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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

by Stefan Christian Schlanderer

This work introduces a novel virtual boundary method for compressible flows with ap-

plication to aeroacoustics. The method is the compressible extension of the boundary

data immersion method (BDIM, Maertens & Weymouth (2015)). The BDIM equations

for the compressible Navier-Stokes equations are derived and the accuracy of the method

for the hydrodynamic representation of solid bodies is demonstrated with challenging

test cases relevant to aeroacoustic applications, including a fully turbulent boundary

layer flow and a supersonic instability wave. In addition, it was shown that the com-

pressible BDIM is able to accurately represent noise radiation from moving bodies and

flow induced noise generation without any penalty in allowable time step.

The newly introduced framework was employed to investigate the noise radiation from

elastic trailing-edges (TE). A study employing elastic TE extensions for airfoils at angle

of attack showed a noise amplification when the structural motion is close to resonance.

Furthermore significant effects of the elastic TE extension on the characteristics of the

laminar separation bubble on the suction side were found, resulting in a global change

of the flow around the airfoil. For that reason, in an attempt to avoid changes in circula-

tion complicating the comparison between rigid and elastic TE, a generic setup featuring

a flat plate and a vortex generator was developed to investigate different material pa-

rameters for the elastic TE. Excess noise was found to be radiated in frequency bands

related to the response of the motion of the elastic structure. However, a noise reduction

was observed for certain frequency ranges and structural parameters. The noise reduc-

tion was associated with an attenuation of the incident pressure fluctuations. When

structural damping was taken into account significant noise attenuation compared to

the undamped and the rigid cases was found. The noise reduction was attributed to

reduced fluctuations of the structural deflections. Finally, the simulation of a fully tur-

bulent flow convecting over an elastic TE showed qualitatively similar behaviour to the

two dimensional studies. However, the excess noise from the structural motion was rela-

tively more important than in the two dimensional case and the overall noise reduction

was reduced. The motion of the elastic TE is shown to increase the energy in the low

wave number spanwise modes.

http://www.soton.ac.uk
http://www.southampton.ac.uk/faculties/faculty_engineering_environment.html
http://www.southampton.ac.uk/aerospace/research/aerospace/civilaviationandaeronauticsappliedsolutions/afm.page
mailto:stefan@schlanderer.org




Contents

Nomenclature ix

Acknowledgements xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Review of Trailing-Edge Noise Research . . . . . . . . . . . . . . . . . . . 1

1.2.1 Physical Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Trailing-Edge Noise Reduction . . . . . . . . . . . . . . . . . . . . 3

1.2.2.1 Low Noise Airfoil Design . . . . . . . . . . . . . . . . . . 4

1.2.2.2 Modification of the Trailing-Edge Properties . . . . . . . 4

1.2.3 Methods to Analyse Trailing-Edge Noise . . . . . . . . . . . . . . . 10

1.2.3.1 Analytical Methods . . . . . . . . . . . . . . . . . . . . . 10

1.2.3.2 Experimental Methods . . . . . . . . . . . . . . . . . . . 12

1.2.3.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . 13

1.3 Scope of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Governing Equations and Numerical Methods 17

2.1 Fluid Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Governing Equations of Fluid . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Fluid Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Characteristic Boundary Conditions . . . . . . . . . . . . . . . . . 20

2.1.4 Analysis of the Input and Output of TE Noise Mechanism . . . . . 21

2.2 Structural Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Governing Equations of the Structure . . . . . . . . . . . . . . . . 22

2.2.2 Numerical Method for the Structural Solver . . . . . . . . . . . . . 25

3 Representation of Moving Bodies in High Fidelity Simulations 27

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The Concept of the Boundary Data Immersion Method . . . . . . . . . . 35

3.3 The Boundary Data Immersion Method for the Compressible Navier-
Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 The Continuity Mapping for the Boundary Data Immersion Method 42

3.4 Implementation of the Boundary Data Immersion Method . . . . . . . . . 43

3.4.1 Intersections of two Planes . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Evaluation of the Signed Distance Function . . . . . . . . . . . . . 45

3.4.3 Special Algorithmic Treatment for Bluff Bodies . . . . . . . . . . . 48

v



vi CONTENTS

4 Validation of Used Methods 51

4.1 Validation of the Boundary Data Immersion Method . . . . . . . . . . . . 51

4.1.1 Flow Around a Stationary Cylinder . . . . . . . . . . . . . . . . . 52

4.1.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1.2 Results – Accuracy and Datacapturing on Immersed Sur-
face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1.3 Formal Order of Convergence . . . . . . . . . . . . . . . . 54

4.1.2 Tollmien-Schlichting Validation Case . . . . . . . . . . . . . . . . . 55

4.1.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2.2 Results – Instability Growth Rates and Eigenfunctions . 58

4.1.2.3 Results – Comparison of the Averaged Statistical Profiles 59

4.1.2.4 Results – Formal Order of Convergence . . . . . . . . . . 62

4.1.3 Supersonic Oblique Wave Validation Case . . . . . . . . . . . . . . 63

4.1.3.1 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.3.2 Results - Accuracy . . . . . . . . . . . . . . . . . . . . . . 65

4.1.3.3 Results - Convergence . . . . . . . . . . . . . . . . . . . . 66

4.1.4 Turbulent Boundary Layer . . . . . . . . . . . . . . . . . . . . . . 67

4.1.4.1 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.4.2 Results – Effect of Second Order Correction . . . . . . . 68

4.1.4.3 Results – Comparison to Literature and Viscous Scaling . 69

4.1.4.4 Results – Modelling the Location of the Body Surface . . 72

4.1.5 Noise Radiation of a Vibrating Cylinder . . . . . . . . . . . . . . . 75

4.1.5.1 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.5.2 Results – Accuracy . . . . . . . . . . . . . . . . . . . . . 77

4.1.5.3 Results – Convergence . . . . . . . . . . . . . . . . . . . . 79

4.1.6 Summary of the Findings . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Validation of Structural Solver . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Trailing-Edge Noise from an Airfoil at Angle of Attack 85

5.1 Effect of a Rigid TE Extension . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Computational Setup . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.2 Results – Statistical Analysis of the Acoustic Field . . . . . . . . . 88

5.1.3 Results - Examination of the Hydrodynamic Source Region . . . . 88

5.2 Effect of an Elastic TE Extension . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Computational Setup . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Results – Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.3 Results – The Elastic TE Extension . . . . . . . . . . . . . . . . . 100

5.2.3.1 The Structural Behaviour . . . . . . . . . . . . . . . . . . 100

5.2.3.2 Statistical Analysis of the Acoustic Field . . . . . . . . . 103

5.2.3.3 Near Field Effects of the Elastic Extension . . . . . . . . 105

5.3 Summary of the Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Trailing-Edge Noise from an Elastic Flat Plate 111

6.1 Computational Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.1 Grid Resolution, Distribution and Generation . . . . . . . . . . . . 114

6.1.2 Structural Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Results – Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



CONTENTS vii

6.3 Results – Grid Independence and Validation . . . . . . . . . . . . . . . . . 127

6.4 Results – The structural behaviour . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Results – Comparison Between Rigid and Elastic Trailing-Edge . . . . . . 137

6.5.1 Influence of Elasticity and Different Structural Parameters on Trailing-
Edge Noise Generation . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.1.1 Statistical Analysis of the Acoustic Field . . . . . . . . . 137

6.5.1.2 Analysis of the Hydrodynamic Near-Field . . . . . . . . . 146

6.5.2 Influence of Structural Damping on Trailing-Edge Noise Generation157

6.5.2.1 Statistical Analysis of the Acoustic Field . . . . . . . . . 157

6.5.2.2 Analysis of the Hydrodynamic Near-Field . . . . . . . . . 163

6.6 Summary of the Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7 Trailing-Edge Noise from a Fully Turbulent Flow Over an Elastic Trailing-
Edge 175

7.1 Computational Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2 Results – Overview and Validation . . . . . . . . . . . . . . . . . . . . . . 177

7.3 Results – Comparison of the Rigid and Elastic Trailing-Edge . . . . . . . 184

7.3.1 The Structural Behaviour . . . . . . . . . . . . . . . . . . . . . . . 184

7.3.2 Investigation of the Acoustic Far-Field . . . . . . . . . . . . . . . . 186

7.3.3 Investigation of the Hydrodynamic Near-Field . . . . . . . . . . . . 190

7.4 Summary of the Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8 Summary and Outlook 199

8.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.1.1 Virtual Boundary Condition for Moving Bodies in High-Fidelity
Simulations with Application to Aeroacoustics . . . . . . . . . . . 199

8.1.2 Self-Noise of Airfoils with Rigid and Elastic TE Extensions . . . . 201

8.1.3 Noise from an Elastic TE of a Flat Plate . . . . . . . . . . . . . . 201

8.1.4 Noise from a Turbulent Flow Convecting Over an Elastic TE . . . 202

8.1.5 Concluding Remarks About the Effect of Elasticity . . . . . . . . . 202

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203





Nomenclature

Accronyms

AoA angle of attack

BDIM boundary data immersion method

CFD computational fluid dynamics

DNS direct numerical simulation

HiPSTAR HighPerformance Solver forAeroacoustic andTurbulenceResearch

IB immersed boundary

IIM immersed interface method

IMBM immersed boundary method

LES large eddy simulation

LPCE linearized perturbed compressible equations

MPI message passing interface

OASPL over all sound pressure level

PIV particle image velocimetry

PSD power spectral density

RANS Reynolds-averaged Navier-Stokes equations

SPL sound pressure level

TE trailing-edge

Sub- or Superscripts of an arbitrary quantity Φ

Φ̇ temporal derivative of quantity Φ

Φ time averaged quantity Φ

Φ′ fluctuation of a quantity Φ

Φ′′ Favre fluctuation of a quantity Φ

Φ∗ quantity with dimensions

Φ+ quantity Φ in viscous units

Φb, Φb indicates a quantity that is defined for a body

ΦF indicates a field quantity that is filtered

Φf , Φf indicates a quantity that is defined for a compressible fluid

ΦT a superscript that denotes a target value on an immersed boundary

Φε indicates a quantity convoluted with a delta kernel or is smoothed

Φ∞ value at a reference location, e.g. free stream

ix



x CONTENTS

ΦL subscript indicating a quantity from the lower surface of the trailing-

edge

Φn the wall normal projection of a vector quantity

Φs indicating a quantity describing a structural property

ΦU subscript indicating a quantity from the upper surface of the trailing-

edge

Φref reference value

Φrms root mean square also denoted standard deviation of quantity Φ

Φser quantities that refer to properties of trailing-edge serrations

Φvib a quantity Φ describing the vibration of a cylinder

~Φ vector quantity

Φ̃ Favre averaged quantity Φ

Symbols

α empirical constant for integrator of control loop IMBM approach

α normalization coefficient for a nascent delta kernel Kε

A amplitude of harmonic body force or motion

A an area, e.g. of a cross-section

β empirical constant for proportional control of control loop IMBM

approach

b(Φ) governing equation of a field variable Φ in the solid body domain

χ abbreviation for 1/[γ(γ − 1)M2]

c speed of sound

CD drag coefficient

cd damping coefficient

cf skin-friction

CL lift coefficient

Cp pressure coefficient

cp heat capacity at constant pressure

CDf skin-friction drag coefficient

CDp pressure drag coefficient

CLf skin-friction lift coefficient

CLp pressure lift coefficient

CSu Sutherland constant

δ∗ displacement thickness

δik Kronecker delta

d signed distance from body surface

ds length in the span wise direction, i.e. depth

Dcyl Diameter of a cylinder

Dcyl cylinder diameter

dB decibel

ε half-width of smoothing region



CONTENTS xi

η second direction in a computational grid, counting with indice j

η similarity variable in wall normal direction

E total energy

Es Young’s modulus

eii amplitude of the spanwise spectra of momentum component ii

f body force acting on a fluid

f non-dimensional frequency

f(Φ) governing equation of a field variable Φ in the fluid domain

f(X̃) volume force that drives the velocity of the point X̃ on an immersed

body to a desired target value

fb frequency of recirculation bubble

FD overall drag force

fD frequency of drag fluctuations

fj natural frequency of a bending beam of mode j

FL overall lift force

fL frequency of lift fluctuations

fs vortex shedding frequency

fw weighting of explicit filter

FDf skin-friction drag force

FDp pressure drag force

fin most dominant input frequency to the trailing-edge noise mechanism

fj,air x-th non-dimensional natural frequency of a structure moving in a

vacuum.

fj,vac x-th non-dimensional natural frequency of a structure moving in a

vacuum.

FLf skin-friction lift force

FLp pressure lift force

fres frequency that is still resolved appropriately on the computational

grid

fshed vortex shedding frequency

Γ ratio of streamwise and spanwise derivative of pressure

γ isentropic exponent

∆h grid spacing

he correlated serration height

hser half-height of trailing-edge serrations

hTE height or thickness of trailing-edge
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Chapter 1

Introduction

1.1 Motivation

Increasing air traffic and the growing number of wind turbine installations in the vicin-

ity of populated areas have brought annoyance from aerodynamically generated noise to

attention in the past decades. Considerable efforts have been made to investigate noise

perception and resulting annoyance from wind turbines (Hubbard & Shepherd, 1991;

Pedersen & Persson Waye, 2004; Taylor et al., 2013). The present work is concerned

with trailing edge (TE) noise and measures to reduce it. TE noise is generated by the

interaction between a sharp TE and pressure fluctuations in the fluid flow. If the bound-

ary layer is turbulent, pressure fluctuations are present over a wide range of frequencies.

This causes broadband noise radiation and is a dominant contributor to noise produced

in many engineering applications of lifting surfaces such as wings and rotating blades.

Acoustic field measurements of wind turbines, for example, showed that the TE is the

dominant source of noise (Oerlemans et al., 2007). Where other noise sources can be

reduced or avoided by a careful design, TE noise is the only remaining noise source when

an airfoil encounters a non-turbulent inflow, even though the level of background distur-

bances might alter the transition characteristics and therefore also the noise radiation

from the TE. However, TE noise is the minimum achievable noise and also denoted as

airfoil self-noise (Roger & Moreau, 2004, 2005). Therefore it is necessary to reduce TE

noise in order to reduce the noise generated by airframes, wind turbines and fan blades.

1.2 Review of Trailing-Edge Noise Research

In the following section physical mechanisms (section 1.2.1) that cause TE noise are

discussed. Section 1.2.2 emphasizes measures that have been reported to reduce TE

1



2 Chapter 1 Introduction

noise. Finally, methods that have been applied to investigate TE noise are summarized

in section 1.2.3.

1.2.1 Physical Mechanisms

According to Brooks et al. (1989) airfoil self-noise can be caused by the following five

mechanisms:

1. Turbulent boundary layer trailing-edge noise caused by turbulent fluctuations in

the boundary layer convecting over the TE.

2. Laminar boundary layer vortex shedding noise through vortex shedding in the

wake. In low Reynolds number flows this mechanism is a dominant quasi-tonal

source of noise.

3. Separation and stall noise from an airfoil at high angle of attack caused by vortices

shed from boundary layer separation near the TE or low frequency noise caused

by large scale separation known as deep stall. In a slightly separated flow the

dominant noise radiates from the TE. In contrast to that the noise radiated from

an airfoil in deep stall is a result of the interaction between the airfoil’s rigid body

and the pressure fluctuations generated by the separated flow.

4. TE bluntness noise is caused by vortices shed from the TE. It can be a very

important quasi tonal contributor to the overall noise.

5. Noise caused by tip vortex is considered to be relatively weak compared to the

other mechanisms.

All of the listed mechanisms except for the tip vortex noise are related to the interaction

of pressure disturbances with the solid airfoil TE. In order to estimate the acoustic in-

tensity that is produced by fluctuations in a fluid flow, Lighthill (1952, 1954) developed

his theory of “Sound Generated Aerodynamically” in the early fifties. This was at the

time when the first passenger aircraft with jet engines were about to enter service and

Lighthill wanted to understand and predict jet noise. It was the first general theory that

directly estimated the intensity of radiated sound from a fluid flow. The analysis shows

that turbulent fluctuations in the freestream are acoustic sources of quadrupole type.

They are inefficient acoustic radiators in low speed flows (i.e. with a small Mach number

M) as the radiated acoustic intensity scales with ∼ M8. Curle (1955) extended this fun-

damental theory to account for solid boundaries including effects such as reflection and

diffraction. In this approach the force that a body exerts on the fluid is represented by a

dipole source as an additional term in Lighthill’s original equation. Dimensional analysis

shows that the presence of a rigid wall increases the radiation efficiency because of the

predominant dipole and the acoustic intensity scales with ∼ M6. Analytical predictions
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of the acoustic intensity radiated by an eddy convecting over a TE show a scaling with

∼ M5 and were first investigated by Ffowcs Williams & Hall (1970). Therefore these

fluctuations are much stronger sources of noise than freestream or wallbounded fluctu-

ations for low Mach numbers.

Hence the TE geometric singularity, with the characteristics of the flow changing from

a wall-bounded to a free-shear flow, enhances sound radiation. The acoustic scattering

of incident pressure fluctuations when convecting over the TE can be regarded as a

diffraction process. This results in an acoustic field where the amplitude of the radiated

noise is higher than that of the incident field (Ffowcs Williams & Hall, 1970; Crighton

& Leppington, 1971). The character of the radiated acoustic field depends on that of

the incident pressure fluctuations, i.e. whether they are present over a wide range of

frequencies or at a single frequency. The presence of the rigid TE converts some of

the high-wavenumber near-field energy to sound waves (Crighton & Leppington, 1971).

Brooks & Hodgson (1981) suggested as a conclusion from experimental data that the

geometric singularity does not lead to a singularity in the velocity field due to the action

of viscosity. Furthermore the incident and scattered pressure field overlaying each other

result in a vanishing pressure difference at the TE which was also observed in direct

numerical simulations (DNS) of Sandberg & Sandham (2008). Hence the scattering

phenomena adjusts the pressure in the boundary layer such that the pressure difference

is close to zero. This concept also explains the reason for the acoustic field being out of

phase on the upper and lower sides of the TE as observed by Brooks & Hodgson (1981)

and Sandberg et al. (2007).

The influence of moderate thickness and camber of an airfoil on the radiated TE noise

can usually be neglected. However, these parameters influence the hydrodynamic field

and therefore the fluctuating sources of the acoustic field. The scattering mechanism

can be regarded as a global surface effect of the TE, though (Roger & Moreau, 2004).

Hence a flat plate can be regarded as the limiting case of an airfoil and has been used as

a model of such extensively (Howe, 1978; Moreau et al., 2011). In contrast the finiteness

of the chord length can not be neglected when the airfoil extends into the acoustic far

field, i.e. is not acoustically compact (Howe, 1999). A non compact airfoil changes the

directivity pattern through backscattering from the leading edge. This results in an

acoustic field where TE noise at lower frequencies is partially cancelled out by leading

edge backscattering (Roger & Moreau, 2005).

1.2.2 Trailing-Edge Noise Reduction

In the previous section the scattering mechanism of TE noise has been outlined. The

critical parameters defining the intensity of the scattered noise are the characteristics of
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Figure 1.1: Sketch of a flat plate with TE serrations introducing the half height h and
wave length λ of the serrations (Moreau & Doolan, 2013a). In this work the subscript
ser is used to distinguish from other heights and wave lengths, clarifying that these
quantities describe the serrations, i.e. hser and λser.

the boundary layer (Moreau et al., 2012b) and the length of the TE that is wetted by

the flow. This is mirrored in the input data that analytical TE noise models, as reviewed

in Howe (1978), require. Measures to reduce TE noise by modifying the aforementioned

parameters are outlined in the following sections, where 1.2.2.1 covers the concept of

low noise airfoil design and 1.2.2.2 modifications of the TE properties.

1.2.2.1 Low Noise Airfoil Design

A turbulent boundary layer developing along the chord of an airfoil can be regarded as

an input of the TE radiation mechanism. Therefore a noise reduction can be realized

when the evolution of the boundary layer is modified favourably, i.e. the fluctuation

levels on the airfoil’s aft surface are reduced. This can be achieved by modifying the

pressure distribution around the airfoil (Schepers et al., 2007). Lutz et al. (2007) and

Schepers et al. (2007) achieved an overall noise reduction of 1− 3 dB with an improved

aerodynamic performance by using an optimized airfoil shape. Lee (2013) used a genetic

optimization algorithm and achieved a noise reduction of the overall sound pressure

level of 2.6dB with only a slight increase in noise level for high frequencies. Hence low

noise airfoil design is an important measure to reduce TE noise and has also proved

to reduce noise of full-scale wind turbines (Oerlemans et al., 2009). However, airfoil

optimization is often applied to a limited range of operating conditions and thus might

lead to unfavourable behaviour in off-design conditions (Ai et al., 2015).

1.2.2.2 Modification of the Trailing-Edge Properties

Howe (1991a,b) argued that a turbulent eddy only generates significant noise when its

wavenumber vector is normal to the TE. He suggested reducing the effective length
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along the TE that satisfies this condition, i.e. the length where the wavenumber vector

is normal to the TE. This can be achieved by using a serrated instead of a straight

TE, as sketched in figure 1.1. In fact analytical analysis of a flat plate with a serrated

sawtooth TE (Howe, 1991b) predicted that the intensity of radiated noise could be re-

duced. The magnitude of the predicted reduction depends on the height/amplitude and

spanwise spacing/wavelength of the teeth. To achieve a noise reduction the amplitude

should be at least of the order of the turbulent boundary layer thickness and the ser-

rations should be inclined at an angle that exceeds about 45◦ to the direction of the

mean flow. Furthermore, noise reductions are only expected for acoustic frequencies f

above fhser/U � 1, where hser is the half height of the serrations and U the flow speed.

Additionally, a greater noise reduction is predicted for increasing hser/λser with λser

being the wavelength of the serrations.

Indeed numerous experimental (Dassen et al., 1996; Oerlemans et al., 2009; Gruber

et al., 2010a,b, 2011; Chong et al., 2011; Moreau et al., 2012a; León et al., 2016) and

numerical (Sandberg & Jones, 2011; Jones & Sandberg, 2012; Arina et al., 2012) studies

showed an overall noise reduction in the range of 3-10 dB, depending on the frequency

when serrated TE were used. Sandberg & Jones (2011) and Jones & Sandberg (2012)

reproduced a similar behaviour of the noise reduction as a function of frequency as the

predictions of Howe (1991b). However, this is in contrast to the findings of other studies

where a noise reduction could be observed for lower frequencies and an increased noise

level was found for high frequencies. Gruber et al. (2011) speculated from measured

velocity spectra and flow visualization that the increased noise level originates from

high intensity flow through the trough of the saw teeth. In contrast to previous designs

a novel serration geometry with a slitted sawtooth and a random TE distribution of the

serrations presented by Gruber & Joseph (2013) and modelled by Azarpeyvand et al.

(2013) resulted in a low or no increase of noise in the high frequency range. Nevertheless

the exact reason for the noise increase at high frequencies remains unclear. In general,

predictions based on the model of Howe (1991b) overestimated the noise attenuation

that was actually found. However, with the new model developed by Lyu et al. (2016)

the accuracy of the predictions were found to be in better agreement with observations in

experiments. In addition the conditions to obtain a noise reduction formulated by Howe

(1991a,b) were upgraded to the two necessary conditions k1he � 1 and k1hser � 1.

Here k1 is the wavenumber in the chordwise direction of a wall pressure gust and hser

is the half-height of the serration. Furthermore, he describes the correlated serration

height and can be calculated with 2he = σserly′ , with ly′ being the spanwise correlation

length and σser = 4hser/λser the sharpness of the sawtooth.

The model of Howe (1991b) predicts that noise reduction increases for higher hser/λser.

This could be reproduced among 30 serration geometries attached to a NACA6512 air-

foil (Gruber et al., 2011). It was found that the effect of serrations was insignificant when
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the typical eddy size is larger than the sawtooth length. In contrast to broadband TE

noise Moreau et al. (2012a) and Moreau & Doolan (2013b) found that wider serrations

yielded higher attenuation of tonal noise in experiments with a flat plate. Gruber et al.

(2010a) extended the theory of Howe (1991b) to slitted trailing-edges and concluded

that they are less efficient in reducing noise, especially for high frequencies. Experimen-

tal data confirmed these findings and showed 2 dB noise reduction in the low frequency

range and an increased noise level of 1–2dB in the mid-frequency (300–7000Hz) range.

The aforementioned studies considering airfoils generally used flat plate extensions, also

denoted as splitter plates, attached to the actual profile and applied modifications to

the TE of the extension. Chong et al. (2012, 2013b) cut the serrations into the airfoil

body without flat plate extensions. This serration type is also termed non-flat plate,

non-insertion type or broken serrated TE in the literature. The measured data did not

show the typical increased noise level for high frequencies observed when using flat-plate

extensions. However a significant contribution of bluntness noise in a narrow frequency

band was found. It was speculated that they originate from vortices that are shed from

the root of the serrations. Additionally, an overall noise reduction could only be achieved

for wide serration geometries which agrees with the results of Moreau & Doolan (2013b)

for the reduction of tonal noise. The bluntness noise could be reduced by covering the

serrations with a mesh screen, although this resulted in a higher noise level at high

frequencies (Chong et al., 2013a). In a recent study by Vathylakis et al. (2015) the gaps

between the cut in serrations were filled with different metal foams which eliminated

these additional noise sources at minute aerodynamic penalty.

The study of Jones & Sandberg (2012) indicates that the noise reduction by the use

of TE serrations is achieved by changing the scattering process itself as the develop-

ment of the boundary layer upstream of the TE seemed to be hardly affected by the

presence of serrations (Gruber et al., 2010b; Jones & Sandberg, 2012). Chong & Vathy-

lakis (2015) concluded that the redistribution of momentum and turbulent shear stress

in the vicinity of the serrations leads to a reduced efficiency of the scattering process

at the TE. High fidelity numerical simulations presented in Jones & Sandberg (2012)

showed that the serrations yield a smoother evolution of hydrodynamic quantities over

the TE and hence reduce the discontinuity in the change of the boundary condition.

In the direct vicinity of the TE, horseshoe vortices are generated in the trough of the

serrations (Jones & Sandberg, 2012). These coherent structures increase the spanwise

correlation length up to one serration wavelength downstream of the TE. In the wake

the spanwise correlation length decreases more rapidly in the serrated case (Jones &

Sandberg, 2012). These findings are consistent with experimental data of Moreau et al.

(2012a), who found an increased turbulent length scale in the vicinity of the serrated

TE. Further downstream in the wake there are slight differences that become more and
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more insignificant with increasing downstream distance. Liu et al. (2015, 2016) investi-

gated the properties of the wake of an asymmetric NACAC65(12)-10 with flat plate TE

serrations attached. It was found that the velocity profiles vary significantly between

the root and the tip location leading to shear stress between those planes. Furthermore

a significant reduction of the turbulence levels in the presence of serrations was observed.

Considering the input to the TE mechanism the data presented by Jones & Sandberg

(2012) indicate that the wall surface pressure fluctuations upstream of the TE does not

feature a change of spanwise correlation levels on the suction or pressure side. Further-

more, the directivity of the acoustic field is not affected by the serrated TE (Moreau

et al., 2012a). Using their new mathematical model for the prediction of noise originat-

ing from serrated TE’s Lyu et al. (2016) found that the noise reduction can be attributed

to destructive interference of the scattered surface pressure.

Apart from a reduction of turbulent boundary layer noise, TE bluntness noise can be

reduced by serrations. In this case the modified TE suppresses vortex shedding from the

TE (Moreau et al., 2012a). In contrast to turbulent boundary layer noise, this is most

efficient for wider serration geometries (Moreau & Doolan, 2013a). Additionally air-

foil instability noise was found to be reduced by applying a non-insertion type serrated

TE (Chong et al., 2010, 2011). This kind of noise is generated by laminar boundary

layer instabilities that are amplified by a separation bubble close to the TE. The serra-

tions were found to reduce the bubble length and even suppress its generation for higher

angles of attack and reduce the efficiency of the scattering process. Thus the mechanism

of the noise reduction for laminar airfoil instability noise is partly different from the

reduction mechanism of turbulent boundary layer TE noise mentioned above.

Previous studies commonly concluded that the use of flat plate extensions with and

without serrations generally does not decrease the aerodynamic performance of airfoils.

Static pressure measurements of Gruber et al. (2010a) showed a negligible effect of

serrations on the lift generated. Furthermore, Oerlemans et al. (2009) investigated ex-

perimentally the effect of adding TE serrations, as well as optimizing airfoil geometry,

to full size wind-turbine blades. It was found that for realistic airfoil geometries overall

self-noise reductions of 2−3dB are possible without adversely affecting aerodynamic per-

formance. en reported in Chong et al. (2012, 2013a); Chong & Joseph (2013). However,

recent experimental investigations by Liu et al. (2015, 2016) show that, in particular for

asymmetric airfoils (NACA65(12)-10), sawtooth trailing-edge serrations decrease the lift

coefficient up to 15% for angles of attack in the range of −5◦ to 10◦ in comparison to

the baseline case. Furthermore, the use of non-insertion type serrations may well have

effects on the aerodynamic performance, albeit no quantitative data has been reported
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in Chong et al. (2012, 2013a); Chong & Joseph (2013).

Attaching brushes to the TE can be regarded as a limiting case of TE serrations with a

short wave length and an infinitely sharp tip. The effect of brushes as a TE modification

has been investigated experimentally using flat plates (Herr & Dobrzynski, 2005) and

airfoils (Herr, 2007). Similarly to Moreau et al. (2012a) the broadband noise as well

as bluntness induced noise could be reduced compared to the straight TE for low and

moderate frequencies. Additionally an increased noise level for high frequencies could

be observed. The scaling with the flow velocity was not altered by the addition of the

brushes and followed the fifth power law. Hence, Herr & Dobrzynski (2005) suggested

that the noise reduction is predominantly achieved by modifying the local flow field

around the TE. The reduction of bluntness noise supports this hypothesis. Experimen-

tal data of Finez et al. (2010) revealed that adding brushes severely reduce the spanwise

coherence of typical eddy structures downstream of the TE. Besides the geometric dif-

ferences a major distinction to serrated TE is the enhanced compliance of the flexible

brushes. Herr (2007) showed that brushes with a higher elasticity yielded a better noise

reduction.

In general, the effect of elasticity on TE noise has only been considered in the literature

with relatively crude assumptions or slightly different emphasis. Crighton & Leppington

(1970) carried out an analytical study that considered acoustic scattering characteris-

tics of a compliant half plane. The half plane was considered to react to fluid loading

locally only, thus neglecting elastic resistivity. It was shown that compliance can change

the scaling of the acoustic pressure to ∼ M6 for a relatively flexible plate and heavy

fluid loading. Cannell (1975, 1976) and Howe (1992) analysed the acoustic scattering of

surface waves at the TE of a fluid loaded plate. Howe (1993) considered structural and

acoustic noise of an elastic TE where the intensity of the sound generated was predicted

to depend on the fluid loading and the ratio of the incident and coincidence frequencies.

Bae et al. (2008) numerically investigated the effect of elasticity on TE bluntness and

wake induced noise. A recent analytical study relevant to this work was carried out

by Jaworski & Peake (2012, 2013). This work considers the interaction of a turbulent

eddy with a poroelastic edge of a semi-infinite plate. The results show that a poroelastic

edge yields the weakest noise amplification compared to an elastic and a rigid edge.

However, when heavy fluid loading is considered the additional advantage of porosity

compared to the elastic case vanish. The elastic case shows a strong dependency on

the frequency range that is considered. For the low frequency range it shows a seventh

power velocity dependency, which changes for higher frequencies, resulting in the same

amplification as the rigid case. Both of the aforementioned studies on a poroelastic TE

did not consider the effect of additional noise that is created by the motion of the TE.

However, in a recent study by Cavalieri et al. (2016) the effect of structural resonance
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and bending waves were considered together with a finite length of the poroelastic plate.

Manela (2011) also accounted for the motion induced sound and found that the noise

contribution from the moving TE is amplified by the shed TE vortices and results in an

increased noise level at the natural frequencies. Furthermore the flat plate was assumed

to be acoustically compact, which is in constrast to Jaworski & Peake (2013). Similarly

to Jaworski & Peake (2013), Manela (2011) also predicts a reduction of the TE noise

component. Manela & Huang (2013) considered a different configuration featuring a

thin airfoil with a flap that is coupled to the wing by a torsional spring. The analysis

shows that the elastic flap can lead to a noise attenuation or amplification depending

on the natural frequencies of the system. Noise amplification occurs when the natural

frequencies of the torsional spring are close to the frequency range of the vortex airfoil

interaction. The same frequency dependent behaviour has also been shown for an elastic

sheet actuated at its leading edge (Manela, 2012) and an elastic pitching airfoil (Manela,

2013). Very recently an experimental proof of concept by Das et al. (2015) investigated

the effect of an elastic trailing-edge attached to a flat plate at 0◦ angle of attack. For

the high frequency range the elastic TE case showed a noise reduction of up to 4dB.

Overall the elastic TE yielded a broadband attenuation of TE noise of 2dB. However,

Das et al. (2015) did not report any measurements of the hydrodynamic near-field or

the structural deflections when employing elastic TE’s making it difficult to conclude on

physical mechanisms.

It can be concluded that elasticity plays an important role for the scattering of noise at

a TE and the resulting acoustic field. It might well lead to a noise reduction when in-

corporated in the design process of TE extensions carefully, but potentially also amplify

the produced noise level for some frequency ranges or specific sets of parameters.

In addition to the shape and elastic properties, brushes feature another important dif-

ference to TE serrations: a comb or a brush is permeable for the fluid. Thereby the

geometric discontinuity is smeared out along the brushes via transpiration through the

brushes. Herr & Dobrzynski (2005) suggested that viscous damping in the cavities be-

tween the brushes plays an important role for noise reduction. The use of porous TE has

been investigated in the past in various studies. Jaworski & Peake (2012, 2013) showed

that the scattered noise scales with a sixth-power Mach number dependence for a rigid

porous TE when low frequencies are considered. Weidenfeld & Manela (2016) developed

a computational model of a permeable airfoil based on thin-airfoil theory and compact

body calculations and represented the surface porosity by employing Darcy’s law. A

noise reduction of up to 3dB for the porous airfoil was found alongside a time-delay of

the pressure signal. Geyer et al. (2010) measured TE noise of airfoils that were made of

different porous materials and found a reduction of up to 10 dB and more compared to

the non-porous airfoil for low and medium frequencies. For high frequencies an increase
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of the noise level occurred, possibly due to surface roughness noise. The use of porous

materials led to an increase in drag and a decrease in lift, though. Hence in contrast

to TE serrations porous materials do have effects on the aerodynamic performance. A

numerical study by Bae & Moon (2011) considered a porous TE attached to a flat plate

and observed a significant noise reduction over a wide range of frequencies. The reduc-

tion was attributed to the reduced correlation length of the wall pressure fluctuations in

the spanwise and streamwise directions. Additionally, the porous TE reduced the length

of the separated flow region upstream of the TE at angle of attack. Ali et al. (2016)

concluded from their measurements and the ratio of the amplitudes of the dominant

structures in the streamwise and spanwise direction that the turbulent structures are

elongated in the spanwise direction. This also led to a reduction of the energy content

of the velocity fluctuations in the near wake. Hence it can be summarized that porous

TE can reduce noise radiation significantly. Nevertheless, it must be noticed that effects

on the aerodynamic performance are possibly not negligible.

The above outlined measures to reduce TE noise are purely passive methods to influence

the hydrodynamic field around the TE and/or modify the scattering mechanism itself.

It is also possible reduce TE noise using active measures. Methods that were considered

in the past include TE blowing (Winkler et al., 2012a), multi-species gas injection (Koh

et al., 2013), synthetic jet (Mankbadi et al., 2015) and plasma actuators Inasawa et al.

(2013). Furthermore TE ailerons (Straub et al., 2001), microtabs (Johnson et al., 2009)

as well as morphing structures (Ai et al., 2015) have shown to reduce noise emission and

aerodynamic performance. However, active TE noise reduction methods are not delved

into in this work.

1.2.3 Methods to Analyse Trailing-Edge Noise

The following section focusses on different approaches to predict TE noise and under-

stand the scattering mechanism. Section 1.2.3.1 outlines analytical, 1.2.3.2 experimental

and 1.2.3.3 numerical methods.

1.2.3.1 Analytical Methods

Analytical approaches can give principal dependencies of the scattering characteristics on

certain parameters. A vast number of analytical models of TE noise has been developed

and differ predominantly in the required input data. Howe (1978, 1999) reviewed those

models and suggested distinguishing them using the following three categories:

• Theories that are based on the acoustic analogy by Lighthill (1952), where the

quadrupole and dipole sources are determined from the turbulent velocity field.
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Such approaches have been developed by Ffowcs Williams & Hall (1970); Crighton

& Leppington (1970); Crighton (1972); Howe (1976) among others. As Lighthill

(1952) derived them analytically from the Navier-Stokes equations, exact predic-

tions that contain the contributions of all sources can be obtained, when the tur-

bulent velocity field is known.

• Theories that are based on special problems approximated by the linearized hy-

droacoustic equations such as Chase (1972); Crighton & Leppington (1974); Amiet

(1976). In these theories the radiated noise is deduced from pressure fluctuations

on both TE surfaces which can be derived from the velocity fluctuations of the

hydrodynamic field.

• Ad hoc models with postulated source distributions, as presented by Tam & Yu

(1975); Tam & Reddy (1977); Hayden et al. (1976), where the strengths and mul-

tipole types are determined empirically.

For all of the aforementioned methods, difficulties arise from the provision of accurate

input data when calculating the radiated TE noise. In purely analytical approaches

the hydrodynamic statistics of the boundary layer need to be modelled with numerous

simplifying assumptions. These might not always be justified and usually have a limited

validity, as found in Schepers et al. (2007). A number of semi empirical turbulent bound-

ary layer models have been developed in the literature, such as one by Moreau et al.

(2011) and Lee & Cheong (2013), among others. In general, measuring or modelling

the statistics of the wall pressure fluctuations under the influence of pressure gradients

accurately is a very active field of research (Garcia-Sagrado & Hynes, 2012; Bertagnolio

et al., 2014; Mart́ınez-Lera et al., 2014; Kamruzzaman et al., 2015; Stalnov et al., 2016).

When using measured input data further challenges arise: to the author’s knowledge

there have been no successful attempts to obtain the strength of quadrupole and dipole

sources as input data for the first category of model from measurements. For the sec-

ond class of models the wall pressure statistics must not contain any contributions of

the scattered acoustic field. However, Roger & Moreau (2004) showed that the nature

of the wall pressure fluctuations is dominated by the aerodynamic pressure, which has

a much higher level than the corresponding acoustic fluctuations. Mart́ınez-Lera et al.

(2014) concluded from an analytical study that the pressure from an incompressible flow

description can yield accurate results when dipole noise sources are dominant.

A slightly different approach than the aforementioned methods is symbolic regression.

It can be employed to find fundamental dependencies and scaling laws when experimen-

tal or numerical data is available. As such it has been applied to datasets from noise

measurements of airfoils (Sarradj & Geyer, 2013, 2014).
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Physical insights into sound generation can be gained by interpreting terms in the exact

equations as in theories based on Lighthill’s analogy. By comparing results from DNS or

measurements with results obtained from analytical TE noise theories it is possible to

identify physical mechanisms that are neglected in the theories and cause the deviations.

However, by simplifying the equations in order to be able to spot relations or even calcu-

late quantitative values, additional assumptions are necessary. In acoustic theories it is

argued that the fraction of energy transported in acoustic waves is very small compared

to the total energy of the fluid motion. Hence back reactions of acoustic waves on the

fluid flow are usually neglected. Furthermore, analysis based on acoustic theories usually

does not include effects of viscosity. These are small in cases of high Reynolds numbers.

For low or moderate Reynolds numbers though, viscosity still affects the behaviour of

the flow and the scattering process, as was concluded by Sandberg et al. (2007) when

comparing results obtained from the theory of Amiet (1976) to DNS data. Especially

TE noise models of the second class can not account for additional noise sources, such as

reattaching laminar separation bubbles or quadrupole sources in the wake. This can be

justified for well behaved flows and vanishingly small Mach numbers. However, laminar

separation bubbles and transition to turbulence have been shown to be a significant

source of noise (Sandberg et al., 2008, 2009). For subsonic flows with moderate Mach

numbers the studies of Tam & Ju (2006); Sandberg et al. (2007); Sandberg & Sandham

(2008) and Wolf et al. (2012b, 2013) showed that quadrupole sources in the unsteady

wake can not be neglected.

It can be summarized that predictions from analytical models for TE noise can be used

to estimate fundamental dependencies. Using such estimations can lead to the design

of new experiments or simulations (Howe, 1991b; Jaworski & Peake, 2012). Further-

more the contribution of different physical sources to the sound field can be evaluated

when analytical results are coupled to experimental or numerical methods Wolf et al.

(2012b,a).

