually moves away from the fast acoustic wave continuous spectrum, corresponding
to a desynchronisation, resulting in a downstream decay of the wall response, due to the
decay of mode F, which decreases its phase speed (as it moves towards lower values of

wy) and becomes more stable (moving towards higher negative values of w;).

In the region z ~ 400 — 500, characterised by a modulation behaviour shown by the
oscillatory wall response in figure 5.4, mode F traverses the entropy/vorticity wave
continuous spectrum, and, at the same time, another discrete mode, close to the slow
acoustic wave continuous spectrum, starts moving rapidly from very low values of w;
to higher values, thus becoming less stable, with increasing phase speed. This mode
corresponds to mode S, which is excited due to a synchronisation with the decaying

mode F, after crossing the convected wave continuous spectrum.
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Figure 5.7: Spectrum of the eigenvalues at the frequency fig

Between z = 500 and x = 700 the leftwards path of mode F in the eigenvalue spectrum
is replaced by the leftwards path of a different discrete mode, namely a Mack mode,
which first appears at = 641 (indicated by a green square symbol) as a consequence of
the previous wavelength exchange (or synchronisation) mechanism between mode F and
mode S, and the progressive growth of mode S, moving towards the higher frequency
(wy) and the higher (closer to zero) growth rate (w;) values. The Mack mode is generated
at higher frequencies than mode S, however, as we move further downstream, it shows a
decreasing frequency (and phase speed), and becomes progressively less stable. In this
region, the continuous growth of mode S, due to the synchronisation with the decaying
mode F, followed by the generation and progressive growth of the Mack mode, results
in a growth of the wall response, as shown in figure 5.4, whose oscillatory behaviour
indicates a modulation process between the forcing fast acoustic waves and the above

mentioned internal competing modes.

Downstream of x = 700 figure 5.4 shows another growth of the wall response, which is
now much smoother than the growth in the previous region, thus indicating that there
is a dominant mode in this region. This mode is again mode F, which grows as a con-
sequence of a second resonance-induced amplification cycle, due to the synchronisation
with the fast acoustic waves. For this reason, we refer to this mode as the second fast
mode, or mode F II. The downstream evolution of the second fast mode is represented
by a short branch very close to the fast acoustic wave continuous spectrum in the top

right corner of figure 5.7.

Similar characteristics to those described above for the eigenvalue spectrum at the fre-

quency fi19 have been observed for the corresponding spectrum at the frequency fg, with
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the exception that the evolution path of the different modes along the wall extends up to
approximately the position where mode F' traverses the convected wave continuous spec-
trum. This means that the branches of the Mack mode and of the second fast mode are
not present in the eigenvalue spectrum at the frequency fg. In other words, the down-
stream generation-evolution path of the boundary-layer modes at the higher frequencies
is quicker than at the lower frequencies, and results in the mode F - mode S wavelength
exchange mechanism taking place closer to the leading edge. This effect can be observed
in figure 5.8, which shows a comparison between the DNS and the LST results for the
internal mode phase speed at both the frequencies fg and fio (the curve relative to the
numerical result for the frequency fg is the same shown in figure 5.5). The phase speed
from the DNS results has been computed through the fast Fourier transformed wall

pressure fluctuations, using the relation for the streamwise wavenumber

1 op,(, f)

L A R T

(5.13)

and then applying the relation cp, = 27 f /.. As can be seen, for both the frequencies,
the numerical phase speed (represented by blue and red solid lines for the frequencies fg
and fio respectively) starts at a value of about 1.12 in the early nose region (x = 20—40),
which is slightly lower than the local fast acoustic wave phase speed of about 1.16. This
may be due to non-parallel effects related to the presence of the strong bow shock,
significantly affecting the flowfield and the wave propagation speed in the early leading-
edge region. The LST analysis performed at the distance x = 50 from the leading edge
provides, instead, phase speed values for mode F of about 1.165 for the frequency fg
and 1.15 for the frequency fi9, which are much closer to the local fast acoustic wave
phase speed. Thus, the internal mode generated at the leading edge is mode F. Overall,
both DNS results and LST results for mode F show a good agreement in the decay part
of the numerical phase speed, thus indicating that the internal mode decaying from the
leading-edge towards downstream is indeed mode F. In particular, the numerical phase
speed decreases up to about x = 300 at the frequency fio, while it keeps decaying up to
about x = 750 at the frequency fg. Downstream of these two points mode F traverses the
convected wave continuous spectrum, the numerical phase speed shows a rapid increase,
and a second synchronisation with the local fast acoustic waves is reached (as already
mentioned in Section 5.2.2). Downstream of this synchronisation point (r = 370 at
the frequency fi9, and x = 830 at the frequency fs), the numerical phase speed no
longer follows the LST result for mode F, but, in contrast, agrees very well with the
LST result for mode F II, as can be seen further downstream for the frequency fio
(at the lower frequency, fs, mode F II would be reached further downstream of the
computational domain outer edge). During the decay of mode F, when the phase speed
drops below the value of 0.9, strong oscillations of the numerical solution are observed, as
a consequence of the mode F phase speed approaching the phase speed of mode S, which

results in an initial growth of mode S, as is shown by the LST curves representing mode
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S (blue and red dash-dot curves with square symbols). These oscillations represent, in
fact, the modulation process between the forcing fast acoustic waves and the emerging
mode S, which can be further validated, as described in Section 4.3.3, using relation
4.5. Assuming for the phase speed of the known mode (c,) the value of the local fast-
acoustic wall-tangential phase-speed at the location x = 700, namely 1.168, and taking
the distance between the two consecutive peaks of the wall pressure response curve at
x = 696 and = = 787 (within the modulation region), with reference to figure 5.4 for the
frequency fg, i.e. Ax = 91, the value of the second competing mode in the modulation
process is ¢, = 0.855, which is very close to the LST results for mode S phase speed

shown in figure 5.8 in the considered region.

Strong oscillations are observed also further downstream, after the second synchronisa-
tion with the fast acoustic waves, representing a modulation between the growing mode
S, with increasing phase speed, and the emerging mode F II. As shown by the frequency
f10, these oscillations reduce further downstream until disappearing when mode F II
becomes the dominant mode inside the boundary layer. Furthermore, downstream of
the intersection point between mode F and mode S LST phase speeds (i.e. the mode F
- mode S synchronisation point) at the frequency fi9, the Mack mode is generated and
develops downstream with an initial decrease of the phase speed, as a continuation of
the mode F branch, but with increasing growth rate. These results are qualitatively in

a very good agreement with the results of Zhong and Wang [23].
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Figure 5.8: Phase speed of the boundary-layer modes along the wall for the
frequencies fg and f19. Comparison between DNS and LST results. The dotted
horizontal blue lines indicate the local phase-speed values of the fast and slow
acoustic waves, and the entropy /vorticity waves



108 Chapter 5 Results for the wedge with three-dimensional acoustic waves

Figure 5.9 shows the corresponding LST results for the growth rates of the internal
modes at both the frequencies. As can be seen, all the fast modes, namely Mode F and
Mode F II, have a decreasing growth rate, as they are damped modes. The slow modes,
namely Mode S and the Mack mode (which can be considered as a second, or higher
frequency, slow mode), show in contrast an increasing growth rate, as they represent the
instability modes, although they are still stable (negative w;) in this case. The arrow
illustrates the exchange mechanism between the decaying fast mode (Mode F) and the
Mack mode (or second instability mode) taking place at the synchronisation (or phase-
speed intersection, as shown in figure 5.8) point between Mode F and Mode S. This
mechanism is also evident in figure 5.7, where Mode F (blue) and Mode S (red) arrows
illustrate the movement of either mode in frequency (hence in phase speed) towards each
other, then, when their frequencies match, the Mack mode is excited and replaces Mode

F in the path towards decreasing frequencies.
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Figure 5.9: Growth rates of the boundary-layer modes along the wall for the
frequencies fg and f1g, obtained through LST

A further comparison between the DNS and the LST results, as well as a more detailed
identification of the internal modes, is made by considering the eigenfunctions of the
different modes at several positions along the wall. Figure 5.10 shows the temperature
and wall-tangential velocity eigenfunctions for the frequency fg at x = 259, which is
the position where the first peak of the wall pressure fluctuation amplitude is reached
due to the leading-edge fast-acoustic - mode F resonance mechanism (with reference to
figure 5.4). At this position mode F is the dominant mode inside the boundary layer,
which is proved by the good agreement between the DNS results for T and 4, namely the

fast Fourier transformed temperature and wall-tangential velocity fluctuation amplitudes
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along the wall-normal direction, and the LST eigenfunctions for mode F. As can be seen,
the shape of mode F is characterised by a high peak near the wall. These results are
also in a good qualitative agreement with the numerical and LST results of Zhong [86]
for the eigenfunctions of mode F. It shall be noted that the fluctuation amplitudes are

normalised with the maximum inside the boundary layer (A/A42)-

Figure 5.11 shows the corresponding eigenfunctions for the frequency fg at the position
x = 700, which is within the modulation region, and in particular at about the location
of a peak of the wall response. Here, the DNS results are compared with the LST results
for Mode S at this position, which represents one the competing modes in the modulation
region, as said above. As can be observed, the numerical eigenfunctions are characterised
in general by the typical patterns of the fast acoustic wave mode, namely the maximum
peak near the wall. However, the numerical temperature perturbation shows also a high
peak close to the boundary-layer edge, which is a pattern of the eigenfunctions for mode
S, as shown by the LST results. This is reasonable, as in the modulation region, as
described above, the two competing modes are represented by the forcing fast acoustic

waves and the growing mode S.

Finally, figures 5.12 and 5.13 show the eigenfunctions for the frequency fig at the posi-
tions z = 641 and x = 940 respectively. In figure 5.12 the LST eigenfunctions for the
Mack mode are shown, which has been observed at the corresponding position (x = 641)
in the eigenvalue spectrum in figure 5.7, while the LST results in figure 5.13 correspond
to mode F II, which is the dominant mode in the downstream region. The numerical
results at the position x = 641 show the strong influence of the external fast acoustic
waves, which can be noticed also by the fact that both temperature and velocity per-
turbations do not approach zero outside the boundary layer (y, > 20). This is due to
the second synchronisation with the fast acoustic waves characterising this flow region,
as shown by figure 5.8, which provides the second amplification of the fast mode. As
the resonance mechanism with the fast acoustic waves leads again to a strong growth of
the fast mode, the Mack mode, which is generated in this region, can be considered as
covered by the fast mode. The fast mode, in turn, keeps growing further downstream
forming mode F II, whose shape is shown in figure 5.13. Here a good agreement between
the DNS results and the LST results for mode F 1II is observed, with mode F II being
characterised by two consecutive peaks near the wall, as also shown in the work of Zhong
[86]. This proves that mode F II, resulting from the second resonant interaction with

the fast acoustic waves, has become the dominant mode in the downstream region.

In conclusion, the present numerical and theoretical results show the main characteristics
of the leading-edge receptivity mechanism at hypersonic speeds, and are in qualitative
agreement with other theoretical and numerical studies available in the literature, for

different flow conditions.
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Figure 5.10: Temperature and wall-tangential velocity eigenfunctions for the
frequencies fg at the position z = 259
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Figure 5.11: Temperature and wall-tangential velocity eigenfunctions for the
frequencies fg at the position z = 700
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Figure 5.12: Temperature and wall-tangential velocity eigenfunctions for the
frequencies f1g at the position x = 641
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5.3 Results for the unswept configuration

5.3.1 Cases 1-2, Re = 1400, fast waves: streak instability mode

We start to illustrate the results of the 3D simulations for the cases at lower Reynolds
number with fast acoustic waves as freestream disturbances. Figures 5.14 and 5.15
show contours of the real part of the Fourier-transformed wall pressure fluctuations
at all the considered frequencies (from f; at the top to fip at the bottom) for cases
at lower and higher freestream disturbance amplitude respectively (cases 1 and 2 in
table 5.1). Moving from top to bottom in both figures, the effect of frequency on the
resonance mechanism can be seen, with the peak wall disturbance amplitude moving
towards the leading edge as the frequency is increased. In the lower amplitude case
(figure 5.14) the wall disturbances appear to be dominated by a 2D mode through the
whole length of the computational domain; in contrast, in the higher amplitude case
(figure 5.15) the 2D mode seems to be the most amplified mode only in the leading-
edge region, namely in the early region of increasing amplitude, and, once the peak has
been achieved, 3D modes (with non-zero spanwise wavenumber) emerge and become
the dominant wave structures further downstream. The solution in the nose region
(z = 0 — 200) is qualitatively very similar between the two different amplitude cases
at all the frequencies, with the amplitude scaled by an order of magnitude as for the
forcing, i.e. (unsurprisingly) the solution can be reasonably considered as linear in the
early region of the computational domain. Further downstream, the solution becomes
different between the cases at different amplitude, meaning that nonlinearities for the
higher amplitude case are no longer negligible and become more and more important as

going downstream.
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Figure 5.14: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the different forced frequencies. Case 1, Ao, = 5 x 1073. The labels of
the vertical (z) and horizontal (z) axis have been purposely omitted
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Figure 5.15: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the different forced frequencies. Case 1, Ao = 5 x 1072. The labels of
the vertical (z) and horizontal (z) axis have been purposely omitted

Figure 5.16 shows the trend of the wall pressure fluctuation amplitudes along the wedge
for the modes $ = 0,1,2 at the frequency f2 for both high and low amplitude cases,
obtained through a FFT in time and in the spanwise direction. The wall pressure
fluctuation amplitudes for each mode are normalised with the value of the freestream
pressure fluctuation amplitude (i.e. as pl,/p..) pertaining to the specific mode (e.g.,
the wall perturbation relative to the 2D mode is divided by the imposed freestream
perturbation amplitude for the 2D mode). As can be seen, the wall response very close
to the leading edge does not show a significant disagreement between case 1 and case

2 , due to the nonlinear effects being relatively small in this region. In the second
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half of the computational domain, in contrast, the high nonlinear effects in the case of
higher freestream disturbance amplitude (case 2) provide markedly different behaviours
between cases 1 and 2. In particular, the 8 = 2 mode decays to very low values in case
1, whilst, in case 2, is strongly excited in the second half of the domain. Also, it is
evident that the rapid growth of the f = 2 mode starts at a position very close to the
point where the peak of the 2D mode F is reached, thus suggesting that the resonance
mechanism at the leading edge might play an important role in the excitation of 3D

boundary-layer instabilities.
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Figure 5.16: Extracted modes (8 = 0,1,2) of the wall pressure fluctuation
amplitudes at the frequency fs, for case 1 and case 2

By looking at figure 5.17, which shows an instantaneous contour of the streamwise
(tangential to the wall) velocity component (u;) along the j = 10 grid line inside the
boundary layer, it is evident that the excitation of the 8 = 2 mode at the different forcing
frequencies corresponds to the generation and downstream development of streaks in
the streamwise direction inside the boundary layer. In particular, the figure reveals
the presence of two low velocity streaks generated approximately in the region x =
400 — 500 and growing downstream, which correspond to the pair of high temperature
streaks shown in figure 5.18, depicting the temperature contour along the same grid
line j = 10. Figure 5.19 shows a cross-section of the streamwise velocity in the zy,-
plane (where y,, represents the normal distance from the wall) at the position = 940,
that highlights the boundary layer distortion at the location of the streaks. In between
the low-velocity streaks (namely at about z = 25) the streamwise velocity assumes

higher values, compared to those assumed inside the streaks, which is consistent with
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the streaks being formed by a pair of counter-rotating vortices that take high-speed
cold fluid from the upper layers towards the wall. The streaks represent a stationary
instability, which can be referred to as the (0,2) mode (indicating with 0 the frequency,

as they are stationary, and with 2 the spanwise wavenumber [3).