1.2.3.2 Experimental Methods

In addition to gain insights into physical mechanisms from measured data of TE noise

and the hydrodynamic field, experimental methods are important to validate analytical

and numerical models. In an experimental setup it is challenging to separate the TE

noise from other noise sources, such as the nozzle lips of the tunnel, the shear layer of an

open jet and the collector downstream (Brooks & Hodgson, 1981). Two approaches to

accomplish such a separation have been reported in the literature: the use of directional

microphones (Herr & Dobrzynski, 2005; Hutcheson & Brooks, 2004) or arrays of micro-

phones (Brooks & Hodgson, 1981; Oerlemans et al., 2009; Chong et al., 2010; Gruber

et al., 2010a). With directional microphones the TE can be directly targeted. Correc-

tions due to refraction at the shear layer of the open jet usually have to be applied.
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When arrays of microphones are used the TE noise components must be extracted by

correlating the output of different microphones. This allows the generation of two di-

mensional sound maps which are useful to evaluate the distribution of noise sources in a

plane as shown, among others, by Oerlemans et al. (2007, 2009) and Moreau et al. (2014).

Measurements of the velocity of the hydrodynamic field in the vicinity of the TE or

the wake have been reported using hot wire anemometers (Finez et al., 2010; Moreau

et al., 2012a,b; Moreau & Doolan, 2013b; Xu et al., 2013). The intrusive character of

this measurement technique is a drawback. The use of the non-intrusive particle im-

age velocimetry (PIV) method to measure the hydrodynamic field in the context of TE

noise has only been reported by Schroeder et al. (2004). Recently PIV was also used to

analyse the hydrodynamic source region of the sound and relate it to the noise observed

in the far-field (Pröbsting et al., 2015; Pröbsting & Yarusevych, 2015; León et al., 2016).

Breakey et al. (2013) and Pröbsting et al. (2014) aimed at identifying noise sources by

means of time resolved PIV through cross correlating the acoustic pressure in the far

field with transverse velocity fluctuations in the near field. Oguma et al. (2014) used a

different approach and considered the time derivative of the velocity field to calculate

the strength of the acoustic sources. To that end they took two snapshots within a very

short time interval.

Placing pressure sensors to measure surface pressure spectra is only possible slightly

upstream of the TE due to the space constraints at a sharp TE. It has been reported

by Brooks & Hodgson (1981); Herr & Dobrzynski (2005); Moreau et al. (2011); Moreau

& Roger (2009) and was applied to cross-correlate measured noise spectra in the far field

and assess analytical predictions using the surface pressure statistics as input.

1.2.3.3 Numerical Methods

With the recent growth in computing power numerical simulations have become a

widespread tool in research and industrial applications. Computational fluid dynam-

ics (CFD) can be categorized into Reynolds Averaged Numerical Simulations (RANS),

Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS). Conception-

ally they differ in the proportion of turbulence that is modelled. In RANS the complete

influence of turbulence is modelled whereas in LES only the effect of the small-scales in

a turbulent flow is modelled. In DNS all scales of a turbulent flow are calculated directly

without any modelling involved. Because of the multiple scales of turbulent flows, DNS is

the computationally most expensive approach with the need to also resolve the smallest

scales in space and time. On the other hand information about all flow variables at every

instant of time and position are available. The computation of sound generated aerody-

namically is an additional challenge aside from resolving the relevant scales of turbulent
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motion. The energy of the acoustic field is significantly smaller than the energy of the

hydrodynamic field. Therefore schemes with very low numerical dissipation need to be

applied to resolve acoustic waves. In RANS or LES simulations the influence of the un-

resolved turbulence is commonly modelled by introducing artificial dissipation making

these approaches unsuitable for the direct computation of noise. Furthermore nonre-

flecting boundary conditions (Poinsot & Lele, 1992; Sandberg & Sandham, 2006) are

required in high fidelity numerical simulations to ensure that acoustic waves can leave

the computational domain without spurious reflections. In addition computations of

sound generated aerodynamically are computationally expensive for two reasons. First,

the extent of the acoustic field is significantly larger than that of the hydrodynamic

field. This requires a relatively large computational domain that includes the acoustic

far field. Second, the timestep constraints for stability reasons are considerably higher in

compressible simulations compared to incompressible, as the speed of sound introduces

an additional time scale that needs to be resolved.

To overcome the mentioned difficulties hybrid approaches have been used for the sim-

ulation of TE noise. In such methods the hydrodynamic near field is computed using

CFD and the results are then used as input data for an acoustic solver. That enables the

use of computationally cheaper and technically more feasible CFD simulation concepts

such as RANS, LES or incompressible DNS. For the computation of the acoustic field,

solvers based on models discussed in section 1.2.3.1 (Oberai et al., 2002; Winkler et al.,

2010; Wolf et al., 2012c) and linearised perturbed compressible equations (LPCE) (Bae

& Moon, 2008, 2011) have been reported in the literature, among others. Through the

decoupling of the acoustic and hydrodynamic field, back reaction of acoustic waves on

the fluid flow are neglected. As a result of that, the effect of acoustic feedback loops as

reported in Arbey & Bataille (1983); Nash et al. (1999); Desquesnes et al. (2007); Sand-

berg et al. (2009); de Pando (2012); Ikeda et al. (2015) and Schumacher et al. (2014a,b)

featuring laminar flows and moderate Reynolds number flows around airfoils can not

be captured with such approaches. Additional challenges of using hybrid methods are

the storage of intermediate data and the sensitivity to the position of integration sur-

faces (Singer et al., 2000). In LES, uncertainties arise from subgrid-stress models for

the small-scale structures and the correct representation of laminar-turbulent transition.

Furthermore the acoustic sources need to be estimated from the turbulent fluctuating

statistics when using RANS (see Cozza et al. (2012) for further reference), which in-

creases the proportion of modelling.

The appropriate numerical method strongly depends on the intended application. To

make TE noise predictions of a given configuration where the flow is well behaved, i.e.

is fully turbulent without flow separation, hybrid approaches with LES yield acceptable

results at moderate computational costs (Oberai et al., 2002; Wolf et al., 2012c; Wolf
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& Lele, 2012; Winkler et al., 2012b). Enabled by the moderate computational costs,

coupling LES with a shape optimization procedure for low noise airfoil design is feasi-

ble (Marsden et al., 2007). Compressible DNS is the most feasible numerical method

for investigations that aim to explore the scattering process of pressure fluctuations at a

TE (Sandberg & Jones, 2011; Jones & Sandberg, 2012; Ikeda et al., 2012). The reason

for that is the greatest physical validity as no modelling of either the acoustic field or

small scale turbulence is employed. Furthermore, the hydrodynamic and acoustic field

are fully coupled and calculated at the same time.

1.3 Scope of this Work

This section summarizes open research questions concerning TE noise and measures for

its reduction that will be within the scope of this work. In section 1.2 the current

understanding of turbulent boundary layer TE noise has been outlined. Furthermore,

measures to reduce TE noise have been discussed in 1.2.2. The results presented by

Jaworski & Peake (2013), Manela (2011) and Manela & Huang (2013) indicate that

elasticity affects the amplification of pressure fluctuations which is also supported by

experimental results of Herr (2007) and Das et al. (2015). To the author’s knowledge

the influence of various degrees of compliance on the hydrodynamic near-field and the

scattering process at the TE have not yet been investigated systematically, other than

with analytical methods. The aim of the present work is thus to examine the effect that

elasticity has on TE noise. Insights into the relevant mechanisms can guide and improve

the design of noise attenuating TE modifications.

Compressible DNS is a numerical method that is suitable for the investigation of noise

from elastic TE’s, as all quantities of the hydrodynamic and acoustic field are available

at every location and instant of time. DNS of TE noise fully coupled to a structural

solver have not been reported in the literature yet. The in-house compressible DNS code

“HiPSTAR –High Performance Solver for Turbulence andAeroacousticResearch” was

used in this work and is briefly introduced in chapter 2 alongside a newly implemented

structural solver. However, for the simulation of noise radiation from an elastic TE a

numerical method that can accurately represent the noise radiation of moving bodies in

high-fidelity simulations is needed. Such a method has not been presented in literature

yet and therefore a method originally proposed for incompressible flow was extended

to compressible flow in this work. A literature review on methods to represent moving

bodies as well as the newly developed and implemented method are presented in chap-

ter 3. This is followed by the rigorous validation of the novel method with cases relevant

to aeroacoustic applications in chapter 4. The newly implemented fluid structure in-

teraction framework is then employed to consider noise radiation from elastic flat-plate

extensions attached to an airfoil at angle of attack in chapter 5. Furthermore a generic
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flat plate setup with a vortex generator was used to investigate the influence of different

material parameters for the structure including structural damping is investigated in

chapter 6. Finally a fully turbulent flow convecting over an elastic TE was considered

in chapter 7. The work is concluded with a summary of the findings and an outlook to

future work in chapter 8.



Chapter 2

Governing Equations and

Numerical Methods

This chapter introduces the governing equations for the fluid-structure interaction prob-

lem. Furthermore, the numerical methods that were used to solve them are presented.

From numerical point of view, fluid structure interaction problems can be broadly clas-

sified into monolithic and partitioned approaches. In monolithic approaches, the fluid

structure dynamics are solved simultaneously by a unified numerical algorithm as a sin-

gle system of equations. The interaction between the fluid and the structural dynamics

is implicitly incorporated into the solution algorithm. For partitioned approaches the

two sets of governing equations are solved by independent algorithms with their own

discretization. The coupling is then then achieved by explicit interface conditions (Hou

et al., 2012). For the fluid structure interaction framework that was developed in this

work a partitioned approach was chosen due to the greater flexibility to incorporate

different structural models. Therefore the following introduction to the governing equa-

tions and numerical methods is split into a description of the fluid solver in section 2.1

and the structural solver in section 2.2. In general the focus of this chapter is to discuss

the methods that were newly implemented.

2.1 Fluid Simulations

The description of the fluid solver is divided into the introduction of the set of governing

equations in section 2.1.1 and the documentation of the general framework to solve

them in section 2.1.2. The non-reflective boundary conditions are briefly discussed in

section 2.1.3. Section 2.1.4 presents an analysis of the in and output to the TE noise

mechanism which will be used for data processing in the chapters considering TE noise

from elastic TE’s.

17
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2.1.1 Governing Equations of Fluid

The flow under consideration is governed by the full compressible Navier–Stokes equa-

tions. The physical quantities of interest are the density ρ, the components of the velocity

vector u, the static pressure p and the temperature T . The fluid is assumed to be an

ideal gas with constant specific heat coefficients. All quantities are made dimensionless

using the flow-quantities ρ∗∞, u∗∞, T ∗
∞ and c∗p∞. The ∞ subscript refers to the value of

the quantity in the freestream or an other reference location. Furthermore, L∗
ref is a

characteristic length scale of the considered domain. The star * superscript indicates a

dimensional quantity. When the Navier–Stokes equations are non-dimensionalized with

the aforementioned quantities non-dimensional groups can be formed as

Re =
ρ∗∞u∗∞L∗

ref

µ∗
∞

, M =
u∗∞
c∗∞

, and, Pr =
µ∗
∞c∗p∞
κ∗∞

, (2.1)

the dimensionless Reynolds (Re), Mach (M) and Prandtl (Pr) number. The dynamic

viscosity µ∗
∞ is a property of the fluid and is a function of temperature µ∗

∞ = f(T ∗
∞). The

reference speed of sound is defined by c∗∞ =
√
γ p∗∞/ρ∗∞ with the isentropic exponent γ =

1.4. For simplicity, all equations in this section are presented in tensor notation. With

these definitions the non-dimensional continuity, momentum and the energy equations

are:

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0 , (2.2a)

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk) = − ∂p

∂xk
δik +

∂

∂xk
τik , (2.2b)

∂

∂t
(ρE) +

∂

∂xk
(ρukE) =

∂

∂xk
[uiτik − ukp− qk] , (2.2c)

where the total energy is defined as E = T/
[
γ(γ − 1)M2

]
+ 1/2uiui. The stress tensor

is computed as

τik =
µ

Re

(
∂ui
∂xk

+
∂uk
∂xi

− 2

3

∂uk
∂xk

δik

)
(2.3)

and the heat-flux vector as

qk =
−µ

(γ − 1)M2PrRe

∂T

∂xk
. (2.4)

The Prandtl number is assumed to be constant with a value of Pr = 0.72. The tem-

perature dependency of the molecular viscosity µ is expressed using Sutherland’s law

resulting in
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µ = T
3
2
1 +RSu

T +Rsu
, (2.5)

where the ratio RSu of the Sutherland constant CSu over freestream temperature T ∗
∞ is

set to RSu = 0.36867 (White, 1991). The system of equations is closed with the non-

dimensional equation of state p = (ρT )/(γM2) to obtain the pressure.

When time averaged statistics are considered a flow quantity q can be decomposed with

the Reynolds decomposition as

q = q + q′ , (2.6)

where q is the mean and q′ the fluctuation. As a measure for the strength of fluctu-

ations the variance of flow quantity q will be denoted by q′2 in this work. When the

decomposition q = q + q′ is substituted into the compressible Navier–Stokes equations

additional cross-correlations between the velocity ui as well as the total energy E and

the density ρ arise which are not present in the incompressible equations. Therefore the

Favré average is introduced for the aforementioned quantities ui and E as

q̃ =
ρ q

ρ
. (2.7)

Based on this averaging procedure the quantity q can then be decomposed with

q = q̃ + q′′ , (2.8)

where the tilde denotes the Favré mean and the double prime the Favré fluctuations.

When this decomposition is substituted into the momentum equation (2.2b) and aver-

aged over time aside the Favré mean additional correlations of the velocity fluctuations

arise. They are commonly summarized as the Reynolds stress tensor as (Wilcox, 1998)

τij = −ρu′′i u
′′
j . (2.9)

2.1.2 Fluid Solver

As mentioned in section 1.2.3.3, DNS of aeroacoustics is the computationally most ex-

pensive numerical method. This is due to the need to resolve the small scale flow features

in space and time as well as the acoustic field which commonly has greater length and

time scales (Sandberg, 2015). To make these simulations feasible numerical methods

with high accuracy, that can be implemented in parallel computing architectures effi-

ciently, are needed. To that end, a four–point 4th-order accurate standard-difference

scheme is employed in HiPSTAR to calculate spatial derivatives. As it is an explicit
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method, parallelization is achieved by domain decomposition with halo-cell exchange.

This means that two neighbouring processors exchange information at grid points adja-

cent to their common boundary. The exchange is such that, using the information of the

grid points from the neighbouring processor, the interior finite difference scheme can be

used. The exchange of the content of the halo-cells is done employing the MPI-library.

At the boundaries of the computational domain one-sided Carpenter boundary sten-

cils (Carpenter et al., 1999) with six points are employed. Beside a good parallelization

as well as suitable and accurate numerical methods, the computational resources of each

core need to be used efficiently. Each core is equipped with a cache which is a memory

unit it can access very fast. In addition there is the RAM with a much higher volume

but also significantly slower connection to the core. In order to reduce the usage of the

slow RAM, it is preferable to minimize memory usage of a CFD-code and maximize the

cache usage. To that end, HiPSTAR employs an ultra low-storage five-step 4th-order

accurate Runge–Kutta scheme (Kennedy et al., 2000) for the integration in time. This

integration scheme only needs two registers, i.e. two copies of the whole flow field, and

therefore reduces the memory consumption. Curvilinear geometries in the x − y-plane

can be considered by pre-multiplying the metric terms when taking derivatives as de-

scribed by Sandberg (2009). While the spatial discretization of x − y-plane employs

finite differences with an efficient domain decomposition method, the spanwise direction

is discretized with a spectral method (Sandberg, 2015). Consequently, the collocation

points in the spanwise direction are equispaced and only periodic boundary conditions

can be used. The spanwise direction is parallelized with a shared-memory parallelism

using the OpenMP API (Sandberg, 2015). The stability of the code is enhanced by

a skew-symmetric splitting of the nonlinear terms (Kennedy & Gruber, 2008). Fur-

thermore a sixth-order accurate high-wavenumber cut-off explicit filter (Bogey et al.,

2009) using an 11-point stencil with a weighting of fw = 0.2 is employed after every full

Runge–Kutta cycle.

2.1.3 Characteristic Boundary Conditions

Non-physical numerical reflections at the domain boundaries are avoided by using char-

acteristic boundary conditions. At the inflow they are applied in an integral formulation

as described by Jones (2008). For the outflow a zonal characteristic boundary condi-

tion (Sandberg & Sandham, 2006) is used to avoid spurious pressure-oscillations from

the outflow boundary which is subject to the passage of nonlinear disturbances, i.e. vor-

tical structures.

In subsonic flows the pressure and density level at the outflow boundary is determined

by the flow conditions upstream and downstream of that point. A perfect non-reflecting

outflow boundary condition does not provide information about the downstream condi-

tions as it does not allow any information to enter the domain. Hence such a boundary
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can lead to a drifting pressure and density level over time and was in fact observed in pre-

liminary simulations. In the present studies, the influence of flow conditions downstream

of the outflow boundary are modelled with an approach to estimate the incoming wave

amplitudes, as presented in Poinsot & Lele (1992). This method was extended to the

zonal characteristic boundary condition in this work by setting the amplitude variation

L of the incoming wave to

L = σ (1−M2)(p− p∞)
c

Lref
, (2.10)

where σ is a forcing parameter that was set to σ = 0.2, c the speed of sound at the

outflow and Lref a reference length of the domain. With this approach is was possible

to achieve a constant average pressure and density level over time.

2.1.4 Analysis of the Input and Output of TE Noise Mechanism

The input to the trailing-edge noise mechanism are the fluctuations of the incident

pressure difference between the upper and lower surface of the plate ∆p′i. These incident

pressure fluctuations are one contribution to the total pressure difference ∆p′t. The other

contribution to this total pressure difference is the scattered field ∆p′s. The fluctuations

of the total pressure difference ∆p′t can be expressed with

∆p′t = ∆p′i +∆p′s . (2.11)

From the compressible DNS or experiments only the total pressure difference is available

and in general a distinction between scattered and incident pressure field is not possible.

However, when the experiment is designed such that there are no pressure disturbances

from vortex shedding or a turbulent boundary layer on one side, the only pressure

fluctuations in the flow on that side will be the ones scattered from the TE. For the

following analysis it is assumed that this is the case for the lower side of the TE which

then leads to

p′t,L = p′s,L , (2.12)

where the lower surface is denoted by the subscript L. Using the fact that the scattered

pressure fluctuations are the same in magnitude but opposite in phase on both surfaces

leads to

p′s,U = −p′s,L = −p′t,L . (2.13)

Here the subscript U refers to the upper surface. Note that this equation also contains

the contribution from pressure fluctuations that might be imposed on the fluid by the

structural motion of the elastic TE. Hence, a comparison of the scattered field between

rigid and elastic TE might be biased by this additional contribution. Furthermore,

equation 2.13 assumes that the effect of curvature in the deflected state when considering

an elastic TE does not change the scattered field. Due to the relatively small deflections
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of the elastic fraction this assumption can be justified. Adding the total pressure on the

lower and upper side of the plate leads to

p′t,U + p′t,L = p′i,U + p′s,U + p′s,L

= p′i,U + p′s,U − p′s,U

= p′i,U .

(2.14)

A similar analysis was conducted by Sandberg & Sandham (2008) for a turbulent flow on

the upper surface and has shown to be meaningful in the context of TE noise theories.

As mentioned in Sandberg & Sandham (2008), this analysis assumes that the unsteady

flow on the upper surface does not influence the scattered pressure field substantially.

In this work several TE noise studies will be conducted with two dimensional simulations

to develop and validate a novel numerical framework. As in three dimensions, the

fundamental physical mechanism is the scattering of an incident pressure field at the

TE. It can be regarded analogous to a two dimensional wave in a three dimensional

flow, resulting in pressure disturbances that convect over the TE at the same time, i.e.

are perfectly correlated in the spanwise direction. In contrast, the incident pressure

disturbances of a three dimensional turbulent flow convecting over the TE have a phase

difference. This can result in cancellation and amplification leading to a dependence of

the TE noise on the spanwise correlation length (Amiet, 1976). For more details about

the modified equations of Amiet (1976) for two dimensional flows, the reader is referred

to Sandberg (2007) and Sandberg et al. (2009).

2.2 Structural Solver

This section describes the structural solver. First the governing equation that is solved

is introduced in section 2.2.1 and in section 2.2.2 the numerical method to solve it is

outlined.

2.2.1 Governing Equations of the Structure

s

w
s

pressure on the upper surface

pressure on the lower surface

ρs,hs,Ls

Figure 2.1: Illustration of the one dimensional structural model. The deflections are
uniform in spanwise direction.
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In this work the interaction of a fluid flow with a thin beam that is clamped on one

side is considered. It is assumed that the cross section is constant and the material

properties are uniform. In figure 2.1 the topology of the structure and its load is shown.

The structural model is one dimensional and is defined by the local coordinate s which

defines the position along the axis of the beam. The deflection ws is perpendicular to

the neutral position of the beam. It is assumed that the impact of the fluid on the solid

structure is given by the pressure difference between upper and lower side of the plate

only. Therefore, a very high extensional rigidity is assumed and the influence of the wall

shear stress on the structure is neglected. In this case, the equation of motion for the

structure can be modelled by the Euler-Bernoulli beam equation with (Thomsen, 2004)

ρsAs
∂2ws

∂t2
= ∆ps − EsIs

∂4ws

∂s4
, (2.15)

where ρs denotes the structural density and As is the cross section of the beam. In the

calculation of As the height of the cross section is denoted by hs and the depth by ds.

The resulting line load from the pressure difference is represented by ∆ps. Finally, the

term EsIs is the bending rigidity with Young’s modulus Es and the second moment of

inertia of the cross section Is = h3s ds/(12 − 12ν2) with the depth ds and the Poisson

ratio ν, which will always be assumed to be ν = 0.3, which is representative of many

common materials. In this study, the bending rigidity EsIs is assumed to be sufficiently

high to result in small deflections only. To assess the deflections relative to the length

of the beam they are typically normalized by the length, i.e. ws/Ls. Dimensionless

quantities are obtained by nondimensionalizing with the reference fluid density which

results in

ρs = ρ∗s ×
1

ρ∗∞,f

. (2.16)

Using a combination of the reference density and velocity the Young’s modulus can be

nondimensionalized with

Es = E∗
s ×

1

ρ∗∞U∗2
∞

. (2.17)

All length scales are assumed to be consistent with the non-dimensional length scales of

the fluid simulation.

This model does not account for rotational inertia of the cross section and shearing de-

formation. Those two effects are gaining importance when higher modes of frequencies

or large deflections are considered. Deflections are considered small for ∂ws
∂s < 1 (Fertis,

2006). When integrated over the length of the beam this yields ws/Ls � 1. Further-

more, rotational inertia and shearing deformation can not be neglected when the ratio

of length to height of the beam is small (Timoshenko et al., 1974).
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Figure 2.2: Shape of the first four bending modes, normalized by maximum deflection.

The natural frequencies are the vibration frequencies of a bending beam without exter-

nal forcing and damping, i.e. free vibrations. The analytical natural frequencies for a

beam that is clamped on one side and free on the other can be calculated as (Thomsen,

2004)

fj =
λ2
j

2πL2

√
EI

ρsA
with λ1 = 1.875 and λj = (2j − 1)π/2 for j = 2, 3, 4 etc. (2.18)

The natural frequencies are the resonant frequency where the response of the beam to an

external forcing with a bounded amplitude is vibration with an unbounded amplitude.

For an external forcing at any other frequency, the beam is expected to vibrate at a

combination of the external forcing frequency and the natural frequencies (Thomsen,

2004). Each natural frequency can be associated with a mode shape ϕ which can be

calculated with (Thomsen, 2004)

ϕj(s) = cosh(λjs/Ls)− cos(λjs/Ls)

− cosh(λj) + cos(λj)

sinh(λj) + sin(λj)
(sinh(λjs/Ls)− sin(λjs/Ls)) ,

(2.19)

where λj is defined in equation 2.18. Figure 2.2 visualizes the mode shape of the first

four bending modes for a clamped beam with a free end. It can be seen that the number

of nodes, i.e. points where the deflection is zero, is increasing with each mode.

When the elastic motion of a structure immersed in a fluid is considered the structural

behaviour can be influenced by the effect of added mass. For the structure the surround-

ing fluid increases its effective mass when the inertia of the fluid can not be neglected

relative to the inertia of the structure itself. As a result the resonant frequencies are

lowered (Sader et al., 2015). The added mass coefficient µm can be used to estimate the
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influence of effects of added mass and is calculated with (Kornecki et al., 1976)

µm =
ρfLs

ρshs
. (2.20)

It is a measure of the inertial behaviour of the fluid relative to the inertia of the solid.

The effect of the added mass on the natural frequencies in air fj,air can be approximated

with

fj,air = fj,vac

√
1

1 + µm
, (2.21)

where fj,vac are the natural frequencies of the structure in a vacuum (Sader et al., 2015).

2.2.2 Numerical Method for the Structural Solver

The structural solver first calculates the right hand side of equation (2.15) using the

pressure load from the fluid simulation and the spatial derivative of the deflection. The

solution is then advanced in time by integration. This integration is performed with the

fourth-order accurate ultra low storage Runge-Kutta scheme that is also used for time

advancement in the fluid simulation. To that end, equation 2.15 is reformulated as a

system of two first order differential equations. With the introduction of the structural

velocity vs this yields

∂ws

∂t
= vs (2.22a)

∂vs
∂t

=
1

ρsAs

(
∆ps − EsIs

∂4ws

∂s4

)
. (2.22b)

The spatial discretization to calculate the ∂4ws/∂s
4 term is achieved with the fourth-

order accurate compact finite difference scheme proposed by Kim & Sandberg (2012).

The fourth derivative of the deflection is calculated recursively. In order to suppress

spurious oscillations from the structure boundaries a high wave number optimised fil-

tering scheme described in Kim (2010) is employed after each Runge-Kutta stage and

after taking the derivative. This combination of compact difference scheme and filter

employed recursively was found to introduce fewer instabilities at the boundaries than

standard difference schemes or when taking the fourth derivative in one step.

The coupling to the fluid solver is achieved at the beginning of each time step by gather-

ing the pressure values on the upper and lower surface of the plate from the fluid solver.

The pressure is then unchanged for the rest of the Runge-Kutta loop. The position and

velocity of the structure is updated once at the end of each timestep. Since the timestep

is small in order to capture the relevant time scales of the fluid motion the influence

of the discrepancy in time should be negligible. Indeed, no differences could be found

between simulations where the structural deflection and velocity and the pressure were

updated after every Runge Kutta stage and simulations with the aforementioned “weak”

coupling.
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The implementation of the structural solver allows future users to easily add terms to

the right hand side of equation 2.15 to account for additional effects such as strain and

rotation.



Chapter 3

Representation of Moving Bodies

in High Fidelity Simulations

This chapter is concerned with the representation of moving bodies in high fidelity simu-

lations. Section 3.1 gives an overview of available methods in the literature. The concept

of a particular promising method for incompressible flows, the boundary data immersion

method (BDIM), is introduced in section 3.2 and an extension for compressible flows is

proposed in section 3.3. Finally, the implementation of the newly extended framework

is presented in section 3.4.

3.1 Literature Review

Accurate computation of fluid flows in the vicinity of complex geometries or moving

bodies is a severe challenge. One approach for such flow simulations uses body-fitted

curvilinear computational grids. For this approach, grids must be designed such that ge-

ometric boundaries coincide with the grid and domain boundaries. Boundary conditions

can then be realized by prescribing desired values of flow quantities on the boundaries. In

this approach the main challenge is the generation of adequate grids and the treatment

of geometric discontinuities. Furthermore, keeping track of neighbouring grid points in

unstructured grids or merging multiple simple grid blocks are additional challenges that

need to be taken care of. When considering moving boundaries the grid needs to be

recomputed at each timestep during a simulation, making grid-fitted boundary methods

computationally prohibitively expensive for high-fidelity numerical simulations. In ad-

dition, the quality of the grid can be affected adversely when high deflections from the

original location, as for example in a flapping flag problem, are considered.

27
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As an alternative to body-fitted simulations, immersed boundary methods (IMBM) have

become a popular tool to impose boundary conditions upon boundaries that do not co-

incide with the computational grid. Besides the ability to simulate moving bodies this

class of boundary methods enables the simulation of complex geometries on relatively

simple meshes, thus reducing the effort of grid generation. Alongside the enormous

growth of computational power in recent years, IMBMs have enabled the consideration

of multi-physics phenomena such as fluid-structure interaction problems. Furthermore,

flow control and optimization problems incorporating moving control surfaces or mor-

phing bodies can be studied with recent advances of IMBMs. However, IMBMs often

have a low order of accuracy or add significant computational overhead when used for

moving bodies, where the IMBM needs to be reinitialized for each timestep.

The majority of the IMBM are inspired by the physics of a fluid flow in the vicinity of

solid bodies. As there is no flow through the body a flow exerts a force in the normal

direction to the surface caused by pressure. In case of no-slip walls in viscous fluid flows

there is a tangential force acting on the body caused by the shear stress. In turn, the

body exerts normal and tangential forces to the fluid with opposite sign. These two

forces can be considered as the influence on the flow field that a solid body immersed

into a fluid has. Therefore, a wall boundary condition can be realized by exerting an

appropriate set of forces to the fluid in order to mimic the influence of the solid body on

the flow field (Goldstein et al., 1993). This can be shown by reconsidering the momentum

equation in a slightly more general form than presented in equation 2.2b with

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk) = − ∂p

∂xk
δik +

∂

∂xk
τik + f , (3.1)

where f is a volume force. The classification by Mittal & Iaccarino (2005) distinguishes

IMBMs according to the way the volume force f is treated. The two major classes are

continuous and discrete forcing approaches. In continuous methods the volume force

is based on a continuous formulation of the governing equations i.e. before they are

discretized. The advantage of this class of methods is that they are independent of the

discretization. In contrast to that discrete forcing approaches manipulate the discrete

operators directly and therefore depend on the numerical scheme that is employed. They

can be further subdivided into methods that calculate the volume force explicitly or use

it to derive a boundary reconstruction where the boundary conditions are prescribed

directly. In the latter case, the forcing terms themselves are usually not calculated

explicitly. However, in general the use of the nomenclature introduced by Mittal & Iac-

carino (2005) is not used consistently in the literature. Figure 3.1 presents a classification

of IMBMs based on how the interface is represented and the role of the aforementioned

volume force f . The basic ideas and concepts of the most common IMBM used for finite

differences listed in figure 3.1 are introduced briefly in the following passage.
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Virtual boundary methods

sharp interface
smooth interface

with forcing

Forcing interior

• Tseng & Ferziger (2003)

• Mittal et al. (2008), Seo &
Mittal (2011a)

Forcing exterior

• Mohd-Yusof (1997), Fadlun
et al. (2000)

• Balaras (2004), Yang &
Balaras (2006) , Yang &
Stern (2012)

• Liu & Hu (2014)

Constitutive laws & feedback

• Peskin (1972)

• Goldstein et al. (1993)

• Saiki & Biringen (1996)

• Lai & Peskin (2000)

• Khadra et al. (2000)

• Liu & Vasilyev (2007)

explicit

• Uhlmann (2005)

• Taira & Colonius (2007)

• Zhang & Zheng (2007)

• Vanella & Balaras (2009)

• Pinelli et al. (2010)

• Breugem (2012)

implicit

• Su et al. (2007)

• Taira & Colonius (2007)

• Wang & Zhang (2011)

Figure 3.1: Classification of virtual boundary methods based on the resulting interface
representation and how the volume force f in equation 3.1 is determined.
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In direct discrete forcing approaches the values of grid points in the vicinity of the solid

boundary are modified with computational stencils such that the target velocity on the

wall is imposed directly and result in a sharp interface representation. As a result,

the volume force does not need to be calculated explicitly. The direct discrete forc-

ing approaches can be subdivided in two classes of methods which are predominantly

distinguished by the location of the grid point that is used to reconstruct the solid

boundary. In ghost-cell approaches the points just inside of the solid body are used

for a reconstruction of the boundary (Tseng & Ferziger, 2003). Another method is to

manipulate the grid points just outside the solid body which are then denoted forcing

points which was first developed by Mohd-Yusof (1997) in a spectral framework and

extended to finite differences by Fadlun et al. (2000). The forcing scheme used for the

boundary reconstruction was generalized by Balaras (2004) for complex bodies. On the

one hand, such approaches result in a sharp and accurate interface representation at the

boundary with no additional stability constraints and high accuracy. On the other hand,

it is usually necessary to prescribe a pressure boundary condition on the surface in the

incompressible case (Mittal & Iaccarino, 2005). Computational costs increase severely

when considering problems featuring moving boundaries as the modified stencils need to

be recomputed for each timestep. Additionally spurious pressure oscillations have been

reported which are caused by sudden changes of the classification of grid points from

forcing/ghost point to solid or fluid point or vice versa. This is also denoted the freshly

cleared cell problem (Udaykumar et al., 2001). In order to reduce these oscillations

several additional treatments have been proposed by Yang & Balaras (2006), Mittal

et al. (2008), Seo & Mittal (2011a), Yang & Stern (2012), Luo et al. (2012) and Liu &

Hu (2014) which further increase the complexity and computational cost of the methods.

In contrast to sharp interface methods explicit momentum forcing techniques evaluate

the volume force that drives the velocity on the interface location to the target value

and then spread it to adjacent grid points which leads to a smooth representation of the

boundary. In these methods the boundary conditions are prescribed indirectly. In order

to find an appropriate set of volume forces there are two different strategies:

In continuous forcing approaches the terms that force the velocity on a boundary to the

target value is added to the Navier–Stokes equations before discretization. As a result

this class of methods does not depend and use any information of the discretization at

all. However, the volume forces can not be calculated analytically. In the original IMBM

for elastic bodies by Peskin (1972) the force on the fluid was determined by a constitutive

law, i.e. the Hooke’s law. However, the extension to rigid bodies modelled as a very stiff

elastic body leads to stability constraints due to the stiff system of equations. A widely

used continuous IMBM approach proposed by Goldstein et al. (1993) for a spectral

framework uses a feedback-loop to estimate the forces to drive the flow field to the given

target velocity on the boundary. The equation to determine the volume force on the
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immersed surface f(X̃) is

f(X̃) = α

∫ t

0
(U(X̃, t′)− UT (X̃))dt′ + β(U(X̃)− UT (X̃)) , (3.2)

where U(X̃, t) is the velocity field interpolated on the immersed boundary (IB) point.

The target velocity on the body surface is referred to as UT (X̃). The controller consists

of proportional and integrating actions where the respective gains α and β are empirical

constants. The integral part of the controller in equation 3.2 integrates the deviation

between actual and target value on the immersed surface over time and thus takes the

history into account. In contrast, the proportional controller only considers the devia-

tion of the instantaneous values. The same forcing approach was employed by Saiki &

Biringen (1996) in a finite difference framework.

Special cases of this approach using only one of the controller actions have been used

among others by Lai & Peskin (2000) (proportional controller) and by Khadra et al.

(2000) (integrating controller). Even though Brinkman penalization methods are de-

rived from porous media equations, with porosity and permeability approaching zero

they effectively result in a control loop approach using a proportional control action

only. Liu & Vasilyev (2007) developed a penalization method for compressible flows

resulting in direct modifications of all conservative equations including continuity. Nev-

ertheless, all of the mentioned control loop approaches result in a stiff set of equations

and usually yield additional time step restrictions (Mittal & Iaccarino, 2005). However,

Margnat & Morinière (2009) showed that these restrictions can be circumvented by an

appropriate choice of the control parameters for steady flows without a loss of accuracy.

In unsteady flow cases a balance between time step restrictions and level of oscillations

around the target velocity values which are introduced by the control loop needs to

be found. Indeed for preliminary simulations carried out in the scope of this work the

timestep using a control loop approach had to be reduced to two third of the timestep

used in simulations with body-fitted boundary conditions. This was necessary due to

high gains in α and β to obtain reasonable results.

In the indirect discrete forcing methods, the volume forces are calculated from the dis-

cretized Navier–Stokes equations. In contrast to the continuous forcing methods, the

calculation of the forcing terms use knowledge of the discretization method, i.e. the tem-

poral discretization. In projection methods for incompressible flows a prediction of the

velocity field to calculate the required forcing term is usually used. In contrast to con-

tinuous forcing approaches no empirical constants need to be specified and the boundary

conditions are imposed exactly at the immersed boundary point location. Furthermore,

there are no time step restrictions as the velocity field is predicted with the same dis-

cretization in time that is used for time marching (Zhang & Zheng, 2007). This concept
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can be subdivided into categories of how the forcing term is evaluated. In the first

category that was employed in by Uhlmann (2005), Zhang & Zheng (2007), Yang et al.

(2009), Vanella & Balaras (2009), Pinelli et al. (2010) and Breugem (2012) the forcing

term is calculated explicitly from the surrounding grid points. Uhlmann (2005) and

Yang et al. (2009) showed that the smooth representation of the boundary significantly

reduced the pressure oscillations in problems involving moving boundaries. Further-

more, Breugem (2012) increased the numerical accuracy of the method by Uhlmann

(2005) for particle laden flows to second order by introducing an inward retraction of

the represented surface.

In the second category, the forcing term at the boundary location is calculated implic-

itly by solving a linear system of equations. This strategy was employed among others

by Su et al. (2007), Taira & Colonius (2007) and Wang & Zhang (2011). It is worthwhile

pointing out that Taira & Colonius (2007) include the implicit force through a modified

Poisson equation in their method and therefore satisfies the continuity equation and

no-slip condition exactly.

All of the aforementioned explicit momentum forcing techniques require, and strongly

depend on, interpolation and force spreading schemes. The interpolation schemes are

needed to obtain the values of flow field quantities on the boundary grid point (often

denoted as a Lagrangian marker) from the Eulerian grid where they are computed. Fur-

thermore, a procedure to distribute the calculated forcing terms to the adjacent grid

points needs to be applied which leads to a smeared out representation of the inter-

face. On the one hand, this results in a loss of accuracy which makes most of these

schemes first-order accurate. On the other hand, smoothing has been found to reduce

numerical oscillations for moving boundaries (Yang et al., 2009) circumventing the need

of field extension methods as proposed by Yang & Balaras (2006) and Yang & Stern

(2012), among others. Uhlmann (2005) used a regularized delta function as to transfer

information from the Eularian to the Lagrangian grid which was optimised to simulate

spherical particles immersed in a fluid. Pinelli et al. (2010) extended the method to

arbitrary immersed boundary shapes on Cartesian non-uniform and curvilinear grids

by introducing interpolation and spreading operators based on the so-called Reproduc-

ing Kernel Particle Method (RKPM). Toja-Silva et al. (2014) suggested a radial basis

function to carry out the interpolation and spreading procedure in one step. Vanella &

Balaras (2009) calculated the volume force on the Lagrangian marker in the same way as

Uhlmann (2005) but employed a transfer function between Eularian and boundary grid

for the interpolation and force spreading based on a moving-least-square approximation

and claim to recover sharp-like behaviour as in the aforementioned direct discrete forcing

approaches. In general, the derivation of the force spreading schemes is mostly rather

ad-hoc without physical motivation and the force spreading schemes are not necessarily
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independent of the boundary grid discretization, i.e. the distribution of the Lagrangian

markers. To address the latter issue when two delta functions associated with a La-

grangian marker overlap Breugem (2012) employed a multidirect forcing scheme that

iteratively determines the forces on the Eularian grid such that the target velocity is

enforced on the Lagrangian markers collectively.

Approaches that incorporate the coupling between the boundary and the Eulerian grid

in jump conditions in the vicinity of the immersed boundary are usually referred to as

immersed interface methods (IIM). The jump conditions result in direct corrections of

the numerical schemes (Harris, 2013). In a recent work by Uddin et al. (2014) the solu-

tion from the interface is extrapolated smoothly from the interface into the solid domain,

similarly to the concept of ghost-cell methods. However, the overhead for the initializa-

tion and computation of the extrapolated flow field, employing an independent solver

for an elliptic partial differential equation, seems to make this approach prohibitively

expensive for the simulation of moving bodies. Due to the complex jump conditions and

the dependency on the numerical schemes the immersed interface class of methods is

not considered in depth here, for more details on IIM refer to Xu & Wang (2006).

Many engineering applications are characterized by flows with high Reynolds numbers.

However, a key problem with all aforementioned methods that are feasible to represent

moving boundaries, i.e. momentum forcing approaches, is the accurate prediction of

high Reynolds number flows. The reason for this weakness is a lack of accuracy of the

representation of the velocity gradient at the wall. Considering a flat plate as a solid

body domain at rest adjacent to a fluid domain with a flow, the velocity field along

the wall normal direction is continuous. This is ensured by the no-slip condition that is

usually applied by setting the velocity of the fluid on the wall equal to the wall velocity

which is the purpose of all IMBM methods. In contrast to the velocity field its gradient

has a discontinuity in that direction at the interface between both domains caused by

the “kink” in the velocity profile. As the wall velocity gradient increases with Reynolds

number this discontinuity grows as well (Maertens & Weymouth, 2015). Therefore the

error made by momentum forcing approaches increases with an increase in Reynolds

number. Furthermore force interpolation and spreading schemes as used by Uhlmann

(2005) in a momentum forcing approach assumes a smooth field otherwise they become

first order accurate or need additional treatment (Peskin, 2003). The higher error and

lowered order of accuracy has to be compensated by a finer grid resolution. This typi-

cally goes along with a decrease in timestep when using explicit time integration schemes

making such a strategy computationally prohibitively expensive.

A method denoted “Boundary Data Immersion Method (BDIM)” that has recently been

proposed for incompressible simulations by Weymouth & Yue (2011) and Maertens &
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Weymouth (2015) overcomes many of the aforementioned weaknesses. The concept of

this approach is to map the governing equations of the solid body and fluid domain

at the interface. This results in a set of meta equations that is valid in both domains

and ensures a smooth transition. For incompressible fluids the resulting formulation is

similar to discrete momentum forcing approaches. However, an important extension is

the inclusion of an additional term in the pressure equation. While the velocity field is

not necessarily divergence free the additional term enforces continuity in the pressure

equation. This was shown to reduce non-physical pressure oscillations often observed

in momentum forcing methods (Griffith & Peskin, 2005; Muldoon & Acharya, 2008).

Maertens & Weymouth (2015) increased the order of accuracy of the mapping between

both domains to second order by taking the normal derivative to the surface into account.

According to the classification of Mittal & Iaccarino (2005) this method is a continuous

forcing approach as its derivation is based on the continuous equations only and not on

the discretized problem. Hence, the BDIM does not depend on the discretization scheme

and the underlying grid. With regard to the classification introduced in figure 3.1 the

BDIM leads to a smooth representation of the fluid-solid interface but no forces are

calculated. In general the reasoning and justification of the method is derived in an

analytical way and less ad-hoc than discrete momentum forcing approaches.

The majority of aforementioned IMBMs and their extensions considered incompressible

fluid flow. For aeroacoustics and compressible fluid flow there are only few methods pub-

lished, among them are two for inviscid flow Chaudhuri et al. (2011); Tran & Plourde

(2014). In the class of noise propagation problems with prescribed noise sources Casalino

et al. (2004) and Arina (2008) as well as Cand et al. (2004) and Liu & Wu (2008) pre-

sented IMBMs in the frequency and time domain, respectively. Hybrid approaches for

aeroacoustic research obtain a noise source field from a flow simulation which is then

used as input for acoustic analogies to calculate the acoustic far-field. For this class of

computational aeroacoustics Seo & Mittal (2011b) developed a sharp interface IMBM

for the linearized perturbed compressible equations (LPCE). They validated the method

with flow induced noise from stationary objects and acoustic scattering problems. An-

other hybrid approach was employed by Margnat (2015) who coupled an incompressible

flow solver using Goldstein’s feedback forcing (Goldstein et al., 1993) approach with

Curle’s analogy.

To the authors knowledge all IMBM in the literature for viscous compressible flows were

intended and validated to represent stationary bodies (De Palma et al., 2006; de Tullio

et al., 2007; Ghias et al., 2007; Liu & Vasilyev, 2007; Sandberg & Jones, 2011; Hu et al.,

2013). Among these studies that consider aeroacoustics Sandberg & Jones (2011) used

a ghost cell approach to represent stationary flat plate extensions of airfoils to investi-

gate trailing-edge noise with direct numerical simulations (DNS). Due to the complexity

of the boundary reconstruction and the additional treatment for freshly cleared grid

points this method would increase computational cost critically for moving boundary
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problems, rendering it unsuitable for high-fidelity simulations. In the class of continu-

ous forcing methods Liu & Vasilyev (2007) developed a Brinkmann penalization method

with a unique density treatment modelling the solid as a high impedance medium for

aeroacoustic simulations, however without presenting results for flow induced noise. The

feedback forcing character of this approach leads to timestep restrictions when using ex-

plicit time marching which increases computational cost prohibitively.

Thus, when using a compressible flow solver to directly compute the hydrodynamic and

aeroacoustic field simultaneously a method is required that can include the effects of

moving bodies and the associated noise generation. Such a method would also enable the

consideration of vibro-acoustic problems. Because of the many favourable advantages

the aforementioned BDIM was extended for the use in compressible flows and as a

framework implemented into the in-house code HiPSTAR. The general concept of the

BDIM is introduced in section 3.2 and the extension to compressible flows is derived in

section 3.3.

3.2 The Concept of the Boundary Data Immersion Method

Ωb

Ωf

Boundary

inner and outer end of the smoothing region

ε

Figure 3.2: Subdomains under consideration for the derivation of the BDIM equations.

For the derivation of the BDIM meta equation a domain that incorporates a solid body

subdomain Ωb and a compressible fluid subdomain Ωf are considered, as sketched in

figure 3.2. The general formulation for a meta equation Φm of an arbitrary field variable

Φ is given by

ΦM (~x, t) =

b(Φ, ~x, t) , for ~x ∈ Ωb

f(Φ, ~x, t) , for ~x ∈ Ωf

, (3.3)

where b and f are the governing equations for the quantity Φ as a function of space ~x

and time t in the solid body and fluid domain, respectively. To couple both subdomains
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Domain Type Volume Area Line Point

Dimensions 3 2 1 0

α ε3
(
2π
3 − 4

π

)
ε2

(
π
2 − 2

π

)
ε 1

Table 3.1: Normalization coefficient α for the nascent delta kernel defined in equation 3.4
as defined by Weymouth (2008).

smoothly, a nascent delta kernel Kε of radius ε defined as

Kε(~x, X̃) ≡


1
2α

[
1 + cos

(
π |~x−X̃|

ε

)]
, for |~x−X̃|

ε < 1

0 , else
, (3.4)

is employed (Weymouth, 2008). The normalization coefficient α is listed in table 3.1

and ensures that the zeroth moment of the kernel for any point within the subdomain

but outside of the smoothing region is one. Thus, both subdomains can be coupled by

a convolution of the governing equation and the kernel which results in

bε(Φ, ~x, t) =

∫
Ωb

b(Φ, ~xb, t)Kε(~x, ~xb)d~xb , (3.5)

and

fε(Φ, ~x, t) =

∫
Ωf

f(Φ, ~xf , t)Kε(~x, ~xf )d~xf , (3.6)

respectively. With this step the domain of each individual governing equation is extended

to the whole domain which is the union of both subdomains Ω = Ωb ∪ Ωf . Hence, the

governing meta equation of the field variable Φ is simply

ΦM,ε = bε + fε for ~x ∈ Ω , (3.7)

where the subscript ε indicates that smoothing is employed at the interface between

both domains that are combined with the meta equation.

The role of the convolution is to “switch off” the governing equations in the comple-

mentary subdomain where they are not valid (i.e. fluid equations in solid domain and

vice versa). Furthermore it allows a smooth transition between both subdomains over

a smoothing region with a half-width of ε, where both governing equations contribute

to the solution. Thus, the smoothing extends the range of the governing equation of

each domain by ε. This approach results in continuous profiles for the tangential ve-

locity and its wall normal derivative. When ε approaches zero a sharp interface can

be reproduced. Considering the velocity field, a sharp transition would lead to a kink

in the profile resulting in a discontinuity in its derivative. Furthermore, the governing

equation is strictly only valid in the respective subdomain in this case. However, for

a sharp interface the numerical operators would need to be modified, e.g. with one
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sided finite difference stencils, as they are only valid to be applied to continuous fields.

Thus, the width of the smoothing region is a trade-off between the numerical accuracy,

which requires a large smoothing region, and the modelling error introduced by having

a smooth interface.

Maertens & Weymouth (2015) use a Taylor series expansion of the convolution integral

of equation 3.5 and 3.6 which results in

bε(Φ, ~x, t) =

∫
Ωb

b(Φ, ~xb, t)Kε(~x, ~xb)d~xb

=

∫
Ωb

(
b(Φ, ~x, t) + ~∇b(Φ, ~x, t) · (~xb − ~x)

)
Kε(~x, ~xb)d~xb +O(ε2)

=b(Φ, ~x, t)

∫
Ωb

Kε(~x, ~xb)d~xb

+~∇b(Φ, ~x, t) ·
∫
Ωb

(~xb − ~x)Kε(~x, ~xb)d~xb +O(ε2) ,

(3.8)

and can be performed analogously for the fluid equation f(Φ, ~x, t). For a simplification

of the convolution integrals two requirements are necessary:

1. smoothing only occurs near the boundary/interface

2. smoothing occurs in the normal but not in the tangential direction of the boundary.

The Taylor series expansion in equation 3.8 neglects higher order terms as they would

incorporate terms that are non-local and therefore violate requirement one. Using the

aforementioned requirements the tangential component of the gradient of the governing

equation b(Φ, ~x, t) is neglected, assuming a locally flat boundary. For cases where this

is not justified a special treatment is presented in section 3.4.1. Furthermore the kernel

Kε is simplified and becomes only dependant on the distance to the boundary. With

that, Maertens & Weymouth (2015) simplified equation 3.5 resulting in

bε(Φ, ~x, t) ≈ b(Φ, ~x, t)µε,b
0 +

∂b

∂n
(Φ, ~x, t)µε,b

1 , (3.9)

and

fε(Φ, ~x, t) ≈ f(Φ, ~x, t)µε,f
0 +

∂f

∂n
(Φ, ~x, t)µε,f

1 , (3.10)

with µε
0 being the zeroth and µε

1 first moments of the kernel Kε over their respective

subdomains.
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Figure 3.3: Zeroth and first moment of the kernel for the fluid and solid body domain
in the vicinity of the wall surface.

With the simplified kernel Kε normalized for domain type line, the zeroth moment of

Kε for the fluid domain is

µε
0(d) ≡ µε,f

0 (d) =


1
2

[
1 + d

ε +
1
π sin(

d
επ)

]
, for |d| < ε

0 , for d ≤ −ε

1 , for d ≥ ε

, (3.11)

and the first moment is

µε
1(d) ≡ µε,f

1 (d) =

ε
[
1
4

(
1− d

ε

2
)
− 1

2π

(
d
ε sin(

d
επ) +

1
π

(
1 + cos(dεπ)

))]
, for |d| < ε

0 , for |d| ≥ ε
.

(3.12)

Both are visualized in figure 3.3 for the two subdomains. In these expressions for the

zeroth and first kernel moment, d is the signed distance from the surface where val-

ues with d < 0 refer to the inside and d > 0 to the outside of the solid body. For

the solid body domain the symmetry of the kernel functions can be used resulting in

µε
0(d) ≡ µε,f

0 (d) = µε,b
0 (−d) = 1 − µε,b

0 (d) and µε
1(d) ≡ µε,f

1 (d) = µε,b
1 (−d) = −µε,b

1 (d),

respectively (Maertens & Weymouth, 2015). Using equation 3.7 with 3.9 and 3.10 to-

gether with the kernel moments from equation 3.11 and 3.12 the resulting meta equation

can be assembled and results in

Φε = f(Φ, ~x, t)µε
0 + b(Φ, ~x, t) (1− µε

0)

+ µε
1

∂

∂n
(f(Φ, ~x, t)− b(Φ, ~x, t)) .

(3.13)

This meta equation will be used in the following section to derive the BDIM equations

for compressible flows. The zeroth and first kernel moments, i.e. µε
0 and µε

1, can be

interpreted as interpolation functions between both subdomains with their respective
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sets of governing equation. The derivative term increases the accuracy of this interpo-

lation function as it reduces the error of the Taylor expansion from O(ε) to O(ε2). In

Maertens & Weymouth (2015) the derivative correction term determined the order of

accuracy of the method when ε and the grid were refined. In this work results will be

denoted “first order” when the derivative correction in equation 3.13 is not included,

hence µε
1 = 0. The framework will be called second order when the derivative term is

included. This nomenclature at this point is only based on the error from the Taylor

expansion and the naming employed by Maertens & Weymouth (2015). The actual ac-

curacy and convergence properties will be evaluated in section 4.

In the vicinity of sharp edges of a body surface, e.g. a rectangular trailing-edge, the

kernel moments need to be interpolated between two line segments in order to properly

account for the contribution of both surfaces. To that end the interpolation approach

detailed in 3.4.1 was employed.

3.3 The Boundary Data Immersion Method for the Com-

pressible Navier-Stokes Equations

In order to use the BDIM meta equation in a compressible flow solver, the conservative

equations in 2.2 need to be mapped to the governing equation of the solid body. Since the

governing equations of the fluid were already introduced in equation 2.2, the equations

for the solid domain are introduced first.

The conservation of mass for a solid results in the same expression as for a compressible

fluid, namely
∂ρ

∂t
+

∂

∂xk
(ρuk) = 0 . (3.14)

Furthermore the solid body has a prescribed velocity Vi(~s, t) which can be provided a

priori with an analytical equation or a time dependent solution from a structural solver

or a flow control framework. It can vary in space given by ~s, which is a location vector

in the internal coordinate system of the body, and time. In addition the temperature

Ts(~s, t) within the solid body domain is prescribed as a constant or by another input

function. Hence the governing equation for the velocity component i, b(ui, ~x, t), and

temperature b(T, ~x, t) of the solid body are

b(ui, ~x, t) = ξ Vi(~s, t) , (3.15)

and

b(T, ~x, t) = ξ Ts(~s, t) , (3.16)

where ξ is the transformation operator from the internal coordinate system of the struc-

ture to the one of the fluid. Note that the dependence of all quantities on the location
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is neglected in the notation throughout the following paragraphs in order to enhance

readability. Nevertheless all quantities can vary in space. Since the conservation of

mass is the same physical principle and has the same expression in both subdomains no

mapping of the governing equations is needed. Before the velocity equation 3.15 of the

solid can be mapped to the momentum equation 2.2b of the fluid both equations need

to be reformulated in order to describe the same physical quantities. The left-hand side

of equation 2.2b can be expanded as

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk) = ui

∂ρ

∂t
+ ρ

∂ui
∂t

+ ρuk
∂ui
∂xk

+ ui
∂ρuk
∂xk

= ρ

[
∂ui
∂t

+ uk
∂ui
∂xk

]
,

(3.17)

since the sum of the first and the last term of right-hand-side of the expanded equation

are the continuity equation multiplied by ui and therefore are zero. After some rear-

rangement with the right-hand-side from equation 2.2b the change of the fluid velocity

in time is
∂ui
∂t

= −uk
∂ui
∂xk

+
1

ρ

[
− ∂p

∂xk
δij +

∂

∂xk
τij

]
= RHSu,i . (3.18)

RHSu,i will be used as an abbreviation for the right-hand-side of the velocity equation

in the following derivation. The expression for the velocity field can then be obtained

by integrating this equation over a time step ∆t resulting in

fv(ui, t0 +∆t) = ui,f (t0 +∆t) = ui,f (t0) +

∫ t0+∆t

t0

RHSu,i dt . (3.19)

With an Euler forward integration or a generalized Runge-Kutta substep in time this

equation can be discretized with

fv(ui, t0 +∆t) = ui,f (t0 +∆t) = ui,f (t0) +RHSu,i∆t . (3.20)

Since the governing equations for the velocity in both subdomains are now defined with

equation 3.15 and 3.20 they can be replaced in 3.13 which leads to

ui,ε(t0 +∆t) = [ui,f (t0) +RHSu,i∆t]µε
0 + b(ui, t) (1− µε

0)

+ µε
1

∂

∂n
[ui,f (t0) +RHSu,i − b(ui, t)] .

(3.21)

In contrast to incompressible fluid solvers where the pressure equation is commonly

solved separately from the rest of the right-hand-side of equation 3.18 all of these terms

are treated the same way in the compressible in-house code “HiPSTAR” that is used in

this work. Therefore the mapped velocity field of the fluid can be summarized with its

integral formulation which results in

ui,ε(t) = ui,f (t)µ
ε
0 + b(ui, t) (1− µε

0) + µε
1

∂

∂n
[ui,f (t)− b(ui, t)] . (3.22)
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In the same manner as carried out for the velocity equation the left-hand-side of the

total energy equation 2.2c can be expanded

∂

∂t
(ρE) +

∂

∂xk
(ρukE) = E

∂ρ

∂t
+ ρ

∂E

∂t
+ ρuk

∂E

∂xk
+ E

∂ρuk
∂xk

. (3.23)

The sum of the first and the last term of the right-hand-side of the expanded equation

are the continuity equation multiplied by the total energy E and hence add up to zero.

By substituting the definition of the total energy E = T/
[
γ(γ − 1)M2

]
+ 1/2uiui and

the abbreviation 1/
[
γ(γ − 1)M2

]
= χ this yields

ρ
∂E

∂t
+

∂

∂xk
(ρukE) = ρ

[
χ
∂T

∂t
+

1

2

∂uiui
∂t

]
+ ρuk

[
χ
∂T

∂xk
+

1

2

∂uiui
∂xk

]
= ρ

[
χ
∂T

∂t
+ ui

∂ui
∂t

]
+ ρuk

[
χ
∂T

∂xk
+ ui

∂ui
∂xk

]
= ρ

[
χ
∂T

∂t
+ ukχ

∂T

∂xk

]
+ ρui

[
∂ui
∂t

+ uk
∂ui
∂xk

]
.

(3.24)

The two terms in the final brackets of the last line are the left-hand-side of the expanded

momentum equation 3.17 multiplied by ui. They represent the change of kinetic energy

of the fluid after applying the chain rule. Using that fact together with the right-hand-

side of equation 2.2c the change of temperature in time can be expressed by

∂T

∂t
= −uk

∂T

∂xk
+

1

ρχ

∂

∂xk
[uiτik − ukp− qk + uipδik − uiτik]

= −uk
∂T

∂xk
+

1

ρχ

∂

∂xk
[−ukp− qk + uipδik] = RHST .

(3.25)

Analogous to the time integration of the velocity the temperature at time t = to +∆t is

fT (T, t0 +∆t) = Tf (t0 +∆t) = Tf (t0) +RHST ∆t , (3.26)

and can be substituted into the general meta equation together with the governing

equation for the solid’s temperature 3.16

Tε(t0 +∆t) = [Tf (t0) +RHST∆t]µε
0 + b(T, t) (1− µε

0)

+µε
1

∂

∂n
[Tf (t0) +RHST∆t− b(T, t)] .

(3.27)

With the same reasoning as for the velocities the BDIM equation for temperature can

be simplified with its integral formulation

Tε(t0 +∆t) = Tf (t)µ
ε
0 + b(T, t) (1− µε

0) + µε
1

∂

∂n
[Tf (t)− b(T, t)] . (3.28)

As the resulting BDIM equations can all be expressed with the integral formulation, the

boundary data immersion can be applied after the integration and no adaptation of the

solving algorithm for the right-hand-side is needed. Furthermore this is consistent with
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the application of body-fitted boundary conditions which are performed at the same

stage of the simulation.

A comparison between the derived meta equations 3.22 and 3.28 and discrete momentum

forcing reveals that the first order BDIM is very similar to discrete momentum forcing.

When the µε
0 and 1 − µε

0 terms are regarded as the interpolation and force spreading

operators, then the only difference between both approaches is the physical reasoning for

using them and how these operators work. The analytical and general reasoning however

is a strength of the BDIM approach offering robust and smooth coupling where other

approaches depend on the surface discretization and force interpolation and spreading

procedures. In addition, the second order extension of the approach offers higher or-

der interpolation between both subdomains and reduces bias of the velocity gradient

discontinuity.

3.3.1 The Continuity Mapping for the Boundary Data Immersion Method

In the incompressible meta equations derived in Weymouth & Yue (2011) and Maertens

& Weymouth (2015) there is an additional weighting for the pressure term as a boundary

condition for the pressure equation. This is a result of the special algorithmic treatment

of the pressure by the Poisson equation in incompressible flow simulations, which is in

principle not required in the present compressible framework. However, it was found that

for bluff bodies where the body surface alignment with the underlying grid is arbitrary,

instabilities on single grid points could grow just inside the boundary smoothing region.

These instabilities would eventually lead to diverging simulations. The analysis of the

contributing terms of the continuity equation

∂ρ

∂t
= − ∂

∂xk
(ρuk) = −

(
ρ
∂uk
∂xk

+ uk
∂ρ

∂xk

)
, (3.29)

at these grid points showed that the instabilities were caused by the bias in the derivative

terms of the velocity, i.e. the first term, which contains the incompressible contribution.

In particular the derivative in the wall tangential direction leads on average to a non-

zero right-hand-side of the continuity equation. In order to ensure robust simulations

without prescribing something non-physical it is suggested to map the right-hand-side

of equation 3.29 to
∂ρ

∂t
= −

(
ρ
∂un
∂n

)
. (3.30)

Here the subscript and direction n mean the wall normal direction. This is exactly the

simplified right-hand-side of the continuity equation at the wall for a stationary body.

In this case the second term in brackets of equation 3.29 is zero and the only non-zero

component of the first term is the derivative of the wall normal velocity component in

the wall normal direction. Strictly speaking equation 3.30 is not the governing equation
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of the solid interior but an interface condition. Replacing equation 3.29 and 3.30 in the

general meta equation 3.13 results in

∂ρε
∂t

= −∂ (ρuk)

∂xk
µε
0 −

(
ρ
∂un
∂n

)
(1− µε

0)− µε
1

∂

∂n

(
∂ (ρuk)

∂xk
−
(
ρ
∂un
∂n

))
, (3.31)

as meta equation for the right-hand-side of the continuity equation. In the current

implementation, the wall normal derivative of a fluid quantity Φ is calculated by a wall

normal projection of the gradient, i.e.

∂Φ

∂n
= ∇Φ · ~n . (3.32)

In case Φ is a vector quantity, i.e. ~Φ, and the wall normal derivative of the wall normal

vector direction is needed a second projection is required. When it is expanded it results

in
∂Φn

∂n
=

∂Φn

∂x1
n1 +

∂Φn

∂x2
n2 +

∂Φn

∂x3
n3

=

(
∂Φ1

∂x1
n1 +

∂Φ2

∂x1
n2 +

∂Φ3

∂x1
n3

)
n1

+

(
∂Φ1

∂x2
n1 +

∂Φ2

∂x2
n2 +

∂Φ3

∂x2
n3

)
n2

+

(
∂Φ1

∂x3
n1 +

∂Φ2

∂x3
n2 +

∂Φ3

∂x3
n3

)
n3 .

(3.33)

3.4 Implementation of the Boundary Data Immersion Method

This section gives some details of the actual implementation of the BDIM into the in-

house DNS code. Section 3.4.1 describes how the interpolation functions µ0 and µ1 are

calculated at the intersection of two planes. The concept of the algorithm that was

used to evaluate the signed distance function is introduced in section 3.4.2. Further-

more a special algorithmic treatment for the simulation of bluff bodies is introduced in

section 3.4.3 and was found to be crucial for stable simulations.

3.4.1 Intersections of two Planes

In the vicinity of sharp corners, i.e. the intersection of two line segments or planes, there

might be grid points within a distance lower than the smoothing region halfwidth ε to

both planes, which is the case in the situation sketched in figure 3.4. In that case the

assumption of a smooth interface does not hold and special treatment is needed. The

analytical treatment suggested by Maertens & Weymouth (2015) was found to lead to

interpolation functions µ0 and µ1 that were not smooth when rectangular intersections
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Figure 3.4: Schematic of a point in the vicinity of two intersecting line segments (figure
from Maertens & Weymouth (2015)).

were considered.

Therefore the approach that was used for the validation and production cases of this work

are based on a heuristic approach suggested in private communication by Dr. Gabriel

Weymouth. The following derivation of the joint moments for the compound plane is

reproduced from the published paper Schlanderer et al. (2017) and is based on original

work by Dr. Gabriel Weymouth.

First we use equation 3.11 to determine the moment at point ~x of each of the component

planes a and b, and call them µ0,a, µ0,b. We name these planes such that µ0,a ≤ µ0,b, i.e.

~x is further into the fluid relative to a. In the case that x is not near the intersection,

the moment of the shape c defined as the intersection of a and b is simply the moment

of a,

µ0,c = µ0,a , (3.34)

However, when ~x is in the smoothing region of both a and b, such that 0 < µ0,a ≤ µ0,b <

1, then both planes contribute to the compound moment. An approximate value for the

compound moment in this case is

µ0,c = µ0,aµ
log2

π
θ

0,b , (3.35)

subject to the bound

µ0,c ≥ max(0, µ0,a + µ0,b − 1) . (3.36)

We see that the angle θ between a and b determines how heavily µ0,b influences the

compound moment. For θ = π, the compound shape is flat and there is no change

to equation 3.34. For θ < π, the shape is a sharp corner, and the moment decreases

sharply as you approach the intersection of the two planes. The bound ensures that the

compound moment is still accurate for very small angles when the kernel regions of the

two planes do not overlap.
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Once this moment is established, it implicitly defines the effective distance dc and normal

n̂c of the compound shape. If µ0,c is given by equation 3.34 then dc = da and n̂c = n̂a.

Otherwise, the distance dc is found by inverting equation 3.11. Note that the bounds

on µ0,c ensure we only need the first line of equation 3.11. Let us call h the inverse of

equation 3.11 , i.e.

d(~x) = h(µ0(~x)) .

Then dc = h(µ0,c) is used in equation 3.12 to find the effective first moment µ1,c without

issue.

The normal n̂ is defined as

n̂(~x) = ~∇d(~x) = h′(µ0)~∇µ0(~x) , (3.37)

where

h′ =
∂h

∂µ0
,

and we note that h′ only scales the magnitude not the direction of the normal. First, let’s

assume that the lower bound equation 3.36 is active, then the normal is proportional to

n̂c ∝ ~∇µ0,a + ~∇µ0,b =
n̂a

h′(µ0,a)
+

n̂b

h′(µ0,b)
,

where equation 3.37 is used to substitute the normal for each component. We see the

effective normal is a weighted sum of the component normals.

Next, using equation 3.35, applying the chain rule, and substituting the normals for each

component as before gives

n̂c ∝
1

µ0,a

n̂a

h′(µ0,a)
+

log2(
π
θ )

µ0,b

n̂b

h′(µ0,b)
,

where again we see that the angle θ determines the relative influence of plane b.

3.4.2 Evaluation of the Signed Distance Function

In order to use the BDIM during a simulation and apply the meta equation 3.13 to the

temperature and velocity field the functions µε
0 and µε

1 need to be evaluated at the grid

point locations of the fluid grid. Since µε
0 and µε

1 only depend on the signed distance

from the body surface it is this function that every implementation of the BDIM will

hinge on in terms of functionality and computational cost. For bodies with the shape of

a circle with radius Rcyl the calculation of the signed distance D for a given grid point

location (xpoint, ypoint) is straightforward with

D =
√

(xpoint − xorigin)2 + (ypoint − yorigin)2 −Rcyl , (3.38)
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where the origin of the circle is at (xorigin, yorigin). In addition to the simple calculation

of the signed distance, the circle can also be defined comparatively concisely by specify-

ing its radius and origin. However, for more general shapes such as a deflected bending

beam or membrane a more general representation is needed. This can be achieved by

employing polygons, based on a chain of piecewise straight line segments which can form

an arbitrary shape. This description has the limitation that it can only represent two

dimensional shapes without any further additions. However, it can be extended to three

dimensions and for the current purpose the representation of two dimensional bodies is

sufficient.

With the previous explanations and future applications for elastic trailing-edges in mind

the following requirements for the algorithm to evaluate the signed distance function

can be formulated:

• the signed distance function shall be evaluated for arbitrarily shaped bodies that

are defined by a polygonal shape with an arbitrary number of line segments

• the algorithm has to work robustly on curvilinear grids where the grid spacing is

not uniform

• should be extensible for three dimensional geometries

• the algorithm has to be fast enough such that it is feasible to calculate the signed

distance every timestep, therefore:

• the algorithm should only evaluate the distance function within a certain distance

D outside of the body (mostly this will be D = +ε)

The last requirement can be explained with the fact that the fluid equations are solved

in the entire domain and the velocity and temperature field only need to be altered for

all grid points d < +ε. It is therefore desirable that the algorithm produces a list of

fluid points that are within d < +ε and that the calculation of the meta equation 3.13 is

limited to these points. Furthermore, additional computational cost can be saved when

the signed distance function is only evaluated for the subset d < +ε and not all grid

points.

The last two requirements mentioned above exclude brute forcing approaches in which

the perspective of a fluid grid point is: “How far am I away from the surface?” and

“Which is the line segment I am closest to?”. With this perspective the distance of a

grid point to every line segment is calculated and the minimum is taken. The procedure

is then repeated for all grid points in the fluid grid.
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Control points
Point A
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boundary
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location for
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actual surface
location

Figure 3.5: Sketch of the concept of the parsing algorithm to evaluate the signed distance
function.

The general idea of the currently-implemented algorithm is to change the perspective

to the individual line segment of the polygon that asks from its perspective: “Which

grid points of the fluid grid are close to me such that I am their closest line segment?”

and “How large is the normal distance to them?”. Figure 3.5 shows a sketch of the con-

cept of the currently implemented algorithm to evaluate the signed distance function.

The surface of the solid is indicated with the red line and is defined by control points

defining the beginning and end of the individual line segments of the polygon. For each

line segment one end point is located in the underlying grid first. Let us assume it is

control point A in the sketch. Once the four grid points that enclose this point are

found the distance to each line of the adjacent line segments can be calculated with the

interpolation introduced in section 3.4.1.

Then a new “virtual” boundary point, indicated by the blue dot, is calculated by moving

in the direction of the line segment for a distance in the order of the local grid size. The

surrounding grid cell, indicated by the blue shaded area, of this virtual boundary point

is then located on the underlying grid. For each of the four surrounding grid points

the signed normal distance to the surface can be calculated by a projection of the dis-

placement vector between grid and virtual boundary point on the wall normal direction.

Once this is carried out for all four grid points forming the surrounding grid cell the

next virtual boundary point is calculated. This procedure is repeated until the end of

the line segment is reached and interpolation between two line segments as detailed in

section 3.4.1 is employed. In order to find all relevant points on the fluid grid for which

d < +ε the parsing is repeated with a wall normal offset of +ε, −ε, −2ε, etc.. The

maximum offset towards the interior of the solid depends on the thickness of the body

which determines how many times the parsing has to be repeated to find all interior



48 Chapter 3 Representation of Moving Bodies in High Fidelity Simulations

points.

Figure 3.6: Sketch of the working principle of the locating algorithm (figure from Chordá
et al. (2002)).

The performance of the introduced algorithm hinges on an efficient method to locate the

four surrounding grid points of a given location on curvilinear grids. To that end the

directed searching algorithm proposed by Chordá et al. (2002) was implemented. The

principle of this method is sketched in figure 3.6 and is based on the computationally

inexpensive test of whether a point is on the left of an interface. If this test is successful

for all interfaces forming a grid cell, the desired point is located. When the desired point

is not within the current grid cell, the test is repeated for the next cell neighbouring the

interface, where the point to the left test failed, until the point is located.

With this directed searching approach the next virtual point of the parsing algorithm

sketched in figure 3.5 can be located within one or two iterations if the search starts

at the location of the current virtual point leading to a highly efficient algorithm to

evaluate the signed distance function.

3.4.3 Special Algorithmic Treatment for Bluff Bodies

For our finite-difference implementation of the BDIM framework, we found that for

slender objects such as thin plates it is important to ensure that the thickness of the

solid body is at least such that it is represented by a factor of 1.5 to 2 times the number of

points of the numerical stencil. If the solid object is represented by fewer grid points the

results are strongly biased by direct coupling of the two surfaces through the numerical

stencil.

It is quite common to employ high order wave-number optimised filters along with high

order finite differences. The purpose of these filters is to damp instabilities with wave

numbers that are higher than what could be resolved by the grid, without affecting the

physical solution. Typically these filters have much larger stencils than the underlying
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finite difference scheme. In the current code, we employ a sixth-order accurate high-

wavenumber cut-off filter proposed in (Bogey et al., 2009) with a stencil of 11 points.

We found that this large stencil sometimes leads to a bias inside the solid, in particular

when the surface of the body is not aligned with grid lines. This would eventually lead

to diverging simulations. In order to reduce this bias we applied the first order BDIM

meta equation to the filtered field of quantity Φ which results in

Φε = ΦFµ
ε,F
0 +ΦU (1− µε,F

0 ) , (3.39)

where all super and subscripts F indicate the filtering operation, hence ΦF is the filtered

field of Φ. Furthermore, the unfiltered field is ΦU and the resulting field with a smooth

transition between filtered and unfiltered field is Φε. With this algorithmic treatment

of the filtering the bias can be eliminated by essentially switching the filter off inside

the solid. We found it essential to evaluate µε,F
0 (used to switch the filter on and off)

with an offset towards the inside of the solid of ε, resulting in the following argument

for equation 3.11

µε,F
0 = µε

0

(
d+ ε

2ε

)
, (3.40)

to avoid instabilities in the density field on the grid points just next to the boundary of

the smoothing region at the interior of the solid. As equation 3.39 is only applied to the

filtering operation and not prescribing any boundary conditions itself, the effects on the

physical representation of the body can be neglected. The role of the filtering in general

and in particular the bluff body filter treatment is to enhance the numerical stability by

damping out non-physical oscillations with minimal influence on the physical result.





Chapter 4

Validation of Used Methods

This chapter assesses the accuracy of the extended and newly implemented BDIM in

section 4.1 and the implementation of the structural solver in section 4.2.

4.1 Validation of the Boundary Data Immersion Method

This section presents the results of validation cases that are highly relevant to aeroa-

coustic simulations. To the best of the author’s knowledge most of the cases considered

here have not been used to validate IMBMs in the past. When flow-induced noise due

to fluid-solid interaction is considered, a very accurate representation of the near-wall

flow is crucial. This is attributed to the fact that fluctuations in the boundary layer are

the “input” of the noise scattering mechanism. Hence it needs to be assessed whether

the BDIM framework is capable of accurately reproducing the physical behaviour close

to the solid wall at an arbitrary and grid-independent location.

To assess the representation of the fluid flow and the data-capturing approach, a cylin-

der in a uniform flow is considered first (section 4.1.1). As a rigorous test case for the

near-wall behaviour the simulation of viscous instability growth in a flat plate boundary

layer, also denoted Tollmien-Schlichting-Waves (TS-waves), was chosen as suggested by

von Terzi et al. (2001) in section 4.1.2. Besides the accurate representation of incom-

pressible flow features, the correct modelling of the thermodynamic fluctuations in a

boundary layer are essential in high-fidelity simulations, since the noise is calculated

directly from the compressible Navier–Stokes equations. In order to evaluate and vali-

date these features of the BDIM framework the growth of oblique waves in a flat plate

boundary layer at M = 3 is considered in section 4.1.3. This is a three dimensional

flow case and therefore also validates the implementation for applications with three

dimensional flows. Furthermore, the capability of the BDIM to simulate a wall bounded

51
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flow with a wide range of length and time scales is evaluated by considering a turbulent

boundary layer in section 4.1.4. Since the goal of this work is to simulate noise from elas-

tic trailing-edges the BDIM needs to be capable of accurately simulating acoustic noise

radiation from moving bodies. To that end,the noise radiation from the cross-section of

an oscillating cylinder is considered in section 4.1.5.

4.1.1 Flow Around a Stationary Cylinder

The canonical flow around a static cylinder at Reynolds number ReDcyl
= 100 is con-

sidered first as a validation case which offers a large amount of reference data in the

literature. Furthermore, it is used to validate the data capturing approach to obtain

flow field information on the immersed body surface.

4.1.1.1 Setup

The Mach number was set to M = 0.1, thus compressibility effects are expected to be

negligible. The flow is simulated in a domain where the cylinder is placed at the origin

and the domain boundaries are −27Dcyl < x < 30Dcyl and −30Dcyl < y < 30Dcyl.

The cylinder is immersed in a fluid flow with a streamwise velocity of unity which

is prescribed at the inflow. The upper and lower boundaries are modelled as non-

reflective characteristic freestream boundary conditions. At the outflow boundary the

zonal characteristic boundary condition proposed in Sandberg & Sandham (2006) is

employed. The grid is spaced uniformly in the x and y directions within a region

of −2Rcyl < x < 2Rcyl and −2Rcyl < y < 2Rcyl. The uniform grid spacing was

∆x = Dcyl/120, thus resulting in 180 points within the equidistant discretization. The

grid was then stretched towards the boundaries over 95 grid points with polynomial

functions. The smoothing region half-width is set to ε = 2∆x = 2∆y. Furthermore, the

mapping of the continuity equation, as introduced in equation 3.31, had to be employed.

4.1.1.2 Results – Accuracy and Datacapturing on Immersed Surface

The forces acting on the cylinder are calculated from the pressure and skin-friction values

on the surface of the cylinder. To that end, the cylinder surface was discretized by 360

points equally distributed over the circumference. Since the values within the smoothing

region are not physical, the surface quantities were evaluated with a distance of ε from

the actual surface. The accuracy of the pressure force is expected to not be affected

by that. However, the skin-friction will be underestimated with this method. This is

not a specific problem related to the BDIM but occurs in other IMBM approaches as

well (Pourquie, 2009). The relevant flow quantities, i.e pressure and wall normal velocity

gradient are interpolated from the four surrounding fluid grid points onto the surface
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grid using bilinear interpolation as described in Saiki & Biringen (1996).

The final values for the forces acting on the cylinder are obtained by a panel integration

over all surface points. The quantities that are used to assess the accuracy of the BDIM

are introduced in the following paragraph. The Strouhal number St can be considered

as non-dimensional frequency and is calculated with

St =
fshedDcyl

U∞
, (4.1)

where fshed is the vortex shedding frequency, Dcyl the cylinder diameter and U∞ the

freestream velocity. The drag coefficient CD is the non-dimensional drag force the flow

exerts on the cylinder and is calculated with

CD =
FD

1
2ρU

2
∞A

, (4.2)

where FD is the drag force, ρ the fluid density and A the projected area of the cylinder

in the direction of flow per unit spanwise extent. When only the contribution of the

pressure drag is considered and the drag force is only calculated by the pressure drag force

FDp, the drag coefficient is denoted CDp. On the other hand, CDf is the drag coefficient

calculated with the drag force resulting from skin-friction FDf . The lift coefficient CL

can be defined analogously with

CL =
FL

1
2ρU

2
∞A

, (4.3)

where FL is the overall lift force exerted on the cylinder. The lift coefficient calculated

from the pressure force FLp is denoted CLp. Similarly to the drag, CLf is the lift

coefficient calculated using the skin-friction lift force FLf .

The results for the Strouhal number, the lift fluctuations as well as the drag are pre-

sented in table 4.1. They are presented alongside data available in the literature from

experiments (Norberg, 1994; Tritton, 1959), body-fitted simulations (Park et al., 1998;

Henderson, 1995; Zhang et al., 1995) and other IMBMs (Choi et al., 2007; Chiu et al.,

2010; Russell & Wang, 2003; Maertens & Weymouth, 2015). Given the scatter among

the reported results the data obtained from simulations with the BDIM agree reasonably

well with the values from literature.

1Park et al. (1998)
2Henderson (1995)
3Zhang et al. (1995)
4Choi et al. (2007)
5Chiu et al. (2010)
6Russell & Wang (2003)
7Maertens & Weymouth (2015)1st order
8Maertens & Weymouth (2015) 2nd order
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Source St CD CL CDp CDf CLp CLf

Experiment 0.164 1.25 - - - - -

1 0.165 1.33± 0.009 ±0.3321 0.99± 0.0082 ±0.0010 ±0.295 ±0.042
2 1.33 1.00 0.32 - -
3 0.172 1.42 ±0.3536 - - - -

4 0.164 1.34± 0.011 ±0.315 - - - -
5 0.167 1.35± 0.012 ±0.315 - - - -
6 0.165 1.34± 0.007 ±0.276 - - - -
7 0.167 1.31± 0.009 ±0.321 1.01± 0.0085 0.30± 0.0008 ±0.292 ±0.035
8 0.167 1.31± 0.009 ±0.313 1.00± 0.0081 0.30± 0.0007 ±0.285 ±0.034

1st order 0.165 1.35± 0.011 ±0.348 1.03± 0.0104 0.32± 0.0010 ±0.314 ±0.040
2nd order 0.165 1.32± 0.011 ±0.333 1.02± 0.0010 0.30± 0.0008 ±0.304 ±0.036

Table 4.1: Summary of the results from the cylinder case employing the first and second
order BDIM to represent the cylinder shape for the baseline resolution of ∆x = Dcyl/120.
The results are compared to experimental data (St from Norberg (1994) with estimated
uncertainty of 0.8%, CD from Tritton (1959) with estimated measurement error of 6%),
body-fitted simulations (source 1: Park et al. (1998), source 2: Henderson (1995), source
3: Zhang et al. (1995)) and other IMBMs (source 4: Choi et al. (2007), source 5: Chiu
et al. (2010),source 6: Russell & Wang (2003), source 7: Maertens & Weymouth (2015)).
The references to the source can also be found in the footnote of the page.

4.1.1.3 Formal Order of Convergence

In order to evaluate the formal order of convergence for the numerical setup the simu-

lation of the flow around the cylinder was repeated on six grids that were coarser than

the one of the baseline simulation from the previous section. The resolution levels are

defined in multiples n of the baseline resolution with nDcyl/120 = [3, 4, 6, 8, 10]. The

computational cost for the study was reduced by setting the Mach number to M = 0.3

which allowed an increase of the time step of the simulation. Since there is no analyt-

ical solution for this flow problem the data from the highly resolved case presented in

the previous section with a grid spacing of ∆x = ∆y = Dcyl/120 was used as a reference.