Figure 5.17: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (u;) along the grid line ;7 = 10 inside the boundary layer.
Case 2, Ayo =5 x 1072
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Figure 5.18: Instantaneous temperature contour (7) along the grid line j = 10
inside the boundary layer. Case 2, Ao =5 x 1072
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Figure 5.19: Instantaneous contour of the streamwise velocity component (uy)
on the zy,-plane at the position x = 940. y,, is the distance from the wall along
the local normal direction. Case 2, Ao =5 x 1072
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5.3.2 Cases 3-4, Re = 5625, fast waves: streak breakdown mechanism

Cases 3 and 4 pertain to the higher Re = 5625 and freestream fast acoustic waves in the
unswept configuration. For the case of higher freestream disturbance amplitude (case 4),
due to numerical instability issues, the computation has been performed through DNS
up to the station x = 400, and then continued from this point up to x = 750 through
a Large Eddy Simulation (LES), using the Mixed-Time Scale approach (described in
Section 2.7). For case 3, the results in terms of the main wave structures forming in
the boundary layer are similar to the corresponding low freestream amplitude case at
lower Reynolds number (case 1), as the wall response is mainly dominated by the 2D
fast mode. Figure 5.20 shows the real part of the Fourier-transformed wall pressure
fluctuations at the frequency fs for case 3. The figure reveals a superposition along
the whole length of the computational domain between the 2D mode and the oblique
8 = 1,2 modes, which are all evolving from the resonance mechanism in the nose region
and the modulation mechanism further downstream, with the 2D mode being dominant.
A similar trend is shown for all the other frequencies (which are not shown for reasons
of brevity). For this case (case 3) at lower amplitude, as also for the corresponding
case at lower Reynolds number (case 1), there is no streak formation due to negligible
nonlinearity effects. Figure 5.21 shows the wall pressure fluctuation field at the same
frequency fs for case 4. Here, the 2D mode is shown to be dominant in the region
200 < x < 300, while downstream of x = 400 the response is characterised by streaks,

which in this case are seen to start breaking down for z > 500.
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Figure 5.20: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fs. Case 3, Ao =5 x 1073
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Figure 5.21: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fs. Case 4, Ao =5 x 1072

Evidence of the breakdown mechanism can be found in figures 5.22 and 5.23, showing
the instantaneous streamwise velocity and temperature contours along the 57 = 10 grid
line inside the boundary layer. In these figures, two low velocity streaks are clearly seen
to form around x = 350. These streaks grow further downstream remaining laminar up
to about x = 500, and finally break down in the region 500 < z < 550. Moreover, in the
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region 400 < x < 500 the streak structures appear strongly distorted by the interaction
with the wave fronts of the 2D mode, which seems to cause oscillations of the streak,
streak bending and even bifurcation. The streak located at 0 < z < 25 appears to
develop a curvature along its longitudinal path in the region 450 < x < 500, while, at the
same position (around x = 450), another thinner (secondary) streak (located at about
z = 25) seems to detach from the main streak. This then develops downstream with
an inclination angle with respect to the main streak oriented along the x-axis. At the
same time, the second main streak (25 < z < 55) deviates from the original z-oriented
path at about z = 500 and continues downstream with a slight inclination angle. These
phenomena that modify the streak structures are coincident with a superposition of the
streaks and highly amplified 2D modes, as seen in figure 5.21 in the region 450 < z < 500.
Namely, the interaction between the amplified 2D modes in the leading-edge region and
the streak mode leads rapidly to the streak breakdown. Figure 5.24 shows a cross section
of the streamwise velocity (u;) in the boundary layer at = 500. It is evident that the
streak structure consists of two main low velocity streaks, with cores located at z = 15
and z = 40, and a secondary smaller streak located at z = 22 that is detaching from
the first main streak (z = 15). As in the lower Reynolds number case (case 2), the
intermediate regions between two adjacent streaks are characterised by much higher
values of the streamwise velocity, corresponding to areas where the cold high speed fluid

of the upper layers is brought towards the wall by means of a pair of counter-rotating

streamwise vortices.
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Figure 5.22: Instantaneous contour of the streamwise (tangential to the wall)

velocity component (u;) along the grid line j = 10 inside the boundary layer.

Close-up in the region 300 < x < 750 to highlight the streak evolution. Case 4,
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Figure 5.23: Instantaneous temperature contour (7') along the grid line j = 10
inside the boundary layer. Close-up in the region 300 < x < 750 to highlight
the streak evolution. Case 4, Ay, = 5 x 1072
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Figure 5.24: Instantaneous contour of the streamwise velocity component (uy)
on the zy,-plane at the position x = 500. y, is the distance from the wall along
the local normal direction. Case 4, Aso = 5 x 1072

The particularly rapid generation and growth of the streak mode observed in figures
5.16, 5.17 and 5.18, for the lower Reynolds number case, and the corresponding rapid
breakdown observed in figures 5.22 and 5.23, for the higher Reynolds number case,
suggest that in the presence of high-amplitude freestream disturbances nonlinear effects
may become dominant already in the early leading-edge region, thus leading to a violent
fully-nonlinear transition process further downstream. However, previous studies (e.g.
Andersson et al.[87] and Brandt and Hennigson [88] for the case of an incompressible flow
over a flat plate) showed that the physical mechanism behind the generation, growth and
breakdown of streamwise streaks, can be associated to a transient growth of the streak
instability mode. In particular, based on these studies, a lift-up effect associated to
vortices in the streamwise direction (representing the initial disturbances in the leading-
edge region) is at the basis of the generation and non-modal growth of elongated streaks,
whose early breakdown is induced by secondary instabilities that take place once the

amplitude of the streaks grows up to a sufficiently large value.

The present numerical results have shown that the resonance mechanism of the 2D
fast mode at the leading edge can enhance the mechanism of generation, growth and
breakdown of the streaks, however the question relative to whether this is associated to
a fully nonlinear process or to a transient growth mechanism is still open and requires

a more in-depth analysis, which we address to a future investigation.
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5.3.3 Cases 5-6, Re = 5625, slow waves

For the slow wave cases at Re = 5625 in the unswept configuration (cases 5 and 6), we
show representative results at two different frequencies (f4 and fio). Figures 5.25 and
5.26 show the wall pressure fluctuation field for case 5 (lower freestream amplitude) at
frequencies fy and fig respectively, while figures 5.27 and 5.28 show the corresponding
results for case 6 (higher freestream amplitude) at the same frequencies. It can be seen
that the change in freestream disturbance amplitude level does not produce significant
changes in the wave structure of the wall response, due to the weaker amplification rates
shown by the response to slow acoustic waves in the leading-edge region compared to fast
acoustic waves, which has been previously discussed, thus proving a much lower degree of
nonlinearity in the receptivity to slow acoustic waves compared to the receptivity to fast
acoustic waves. At all the frequencies the wall response consists of three-dimensional
wave structures over the whole domain length, which means that in the case of slow

acoustic waves there is no clearly dominant mode among the forced 5 = 0, 1,2 modes.
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Figure 5.25: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fy. Case 5, Ay =5 x 1073
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Figure 5.26: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fi9. Case 5, Ao =5 x 1073
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Figure 5.27: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency f;. Case 6, As =5 x 1072
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Figure 5.28: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fio. Case 6, Ay =5 x 1072

Figures 5.29 and 5.30 show the distribution of the pressure fluctuation amplitude along
the wall for the modes 8 = 0,1,2 at the frequencies f; and fi9, for cases 5 and 6
respectively. In both cases the oblique modes (5 = 1,2) show a higher amplification
than the 2D mode at both the considered frequencies. In particular, at the higher
frequency (fi0), for which all the modes show a considerably higher amplitude than
the corresponding modes for the f; frequency in the leading-edge region, the oblique
mode 3 = 2 is the most amplified mode, with an amplitude (p),/pl,) of about twice the
amplitude of the 2D mode and 1.4 times the amplitude of the 5 = 1 mode at the position
of its maximum (z = 350). This proves that, in contrast to the fast waves, in the case
of slow acoustic waves the absence of a strong resonance mechanism at the leading edge
causes the 2D mode not to be the dominant mode in the nose region, and the oblique
modes, on the contrary, are eventually more amplified, dependent on the frequency, than
the 2D mode, such that the overall response along the wall surface consists of a mix of

2D and 3D competing modes.
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Figure 5.29: Extracted modes (8 = 0,1,2) of the wall pressure fluctuation
amplitudes at two forced frequencies (fs and fip). Red and blue colours are
used to indicate the f; and fig frequencies respectively. Solid, dashed and dotted
lines are used for the 5 =0 (i.e. 2D), 5 =1 and 8 = 2 modes respectively. Case
5, Aoo =5 x 1073
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Figure 5.30: Extracted modes (8 = 0,1,2) of the wall pressure fluctuation
amplitudes at two forced frequencies (f4 and fi9). Red and blue colours are
used to indicate the fy and fi¢ frequencies respectively. Solid, dashed and dotted
lines are used for the 5 =0 (i.e. 2D), 5 =1 and 8 = 2 modes respectively. Case
6, Ao =5 x 1072

Moreover, the growth of the wall fluctuations (at both low and high freestream am-
plitude, in figures 5.29 and 5.30 respectively) for the f = 1 mode at the frequency f4
through the whole domain length, and for the 5 = 2 mode at the higher frequency fio
in the first half of the domain, might be connected to oblique first mode linear instabil-
ities present in particular regions of the domain, in the considered range of frequencies.
However, in contrast to the fast wave case, the receptivity to slow waves is seen not to
produce streak instability. This is due to the absence, for slow waves, of a strong res-
onance mechanism between the external forcing mode and the internal boundary layer
modes. Thus, in the presence of high freestream noise levels, the fast acoustic waves
can be more dangerous than the slow waves, as they appear to be more efficient in the
generation of streaks in the leading-edge region and in leading the boundary layer to

transition.
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5.4 Results for the infinitely swept configuration (A = 45°)

5.4.1 Crossflow instability in the mean flow

For the swept case, with reference to the sketch in figure 5.31 and the illustration given
in figure 2.2, a sweep angle of A = 45°, between the streamwise direction of the flow and
the leading edge, was considered. At the side boundaries of the computational domain a
periodic boundary condition is applied, in order to simulate an infinitely swept leading

edge.
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Figure 5.31: Sketch of a swept leading edge

Before showing the results for our unsteady simulations, we present some numerical re-
sults for the mean flow, which show the presence of a crossflow inflection point in the
swept configuration. Figure 5.32 shows the mean pressure trend along the wall, showing
a streamwise gradient that is still present up to high distances downstream along the
wedge. Indeed, figure 5.33, depicting the crossflow boundary-layer profiles at different
distances from the leading edge along the wall, shows that the crossflow boundary-layer
profile is characterised by inflectional profiles from the leading-edge region, where it
assumes higher values due to the higher pressure gradient, up to high distances down-
stream. This proves that in the swept configuration the boundary layer is likely to be

subjected to a crossflow instability along the whole length of the wedge.



124 Chapter 5 Results for the wedge with three-dimensional acoustic waves

0.038 - 1

0.036 - 1

0.034 ¢ 1

0.032 1

0.03r .

0.028

0.026

0 200 400 600 800
x

Figure 5.32: Mean pressure trend along the wall
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Figure 5.33: Mean crossflow boundary-layer profiles at several distances from
the leading edge

5.4.2 Cases 7-8, Re = 5625, fast waves: fast-mode breakdown mecha-

nisms

For the infinite swept case we show results at representative frequencies fo and f1g, based

on the general physical aspects we want to highlight. In particular, fo is representative
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of a lower frequency range (from fi to f5), as the results reached at this frequency are
quite similar to those of the other low frequencies, whilst, for the same reason, fiq is
to be considered as representative of a higher frequency range (from fg to fig9). As in
case 4, the results of case 8 (fast waves, high disturbance amplitude) have been achieved
through a mixed DNS/LES approach, with DNS up to = 550, then from this station
up to the domain outer edge the computation has been continued by means of an LES,

using the Mixed-Time Scale approach (described in Section 2.7).

5.4.2.1 Crossflow-instability-related breakdown mechanism

Figures 5.34 and 5.35 depict the wall pressure fluctuation field for case 7 (low freestream
amplitude) at the frequencies fo and fip respectively. At both the frequencies, the 8 = 0
waves are dominant close to the leading edge, namely in the region of early growth of
mode F. For the swept case the § = 0 mode (whose wave vector is aligned with the
x-axis) has to be considered carefully, as the streamwise direction is now inclined of 45°
with respect to the z-axis, pointing towards the increasing values of = and z. Thus,
the 8 = 0 mode represents actually an oblique mode with respect to the freestream
direction. At both the frequencies, the § = 0 fast mode appears to be modulated by
wave fronts (more visible at the higher frequency, fi9) approximately aligned in the
streamwise direction (thus with a wave vector in the crossflow direction), which pertain

to a weak crossflow mode superimposed onto the forced = 0 mode.
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Figure 5.34: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fo. Case 7, Ao =5 x 1073
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Figure 5.35: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fio. Case 7, Ao =5 x 1073

An interesting result is observed in figures 5.36 and 5.37 for the streamwise velocity and
temperature contours along the j = 10 grid line inside the boundary layer for case 7
(lower disturbance amplitude), which show that in the swept configuration fast acoustic
waves with low freestream amplitude level are able to lead the flow to early breakdown

very close to the domain outer edge. In this case, the mechanism leading to breakdown
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seems to originate from high-wavenumber oscillations (representing secondary instabili-
ties of the crossflow mode), as is evident from the thin streamwise oriented wavy struc-
tures forming at about x = 750 and growing downstream until starting breaking down
at about & = 850. In the last section of the domain, downstream of x = 900, the wavy
structures appear to lose their regular structure, being slightly thicker and more oscil-
latory along the streamwise direction (i.e. they appear to be destabilised), but do not
show a high degree of fragmentation, which may indicate that the flow has reached the
early stage of a gradual breakdown process, which would develop further downstream of
the domain edge. The early breakdown stage reached in the low amplitude case proves
that the boundary layer in the swept configuration is much more unstable than in the
unswept configuration, where the breakdown was reached only at the high amplitude

level of the freestream disturbances.

The mesh resolution in the downstream region (where the grid is coarser along the wall-
normal and wall-tangential directions, compared to the nose region) consists of about
30 points inside the boundary layer (e.g. at the position z = 900) in the wall-normal
direction, a z-wise spacing in the wall-tangential direction of approximately 0.3, and a
(constant) spanwise spacing of 0.55. Considering that the smallest dimensionless distur-
bance wavelengths relative to the freestream forcing are about 24 and 17 for fast and
slow acoustic waves respectively in the x-wise direction, and 27.5 in the spanwise direc-
tion, the present downstream grid resolution can be considered as suitable to capture the
initial breakdown-transition process (consistent with the quality of the solution shown
in figures 5.36 and 5.37). However it is believed that a grid refinement would be needed

for fully turbulent simulations (which are not the purpose of the present study).
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Figure 5.36: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (u;) along the grid line j = 10 inside the boundary layer.
Contour region starting from z = 700. Case 7, Aso = 5 x 1073
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Figure 5.37: Instantaneous temperature (7') contour along the grid line j = 10
inside the boundary layer. Contour region starting from z = 700. Case 7,
A =5x%x1073

An evidence that the breakdown mechanism observed in figures 5.36 and 5.37 is induced
by crossflow instabilities is given in figure 5.38, which shows the boundary-layer profiles
of mean crossflow velocity (ucross), wall-normal velocity fluctuation (v'), first and second
derivatives of the mean crossflow velocity (QUuecross/OYn, O*Ucross/OY2), at z = 27 and
x = 500. It should be mentioned that all the quantities plotted along the horizontal axis
are normalised with their corresponding maximum value inside the boundary layer. As
can be seen, the peak of the wall-normal velocity fluctuation is reached at the distance
from the wall 3, = 2, which is approximately the same position along the wall-normal
direction of an inflection point, namely a point where the second derivative of ueross
is zero. Thus, this inflection point (corresponding to a change in concavity happen-
ing between the wall and the peak of ur.ss) represents an inviscid instability of the
crossflow, which grows downstream leading to breakdown. This is further confirmed by
considering that the profile of u.r0ss, between the wall and the negative peak, satisfies
both Rayleigh’s and Fjortoft’s necessary conditions for instability. Rayleigh’s condition
requires the presence of an inflection point for a boundary layer to be considered as
potentially unstable, which is satisfied in our case by 9?ucross/dy2 = 0 at y, = 2, which
is corresponding to a peak in the first derivative (Qucross/Oyn, namely the spanwise vor-
ticity). Fjortoft’s criterion adds a further constrain to Rayleigh’s condition, namely, if
Ueross(Yn) 18 @ monotonic function with an inflection point (considering, for example, the
curve of Uerss from the wall to the negative peak), a necessary condition for instability
is that (0%ucross/0Y2)(Ueross — u7) < 0 inside the boundary layer, in which w; is the
crossflow velocity at the inflection point. The validity of this criterion, applied to our

case, is shown by the dashed curve in 5.38, which assumes negative values above y, = 2.

Hence, the boundary layer contains a crossflow instability, which induces secondary

instabilities downstream leading to nonlinear breakdown.
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Figure 5.38: Profiles, along the wall-normal direction, of mean crossflow velocity
(Ucross), wall-normal velocity fluctuation (v’), first and second derivatives of
the mean crossflow velocity (Qtcross/OYn, O*Ueross/Oy2), and Fjortoft’s stability
condition, at z = 27 and 2 = 500. Case 7, Ay = 5 x 1073

5.4.2.2 Resonance-related by-pass mechanism

Figures 5.39 and 5.40 show the wall pressure fluctuation results for case 8 (high freestream
amplitude) at the same frequencies. In particular, in case 8, at the higher frequency (f10),
the crossflow mode appears strongly amplified in the region 400 < z < 650 and com-
petes with the 8 = 0 mode, with marked high wavelength oscillations in the spanwise

direction perpendicular to the freestream flow.
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Figure 5.39: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fo. Case 8, Ay =5 x 1072
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Figure 5.40: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fio. Case 8, Ay =5 x 1072

This interaction between the crossflow mode and the highly amplified 5 = 0 mode (the
dominant forced mode), due to the leading-edge resonance mechanism, leads to a by-
pass-type early breakdown mechanism starting at about z = 650, which is possible to
see in figures 5.41 and 5.42, showing the contours of the streamwise velocity (inclined of
the sweep angle with respect to the z-axis) and of the temperature along the grid line

7 = 10 in the boundary layer.
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Figure 5.41: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (u;) along the grid line j = 10 inside the boundary layer.
Contour region starting from = = 300. Case 8, Ao, = 5 x 1072
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Figure 5.42: Instantaneous temperature (T') contour along the grid line j = 10
inside the boundary layer. Contour region starting from x = 300. Case 8,
Ao =5x 1072

As can be seen, low-velocity high-wavelength streaks oriented in the streamwise direction
are observed in the early leading edge region. These streaks are related to a crossflow
instability mode, as seen for the previous low-amplitude case, and undertake a rapid
nonlinear growth in the region of interaction with the resonance-amplified 5 = 0 waves,
until starting breaking down at around xz = 650. In this case the breakdown is much
more rapid than in case 7 (at the low freestream disturbance amplitude), and leads
the boundary layer into fully turbulent flow downstream. As in case 4 (unswept case),
freestream high amplitude fast acoustic waves are efficient in leading the boundary layer

to an earlier transition in the nose region.

Figures 5.43 and 5.44 show results of case 8 for the zy,-plane cross-sections of the
streamwise velocity inside the boundary layer at two different positions along the wall,
x = 500, and = = 800.
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Figure 5.43: Instantaneous contour of the streamwise velocity component (u;)
on the zy,-plane at the position z = 500. y,, is the distance from the wall along
the local normal direction. Case 8, As = 5 x 1072
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Figure 5.44: Instantaneous contour of the streamwise velocity component (u;)
on the zy,-plane at the position z = 800. ¥, is the distance from the wall along
the local normal direction. Case 8, As = 5 x 1072
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At z = 500, spanwise oscillations with a certain orientation, consistent with the presence
of streamwise low-velocity streaks, are observed. Then, at = 800, where the flow is in
the later stages of transition, the boundary layer streaks still appear, but are much more

fragmented and with other secondary streaks forming at different spanwise positions.

An illustration of the time evolution of the high-wavelength streamwise streaks observed
in figures 5.41 and 5.42 is given in figure 5.45, in which the temperature contours along
the 5 = 10 grid line inside the boundary layer are plotted consecutively for different
instants of time (t=0, 1/4T, 1/2T, 3/4T, T) over the base period T of the freestream
acoustic waves. In particular, figure 5.45 reveals that these streaks remain in the same

position for different time instants, thus suggesting that they are stationary streaks.
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Also, it is possible to notice the growth in time of the streaks along their relative direc-
tion, which gives a clearer representation of the transition process over an infinite swept

wedge.

Figure 5.45: Evolution of the temperature (T') streaks at different instants of
time (t=0, 1/4T, 1/2T, 3/4T, T) over the base period T of the freestream
acoustic waves. The solution is relative to the region x = 400 — 900 of the
computational domain. Time increasing upwards. Case 8, Ao, = 5 x 1072
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5.4.3 Cases 9-10, Re = 5625, slow waves: slow-mode breakdown mech-

anisms

Figures 5.46 and 5.47 show the wall pressure fluctuation field for case 9 (low freestream
amplitude) at the frequencies fo and f1g respectively, while figures 5.48 and 5.49 show the
corresponding results for case 10 (high freestream amplitude) at the same frequencies.
Here, it is evident how, in contrast with the fast wave cases (7 and 8), the f =
mode is not the only mode to be excited in the early nose region at each frequency, and
the solution is seen to be much more frequency dependent and diverse in terms of wave
structure, with different modes excited at different frequencies and in different regions of
the flow. At the lower frequency (f2), the response of the early nose region is dominated
by wave fronts approximately perpendicular to the flow direction. Downstream of x =
200, the wave structure changes and gradually modifies the incidence angle until the
structures develop a streamwise orientation. Figure 5.50 shows a close up of this wave
structure in the region 400 < z < 700 for case 10 (and frequency fs). This wave structure
seems to indicate a crossflow instability mode excited in the boundary layer, which leads
the flow to transition further downstream (x = 800 for the low amplitude, case 9, and
x = 700 for the high amplitude, case 10).
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Figure 5.46: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fo. Case 9, Ao =5 x 1073
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Figure 5.47: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fio. Case 9, Ao =5 x 1073

Figure 5.48: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fo. Case 10, As =5 x 1072
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Figure 5.49: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at the frequency fig. Case 10, Ay = 5 x 1072
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Figure 5.50: Real part of the Fourier transformed wall pressure fluctuations
(p,) at the frequency fo. Close up in the region 400 < z < 700. Case 10,
A =5x1072

At the higher frequency (fi0), in figures 5.47 and 5.49, the 5 = 0 mode appears to be the
dominant mode in the nose region up to about x = 400 for both case 9 and 10, but, at
the same time, it is seen to be significantly disturbed by the crossflow mode immediately
after the leading edge. Downstream of x = 400 the § = 0 mode seems to decay, while
traces of the streamwise oriented oscillations are still visible until the final transition.
However, at this frequency, a significant difference can be noticed between case 9 and case
10, namely in the low-amplitude case (case 9), in figure 5.47, there is a strong excitation,
in the region 550 < x < 750, of a mode with wave fronts approximately aligned with the
crossflow direction (namely a 2D mode, relative to the flow direction), which is actually
not present in the case of higher freestream noise level due to nonlinear effects. In fact,
in case 10 the response in this region seems to be characterised by the crossflow mode
superimposed onto a decaying 8 = 0 mode. Figures 5.51 and 5.52 highlight the thin
streamwise oriented wave structures in the streamwise velocity and temperature fields
respectively, for case 9. These structures are generated in the region 700 < x < 750 and
appear as narrow streaks aligned with the streamwise direction. These streaks then grow
between z = 800 and x = 875, where they finally enter an early breakdown stage, leading
to the generation of streamwise-oscillating higher-wavelength structures still oriented in
the streamwise direction further downstream. Thus, the crossflow instabilities lead to an
early breakdown stage, as it was shown for the swept fast-wave case with low freestream

disturbance amplitude (case 7).