Commonly, the L2 norm is considered as a measure for the global error made by the

boundary scheme. The L∞, on the other hand, highlights the local error close to the

boundary. Figure 4.1 presents the results for the convergence study in the L2 (4.1a and

4.1b) as well as in the L∞ (4.1c and 4.1d) norm for the velocity and pressure fields

over the different grid resolutions. In general, it can be found that the results with

the first order framework always yield an error that is higher than that obtained with

the second order correction. For the L2 and L∞ norms the difference in error of the

velocity field from the first order approach is a factor of 2.6 − 8.6 higher than that of

the second order BDIM. For the pressure field the differences are a bit lower but still

significant with a factor of 2.0− 3.0. Each plot of figure 4.1 also shows first and second

order slopes. Comparing these to the convergence data one can find that the first order
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Figure 4.1: L2 and L∞ convergence of the velocity and pressure field for the flow around
a stationary cylinder. A first and second order slope are shown as reference.

approach yields a convergence rate that is slightly higher than first order for the velocity

field (4.1a and 4.1c) in both the L2 and L∞ norm. In contrast to that the second order

framework shows second order convergence approximately in the L2 and L∞ norm. For

the pressure field the convergence rates of both approaches are approximately the same

with second order for the higher resolution levels and slightly lower for the coarsest two.

4.1.2 Tollmien-Schlichting Validation Case

Tollmien-Schlichting waves (TS-waves) are two dimensional viscous laminar boundary

layer instability waves with small (linear) disturbance amplitudes. In experiments they
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resolution ∆x Nx ∆ywall Ny Ntot

1 3.01× 10−2 151 1.00× 10−3 43 6493
2 2.30× 10−2 151 7.50× 10−4 58 11716
3 1.50× 10−2 301 5.00× 10−4 87 26187
4 1.14× 10−2 404 3.75× 10−4 116 46864
5 5.68× 10−3 808 1.88× 10−4 261 210888

Table 4.2: Grid spacing and number of grid points in each direction and the total number
of points for each resolution level.

are commonly initiated with either wall blowing and suction or a vibrating ribbon.

Downstream of the excitation the disturbance amplitudes initially decay before they

amplify in the unstable region of the boundary layer. In particular in low disturbance

environments TS-waves can be an early stage of transition to turbulence (Fasel & Konzel-

mann, 1990). von Terzi et al. (2001) suggested using this case as a rigorous validation

case for IMBMs due to the importance of an accurate representation of the near wall

velocity gradients to simulate the instability growth rates correctly. The description of

the case is divided into two parts: 4.1.2.1 introduces the numerical setup and 4.1.2.2,

4.1.2.4 and 4.1.2.3 present the results from the simulations.

4.1.2.1 Setup

In order to obtain a reference using the same code, simulations with body-fitted bound-

ary conditions were conducted first. For this case a rectangular domain was specified

with 0.258 < x < 8.2 and 0 < y < 0.15 using a Cartesian grid with uniform grid spac-

ing for 0.258 < x < 3.34 and employing stretching for the zonal characteristic outflow

boundary condition. Nine different grid resolution levels have been considered spanning

a factor of 16. The grid spacing in the streamwise direction and at the wall including

the number of points in each direction and the total number of grid points are reported

in table 4.2. In the wall normal direction the grid was stretched for y > 0.0 towards the

freestream boundary. The stretching and the grid point distribution was specified as a

fifth order polynomial function with non-zero coefficients for the odd exponentials. The

function was mapping the index to a physical coordinate, i.e.

f : indexj → locationy . (4.4)

A Blasius boundary layer profile with δ∗ = 5.6 × 10−3 and Reδ∗ = 280.67 was pre-

scribed at the inflow using the integrated characteristic boundary condition suggested

in Jones (2008). The Mach number was set to M = 0.25. At the freestream boundary

a non-reflective characteristic boundary condition was employed. The boundary layer

instabilities were initiated by hydrodynamic disturbances which were introduced into
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Figure 4.2: Maximum disturbance amplitude of the streamwise velocity component over
the streamwise location comparing the results from simulations with body-fitted and
immersed boundary conditions to the incompressible reference (Fasel & Konzelmann,
1990). The results of the BDIM framework calculated on an equidistant (equi.) grid in
the wall normal direction are presented with dashed lines.

the boundary layer by periodic volume forcing through adding a source term to the

momentum equation at (x, y) = (0.4, 0.01). The forcing frequency was f = 2.22 with an

amplitude of A = 1× 10−1 for the volume force.

In order to run cases where the BDIM represents the wall, the grid in the wall normal

direction was mirrored below the wall position. As the fifth order polynomial function

specifying the grid distribution is a symmetric function, the grid metrics are continuous

for an arbitrary number of derivatives. The space below the wall position was initialized

with zero velocity and uniform density. The wall was placed on the first grid point in

the wall-normal direction of the original grid. The timesteps in the BDIM and body-

fitted simulations are the same, since the BDIM does not impose any additional timestep

restrictions.
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4.1.2.2 Results – Instability Growth Rates and Eigenfunctions

After the initial transient until the instability waves are statistically stationary data

from two forcing periods was captured. For postprocessing the Fourier transform of a

timeseries of the captured data was calculated. From the amplitudes of the streamwise

velocity component u the maximum amplitude across the boundary layer was deter-

mined at each streamwise location and then normalized by the lowest amplitude of all

streamwise positions. These disturbance growth rates are presented in figure 4.2 for

resolution level 5 comparing the incompressible reference (Fasel & Konzelmann, 1990)

with results employing body-fitted boundary condition with the code used in this work

and the first and second order BDIM. It can be appreciated that the growth rate with

the body-fitted boundary conditions is in excellent agreement with the incompressible

reference. Minor deviations can only be identified downstream of the maximum ampli-

tude. The first order BDIM yields good agreement in the initial stage of the disturbance

growth. However, the peak amplitudes are slightly overestimated. The deviation is

comparable to the differences of the ghost-cell method presented by Sandberg & Jones

(2011) and used to represent TE serrations in direct noise computations in Jones &

Sandberg (2012). The results from the second order BDIM are in poor agreement with

all other cases and the amplitudes are significantly under predicted. Furthermore, the

onset of the instability growth is shifted downstream. This is surprising as the second

order correction indeed leads to an improvement in convergence and the results for the

flow around a cylinder presented in section 4.1.1. To ensure that the poor performance

is not due to grid stretching in the near-wall region, the simulations were repeated with

an equidistant grid in the wall normal direction covering the whole domain. The results

are also presented in figure 4.2 and show no appreciable difference to the stretched grid.

Figure 4.3 presents the disturbance amplitude of the streamwise velocity component

as a function of the distance from the wall. The comparison between the BDIM and

the body-fitted cases in figure 4.3a reveals that the amplitudes are under-predicted

when using the BDIM as wall boundary condition. This is also true for the first order

BDIM that overestimated the growth rates of the TS-waves in figure 4.2. However,

the qualitative difference can be explained by the normalization with the minimum

amplitude of all streamwise locations employed to calculate the data in figure 4.2, thus

the over-prediction is relative to the minimum amplitude. The second order BDIM

shows even lower amplitudes and as seen from figure 4.2 the amplitudes are not only

absolutely under-predicted but also relative to the minimum amplitude. In figure 4.3b

the same data is replotted but normalized with the maximum amplitude throughout the

boundary layer profile. The qualitative and quantitative agreement of both the BDIM

cases with the references is excellent for the inner and outer peak.
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Figure 4.3: Disturbance amplitude of the streamwise velocity component as a function
of the wall distance at the streamwise position Reδ∗ = 800 comparing the results from
simulations with body-fitted and immersed boundary conditions.

4.1.2.3 Results – Comparison of the Averaged Statistical Profiles

TS-waves are linear boundary layer instabilities which means it is assumed that the

growth of disturbances only depends on the mean flow and but that there is no influence

of the disturbances on the mean flow. Therefore, an examination of the mean flow should

be able to explain differences observed in the instability growth rates and the poor per-

formance of the second order BDIM. The near-wall velocity profiles are presented as a

function of the wall normal coordinate normalized by the smoothing region half-width

ε in figure 4.4. Furthermore the gradients in the wall normal direction are presented in

the same plot as the growth of the instabilities depends on the exact representation of
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∂x2

body-fitted BDIM 1st BDIM 2nd

Figure 4.4: Profiles of the Favre averaged streamwise and wall normal velocity compo-
nents ũ1 and ũ2, respectively, and their derivative in wall normal direction in the vicinity
of the solid-fluid interface.

these quantities (von Terzi et al., 2001). For the streamwise velocity profile it can be

observed that the second order BDIM takes better advantage of the whole smoothing

region −1 < ε < 1 compared to the first order BDIM, which utilizes half of the region at

best. As a result the first order BDIM leads to a shift of the velocity profile in the wall

normal direction. Potentially an inward retraction of the actual surface location as sug-

gested by Breugem (2012) could partly correct these deviations. In contrast to that, the

second order BDIM leads to a reasonably good agreement with the body-fitted reference.

The same general trends can be observed for the wall normal velocity component ũ2,

albeit the transition in the smoothing region is less apparent due to the vanishing slope

at at the wall. The derivative of the wall normal velocity ∂ũ2
∂x2

shows qualitatively the

same trend as the streamwise velocity component. In contrast to the other quantities

considered here, the profile of the streamwise velocity derivative ∂ũ1
∂x2

is not continuous

at the wall. This can be clearly seen in the profile from the body-fitted simulation. The

BDIM has to represent this discontinuity in a continuous way. For the first order BDIM

it can be found that the transition takes place only in the second part of the smoothing

region and leads to an overshoot outside the smoothing region. The second order BDIM

shows a smooth representation of the discontinuity entirely within the smoothing region.

It can be summarized that the additional derivative information allows the BDIM to

take better advantage of the whole smoothing region and thereby represent the velocity

profiles and even the discontinuity of the derivative more accurately.
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Figure 4.5: Profiles of the second derivative in wall normal dirction of the Favre aver-
aged streamwise velocity component ∂2ũ1

∂x2
2

comparing the results from the body-fitted

simulation with the BDIM

The second derivative of the streamwise velocity component ∂2ũ1

∂x2
2

is considered in fig-

ure 4.5. The overview in the subfigure 4.5a shows that the BDIM leads to a very

pronounced peak of ∂2ũ1

∂x2
2

at the location of the wall. This is not surprising as the dis-

continuity of the first derivative leads to a second derivative that is mathematically not

defined with a value of infinity. The BDIM has to represent this discontinuity in a con-

tinuous way and therefore high values in ∂2ũ1

∂x2
2

are expected. For the first order BDIM

framework the peak is offset towards the freestream by approximately 0.5ε, where ε is the

smoothing region halfwidth, which is consistent with the shift towards the freestream of

the profiles presented in figure 4.4. Moreover large overshoots to positive and negative

values can be found. When the second order BDIM is employed the dominant peak is

in perfect alignment with the surface of the wall and is reduced in comparison to the

first order framework. Furthermore, the overshoots are smaller and more confined to the

direct vicinity of the smoothing region. To allow a better comparison to the data from
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the body-fitted case figure 4.5b shows a close-up of the near wall region. The body-fitted

data features an inflection point one grid cell away from the wall where the analytical

solution for the Blasius boundary layer would require that the inflection point is at the

wall (Criminale et al., 2003). Considering the first order BDIM, the overshoots reach

approximately to a wall distance of 5ε. At greater wall distances the profile is offset

towards the freestream as found for the profiles in figure 4.4 as well. The results are im-

proved with the second order framework where the overshoots are reduced in amplitude

and only reach to y = 4ε. Further away from the wall the agreement is excellent.

Considering the significantly smoother and more accurate representation of the velocity

profile and its first and second derivative at the wall when the second order BDIM is

employed, the higher error in the growth rates in comparison to the first order framework

is surprising. The cause of these deviations is not clear at this moment. It can only be

speculated that the growth of the TS-waves depends on the precise value of the velocity

gradient at the wall and the location of the inflection point. Both of them can inherently

not be matched with an analytical solution within the smoothing region. With the help

of linear stability theory it could be investigated if the differences in the mean velocity

profiles are the cause for the difference in the instability growth rates or if their cause

are dynamic effects, i.e. not related to the mean flow. However, the tools required for

such an investigation are beyond the scope of this work.

4.1.2.4 Results – Formal Order of Convergence

To evaluate if the agreement of the second order BDIM with the references improves

with higher resolution four refined cases were run. Together with a further four cases

using coarser grids the formal order of convergence of the first and second order frame-

work can be analysed. Figure 4.6 presents the deviation of the disturbance amplitude

obtained from the BDIM to the body-fitted results using the highest resolution level in

the L2 and L∞ norm in figure 4.6a and figure 4.6b, respectively, over the wall normal

grid spacing. For reference, the first and second order slopes are plotted in addition.

It is apparent that for the two lowest resolution levels the error is very high and in-

deed the analysis of the growth rates showed no “TS-wave like” behaviour. It should

be mentioned, though, that the same was true using the body-fitted boundary condi-

tions at these two resolution levels. Therefore, the simulations were not attempted with

the second order BDIM framework. Apart from these two data points the agreement

between first order slope and the data from the first order BDIM is very good. Thus,

for the simulation of TS-waves the first order BDIM leads to a first order convergence

in both norms considered here. The order of convergence is increased to second order

when employing the derivative correction in the BDIM, i.e. the second order BDIM.

However, the error level of these cases is significantly higher and they are comparable
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Figure 4.6: Formal order of convergence of the growth rates of Tollmien-Schlichting
waves in the infinity norm for 650 < Reδ < 1025

only for the highest resolution level. Thus, it can be concluded that the poor agreement

with the references found in the previous section 4.1.2.2 can not be attributed to lack of

resolution as the convergence of the second order BDIM is indeed second order.

4.1.3 Supersonic Oblique Wave Validation Case

In supersonic boundary layers three dimensional instabilities, also denoted oblique waves,

become more important and are dominant at M = 3 (Mayer et al., 2011). The accu-

rate simulation of these instabilities does not hinge on the velocity gradient at the wall
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location itself. However, an accurate representation of the near-wall thermodynamics

is crucial in the supersonic flow case. Therefore the growth of viscous instabilities in

a supersonic flat plate boundary layer at M = 3 is considered as a rigorous test case

to assess the correct modelling of the thermodynamic fluctuations close to the wall. In

high-fidelity direct noise computations this is an important aspect since the noise is

calculated directly from the compressible Navier–Stokes equations.

Oblique waves are three dimensional instabilities that can lead to breakdown into turbu-

lence in supersonic boundary layers. They are considered particularly relevant in low

disturbance environments since they need very low disturbance thresholds to be initiated.

The oblique breakdown features a linear, an early and a late non-linear regime (Mayer

et al., 2011). For the validation of the BDIM the focus is on simulating the linear regime.

The description of the case is divided into two parts: 4.1.3.1 introduces the numerical

setup, 4.1.3.2 assesses the accuracy of the BDIM and 4.1.3.3 presents the results from a

convergence study.

4.1.3.1 Numerical Setup

The flow under consideration is a supersonic flat plate boundary layer at M = 3.0 and

Re = 1, 578, 102. In order to trigger the instabilities the flow was disturbed close to

the wall by adding a harmonic forcing term to the right hand side of the wall normal

component of the momentum equation 2.2b in the second spanwise Fourier mode. The

amplitude of the volume force was A = 1.0×10−3 and the frequency was f = 12.558136.

The forcing was spread over a circular area in the x−y−plane, thus mimicking the effect

of a vibrating ribbon. At the inflow boundary the integral formulation of the character-

istic boundary condition (Jones, 2008) was used to prescribe a Blasius boundary layer

profile with a Reynolds number, based on displacement thickness, of Reδ∗ = 273. At

the freestream and outflow boundaries non-reflective characteristic boundary conditions

were applied.

For the body-fitted baseline reference case a rectangular Cartesian grid with 1.59172×
10−3 < x < 0.45598 and 0.0 < y < 4.70223 × 10−2 was employed. In the streamwise

direction the 281 grid points were distributed equidistantly with ∆x = 1.623 × 10−3

over the whole domain. In the wall normal direction the grid spacing stretched from

∆y = 3.51 × 10−5 at the wall to ∆y = 1.644 × 10−3 at the freestream boundary. The

spanwise direction was discretized with a spectral method using two Fourier modes for

a spanwise extent of ∆z = 0.0299817.

In the validation case where the BDIM represents the wall boundary condition, 20 grid

points were mirrored in the wall normal direction. As detailed in paragraph 4.1.2.1

and equation 4.4 for the TS-wave case, the grid point distribution was specified with a
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Figure 4.7: Amplitude of streamwise velocity disturbance as a function of the streamwise
position comparing data from Husmeier et al. (2005) with simulations using the BDIM
and body-fitted boundary conditions.

symmetric polynomial function. This ensures that the grid metrics of the mirrored grid

are continuous at the wall location. The void below the original position of the wall

was initialized with zero velocity and uniform density and temperature. The smoothing

region half-width ε in units of wall-normal grid spacing in the simulations was ε = 2.0∆y.

4.1.3.2 Results - Accuracy

After the initial transient, instantaneous snapshots of the flow field were gathered for

two forcing cycles. From the temporal Fourier transform of the streamwise velocity

component the maximum amplitude across the boundary layer was determined as a

function of x and then normalized by the lowest amplitude of all streamwise positions

during post-processing. Figure 4.7 compares the results obtained with the BDIM to

represent the wall with data using body-fitted boundary conditions with the same code

and a reference DNS (Husmeier et al., 2005). It can be noted that there are slight

differences between the reference Husmeier et al. (2005) and the body-fitted case in the

region of the onset of the instability growth. These can be explained by the fact that

the forcing was introduced differently in both cases. Overall it can be appreciated that

both the first and second order BDIM reproduce the growth rates very accurately, but

the second order BDIM is slightly closer to the reference.

In addition to the instability growth rate, the fluctuation amplitudes of the streamwise

velocity u, the density ρ and the temperature T are evaluated in figure 4.8 as a function

of the normalized wall distance η at Reδ∗ = 700. The amplitudes are normalized by
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Figure 4.8: Amplitude distribution of perturbations of streamwise velocity U , density ρ
and temperature T in the wall-normal direction at Reδ∗ = 700 from the simulations
using the BDIM in comparison to simulations with body-fitted boundary conditions and
to the results from Husmeier et al. Husmeier et al. (2005). The wall normal distance y
is represented with the similarity variable η = y

√
U/(νx), where U is the streamwise

velocity component, ν the viscosity and x the streamwise position. All amplitudes are
normalized by the maximum of the velocity amplitude.

the maximum velocity amplitude. The velocity amplitude profile proves that the very

good agreement between the BDIM and the references is not limited to the maximum

amplitude of the velocity fluctuations as presented before. It also matches the shape of

the profile along the wall normal direction perfectly. Furthermore, the fluctuations of

the thermodynamic quantities density ρ and temperature T are computed very accu-

rately. In addition, the normalization that was chosen shows that density fluctuations

are almost as high as the velocity fluctuations and the temperature fluctuations are a

factor of roughly 2.4 higher that the velocity fluctuations, thus underlining the impor-

tance of a good representation of the near wall thermodynamic quantities. Computing

these quantities accurately even for low energies is crucial for direct noise computations.

Overall, the results show that the BDIM is capable of accurately representing highly

sensitive instability growth adjacent to a wall in a three dimensional compressible flow.

4.1.3.3 Results - Convergence

A study with 4 additional resolution levels all together spanning a factor of 16 change

in resolution was carried out in order to establish convergence of the instability growth
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Figure 4.9: L2 convergence of the instability growth rates comparing the first and second
order BDIM. A first, second and third order slope are plotted as reference.

rate for this supersonic case. The results are compared employing the L2 norm of the

disturbance amplitude in the streamwise extent 300 < Reδ∗ < 800 relative to the body-

fitted reference in Figure 4.9. The first order BDIM yields a convergence rate that varies

between an order of 1.5 and 3 and tails off at the highest resolution. The second order

BDIM shows a constant convergence rate that is estimated to be 2.5− 3. It also shows

the tail-off at the highest resolution. Overall the error level is lower than in the first

order case. From the visual inspection of the instantaneous flow field, the tail-off is most

likely due to a shock downstream of the inflow.

4.1.4 Turbulent Boundary Layer

In many engineering applications featuring fluid flow with moving or stationary solid

objects the flow is turbulent. In particular, aeroacoustic noise generation from the

interaction of fluid flow with solid objects, such as turbulent interaction or trailing-edge

noise, is very sensitive to an accurate representation of the physics in the near wall

region. The fully turbulent flow over a flat plate is used to assess the accuracy of the

BDIM in representing the near wall physics in the presence of a large range of temporal

and spatial scales in combination with a relatively high velocity gradient discontinuity

at the wall.

4.1.4.1 Numerical Setup

The domain for the turbulent boundary layer incorporated the streamwise range of

1073 < Reθ < 1595 where Reθ is the Reynolds number based on momentum thickness.

The wall normal grid spacing was constant along the streamwise direction. When scaled

with the local viscous units the maximum spacing was ∆y+ = 0.97. In the wall normal
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direction the grid was stretched towards the freestream boundary over 90 grid points

to ∆y+ = 106 at a distance of 20.6δ∗, where δ∗ is the displacement thickness at the

outflow. The grid spacing in the streamwise direction was uniform with maximum value

of ∆x+ = 18.0 when scaled with the local viscous units. The spanwise domain width was

lz = 5δ∗, which has been found sufficient in previous unpublished studies validating the

code. A spectral method with 32 modes was used to discretize the domain width which

yields a spanwise grid spacing of ∆z+ = 8.13, which is comparable to the resolution used

in (Schlatter et al., 2009). At the inflow time-dependant synthetic turbulent fluctuations

were superimposed to a time-averaged mean turbulent velocity profile. To that end,

random fluctuations were filtered using the digital filter method proposed by Klein et al.

(2003) and extended to compressible flows by Touber & Sandham (2009). This method

has been shown to result in good predictions of second order moments such as velocity

fluctuations and integral turbulent length scales downstream of a development region

with roughly 20δ length. The freestream and outflow boundary condition were both

prescribed using characteristic boundary conditions. At the outflow the zonal approach

was employed Sandberg & Sandham (2006).

When the BDIM was employed to impose the wall boundary condition 20 grid points

were mirrored below the actual surface of the wall and initialized with zero velocity,

uniform density and the wall temperature. As in the previous two sections considering

boundary layer flows, the grid metrics are continuous at the wall location due to a

symmetric polynomial function that defines the grid point distribution.

4.1.4.2 Results – Effect of Second Order Correction

One of the main challenges for immersed boundary methods that do not modify the

discretization at the boundary by reconstructing the boundary is posed through the dis-

continuity of the velocity gradient ∂u1
∂x2

at the wall. Figure 4.10 presents the streamwise

velocity profile and its wall normal gradient in direct vicinity of the wall for the body-

fitted and the two BDIM simulations. The kink and discontinuity in the velocity profile

and its derivative, respectively, are immediately apparent in the body-fitted simulation.

The overall trends are similar to the profiles considered in figure 4.4. However, due to

the higher Reynolds number in this case the discontinuity in the wall normal deriva-

tive is higher. The results obtained with the first order BDIM show that the velocity

profile is offset towards the free stream at all wall normal locations. Furthermore, the

smoothing region of halfwidth ε = 2∆y is hardly used to transition from the governing

equations of the solid body to the fluid. In contrast, the second order BDIM features

a much smoother transition between the two sets of governing equations and also takes

advantage of a larger fraction of the smoothing region. In that case the deviation in

the velocity profile from the body-fitted reference is very small at the boundary of the

smoothing region and can be neglected at greater wall distances.
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Figure 4.10: Streamwise velocity profile and its gradient in wall normal direction over the
wall normal distances normalized by the smoothing region halfwidth ε in direct vicinity
of the wall for the turbulent boundary layer flow at Reθ ≈ 1410.

Considering the wall normal derivative of the streamwise velocity component ∂u1/∂x2

profile it can be found that the first order BDIM introduces overshoots towards the solid

body and the fluid. The maximum overshoot is at the fluid boundary of the smoothing

region and significant deviations from the reference as well as an offset towards the

freestream can be observed. When the second order correction is employed there is only

a single overshoot towards the solid and the discontinuity is bridged in a considerably

smoother fashion. The difference to the reference at the fluid boundary is fairly small

and vanishes towards the freestream.

4.1.4.3 Results – Comparison to Literature and Viscous Scaling

Turbulent quantities are commonly normalized by viscous scales derived from the fric-

tion velocity uτ =
√
ν ∂ũ1
∂x2

for which the wall gradient ∂ũ1
∂x2

is needed. From the discussion

of figure 4.10 it is apparent that the value at the wall location will not yield any mean-

ingful results when the BDIM is employed, which is a common difficulty for IMBMs.

However, the value of ∂ũ1
∂x2

at the fluid boundary y = ε can be used as reasonable ap-

proximation for the value at the wall itself as for a zero pressure gradient boundary

layer ∂2ũ1/∂y
2 = 0 (Pope, 2000). Figure 4.11 compares the streamwise velocity profile

scaled in viscous units from simulations obtained with our code and the incompressible

reference data from Schlatter & Örlü (2012). It can be observed that the body fitted
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Figure 4.11: Turbulent boundary layer velocity profile scaled with viscous units com-
paring the BDIM to the body-fitted boundary conditions and the reference data from
Schlatter & Örlü (2010).

simulation shows slight deviations from the reference in the wake region. This can be

attributed to the short domain and inflow length of the current case and the relatively

low Reynolds number of Reθ = 1410. However, for the purpose of a comparison of the

effect of different wall boundary conditions, i.e. body-fitted and immersed boundary the

agreement is reasonable. The comparison of the first order BDIM with the data from the

body-fitted case confirms the initial observation of an offset in Figure 4.10. The effect

of this offset leads to considerable deviations from the reference far into the outer region

due to the wrong scaling derived from ∂ũ1
∂x2

. However, when the data is scaled with the

velocity gradient from the body-fitted simulations, as shown in figure 4.11b, the velocity

profile matches the reference for y+ > 20 but shows the same offset for y+ < 20. In con-

trast to that, the second order BDIM shows very good agreement throughout the entire

profile with some minor overestimates. As for the first order framework, the agreement

of the case employing the second order correction with the reference improves further

when the profile is scaled by viscous units calculated from the body-fitted simulation.

Figure 4.12 presents Favre averaged velocity fluctuation profiles scaled in viscous units.

The comparison of the body-fitted Schlatter & Örlü (2012) data again shows some minor

differences in particular for the streamwise component σ11. This is due to the reasons

noted earlier and for the sake of assessing the BDIM approach the agreement is seen as

sufficiently good. The offset in the data obtained with the first order BDIM is prominent

in all components and besides the offset all amplitudes are underestimated. The second

order framework improves the offset considerably, as already seen for the velocity profile.
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Figure 4.12: Turbulent boundary layer velocity fluctuations profiles scaled with viscous
units comparing the BDIM to the body-fitted boundary conditions and reference data
from literature (Schlatter & Örlü, 2012)

The shape of the profile as well as the amplitude is captured well for all components

except the streamwise velocity fluctuations σ11, where the amplitude is slightly overes-

timated. However, when the data obtained from both BDIM simulations is scaled with

viscous units of the body-fitted case, as presented in figure 4.12b, the deviation in the

peak amplitude of the σ11 component vanishes and overall good agreement is obtained

with the reference data. For this scaling the amplitude of σ11 also matches the reference

closely. However, between the wall and peak production the amplitude of the first order
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Figure 4.13: Comparison of the streamwise velocity profile without scaling (a) and in
viscous units (b) of the two BDIM approaches with and without offset in the wall normal
direction

BDIM framework is still underestimated.

In conclusion, this data shows that the velocity gradient at the wall can be modelled

with the value at y = ε when using the BDIM to calculate the viscous scaling. When the

first order framework is employed the friction velocity uτ is underestimated which leads

to an offset of all profiles towards the freestream. Overall, the second order framework

leads to excellent agreement with the reference data.

4.1.4.4 Results – Modelling the Location of the Body Surface

In the previous paragraphs the surface of the wall when employing the BDIM was coin-

ciding with the underlying mesh in order to assess the accuracy of the framework when

representing a wall adjacent to a turbulent flow. However, the purpose of the BDIM

is to represent bodies immersed in fluid flow that do not necessarily coincide with the

underlying grid. Therefore two additional simulations have been run where the surface

of the plate has an offset in the wall normal direction and is located between the first

two grid points of the original grid, i.e. y+ ≈ 0.5 instead of y+ = 0.
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In the following comparison of the cases with and without an offset of the wall location

the y and y+ coordinate were always corrected accordingly. Figure 4.13a compares pro-

files of the streamwise velocity component without viscous scaling. It is apparent that

the profiles of the shifted and non-shifted cases are barely distinguishable. Despite the

fact that the offset to the original surface location is small, deviations could be identi-

fied when the wall normal coordinate was not corrected according to the offset. This

indicates that the mean velocity profile can be represented very accurately even when

the surface does not coincide with the underlying grid with an accuracy that is of the

order of half a grid point.

In figure 4.13b the same profiles are compared in viscous units. The data from the

first order BDIM framework reveals differences between the cases with the two different

surface locations from a wall distance of y+ ≈ 3 which is becoming more and more

pronounced towards the freestream. In contrast to that, the profiles obtained with the

second order BDIM are still in perfect agreement. That means that the offset increases

the uncertainty in the prediction of the velocity gradient at the wall when using the

first order BDIM. Indeed the estimated uτ (calculated from data at y = ε) changes from

uτ = 0.045 without offset to uτ = 0.043 whereas it does not change in the first two

significant digits when employing the second order BDIM with uτ = 0.43.

The velocity fluctuations for the same cases are presented in figure 4.14. For the un-

scaled fluctuations shown in figure 4.14a the most prominent differences between the

two surface positions can be found at the peak of the streamwise component σ11 and

are more prominent in the first order framework. When the data is scaled with viscous

units as shown in figure 4.14b all differences vanish for the second order BDIM, showing

perfect agreement in shape and amplitude of the velocity fluctuations. At the same time

the differences increase for the first order case as was already observed for the averaged

velocity profile.

Overall the BDIM is capable of modelling the exact surface location very accurately

as shown with the mean and fluctuations of the velocity profiles. When the first order

framework is employed the velocity gradient at the wall is predicted less accurately and

the streamwise velocity fluctuations are overestimated. In contrast, the second order

framework shows perfect agreement for both surface locations. Most likely the differ-

ence between the first and second order results can be attributed to the fact that the

first order framework hardly uses the full extent of the smoothing region, as mentioned

in the discussion of figure 4.10.
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Figure 4.14: Favre averaged velocity fluctuation profiles scaled comparing results with
and with out offset in wall normal direction when using the BDIM.

Thus, it can be concluded that the BDIM can be used to accurately represent a wall

when wall bounded turbulence is considered. It was shown that the second order cor-

rection improved the results considerably. This can be attributed to the much better

representation of the discontinuity present in the velocity gradient at the wall. In addi-

tion, the exact location of the plate surface can be represented very accurately leading

to a “sharp like” modelling of the surface.
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Figure 4.15: Introduction of the nomenclature for the physical problem and the grid.

4.1.5 Noise Radiation of a Vibrating Cylinder

A great advantage of compressible direct numerical simulations is that the generation

of flow noise can be investigated without any further modelling as the relevant physical

mechanisms are incorporated in the governing equations, i.e. the hydrodynamic and

acoustic field are solved simultaneously. The use of the BDIM in such simulations

enables the consideration of noise generation by flow interaction with moving objects

such as the simulation of TE noise from an airfoil or a flat plate featuring an elastic

TE. Therefore, this section focusses on the BDIM’s capability to represent the acoustic

noise generation of a moving body. The noise radiation from a transversely oscillating

cylinder in a medium at rest, i.e. a freestream velocity of U∞ = 0, is a test case that

evaluates this capability and offers an analytical solution to compare to. Furthermore,

the acoustic field is not superimposed with a hydrodynamic field. The description of

the case is divided into two parts: 4.1.5.1 introduces the numerical setup and 4.1.5.2

presents the results from the simulations.
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4.1.5.1 Numerical Setup

The cylinder is considered to have an infinite extension in the spanwise direction, hence

the problem can be analysed by considering the two dimensional cross-section. Fig-

ure 4.15a shows a sketch of the vibrating cross-section with the coordinate system and

the nomenclature. Assuming a harmonic vibration of the cylinder the displacement wvib

from the original position can be expressed by

wvib =
Avib

j
ejωvibt , (4.5)

which is assumed to be a purely translational motion in the y−direction. The vibration

amplitude Avib was set to 0.05 and the cylinder’s diameter Dcyl = 2Rcyl was set to

unity. This results in a vibration amplitude of 5% of the diameter. The non-dimensional

vibration frequency was fvib = ωvib/2/π = 0.03. Taking the temporal derivative ẇvib of

equation 4.5 leads to the velocity of the cylinder vvib

ẇvib = vvib = Avib ωvib e
jωvibt , (4.6)

which results in a maximum velocity of max(|vvib|) = 9.42 × 10−3 with the parameters

mentioned above. The Mach number M was assumed to be unity. As the freestream

velocity U∞ is zero, the Mach number can be interpreted as the non-dimensional speed

of sound. The choice of the value for the Mach number M and frequency fvib deter-

mines the acoustic wave length λa and therefore also the compactness ratio Dcyl/λa

of the noise source. Since a compact vibrating cylinder is a weak source of noise, the

vibration frequency fvib had to be chosen such that the noise level in the far field was

above machine accuracy. The resulting acoustic wave length is 33.33 which results in a

compactness ratio of Dcyl/λa = 0.03.

The cylinder’s cross section was discretized with a Cartesian grid that is symmetric with

respect to the x− and y− axis. In figure 4.15b, the topology of the computational do-

main and the grid is presented as a schematic. For a compact cylinder, i.e. λa Dcyl � 1

the main challenge is to incorporate and resolve both the acoustic near and far field in

the computational domain. In the near field close to the cylinder all the length scales

in the sketch are normalized by the cylinder’s diameter Dcyl since this is what governs

the resolution. As indicated in figure 4.15b, the area around the cylinder is surrounded

by 1.05Rcyl of the same grid spacing, before the grid is stretched with a cosine function

to the outer grid spacing. Furthermore, this is the region where the resolution will be

altered.

The relevant length scale in the far field is the acoustic wave length λa, thus all dimen-

sions in the far field are normalised by it. One acoustic wave-length was resolved by 20
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Figure 4.16: Instantaneous dilatation contours at an arbitrary instant of time from
simulation W33R1 with λa = 33.33 and a smoothing region for the BDIM of ε/∆x = 1.3.

grid points. This is a comparatively high resolution, however it was employed to avoid

excessive ratios of the grid spacing between the near and far field. Since the oscillating

cylinder is the only noise source and its strength is rather low, even minor reflections

from the domain boundaries were found to contaminate the acoustic field. In order to

damp the outgoing acoustic waves the numerical boundary conditions were supported

by grid stretching towards the boundaries resulting in a resolution of two grid points

per acoustic wave length at the boundaries.

All the dimensions and grid number counts shown in figure 4.15b refer to the “inner”

boundary before the transition region to the new resolution level occurs. At all four

boundaries non-reflective characteristic boundary conditions were employed. The do-

main was initialized uniformly with density and temperature and zero velocities.

4.1.5.2 Results – Accuracy

Figure 4.16 shows a snapshot of the dilatation levels to give an initial overview of the

acoustic field. The dipole character of the sound radiation from the oscillating cylinder

can be clearly identified by the high dilatation levels aligned with the cylinder motion
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in the y− direction. Along the axis perpendicular to that direction the radiated noise

vanishes. The contour levels show distinct wave fronts resulting in a very clean acoustic

field with no evidence of any numerical reflections from the domain boundaries.

After the initial qualitative assessment of instantaneous simulation results a more rig-

orous statistical evaluation will follow. To that end, the time averaged data from the

simulation will be compared to the analytical solution of the radiation problem. With

the assumption of an inviscid medium and linear acoustics, i.e. small amplitudes, the

analytical solution for this radiation problem is (Blackstock, 2000)

p
′
= Re

{∣∣∣∣∣−jρ∞vvibcos(θ)
H

(2)
1 (kr)

M H
(2)′

1 (kRcyl)
ejωvibt

∣∣∣∣∣
}

, (4.7)

where H
(2)
1 is a Hankel function of the second kind and first-order accurate and H

(2)′

1

its derivative. Furthermore, ρ∞ is the mean density of the medium at rest (Blackstock,

2000). The near field can be approximated by (Blackstock, 2000)

prms =
1√
2

∣∣∣∣−j2πfvibρ∞vvibR
2
cylM

2 1

r

∣∣∣∣ , (4.8)

and the far field approximation is (Blackstock, 2000)

prms =
1√
2

∣∣∣∣2π2f1.5
vibρ∞R2

cylvvibM
1.5 1√

r

∣∣∣∣ . (4.9)

For an initial assessment of the performance of the BDIM in this application a resolu-

tion of ∆x = Dcyl/160. Figure 4.17 compares the sound pressure level as a function of

the radial distance of the two simulations with the analytical solution. The data was

extracted along the radial direction aligned with the cylinder’s motion. Thus, the figure

shows the decay of the acoustic pressure fluctuations as a function of the distance from

the cylinder’s center in the main radiation direction. The range is chosen such that the

acoustic near and far field are both included. In addition to the analytical solution the

near and far fields approximations are presented showing the two principal dependen-

cies of the pressure fluctuations prms ∼ 1/r and prms ∼ 1/
√
r for small and large values

of r (Morse, 1948). It can be appreciated that the data obtained from the numerical

simulation qualitatively match the analytical references closely in all regions. Quantita-

tively the simulations employing the BDIM agree reasonably well with the reference but

overestimate the sound pressure level by 0.53dB for the first order BDIM and 0.29dB

for the second order BDIM at this resolution level of ∆x = ∆y = Dcyl/160.
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Figure 4.17: Comparison of the overall sound pressure level SPL over distance y/Dcyl in
the direction of the body motion between analytical solution and data from a simulation
using the BDIM. The range covers 1.2Rcyl < y < 4λa which includes the near and far
field and the approximations of the analytical solution for the respective range.

After the statistical evaluation of the results in the radial direction the overall sound

pressure level of this resolution level is compared to the reference in the circumferential

direction at a given distance from the origin. Figure 4.18 shows the directivity plot

comparing the three data sets at a distance of r = 2λa. The dipole type directivity

pattern that was also found in the instantaneous snapshot in figure 4.16 can be clearly

identified. It can be appreciated that the shape of the directivity pattern simulated

by the BDIM is in excellent agreement with the analytical reference. As in the radial

direction the amplitudes of the two simulations employing the BDIM agree reasonably

well with the reference but slightly overestimate the noise level.

4.1.5.3 Results – Convergence

Table 4.3 compares the averaged deviation from the analytical reference along the main

radiation direction for the first and second order BDIM for different resolution levels.

The deviation from the analytical solution is a factor of 1.39 to 1.92 higher when the first

order BDIM is employed compared to the second order. The formal order of convergence

of the data presented in table 4.3 is visualized in Figure 4.19. It is obvious that the first

and second order BDIM converge with the same rate of approximately one. The major

difference between the two is the level of the deviation, as discussed before. The fact

that both cases yield the same rate of convergence is not surprising. As shown with the

results from the turbulent boundary layer in Figure 4.10, the main effect of the second
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analytical solution with the simulation results using the BDIM.

Npts/Dcyl Avib/∆x 1st Ord BDIM ∆OASPL[dB] 2nd Ord BDIM ∆OASPL[dB]

20 1 2.91 1.64
40 2 1.64 0.88
80 4 0.92 0.48
160 8 0.53 0.29
320 16 0.34 0.21
640 32 0.25 0.18

Table 4.3: Summary of deviation from the analytical reference for different resolution
levels using the first and second order BDIM .

order correction is the improved representation of the discontinuity in the wall velocity

gradient in the wall bounded shear flow. In the current case considering an oscillating

cylinder in a medium at rest shear is only non-zero in for angles not aligned with the

main radiation direction and the values are very small.

For the highest resolution a tail off can be observed for both cases. This is not the case

when the data is referenced to the highest resolution case and instead of the analytical

reference. This indicates that the tail off is not due to boundary conditions but that the

simulation converges to a different solution as is also suggested by the constant offset

found in the previous discussion. The most likely reason for that is the assumption of
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Figure 4.19: Convergence of the pressure fluctuations relative to the analytical reference
over the kernel half-width ε for the first and the second order BDIM.

an inviscid fluid in the derivation of the analytical solution. However, the simulations

do have a finite viscosity. An additional test simulation showed that when the viscosity

is increased by two orders of magnitude the deviation between the analytical solution

and the simulated result decreases to ∆OASPL = 0.47dB on the Npts/Dcyl = 80 grid

using the second order framework. When viscosity was reduced by two orders of mag-

nitude this deviation grew to ∆OASPL = 1.72dB on the same grid and with the same

method. It is speculated that the action of viscosity adds an additional component of

fluid acceleration tangential to the translation direction.