Figures 5.53 and 5.54 show the corresponding results for case 10 (higher freestream
amplitude). In this case the mechanism leading to breakdown seems to be the same of
case 9 (and of case 7, with fast acoustic waves). However, due to the higher amplitude,

the breakdown of the narrow streamwise streaky structures is reached at an earlier
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location (z = 750), and there is a rapid breakdown of fragmented larger-scale structures,

which leads the boundary layer to a final transition stage.
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Figure 5.51: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (u;) along the grid line j = 10 inside the boundary layer.
Contour region starting from x = 600. Case 9, Ao, =5 x 1073
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Figure 5.52: Instantaneous temperature (T') contour along the grid line j = 10
inside the boundary layer. Contour region starting from z = 600. Case 9,
A =5x1077
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Figure 5.53: Instantaneous contour of the streamwise (tangential to the wall)
velocity component (u;) along the grid line ;7 = 10 inside the boundary layer.
Contour region starting from z = 600. Case 10, Ay, = 5 x 1072
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Figure 5.54: Instantaneous temperature (7') contour along the grid line j = 10
inside the boundary layer. Contour region starting from z = 600. Case 10,
A =5x 1072
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Figure 5.55 shows the boundary-layer profiles of mean crossflow velocity (ueross), wall-
normal velocity fluctuation (v’) relative to case 10, first and second derivatives of the
mean crossflow velocity (Qteross/OUn, 0*Ueross/0y2), normalised with their correspond-
ing maximum value inside the boundary layer, at z = 27 and x = 280. Through the same
approach used in Section 5.4.2.1 for the fast-wave low-amplitude case, we find that the
mean crossflow boundary layer at this position on the wedge presents, at about y, = 2,
an inflection point satisfying Fjortoft’s stronger condition for instability, as shown by
the negative values assumed by the dashed curve. Moreover, as can be seen, the maxi-
mum absolute value of the wall-normal velocity perturbation inside the boundary layer
is reached at a wall distance close to this inflection point. This again indicates that the
flow is dominated by crossflow instabilities, whose growth induces secondary instabili-
ties (represented by the narrow streamwise-oriented streaky structures observed in the

downstream region) and final breakdown.
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Figure 5.55: Profiles, along the wall-normal direction, of mean crossflow velocity
(Ucross), wall-normal velocity fluctuation (v’), first and second derivatives of
the mean crossflow velocity (Otcross/OYn, 0*Ueross/Oy?2), and Fjortoft’s stability
condition, at z = 27 and x = 280. Case 10, Ay = 5 x 1072

The process leading from small-wavelength oscillations to the formation of more frag-
mented large-wavelength structures is also visible in the streamwise velocity cross-section
contours at the positions = 700 (shown in figure 5.56) and x = 800 (shown in figure
5.57) for case 10.
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Figure 5.56: Instantaneous contour of the streamwise velocity component (u;)
on the zy,-plane at the position x = 700. vy, is the distance from the wall along
the local normal direction. Case 10, Ao =5 x 1072
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Figure 5.57: Instantaneous contour of the streamwise velocity component (u;)
on the zy,-plane at the position x = 800. vy, is the distance from the wall along
the local normal direction. Case 10, A = 5 x 1072
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Hence, for the cases of slow acoustic waves, only one type of breakdown mechanism
is observed for both the amplitude levels, namely a breakdown initiated by secondary
instabilities of the crossflow mode, which grow very rapidly in the downstream region
leading to the fragmentation process of the boundary-layer structures. This mechanism
is the same that was observed for the fast-wave case at the low disturbance amplitude
(case T), and indicates that for the slow-wave case there is no by-pass mechanism even
for the high amplitude level of the freestream disturbances. However, in the slow-wave
case at the high amplitude level, the breakdown process is more rapid and leads to a

fully transitional stage close to the domain outflow boundary.
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5.4.4 Skin friction profiles for the breakdown/transitional cases

Finally, figure 5.58 shows the trend of the span-averaged skin friction coefficient from
the station 2 = 300 downstream for all the swept cases (cases 7,8,9,10) and for the tran-
sitional unswept case (case 4). For each case, the profile of the skin-friction coefficient
was obtained through a time average (over the base period T) based on a limited number
of samples, which explains the oscillations observed in each curve. The cases with high
freestream disturbance amplitude (cases 4, 8, 10) show an evident transition process,
with the skin friction increasing by almost a factor of 3 for the two swept cases (cases 8
and 10) and a factor of 2 for the unswept case (case 4). The unswept case (represented
by a black dashed line) shows earlier transition compared to the swept cases, while,
among the swept cases with high amplitude, the case with fast waves (case 8, blue solid
line) shows boundary-layer transition further upstream (by a distance of about 200)

compared to the corresponding case with slow waves (case 10, red solid line).
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Figure 5.58: Span averaged skin friction coefficient downstream of x = 300 for
all the swept cases (7, 8, 9, 10) and the transitional unswept case (case 4). For
case 4 (black dashed line) the curve reaches x = 750, as this is the outer edge
in the mixed DNS/LES approach for this case

The case with slow waves and high amplitude (case 10) shows a faster increase in the
skin friction coefficient, thus proving that the breakdown mechanism for this case is very
rapid. For the two swept cases at low freestream amplitude (cases 7 and 9, the blue
and red dashed lines respectively in figure 5.58) the skin friction follows the laminar
trend through all the domain length, thus proving that the boundary layer has not yet

reached a transition stage. However, figures 5.36, 5.37, 5.51 and 5.52, shown previously
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for the streamwise velocity and temperature contours along the j7 = 10 grid line in
the boundary layer for the swept fast wave and slow wave cases respectively with low
freestream amplitude, clearly show the initial stage of a breakdown process starting
downstream of x = 850. This breakdown mechanism, at the low amplitudes, is not as
strong as the breakdown at the higher amplitudes, that would lead to boundary-layer

transition downstream of the domain outflow boundary.

5.5 Summary of the results

A set of ten simulations have been carried out for a blunt cylinder-wedge geometry in a
hypersonic flow at Mach 6, for unswept and swept configurations. The main objective of
this study was to investigate the effect of three-dimensional disturbances on the leading-
edge receptivity to fast and slow acoustic waves at different amplitude levels, and on
the induced breakdown mechanism in an unswept configuration and in the presence of

a sweep angle.

Preliminary 2D simulations have shown the effects on the wall response of the frequency-
dependent resonance-modulation mechanism associated with the generation and down-
stream evolution of the fast mode (mode F) in the case of fast acoustic waves. A set of
temporal linear stability analyses, carried out at different points along the wall and for
two different frequencies, have provided results in very good quantitative agreement with
the numerical results, illustrating and supporting Fedorov’s theory about the resonance-
induced leading-edge generation and amplification of mode F, the wavelength-exchange
mechanism between mode F and mode S in the synchronisation region, as well as the
second resonant-interaction cycle leading to mode F II at the higher frequencies. The
results are also in a very good qualitative agreement with several of Zhong’s numerical

results.

In the unswept configuration and at a low freestream amplitude level, fast acoustic
waves have been found to induce a response substantially dominated by a 2D mode
pertaining to mode F through all the domain length, due to the strong amplification
of the main (two-dimensional) boundary layer fast mode (mode F), which is generated
by the resonance mechanism with the forcing fast acoustic wave mode at the leading
edge. On the contrary, at the higher freestream disturbance amplitudes, the response
includes low-velocity streamwise streaks, which produce a significant distortion of the
boundary layer causing transport of high-velocity cold fluid (in between the streaks)
from the upper layers towards the wall, due to the local action of two counter-rotating
vortices. While at the lower Reynolds number the streaks remain laminar, in the higher
Reynolds number case they start breaking down. In the case of slow acoustic waves, no
streaks are formed, and no boundary layer breakdown is reached; which is probably due

to the lower amplification rates of the wall response in the leading-edge region. This is
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in turn caused by the absence of a strong resonance mechanism between internal and
external modes at the leading edge. The effect of this different receptivity characteristic
for slow waves is the generation of a more complex three-dimensional wave structure
straight from the leading edge, consisting of a mix of different 2D and 3D competing
modes, but without any evident early amplification mechanism for each one of them.
Hence, our results for the unswept case show that a freestream disturbance characterised
by fast acoustic waves and high amplitude levels can be more dangerous (depending on
the disturbance environment) than slow acoustic waves, as it can easily lead to streak

formation and early breakdown in the leading-edge region.

In the case of a sweep angle of A = 45°, both fast and slow acoustic waves, even with low
freestream disturbance amplitudes, lead to breakdown downstream along the wedge. In
the cases with high freestream amplitudes a final transition stage is reached, while in
the cases with low amplitudes the flow is shown to reach an early breakdown stage close
to the outflow boundary. The cases of slow acoustic waves with high and low freestream
amplitude and the case of fast waves with low freestream amplitude seem to have in
common the same kind of breakdown mechanism, being characterised by the generation
of small-wavelength elongated streaks oriented in the streamwise direction, which are due
to a crossflow instability originating in the nose region and growing downstream, thus
destabilising the boundary layer. The case of fast acoustic waves with high freestream
amplitudes is significantly different. For this case, the wall response is dominated in the
nose region by the forced f = 0 mode due to the resonance mechanism, which appears
to be strongly disturbed further downstream by a growing crossflow mode coming from
the leading edge. The interaction of the amplified 5 = 0 mode and the crossflow mode
leads to the direct generation and rapid growth of long-wavelength streamwise streaks
(with approximately the same wavelength of the crossflow waves) in the middle of the
domain. These streaks then break down to an earlier position with respect to the other

swept cases, leading quickly to boundary-layer transition.






Chapter 6

Results for the 3D forebody

model

6.1 Geometry and mesh

As a final application of our receptivity-to-breakdown approach, we consider now the
three-dimensional geometry of a generic forebody model, proposed by MBDA, for which
transition experiments were performed recently in the Mach 6 hypersonic wind tunnel
of the Purdue University (Durant et al. [89]). Figure 6.1 shows different views of the
geometry. It consists essentially of a wedge with a rounded leading-edge shape, a nose
radius of 1.25 mm (in the zy-plane), a length of 340 mm, a maximum width along the
z-axis of 120 mm, a maximum height along the y-axis of 50 mm, and a half-wedge angle

(in the zy-plane, with reference to the side view in 6.1) of 4°.

In our numerical simulations we consider a case with zero angle of attack and zero yaw
angle, namely the flow direction is aligned with the z-axis of the body, and symmetry
with respect to both the xy and zz planes (considering the origin of the reference system
on the tip of the body) is assumed, including the upstream disturbances. Figures 6.2
and 6.3 show respectively the section of the body that we consider and an example of
a coarse mesh for the surface. To simplify the mesh generation, the side boundary of
the computational domain is obtained by cutting the geometry along the longitudinal
direction at a particular spanwise distance from the symmetry axis. Figure 6.4 shows
the mesh details, in the xz-plane, on the surface in the leading-edge region. As can
be seen, the point distribution is denser near the leading-edge, in order to resolve the
high gradients characterising this zone of the flowfield, and gets coarser downstream.
The internal grid lines are wrapped to the leading-edge in such a way to follow the
shape of three-dimensional shock. None of the shock-grid alignment methods described
in Chapter 3 was used, as they were not extended to the general 3D case. However,

as noted in Section 3.3, the results for this case have not been observed to be affected

141
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by numerical noise (as will be shown later in the present Chapter), due both to the
relatively weak shock wave (as a result of the small half-wedge angle and the large local
sweep angles along the leading edge) and to the fact that only high-amplitude acoustic

waves have been considered as freestream disturbance in the numerical simulations.
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Figure 6.1: Lateral view, isometric view and lower surface view on the xz-plane
of the MBDA forebody geometry.

Figure 6.2: Wall shape of the computational domain in the nose region. Due to
the symmetry of the body on the xy and xz planes, considering a flow aligned
in the longitudinal (x) axis of the body, only one quarter of the full geometry
is studied in our numerical simulations
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Figure 6.3: Example of a coarse mesh on the surface. Note that the side has
been obtained by cutting the geometry along the longitudinal (z-axis, that is

the symmetry axis) direction
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Figure 6.4: Example of a coarse mesh in the leading-edge region of the compu-

tational domain

As mentioned above, the computational domain in the width dimension is obtained by
truncating the domain along the z-direction at a certain z-distance from the body zy-
symmetry plane. The side boundary condition consists of a zero-gradient condition,
which sets the gradients of each quantity along the grid lines to zero, namely ?T(r) =0,
with 7 indicating the direction tangential to the k-grid lines. The use of the zero-gradient
boundary condition is motivated by the assumption that at sufficiently high distances
from the centerline (z = 0) the gradients of the physical quantities in the tangential
direction are small enough to be neglected. Figures 6.5 and 6.6 show the surface density
field for a body with a width of 40 mm. In both figures the minimum density value is
0.23, however in figure 6.5 the maximum magnitude has been set to 1, while in figure
6.6 it has been restricted to 0.4, in order to allow the reader to distinguish between the
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high-gradient and the small-gradient regions along the wall surface. As expected, the
high gradients are confined in the near-centerline region, while the off-centerline region

is characterised by much smaller gradients.
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Figure 6.5: Density field on the wall surface. Magnitude range: 0.23 — 1
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Figure 6.6: Density field on the wall surface. Magnitude range: 0.23 — 0.4

The above described approach to obtain the computational domain presents the following

advantages,

e it provides a uniform spanwise resolution everywhere, so that both the leading-
edge region, which is crucial for the receptivity mechanism, and the downstream
region, zone of nonlinearities and boundary-layer breakdown, are treated with the

same spanwise resolution;

e it increases the computational time efficiency, by limiting the number of points in
the required leading-edge region, and avoiding at the same time a too small (thus
CFL constraining) z-spacing downstream, which would be the main issue of a grid

built through grid lines following the radial (normal to the leading edge) direction.

The disadvantage of this domain configuration is the presence of a side boundary effect
on the internal solution, which needs to be quantified (as will be shown in Section 6.5)
in order to guarantee reliable results for the leading-edge receptivity and breakdown

mechanisms.
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6.2 Flow conditions and settings of the numerical simula-

tions

The flow conditions of the present numerical case reproduce the freestream of the Mach
6 low-enthalpy wind tunnel of the Purdue University. The experiments were carried
out for different values of the unit Reynolds number (Re,,), ranging from 2.3 x 10° to
13 x 105. In our numerical study a unit Reynolds number of 4.6 x 10° is considered,
corresponding to one of the transitional cases in the experiments. The flow conditions

are listed as follows,

o freestream Mach number: M = 6,

e unit Reynolds number: Re,, = 4.6 x 105,
o freestream temperature: 75 = 51.7K,

e stagnation temperature: Ty = 424K,

e wall temperature ratio: 7} /T% = 5.8 (corresponding to an isothermal condition

with wall temperature assumed equal to 300K).

On the zy and zz symmetric planes a symmetric boundary condition is adopted. A
fixed uniform inflow boundary condition (corresponding to the freestream conditions for
the baseflow computation) is set on the inlet boundary, and a zero-gradient boundary
condition is used on both the side and the outlet boundaries. When unsteady simula-
tions are performed, the three-dimensional acoustic-wave model described in Section 2.4
is used as inflow on the inlet boundary. Thus, in our numerical study, the disturbance
field is also assumed to be symmetric with respect to both the xy and zz symmetry
planes of the body. Two unsteady numerical simulations have been run for each domain
width, one with fast acoustic waves, and the other with slow acoustic waves as freestream
disturbances, with a freestream disturbance amplitude of 1072 (for the density fluctu-
ation), corresponding to the high-amplitude level considered in the three-dimensional
numerical cases of Chapter 5. For both the cases, the transition patterns are analysed

and compared with the available experimental data (Durant et al. [89)]).
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6.3 Laminar base flow in the leading-edge region

In this Section we present preliminary numerical results obtained for the mean flow
on a narrow (L} = 20 mm) and short (L} = 53.75 mm) domain, showing the main
characteristics of the baseflow in the leading-edge region. The grid size is 620 x 300 x 200
(in the z, y and z direction respectively, with indices i, j and k). The preliminary
simulations for this domain size represent the first step of a process in which the domain
is gradually extended and the grid size gradually increased both in the x and z directions,
in order to increase numerical stability and steady-state convergence rate for the solution
of a higher domain size by starting from the converged solution of a smaller domain.
At the same time, this process allowed us to perform a sensitivity study of the solution
relative to the effect of the side boundary condition (zero gradient), by comparing the

solutions of domains with different width, with results presented later in this Chapter.

Figure 6.7 shows the density field on the surface in the leading-edge region. Here, a
significant decrease of the density along the leading edge is observed towards the side
boundary, which indicates that the region close to the tip of the body is characterised
by higher gradients compared to the side region. The shape of the bow shock in the
symmetry plane can be seen in figure 6.8, showing the pressure field in a xy-slice at
the symmetry plane. Figures 6.9, 6.10 and 6.11 show cross-sections in the yz-plane of
temperature, streamwise velocity component (u) and spanwise velocity component (w)
respectively, at a longitudinal distance of x = 45 mm from the tip. In particular, the
left boundary of the figures (z = 0 mm) corresponds to the symmetry plane, while the
right boundary corresponds to the side of the domain (z = 20 mm). As can be seen, the
boundary layer is thicker at the symmetry plane, and gets thinner moving towards the
side. The figures show also the curvilinear edge of the shock, with a stand-off distance

decreasing along the spanwise direction.
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Figure 6.7: Density mean field on the surface in the leading-edge region
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Figure 6.8: Pressure mean field in the symmetry plane of the body

The result for the spanwise velocity in figure 6.11 is particularly important, as it shows
that negative values of the spanwise velocity are obtained inside the boundary layer close
to the wall, while positive values are reached at the boundary-layer edge and outside
the boundary layer (note that positive values indicate flow in the direction away from
the centerline). This means that the flow in the leading-edge zone is characterised by a
region of inflectional crossflow boundary-layer profiles, extending from the side up to a
small distance from the symmetry plane (where the spanwise velocity is uniformly zero).
This was expected, due to the high values of the local leading-edge sweep angle close to

the side boundary.
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Figure 6.9: Temperature mean field on a cross-section in the yz-plane at the
distance z = 45 mm from the leading edge
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Figure 6.10: Streamwise velocity (u) mean field on a cross-section in the yz-
plane at the distance x = 45 mm from the leading edge
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Figure 6.11: Spanwise velocity (w) mean field on a cross-section in the yz-plane
at the distance x = 45 mm from the leading edge
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6.4 Experimental observations and domain sizing

The observation of the experimental results of Durant et al. [89], at the target unit
Reynolds number (Re,, = 4.6 x 10%), allows us to set the minimum required size of
the computational domain (in both the z and z directions) in order to solve the most
relevant flow regions for the receptivity-breakdown mechanism as well as to be able to
capture the main transition patterns obtained in the experiments. In figure 6.12 the
dimensional wall heat flux (kW/m?) obtained in the transition experiments of Durant
et al. [89], for the unit Reynolds number Re,, = 4.6 x 10°, is shown. This experimental
case was performed under noisy wind tunnel conditions. As can be seen, the highest
heat-flux values are reached in the front leading-edge region, as is expected from the
high temperature values characterising the flow inside the shock layer in the nose region
(note that in the experimental reference system the body tip, which is not shown, is
located at the position £ = —100 mm). In the downstream region, the wall heat flux
assumes low values at the centerline, thus suggesting that the boundary layer near the
symmetry plane is laminar through the whole domain length; however, the off-centerline
region is characterised by high heat flux values, starting from about x = 50 mm, which

suggests, in contrast, that the boundary layer here undergoes transition to turbulence.
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Figure 6.12: Experimental result for the wall heat flux (kW/m?) shown in the
work of Durant et al. [89]. Re,, = 4.6 x 10°

From the wall heat-flux experimental results the following observations can be made,

e transition appears to start at a streamwise distance from the tip between about 140

mm and 150 mm, and at a distance approximately of 20 mm from the centerline;

e the transition front spreads downstream forming a wedge initially symmetric with
respect to the z-axis, as indicated by the black dashed lines drawn along the edges

of the early transition front;
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e thus, transition might be induced downstream by disturbances coming from the
early leading-edge region and developing downstream at a distance from the cen-
terline of approximately one-third of the maximum half-body width (L%/2 = 60

mm).

These considerations allow us to shape the computational domain in such a way to be
suitable for solving the main mechanism inducing transition. Figure 6.13 shows the edges
of two additional computational domains we chose to perform our numerical simulations,
drawn over the contour plot of the experimental wall heat flux. The red lines indicate
the lateral and backwards edges of a domain with a spanwise width of 30 mm and a
longitudinal length of about 200 mm (which, from now on, we shall refer to as the small
domain), while the black lines represent the corresponding edges of a 40 mm wide and

250 mm long domain (representing the large domain).

- = 1
R0 w v * v L
60

20

z (mm)
20

10

Ol

-50 0 50 100 150 200 250

x (mm)

Figure 6.13: Edges of two different computational domains superimposed on
the experimental result for the wall heat flux (kW/m?) shown in the work of
Durant et al. [89]. Re,, = 4.6 x 10°
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6.5 Baseflow solution sensitivity to the side boundary ef-
fect

The computational domains described in Section 6.4 allow us to perform sensitivity study
to quantify the effect of the zero-gradient lateral boundary condition on the internal
solution. Numerical simulations of the mean flow have been carried out for both the
computational domains. The mesh size of the small domain (30 mm width) is 2120 x
300 x 300 (corresponding to the x, y and z direction number of points respectively),
while the mesh size for the large domain (40 mm width) is 2120 x 300 x 400. Note that

the same uniform spanwise resolution is used in both the domains.

Figures 6.14 and 6.15 show the surface heat flux for the 30 mm and the 40 mm wide
domains respectively. A very good agreement is observed between the two results, with
the exception of a small region adjacent to the lateral boundary, corresponding to the
region beyond the horizontal dashed line in figure 6.14, where the heat-flux contours
differ from the result for the wider domain in figure 6.15. This effect can be seen more
clearly in figure 6.16, showing a zoomed view of the heat-flux contours. The edge of the
affected region (dashed line in figure 6.14) is located at about z = 28.3 mm, meaning
that the internal solution is influenced by the boundary condition within about a 5.6%
of the domain width (for the 30 mm wide domain). For comparison, the zoomed view of
the same region for the 40 mm wide domain is shown in figure 6.17. Here, the heat-flux
contour lines show a monotonic profile near the position z = 30 mm, in contrast with the
result shown for the 30 mm wide domain in figure 6.14, in which the contour line profiles

reach a peak near the side, and then approach the boundary with a reverse trend.
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Figure 6.14: Surface heat-flux (kW/m?) contours for the 30 mm wide domain

40
30
z (mm) 20

10

0

0 20 40 60 80 100 120 140 160 180

z (mm)

Figure 6.15: Surface heat-flux (kW /m?) contours for the 40 mm wide domain
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Figure 6.16: Surface heat-flux (kW /m?) contours for the 30 mm wide domain.
Zoom on the lateral boundary to highlight the boundary condition effect
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Figure 6.17: Surface heat-flux (kW /m?) contours for the 40 mm wide domain.
Zoom near the position z = 30 mm

These results show that only a limited portion of the domain is affected by the side
boundary condition, which suggests that the zero-gradient boundary condition, based on
the assumption of small gradients along the k-grid line tangential direction (described in
Section 6.1), is suitable for the present simulations. As shown in the preliminary results
for the cross-section contours of the spanwise velocity in figure 6.11 of Section 6.3, the
off-centerline flowfield is characterised by a region of negative (namely inwards) spanwise
velocity inside the boundary layer, and a region of positive (namely outwards) spanwise
velocity outside the boundary layer. The inwards flow, in particular, may be critical for
the accuracy and reliability of the internal solution. For this reason, it is necessary to
evaluate the region adjacent to the lateral boundary which would be influenced by the

flow entering the domain from the side.
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Figure 6.18 shows the streamlines computed on the j = 3 grid line inside the boundary
layer, for the small domain. As can be seen, the streamlines coming from the leading
edge are inclined towards the centerline by a variable angle along the leading edge. This
is an effect of the local sweep angle and the high pressure gradients of the leading edge
region, which cause the curvilinear motion of the boundary-layer streamlines around the
leading edge. The boundary-layer flow going around the leading edge gets deflected,
with a small radius of curvature, towards the centerline, as can be seen in more detail
in figure 6.19, showing a close-up of the streamlines (along with the relative vectors) on
the leading edge in the near centerline region. Consequently, the region adjacent to the
side boundary which is not traversed by the streamlines originating from the leading
edge (with reference to figure 6.18) represents the region affected by the presence of the

side boundary.
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Figure 6.19: Streamlines on the j = 3 grid lines for the 30 mm wide domain.
Close-up on the leading edge near the symmetry plane
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Figures 6.20 and 6.21 show the streamlines for the 40 mm wide domain computed inside
the boundary layer on the j = 3 and j = 16 grid lines respectively. As can be seen
in figure 6.20, for the large domain the inclination angle of the streamline originating
at z = 40 mm is higher than the corresponding lateral streamline of the small domain,
originating at z = 30 mm, shown in figure 6.18, thus proving that away from the
centerline the inwards deflection of the streamlines increases with the local sweep angle.
However, the transition point, which appears to be located approximately at the position
indicated by a red circle in figure 6.20, as observed in the experimental results shown
in figure 6.12, is well inside the zone not affected by the presence of the side boundary,
suggesting that the large domain should capture the main physical mechanism leading
to transition, as well as the early stage of the transition process. Furthermore, as seen
in figure 6.21, the streamlines at a higher distance from the wall inside the boundary
layer show a smaller inwards deflection angle at z = 40 mm, suggesting that the inwards
deflection angle decreases as we move away from the wall until it becomes negative (i.e.
outwards flowing) outside of the boundary layer. This is consistent with the results
presented in figure 6.11 for the cross-section contours of the w velocity component at a
certain x location, showing that the flow entering the domain from the side boundary
is confined in a near-wall region inside the boundary layer, while outside the boundary

layer the flow is in the outwards direction.
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Figure 6.20: Streamlines on the j = 3 grid lines for the 40 mm wide domain.
The red circle indicates approximately the point where transition appears to
start in the experimental results
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Figure 6.21: Streamlines on the j = 16 grid lines for the 40 mm wide domain
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6.6 Wedge-junction effect: crossflow inflectional profiles

and reverse heat flux

The wedge junction to the circular leading edge is a critical zone determining the general
characteristics of the flowfield over the entire wedge (e.g. the streamline orientation),
and in particular the boundary-layer stability properties. This is due to the strong
expansion taking place at the wedge junction and to the associated streamline deflection.
In fact, the near-wall flow entering the wedge with an inwards (towards the centerline)
orientation, in combination with the outwards orientation of the outer boundary-layer
flow, generates inflectional crossflow boundary-layer profiles in the zone of the wedge
junction, as can be observed in figures 6.22 and 6.23, showing respectively the crossflow
boundary-layer profiles at several x positions within the circle-wedge junction zone and
the contours of the crossflow velocity (w) on the xy-plane, at z = 30 mm. The crossflow
boundary-layer profiles show the presence of an inflectional profile due to the inwards
(i.e negative w) flow direction near the wall, corresponding to the blue region located
at the wedge junction shown in the w contour plot. The flow inside the shock layer
downstream of the bow shock shows, in contrast, a high positive w velocity, namely
oriented towards the positive values of z, which is due to the inclination of the shock
with respect to the zy-plane and the resulting deflection of the flow crossing the shock.
This is also the reason why the crossflow profiles in figure 6.22 do not approach zero

outside the boundary layer, but a positive value instead.
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Figure 6.22: Crossflow boundary-layer profiles at different streamwise locations
and at the spanwise position z = 30 mm
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Figure 6.23: Crossflow (w) contours in the zy-plane at the spanwise position
z = 30 mm

The inflectional profiles of the crossflow boundary layer have, of course, an impact
on the boundary-layer stability characteristics downstream. However, there is another
important effect of the wedge junction, which is a direct consequence of the crossflow
inside the boundary layer and plays a significant role on the local wall heat flux. This
effect consists of the boundary layer being very thin at the wedge junction, as a result of
the mass conservation equation in conjunction with the strong localised 3D flow effects in
the high crossflow region (the dark blue zone in figure 6.23), as can be seen in the contour
plot of temperature in the zy-plane at z = 30 mm shown in figure 6.24. As a result,
the cold fluid flow outside the boundary layer gets very close to the wall, so that the
constant temperature at the wall (where an isothermal boundary condition is applied)
is higher than the temperature values reached at every point inside the boundary layer.
This produces, in turn, a reverse of the wall heat flux, such that the fluid is heated by

the wall in this region.
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Figure 6.24: Temperature (T") contours in the xy-plane at the spanwise position
z = 30 mm. Note the very thin boundary layer at the circle-wedge junction
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Figure 6.25: Temperature (7') boundary-layer profiles at different streamwise
locations and at the spanwise position z = 30 mm

Figure 6.25 shows the temperature boundary-layer profiles at the same points of the
crossflow profiles as figure 6.22. At x = 65 mm, which is still in the circle behind the
wedge junction, the maximum temperature is reached at a certain normal distance (y;)
from the wall, but as soon as the wedge junction is approached and the negative crossflow
originates, the boundary-layer thickness decreases dramatically and the temperature
gradient at the wall becomes negative. In figure 6.26, showing a close-up of the wall
heat flux at the leading edge, a narrow region of high negative (blue) heat-flux values,

corresponding to the wedge-junction zone, is observed.
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Figure 6.26: Close-up of the wall heat flux (kW /m?) in the leading-edge region.
The blue stripe of high negative values corresponds to the wedge junction.
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Figures 6.27 and 6.28 show the temperature and crossflow velocity (w) cross sections (in
the zy,,-plane) respectively, at the streamwise position x = 40 mm. The right edge of the
plots corresponds to the wedge-junction z position, where the minimum boundary-layer
thickness is observed. The figures highlight how the boundary layer gets rapidly thinner
along the spanwise direction as the wedge junction is approached. The result shown
in figure 6.28 is particularly interesting, as it shows the high inwards crossflow velocity
magnitudes reached at the wedge junction, which indicate that a stream coming from

the leading edge and flowing towards the centerline is released by the wedge junction
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Figure 6.27: Temperature (T") contours in the zy,-plane at the streamwise po-
sition z = 40 mm
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Figure 6.28: Crossflow (w) contours in the zy,-plane at the streamwise position
z =40 mm

The reversal of the surface heat flux at the wedge junction can significantly affect the
aerodynamic and thermal-protection performances of a hypersonic vehicle, thus it has

to be taken into consideration in the aero-thermal design process.