In summary, the overall agreement with the analytical reference is excellent consider-

ing the very low energies that are involved in this acoustic test case. This validation

case demonstrates that the BDIM is an appropriate method to perform high-fidelity

simulations featuring noise radiation from moving bodies.

4.1.6 Summary of the Findings

This chapter assessed the accuracy and convergence of the BDIM framework with very

challenging test cases of high relevance for high-fidelity and direct noise simulations. It

was shown that the second order correction not only increases the convergence rate when

the grid is refined but also improves the results. In particular, the discontinuity of the

streamwise velocity gradient ∂ũ1
∂x2

in the wall normal direction is represented significantly



82 Chapter 4 Validation of Used Methods

0 0.5 1 1.5 2 2.5 3

·10−2

0

1

2

3

4

5

6

7
·10−3

∆p

w
s
(s

=
L
s
)/
L
s

analytical solution
simulations

Figure 4.20: Comparison between simulated steady state deflection at the free end
ws(s = Ls) normalized by the length of the structure Ls of the length and the analytical
solution for different pressure loadings ∆p. The structural parameters were EsIs =
6.5× 10−3 and ρs = 400.

more accurately and smoother with the second order framework. Despite the smoothing

region that is employed to represent the solid body immersed in fluid a “sharp-like”

representation of the actual wall position was found for a wall normal offset of half a

grid point. Furthermore it was demonstrated that the BDIM is a capable of representing

moving bodies in aeroacoustic simulations. For simulation of TS-waves, poor agreement

of the second order BDIM with the reference was found despite a significantly smoother

and more accurate representation of the base flow compared to the first order framework.

4.2 Validation of Structural Solver

The newly implemented structural solver was validated independently of the fluid solver.

The reference data was obtained from the analytical solution for the Euler-Bernoulli

beam theory. As initial test case a steady state solution for a prescribed constant

pressure load was considered under the steady state condition, equation 2.15 simplifies

to

0 = ∆p− EsIs
∂4ws

∂s4
. (4.10)

This equation can be integrated analytically with four integration constants that need

to be determined. At the clamped end, the deflection and its slope are zero and at
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the free end bending moments and transverse forces have to vanish as they cannot be

supported. These requirements result in the following set of boundary conditions:

ws

∣∣∣∣
s=0

= 0,
∂ws

∂s

∣∣∣∣
s=0

= 0,
∂2

s2

∣∣∣∣
s=Ls

= 0,
∂3ws

∂s3

∣∣∣∣
s=Ls

= 0 . (4.11)

Using these boundary conditions, it is possible to evaluate the four integration constants.

Hence, the deflection at location s under the steady and uniform load can be expressed

with

w(s) =
∆p s2(6L2

s − 4Lss+ s2)

24EsIs
. (4.12)

The largest deflection occurs at the free end for s = Ls and can be expressed with

ws(Ls) =
3∆p L4

s

24EsIs
, (4.13)

which is a linear function in ∆p.

In order to force the time dependent simulation to a steady state, an additional viscous

damping term −cd ∂w/∂t was included on the right hand side of equation 2.15. The

∂w/∂t term was evaluated with values from the preceding timestep. This causes a lag

in time of the damping term. However, as this is only a tool to achieve a steady state,

and the dynamic behaviour is not important for this testcase, such a lag is reasonable.

Figure 4.20 shows the averaged deflection for the quasi-steady state after 1.5 × 106

timesteps. The damping constant cd was time dependent and varied from cd = 5× 10−5

at the beginning to cd = 5 × 10−7 at the end. This allowed for the adaptation of

the damping depending on the amplitude of oscillations around the mean value. At

the end of the simulations with different pressure loadings minor oscillations could still

be observed. Therefore, an averaged value over the last 1 × 105 timesteps was used

in figure 4.20. The bending rigidity and density parameters of the structure in this

validation case were set to EI = 6.5 × 10−3 and ρs = 400, respectively. The results

presented in figure 4.20 show very good agreement with the analytical solution. The

deviation between simulations and analytical solution for all loads is 0.28%.

The previous results show that the model represents the deflection as a response to an

external force accurately in the limit of steady state. However, when coupled to the

unsteady fluid simulation, the dynamic behaviour is very important and vibrations are

expected to occur. The unsteady properties of the implemented model are evaluated

by the response to a prescribed initial deflection of the beam. The shape of the ini-

tial deflection was a superposition of the first six bending modes, where the maximum

amplitude Amax,j of each mode j was decreased as Amax,j =
Aglob

2j beginning from the

global maximum amplitude Aglob. The free vibrations that follow the initial deflection
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Figure 4.21: Comparison of natural frequencies and amplitudes obtained from the struc-
tural solver compared to the analytical solution. The vertical dashed lines indicate the
value of the natural frequency and the horizontal lines the amplitude.

were sampled. During postprocessing, the time history of the deflection at the free end

was then converted to a spectral power density.

Figure 4.21 compares this power spectral density from the simulation to the analytically

calculated natural frequencies, employing equation 2.18, indicated by the vertical dashed

lines. The overall agreement for the values of the natural frequencies is very good. The

amplitudes of the different modes were calculated from the initial condition and are val-

idated in addition. The agreement of the simulation results and the analytical reference

is very good for the first three modes. For higher modes the deviation is increasing.

However, in the coupled simulations the excitation frequency from the pressure load-

ing will be within the range of the first three natural frequencies. Hence the results

show that the implemented model is suitable to represent an elastic TE extension in a

fluid-structure interaction simulation.



Chapter 5

Trailing-Edge Noise from an

Airfoil at Angle of Attack

This study investigates the effect of an elastic flat plate extension on the acoustic noise

radiation of a NACA0012 airfoil profile at angle of attack AoA=5◦ with two dimensional

simulations. Firstly, the influence of the TE extension itself is assessed in section 5.1.

Secondly, elastic TE extensions using two different material parameter sets will be com-

pared to the rigid case in section 5.2

5.1 Effect of a Rigid TE Extension

In most studies found in the literature where TE noise reduction through serrations

is considered the TE of the airfoil profile itself is not modified. Instead, a flat plate

extension with a serration profile is attached to the TE (Oerlemans et al., 2009; Gruber

et al., 2010a,b, 2011; Chong et al., 2011; Moreau et al., 2012a; Sandberg & Jones,

2011; Jones & Sandberg, 2012; Arina et al., 2012; León et al., 2016). Only relatively

few studies are available for so-called non-insertion type serrations Chong et al. (2012,

2013a). Therefore, the effect of TE elasticity will be studied employing elastic TE

extensions and this section will investigate how the rigid TE extension influences the

flow around the airfoil.

5.1.1 Computational Setup

The domain under consideration for this study features the cross-section of a NACA0012

airfoil at angle of attack AoA=5◦. In order to discretize the geometry a body-fitted C-

mesh is employed around the airfoil. The overall grid topology is illustrated in figure 5.1

showing two blocks: the C-mesh type block for the airfoil which has two interfaces with

85



86 Chapter 5 Trailing-Edge Noise from an Airfoil at Angle of Attack

ξ

η

Lwake/Nwake

Rc/Nc

ξ

η

x

y

Figure 5.1: Schematic of the computational setup with two blocks employing a C-mesh
and a wake block. The actual number of grid points and dimensions can be found in
table 5.1. The green line in the close up of the TE indicates the extension of 10% chord
length represented by body-fitted boundary conditions. The directions ξ and η indicate
the directions of the grid indices. The directions of the physical coordinate system are
given with x and y with the origin at the TE point.

Lwake/Nwake Rc/Ncξ ∆η at LE ∆η at TE ∆ξ at LE and TE

5.0/752 7.25/1066 2.428× 10−4 3.771× 10−4 1× 10−3

Table 5.1: Spatial and grid dimensions of the airfoil setup. Ncξ is the number of grid
points on the surface of the airfoil. LTE and NTE are the thickness and the number of
grid points of the TE, respectively. The definition of the other parameters can be found
in figure 5.1. Furthermore the wall grid spacings at the leading-edge (LE) and TE are
given.

the block used to discretize the wake. Due to the airfoil geometry the grid metrics

are not continuous over these interfaces. In order to avoid numerical oscillations from

these metric discontinuities characteristic interface conditions as presented by Kim &

Lee (2003) are employed to couple the flow information between both blocks.

The TE was considered to be infinitely sharp, as shown in the close up of figure 5.1. To

study the effect of the extension the wake block is split in the vertical direction at the TE

location for the length of the extension, which is 10% of the chord. This length is in the

range of typical lengths used for serrated TE’s in literature (Chong et al., 2010; Jones

& Sandberg, 2012; León et al., 2016). The resulting 4 block topology is indicated by

the grey dashed lines in figure 5.1. This allows the application of body-fitted boundary

conditions at the newly created block boundaries which represent the extension.
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Figure 5.2: Directivity of the overall sound pressure level at a radial distance of r = 5
from the TE for an airfoil with and without a rigid TE extension using body-fitted
boundary conditions only.

The grid spacing is based on the grid that was used by Jones et al. (2008) where the

resolution requirements were determined using an iterative approach. The values of the

wall grid spacings at the leading-edge (LE) and TE are given in table 5.1. In addition to

these grid spacing constraints on the airfoil surface the resolution tangential to the wall

was refined around mid-chord on the suction side to ∆ξ = 8 × 10−4 in order to resolve

the laminar separation bubble that is expected to form.

The inflow boundary conditions were imposed by the integrated characteristic boundary

condition (Jones, 2008) with the fluid density ρ, the streamwise velocity u1 and the

freestream temperature T being prescribed as unity. The whole outer boundary of the

C-mesh block was treated as an inflow boundary. The upper and lower boundaries of the

wake block were both treated as freestream boundaries employing non-reflective char-

acteristic boundary conditions. The outflow of the wake block was prescribed with the

zonal characteristic boundary condition (Sandberg & Sandham, 2006) using 65 points for

the zone. As initial condition a uniform flow field conforming with the inflow boundary

conditions was prescribed throughout the domain. The chord based Reynolds number

was Rec = 5× 104 and the freestream Mach number was M = 0.4.
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Figure 5.3: Wall pressure fluctuations on the suction side of the airfoil using configuration
one from a simulation with and without a TE extension using body-fitted boundary
conditions only.

5.1.2 Results – Statistical Analysis of the Acoustic Field

To assess the effect of a rigid TE extension attached to an airfoil the overall sound

pressure level in the acoustic far field is compared in figure 5.2 at a radial distance

of r = 5 from the original TE location. It can be seen clearly that both directivity

patterns show a similar asymmetric shape. The higher noise level on the suction side

can be attributed to the formation of a laminar separation bubble which was investigated

in detail by Jones et al. (2008). Despite the similarities of the pattern the actual noise

level for the airfoil with a rigid TE extension is significantly reduced by up to 5.5dB

compared to the airfoil without any extension.

5.1.3 Results - Examination of the Hydrodynamic Source Region

Since wall pressure fluctuations are the input for the TE noise mechanism they can give

indications about the source of the different noise levels found in the overall sound pres-

sure level directivity. Note, however, that they were only gathered as time-averages and

therefore the fluctuations also contain the contribution from the scattered acoustic field

making a distinction, as outlined in section 2.1.4, impossible. Figure 5.3 compares the

variance of pressure on the suction side of the airfoil for the two cases with and without

extension. Both cases feature a peak after the mid-chord location which is likely to be

caused by the reattachment of the laminar separation bubble at that location. Further-

more, both cases feature the lowest level of wall pressure fluctuations just before the
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(a) The skin-friction distribution around airfoil, where the vertical dotted lines indicate the start of a
separated flow region and the dashed lines the end of it.
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Figure 5.4: Comparison of the pressure distribution around the airfoil with and without
the TE extension.

respective TE location which is then followed by a sharp increase towards the TE. For

the case with the TE extension it can be seen that the peak in the pressure fluctuations

from the laminar separation bubble is shifted slightly upstream. Most important is that

the amplitude of the peak is significantly lower compared to the case without the ex-

tension. Consequently, the case with the extension shows a decreased overall level of

the fluctuations further downstream. This is most notable in the region of the TE and

the extension. Since the sharp increase in the wall pressure fluctuations towards the TE

location is also significantly less pronounced with the extension, it is consistent with the

resulting reduction in noise level.
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To further assess the change of the flow in the vicinity of the separation bubble, fig-

ure 5.4a compares the skin-friction cf distribution around the airfoil for the case with

and without extension. The start of the separation bubble on average can be identified

by the zero-crossing at approximately 15% of the chord and is visualized by a vertical

dotted line in the figure. It shows only a minor difference between both cases. The reat-

tachment points of both cases are visualized by the vertical dashed lines. It shows a shift

in the upstream direction when the TE extension is employed. Downstream of the reat-

tachment point is a second separated flow region in both cases featuring comparatively

high magnitudes of skin-friction. From visual inspection of the instantaneous flow fields

it can be concluded that this second separated flow region is associated with the vortex

shedding from the separation bubble and is therefore denoted vortex shedding region. In

this vortex shedding region the skin-friction shows slightly lower magnitudes when the

TE extension is employed. Thus, the changes observed in the wall pressure fluctuations

can indeed be related to a modification of the size and location of the separation bubble.

This altered location of the separation bubble and the vortex shedding region has also

influence on the overall pressure coefficient distribution presented in figure 5.4b. In fact,

the change in the distribution of the pressure when employing the extension reduces the

lift force generated by the airfoil by 2.5%, despite a longer effective chord length, due to

the extension.

Besides the changes in pressure distribution and the reduced extent of the separation

bubble the lower wall pressure fluctuations could also be caused by a higher distance of

the convected vortices from the respective TE location. Figure 5.5 compares the three

Reynolds stress components over the distance in the y-direction from the TE of the

airfoil itself or the extension. For all three components it can be found that the level of

the fluctuations are lower throughout the considered distances from the TE. For the τ11

and the τ22 components it can be noted that the profiles are shifted slightly towards the

freestream.

It can be summarized that the airfoil with a rigid TE extension results in a significantly

lower noise level. It can mainly be attributed to the fact that extension alters the

pressure distribution around the airfoil and reduces the lift force generated. This change

in the pressure distribution also influences the location and size of the separation bubble

which is reduced when the extension is employed. Consequently, the incident pressure

fluctuations are reduced and the distance of the passing vortices seems to be of secondary

importance.



Chapter 5 Trailing-Edge Noise from an Airfoil at Angle of Attack 91

−0.1 −5 · 10−2
0

2

4

6

8

·10−2

τ11

d
is
ta
n
ce

fr
om

T
E

−0.15 −0.1 −5 · 10−2 0

·10−2

τ22

−2 0 2

·10−2

·10−2

τ12

without extension
with extension

Figure 5.5: Comparison of the Reynolds-stresses as a function of the distance in the
y−direction from the wall just before the respective TE for the case with and without
a rigid TE extension using configuration one.

Lwake/Nwake Rc/Ncξ hTE/NTE ∆η at LE and TE ∆ξ at LE and TE

4.7/755 6.0/1066 2.458× 10−3/11 2.428× 10−4 1× 10−3

Table 5.2: Spatial and grid dimensions of the airfoil setup. Ncξ is the number of grid
points on the surface of the airfoil. hTE and NTE are the thickness and the number of
grid points of the TE, respectively. The definition of the other parameters can be found
in figure 5.6. Furthermore, the wall grid spacings at the leading-edge (LE) and TE are
given.

5.2 Effect of an Elastic TE Extension

Following the assessment of the effect of a rigid TE extension, this section investigates

the noise radiation from elastic TE extensions of an airfoil. The computational setup is

introduced in section 5.2.1 and the results are discussed in 5.2.3.

5.2.1 Computational Setup

The grid topology and configuration from the setup introduced in section 5.1 was mod-

ified to facilitate the TE extension in a smoother way. A particular aim was to enable a

simulation with body-fitted boundary conditions for a rigorous validation of the BDIM,

requiring the grid to be aligned with the surface of the extension. Furthermore, this

topology keeps the interaction between BDIM and characteristic interface conditions to
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Figure 5.6: Schematic of the computational setup with two blocks employing a C-mesh
and a wake block. The actual number of grid points and dimensions can be found in
table 5.1. The dashed grey lines indicate the additional block boundaries when the rigid
flat plate extension with body-fitted boundary conditions is considered. The blue lines
in the close up of the TE indicate the extension when using the BDIM.

a minimum, avoiding issues with numerical instabilities. Overall, the two block grid

topology is the same as in section 5.1. However, the grid resolution was increased and

less stretching was applied to the first grid points in the wall normal direction of the

airfoil to ensure the motion of the elastic extension was resolved appropriately. The

values of the wall grid spacings at the leading-edge (LE) and TE are given in table 5.2.

In addition to these grid spacing constraints at the respective domain boundaries the

resolution tangential to the wall was refined around mid-chord on the suction side to

∆ξ = 8×10−4 in order to resolve the laminar separation bubble that is expected to form.

The boundary conditions and initialization are unchanged in comparison to section 5.1.

For the elastic TE extension the two different parameter sets with a high and a reduced

bending rigidity were chosen and are listed in table 5.3. In addition the first two natural

frequencies of the structure f1 and f2, as defined in equation 2.18, are listed alongside

with the added mass factor µm which is negligibly low in both cases. The vortex shedding

frequency fs, used to normalize the natural frequencies of the structure, was obtained

from the precursor simulations of the previous section 5.1 and has a non-dimensional

value of fs = 3.46. For the remainder of this chapter, all frequencies will be normalized

by this vortex shedding frequency.
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Es ρs f1/fs f2/fs µm

set 1 2.18× 105 1019 0.172 1.09 0.040
set 2 1.91× 105 1319 0.142 0.89 0.043

Table 5.3: Parameters describing the flat plate extension and specifying the structural
properties of the elastic extension with two different parameter sets with the Youngs
modulus E, the structural density ρs. The length of the structure is Ls = 10%C
and the height is given in table 5.2. Using equation 2.18 the first and second natural
frequencies of the structure f1 and f2 can be calculated and are normalized by the vortex
shedding frequency fs, obtained from precursor simulations. Furthermore, the added
mass factor µm, as defined in equation 2.20, is presented. The structural parameters are
non-dimensionalized with freestream quantities or combinations thereof.

5.2.2 Results – Validation

This paragraph gives a first overview of the hydrodynamic and the acoustic far field. Fur-

thermore, the accuracy of the BDIM when representing a TE extension will be examined.

Figure 5.7 shows two instantaneous snapshots obtained from simulations where the

BDIM is employed to represent the TE extension. In the contours of the spanwise

vorticity component presented in figure 5.7a it can be clearly seen that the flow sep-

arates before mid-chord forming a laminar separation bubble. The vortices shed from

there are then convected downstream along the airfoil over the TE extension. As the

vortices convect along the suction side they generate pressure fluctuations on the airfoil

surface that cause noise radiation from the surface which scales ∼ M6 according to the

acoustic analogy (Curle, 1955). When these pressure fluctuations convect over the TE

additional noise radiation can be observed which scales with ∼ M5 (Ffowcs Williams &

Hall, 1970). Thus, for low Mach number flows it is expected that the TE noise dominates

the overall noise radiation. However, since this flow is at a moderate Mach number of

M = 0.4, contributions from both sources might be relevant. The resulting acoustic field

is visualized in figure 5.7b using the dilatation contours at an arbitrary instant of time.

It can be appreciated that the acoustic field is very clean with distinctive wave fronts.

No signs of reflections from the outflow or any other boundary of the computational

domain into the region of interest can be found. The noise predominantly originates

from the trailing-edge and the scattering is the strongest in the upstream direction with

an increased noise level on the suction side which is likely to originate from the surface

dipole caused by the interaction of the wall and the pressure fluctuations from the sep-

aration bubble and the associated vortex shedding.

Figure 5.8 shows the directivity of the overall sound pressure level at a radial distance



94 Chapter 5 Trailing-Edge Noise from an Airfoil at Angle of Attack

-40 -20 0 20 40

spanwise vorticity

(a) Contours of the spanwise vorticity component around the airfoil.

-0.04

-0.02

0

0.02

0.04

dilatation

(b) Contours of dilatation showing the acoustic field.

Figure 5.7: Instantaneous snapshots showing the hydrodynamic and acoustic field from
simulations with a rigid TE extension.

of r = 3.5 from the aft of the airfoil with a rigid extension which is represented by body-

fitted boundary conditions and the BDIM. For the BDIM cases two different resolution

levels were considered where level 1 refers to the baseline resolution as documented in

table 5.2. For the higher resolution level 2 the grid was refined by a factor of two rel-

ative to the grid spacings detailed in table 5.2 at the TE in both directions. It can be

appreciated that the sound levels of both cases employing the BDIM are in very close

agreement. In fact the maximum difference between the two below the airfoil is 0.25dB.

Consequently, the required grid resolution that was determined by Jones et al. (2008)

for body-fitted simulations is also sufficient to resolve the TE noise mechanism with the

BDIM and only resolution level 1 will be considered for the remainder of this chapter.

When comparing the two data sets obtained employing the BDIM to the body-fitted

case good agreement can be found with a slight over-prediction of a maximum of 0.42dB



Chapter 5 Trailing-Edge Noise from an Airfoil at Angle of Attack 95

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

85 90 95

OASPL[dB]

body-fitted
BDIM, res. 1
BDIM, res. 2

Figure 5.8: Directivity of the overall sound pressure level at a radial distance of r = 3.5
from the aft of the airfoil comparing the body-fitted with the BDIM cases. For the
BDIM cases two different resolution levels, abbreviated with res., are shown where level
1 refers to the baseline resolution as documented in table 5.2 and 2 to a refined grid.

and 0.2dB for resolution level 1 and 2, respectively.

Figure 5.9 compares the power spectral density of the pressure signal for the body-fitted

and the BDIM case with a rigid extension. The virtual microphone position is located

on the pressure side upstream of the airfoil at a radial distance of 3.5 and an angle

of θ = 217◦ in the directivity pattern. The dominant peak in the spectrum is at the

frequency of the vortex shedding from the laminar separation bubble which was also

used to normalize the frequency of the spectrum. It can be observed that the exact

location is in perfect agreement for both cases. For the BDIM the amplitude is slightly

over estimated and since the amplitudes of this dominant peak and the subsequent har-

monics are decades above all the other peaks in the spectrum they govern the overall

fluctuation level. Hence, the findings are consistent with what has been found in the

directivity plot in figure 5.8. There is an additional peak in the spectrum that is not

a harmonic of the dominant peak at a frequency of f/fs ≈ 0.26. The agreement of

the peak’s location is very good. However, the amplitude when employing the BDIM is

roughly two decades higher than in the body-fitted case. Regarding the contribution to

the overall energy contained in the spectrum this difference is unlikely to influence the

integral noise level. Nevertheless, this overestimation of this first peak can also explain

the higher amplitudes for all following non-dominant peaks since they are either higher

harmonics or non-linear interactions between the dominant peak and this first peak. It
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Figure 5.9: Power spectral density of pressure at a radial distance of r = 3.5 with an
angle of θ = 217◦ from the TE comparing the body-fitted with the BDIM case on the
pressure side.

is speculated that this frequency is linked to an instability in the wake which would

be a quadrupole-like source according to the acoustic analogy and was also found by

Sandberg et al. (2007).

The validity of the hypothesis about the additional noise source originating from the

wake can be evaluated by calculating the power spectral density of the acoustic far-field

as a plane. To that end planes of the far-field were captured skipping different numbers

of grid points in varying grid regions to reduce the overall amount of data. The power

spectral density was calculated by averaging over 7 Hanning windows each containing

26.25 vortex shedding cycles with an overlap of 50%. Figure 5.10 shows the contour of the

power spectral density of pressure from the simulation employing the BDIM to represent

the rigid extension for the hypothetical frequency of the wake instability f/fs = 0.26.

In addition contour lines of time averaged ∂ũ1
∂x2

are presented to visualize the shear of

the wake. When examining the wake region it is apparent that there are multiple noise

sources that radiate into the far-field. The first one is located at x = 1.25 and radiates

predominantly towards the suction side. The second strong source can be identified with

a center at approximately x = 2.5 and the radiation is towards the pressure side.

As increased fluctuations at this frequency can also be observed in the vicinity of the

separation bubble it is speculated that the initial disturbances are introduced at this

location. They are then convected downstream where they are amplified in the wake.
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Figure 5.10: Contours of PSD(p)f/fs=0.26 from the simulation using the BDIM. The

contour lines visualize the shear in the wake with ∂ũ1
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from the time averaged statistics.

Figure 5.11 shows the contours of the power spectral density of the streamwise velocity

component on the surface of the airfoil for the frequency of the wake instability. It is

speculated that the instability is of Kelvin-Helmholtz type that is typically found in

wakes (Yaglom, 2012). The comparison between the velocity fluctuations of the airfoil’s

suction side between the BDIM and body-fitted cases shows that the fluctuations with

this frequency originate from the vicinity of the reattachment point of the separation

bubble. They are more pronounced in the case using the BDIM and seem to be am-

plified as they convect downstream, whereas in the body-fitted case the overall level of

the fluctuations is significantly lower and also confined to the reattachment point. It is

suggested that the initial disturbances at this frequency originate from the vicinity of

the reattachment point of the separation bubble and are amplified in the wake. When

the BDIM is employed this amplification is stronger than with the body-fitted boundary

conditions. The growing instabilities eventually radiate noise which is strong enough to

trigger an amplification of the initial disturbance in the vortex shedding region and thus

establish an acoustic feedback loop.

The differences in the amplification of the inital disturbance in the wake and the hy-

pothesized feedback loop that follows can likely be explained with differences in the

velocity profiles in the wake. Therefore, figure 5.12 shows the velocity, velocity gradient

and Reynold stress profiles for the case with a TE extension represented by body-fitted
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Figure 5.11: Contours of PSD(u)f/fs=0.26 comparing body-fitted boundary conditions
and the BDIM. The contour line visualize the streamwise velocity component for u1 = 0.

boundary conditions and the BDIM at a location 2.5 chord lengths downstream of the

TE extension. It can be noticed that the mean streamwise velocity profiles and its lateral

derivative agree very well. However, the lateral velocity component and its derivative

show a qualitatively different shape. In contrast to the streamwise velocity component,

the shape of the lateral velocity profile depends on the streamwise location in the wake

when coherent vortex shedding is considered. Therefore the lateral velocity component

is an indicator for a difference in the phase of the wake development, possibly explaining

the qualitative difference between body-fitted and BDIM case. The τ11 and τ22 Reynolds

stress components show the same trend, but the amplitudes are higher in the BDIM case

and are also slightly shifted. Furthermore, the τ12 Reynolds stress component shows a

lower correlation level of the streamwise and lateral velocity fluctuations which again

indicates a different phase of the wake development. It seems that the slightly different

representation of the TE extension for the two different boundary conditions leads to

a shift in the wake development. These differences can hardly be noticed closer to the

TE but are accumulating in the downstream development. It is argued that the higher

amplitude of the wake noise source and the hypothesized feedback loop in the BDIM
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Figure 5.12: Comparison of the velocity and Reynolds-Stresses 4 chord lengths down-
stream of the TE extension for the rigid TE extension represented by body-fitted bound-
ary conditions and the BDIM.
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case can be explained with these differences.

Overall it can be stated, that the data from simulations where the TE extension is

represented by the BDIM are in very good agreement with results obtained with the

body-fitted boundary conditions. The differences in the exact representation of the ex-

tension’s shape between body-fitted boundary conditions and the BDIM seem to result

in slightly altered mean profiles in the wake that lead to an amplification of velocity dis-

turbances that seem to originate from the reattachment point of the separation bubble.

However, the contribution of that frequency to the overall noise level can be neglected.

For the following investigation of the effect of TE elasticity the rigid TE extension will

always be represented by the BDIM for a consistent comparison.

5.2.3 Results – The Elastic TE Extension

The following paragraphs consider two elastic TE extensions with different material

properties in comparison to a rigid TE. Firstly, the structural motion will be analysed

in section 5.2.3.1. The acoustic noise radiation is examined in section 5.2.3.2 and is

followed by an investigation of the hydrodynamic source region is section 5.2.3.3.

5.2.3.1 The Structural Behaviour

Figure 5.13: Contours of spanwise vorticity showing the flexible TE extension in a
deflected state.

Figure 5.13 shows the instantaneous spanwise vorticity field around the elastic flat plate

extension of the airfoil with parameter set 1 at an arbitrary instant of time. The vortices

that were found to originate from the laminar separation bubble in figure 5.7a can be

clearly identified. The coherent vortex shedding leads to strong pressure disturbances

that drive the motion of the elastic TE extension. The resulting deflection of the ex-

tension with the shape of bending mode two can be found when the plot is examined

carefully.
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Figure 5.14: Time history of the deflection ws of the free end at s = Ls of the elastic
TE extensions for both parameter sets normalized by the height of the TE hTE .

A representative sequence of the time history of the deflection w of the TE extensions’

end point after it has reached a quasi-periodic state is presented in figure 5.14 for both

parameter sets. The fact that they are not shown for the same period of time is purely

for illustration purpose and enhanced readability. It can be appreciated that the de-

flections are periodic with one dominant frequency and a constant amplitude. This can

be attributed to the very coherent vortex shedding from the laminar separation bubble

that generates a periodic loading on the plate.

The time averaged deflection ws of the extension in units of the plate thickness hTE ,

shown in figure 5.15a, is positive, which indicates a mean deflection towards the suction

side. In both cases the mean deflection shows the shape of bending mode 1, as also

shown in figure 2.2 for comparison. Consequently, the net pressure force is bending

the extension towards the suction side. The mean deflection at the free end is approx-

imately 0.53∆y and 0.44∆y for parameter set 1 and 2, respectively. Thus the effect of

this mean deflection is likely to be negligible. The standard deviation of the deflection

wrms is plotted in figure 5.15b over the length of the extension. For both parameter

sets the shape is a pronounced bending mode shape 2, as also shown in figure 2.2 for

comparison. The shape features two nodes, one at the mounting point and one at 3/4

of the extensions’ length. The bending mode 2 shape can be explained with the fact

that the second natural frequency of the structure is closest to the frequency of the

pressure loading. As expected the lower bending rigidity of parameter set 2 leads to

significantly higher fluctuations of the deflections. If the amplitude of the sinusoidal

time signals are calculated with the standard deviation by multiplying it with
√
2 the

deflection amplitude can be quantified with 5.2∆y and 33∆y for parameter set 1 and 2,
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Figure 5.15: Mean and standard deviation of the deflection time history of the TE point
as function of the coordinate s parameterizing the length of the extension for the two
different structural parameter sets.

respectively. Both are amplitudes that can be accurately represented by the BDIM.

Figure 5.16 presents the power spectral density of the extensions’ free end deflection,

shown as time history in figure 5.14, to evaluate the important frequencies that govern

the structural behaviour. The spectrum was calculated using 5 segments employing

Hanning windows with a length of 65.6 vortex shedding cycles and an overlap of 53%.

For parameter set 1 the spectrum is dominated by the vortex shedding frequency with

comparatively low amplitudes in other frequency ranges. Additional peaks can be found

at the second and third natural frequencies of the structure but in terms of contribution

to the overall energy they are insignificant. Thus, the response of the structure to

the external forcing is governed by the forcing frequency itself and its harmonics. For

parameter set 2 the vortex shedding frequency and the second natural frequency of the
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Figure 5.16: Power spectral density of the deflection time history w of the TE point
for the two different structural parameter sets. The respective natural frequencies are
indicated with vertical dashed lines with the same color and are normalized with the
vortex shedding frequency fs.

structure seem to be locked as the only peak that can be identified in this frequency

range is at the natural frequency. Thus the structural movement might be close to

resonance. Apart from that the qualitative behaviour is similar to the one of parameter

set 1 but the peaks at the natural frequencies are more pronounced.

5.2.3.2 Statistical Analysis of the Acoustic Field

For an assessment of the integral performance of the elastic TE extensions figure 5.17

compares the overall sound pressure level of the rigid and the two elastic cases at a radial

distance of 5 chord lengths from the mounting point of the TE extension. All directivity

patterns feature the aforementioned asymmetric shape with the higher noise level on the

suction side due to the laminar separation bubble. For the elastic extension with param-

eter set 1 the directivity shape appears to be the same as for the rigid TE. In contrast to

that the three lobes on the suction side of parameter set 2 are pronounced. Furthermore,

the noise radiation appears to be directed more towards the vertical direction. However,

in general both the elastic TE extensions are significantly noisier than the rigid case.

When parameter set 1 is used the maximum noise increase is 3.6dB in the θ = 210◦ di-

rection. For parameter set 2 the maximum noise increase is 11.2dB in the same direction.

The spectral analysis of the pressure signal from three cases can give further insights

about the distribution of the energy in the pressure fluctuations and in which frequency

ranges the noise amplification occurs. To that end, figure 5.18 shows the power spectral

density of the pressure signal from upstream of the airfoil on the suction side calculated

from an average of 7 Hanning windows and an overlap of 50%. When parameter set 1

is considered the first thing to note is that the dominant peak of the spectrum and its
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an angle of θ = 216◦ from the TE comparing the elastic and rigid TE extensions. The
vertical dashed green lines indicate the first and second natural frequency of the structure
of parameter set 2.
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harmonics occur at the same frequencies, i.e. f/fs = 1 and f/fs = 2, as in the rigid

case. Hence, the frequency of the vortex shedding from the laminar separation bubble

is not affected by this elastic TE extension. Furthermore, the amplitudes of these peaks

are significantly higher. In contrast to the amplitudes of these dominant peaks the am-

plitudes of the aforementioned hypothetical wake source are several decades lower in the

elastic case.

For parameter set 2 the dominant peak and its harmonics are shifted towards lower

values. The exact frequency is in good agreement with the second natural frequency

f/fs = 0.89 of the structure indicated by the vertical dashed line. This is consistent

with the spectrum of the structural deflection presented in figure 5.16 where the same

shift could be identified and the spectrum was dominated by the peak at the second

natural frequency. Consequently, the vortex shedding frequency seems to be changed

by locking in to the second natural frequency of the structural motion. It is speculated

that the noise generated by the motion of the structure acted as acoustic excitation in

the current application and thus led to the observed global changes. Similar observa-

tions were made by Pröbsting & Yarusevych (2015) who reported changes in the overall

separation bubble characteristics and lock in of the vortex shedding frequency to that

of the acoustic excitation. The low frequency noise source from the wake appears to be

shifted alongside and collapses with the first natural frequency. However, no interaction

of higher harmonics of the instability can be found for the elastic case.

In summary, the elastic TE extensions are noisier than the rigid one in this application

and for the chosen structural parameters. The excess noise seems to be generated by the

interaction of the structural vibration with the incident pressure field. Furthermore the

vortex shedding frequency from the separation bubble seems to change when parameter

set 2 is used.

5.2.3.3 Near Field Effects of the Elastic Extension

This section investigates if and how the flow around the airfoil is affected by the elastic

TE extension to explain the noise amplification found in the previous section 5.2.3.2. To

that end, figure 5.19a compares the skin-friction distribution around the airfoil for the

rigid and elastic TE extensions. It can be found that in the first 40% of the chord there

is no difference between the cases. However, further downstream pronounced differences

can be found on the suction side which is magnified in figure 5.19b. For parameter set 1

the agreement with the rigid TE is good initially with slight differences in the exact am-

plitude of the peaks around mid-chord. However, further downstream the amplitudes

and location of the skin-friction peaks differ. Considering parameter set 2 it can be

found that the end of the separation bubble is shifted upstream and the positive and
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Figure 5.19: Comparison of the skin-friction and pressure fluctuation distribution around
the airfoil upstream of the extension between the rigid and elastic TE extensions.

negative peak values downstream of that show significantly lower amplitudes. The same

differences can also be found downstream of the reattachment point, indicated by the

zero crossing to positive values, at x = −0.45. The results of the changed location and

intensity of the separation bubble on the pressure fluctuations on the wall are presented

in figure 5.19c. It is apparent that the pressure fluctuations are initially lower than the

other two cases for parameter set 2. However, further downstream and in particular to-

wards the TE they are significantly amplified. For parameter set 1 the opposite is true,

but the differences to the rigid TE are notably smaller. As the pressure fluctuations at

the wall contain the input to the TE noise mechanism a higher noise level is expected

for higher pressure fluctuations.
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Figure 5.20: Comparison of the pressure coefficient distribution around the airfoil up-
stream of the extension between the rigid and elastic TE extensions.

Finally, figure 5.20 compares the pressure coefficient distribution defined by (Anderson,

2001)

Cp =
p− p∞
1
2ρ∞U2

∞
, (5.1)

around the airfoil body, where the density ρ, pressure p and velocity U with the subscript

∞ refer to freestream quantities. The most notable difference is at the location of the

reattachment of the separation bubble around mid-chord and the region downstream of

that. Here, the elastic TE extension with parameter set 3 shows lower pressure values

on the suction side, i.e. a higher −Cp for x > −0.4. This results in a change of the lift

generated by the airfoil. For parameter set 2 the lift is increased by 3.23% relative to

the case with the rigid TE extension. The opposite is true for parameter set 1 where

the lift is reduced by 1.1%.
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Figure 5.21: Comparison of the variance of the pressure difference ∆p′ for the elastic
and rigid TE extensions.

In summary, the noise increase can be partly related to a global change of the flow

around the airfoil. In particular for parameter set 2 the location and intensity of the

separation bubble changes qualitatively which also results in an increase of the lift that

is generated. Thus, a fair comparison between rigid and elastic TE extensions is diffi-

cult. However, the analysis of the incident and scattered pressure differences following

in the next paragraph will be used to develop some initial indications of the physical

mechanisms responsible for the increased noise level.

Figure 5.21 presents the comparison of the variance of the incident and scattered pressure

difference for the two elastic and rigid TE’s. For the incident pressure field it can be

appreciated that parameter set 1 seems to have little effect on the pressure field in the

first half of the extension. Towards the end of the extension it is amplified more strongly

compared to the rigid case, leading to a higher peak at the TE location. This also leads

to a higher amplitude of the scattered pressure fluctuations presented in figure 5.21b.

Thus, the increased noise level can be attributed to an amplification of the incident

pressure field which then leads to a higher noise radiation. When parameter set 2 is

used the incident field is modified significantly which is consistent with the amplification
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of the wall pressure fluctuations on the suction side found in figure 5.19c. However, the

scattered pressure fluctuations at the TE are significantly reduced which is in contrast

to the far-field observations. Thus, the significantly increased noise level must originate

from another noise source and it is speculated that it is the motion of the structure

itself.

5.3 Summary of the Findings

The chapter first investigated the effect of a rigid TE extension on its noise radiation

and the flow around the airfoil. The simulated data showed that a rigid TE extension

reduces the noise radiation. This noise reduction was attributed to changes in the loca-

tion and strength of the vortex shedding which also resulted in a reduced loading.

For the two parameter sets investigated as elastic TE extensions, it was found that the

structural motion was dominated by the vortex shedding frequency. In the acoustic far-

field higher noise levels in comparison to the rigid TE were found at the vortex shedding

frequency for both parameter sets. For the case with the highest deflections the vortex

shedding frequency was found to lock in with the second natural frequency. This led

to a global change of the flow with different location and intensity of the separation

bubble. As the incident pressure fluctuations were reduced with that parameter set it

is argued that the high excess noise originates from the structural motion. Pröbsting &

Yarusevych (2015) reported changes in the overall separation bubble characteristics and

lock in of the vortex shedding frequency to that of the acoustic excitation. It might well

be that the noise generated by the motion of the structure acted as acoustic excitation

in the current application and thus led to the observed global changes. The elastic ex-

tension with smaller deflections was found to amplify the incident pressure fluctuations

which led to an increased noise level as well.

In general, a fair comparison between the rigid and elastic TE extensions was found to

be challenging as changes in the hydrodynamic near-field were found far upstream of the

actual TE locations. Therefore, a greater focus of this work was put on an alternative

setup of a flat plate with a vortex generator and an elastic TE that is introduced in the

following chapter 6.





Chapter 6

Trailing-Edge Noise from an

Elastic Flat Plate

In the following chapter TE noise from a flat plate with an elastic TE is considered

in two dimensions. The computational setup of the case is described in section 6.1.

Section 6.2 gives a first overview of the acoustic field and the hydrodynamic sources

region. It is followed by an investigation of the motion of the elastic fraction of the TE

in section 6.4. The comparison of the rigid and elastic TE‘s are split into a discussion

about the influence of different structural parameters (6.5.1) and the effect of structural

damping (6.5.2). Finally the findings of this chapter are summarized in section 6.6.

6.1 Computational Setup

The computational domain for this study is visualized in figure 6.1. It incorporates the

TE of a flat plate and its associated wake region. The plate divides two laminar bound-

ary layers that are prescribed at the inflow boundary symmetrically with a displacement

thickness of δ∗ = 7.243 × 10−3 using an integrated characteristic boundary condition.

The boundary layer grows as it convects along the plate to a displacement thickness of

δ∗ = 2.360 × 10−2 at the TE. The freestream Mach number was M = 0.4. The global

Reynolds number was Re = 7.5× 104 based on unit freestream velocity and unit length

scale. It can be considered as the inverse of the non-dimensional viscosity. This results

in a Reynolds number at inflow and trailing-edge based on displacement thickness of

Reδ∗ = 543.21 and Reδ∗ = 1770.26, respectively.