6.7 Results for the unsteady simulations

6.7.1 transition patterns with 3D fast and slow acoustic waves

We now present numerical results for the unsteady simulations with three-dimensional
fast and slow acoustic waves as freestream disturbances. The aim of these simulations is

to understand the physical mechanism leading to transition downstream, starting from
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the internalisation of the freestream disturbances and the generation of boundary-layer
instabilities at the leading edge. The numerical results will then be compared with the

experimental results.

The acoustic model used to carry out the unsteady simulations is the 3D model described
in Section 2.4, consisting of a 2D wave plus two pairs of opposite angle oblique waves
with multiple spanwise wavenumbers. In particular, the considered spanwise wavenum-
bers in this case are So = 2 - %’: and B4 =4- %—:, with L, = 32 (corresponding to 40 mm
in dimensional scale). The corresponding spanwise wavelengths of the oblique waves are
one-half and one-quarter of the domain width. This particular choice of the spanwise
wavenumbers has been made in order to provide a disturbance wavelength across the
span comparable with the spanwise off-centerline distance within which transition is
expected to take place (approximately 20 mm, namely half the domain width), on the
basis of the experimental observations in Section 6.4. The choice of the wavenumbers (5o
and [, is consistent with the corresponding spanwise wavenumbers used in the 3D sim-
ulations for the extruded cylinder-wedge geometry in unswept and swept configurations
described in Chapter 5 (namely 8; and [33). However, while for the 3D wedge simula-
tions the oblique waves were introduced with a random phase in the spanwise direction,
in this case a fixed phase, ¢, = 0, is used for each m!* spanwise wavenumber (8,,),
with reference to equation 2.26, so that to guarantee the symmetry of the freestream
disturbance field with respect to the body symmetry plane (z = 0) at each x position
along the domain length.

Furthermore, in order to reduce disturbance reflection effects from the side boundary
into the internal flowfield, a z-dependent hyperbolic-tangent based damping function
(h(z)) has been applied over the 3D wave model 2.26 which gradually damps out the
amplitude of all the imposed freestream disturbance waves (both 2D and oblique) along
the z-direction from a certain position (zp) to the side boundary. The 3D wave model

used in this case is expressed by,

M N
o (x,2,t) = Z Z Aph(z) cos (Bmz + ¢m) cos (anx — wpt + y) (6.1)

m=0n=1

h(z) =1 % <tanh <S(Z_"‘°)> + 1> (6.2)

L* — 2z

in which S = 10, and 29 = 26.5 mm. This value of zy guarantees the resulting signal
to be coincident to the corresponding non-damped signal (given by equation 2.26) for

z=0—20 mm.

This set-up of the 3D wave model is the final result of a series of preliminary tests

aimed at verifying that the boundary-layer solution in the internal domain region where
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the early transition process is expected to be located (as well as the whole correspond-
ing upstream region, location of the receptivity process) is not affected by reflections
of disturbances (reaching the lateral edge within a certain x distance) from the side

boundary.

The overall freestream amplitude of the wave system (the sum between the amplitudes
of the 2D and oblique waves) is set to Ao, = 5 x 1072, as in the high-amplitude 3D
wedge cases of Chapter 5, in order to simulate noisy conditions and capture nonlinear
effects. A set of 10 multiple frequencies were introduced, ranging from f; = 0.0105 to
fi0 = 0.105, which correspond to the dimensional values of fi = 7.3 kHz and f{, = 73
kHz. This frequency range has been chosen in order to adapt the streamwise wavelength
scale of the disturbances at the higher frequencies to the boundary-layer thickness in the
region that is susceptible to the crossflow inflectional instabilities, as shown in Section
6.6. In particular, the minimum streamwise wavelength, corresponding to the highest
frequency (f10), of the 3D wave inflow is about A, = 10 mm for slow acoustic waves,
and about A, = 13.75 mm for fast acoustic waves. The boundary-layer thickness near
z = 20 mm, at a streamwise distance of x = 50 mm from the nose tip, is d ~ 1.6 mm,
thus the smallest streamwise wavelength of the inflow 3D wave for both slow and fast
acoustic waves is about 6.25 times higher than the reference boundary-layer thickness
over the wedge near the nose region. This is also the smallest scale we can afford
in our numerical simulations, namely the lowest wavelength we can resolve accurately
(considering a minimum of about 60 points per wavelength) based on the restrictions
imposed by the mesh resolution in the downstream (coarser) region of the domain. Any
smaller wavelength (namely higher frequency) would have required a further increase of

the mesh resolution and of the computational cost.

Figure 6.29 shows the overall amplitude levels (rms of p/ and u’_) of the multi-frequency
signal imposed in the freestream along the spanwise direction. As can be seen, due to
the fixed value of the phase (¢,, = 0) for each spanwise wavenumber, the imposed noise
level in the freestream is z dependent, with the maxima located at z = 0 and z = 20 mm.
As mentioned in Section 5.1, the freestream fluctuations of the vertical and spanwise

velocity components, v, and w/_, are identically zero.

Figures 6.30 and 6.31 show the time-averaged surface heat flux (in kW /m?) for fast and
slow acoustic waves respectively. As can be seen, the surface heat-flux structure in the
case of fast acoustic waves show the presence of wavefronts nearly perpendicular to the
flow direction, which is consistent, as discussed in Chapter 5, with the 2D fast mode
being the dominant mode in the nose region, due to the powerful resonance mechanism,
and leading to a modulated response further downstream. The case of slow acoustic
waves (figure 6.31) shows, in contrast, a fundamentally different structure, which is
characterised by the presence of elongated streamwise-oriented streaks generated in the
early leading-edge region. In particular, three streaky structures can be distinguished

(whose position and direction is indicated by arrows in figure 6.31) : i) one close to the
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centerline, near z = 10 mm, which forms between x = 50 mm and x = 100 mm, and
then decays rapidly downstream; ii) another, with higher spanwise size, located near
the side boundary at about z = 35 mm, forming just downstream of the leading edge
and gradually decaying downstream; iii) and a third one, originating in the leading-edge

zone at about z = 20 mm, which grows until it undergoes breakdown after x = 200 mm.

Another noticeable difference between the fast-wave and slow-wave results is observed
for the solution in the near-centerline region, which, in the slow-wave case, suggests
that the boundary layer along the symmetry plane is laminar through the whole domain
length, while showing, in the fast-wave case, a highly perturbed boundary layer which
reaches a transitional stage within the region x = 70 mm —150 mm. This is due to
the amplification of the 2D fast mode in the upstream nose region, leading to earlier
generation of nonlinear effects, compared to the slow-wave case, and consequent desta-
bilisation of the boundary layer in the near symmetry-plane zone, which is, in turn, the
most susceptible zone to the 2D modes (in fact, the baseflow here is essentially two-
dimensional, due to the very low sweep angles of the leading edge near the centerline

and the symmetry boundary condition).
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Figure 6.29: Amplitude levels (rms of p. and ul) of the imposed freestream
signal along the spanwise direction
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Figure 6.30: Time-averaged surface heat flux (kW /m?) for fast acoustic waves
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Figure 6.31: Time-averaged surface heat flux (kW /m?) for slow acoustic waves.
The arrows indicate the path of the streamwise streaks

In figure 6.32 a zoomed view of the heat flux for the slow-wave case in the downstream
region is shown, which provides more details of the nonlinear growth of the streamwise
streak located at z = 20 mm. The main streak coming from the leading edge grows in
amplitude and spanwise size, also forming a secondary streak adjacent to the main one
at about x = 200 mm. This new streak grows very quickly in amplitude, reaching the
same values of the main streak within a distance of about 30 mm, and starts spreading

downstream, assuming a deflected path oriented towards the centerline.
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Figure 6.32: Time-averaged surface heat flux (kW/m?) for slow acoustic waves.
Close-up in the downstream region

The results for the surface heat flux indicate that the solution obtained with slow acoustic
waves is closer to the experimental results observed in figure 6.12, which showed an off-
centerline transition core and a laminar boundary layer near the centerline. A direct
comparison between numerical and experimental results for the slow-wave solution is
shown in figure 6.33, where the experimental figure has been adapted to match the
scale of the numerical plot. Also, the same colorbar range of the experimental result
has been used for the numerical result. The comparison shows qualitatively similar
high heat-flux values reached along the leading edge and in the early nose region of
the wedge, and decreasing values towards the centerline, where the blue values indicate
a laminar boundary layer. However, the high (red) heat-flux zone near the leading
edge appears to cover a larger area in the numerical result, which might be due to
calibration effects of the experimental apparatus used to compute the heat flux, as well

as to uncertainties in the flow direction inside the wind tunnel test section which might
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have affected the freestream creating regions of slightly non-uniform flow. The main
difference between the numerical prediction and the experimental results is observed
downstream of x = 150 mm, where, in the experimental case, a wedge-shaped transition
front is seen to develop and spread symmetrically downstream, affecting also the near-
centerline region at long downstream distances. In contrast, in the numerical case, the
heat flux near the symmetry plane keeps decreasing through all the domain length and
no transition front is observed until the distance of about = 230 mm is reached, where
the streamwise streak located at z = 20 mm begins the nonlinear breakdown process, as
discussed earlier, and starts spreading towards the centerline close to the outer boundary.

x (mm)

0 50 100 150 200
40 .

z (mm) 20~ 0.5

Figure 6.33: Numerical time-averaged surface heat flux (kW/m?) obtained for
slow acoustic waves (top half) compared to the corresponding experimental
results (bottom half). Both heat-flux magnitude and length scales have been
adapted in order to guarantee the matching between the numerical and the
experimental case

Hence, the experimental results show a more rapid transition process, which is most
likely due to a higher noise level of the wind tunnel, with respect to the freestream
disturbance amplitude used in the numerical simulations. In addition, the pressure
transducer placed upstream of the position z = 150 mm, and at approximately z = 20
mm, as figure 6.33 clearly shows, might have worked as a roughness element during the

experimental tests, thus enhancing the transition process downstream.

In order to see in more details the breakdown process taking place in the downstream
region in the numerical solution, we show in figure 6.34 the instantaneous contours of the
wall-tangential velocity component (u;) in the zy-plane along the j = 15 grid lines inside
the boundary layer. Here the main disturbances coming from the leading edge near the
z = 20 mm position and growing downstream, which are most probably correlated to
the crossflow inflectional instabilities shown in Section 6.6, are seen to reach very high
values just upstream of x = 150 mm, and to induce a transition process. This transition
process, in turn, is observed to spread downstream forming a series of strong velocity

spikes propagating towards the centerline with an inclination angle (indicated by the
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dashed line in the figure) close to the wedge-shaped transition front angle shown by the

experimental results.
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Figure 6.34: Wall-tangential velocity (u;) on the 7 = 15 grid lines inside the
boundary layer, for slow acoustic waves.

Hence, contrary to the surface heat-flux results, the numerical results inside the bound-
ary layer show transition patterns more similar to those observed in the experimental
results. The numerical results show the transition process starting away from the wall,
and at about the same streamwise and spanwise positions over the wedge surface as in
the experimental case. This suggests that the perturbations related to the nonlinear
breakdown process, coming from the boundary-layer edge, have not yet approached the

wall.

Finally, the difference observed in the transition patterns between the cases of fast and
slow acoustic waves, namely the destabilisation of the boundary layer in the region of
the symmetry plane due to the highly amplified 2D fast mode in the fast-wave case, is a
further confirmation that the resonance mechanism at the leading edge for the fast mode
at the higher amplitude levels can strongly affect the transition mechanism, enhancing
the probability of by-pass transition, as was previously seen for the three-dimensional
cases in Chapter 5. For the specific case of the three-dimensional forebody geometry,
this difference between fast and slow acoustic waves can have significant effects on the
transition process to a final turbulent state further downstream of our computational

domain outflow boundary.