The TE thickness was set to hTE = 2.5 × 10−3 which results in a thickness parameter

of hTE/δ
∗ = 0.106. Considering the findings of Brooks & Hodgson (1981), the TE can

be considered thin and noise from vortex-shedding due to TE bluntness is expected not

111
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Figure 6.1: Schematic of the computational setup with the elastic part of the flat plate
in grey with a length of Ls = 8.816Dcyl. The domain is symmetric to the flat plate
and the dimensions in the upper half denote the lengths of the entire domain and the
dimensions in the lower half those of the measurement region. Note that the origin is
located at the TE and the axis in the sketch only indicate the directions.

to occur as the current case is below the threshold of hTE/δ
∗
TE ≈ 0.3.

In order to create pressure fluctuations that scatter from the TE and drive the structural

motion when an elastic TE is considered, a cylinder acting as a vortex generator was

inserted upstream of the elastic fraction of the plate on the upper side of the flat plate.

Singer et al. (2000) employed a similar approach using a vortex generator plate at 98%

chord of a NACA airfoil. Physically the strong vortices that will shed from the vortex

generator are intended to imitate the vortex shedding from the laminar separation bub-

ble of a NACA0012 at angle of attack AoA = 5◦ for a Reynolds number of 5×104 (Jones

et al., 2008). The cylinder has a diameter of Dcyl = 0.04 and the origin is located at

(x = −0.4946, y = 0.0275). For the remainder of this and the following chapter all length

scales will be normalized by this diameter unless stated differently. Note, the time is

not scaled alongside. Thus, all derived quantities will be calculated with the original

length scale to stay consistent with the original non-dimensionalization. In relation to

the boundary layer the vortex generator reached from 0.324δ∗ to 2.051δ∗ of the undis-

turbed flow. The streamwise location is 12.37Dcyl upstream of the TE. Using the global

Reynolds number as dimensionless viscosity the Reynolds number based on the cylinder

centreline velocity 2Dcyl upstream of the cylinder is Recyl = 682. Since the cylinder is

within the boundary layer it can not be considered as a canonical cylinder flow and due

to the vicinity to the wall or as canonical cylinder in a shear flow. However, despite the

uncertainty about the exact value for Recyl it is most likely in the subcritical regime

which is defined by 350 < Recyl < 200, 000 (Froehlich et al., 1998). That means that

the boundary layer of the cylinder remains laminar between stagnation and separation
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point and the transition to turbulence occurs in the wake of the cylinder. However, since

the simulations in this chapter were two-dimensional this prediction can only be verified

in chapter 7.2 with three-dimensional simulations.

The dimensions of the computational domain illustrated in figure 6.1 are symmetric with

respect to the flat plate. The dimensions of the whole domain are indicated in the upper

half of the figure and the dimensions of the measurement area with a fine resolution in

the lower part.

A common challenge in aeroacoustic simulations is the disparity of the length scales of

the source region and the acoustic wave length which is expressed by the very large

measurement and domain size compared to the cylinder radius Dcyl or the thickness of

the TE (Dcyl = 16hTE). A priori the beginning of the acoustic far field can be estimated

by Rsource ≥ λa, where the distance from the source region is Rsource and the acoustic

wave length is λa. The acoustic wave length for a given frequency f can be calculated

with λa = c/f , where c is the speed of sound. In general, the domain size has to be

as small as possible due to limited computational resources. In the current setup the

grid was designed such that the measurement region where the grid is well resolved ends

at a distance of approximately λa for the frequency f/fin ≈ 0.45, where fin = 0.94 is

the frequency of the dominant peak in the spectrum of the far-field (determined from

preliminary simulations). This means that the measurement region covers 155Dcyl.

The advantage of the infinite extent of the plate in the upstream direction is that there

is no circulation around the plate such that a meaningful comparison between the rigid

and elastic TE‘s is possible. In addition, with the design of this setup, the noise that

will be observed on the lower side of the plate will only originate from the TE and not

be contaminated by other noise sources such as the vortex shedding from the cylinder.

At the freestream boundaries above and below the plate and at the outflow zonal charac-

teristic boundary conditions (Sandberg & Sandham, 2006) were applied to allow acoustic

waves and vortical structures in the wake to leave the computational domain without

spurious reflections. For the freestream boundary the number of points employed for the

zonal ramp was 40 and for the outflow 140. A constant pressure and density level was

maintained by combining the zonal boundary condition with an approach suggested by

Poinsot & Lele (1992), as described in section 2.1.3 at the outflow. In addition, it was

found that a high resolution of at least ∆x = 8.5 × 10−3 was needed at the outflow in

order to avoid reflections. This is in contrast to the most common strategies where grid

stretching is employed.

From figure 6.1 it is apparent that the dimensions of the measurement area in the up-

stream direction are only half of the dimensions of the domain, approximately. This

was necessary to eliminate spurious reflections from the integrated characteristic inflow

boundary condition and the zonal boundary conditions at the freestream. Along with
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Figure 6.2: Distribution of grid spacing ∆hi+1 −∆hi where the individual segments are
coloured in orange and blue.

the coverage of a large spatial area where the acoustic waves continue to decay the grid

resolution was reduced severely.

6.1.1 Grid Resolution, Distribution and Generation

Figure 6.2 shows the distribution of the grid spacing for the whole domain over the grid

points in the streamwise (6.2a) and the wall normal (6.2b) directions, respectively. The

location of the TE/plate, cylinder and boundaries of the measurement region are indi-

cated with dashed lines. The grid resolution that was chosen is motivated and justified
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resolution NTE ∆xTE ∆yTE Nx Ny Ntot

1 – low 12 4.546× 10−4 2.27× 10−4 2140 1167 2.497× 106

2 –intermediate 12 2.273× 10−4 2.27× 10−4 2470 1167 2.882× 106

3– high 12 1.136× 10−4 2.27× 10−4 2600 1167 3.034× 106

Table 6.1: Number of grid points and spacing at the TE, number of grid points in each
direction and the total number of points for each resolution level. The resolution of the
vortex shedding cylinder and the acoustic far-field is the same for all cases.

in the following paragraphs.

The thickness of the TE was discretized with 12 grid points to avoid effects of surface

coupling through the filtering which uses a stencil with a width of 10. In order to keep

the discretization of the TE constant over time for the moving body, the grid spacing

was equidistant for −0.25Dcyl < y < 0.625Dcyl. This is in contrast to the domain size

not symmetric and ensures that points are only clustered where the structure moves..

For the baseline case the grid had an aspect ratio of ∆xTE/∆yTE = 1 at the TE.

In the hydrodynamic source region the resolution around the cylinder was set toDcyl/∆x =

44. Considering the relatively high Reynolds number of Recyl = 653 this resolution is

likely not to be sufficient to fully resolve the flow around the cylinder. However, the

vortex shedding from the cylinder is considered as input to the TE noise mechanism

only and the focus of this study is the effect of TE elasticity on the radiated noise. Since

this input will not change between the elastic and rigid TE’s a comparison is valid and

conclusions can be drawn from it.

Table 6.1 summarizes the number of grid points and the resulting grid spacing at the

TE and the resulting total number of grid points for three different resolution levels.

The aforementioned baseline case refers to the intermediate resolution level. It is ap-

parent that the levels differ in the streamwise grid spacing at the TE only. The aim

of the grid convergence study here is to ensure that the TE noise mechanism is repre-

sented accurately. As mentioned earlier the vortex shedding from the cylinder is likely

to be under-resolved and therefore the vortex shedding might change with resolution.

For an appropriate comparison between the three different resolution levels the grid

spacing around the cylinder was therefore kept constant. Due to the fully-structured

grid, this also implies that the wall normal grid resolution at the TE remains constant.

However, the strongest gradients are expected in the streamwise direction imposed by

the geometric singularity at the TE. If these streamwise gradients can be represented

accurately it is expected that the resolution in the wall normal direction is also sufficient.
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In order to make the simulations computationally affordable, the grid resolution had to

be adapted according to the important length scales in the different regions of the do-

main. In the source region around the cylinder and the trailing-edge the relevant length

scale is the cylinder diameter. In the outer region, hereafter denoted by acoustic field,

the acoustic wave length λa is the relevant length scale. As λa = c/f it is apparent that

this length scale depends on the frequency considered. When discussing the resolution

of the acoustic field the highest frequency that should be resolved is relevant as it is

associated with the shortest acoustic wave lengths. In the current setup acoustic waves

are resolved with a minimum of np/λa
= 10 grid points per acoustic wave length up to

a frequency of fa/fin = 10.64. In the direction normal to the mean flow the resulting

resolution is ∆y = c/fres/np/λa
= 0.625Dcyl for the acoustic field. Due to the mean flow

in the opposite direction of the upstream noise radiation direction the acoustic wave

propagation speed in that direction is reduced to c = u∞/M − u∞ which results in a

grid spacing of ∆x = 0.375Dcyl.

The resolution at the inflow and freestream was ∆xinflow ≈ 4Dcyl and ∆yfreestream ≈
3.7Dcyl, respectively. This coarse grid spacing was required in order to damp acous-

tic waves travelling towards the inflow and freestream boundary. It is in contrast to

the resolution required at the outflow, where it was found that a high resolution of

∆xoutflow = 0.2125Dcyl was needed. The difference between these requirements is likely

to be due to the difference of the flow features passing the boundary. For the in-

flow and the freestream, acoustic waves have to leave the domain without reflections.

Trailing-edge noise radiates predominantly in the upstream direction and therefore the

amplitudes of the acoustic waves passing the outflow boundary are significantly lower.

In addition the energy transported by acoustic waves is orders of magnitude lower than

for the vortical structures in the wake that also pass the outflow boundary.

The grid was generated combining polynomial functions that were defined independently

in each of the intervals visualized by the alternating blue and orange line colour in

figure 6.2 as a function

f : indexi,j → locationx,y .

The order of the polynomials was adapted to the number of boundary conditions, i.e.

the location, the grid spacing and the conditions needed to match the higher derivative

of the neighbouring segments. They were matched exactly up to the fourth derivative,

i.e. the third derivative of the grid spacing. In principle, the higher derivatives could

take arbitrary values, however, it was found more practical to set these higher derivatives

to zero. This grid generation strategy has the advantage that the grid point distribu-

tion can be optimized independently of other segments and the grid resolution can be

controlled conveniently. Apart from the grid resolution itself, it was found that grid

stretching can lead to non-physical effects such as internal reflections from grid regions
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Figure 6.3: Stretching ∆hi+1/∆hi of the computational grid.

with high stretching. Figure 6.3 shows the grid stretching ∆hi+1/∆hi for both grid

directions. Care was taken that the grid stretching was lower than 6% which proved

to avoid any spurious influence on the flow field. In principle, even lower values might

be desirable but the number of grid points needed to further reduce the grid stretching

rendered the overall grid count computationally unaffordable.

The setup with a rigid TE was also simulated with body-fitted boundary conditions for

the plate as reference. In that case the BDIM was only employed to represent the vor-

tex generator cylinder. For the body-fitted reference case a multi-block topology with

3 blocks using characteristic interface conditions was used. The block boundaries were

aligned with the TE, i.e. x = 0, resulting in one block above and below the plate and
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one for the wake. It should be mentioned that the exact representation of the geometric

singularity at the TE had a significant effect on the resulting acoustic field. The same

geometry was also simulated with a five block setup using a halo cell approach for the

connection of the blocks but it was impossible to obtain consistent results for different

grid resolutions due to the difficulties of the exact representation of the TE such as

which finite difference stencils to choose, filtering, etc.

In all cases where the BDIM was employed to represent the rigid and elastic flat plates

the smoothing region half-width was set to ε/∆yTE = 2. The cylinder was located on

a grid that was not equidistant and in addition coarser compared to the TE. In order

to enable a reasonable smooth representation of the cylinder the smoothing region half-

width was set to ε/∆yTE = 9 which resulted in ε/∆ycylinder top = 0.5 at the location

with the coarsest grid resolution around the cylinder.

6.1.2 Structural Parameters

Es ρs f1/fin f2/fin µm

set 1 9.05× 106 600 0.46 2.86 0.24
set 2 9.05× 107 400 1.77 11.08 0.35
set 3 1.82× 106 400 0.25 1.57 0.35
set 4 9.05× 105 600 0.14 0.90 0.24

Table 6.2: Structural parameters which are given by the Youngs modulus Es and the
structural density ρs, which are both non-dimensionalized with freestream quantities or
combinations thereof. In all cases the length of the elastic fraction was Ls = 8.816Dcyl

and the thickness of the plate hTE = 1/16Dcyl. Furthermore, the first two natural
frequencies f1 and f2 of the structure in vacuo are listed. They are normalized by the
frequency of the most energetic pressure fluctuations fin on the plate. The added mass
coefficient is given with µm as defined in equation 2.20.

The structural parameters for the simulations employing an elastic TE are summarized

in table 6.2. The Youngs modulus Es determines together with the height of the TE hTE

how stiff the elastic fraction is and thus how high the deflections with a given pressure

load from the fluid will be. Furthermore, it determines the natural frequencies of the

structure as detailed in equation 2.18. The natural frequencies are normalized by the

frequency of the most energetic pressure fluctuations fin, which was determined from

precursor simulations and will be investigated in detail in section 6.2. When the ratio

f1/fin and f2/fin is an integer, resonance is expected to occur. The value of the ratio

also determines if the structure can react to pressure fluctuations in the flow, i.e. how

high the inertia is. The parameter set 1 was chosen such, that measurable deflections,

which can be resolved appropriately by the BDIM, could be expected. Furthermore,

care was taken that the first two natural frequencies of the structure were in the range
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of the dominant frequency of the pressure disturbances to ensure that the relevant time

scales of the structural forcing and motion match. This is also one of the reasons why

only a fraction of the flat plate was considered to be elastic. All together this results in a

ratio f1/fin = 0.46 < 1 and f2/fin = 2.86 > 1, which ensures that there is no resonance

but the structure can follow pressure fluctuations in the flow reasonably well. Based on

this reference case the structure was stiffened significantly for the parameter set 2. In

combination with the reduced structural density this leads to natural frequencies that

are higher than the input frequency, i.e. f1/fin = 1.77 > 1 and f1/fin = 11.08 � 1.

Furthermore, smaller deflection amplitudes are expected in that case. The opposite

is true for parameter sets 3 and 4 where the Youngs modulus was set to low values

such that large deflections could be expected. As the natural frequencies relative to the

forcing from the fluid are low, the plate is expected to follow the fluid forcing only partly.

During the elastic TE simulations the surface pressure values were gathered from all

adjacent processes at the beginning of each time step. Then the structural deflection

and velocity were calculated by the structural solver for the centre line of the structure on

an independent equidistant grid with 53 grid points. Since the resolution of the structure

grid is much coarser than that of the fluid domain the deflection and velocity between

the structural points were interpolated linearly. This is acceptable since the changes

between two adjacent structural points are minute and the BDIM introduces a certain

level of smoothing. After calculating the deflection and velocity of the structure the

BDIM was reinitialized at the end of each timestep. The fluid and the structural solver

both use the same Runge-Kutta integration scheme for time-integration. Therefore a

stronger coupling can be achieved by synchronizing both solvers in each Runge-Kutta

sub-step. However, in a testcase no differences in the statistics could be found between

the two levels of coupling. Since the stronger coupling increases the computational cost

it was not employed in the simulations discussed below. Due to the efficiency of the

implemented algorithms the runtime between simulations with elastic and rigid TE’s

did not show any reproducible differences.

6.2 Results – Overview

This section gives a first overview of the acoustic and the hydrodynamic near field. Fig-

ure 6.4 presents the instantaneous dilatation contours obtained from a simulation with

an elastic TE to give a first overview of the acoustic field. The TE at x = 0 can be clearly

identified as the origin of the acoustic waves. The change of the acoustic wavelength

λa in the upstream direction due to the mean flow can also be observed. On the upper

surface of the plate the noise level seems to be lower, most likely due to the interaction

of the vortex generator with the TE noise. When the plot is examined closely, one can

also find quadrupole noise sources in the wake. According to the acoustic analogy they
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Figure 6.4: Instantaneous contours of dilatation ∇ · u showing the acoustic field of the
simulation with the rigd TE using contour levels 0.07 < ∇ · u < 0.07. The dashed box
indicates the boundary of the measurement region.

are weaker than the TE noise mechanism for low Mach numbers. However, Wolf et al.

(2012a) showed that quadrupole sources can have a significant contribution for medium

high frequencies at a moderate Mach number of M = 0.4. This can be confirmed from

the dilatation field as there are only high wave number acoustic waves visible that orig-

inate from the sources in the wake. Overall it can be appreciated that there are no

noticeable reflections from the domain boundaries or from the zones of the characteris-

tic boundary condition at the inflow and outflow as well as the freestream boundaries.

The measurement region is indicated with the dashed line.

Figure 6.5 visualizes the instantaneous flow field at an arbitrary snapshot in time in

the vicinity of the vortex generator and the TE. The vortex generator produces strong,

and from visual inspection, non-periodic vortices that are convected over the TE. The

symmetry-breaking effect of the wall can be clearly seen by considering the shear layer

above and below the cylinder and the structure of the shed vortices. Furthermore, the

wake of the cylinder seems to strongly interact with the wall, which is apparent from the

vortex topology when considering the streamwise locations x = −8 and x = −2. The

region containing the vortex generator cylinder and the TE is the hydrodynamic source
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Figure 6.5: Contours of spanwise vorticity for −50 < ωz < 50 showing the vortex
generator cylinder and the TE.
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Figure 6.6: Contours of the favre averaged streamwise velocity component ũ1 in the
vicinity of the rigid TE. The fraction of the plate that will be considered elastic later is
coloured in grey.

region of the sound perceived in the far-field. In particular, the pressure fluctuations

from the vortices are the incident pressure field for the TE noise mechanism. Therefore,

the type of noise, i.e. tonal or broadband, will be determined by the characteristics of

the pressure disturbances at the wall.

The following paragraphs will characterize the flow features present in the aforemen-

tioned source region statistically. Figure 6.6 presents the Favre averaged streamwise

velocity component ũ1 in the vicinity of the vortex generator and the TE. The green

contour color is representing the value ũ1 = 0 and thus is the dividing line for recircu-

lation regions. From the contours it is apparent that there is a narrow but elongated

recirculation bubble upstream of the vortex generator which is likely to be caused by

its blockage effect in the boundary layer. Downstream of the cylinder is a recirculation

region, which is expected to be caused by the separating flow from the cylinder. In

contrast to a canonical flow around a cylinder it is not symmetric with respect to the

centreline but shifted and also inclined away from the wall. At the fraction that will be

considered elastic in later cases, i.e. the part of the plate indicated in grey in figure 6.1,

a long separation bubble adjacent to the wall can be identified. Taking the findings from

the instantaneous flow field in figure 6.5 into account it seems that large scale vortices

are shed from this separation bubble and interact with the vortex shedding from the

cylinder.
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Figure 6.7: skin friction cf as a function of the streamwise location for the rigid TE.
The location of the cylinder is indicated by the black dashed lines and the fraction that
will be considered elastic by a blue dashed line.

To further examine the recirculating regions adjacent to the wall in the flow and deter-

mine the extent of the these regions figure 6.7 presents the skin friction coefficient as

a function of the streamwise location. From the overview in figure 6.7a, it can be seen

that the unperturbed flow upstream of the cylinder shows a significantly lower magni-

tude of the skin friction than the flow affected by the presence of the cylinder. In the

gap between wall and cylinder the flow is accelerated relatively close to the wall which

leads to a very high skin friction in that region, clearly visible as the global maximum

in figure 6.7a. Figure 6.7b examines the flow upstream of the cylinder in more detail.

The negative value of the skin friction for −19 < x < −13.1 indicates the location of the

recirculation region. Further downstream figure 6.7c focusses on the large separation

bubble on the fraction that will be considered elastic and the TE region. On average the

flow separates here 1.5Dcyl downstream of the start of the elastic fraction until 1Dcyl

upstream of the TE.
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Figure 6.8: Lift and drag coefficient CL and CD of the vortex generator cylinder over
time obtained from the simulations with the rigid TE.

Figure 6.8 shows the time history of lift and drag coefficients CL and CD from the vortex

generator cylinder. Both show packets of high frequency fluctuations that are approx-

imately 4 time units apart. Furthermore, relatively large fluctuations of low frequency

are superimposed by small amplitudes with high frequency, which can be observed in

more detail in the magnified window of time in figure 6.8c. To find the relevant fre-

quencies of the force fluctuations on the cylinder and therefore determine the important

frequencies in the system figure 6.9 presents the power spectral density of the lift (6.9a)

and drag (6.9b), respectively. The dominant peak of the CL spectrum is at a non-

dimensional frequency of f = 3.65. It is expected that this is the frequency of the vortex

shedding. With the cylinder diameter and the freestream velocity U∞ this would result in

a Strouhal number of St = fDcyl/U∞ = 0.146 which is slightly lower than the expected
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Figure 6.9: Power spectral density of lift and drag coefficient CL and CD from the vortex
generator cylinder obtained from the simulations with the rigid TE. The green dashed
lines mark frequencies that are expected to be related to the vortex shedding from the
cylinder.

value of St ≈ 0.17 for a cylinder in a uniform flow (Henderson, 1995). When the center-

line velocity 2Dcyl upstream of the cylinder is used instead as relevant velocity scale,

St = 0.64. In addition, a significant peak is in the very low frequency range, most likely

related to the “packets” of fluctuations observed in the time-history. Indeed, a peak at

a non-dimensional frequency f = 0.23 which equals a period of 4.34 non-dimensional

time-units can be identified in the spectrum. In the spectrum of the drag coefficient the

highest peak is at f = 0.92 and its first and second harmonic. The peak at f = 7.4

which is marked with a dashed line could potentially be related to the dominant peak of

the spectrum of CL as in theory fD should be 2fL for the vortex shedding from a cylin-

der. However, the fact that this peak is at very low amplitudes indicates that the main

peak of the drag coefficient fluctuations is not originating from the vortex shedding itself.
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Figure 6.10: Power spectral density of the surface-pressure p on the upper side of the
rigid plate as a function of the streamwise location. The dashed lines indicate the
frequencies of the two dominant peaks in the power spectral density of the lift and drag
coefficient presented in figure 6.9.

Figure 6.10 presents the power spectral density of the surface pressure on the upper

surface as a function of streamwise location. With that it can be assessed where the

dominant peak of force fluctuations originate and which frequencies will force the struc-

tural motion as well as being the input into the TE noise mechanism. The contours

feature a peak at a frequency of f = 0.92 which is dominant at all locations along the

plate and marked with a black dashed line. However, it is strongest for −4 < x < −1.5

which coincides with the end of the recirculation bubble. In addition the harmonics

of this frequency can be identified. This indicates that the frequency that was found

to contain most energy in the power spectral density of CD can be attributed to the

separation bubble on the upper surface and not to the vortex shedding of the cylinder.

In fact, the frequency containing the most energy in the power spectral density of CL

(also marked with a black dashed line) can only be identified as a peak with very little

energy close to the TE. Hence the most energetic input to the TE noise mechanism and

the forcing for the elastic motion seems to be the pressure fluctuations induced from

the vortex shedding from the separation bubble. In the remainder of this chapter all

frequencies will be normalized by this fb = 0.916 and will be denoted recirculation or

bubble frequency. Since the interaction of the vortex shedding from the cylinder and the

separation bubble is likely to interact with the noise radiated from the TE the analysis

of the acoustic field in the following sections will focus on the lower side where only TE
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noise or noise sources from the wake should be present.

The further statistical examination of the simulation results is split into three parts

where the first section, 6.3, reports the results from a grid independence study and vali-

dates the BDIM with results from a body-fitted simulation for a rigid TE. In the second

section, 6.4, the structural behaviour is analysed for different material parameters. Fi-

nally the rigid and elastic TE’s are compared to each other in section 6.5.
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6.3 Results – Grid Independence and Validation
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(a) Rigid TE: three different resolution levels.
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(b) Elastic TE: two different resolution levels using parameter set 1 .

Figure 6.11: Comparison of the directivity of the overall sound pressure level OASPL
at a radial distance of r = 150Dcyl.

A grid independence study has been carried out with three different resolution levels

detailed in table 6.1. The overall sound pressure level directivity at a radial distance of

150Dcyl is shown in figure 6.11a for the rigid TE represented by the BDIM. It can be

appreciated that all three resolution levels show the typical dipole shape with a higher

overall sound pressure level in the upstream direction. The amplitude of resolution level
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Figure 6.12: Comparison of the overall sound pressure level directivity at a radial dis-
tance of r = 150Dcyl for rigid TE between the BDIM and body-fitted boundary condi-
tions.

1 is 0.17dB higher than in the other two cases. Resolution level 2 and 3 can hardly be

differentiated and indeed the maximum difference is only 0.02dB, which is negligible.

Thus, it can be concluded that grid-independence for TE noise is achieved with resolu-

tion level 2.

For the elastic TE the challenge is to represent the TE noise mechanism of a moving

body accurately. Since grid resolution level 1 was not sufficient for the rigid TE it was

not tested for the elastic TE. For resolution levels 2 and 3 the overall sound pressure

level of the elastic TE is presented in figure 6.11b. It can be appreciated that the

agreement between the two cases is as good as in the rigid case. In conclusion, grid reso-

lution 2 can be considered sufficient to represent the TE noise from a moving TE as well.

Figure 6.12 compares the noise directivity obtained from simulations employing grids

with resolution level 2 where the plate and TE were represented by body-fitted bound-

ary conditions and the BDIM. Both cases show the same directivity pattern in terms

of shape. However, the amplitude when employing the BDIM is overestimated by a

maximum of 0.4dB on the lower side of the plate.

In order to ensure that the higher noise level in the BDIM case is indeed caused by the

TE noise mechanism, figure 6.13 compares the wall pressure fluctuations between the

BDIM and the body-fitted cases on the upper and lower side. Since the wall pressure

fluctuations on the upper side can be considered as the input to the TE noise mechanism
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Figure 6.13: Comparison of the wall pressure fluctuations between the body-fitted
boundary conditions and the BDIM representing the plate. The upper side can be
identified by the peak towards the end of the separation bubble at x = −2 and the
higher amplitudes. The figure on the right shows a magnified view of the wall pressure
fluctuations at the TE.

and are the scattered noise on the lower side of the plate, the peak at the TE should

show the same trend as the noise level in the far field. The data was obtained at a wall

normal distance equal to the smoothing region halfwidth ε to ensure that the data is

physically meaningful and not influenced by the smoothing between the solid body and

fluid domain in the BDIM cases. The pressure fluctuations on the upper surface can

be identified by the higher amplitudes upstream of the TE in both cases. The location

of the vortex generator cylinder can be clearly identified in the plot at x = −13 as it

induces a distinct peak in the pressure fluctuations on the wall. The amplitude of this

peak is lower in the cases where the plate is represented by the BDIM indicating that

the interaction between the vortex generator cylinder and the rigid wall is represented

in a slightly different way. At a location of approximately x = −2.5, the wall pressure

fluctuations show a maximum that is slightly higher than the sharp increase at the TE

location. However, the TE noise will be the dominant noise source for low Mach num-

bers (M5 scaling) and the peak of the wall pressure fluctuations (M6 scaling) will only

have little contribution to the radiated noise. Overall, the pressure fluctuations on the

upper surface are slightly higher when body-fitted boundary conditions are employed

upstream of the TE. The opposite is true for the sharp increase and the peak of the wall

pressure fluctuations towards the TE. This is consistent with the noise levels found in

the far-field in the directivity pattern presented in figure 6.12 as the BDIM case shows

a higher peak at the TE and exhibited a higher overall sound pressure level. This shows

that the differences in the noise amplitude can be attributed to the exact representation

of the TE using different boundary conditions. However, the difference between both
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Figure 6.14: Comparison of the power spectral density of pressure in the acoustic far-
field at a radial distance of r = 150Dcyl for rigid TE between the BDIM and body-fitted
boundary conditions with the resolution level 2. The azimuthal positions relate to the
directions from the directivity in figure 6.12.

methods is small and it is argued that the BDIM is able to represent the physical mech-

anism of the TE noise radiation.

Figure 6.14 compares the power spectral density of pressure for the body-fitted and

the BDIM cases at two different locations. They were calculated by averaging over 20

Hanning windows that had a length of 14.6 recirculation bubble cycles and an overlap

of 57%. These parameters are used throughout the rest of this chapter unless stated

differently. It can be appreciated that both spectra show peaks at the same frequencies.

No peaks from spurious oscillations can be identified in the spectrum of the BDIM.

Overall the amplitudes agree well. The most relevant deviation can be found at the

recirculation bubble frequency where the amplitudes in the BDIM case are higher at

both locations. Since this frequency is clearly related to the TE noise mechanism this

behaviour is consistent with the findings from the surface pressure fluctuations presented

in figure 6.13. In the frequency range below the recirculation frequency fb the data ob-

tained with body-fitted boundary conditions shows higher amplitudes than the BDIM

case. However, the level of these amplitudes is more than an order of magnitude lower

that the dominant peaks in the spectrum.

Considering the large uncertainty of the precise TE treatment in the case of the body-

fitted boundary conditions the minor deviations found are reasonable. In addition the

results from the grid independence study for the TE represented by the BDIM suggest
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maximum frequency [%] of total energy grid points per acoustic wave-length λa

f/fb < 5 97.659 20
f/fb < 7.5 99.534 15
f/fb < 10 99.870 10
f/fb < 12.5 99.956 7.5

Table 6.3: Comparison of how much energy is contained in the spectrum for different
cut-off frequencies at a location −6.25Dcyl upstream of the TE and a distance of 2.4Dcyl

above the plate. The last column is based on the far-field grid resolution. The energy
was integrated by summing over the contribution from the individual frequency bins and
multiplying by the width of the bin.

that there is no lack of resolution.

Table 6.3 summarizes the energy contents of the pressure signal for different cut-off

frequencies at a location −6.25Dcyl upstream of the TE and a distance of 2.4Dcyl above

the plate. This location is above the wake with the vortices shed from the cylinder

and the grid resolution is comparatively high. From the TE to this location acoustic

waves with a frequency f/fcyl < 26.28 are resolved with a minimum of 40 points per

wave length. The second column of the table shows that when the energy content of the

signal is integrated in the interval of 0 < f/fb < 7.5 the energy that is not contained in

that frequency range is less than 0.5%. For the grid resolution chosen in the far-field it

follows that the acoustic waves which contain more than 99.5% of the energy are resolved

by at least 15 grid points per acoustic wave-length λa.
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6.4 Results – The structural behaviour
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Figure 6.15: Contours of spanwise vorticity for −50 < ωz < 50 showing the vortex
generator cylinder and the TE.

This section analyses the structural motion for the different structural parameter sets.

Figure 6.15 gives a first impression of the instantaneous flow field around the elastic

fraction of the flat plate and the vortex generator for different parameter sets. For pa-

rameter set 1 (6.15a) and 2 (6.15b) the deflection is of shape of bending mode 1 based

on the visual impression of the shape of the TE deflection. Furthermore the amplitudes

are moderate. The deflection of parameter set 3 (6.15c) is of mode shape 2 which is

expected since the first natural frequency for this parameter set is significantly lower
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(b) Standard deviation of the deflection wrms/hTE
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(c) Standard deviation of the deflection wrms/hTE without parameter set 4

Figure 6.16: Mean and fluctuations of the deflection time history of the TE point as
function of the streamwise location for the four different structural parameter sets. Note
that subfigure c) is a magnified view of the fluctuations for parameter set 1 to 3.

than the recirculation frequency and the second one closest to the forcing. Finally, fig-

ure (6.15d) shows very large deflections of mode shape 2 for parameter set 4.

In order to quantify the initial impressions, figure 6.16 compares the mean deflection w

and its standard deviation wrms. In addition the values at the free end are reported in ta-

ble 6.4. The positive mean values of the averaged deflection in figure 6.16a and table 6.4

for all parameter sets shows that on average the TE of the plate is bent in the upper
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parameter set ws/hTE w/Ls wrms/hTE wrms/Ls

set 1 3.22 0.0228 3.01 0.0213
set 2 0.39 0.0028 1.72 0.0122
set 3 6.41 0.0454 4.48 0.0317
set 4 1.16 0.0082 27.62 0.1956

Table 6.4: Mean ws and standard deviation wrms of the deflection of the free end of the
elastic TE’s. The deflection was normalized by the TE thickness hTE and the length Ls.

direction. For set 1 to 3 the mean deflection increases monotonically towards the TE.

For these cases the maximum mean deflection increases with decreasing bending rigidity.

The maximum value can be found for parameter set 3 with 6.41hTE which is equivalent

to 0.4Dcyl. The lowest mean deflection of the free end can be found for parameter set 2

with 0.39hTE which equals 4.68∆y. In case of the most flexible parameter set 4 the mean

deflection is qualitatively different and the maximum deflection is approximately at the

half length of the plate and decreases towards the free end. The bending-beam model

does not account for stretching and assumes that the deflection is only perpendicular to

the equilibrium position. Hence effectively the TE length is greater with high deflections.

Figure 6.16b shows the standard deviation of the deflection for the same cases. Param-

eter sets 1 and 2 show qualitatively the same behaviour of the mean deflection with

a monotonic increase towards the TE with the shape of bending mode 1. The lowest

standard deviation of all cases, found for parameter set 2, is equal to 20∆yTE which is

significantly larger than what is needed for the BDIM to represent the structural mo-

tion appropriately on the background grid. In contrast to parameter sets 1 and 2 the

standard deviation of parameter set 3 features a saddle point at x ≈ −4Dcyl. This indi-

cates that the second bending mode has a notable contribution to the overall structural

motion. This is consistent with the second natural frequency which is relatively close

to the recirculation frequency. Adding the mean deflection and the standard deviation

for that case results in 0.68Dcyl. As the grid is equispaced for 0.25Dcyl < y < 0.625Dcyl

the structural motion also reaches into grid regions with a slightly lower resolution.

However, the resolution decreases very slowly outside the equispaced region and a rea-

sonable representation of the structural motion is expected. This is not the case for the

parameter set 4 where the standard deviation is 1.7Dcyl which means that independent

of the mean location the structure will move in a region with reduced resolution for a

significant amount of time. The shape of the standard deviation profile for this case

shows a pronounced bending mode 3.

In summary, all elastic cases feature a mean deflection in the upper direction and for

parameter sets 1 to 3 the mean and standard deviation of the deflection increase with

decreasing bending rigidity. For these cases the structure is moving within well resolved
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Figure 6.17: Power spectral density of the deflection time history of the free end of the
structure for the three different parameter sets. The vertical dashed lines indicate the
natural frequencies of the structural motion corrected by the effect of added mass as
detailed in equation 2.21.

regions of the grid. Since this is not the case for parameter set 4 this case will be mostly

ignored for the following comparison. Furthermore, the very large deflections in this

case violate the assumptions made for the governing equation of the structure assuming

small deflections.

Figure 6.17 compares the power spectral density of the free end deflection for parameter

set 1 to 3. To increase the resolution in the low frequency range the window length was

43.7 recirculation cycles. This results in 9 Hanning windows with an overlap of 57%. As

a reference the natural frequencies corrected for the effects of added mass are plotted as

vertical dashed lines in the colors of the respective parameter set. It can be appreciated

that for all parameter sets significant peaks can be found at the recirculation frequency.

For parameter set 3 this frequency is slightly shifted to higher frequencies. The ampli-

tude of the peak at this frequency reduces with increasing stiffness of the structure, i.e.

it is lowest for parameter set 2 and highest for parameter set 3. The first harmonic of

the recirculation frequency can also be identified by a distinct peak for parameter sets

1 and 3. However, it is at comparatively low energy levels.
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case f1,sim/fb f1,analytical/fb f2,sim/fb f1,analytical/fb f3,sim/fb f3,analytical/fb
set 1 0.51 0.41 2.74 2.57 7.88 7.26
set 2 1.64 1.52 10.9 9.52 31.10 26.88
set 3 0.2 0.21 1.35 1.35 4.20 3.81

Table 6.5: Comparison of the analytical and simulated frequencies of the structural
motion.

Considering the natural frequencies of the structure, the peaks of the simulated motion

show differences to the theoretical predictions. Possible reasons for these deviations

include inaccurate modelling of the added mass effects, locking in of the structural fre-

quencies at higher harmonics of the recirculation frequencies and, for the low frequency

range, a lack of averaging. In addition, the viscous fluid surrounding the structure re-

sults in damping also influencing the motion of the structure. Apart from the shift in

the spectrum parameter set 3 also features an additional hump at f/fb = 0.41 which is

approximately the first harmonic of its first natural frequency (not its second natural

frequency, though).

For the later comparison and further analysis of the acoustic far-field, the frequencies

of the peak indicating the actual structural motion were evaluated from the spectrum.

They are listed in table 6.5 and are for reference also compared to the analytical value.

Any reference to structural or natural frequencies hereafter refers to the values actually

simulated and not the analytical values.

Considering the energy distribution between the recirculation frequency fb and the struc-

tural frequencies in the spectrum the recirculation frequency is not the dominant peak

for parameter sets 1 and 2. For these two parameter sets most of the energy is attributed

to the first structural frequency, where the difference is more significant for parameter

set 2. For parameter set 3 in contrast, the spectrum is dominated by the peak at the

recirculation frequency. In terms of energy content it is followed by the two peaks in the

low frequency range and the second natural frequency. The comparable level of energy

in the first and second natural frequency for this parameter set is consistent with the

shape of the standard deviation presented in figure 6.16b.



Chapter 6 Trailing-Edge Noise from an Elastic Flat Plate 137

6.5 Results – Comparison Between Rigid and Elastic Trailing-

Edge

The following comparison of the elastic and rigid TE’s first considers the influence of the

structural parameters in section 6.5.1. The effect of structural damping on the radiated

noise and the hydrodynamic near-field is investigated in section 6.5.2

6.5.1 Influence of Elasticity and Different Structural Parameters on

Trailing-Edge Noise Generation

This section is split into the analysis of the acoustic far-field (6.5.1.1) and an investigation

of the hydrodynamic near-field (6.5.1.2).

6.5.1.1 Statistical Analysis of the Acoustic Field

The directivity of the overall sound pressure level in the acoustic far-field at a radial dis-

tance of r = 150Dcyl is considered in figure 6.18 as an initial measure of the effect of the

different structural parameters on the noise from elastic TE’s. In figure 6.18a the noise

from all structural parameter sets introduced in table 6.2 is shown. It is apparent that

parameter set 4 is significantly louder than all other cases under consideration. Com-

pared to the rigid TE it shows a noise increase of approximately 15dB below the plate.

As mentioned in the analysis of the structural motion in section 6.4, the violent motion

and large deflections are not resolved appropriately by the current grid. Therefore, this

case will not be analysed further in the following sections. In order to allow a better

comparison of the other elastic TE’s with the rigid TE the data of figure 6.18a without

parameter set 4 is replotted in figure 6.18b. The comparison reveals that the elastic TE

with the second lowest bending rigidity, i.e. set 3, also shows a significant noise increase

with a maximum of 2.7dB for θ = 195◦. Furthermore, indications of an additional lobe

in the directivity can be found in the direction pointing slightly downstream from the

TE. This lobe is also present in the directivity of parameter set 4. Thus, it can be spec-

ulated that this lobe can be associated with large to very large deflections. However,

an increase in noise can not only be related to the magnitude of the deflections as the

stiffest plate, i.e. parameter set 2, with the smallest deflections also results in a noise

increase. The higher noise level can be observed in the upstream direction below the

plate and shows a maximum of 0.6dB compared to the rigid plate. In contrast to that,

a noise reduction of up to 1dB can be observed above the plate and in the downstream

direction. The opposite is true for parameter set 1 where the elastic TE leads to an

increased noise level of up to 0.3dB above the plate. However, in the upstream direction

below the plate, where the noise level is the highest in the rigid case, a noise reduction

of 0.75dB can be achieved with the elastic TE using this parameter set. In summary,
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(a) comparison of all elastic TE parameter sets with the rigid TE
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(b) comparison of elastic TE parameter sets with the rigid TE without set 4

Figure 6.18: Directivity of the overall sound pressure level at a radial distance of r =
150Dcyl from the TE comparing the rigid with the elastic TE’s.

the structural parameters which lead to an intermediate deflection and for which the

recirculation frequency fb is in between the first two natural frequencies appear to be

the most beneficial for noise reduction. This is true for the upstream direction below the

plate which has the highest noise level in the rigid case and is not influenced by noise

from the vortex shedding, recirculation or any shielding effects of the cylinder.
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(b) parameter set 1 at r = 150Dcyl and θ = 270◦
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(c) parameter set 2 at r = 150Dcyl and θ = 225◦
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(d) parameter set 2 at r = 150Dcyl and θ = 270◦
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(e) parameter set 3 at r = 150Dcyl and θ = 225◦
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(f) parameter set 3 at r = 150Dcyl and θ = 270◦

Figure 6.19: Comparison of the power spectral density of pressure between the rigid
represented by the BDIM and the elastic TE’s for two different positions. All data is
taken at a radial distance of r = 150Dcyl and the left and right column refer to the
azimuthal directions θ = 225◦ and θ = 270◦ which are consistent with the directions
used in figure 6.18. The vertical dashed black lines are the structural frequencies as
determined from the PSD of the deflection in figure 6.17 and documented in table 6.5.
The shaded areas mark the one-third octave bands discussed in the text.
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The analysis of the pressure time history in frequency space can give further insight into

the physical origin of the different noise levels observed in figure 6.18. To that end, the

power spectral density was computed using Welch’s method with 21 Hanning windows

that had a length of 14.6 recirculation cycles and an overlap of 50%. All frequencies

in the following spectral analysis were normalized with the recirculation frequency fb

of the rigid TE as it was determined in section 6.2. Figure 6.19 presents the results at

two locations below the plate at the same radial distance r = 150Dcyl as analysed in

figure 6.18 for an azimuthal position of θ = 225◦ (a,c,d) and θ = 270◦ (b,d,f). The

direction θ = 225◦ is pointing upstream with an inclination of 45◦ relative to the plate

and showed the highest overall sound pressure levels in the rigid case. The second di-

rection θ = 270◦ is perpendicular to the TE and is therefore not influenced by the mean

flow. As both locations are below the plate, it is expected that the noise originates pre-

dominantly from the TE and is not influenced by the vortex shedding from the cylinder.