6.7.2 Slow-mode receptivity and streak evolution

As shown in Section 6.7.1, the numerical solution with slow acoustic waves is closer to the
experimental results in terms of transition patterns, so, in this Section, we focus on the
results for the slow-wave case. The receptivity process is studied through contours of the
Fourier transformed wall pressure fluctuations (real part) at different frequencies, from
f3 to fs, shown in figure 6.35. Both lower and higher frequencies show fluctuations in the
early nose region (e.g. see the first positive-negative-positive peaks just downstream of
the tip at the frequencies f3 and f4), corresponding to waves travelling in the direction
of the flow along the attachment line. Then, as soon as the position z = 20 mm is

approached, or, in other words, when a certain high-enough value of the sweep angle
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(A = 70° at z = 20 mm) is reached, the disturbances detach from the leading edge,
and propagate downstream towards the z-direction in the internal part of the wedge
(this path is illustrated by the dashed black line in figure 6.35 for the frequency f4).
The amplitude of the disturbances, as soon as they are released by the leading edge
into the internal domain near the z = 20 mm position, assumes very high values in the
early internal region, namely between z = 40 mm and x = 100 mm, which is a region
characterised by high crossflow inflectional profiles. Then, dependent on the frequencies,
the amplitude either decays downstream, or increases leading to the nonlinear growth

of a streamwise streak downstream of x = 200 mm.

Figures 6.36 and 6.37 show profiles of mean crossflow velocity (w), wall-normal velocity
fluctuation (v'), first and second derivatives of the mean crossflow velocity (dw/dyp,
82w/8yi), at z = 20 mm, and at the positions x = 50 mm and x = 60 mm respectively.
As seen in Chapter 4 for the 3D wedge in the swept configuration, also in this case
the peak of v/ (note that the quantities plotted on the z-axis are normalised with their
maximum value assumed in the wall-normal profile) inside the boundary layer is close to
an inflection point of the mean crossflow velocity profile. This is more evident in figure
6.37, in which the peak of v is almost coincident with the peak of dw/dy,. However,
while in the swept wedge case the maximum absolute value of v/ was reached for the
first inflection point near the wall (with a negative value of the crossflow velocity first
derivative), in this case the peak of v’ is located (at both the z positions) at the inflection
point corresponding to a positive peak of Ow/dy,. In both figures the curve representing
Fjortoft’s stability condition is plotted as well, whose negative values indicate that the
boundary layer is potentially unstable at both the considered positions. Thus, we deduce
that crossflow instabilities are indeed responsible for the generation and downstream

evolution of the streamwise streaks.

Figure 6.38 shows the maximum absolute values at the inflection points (inside the
boundary layer) of the mean crossflow derivative (Ow/0dy,,) in the leading-edge region,
which gives an indication of the strength of the crossflow on the body surface. As can
be seen, the highest values are reached near the wedge junction, as expected due to
the effect of the streamline deflection around the leading edge discussed in Section 6.6.
Downstream of the wedge junction, the crossflow derivative in the region z = 10 mm - 20
mm maintains high values up to longer z-wise distances compared to different spanwise
regions. The zone near the side boundary (z = 30 mm - 40 mm), which is the most
similar to the case of a swept wedge (with straight leading edge), due to very small
variations of the local sweep angle along the leading edge, as observed from the quasi-
2D trend of the crossflow derivative contours, shows, in contrast, a rapid decrease of
the wall-normal crossflow derivative downstream. This is an indication that the middle
region across the span (near z = 20 mm) is indeed the most susceptible to the crossflow

instability effects.
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Figure 6.35: Real part of the Fourier transformed wall pressure fluctuations
(pl,) at different forcing frequencies.

As shown in figure 6.35, the lower frequencies are characterised by the higher amplitude
levels, and are responsible for the nonlinear growth and bifurcation of the streamwise
streak downstream. Moreover, in the region downstream of x = 200 mm there is also

a strong increase in amplitude of the disturbances along the symmetry plane, which is
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consistent, as seen in Section 6.7.1, with the spreading towards the centerline of the

early nonlinear breakdown process.

Y (mm)
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Figure 6.36: Profiles, along the wall-normal direction, of mean crossflow velocity
(w), wall-normal velocity fluctuation (v'), first and second derivatives of the
mean crossflow velocity (Ow/0y,, 0%w/0y?), and Fjortoft’s stability condition,
at z =20 mm and x = 50 mm
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Figure 6.37: Profiles, along the wall-normal direction, of mean crossflow velocity
(w), wall-normal velocity fluctuation (v'), first and second derivatives of the
mean crossflow velocity (Ow/0yy,, 0*w/dy?2), and Fjortoft’s stability condition,
at z =20 mm and x = 60 mm
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Figure 6.38: Contours of the maximum absolute values of the mean crossflow
derivative (Ow/dy,) on the wedge in the leading-edge region

The streamwise-oriented streaks seen in figure 6.31 appear in a good qualitative agree-
ment with some numerical studies available in the literature, e.g. the work of Bartkowicz
et al. [90], showing the presence of crossflow-instability related streaks in a Mach 8 flow
over an elliptic cone in low-enthalpy wind tunnel conditions. Hence the crossflow insta-
bility mode represents the most likely source of generation and downstream development

of the streamwise streaks in our numerical solution.

Further evidence of the streamwise streaks belonging to a crossflow instability can be ob-
served in figures 6.39 and 6.40, which show the temperature and wall-tangential stream-
wise vorticity (wy = 1/2[0w/0y, — 0vy,/0z], where v, is the wall-normal velocity compo-
nent) cross-sections in the zy,-plane at the streamwise positions z = 220 mm, = = 230
mm, r = 240 mm, namely in the region corresponding to the nonlinear growth and
bifurcation process of the streamwise-oriented streak. The temperature contours near
z = 20 mm have a similar orientation (i.e. a certain inclination of the oscillations with
respect to the y,-axis) at all the different streamwise locations, which is a common as-
pect of crossflow-instability-induced streaks (shown also in the results of Bartkowicz et
al. 190]).

The main streak is initially located at about z = 20 mm, as evident also in figure 6.32. As
it moves downstream, it spreads across the span and increases rapidly in amplitude. This
is shown more clearly in figure 6.40, where two zones of opposite vorticity are observed
across the boundary-layer thickness at * = 20 mm, both centred near z = 20 mm,
representing two indistinct vortices at this streamwise position. Further downstream
(x = 230 mm) two distinct co-rotating (negative vorticity) vortices appear, a weaker
(secondary) one located inside the region z = 15 mm —20 mm, and a stronger one,
with increased amplitude with respect to the upstream position, located in the region
z = 20 mm —25 mm, and consistent with the main streamwise streak. Finally, at
the position z = 240 mm, both the vortices show a higher amplitude, and appear
shifted to increasing z locations. The main vortex is also shifted upwards, providing the
pronounced deformation of the boundary-layer edge seen in figure 6.39. The formation

of another pair of counter-rotating secondary vortices is observed at about z = 13
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mm, corresponding to the streak deflection towards the centerline shown in figure 6.32.
Another much weaker secondary vortex (with negative sign) is seen to start forming at
the boundary layer edge alongside the main vortex, at about the position z = 27.5 mm.
This fragmentation of the boundary-layer structure corresponds to a breakdown process,
which started further upstream (z ~ 140 mm), as seen in figure 6.34, where it involved

only the upper region of the boundary layer.
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Figure 6.39: Temperature contours cross-sections in the zy,-plane at different
x positions.
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Figure 6.40: Streamwise vorticity contours cross-sections in the zy,-plane at
different x positions.

Finally, the results for the wall heat flux in the case of fast acoustic waves seen in figure
6.30, showing earlier transition induced along the centerline, appear in a good conceptual
agreement with the BiGlobal linear instability analysis results of the works of Paredes
et al. [62], and Paredes and Theofilis [61], in which it was found that, in hypersonic flow
over an elliptic cone, the centerline is sensitive to instability modes (centerline modes)
driven by the high shear-layer associated to a low-velocity streak away from the wall
(mushroom-like structure) formed at the centerline. These centerline instabilities can be
even more amplified than the crossflow instabilities, thus playing a more relevant role in
the transition process. Hence, our results for the fast waves suggest that the resonance
mechanism relative to the fast mode at the leading edge can efficiently contribute to the

generation and rapid growth of centerline instabilities leading to earlier transition.

In the case of slow acoustic waves, in contrast, the absence of a strong resonance mech-

anism leads to a laminar solution at the centerline, thus suggesting a much weaker
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interaction between slow modes and centerline instabilities. This can also be explained
considering that in our geometrical configuration the curvature effect of the elliptic cone
surface is not present. Hence, the thicker boundary layer formed at the centerline, as an
effect of the streamlines coming from the leading edge and converging on the centerline
(as seen in figures 6.20 and 6.21), does not form a pronounced mushroom-like structure

within the considered z-wise domain length (as seen in figure 6.39).

6.8 Summary of the results

Numerical simulations have been run in order to study transition scenarios for 3D fast
and slow acoustic freestream wave disturbances, for the MBDA 3D forebody model

tested in the Purdue Mach 6 hypersonic wind tunnel.

The mean flow in the leading-edge zone is found to be characterised by a region of
inflectional crossflow boundary-layer profiles, extending from the side up to a small
distance from the symmetry plane (where the spanwise velocity is uniformly zero). This

was expected, due to the high values of the local leading-edge sweep angle.

The wedge junction represents a critical zone affecting the characteristics of the internal
flowfield, due to the flow coming from near the leading-edge tip (along the attachment
line) going around the leading-edge curvature and being deflected, as a result of the high
centripetal acceleration, towards the centerline. This creates a stream inside the near-
wall boundary layer, released into the internal nose region through the wedge junction,
which flows towards the symmetry plane (thus with negative values of the spanwise
velocity). The main consequences of this physical behaviour are i) the generation of
inflectional crossflow boundary-layer profiles near the wedge junction, consistent with
the positive values of the spanwise velocity reached outside of the boundary layer (for the
flow in the shock layer being directed towards the side boundary), and ii) a strong 3D-
flow effect in the wedge junction zone, causing a pronounced thinning of the boundary
layer, with the external cold flow getting very close to the wall and producing a narrow

zone of reverse wall heat flux (i.e. the wall releases heat into the fluid).

The side boundary effect on the internal solution has been assessed, showing that only a
limited-size region adjacent to the lateral edge of the computational domain is affected
by the presence of the side boundary, which does not include the zone where transition
is seen to start in the experimental results. The 40 mm wide domain (in the spanwise
direction) has been proved to be suitable for obtaining reliable receptivity-transition

results in the flow region of interest.

The unsteady numerical simulations with fast and slow acoustic waves have been per-

formed at a high freestream amplitude level, in order to simulate the noisy wind tunnel
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conditions of the considered experimental case, and to trigger transition through rapid
generation and growth of nonlinearities. Two important differences are observed be-
tween the transition patterns in the fast and the slow acoustic wave cases. First, in
the fast-wave case the surface heat-flux structure shows signs of 2D oscillations, con-
sistent with the 2D fast mode being the dominant mode inside the boundary layer
due to the resonance mechanism at the leading edge; in the slow-wave case, instead,
the heat-flux structure is characterised by streamwise-oriented streaks. Moreover, in the
fast-wave case, the boundary layer adjacent to the symmetry plane is shown to be highly
destabilised by the forced disturbances and to undertake earlier transition at about a
distance of 70 mm from the nose tip; while, on the contrary, in the slow-wave case the
near-centerline boundary layer is substantially laminar through the whole length of the
domain. This difference is again due to the resonance-induced amplification of the 2D
fast mode, which plays a major role in the region near the symmetry plane, where the
mean flow is more two-dimensional. This is a further confirmation that the resonance
mechanism at the leading edge for the fast mode, at the higher amplitude levels, can

strongly affects the transition mechanism, enhancing the possibility of by-pass transition.

The results with slow acoustic waves provide a better correlation with the experiments,
which suggests that the wind tunnel noise was characterised mostly by slow acoustic
disturbances during the experimental tests. In particular, transition is induced by the
nonlinear growth of streamwise-oriented streaks generated in the nose region, at a cer-
tain spanwise distance from the centerline (about 20 mm) corresponding to high local
sweep angles and strong local inflectional crossflow profiles. The receptivity study has
shown that disturbances coming from the nose tip, and initially following the flow path
along the attachment line, are released through the wedge junction inside the internal
wedge surface 20 mm off the centerline, and then propagate downstream leading to the
generation of a main streamwise-oriented streak. The boundary-layer edge distortion is
consistent with a crossflow-instability related streak. Further downstream, due to the
high amplitudes, the streak undergoes nonlinear growth with bifurcation and generation
of secondary vortices which spread towards the centerline, thus initiating the breakdown
process. The initial stage of the nonlinear growth leading to transition is actually ob-
served inside the boundary layer further upstream (z ~ 140 mm). However, at this
streamwise location, the nonlinear process is confined to the upper part of the boundary

layer, thus not involving yet the flow near the wall and the surface heat flux.

The disagreement between the numerical and experimental results in terms of the exact
location of the transition point is most probably related to a difference in the freestream
noise level inside the hypersonic wind tunnel, compared to the fixed disturbance ampli-
tude used in the numerical simulations, which would indicate that higher noise levels
were reached in the wind tunnel runs. However, the presence of the pressure transducers
over the wedge surface, which might have worked as roughness elements leading to a

more rapid transition process, may have been a contributing factor.
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Conclusions and future work

The present work has elaborated, through direct numerical simulations, details of the
receptivity and breakdown mechanisms for hypersonic flow over blunt leading-edge con-
figurations with imposed freestream acoustic disturbances. A two-dimensional and a
three-dimensional model of the freestream acoustic waves have been developed and used
in the numerical simulations. The former has been adopted in 2D simulations over the
geometry of a blunt-nose wedge probe designed by DLR to measure the freestream noise
level in hypersonic wind tunnels; the latter has been used to perform 3D simulations for a
blunt wedge in an unswept and a swept configuration, and for the full three-dimensional
geometry of a generic forebody model developed and tested by MBDA in the Purdue

hypersonic wind tunnel.