Each of the elastic TE’s are compared to the rigid TE in a separate figure so the natural

frequencies of the elastic TE can be plotted in addition. Table 6.6 quantifies the energy

distribution of the spectra in the left column of figure 6.19, i.e. for the position below

the plate at r = 150Dcyl at θ = 225◦, relative to the rigid TE. The overall sound pres-

sure level is calculated in one-third-octave bands around center frequencies fc which are

the recirculation frequency and its first harmonic. In addition the first three structural

frequencies are considered. The octave bands are visualized by the shaded area in fig-

ures 6.19a, 6.19c, 6.19e. In addition to the noise increase or reduction the contribution

of the frequency band to the overall energy in the spectrum of the elastic and rigid TE,

respectively, are given in percentage.

The first row, i.e. figure 6.19a and 6.19b presents the power spectral density of the

pressure comparing the data from the elastic TE with parameter set 1 and the rigid TE.

This is the parameter set for which the vortex shedding frequency fb is between the first

two natural frequencies of the structure. At the most dominant peak in the spectrum,

which is at the vortex shedding frequency, the elastic TE slightly increases the noise

by 0.4dB. The opposite is true for the first harmonic of this frequency with a noise

reduction of −6.6dB employing an elastic TE. However, the amplitude of this peak is

significantly lower and the contribution to the overall energy in the spectrum is small.

On a comparable amplitude level a significant noise reduction is achieved for the very

low frequency range. On the other hand the elastic TE shows a distinct peak at f = 0.51

which is close to the simulated first frequency of the structural motion which featured

the highest amplitude in the power spectral density of the TE deflection. In addition a

linear interaction between the first structural frequency and the recirculation frequency

can be observed in the spectrum featuring an additional peak at f = 1.5 in the spectrum

of the elastic TE. The variations of the characteristics of the spectrum between both

locations are minute. In general, the elastic TE tends to higher amplitudes at the wall
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t

fc set 1 set 2 set 3

fb 0.4dB 49.5% 44.3% −6.2dB 20.8% 44.3% 7.2dB 54.2% 44.3%
2fb −6.6dB 6.0% 12.0% −14.9dB 2.1% 12.0% 1.6dB 7.7% 12.0%
f1,s 16.4dB 9.3% 1.3% 16.7dB 39.2% 6.0% −5.2dB 0.6% 1.9%
f2,s −1.9dB 2.7% 3.1% −3.0dB 0.0% 0.0% 7.7dB 11.0% 8.5%
f3,s 3.2dB 0.2% 0.1% −4.5dB 0.0% 0.0% 14.5dB 2.4% 0.9%

Table 6.6: Energy distribution of the power spectral density for the elastic TE’s in
comparison with the rigid TE below the plate relating to the spectra in the first column
of figure 6.19. The power is calculated in third octave bands around center frequencies
fc. The difference to the rigid TE is given in dB where a positive sign indicates a noise
increase and a negative sign a noise reduction. The second and third number in each
column indicate the contribution of frequency range to the total energy in % for the
elastic and rigid TE, respectively.

normal position.

The spectra in the second row (figure 6.19c and 6.19d) compare the rigid to the elastic

TE with the parameter set, where the first natural frequency f11 is higher than the

recirculation frequency fb and the bending rigidity is comparatively high. It is apparent

that the energy in the frequency band containing the recirculation frequency is reduced

when the elastic TE is employed. With a reduction of 6.2dB, this reduction is significant

in particular because the contribution of this third octave band to the overall energy

in the spectrum is high. However, the directivity plot showed a noise amplification for

this parameter set. The reason for that is the additional peak at the first structural

frequency, which occurs at both locations considered. The increase in noise level at

the upstream position is 16.7dB. This peak has a higher amplitude than the peak at

the recirculation frequency in the upstream direction. The importance of the peaks

in the spectrum matches the spectrum of the structural motion. Thus, the dominant

noise source in this case is not the TE noise induced by the pressure fluctuations of

the recirculation but a physical mechanism related to the first natural frequency of the

structural motion. It can be speculated that the excess noise is generated by an excita-

tion of the separation bubble by the motion of the structure. In addition, the motion of

the structure is a noise source of dipole type (Manela, 2011). At the location perpendic-

ular to the TE the peak at the first structural frequency is reduced in amplitude which

explains the noise reduction that was observed in this direction. In the elastic case, the

first harmonic of the recirculation frequency from the cylinder can not be identified in

the upstream direction and is hardly visible in the direction normal to the TE. At both

locations the elastic TE has an increased noise level in the very low frequency range.

However, considering the energy level this is only of secondary importance.
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Finally, spectra of the elastic TE with parameter set 3 featuring a very low bending

stiffness are compared to the rigid TE in figure 6.19e and 6.19f. The most apparent

difference between the spectra of the rigid and elastic case is the significant increase

of the amplitudes at the recirculation frequency for the elastic TE. In addition to the

increased noise level the recirculation frequency is also slightly higher than in the rigid

case, which is consistent with the shift of the peak in the spectrum of the structural

motion found in figure 6.17. The noise increase for this frequency, which has a very high

contribution to the overall energy in the spectrum, is 7.2dB. In the upstream direction

the first harmonic of the recirculation frequency is also amplified in the elastic case

which is not the case in the wall normal direction. At a much lower level in energy the

spectrum of the elastic TE features a significantly higher peak at the third harmonic of

the recirculation frequency which coincides roughly with the third natural frequency

of the structure leading to a very significant noise increase of 14.5dB, that does not

contribute significantly to the overall energy in the spectrum though.

The point spectra presented in figure 6.19 showed that the noise reduction and the ampli-

tudes of the excess noise at the structural frequencies depend on the azimuthal location.

To evaluate the directivity pattern at different frequency bands of interest the power

spectral density of a plane covering most of the far-field was calculated. To that end,

planes were captured, skipping points in different grid regions to reduce the amount

of the data captured. The power spectral density was then calculated using Welch’s

method with 21 Hanning windows with a length of 14.6 recirculation cycles and an

overlap of 55%. Figure 6.20 presents the directivity in the third octave frequency band

centred at the recirculation frequency fb. The elastic TE’s with different parameters

are compared to the rigid case in figure 6.20a and it can be found that the qualitative

difference between each elastic parameter set and the rigid TE does not change in the

azimuthal direction. To investigate the differences in the directivity shape itself, each

parameter set is considered in a separate figure (6.20b-d). Parameter set 1 is presented

in figure 6.20b and the qualitative comparison shows the same behaviour as the inte-

gral directivity presented in figure 6.18b. It is apparent that the noise reduction occurs

predominantly in the upstream direction and a slight noise increase can be found in the

range of θ = 240◦. In addition, the data from the rigid TE is rescaled, i.e. multiplied

with a factor, such that it matches the amplitude of the elastic case in the upstream

direction. The direct comparison of the shape of the directivity reveals that the noise

radiation in the elastic case has a higher contribution in the direction where the noise

increase was found. It is speculated that this deviation from the directivity shape of the

rigid TE noise is due to the noise from the structural motion. The opposite behaviour

can be observed for parameter set 2 considered in figure 6.20c, where the noise radiation

seems to be directed slightly more strongly in the upstream direction. Parameter set 3 is

presented in figure 6.20c and the directivity pattern in the elastic case seems unchanged

compared to the rigid TE when comparing the rescaled data.
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Figure 6.20: Comparison of the directivity of the power spectral density of pressure
for the rigid and elastic TE’s in one-third-octave bands centred on the recirculation
frequency fb. As explained in the text, the rescaled data was obtained by multiplication
with an arbitrary factor such that the amplitudes match the case the data is compared
to.

Figure 6.21 considers the one-third-octave bands centred around the structural frequen-

cies that contain the most energy, the first for parameter sets 1 and 2 and the second for

set 3. It is apparent that for all parameter sets the elastic TE is noisier in all directions

in the chosen frequency bands. To enable a comparison of the shape the data from
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Figure 6.21: Comparison of the directivity of the power spectral density of pressure
for the rigid and elastic TE’s in the one-third-octave band centred on the structural
frequency containing most energy.

the rigid TE was again rescaled, as explained in the previous paragraph, to match the

amplitude of the elastic case in the upstream direction. Similarly to the recirculation

frequency in the case using parameter set 1, considered in figure 6.21a, this case also

shows a slightly higher relative noise increase in the θ = 240◦ direction. The opposite

is true for parameter sets 2 and 3. In both cases the noise radiation in the upstream

direction is significantly more pronounced in the rigid case than for the elastic TE.
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Figure 6.22: Comparison of the directivity of the power spectral density of pressure
for the rigid and elastic TE’s in the one-third-octave band centred on the structural
frequencies associated with higher modes.

Figure 6.22 shows the directivity for parameter sets 1 and 3 in frequency bands centred

around structural frequencies that are associated with distinct peaks not present in

the spectra of the rigid TE but do not contribute significantly to the overall energy of

the fluctuations. For parameter set 1 the frequency band is centred around the second

structural frequency and the comparison of the unscaled directivity shows that the elastic

TE leads to a higher noise level in the wall normal direction and a noise reduction in

the upstream direction. The rescaled data from the elastic plate confirms this trend

showing a stronger noise radiation in the wall normal direction. The opposite is true for

the third structural frequency of parameter set 3 presented in figure 6.21c. In this case

the noise is radiated almost entirely in the θ = 225◦ direction. The observations for both

parameter sets are consistent with the findings from the two point spectra presented in

figure 6.19.

In summary, a potential for noise reduction from an elastic TE was found. For the overall

sound pressure level a noise reduction was only found for one of the three parameter

sets and the other two amplified the noise. However, the spectral analysis of the far-field

revealed that in certain frequency bands significant noise reductions can be found for all

parameter sets. In many cases these reductions were overpowered by excess noise found

at the structural frequencies and the recirculation frequency. Even though no formal

correlation was presented, the amount of excess noise or noise reduction was found to
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be closely related to the distribution in the power spectral density of the structural

deflections.

6.5.1.2 Analysis of the Hydrodynamic Near-Field

The following section will investigate the influence of structural elasticity on the hy-

drodynamic near-field in the vicinity of the TE. Since this is the source region of the

noise radiated into the far-field, which was discussed in the previous section 6.5.1.1, this

should give further insight into the origin of the frequency-dependent excess noise or

noise reductions found in the far-field.

Before the source region is analysed, potential mechanisms for noise attenuation and

amplification are discussed in this paragraph. On the one hand, the noise reductions

found in certain frequency ranges could be due to a modification of the input to the TE

noise mechanism. On the other hand, the noise amplification in the one-third-octave

bands centred on the structural frequencies could originate from the motion of the struc-

ture itself which is of dipole type. Alternatively, the structural motion could amplify

the input to the TE noise mechanism by exciting instabilities in the separation bubble.

The recirculation bubble on the upper side of the TE was found to create the most

energetic pressure fluctuations as input for the TE noise mechanism and the structural

motion in section 6.2. To assess how it is changed by the moving TE’s, the recirculating

flow regions of the different cases are presented in figure 6.23. For all elastic TE’s, the

recirculating flow regions in the vicinity of the vortex generator cylinder and upstream

of the elastic fraction of the TE seem not to be changed by the motion of the solid

body. The elastic TE’s with the largest deflection, i.e. parameter sets 1 and 3, show a

shortened separation bubble, which in turn extends further upstream for parameter set

3. These changes are likely to be an effect of the mean deflection. For parameter set

2 the changes compared to the rigid TE are small and only a minor shift towards the

freestream can be observed at the end of the separation bubble.

Figure 6.24 compares the skin friction downstream of the vortex generator cylinder for

the elastic and the rigid TE’s. The skin friction values were calculated during the run-

time of the simulation and gathered as a time history in the moving frame of reference

with an offset of one smoothing region half-width 1ε. The sampling locations were in-

dependent of the computational grid of the fluid with a significantly reduced resolution

compared to the fluid grid. The skin friction confirms that the elastic TE with parameter

set 3 leads to an upstream shift of the separation bubble which ends 2.2Dcyl upstream of

the TE in contrast to 1Dcyl for the rigid case. For parameter sets 1 and 2 the differences
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Figure 6.23: Contours of the Favre averaged streamwise velocity component ũ1 in the
vicinity of the TE for the rigid and elastic TE’s. The fraction of the plate that is
considered elastic is coloured in grey.

in the location of the separation to the rigid TE are moderate with a slight upstream

and downstream shift, respectively.

Figure 6.25 assesses the influence of the change in separation bubble on the velocity and

Reynolds stress profiles upstream of the elastic fraction of the plate. In the streamwise
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Figure 6.24: Skin friction coefficient along the upper side of the plate for the different
elastic and rigid TE’s.

velocity ũ1 profiles in figure 6.25a the recirculation region, which is not connected to the

wall at this location, does not seem to be significantly influenced by the motion of the

TE downstream. This confirms the findings from the contours of the streamwise velocity

component, where the shape of the recirculation bubble is comparable at the start of

the elastic fraction. Only parameter set 3, featuring the largest deflection amplitudes,

shows slightly increased velocity amplitudes in the upstream direction. The differences

are more pronounced for the wall normal velocity ũ2 where the average in the rigid case

shows a flow towards the wall for y < 0.2 where the flow is in the opposite direction for

the elastic TE’s. Towards the freestream the profiles of this velocity component show

quite different shapes. This is consistent with the varying position of the separation

bubble in the different cases which means that the start of the elastic fraction is at

different locations relative to the separation bubble for each case. The same is true for

the Reynolds stresses compared in figure 6.25b. For the streamwise and wall normal

component τ11 and τ22, respectively, the amplitudes are proportional to the deflections

of the elastic fraction, i.e. parameter set 3 shows the highest amplitude, in particular

close to the wall and parameter set 2 and the rigid case the lowest. These increased

Reynolds stresses can most likely be attributed to the upstream shift of the separation

bubble for parameter sets 1 and 3 found in the skin friction in figure 6.24 that might

cause a higher level of flow unsteadiness in this region.

The TE location is considered in figure 6.26. The most apparent differences between

the rigid and the elastic TE’s can be observed in the streamwise velocity component

ũ1 and the associated Reynolds stress components τ11 and τ12. Considering ũ1, it can

be appreciated that the elastic TE reduces the wake deficit significantly. This effect
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Figure 6.25: Comparison of the Favre averaged velocity and Reynoldsstress profiles at
the beginning of the elastic fraction (x = −8.75Dcyl) for the rigid and elastic TE.

is more pronounced for cases with a higher deflection. Furthermore, the wall normal

location of the maximum wake deficit varies for the different parameter sets. Since it is

shifted furthest towards the free stream for parameter set 2, which featured the lowest

mean and standard deviation of deflection, it seems unlikely that this is an effect of the

one of these two statistical moments. The streamwise Reynolds stress components τ11

of parameter sets 1 and 3 show significantly reduced amplitudes compared to the rigid

case and parameter set 2 for 0 < y < 0.75. This could indicate that the fluctuations
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Figure 6.26: Comparison of the velocity and Reynoldsstress profiles at the TE (x = 0.0)
for the rigid and elastic TE’s.

in the flow field are mitigated by the structural motion in these cases, leading to lower

incident amplitudes of pressure fluctuations to the TE noise mechanism. It can be spec-

ulated that the earlier wake development is achieved by smearing out the position of the

TE through the moving boundary. This is supported by the profiles of both mentioned

Reynolds stress components τ11 and τ12 which indicate that the wake of the elastic TE

is more developed already at the TE. Thus, the elastic TE allows a smoother streamwise
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Figure 6.27: Comparison of the velocity and Reynoldsstress profiles 12Dcyl downstream
of the TE for the rigid and elastic TE’s represented by the BDIM.

evolution of the flow and it can be hypothesized that it mitigates the incident pressure

fluctuations.

Figure 6.27 compares the velocity and Reynolds stress profiles in the wake 12Dcyl down-

stream of the TE. From the streamwise velocity profile ũ1 it can be seen that the dif-

ferences of the momentum deficit are reduced compared to those at the TE location.
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Figure 6.28: Comparison of the variance of the pressure difference fluctuations ∆p′ for
the elastic and rigid TE.

Surprisingly, parameter set 3 shows the lowest wake deficit of all cases despite the rela-

tively high deficit at the TE location. A possible explanation for this behaviour could

be the high amplitudes in the Reynolds stresses at the TE (figure 6.26b) for this case

which leads an enhanced momentum exchange in the lateral direction. For the Reynolds

stresses the differences between parameter sets 1 and 3 are less pronounced but param-

eter set 2 is qualitatively different with a more uniform profile and higher amplitudes.
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Figure 6.28 presents the variance of the pressure difference for the elastic and rigid TE’s

as a function of the streamwise position. From the variance of the total pressure differ-

ence shown in figure 6.28a it is apparent that the elastic TE’s influence the amplitude

and the location of the peak of the pressure fluctuations upstream of the TE. Consistent

with the findings from the skin friction coefficient presented in figure 6.24 the elastic

plate with parameter set 2 shows the least deviations from the rigid TE and param-

eter set 3 the largest. As found by Sandberg et al. (2007) and Sandberg & Sandham

(2008) as well, the total pressure differences at the TE are non-zero but small in all cases.

The incident field ∆p′i is presented in figure 6.28b and features the typical sharp rise of

the pressure fluctuations towards the TE. For the elastic plate with parameter set 2 the

peak at the TE is higher than for the rigid plate. This indicates that the increase in

noise level that was found for this case can be attributed to an amplification of the TE

edge noise mechanism. In contrast to that the two elastic TE’s with the lower bending

stiffness show a lower amplitude at the TE. In fact the case with the lowest bending

rigidity, i.e. with the highest deflections, yields the lowest peak at the TE location.

Since this case was the noisiest in the acoustic far-field it was considered that significant

noise must be produced by the structural motion or other noise sources. These findings

correlate directly with the amplitudes of the streamwise Reynolds stress τ11 at the TE

presented in figure 6.26b.

Figure 6.28c presents the scattered and motion induced pressure fluctuations ∆ps and

shows consistent trends with the incident pressure field at the TE location. However, it

should be noted that this quantity also contains the contribution of pressure fluctuations

imposed on the fluid through the structural motion itself. This additional contribution

to the scattered field leads to an increasing ∆ps when considering locations upstream of

x = −2 for parameter set 3 that featured the largest deflections.

In order to investigate the frequency dependence of the noise amplification and atten-

uation, the power spectral density in one-third-octave bands of the incident pressure

fluctuations will be considered in the following paragraph. It was calculated using 21

Hanning windows containing 14.6 recirculation cycles with an overlap of 55%. Fig-

ure 6.29a presents the energy of the incident pressure fluctuations at the recirculation

frequency and its first harmonic. For parameter sets 1 and 2 the energy at the TE is

lower than for the rigid plate in both frequency bands. This is consistent with the noise

reduction in these two frequency bands found in table 6.6. In contrast, parameter set

3 showed a significant noise augmentation in the far-field but features the lowest peak

at the TE thus confirming the findings from the overall variance presented in figure 6.28b.
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Figure 6.29: Comparison of the incident pressure difference fluctuations ∆p′i at the
recirculation frequency fb and its first harmonic 2fb for the elastic and rigid TE.

Figure 6.30 shows the incident pressure fluctuations at the respective structural fre-

quency with the highest excess noise listed in table 6.6. For parameter sets 1 and 2 this

is the first and for set 2 the second structural frequency, respectively. Parameter set 1 is

presented in figure 6.30a and despite a noise increase of 16.4dB for this one-third-octave

band the peak at the TE has less energy than in the rigid case. The higher fluctuation

level of the elastic plate upstream of the TE at x = −4 indicates that the fluctuations

in the separation bubble are amplified by the structural motion. However, this is not

the dominating noise source that causes the excess noise, as this would predominantly

radiate into the upper part of the domain. In figure 6.21a an increased noise level was

found in all directions, which in fact was more pronounced on the lower side.

The energy of the incident pressure fluctuations for the elastic TE with parameter set

2 is shown in figure 6.30c. Similarly to parameter set 1 the pressure fluctuations in the

separation bubble seem to be amplified by the structural motion. Moreover, the sharp

increase towards the TE is significantly amplified in the elastic case. This is consistent

with the directivity in that frequency band, presented in figure 6.21b, showing a very

strong upstream radiation directivity. Furthermore higher Reynolds stress amplitudes
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Figure 6.30: Comparison of the incident pressure difference fluctuations ∆p′ at structural
frequencies with the highest excess noise comparing the elastic and rigid TE’s.

were found at this location in figure 6.26b. It should be mentioned that the third struc-

tural frequency of the parameter set 1 qualitatively shows a similar behaviour. Due

to the insignificant energies contained in the related frequency band it is not discussed

separately here.

Finally, the elastic plate with parameter set 3 featuring the lowest bending rigidity of

the elastic cases is considered in figure 6.30c. The behaviour at the TE is comparable
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to parameter set 1. However, along the plate the fluctuations in the separation bubble

are damped instead of amplified.

In summary, it was found that the motion of the elastic TE does change the length of the

separation bubble and therefore also the input to the TE noise mechanism. Considering

the excess noise of the elastic TE found in certain frequency bands, indications for the

following mechanism was found: The excess noise does not originate from the TE as the

sharp increase of the incident pressure field is significantly lower than for the rigid case.

In that case the most likely source of the excess noise is the structural motion itself.

This mechanisms was also represented in the amplitudes of the streamwise Reynolds

stress profiles at the TE location.
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6.5.2 Influence of Structural Damping on Trailing-Edge Noise Gener-

ation

The results from the previous section 6.5.1 showed that the potential for a noise reduction

of an elastic TE can be mitigated or destroyed by the noise amplification or excess

noise found at the structural frequencies. From a physical point of view the elastic

TE’s redistribute the energy of the flow between the main recirculation frequency and

the natural frequencies of the structure. This redistribution can lead to an overall

noise reduction as found for parameter set 1. However, the elastic structure in the

discussed simulations does not absorb energy as the governing equation 2.15 does not

account for that physical mechanism. This section investigates the influence of structural

damping on the TE noise generation. Damping of vibrations in structures usually not

only depends on its material properties, but also on the surrounding medium and on

the boundary conditions. Furthermore, structural damping varies with the vibration

frequency, amplitude and mode as well as temperature. To conceptionally investigate

the effect of damping on the noise from an elastic TE, a mathematical formulation

commonly presented in textbooks is employed in this work (Thomsen, 2004). To that

end the governing equation of the bending beam is reformulated to

ρsAS
∂2ws

∂t2
= ∆p− EsIs

∂4ws

∂s4
− cdẇs , (6.1)

where cd is the viscous damping constant and ẇ the velocity of the structure, i.e. ∂w/∂t.

The damping constant was set to cd = 0.01. It was chosen such that a significant reduc-

tion of the structural deflections could be observed but still be represented appropriately

by the BDIM. The mathematical formulation to represent structural damping chosen in

equation 6.1 is often denoted air damping (Baker et al., 1967; Banks & Inman, 1989),

i.e. damping through viscous forces in the surrounding fluid of the structure. Through

the direct coupling of the structural solver and the fluid solver this physical mechanism

is implicitly accounted for, even if cd = 0. Despite this physical interpretation, the

model was chosen for a conceptional study due to its ease of implementation. Even if

other models, such as the Kelvin-Voigt strain rate damping model or the time hysteresis

model, might represent the physics of the vibrating beam more accurately, the addi-

tional damping introduced with the current model is able to show the principal effect of

damping. With this updated structural model the simulations for parameter sets 1 and

3 were repeated.

6.5.2.1 Statistical Analysis of the Acoustic Field

Figure 6.31 compares the overall sound pressure level of damped and undamped elatic

TE’s with the rigid TE in the far-field. For parameter set 1 the difference between

undamped and damped cases are up to 1.6dB in the θ = 225◦ direction below the plate.
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Figure 6.31: Directivity of the overall sound pressure level OASPL at a radial distance
of r = 150Dcyl from the TE comparing the damped and undamped elastic TE’s with
the rigid TE. The linestyles with the same marker type relate to the same parameter
set with and without damping.

The noise reduction compared to the rigid TE is up to 2.4dB. The influence of the

structural damping is most significant for parameter set 3 where the damping leads to

a noise reduction of up to 3.7dB below the plate in the θ = 225◦ direction relative to

the undamped case with the same structural parameters. Indeed with the damping this

parameter set can also lead to a noise reduction of 1.1dB relative to the rigid TE where

the undamped case showed an increase in noise.

To analyse the influence of the structural damping on the spectral content of the elastic

TE in the far-field, figure 6.31 presents the power spectral densities comparing the un-

damped and damped cases with the rigid TE’s. The first row (figure 6.32a and 6.32a)

considers parameter set 1 at the two reference locations used in the previous section.

At the recirculation shedding frequency, which is at the most relevant energy level, the

damping leads to a noise reduction at both locations. In the upstream direction it is

a 3.5dB reduction compared to a 0.4dB increase for the damped and undamped TE,

respectively. Since this third-octave band contributes 44% to 50% to the overall en-

ergy of the spectrum this difference is highly relevant for the additional noise reduction

employing the damping. Minor difference can be observed at the first harmonic of the

recirculation, where the damping leads to an increase in noise of 1.1dB compared to

the undamped elastic TE. The second largest contributor to the overall energy in the

spectrum of the undamped elastic TE is the first structural frequency with 9%. When

damping is considered this contribution decreases to 1.8% and yields a noise reduction of
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Figure 6.32: Evaluation of the influence of structural damping on the far-field power
spectral density of pressure between the rigid and elastic TE’s for two different positions
and two different parameter sets. The vertical dashed black lines are the structural
frequencies as determined from the PSD of the deflection in figure 6.17 and documented
in table 6.5. The shaded areas mark the one-third octave bands discussed in the text.

17.6dB and 1.5dB relative to the undamped and rigid TE, respectively. The interaction

between recirculation frequency and first structural frequency seems to be suppressed

when the elastic TE is damped. For the other frequency ranges the damping reduces

the energy in the spectra, however, their contribution to the overall energy is small.

The effect of damping on the spectrum of the elastic TE with parameter set 3 with a

lower bending rigidity than set 1 is considered in the second row of figure 6.32. It is

apparent that the damping reduces the peak at the recirculation frequency significantly

at both locations under consideration. The reduction in the upstream direction is 7.7dB
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fc set 1 damped
fb 0.4dB 49.5% 44.3% −3.5dB 47.1% 44.3%
2fb −6.6dB 6.0% 12.0% −5.5dB 10.1% 12.0%
f1,s 16.4dB 9.3% 1.3% −1.2dB 1.8% 1.3%
f2,s −1.9dB 2.7% 3.1% −5.4dB 2.7% 3.1%
f3,s 3.2dB 0.2% 0.1% −3.2dB 0.1% 0.1%

fc set 3 damped
fb 7.2dB 54.2% 44.3% 0.5dB 57.3% 44.3%
2fb 1.6dB 7.7% 12.0% −1.7dB 12.1% 12.0%
f1,s −5.2dB 0.6% 1.9% −6.4dB 1.1% 1.9%
f2,s 7.7dB 11.0% 8.5% −4.9dB 5.9% 8.5%
f3,s 14.5dB 2.4% 0.9% 4.3dB 1.7% 0.9%

Table 6.7: Energy distribution of the power spectral density for the elastic TE’s with and
without damping in comparison with the rigid TE below the plate relating to the spectra
in the first column of figure 6.32. The power is calculated in third octave bands around
center frequencies fc. The difference to the rigid TE is given in dB where a positive sign
indicates a noise increase and a negative sign a noise reduction. The second and third
number in each column indicate the contribution of frequency range to the total energy
in % for the elastic and rigid TE, respectively.

relative to the undamped case. It should be mentioned that this reduction is biased by

the slight shift of this peak towards higher frequencies in the undamped elastic case.

As a result the frequency band does not cover the whole peak. Thus the actual noise

reduction is higher. However, overall the damped elastic TE still leads to a minor in-

crease in noise compared to the rigid case in this frequency band. In contrast to that

the damping reduces the noise level at the first harmonic of the recirculation frequency

by 3.3dB and 1.7dB compared to the undamped and rigid TE, respectively. In the low

frequency range below the recirculation frequency the damping leads to noise reduction

and the additional hump found in the undamped elastic TE at f/fb = 0.47 can not

be identified in the damped case. The same is true for the second structural frequency

where a reduction in the damped case is 12.6dB and 6.4dB relative to the undamped

and rigid TE, respectively. At the third structural frequency the excess noise found in

the undamped elastic TE is also reduced significantly. However, the contribution of that

frequency to the overall noise is comparatively small.

Figure 6.33 compares the directivity of the power spectral density for the damped and

undamped cases. For easier comparison the data from the body-fitted simulations is

not plotted here as it was presented and discussed in figure 6.20. At the recirculation

frequency the comparison of undamped cases with the rescaled data from the damped

cases shows signs of an additional lobe present in these cases. It can only be speculated

at this stage whether they originate from a physical mechanism that is only present in

the cases with damping or whether it is due to the significant reduction of the noise

from the TE and the structural motion that this lobe can now be identified. Since the
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Figure 6.33: Comparison of the directivity of the power spectral density of pressure
for the damped and undamped elastic TE’s in the third octave band centered on the
recirculation frequency and its first harmonic.

undamped cases, in particular parameter set 1 on the lower side of the plate, show indi-

cations of this lobe as well, the latter option seems, however, to be more reasonable. At

the first harmonic of the recirculation frequency presented in figure 6.33c the rescaled

data for parameter set 1 matches the undamped case exactly with respect to shape.

This is not the case for parameter set 3 shown in figure 6.33d where the noise radiation

of the damped TE seems to be relatively stronger in the wall normal direction.
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Figure 6.34: Comparison of the directivity of the power spectral density of pressure for
the rigid and elastic TE’s in the third octave band centred on the structural frequencies
where significant excess noise was observed.

Figure 6.34 shows the directivity in frequency bands where significant excess noise was

found in the undamped cases. In all cases and frequency bands considered here the struc-

tural damping reduces the noise in all directions significantly. For the first structural

frequency the directivity of parameter set 1, presented in figure 6.34a shows a relative

decrease of the noise radiation in the wall normal direction. The opposite is true for
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parameter set 3 presented in figure 6.34b. In the frequency band of the second structural

frequency the shapes of the damped and undamped cases match closely. Considering

the third structural frequency of parameter set 3 in figure 6.34d the relative change of

the directivity pattern is similar to the second structural frequency of the same case

where the wall normal direction is relatively more pronounced.

Overall the changes in the directivity indicate that the radiation in the wall normal di-

rection becomes relatively more important when employing damping in parameter set 3.

For parameter set 1 only minute changes or a tendency to decrease the noise radiation

in the wall normal direction could be observed. As a result the change in the directivity

shape relative to the rigid TE can not be attributed to the directivity shape of the noise

from the structural motion as this source is eliminated by the damping.

In summary the damping leads to a significant noise reduction compared to the un-

damped cases and also the rigid TE. From the spectral analysis the noise attenuation

could be attributed to a reduced energy level at the recirculation frequencies. More-

over the damping attenuates or eliminates the unfavourable excess noise related to the

structural frequencies.

6.5.2.2 Analysis of the Hydrodynamic Near-Field

This section investigates the changes in the hydrodynamic near-field when structural

damping is employed in order to find the reason for the noise reduction compared to the

undamped cases and the rigid TE. The first question is whether the significant modifi-

cation of the acoustic far-field by structural damping can be related to changes in the

structural motion itself. To assess the structural motion figure 6.35a compares the time-

averaged deflection for the two parameter sets 2 and 3 with and without damping. On

the one hand, the damping does not change the shape of the mean deflection for both

parameter sets. On the other hand, the amplitude of the deflection is slightly increased

by the damping. The opposite is true for the standard deviation of the structural mo-

tion presented in figure 6.35b. Firstly, the damping changes the shape of the standard

deviation of parameter set 3 to be dominated by bending mode 1. Secondly, the deflec-

tion amplitudes are reduced significantly for both parameter sets when the damping is

employed.

The spectral content of the free end deflection for the damped and undamped cases

is presented in figure 6.36. For both parameter sets the amplitude of the peak at the

recirculation frequency is reduced when damping is employed. This is consistent with

the reduction of the noise in the far field discussed earlier. In contrast to that, its first

harmonic contains slightly more energy in the cases with damping which is what was

found in the far-field spectra as well. In the frequency range below the recirculation

frequency the energy containing peaks found in the undamped case can not be identified
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Figure 6.35: Mean and standard deviation of the deflection time history of the TE point
as function of the streamwise location comparing the undamped and damped TE.

in the cases with damping. The same is true in the frequency range above the recircu-

lation frequency, where the damping attenuates or eliminates the peaks at the natural

frequencies of the structural motion.

In conclusion, the damping reduces the vibration amplitude globally. Qualitatively, the

spectra are changed at the natural frequencies of the structure where the amplitudes

of the motion are significantly reduced or completely damped. This is consistent with

noise reductions observed in the far field power spectral density presented in figure 6.32.

As the pressure fluctuations from the separation bubble on top of the plate represents

one of the major inputs into the TE noise mechanism and were found to be slightly

altered by the elastic (undamped) TE’s, the contours of the streamwise velocity compo-

nent are considered first in figure 6.37. The rigid and undamped TE’s are replotted here

again to enable a better comparison. For both parameter sets the damping leads to a
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Figure 6.36: Power spectral density of the free end deflection w of the structure for two
different parameter sets with and without damping. The vertical dashed lines indicate
the actual frequencies of the undamped structural motion that were determined from
figure 6.17 and listed in table 6.5

longer separation bubble on top of the plate. In terms of shape, the separation bubbles

in the damped cases more closely resemble that of the rigid case. It is likely that this

can be attributed to the smaller fluctuations of deflection of the plate despite the larger

mean as shown in figure 6.35b.

Figure 6.38 shows the time averaged skin-friction to determine the start and end of the

separation bubble under the influence of structural damping. The first visual impres-

sions from the velocity contours are confirmed when the zero-crossings are considered

which show that for both parameter sets the damping leads to a downstream shift of the

separation bubble. For parameter set 1 with damping, the onset and end of the bubble

closely agree with the rigid TE. For parameter set 3 the damping results in a separation

bubble that is shifted upstream compared to the rigid TE.

Figure 6.39 compares the velocity and Reynolds stress profiles of the damped and un-

damped elastic cases with the rigid TE upstream of the elastic fraction. As discussed in

figure 6.25a, the changes in the streamwise velocity profiles are minute. For parameter

set 3 the damping reduces the higher recirculation velocity observed in the undamped
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Figure 6.37: Contours of the Favre averaged streamwise velocity component ũ1 in the
vicinity of the vortex generator and TE. The elastic fraction is visualized in the unde-
flected state in gray color.
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Figure 6.38: Skin friction along the upper side of the plate for the different damped and
undamped elastic and rigid TE’s.

case, leading to a profile very similar to the other cases. In particular for parameter set

1, the damping leads to a close agreement with the rigid TE, which is consistent with the

similar location and extent of the separation bubble determined from figure 6.38. For

both parameter sets the damping reduces the amplitudes of the Reynolds stresses τ11

and τ22 at this location, which can be related to the downstream shift of the separation

bubble.

At the TE location, shown in figure 6.40, the smaller amplitude fluctuations of the

body structural motion with damping lead to a slightly increased momentum deficit

compared to the undamped cases. The Reynolds stress components seem to be reduced

in amplitude close to the wall and increased towards the freestream when comparing the

damped to the undamped elastic plate cases.

The variance of the total pressure difference presented in figure 6.41a shows the same

trend as the skin friction. For parameter set 1 the maximum amplitude of the variance

is not altered by the damping. This is in contrast to parameter set 3 where the max-

imum amplitude of the variance is decreased to a similar level as for parameter set 1.

The variance of the incident pressure difference, shown in figure 6.41b, shows greater

amplitude peaks at the TE for the damped TE’s compared to the undamped cases. The

same trend can be found in the variance of the scattered pressure difference. This trend

is surprising as it is not consistent with the noise received in the far-field, as presented

in figure 6.31. In the far-field, the damping leads to a significant noise reduction in all

cases and it is expected that the peak of the variance of incident pressure field at the

TE is proportional to the noise in the far-field. It can be speculated that on the one
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Figure 6.39: Comparison of the Favre averaged velocity and Reynolds stress profiles at
the beginning of the elastic fraction (x = −8.75Dcyl) for the damped and undamped
elastic and rigid TE’s.

hand the slower reaction of the plate to the forcing from the fluid reduces the ability

of the elastic TE to attenuate the TE noise radiation. On the other hand, this effect

is overcompensated by the significant reduction of the excess noise generated by the

structural motion at the recirculation and structural frequencies.



Chapter 6 Trailing-Edge Noise from an Elastic Flat Plate 169

0 0.2 0.4 0.6 0.8

−0.5

0

0.5

1

1.5

ũ1
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Figure 6.40: Comparison of the velocity and Reynolds stress profiles at the TE (x =
0.4hTE) for the rigid and elastic TE represented by the BDIM.

The same trend can be observed in the power spectral density of the incident pressure

difference at the recirculation frequency and its first harmonic shown in figure 6.42a and

6.42b, respectively. For parameter set 3 the amplitudes of the damped and undamped

case are in very close agreement for −1.7 < x < −0.4, and only start to deviate very

close to the TE. This indicates that the different peak values at the TE are not purely

due to the slight differences of the separation bubble upstream of the TE but also due
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Figure 6.41: Comparison of the total (a),incident (b) and scattered (c) pressure difference
fluctuations ∆p′ for the elastic and rigid TE.

to a stronger mitigation of the incident pressure field caused by the damping.

The sum of the scattered and motion induced pressure fluctuations is presented in fig-

ure 6.43 for the frequency bands with the most energy containing excess noise in the

undamped elastic TE’s. At the TE the same behaviour as in the figures of the incident

pressure differences discussed previously can be observed. For the cases without damp-

ing significantly increased amplitudes of pressure fluctuations can be found upstream of
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Figure 6.42: Comparison of the incident pressure difference fluctuations ∆p′i at the
recirculation frequency fb and its first harmonic 2fb for the rigid and elastic TE’s with
and without damping.

x = −2. For both parameter sets with damping they are eliminated, which results in

fluctuations lower than the rigid TE. This elimination can most likely be related to the

significantly reduced fluctuations of the deflection at the structural frequencies.
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Figure 6.43: Comparison of the sum of the scattered and motion induced pressure
difference fluctuations ∆p′ at the structural frequencies with the highest excess noise
comparing the rigid and elastic TE’s with and without damping.
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6.6 Summary of the Findings

A generic setup to study the influence of TE elasticity on its noise radiation has been

introduced and validated with a grid independence study and with body-fitted bound-

ary conditions. Three different parameter sets for the elastic fraction of the TE have

been considered. The effectiveness of a parameter set in reducing TE noise was found

to be highly dependant on the response of the motion to the input loading from the

flow, as the far field spectra of the elastic TE‘s featured excess noise at the structural

frequencies. An examination of the hydrodynamic near field showed that this noise can

originate from the TE as a result of an amplification of the incident field. However,

in most cases the data showed no evidence that the excess noise is radiated from the

TE and it is suggested that the excess noise is due to motion-induced sound from the

elastic body. Finally, a reduction of the radiated noise was found in specific frequency

ranges and for one parameter set also globally. This noise reduction was associated with

two mechanisms: Firstly, the motion of the TE modified the incident pressure fluctua-

tions and therefore the input to the TE noise mechanism. Secondly, the elastic TE was

less efficient in transforming energy from hydrodynamic to acoustic pressure fluctuations.

The investigation of the effect of structural damping showed a potential for significant

noise reductions compared to the undamped and the rigid cases. The investigated data

indicated that this was achieved by reduced fluctuations of the deflections at the struc-

tural and the forcing frequencies. The higher amplitude peak of the incident pressure

field at the TE suggests that some noise reduction potential of the elastic TE without

damping is compromised. It is argued that this can be attributed to the less direct

response of the elastic structure when damping is employed. However, this minor un-

favourable effect is outweighed by the elimination of the excess noise at the structural

frequencies which leads to an overall noise reduction of up to 2.4dB.