7.1 2D wedge probe

In the 2D simulations for the DLR wedge probe, performed for both fast and slow acous-
tic waves as freestream disturbances, the wave structure behind the shock, resulting from
the shock-disturbance interaction, and the characteristics of the wall response, related
to the boundary-layer receptivity mechanisms for the fast and the slow mode, have been
analysed and validated through theoretical estimations and other numerical results avail-
able in the literature. Furthermore, the sensitivity to different flow conditions, including
an angle of attack and an angle of incidence of the acoustic waves, has been assessed.
The set of two-dimensional simulations for the wedge probe has also provided the nu-
merical freestream-to-wall transfer functions for the pressure disturbances, that have
been used, in conjunction with the experimental data for the wall disturbance levels, to
estimate the freestream noise levels in the DLR high-enthalpy (HEG) and low-enthalpy
(RWG) hypersonic wind tunnels.

The objectives of these 2D simulations, which were stated in Section 1.7, are rewritten

below:

173
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to determine the characteristics of the transmitted waves behind of the shock,

to determine the characteristics of the response along the wall,

to assess the sensitivity of the leading-edge receptivity to the angle of attack and

the angle of incidence of the acoustic waves,

to estimate the freestream noise levels in the DLR wind tunnels.

The results obtained for the 2D numerical simulations, described in Section 4.3, allow

us to give the following conclusions:

e fast acoustic waves are efficiently transmitted across the shock as refracted waves,
while slow acoustic waves generate entropy/vorticity waves in the post-shock re-

gion;

e the receptivity to fast acoustic waves is characterised by a strong resonance mech-
anism at the leading edge, producing a significant amplification of the fast mode,
and a modulation further downstream between the decaying mode F and the ex-
ternal forcing; while in the slow-wave case, a much weaker response is observed,
which decays in the nose region and assumes a substantially constant amplitude

further downstream;

e a wave incidence angle of 10° amplifies the response along the lee side at the higher
frequencies for fast acoustic waves, while providing an opposite behaviour for slow
acoustic waves; in contrast, an angle of attack of 10° provides a significantly higher
response along the windward side, compared to the lee side, and a pronounced
difference in the post-shock wave structure between lee and windward sides, for

both fast and slow acoustic waves;

e the estimated freestream noise levels indicate higher levels in the HEG wind tun-
nel at the higher Mach numbers, compared to the RWG wind tunnel, a higher
contribution of slow acoustic waves in the wind-tunnel freestream disturbance
field (in agreement with the results of Duan et al[12]), and a marginal role of
the leading-edge receptivity in the frequency-spectra shape at the wall, which is

mainly dependent on the shape of the spectra in the freestream.

7.2 3D wedge swept and unswept

The 3D simulations for the span-periodic wedge geometry with oblique acoustic distur-
bances, performed for a flow at Mach 6 and for two different Reynolds numbers, have
focused on the characteristics of the receptivity-breakdown mechanism associated with

fast and slow acoustic waves, in a linear and a nonlinear regime (namely for two different
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freestream disturbance amplitude levels), and for an unswept and a swept configuration.
These numerical simulations have assessed the role played by the fast-mode resonance
mechanism at the leading edge on the breakdown mechanism, and the effect of the
crossflow instabilities generated at the leading edge in the presence of a sweep angle.
Different transition scenarios have been observed, each one resulting from a specific lin-
ear /nonlinear receptivity mechanism to fast/slow acoustic waves in an unswept/swept
leading-edge configuration. Moreover, results of an LST analysis have been compared
with numerical results for the receptivity to 2D fast acoustic waves over the same wedge
geometry, showing a very good agreement, consistent with results present in the litera-
ture. In particular, the objectives we addressed to this set of 3D simulations in Section

1.7 were the following:

e to deduce the different receptivity mechanisms to freestream fast and slow acoustic

waves, with and without nonlinearities,

e to determine the resonance mechanism at the leading edge between the internal
modes and the external forcing, including an assessment of the relevance of previous
theoretical approaches (Fedorov and Khokhlov[32]),

e to determine the extent of influence of crossflow instabilities generated at the

leading edge due to the presence of a sweep angle.

From the results discussed in Sections 5.3 and 5.4, the following conclusions can be

drawn:

e the fast-wave receptivity is characterised by a dominant 2D fast mode in the
leading-edge region (due to the resonance mechanism with the incident fast acous-
tic waves), which, further downstream, remains the dominant mode inside the
boundary layer at the lower freestream disturbance amplitudes, while leading to the
generation and growth of streamwise streaks at the higher amplitudes. The slow-
wave receptivity is, in contrast, characterised, for both low and high freestream
disturbance amplitudes, by a combination of 2D and 3D modes (with no one
dominant mode), and a lower response (compared to the fast-wave case), as a
consequence of a mixed wave structure propagating in the post-shock region and

interacting with the boundary layer;

e the resonance mechanism between the incident fast waves and the boundary-layer
fast mode leads to subsequent amplification cycles of the fast mode, which hence
becomes the dominant mode in different regions of the flow (starting from the
leading edge). The intermediate regions are, in contrast, characterised by a decay
of the fast mode, and by a modulation between the forcing waves and the other

internal competing modes, including the fast mode itself and the slow mode (mode
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S). The latter grows when mode F - mode S synchronisation is reached, and leads to
the generation of a Mack mode. This mechanism was shown by previous theoretical
(Fedorov and Khokhlov([32], Fedorov’s [4]) and numerical (Zhong and Ma [17],
Zhong and Wang [23]) studies. Our results are consistent with those of the above
mentioned studies, and, in addition, have found that the resonance mechanism for
the fast mode at the leading edge is efficient in triggering, at the higher amplitudes,
the generation and rapid growth of instability modes (streaks) which lead quickly

to transition (in both the unswept and the swept configuration);

e the effect of a sweep angle is a more unstable boundary layer, which is subject
to crossflow instabilities originating in the leading-edge region. In both fast and
slow wave cases, the crossflow instability produces narrow streamwise streaks in
the downstream region, whose rapid nonlinear growth leads to final breakdown.
The fast-wave case at high amplitudes represents an exception, in which earlier
transition is induced through a by-pass mechanism related to the interaction, in
the leading-edge region, between the crossflow modes and the resonance-induced
B = 0 fast modes.

7.3 Generic forebody

The numerical simulations performed for the MBDA 3D forebody geometry have inves-
tigated the transition patterns for the cases of three-dimensional fast and slow acoustic
waves, serving as a validation of the transition experiments carried out for the forebody
model in the Mach 6 Purdue hypersonic wind tunnel, and have represented, relative to
the previous 3D numerical cases for the span-periodic wedge, an extension to a case with
a different leading-edge shape along the spanwise direction. The role of the receptivity
to fast and slow acoustic waves on the transition patterns has been analysed, and the
corresponding numerical results for the surface heat flux have been compared with the

experimental data.

The objectives of these 3D simulations were the following, as stated in Section 1.7:

e to compare the simulations with the experimental results, thus assessing the suit-
ability of the acoustic-wave model, and the dominant disturbances in the Purdue

hypersonic wind tunnel,

e to determine the main transition mechanism on the geometry of a generic forebody.

On the basis of the results discussed in Chapter 6, the main conclusions can be sum-

marised as follows:
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e the numerical results with slow acoustic waves provide similar transition patterns
to the experimental case, indicating that the wind tunnel noise was characterised
mostly by slow acoustic disturbances during the experimental tests, and, at the
same time, that the 3D acoustic-wave model described in Section 2.4 is suitable
to reproduce the main characteristics of the real disturbance field in hypersonic
wind tunnels. The more rapid transition observed in the experiments is most likely
due to a slightly higher freestream disturbance amplitude in the hypersonic wind
tunnel, and to the presence of the pressure transducers on the surface of the body,

which might have worked as roughness elements, thus inducing earlier transition;

e the main mechanism leading to transition consists of high-amplitude disturbances
released by the leading edge into the internal wedge surface near a particular
off-centerline position where a local sweep angle of about 70° is reached. These
disturbances trigger crossflow instability modes near the leading edge with the
generation of streamwise streaks, which grow downstream until nonlinear break-
down is reached. In particular, the lower frequencies (7.3 kHz - 36.5 kHz) have

been found to be responsible for the streak nonlinear growth.

7.4 Key contributions and future work

This work has identified the main mechanisms and parametric dependence of the leading-
edge receptivity to acoustic disturbances in several high-speed flow conditions, and has
shed light on the complex relations between types of acoustic disturbance, amplitude
level in the freestream, and receptivity /breakdown mechanism on the wall in a hyper-
sonic flow for different blunt leading-edge configurations. Hence, it represents a fun-
damental basis for the future development of transition-predictor methods aimed at
i) correlating the physical mechanism of the breakdown to the characteristics of the
leading-edge receptivity mechanism, and at ii) modelling the disturbance environment
of a conventional hypersonic wind tunnel through the computation of the receptivi-
ty /breakdown mechanism, in conjunction with the data of transition experiments in the

noisy environment of a generic hypersonic wind tunnel.

In particular, the main contributions of this research work to the advancement of the

knowledge in the hypersonic-transition field can be summarised in the following points:

e the combined experimental-numerical approach for the estimation of the noise
levels in the DLR experiments, as well as the comparison between our numerical
results and the transition experiments in the Purdue Mach 6 hypersonic wind
tunnel, have provided evidence of the relevance of slow acoustic waves in the real
disturbance field of hypersonic wind tunnels, thus confirming the purely numerical

predictions of Duan et al.[12].
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e In addition to the assessment of the resonance mechanism at the leading edge,
which was shown by previous theoretical (Fedorov and Khokhlov([32], Fedorov’s
[4]) and numerical (e.g. Zhong and Ma [17]) studies, the present research work has
demonstrated the link between the receptivity mechanism at the leading edge and
the characteristics of the wave structure propagating behind the shock, and its fun-
damental implications on the transition mechanism. In particular, our study has
shown that fast acoustic waves are efficiently transmitted and amplified through
the shock, thus triggering a strong resonance mechanism (involving the internal
fast mode) when interacting with the boundary layer at the leading edge, and that
slow acoustic waves, in contrast, are in part transmitted with a lower amplitude
(compared to the freestream waves) and in part converted into a different type
of waves (convected waves) downstream of the shock, thus producing a weaker
and mixed (i.e. a combination of 2D and 3D modes) response on the wall. This
difference in the wall response has been shown, in turn, to provide significant dif-
ferences in the transition process downstream. Moreover, our study has shown
that the post-shock wave structure is strongly dependent on the angle of attack,
for both fast and slow acoustic waves, resulting in different propagation patterns

between the lee and the windward sides.

e In the literature, slow acoustic waves are known to be more dangerous than fast
waves, as previous studies (e.g. Kara et al.[39], Malik and Balakumar[29]) showed
that slow waves induce second instability modes of higher amplitude, compared to
the fast waves. However, this may only be true when considering linear instabilities
(which is the case of the above mentioned studies). The present numerical study
has demonstrated that in nonlinear cases (for high freestream disturbance levels),
in contrast, the fast-mode-induced transition is significantly more powerful than
the slow-mode-induced transition. The key mechanism of the fast-mode transition
is the leading-edge resonance mechanism, which triggers the generation and rapid
growth of streak instability modes, leading to earlier transition both in the unswept
and swept configurations. This represents important progress in the understanding
of the relative role played by fast and slow acoustic waves in the transition process
for different freestream disturbance levels, and can have important implications in
any (ground-test or in flight) conditions where fast acoustic waves may represent
a relevant contribution to the disturbance field (e.g. in the case of entropy waves

generating fast acoustic waves behind the shock).

These findings highlight the importance of a numerical approach aimed at simulating
the full transition process from freestream disturbances, in contrast with the traditional
approaches based on inserting prescribed disturbances into the boundary layer, for future

transition-prediction studies.

The most important studies yet to be addressed, on the basis of the computational

results, concern further theoretical analyses for the span-periodic wedge flow and the flow
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over the 3D generic forebody. For the span-periodic wedge in the unswept configuration,
the physical mechanism of the generation, growth and breakdown of the streamwise
streaks needs to be assessed through a more detailed analysis aimed at understanding
whether the streak breakdown can be associated to a purely nonlinear process or to a
transient-growth mechanism. In the cases of the swept span-periodic wedge and the 3D
generic forebody, the role of the crossflow inflectional instabilities, located in the near
leading-edge region, on the transition mechanism downstream, for both fast and slow
acoustic waves, needs to be assessed through an appropriate linear stability analysis. In
order to achieve this, an improvement of the existing version of the LST code needs to
be performed first, which takes into account also the crossflow modes. The new version
of the code will then need to be validated through validation test cases available in the

literature.

Moreover, as seen in Chapter 6, for the generic forebody geometry, the role of the pressure
transducers on the body surface on the transition mechanism, during the experimental
tests in the hypersonic wind tunnel, is not yet understood, and needs to be studied, in
order to shed light on the possible causes of the disagreement between the numerical
and the experimental results concerning the exact location of the transition point. This
will need a set of new numerical simulations, eventually more expensive in terms of
computational time, in which an isolated roughness element has to be located, and
opportunely discretised, in correspondence of the nearest position to the transition point
observed in the experimental results (i.e  ~ 150 mm). The shape and size of the pressure
transducer will have to be provided by the experimentalists in order to appropriately

model the roughness element.

Finally, a list of other possible future applications and developments of our work is as

follows,

e study of the sensitivity of the receptivity mechanism, and the characteristics of the
full transition mechanism, in the presence of nonequilibrium chemical effects, e.g.
the dissociation and exchange reactions in the shock layer and the recombination
reactions in the boundary layer, for high Mach number flows (e.g. by developing

a nonequilibrium chemical effects version of the SBLI code);

e study of the receptivity-breakdown mechanism in the presence of wall blowing of
the gas species (with appropriate blowing profiles) produced by the ablation (sur-
face chemical reactions and/or internal pyrolysis) of the TPS (Thermal-Protection-
System) material, e.g. for the heat shield of a reentry probe, or the TPS of the

nozzle wall of a rocket;

e development of a theoretical predictor method of the receptivity-breakdown mech-
anism over blunt leading-edge configurations, on the basis of the results from the

direct numerical simulations and LST/PSE studies;
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e extension of the shock-grid alignment method, described in Section 3.3, to a generic
3D grid.
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