Chapter 7

Trailing-Edge Noise from a Fully

Turbulent Flow Over an Elastic

Trailing-Edge

After the studies considering noise radiation from two dimensional flows over elastic

TE extensions of an airfoil and flat plate TE’s a fully turbulent three dimensional flow

over an elastic flat plate TE is investigated in this chapter. The computational setup

is introduced in section 7.1 and is followed by an initial overview and validation in

section 7.2. Finally, the rigid and elastic TE’s are compared to each other in section 7.3.

7.1 Computational Setup

The setup for the three dimensional simulations is based on the grid and parameters from

the previous two dimensional study introduced in section 6.1. As before the freestream

Mach number was M = 0.4. The global Reynolds number was Re = 7.5 × 104 based

on unit freestream velocity and unit length scale. The displacement thickness of the

boundary layer is δ∗TE = 2.360 × 10−2 at the TE. This results in a Reynolds number

based on displacement thickness at the trailing-edge of Reδ∗ = 1770.26. Furthermore,

the Reynolds number based on the cylinder centreline velocity 2Dcyl upstream of the

cylinder is Recyl = 682. However, as discussed before, the cylinder can not be considered

as a canonical cylinder flow due to the vicinity to the wall. The reader is reminded that

all spatial dimensions are scaled with the cylinder diameter Dcyl.

With the grid from section 6.1, it was found that significant reflections were originating

from the outflow boundary when the turbulent wake was convected out of the domain.

175
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Figure 7.1: Distribution of grid spacing ∆hi+1 −∆hi where the individual segments are
coloured in orange and blue.

In order to diminish the reflections the number of points for the zonal ramp was in-

creased to Nzone = 200 and the physical dimensions increased from Lzone = 20.85Dcyl

to Lzone = 62.14Dcyl. Furthermore, the grid region with the higher near-field resolu-

tion was increased in the wall normal direction which resulted in a total grid size of

2470× 1443 ≈ 3.564× 106 in the two dimensional plane.

The spanwise domain width was set to Lz = 3.6Dcyl and discretized with to 48 Fourier

modes, which results in 98 physical collocation points. With regard to the displacement

thickness at the TE the domain width is Lz = 6.1δ∗TE . Note, however, that on the
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upper side of the plate the turbulent flow is governed by the vortex shedding of the

cylinder and recirculation only. On the lower side of the plate a laminar boundary layer

is expected to develop as there is no tripping or disturbances from the inflow. The total

grid size including the spanwise direction is 3.4929× 108 grid points. Periodic boundary

conditions were used for the spanwise direction as the DNS code employs a spectral

method to discretize this direction. Thus, the flat plate is modelled as infinitely long

in the spanwise direction. The periodicity is also used to improve convergence of the

gathered statistics by averaging over the spanwise direction in addition to the temporal

average. The wake of the cylinder is expected to become turbulent. Based on the pa-

rameter ranges for the wake instabilities that can lead to transition introduced by Zhang

et al. (1995), B mode instabilities should occur in the cylinder wake. Their wave-length

is λz ≈ 1Dcyl and therefore is accommodated multiple times in the domain with the

chosen width.

Es ρs f1/fb f2/fb µm

set 1 9.94× 106 600 0.36 2.26 0.24

Table 7.1: Table describing the structural parameters for the elastic TE which are
given with the Youngs modulus E and the structural density ρs which are both non-
dimensionalized with freestream quantities or combinations thereof. The length of the
elastic fraction was L = 8.816Dcyl and the thickness of the plate hTE = 1/16Dcyl.
Furthermore the first two natural frequencies f1 and f2 of the structure in vacuo are
listed. The added mass coefficient is given with µm.

As material properties of the elastic fraction the most efficient parameter set, that re-

sulted in the highest noise reduction, from the two dimensional study of chapter 6, which

is parameter set 1, was used. The parameters are listed in table 7.1 again for reference.

The values of the first two natural frequencies differ to the values listed in table 6.2 due

to a slight change in the recirculation frequency fb of the separation bubble. Structural

damping was not employed as the influence and the benefits were unknown at the time

the simulations were carried out. It is assumed that spanwise extent of the structure is

significantly larger than the streamwise length such that variations in the spanwise di-

rection are small and the structure can be modelled with the two dimensional governing

equation introduced in 2.2.1. The pressure loading of the structure ∆p was calculated

from the spanwise averaged pressure.

7.2 Results – Overview and Validation

Figure 7.2 shows an instantaneous snapshot of the Q-criterion from the DNS of a turbu-

lent flow convecting over an elastic TE. In the background, the acoustic field is visualized

with dilatation contours clearly originating from the TE. Furthermore, the deflection of
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Figure 7.2: Instantaneous snapshot from the DNS with an elastic TE visualizing the
turbulent flow with the Q-criterion for a threshold of Q = 50 coloured with the stream-
wise velocity component. In addition the acoustic field in the background is showing
dilatation contours for −0.001 < ∇ · ~u < 0.001.

the elastic fraction of the TE in light grey can be seen when the figure is viewed carefully.

The figure shows that the flow is becoming turbulent downstream of the cylinder with

a wide range of sizes of the turbulent structures present. Upstream of the cylinder and

on the lower side of the plate the flow appears to be laminar which has the advantage

that on this side of the plate only the TE noise mechanism contributes to the overall

noise and can be studied in isolation. Furthermore, the analysis of the surface pressure

fluctuations can be decomposed into incident and scattered fluctuations as introduced

in section 2.1.4.

The wake of the cylinder is visualized at an arbitrary instant of time in figure 7.3a with

a view from the top. The turbulent structures are visualized with isosurfaces of the Q

criterion and are coloured with the streamwise velocity component. Furthermore the

location of the cylinder and the start of the elastic fraction of the TE are indicated

with a vertical dashed line. The spanwise coherent vortices shed from the cylinder can

be clearly identified up to approximately 2Dcyl downstream of the cylinder. Closer to

the wall three dimensional structures already appear to exist further upstream. At the

streamwise position of the start of the elastic TE the vortical structures that result

from breakdown of the spanwise coherent structures can be identified. As estimated

in section 7.1 the domain width is able to accommodate approximately 4 to 5 of these

structures. Downstream of this location long streamwise elongated braid structures of

similar diameter are visible and are followed by a broad range of vortex sizes indicating
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(a) Top view of the cylinder and its wake where the location of the cylinder and the start of the elastic
fraction of the TE are indicated with dashed black lines.
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(b) side view of the cylinder and its wake with a slight deflection of the elastic fraction

Figure 7.3: Turbulent structures in the wake of the cylinder visualized with an isosurface
of the Q-criterion of Q = 100 and coloured with the streamwise velocity component for
−0.1 < u < 1. The colour legend in b) is also valid for figure a).

a further breakdown of the initial turbulent structures. The colouring of the isosurfaces

indicates that there are recirculating flow regions closer to the wall. Overall, the visual

observations of the instantaneous flow field in figure 7.3 are consistent with the esti-

mation in section 6.1 that the boundary layer of the cylinder remains laminar and the

transition to turbulence occurs in the wake of the cylinder.

A side view of the vicinity of the cylinder and the TE is presented in figure 7.3b at the

same instance of time. It can be appreciated that there is a recirculating flow region

1Dcyl downstream of the cylinder where three dimensional structures are present which

confirms the findings from the top view that three dimensional structures appear to

develop later in the top shear layer than closer to the wall. The streamwise elongated

braid structures that were identified in the top view can be observed from this view as

well at the start of the elastic fraction of the TE. Furthermore, the colouring indicates a

region of reversing flow in the first half of the plate. Compared to the size of the recir-

culation region in the two dimensional case discussed in section 6.2 the length appears

to be shorter in the three dimensional case.
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(b) Spanwise spectra at 12.54Dcyl downstream of the TE.
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(c) Spanwise spectra at 24.97Dcyl downstream of the TE.
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Figure 7.4: Spanwise spectra of the three velocity components at various locations down-
stream of the TE.
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Figure 7.5: Time-averaged skin-friction cf in the vicinity of the cylinder and TE on
upper surface comparing the three different spanwise resolution and domain width.

For a statistical validation figure 7.4 shows the time-averaged spanwise spectra of the

three velocity components at three different streamwise locations downstream of the TE.

The first row is 0.364hTE, the second 12.54Dcyl and third 24.97Dcyl downstream of the

TE. In order to confirm that the spanwise resolution is sufficient an additional simula-

tion was carried out where the resolution was increased to 64 Fourier modes and the

results are plotted in the same figures. Furthermore, the results from a simulation with

a doubled domain width of 7.2Dcyl using 96 Fourier modes are shown which yields the

same spanwise resolution as the baseline case introduced in section 7.1. It is apparent

that spanwise wave numbers with amplitudes ranging 2 to 3 orders of magnitude are

present in the spectra of the baseline case. In comparison with the case using 64 Fourier

modes minor variations in particular for the very low wave numbers can be found close

to the TE. Further downstream the agreement is significantly better and at the loca-

tion furthest downstream the spectra are barely distinguishable. The differences at low

wavenumber are likely to be introduced by the relatively short time history available

for averaging this higher resolution case. In the high wave number range differences can

only be observed for the very last modes of the lower resolution case at the TE loca-

tion and they vanish further downstream. This comparison indicates that the spanwise

resolution is sufficient to represent the flow around the TE accurately. The case with

the doubled domain width shows qualitatively good agreement with the other two cases

at all locations. Quantitatively small differences can be found in the low wave number

range in particular at the TE. It should be mentioned that due to the high computa-

tional cost and long initial transient this case could not be fully converged which is likely

to cause some of these deviations.

The three cases presented in figure 7.4 are used to evaluate the sensitivity of the skin-

friction cf on the spanwise resolution and domain width in figure 7.5. The overall

qualitative and quantitative agreement of the case with the higher resolution, i.e. 68

modes, with the base line case employing 48 modes is good. In particular, the loca-

tion and size of the recirculation bubble show good correlation. However, the wiggles
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Figure 7.6: Variance of the pressure difference between upper and lower side of the plate
in time and in the spanwise direction as a function of the streamwise position.

in the higher resolution case indicate that the statistics of the higher resolution case

are not entirely converged. This is also the case for the data from the simulation with

the doubled domain width. Additionally, the recirculation bubble seems to be shifted

upstream with a higher skin-friction towards the TE and downstream of the cylinder.

However, since the data is not entirely converged, a fair comparison is difficult. Overall

the spanwise resolution appears to be sufficient, for the spanwise domain width there

is a certain level of uncertainty. Nevertheless, with the given computational resources

it was deemed more important to simulate a significant length of time to converge the

spectra of the acoustic far-field in time.

In this study the structural motion was modelled with the one dimensional Euler-

Bernoulli beam equation. Thus, it was assumed that the pressure loading ∆p of the

structure had little variation in the spanwise direction compared to the variation in

time. To validate this assumption, figure 7.6 compares the variance of ∆p in time with

the variance in the spanwise direction. To calculate these quantities the overbar Φ de-

notes a time average and the prime Φ′ a fluctuation of the quantity Φ. Hence, Φ at a

given instance of time can be decomposed as

Φ = Φ + Φ′ . (7.1)

Furthermore, the spatial average in the spanwise direction is introduced and indicated

by the brackets 〈Φ〉. A deviation from the spanwise average is Φ̂. Analogous to the

temporal average this results in

Φ = 〈Φ〉+ Φ̂ , (7.2)
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Figure 7.7: Contours visualizing the power spectral density of the skin-friction cf as a
function of the streamwise location on the upper side of the plate and the frequency.

for the quantity Φ at a certain spanwise location. Employing the introduced temporal

average, the temporal variance of the pressure difference ∆p′2 can be calculated with

∆p′2 = 〈∆p∆p−∆p ∆p〉 . (7.3)

In this case the averaging over the spanwise direction is employed to improve conver-

gence, exploiting the periodicity in the spanwise direction. The variance in the spanwise

direction ∆̂p′
2
can be calculated with

∆̂p′
2
= 〈∆p∆p〉 − 〈∆p〉〈∆p〉 . (7.4)

It is apparent that the fluctuations in time are a factor of 2 to 3.5 larger than in the

spanwise direction. For this parameter set the standard deviation of the deflection was

0.4hTE at the free end, approximately. Hence, the variation of the structural deflection

in the spanwise direction is likely to be comparatively small and hence the assumption

of a one dimensional governing equation for the structural motion appears reasonable.

In order to determine where the transition from laminar to turbulent on the surface of

the plate takes place, figure 7.7 shows the power spectral density of the skin-friction cf

along the fraction of the plate that will be elastic in a later case on the upper side of the

plate. The contours visualize the power spectral density and show that for the spectrum
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Figure 7.8: Time history of the deflection ws of the free s = Ls end of the elastic TE
normalized by the TE thickness hTE .

is dominated by one peak at a frequency of f/fb ≈ 7.9 represented by a thin line for

x < −7Dcyl. The fluctuations increase significantly in amplitude over a wide range of

frequencies along the streamwise direction. The widening of the spectrum and increase

in amplitudes downstream of x = −7Dcyl indicates the transition to turbulence and that

the flow is turbulent when it reaches the TE. This confirms the observations from the

visualization of the instantaneous flow field in figure 7.2 and 7.3 where a wide range of

turbulent structures with different sizes could be seen.

7.3 Results – Comparison of the Rigid and Elastic Trailing-

Edge

This section discusses the results from the simulation of the turbulent flow over an elastic

TE in comparison to a rigid case. The structural motion of the elastic TE is assessed

in section 7.3.1 first. It is followed by a comparison of the rigid and elastic TE in the

acoustic far-field in 7.3.2 and the hydrodynamic near-field in 7.3.3

7.3.1 The Structural Behaviour

Figure 7.8 presents the structural motion in data sampling window of the DNS. It can

be seen that the dominant period of approximately one time unit is super imposed with

higher frequencies. Furthermore, the averaged deflection is positive and the plate is

always bent above the position without loading.

The time averaged deflection of the plate is presented in figure 7.9a and shows the same

qualitative behaviour of a positive mean deflection with bending mode shape one as the
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(a) Mean deflection w as function of the streamwise location.
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(b) Standard deviation of the deflection wrms as function of the streamwise location.
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Figure 7.9: Statistics of the deflection time history of the elastic plate.

elastic plate with the same parameters subject to loading from the two dimensional flow

shown in figure 6.16a. Quantitatively, the mean deflections are reduced by a factor of

1.8 relative to the two dimensional cases. The same is true for the standard deviation

plotted in figure 7.9b which is reduced by a factor of 7.8. The reduction of the mean

deflection and the fluctuations around it can be explained with the less coherent vortex

shedding and the breakdown of the quasi two dimensional into turbulent structures.
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Figure 7.10: Overall sound pressure level at a radial distance of r = 6Dcyl comparing
the rigid and elastic TE cases.

Consequently, the pressure loading is reduced which then leads to smaller deflections.

The power spectral density of the structure’s end point motion is presented in figure 7.9c.

Due to the short time history available for averaging only two Hanning windows with

a length of 22.4 periods of the recirculation and an overlap of 50%. Despite the fact

that spectrum is not entirely converged qualitative estimations of the structural motion

are possible. It can be found that the peak associated with the first natural frequency

of the structure contains the most energy in the spectrum. It is followed by a peak

at the sub-harmonic of this frequency. However, this is likely to be an artefact of the

short averaging. The peaks at the recirculation frequency as well the higher natural

frequencies of the structure contain less and less energy. In addition to recirculation

and natural frequencies the spectrum also features a peak at f = 1.8fb. In general the

qualitative behaviour is the same as in the two dimensional case presented in figure 6.17.

7.3.2 Investigation of the Acoustic Far-Field

Figure 7.10 presents the overall sound pressure level (SPL) at a radial distance of

r = 150Dcyl from the TE comparing the rigid and the elastic TE cases. Note that

on the upper surface, i.e. 0◦ < θ < 180◦, the scattered noise is influenced by the pres-

ence of the cylinder and the recirculation whereas the noise observed below the plate

should only originate from the TE or the wake. Therefore the following discussion will

focus on observations on the lower side of the plate. The data shows that the elastic TE

amplifies the noise in the direction perpendicular to the TE. The increase of the noise

level is approximately 1 dB in that direction. In contrast to that the elastic TE shows
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(a) radial distance from TE, R = 150Dcyl at θ = 225◦
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Figure 7.11: Power spectral density of pressure fluctuations in the acoustic far-field. The
circumferential positions refer to the angles used in figure 7.10.

fc position 1 position 2

fb −3.5dB 15.0% 21.9% −2.7dB 14.9% 24.1%
1.8fb 0.9dB 22.2% 19.7% 3.4dB 25.4% 20.5%
0.5fb ≈ f1,s 13.4dB 5.4% 1.1% 10.1dB 3.7% 1.4%
2.26fb = f2,s −1.7dB 7.7% 9.2% 3.3dB 9.9% 8.0%
6.38fb = f3,s −4.9dB 0.1% 0.2% 3.1dB 0.2% 0.2%

Table 7.2: Energy distribution of the power spectral density for the elastic TE in compar-
ison with the rigid case below the plate for the two locations considered in the spectra
in figure 7.11. Position one refers to R = 150Dcyl at θ = 225◦ and position two to
R = 150Dcyl at θ = 270◦. The power is calculated in third octave bands around cen-
ter frequencies fc. The difference to the rigid TE is given in dB where a positive sign
indicates a noise increase and a negative sign a noise reduction. The second and third
number in each column at each location under consideration indicate the contribution
of frequency range to the total energy in % for the elastic and rigid TE, respectively.

a slight noise reduction of approximately 0.4 dB at an angle of θ = 45◦ in the upstream

direction on the lower side of the plate.

A spectral analysis of the pressure time history can give further insight into the physical

mechanisms that are responsible for the differences observed in the noise amplitudes and

directivity shape. Figure 7.11 shows the power spectral density of pressure on the lower

side of the plate at a radial distance of r = 150Dcyl and an angle of θ = 225◦ (7.11a)

and θ = 270◦ (7.11b). Both values for θ are consistent with the azimuthal directions in

figure 7.10. The shaded areas visualize third octave bands in which the noise reduction

and increase of the elastic TE relative to the rigid case is tabulated in table 7.2. The
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spectra were calculated using Welch’s method with 6 Hanning windows and an overlap

of 53%. The frequencies in the spectra are normalized by the recirculation frequency

fb which can be clearly identified as the most dominant noise source in the rigid case

at both locations. It can be noted that in this frequency range the elastic TE leads

to a noise reduction of 3.5dB and 2.7dB in the upstream and wall normal direction,

respectively. The first harmonic of this frequency can not be identified as a prominent

peak at 2fb. Instead a peak of similar amplitude as the recirculation frequency can be

found at f = 1.8fb. A comparison of the elastic and rigid TE at this frequency shows a

noise increase of 0.9dB and 3.4dB of the elastic case in the upstream and wall normal

direction, respectively. Both the higher noise reduction and the lower increase in the

upstream direction compared to the wall normal direction are consistent with the data

from the directivity pattern presented in figure 7.10 where a noise increase was found

for the elastic TE in the wall normal direction.

At a similar amplitude level significant excess noise of up to 13.4dB can be found for

the elastic TE in the low frequency range close to the first structural frequency. As

the octave band does not cover the whole frequency range featuring a higher noise level

in the elastic case the actual excess noise is higher and the contribution to the overall

energy in the spectrum is also underestimated in table 7.2. At a lower energy level

the elastic TE leads to an increased noise level in the wall normal direction and noise

reductions in the upstream direction for the higher modes of the structural frequencies.

The power spectral densities show that the distinct features in the spectra of the elastic

TE vary in space and therefore show different behaviour depending on the azimuthal

location. In order to investigate this variation in more detail and at all circumferen-

tial locations the power spectral density was calculated in the frequency domain from

the time history of a sub-volume using the same parameters as mentioned above and

averaged over the spanwise direction. Figure 7.12a shows the noise directivity at the

recirculation frequency and confirms that the elastic TE reduces the noise in every

direction. As a reference, the amplitudes obtained from the rigid TE were rescaled to

match the level of the elastic TE. The comparison shows that the shape of the directivity

pattern is not changed by the elastic TE but the amplitudes are reduced.

At the second dominant peak in the spectrum at f/fb = 1.8, which is shown in fig-

ure 7.12b, the elastic TE is noisier in all directions. However, on the lower side the noise

increase is less pronounced towards the upstream direction, which can also be observed

when the rescaled directivity is considered. The higher excess noise in the wall normal

direction is consistent with the observations made in the spectra at the two different

locations presented in figure 7.11.



Chapter 7 Trailing-Edge Noise from a Fully Turbulent Flow Over an Elastic
Trailing-Edge 189

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦
270◦

300◦

330◦

0 2 4 6 8

PSD(p)fc=1.0 × 10−8

(a) recirculation frequency, f/fb = 1

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦
270◦

300◦

330◦

0 1 2

PSD(p)fc=1.8 × 10−7

(b) first harmonic of recirculation frequency, f/fb =
1.8

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦
270◦

300◦

330◦

0 2 4

PSD(p)fc=0.5 × 10−8

(c) low frequency excess noise close to first natural
frequency f/fb = 0.5

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦
270◦

300◦

330◦

0 1 2

PSD(p)fc=2.26 × 10−8

(d) second natural frequency of the structure, f/fb =
2.26

rigid TE elastic TE rigid TE, rescaled

Figure 7.12: Power Spectral Density of noise directivity at a radial distance of r = 6Dcyl

for different frequencies.

Figure 7.12c shows the noise directivity at the low frequency hump in the spectrum of

the elastic TE which is close to the first structural frequency. Here, the noise level from

the elastic TE is significantly higher than the rigid one in all directions with a maximum

in the upstream direction. Furthermore, the upper side of the plate is noisier than the

lower in the rigid case and the opposite is true in the elastic case. The comparison of the

rescaled directivity of the rigid TE to the elastic TE shows that the noise is amplified

more strongly in the upstream direction.
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Figure 7.13: Contours of the favre averaged streamwise velocity component ũ1 in the
vicinity of the TE. The elastic fraction of the plate that is coloured in grey.

The directivity of the noise at the second structural frequency is compared in figure 7.12d.

For this frequency the directivity shape seems to be changed when employing the elas-

tic TE, which is in particular apparent from the rescaled directivity of the rigid case.

The excess noise appears to radiate more strongly in the direction perpendicular to

the plate which results in a noise increase. Towards the upstream direction the excess

noise decreases subsequently and leads to a noise reduction in the wall parallel direction.

Overall, the change in directivity for the frequency range centred at fc = 1.8fb and at

the second structural frequency f = 2.2fb indicate that the excess noise is not caused

by the TE noise mechanism. Assuming that the noise originating from the structural

motion has a directivity that is more pronounced in the wall normal direction, it is likely

that the excess noise is generated from the structural motion itself as the spectrum of

the deflection in figure 7.9c also showed higher amplitudes at these frequencies.

7.3.3 Investigation of the Hydrodynamic Near-Field

For the two dimensional flat plate TE noise cases investigated in chapter 6 the recircu-

lation bubble downstream of the cylinder was found to be the most energetic input to

the TE noise mechanism and the structural motion. As it was previously found that
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Figure 7.14: Time-averaged skin-friction cf in the vicinity of the cylinder and TE on
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Figure 7.15: Fluctuations of the total ( ), incident ( ) and scattered ( ) pressure
differences between upper and lower surface.

the elastic TE changes the precise location and length of this recirculating flow region,

figure 7.13 presents the streamwise velocity contours in the vicinity of the cylinder and

the TE for the elastic and rigid plate. In general, the qualitative flow topology is very

similar to the two dimensional case presented in figure 6.23. However, the length of the

separation bubble on the plate appears to be shorter. These findings can be confirmed

with the evolution of the skin-friction cf in streamwise direction that are presented in

figure 7.14. A negative value of skin-friction indicates a recirculation bubble in the time-

average and can be found from −8.9Dcyl to −2.5Dcyl upstream of the TE, which is an

overall upstream shift compared to the two dimensional case. The comparison of the

rigid and elastic TE shows a small upstream shift of the end of the separation bubble.

However, overall the differences are smaller than in the two dimensional case and the

end of the separation bubble is further upstream. Therefore, it is expected that the

input to the TE noise mechanism itself is comparable in both cases.
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Figure 7.16: Fluctuations of the incident ( ) and scattered ( ) pressure differences
between upper and lower surface.

Figure 7.15 shows a comparison of the total, the incident and the scattered pressure

fluctuations for the rigid and elastic TE, calculated using the analysis leading to equa-

tion 2.14. The total pressure difference for both cases peak approximately 1.5Dcyl up-

stream of the TE at different values. However, downstream of that peak the differences

are negligible. Considering the incident field the elastic TE leads to a decrease of the

fluctuations from −4Dcyl up to the TE. The scattered pressure field shows a similar

overall behaviour in the vicinity of the TE. Upstream of −3Dcyl the fluctuation level is

higher than in the elastic case which is likely to be due to the structural motion.

The analysis of the incident field can be carried out in frequency space as well which

allows a comparison for frequency bands of interest as identified in the power spectral

densities presented in figure 7.11 and listed in table 7.2. The results can give valuable

insight on whether noise amplification or damping can be related to the TE noise mecha-

nism or to other noise sources. Furthermore, indications of the physical mechanism of the

noise attenuation can be obtained. Considering the recirculation frequency presented
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in figure 7.16a, differences between the rigid and elastic TE’s are more significant than

in the integral curves of figure 7.16. For the rigid TE the incident pressure fluctuations

are increasing almost monotonically up until the TE location whereas they level off at

−4Dcyl for the elastic TE and thereby reduce the fluctuations at the TE. The scattered

pressure fluctuations are also reduced. Both of these observations are consistent with

the noise reduction that was found for this frequency range in the power spectral density

of figure 7.11 and the spectral directivity shown in figures 7.12a. This indicates that the

noise attenuation for the elastic TE can be attributed to the modification of the incident

pressure field. For the frequency range of the second dominant peak at f = 1.8fb shown

in figure 7.16b the incident and the scattered pressure fluctuations are more amplified

when employing the elastic TE downstream of −5Dcyl. That means that the excess

noise found in figure 7.11b and 7.12b can be related to the TE noise mechanism, which

radiates more noise due to an amplification of the incident pressure field. Figure 7.16c

considers the frequency range of the first additional hump in the spectrum of the elastic

TE and it can be seen that the incident pressure fluctuations peak upstream of the TE

in both cases. These fluctuations are reduced towards the end of the plate and the

reduction is greater when employing the elastic TE. For the frequency range around the

second structural frequency presented in figure 7.16d the incident pressure fluctuations

are higher in the case of a rigid TE over the whole length of the measurement region.

Both of the frequency ranges associated with the structural frequencies showed excess

noise for an elastic TE when the power spectral density at a microphone position and

the spectral directivity were considered. The analysis of the incident and scattered fields

shows that this excess noise is not originating from the TE noise mechanism itself, as

they cannot be related to an amplification of incident pressure fluctuations.

In summary, the elastic TE damps and amplifies the incident pressure fluctuations at

the recirculation bubble frequency and its first harmonic, respectively. It is speculated

that the elastic structure can react fast enough to pressure fluctuations allowing a con-

version of the pressure force to kinetic energy of the structure, leading to a mitigation

of the incident pressure fluctuations. However, the opposite process is possible as well

which leads to an amplification of the incident pressure fluctuations. Concerning the

extraneous noise found in the spectrum of the elastic TE, there is evidence that it does

not originate from a noise source related to the TE noise mechanism itself.

The effect of the elastic TE on the statistics of the velocity field are presented in fig-

ure 7.17a at the streamwise position x = 4hTE just downstream of the TE. The most

apparent difference between the rigid and elastic TE’s is an upward shift in the wall

normal direction. This is likely due to the mean deflection of the elastic TE which was

approximately 1.73hTE . Considering ũ1, it can be found that the elastic TE also slightly

reduces the wake deficit. It can be speculated that this is achieved by smearing out the
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(b) Profiles of the Reynolds stress components downstream of the TE.

Figure 7.17: Velocity and Reynolds stress profiles 4hTE = 0.25Dcyl downstream of the
TE.

position of the TE through the movement of the boundary.

Figure 7.17b compares the Reynolds stress profiles obtained from the two simulations. It

is apparent that the amplitudes of the Reynolds stresses are reduced in the free stream

when employing the elastic TE. The TE noise reduction in that case can potentially be

related to the reduction of the Reynolds stress amplitudes which results in reduced levels

of turbulence. The lower turbulent fluctuations are likely to be related to the changes

observed in the fluctuations of the incident pressure field in figure 7.16.

To assess the energy distribution in the spanwise direction when using the rigid and

elastic TE’s, figure 7.18 presents the spanwise energy spectra corresponding to the

three velocity components downstream of the TE. In the near vicinity of the TE, at

x = 2.2 × 10−2Dcyl, the spectral energy distribution shown in figure 7.18a differs sig-

nificantly for the elastic and rigid TE. For all three velocity components the spectral
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Figure 7.18: Spanwise spectra of the three velocity components at two locations down-
stream of the TE comparing the rigid and elastic TE.

energy of the highest wave numbers are two orders of magnitude lower in the elastic case.

This indicates that the structural movement reduced the amount of structures with a

small spanwise wave-length. For the low wave-number range, however, the streamwise

and spanwise velocity components show a higher energy level. Consequently, spanwise

coherent structures contain more energy than in the rigid TE case, which is likely to be

caused by the spanwise coherent motion of the elastic TE.

Further downstream, at x = 12.54Dcyl, the spanwise spectra obtained from the flow over

a rigid TE feature lower amplitudes for all velocity components in comparison to the
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elastic TE case. It is suggested that the higher energy in the elastic case is due to the

breakdown of the long wave-length structures at the TE. As discussed in the previous

paragraph, it is speculated that the spanwise coherent motion of the elastic TE leads

to higher amplitudes of low wave-number structures. These spanwise relatively coher-

ent structures are then breaking down into smaller structures as they are convected

downstream in the wake, leading to a broader distribution than at the TE and higher

amplitudes than in the rigid case.

Finally, the influence of the TE motion on the turbulent structures in the flow is investi-

gated. Jones & Sandberg (2012) used a metric based on the pressure gradient to analyse

the influence of TE serrations on the turbulent structures in the wake of an airfoil at

angle of attack. It is defined as

Γ =
pxxpxx − pzzpzz
pxxpxx + pzzpzz

, (7.5)

where pxx and pzz refer to the derivative of pressure in the streamwise and spanwise di-

rections, respectively. When Γ = 1 the gradient in the streamwise direction is dominant

and therefore the structures are oriented in the spanwise direction. The opposite is true

for Γ = −1 where the dominant spanwise derivative of pressure indicates structures that

are oriented in the streamwise direction. However, in this metric the time averaged pres-

sure derivatives do not cancel out and it is therefore biased since strong mean gradients

are expected to be present in the vicinity of the vortex generator and the TE. Instead

of basing Γ on the pressure derivatives, Γ could also be computed based on gradients

of the pressure fluctuations and thereby eliminate any influence of the mean. However,

since the noise radiation from the TE is rather coherent in the spanwise direction the

refined Γ-metric would also take differences in the noise radiation between two cases into

account.

Due to the aforementioned problems when using a metric based on the pressure deriva-

tives the vorticity vector ω = (ωx, ωy, ωz) was used to derive a similar quantity that can

indicate the orientation of turbulent structures in the flow. We propose to calculate it

as

Πx =

(
ωx

|ω|

)′2
and Πz =

(
ωz

|ω|

)′2
. (7.6)

This new metric is the variance of the respective normalized vorticity component. Since

only fluctuations are taken into account the vorticity distribution in the mean flow does

not influence the results.

Figure 7.19 shows the contours of the Πx and Πz metric for the rigid and elastic TE in

the vicinity of the vortex generator cylinder, the TE and the wake. The contours of Πx
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Figure 7.19: Comparison of Πx and Πz in the vicinity of the vortex generator cylinder,
the TE and the wake for the rigid and elastic TE.
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are expected to be indicative of streamwise oriented turbulent structures that are com-

monly associated with wall bounded flows. Consistent with that, the highest contour

levels are found in the turbulent region upstream of the TE. In the wake these high levels

subsequently drop off. In the contours shown for the elastic case the mean deflection

of the TE is visible when the figure is viewed closely. However, in comparison to the

rigid TE no significant differences regarding the streamwise alignment of the turbulent

structures are evident.

In the contours of the metric for spanwise oriented structures Πz of the rigid TE a gradual

reduction of the contour levels along the elastic fraction of the TE can be observed. This

can most likely be linked to the separation bubble which leads to a recirculating flow

that is averaged over time and thus coherent in the spanwise direction. Downstream

of the TE the high contour levels of Πz at the interface to the undisturbed free stream

indicate a stronger spanwise orientation of the turbulent structures. A comparison of

the rigid and elastic TE does not show a change in the overall topology.

7.4 Summary of the Findings

The aforementioned flat plate setup was extended to a three dimensional flow. The

spanwise resolution and domain width was validated with a simulation with a higher

resolution and a doubled domain width. The noise radiation from the fully turbulent

flow over the elastic TE was found to be qualitatively similar to the two dimensional case.

However, the noise from the structural motion was found to be relatively more important

than in the two dimensional study and thereby reducing the advantage of the elastic TE.

The analysis of the near field revealed that the motion of the TE increases the energy

for long wavelengths in the spanwise direction at the TE location. Further downstream

in the wake the distribution of energy in the spanwise direction is qualitatively similar

in the rigid and elastic cases, although with a higher energy level in the elastic case. In

addition a new metric to measure the dominant orientation of the turbulent structures

was introduced and applied to the wakes of the rigid and elastic TE’s. Apart from small

differences no evidence of a topological change of the orientation of turbulent structures

was found.



Chapter 8

Summary and Outlook

The principal findings and conclusions from this thesis are summarized in section 8.1.

Furthermore an overview of future research that is enabled by the novel setup is given

in section 8.2 .

8.1 Summary and Conclusions

The role of TE elasticity and its potential to achieve noise reductions has so far only been

discussed in-depth analytically (Jaworski & Peake, 2013; Cavalieri et al., 2016; Manela,

2011; Manela & Huang, 2013) and recently also experimentally (Das et al., 2015). It

was therefore the aim of this project to explore the effect of TE elasticity by means of

high-fidelity numerical simulations. This is highly challenging and interesting from both

a technical and physical point of view. To enable such simulations a virtual boundary

method was extended to compressible flows and implemented into an in-house DNS

code. In the following sections the summaries from the individual chapters are repeated

and concluding remarks about the effect of elasticity are presented in section 8.1.5.

8.1.1 Virtual Boundary Condition for Moving Bodies in High-Fidelity

Simulations with Application to Aeroacoustics

The current state of the art of immersed boundary methods to simulate non-grid con-

forming and moving bodies has been outlined. To the author’s knowledge no method

for direct noise computations involving moving bodies has previously been reported in

literature. From the methods for incompressible flows the boundary data immersion

method (BDIM) was chosen to be extended for compressible flows. The compressible

formulation uses the BDIM meta equation to map the velocity and temperature fields

between a solid body and a fluid subdomain. For certain applications, such as the sim-

ulation of bluff bodies, the proposed mapping of the continuity equation as an interface
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condition between fluid and solid can enhance robustness of the simulation. In addition,

an efficient algorithm to evaluate the signed distance function on curvilinear grids was

presented.

A thorough validation of the novel compressible BDIM framework showed that the

derivative correction increases the accuracy of the simulations compared to the first

order approach. In particular the discontinuity of the velocity gradient at the wall is

modelled much more accurately. This is shown for the very challenging case of a fully

turbulent boundary layer where the discontinuity of the velocity gradient is relatively

high and a broad range of scales in time and space is present in the flow. The case of

a transversely oscillating cylinder in a medium at rest showed that the BDIM is able to

predict the noise radiation from a moving body with high accuracy. Furthermore, flow

induced noise generated by the interaction of a solid body with unsteady fluid flow can

be modelled accurately with the BDIM. In all cases considered, except the simulation of

Tollmien-Schlichting waves, the second order correction reduced the solution error and

improved the convergence rate. It is speculated, that the instability growth is highly

sensitive to the exact value of the velocity gradient at the wall in this case. It can be

regarded as a limitation of the BDIM in general that the value of a field quantity at the

wall location can inherently never be matched exactly, due to the smoothing. With grid

refinement close to the surface the approximation of the value of a field quantity at the

wall can be improved, though. However, in the majority of the applications considered

in the current work the representation of the value at the wall was not found to be a lim-

itation. However, in general the BDIM for compressible flows offers a computationally

efficient yet accurate approach to represent stationary or moving bodies in high-fidelity

numerical simulations with application to aeroacoustics. There is no penalty in allow-

able time step compared to body-fitted simulations when using the BDIM. Also, the

grid resolution does not need to be higher than in an equivalent body-fitted simulation

to accurately reproduce the compressible flow physics. Part of these results have been

published in Schlanderer & Sandberg (2015) and in Schlanderer et al. (2017).

In order to enable fluid structure interaction simulations a structural solver that can be

coupled to the fluid solver was implemented. The Euler-Bernoulli bending beam was

chosen as a structural model. It was validated for deflections in the limit of steady state

with accurate results against the analytical solution of this problem. In addition the

dynamic behaviour was successfully evaluated with the impulse response to an initial

force which was compared to the analytical natural frequencies.

The implemented framework has already been employed successfully for fluid-structure

interaction problems (Serrano Galliano & Sandberg, 2016) and is an enabler for several

other projects.
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8.1.2 Self-Noise of Airfoils with Rigid and Elastic TE Extensions

The effect of rigid and elastic TE extensions attached to a NACA0012 airfoil at angle of

attack was simulated. The comparison between a simulation with and without a rigid

TE extension employing body-fitted boundary conditions only showed a significantly

reduced noise level when the rigid extension was attached. This could be attributed to

a smaller laminar separation bubble which introduced overall lower wall pressure fluc-

tuations on the suction side and a reduction of the generated lift.

For the elastic TE extensions two different material parameter sets were investigated. It

was found that the structural motion was dominated by the vortex shedding frequency

which was close to resonance. In the acoustic far-field higher noise levels in comparison

to the rigid TE were found at the vortex shedding frequency for both parameter sets.

For the case with the highest deflections the vortex shedding frequency was locked in

with the second natural frequency. This lead to a global change of the flow with different

location and intensity of the separation bubble. As the incident pressure fluctuations

were reduced with that parameter set it is argued that the substantial excess noise

originates from the structural motion. The elastic extension with smaller deflections

was found to amplify the incident pressure fluctuations which lead to an increased noise

level as well. In general, a fair comparison between the rigid and elastic TE extensions

was found to be challenging as changes in the hydrodynamic near-field were found far

upstream of the actual TE location.

8.1.3 Noise from an Elastic TE of a Flat Plate

For the generic setup to study the influence of TE elasticity using a flat plate with a vor-

tex generator, three different parameter sets for the elastic fraction of the TE have been

considered. The effectiveness of a parameter set in reducing TE noise highly depended

on the response of the motion to the input loading from the flow. In the far field spectra

of the elastic TE’s excess noise at the structural frequencies was found. The examination

of the hydrodynamic near field showed that this noise can originate from the TE as a

result of an amplification of the incident field. However, in most cases the data showed

no evidence that the excess noise is radiated from the TE and it is suggested that the

excess noise is due to motion induced sound from the elastic body. Finally, a reduction

of the radiated noise was found in specific frequency ranges and for one parameter set

also globally. This noise reduction was associated with two mechanisms: Firstly, the

motion of the TE modified the incident pressure fluctuations and therefore the input

to the TE noise mechanism. Secondly, the elastic TE was less efficient in transforming

energy from hydrodynamic to acoustic pressure fluctuations.
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The investigation of the effect of structural damping showed a potential for significant

noise reductions compared to the undamped and the rigid cases. The data indicated

that this was achieved by reduced fluctuations of the deflections at the structural and

the forcing frequencies. The higher amplitude peak of the incident pressure field at the

TE for the damped cases suggests that some noise reduction potential of the elastic TE

without damping is compromised. However, this minor unfavourable effect is outweighed

by the reduction and elimination of the excess noise at the structural frequencies which

leads to an overall noise reduction.

It should be mentioned that results obtained with the current framework are qualitatively

consistent with the results published in Schlanderer & Sandberg (2013) with a lower

order framework, despite uncertainties about the accuracy of the noise generation from

moving bodies represented by the feedback loop immersed boundary approach.

8.1.4 Noise from a Turbulent Flow Convecting Over an Elastic TE

The aforementioned flat plate setup was extended to a three dimensional flow. The noise

radiation from the fully turbulent flow over the elastic TE was found to be qualitatively

similar to the two dimensional case. However, the noise from the structural motion

was found to be relatively more important than in the two dimensional study, thereby

reducing the advantage of the elastic TE. The analysis of the near field revealed that the

motion of the TE increases the energy for long wavelengths in the spanwise direction

at the TE location. Further downstream in the wake the distribution of energy in

the spanwise direction is qualitatively the same in the rigid and elastic cases with a

higher energy level in the elastic case, though. In addition a new metric to measure the

orientation of the turbulent structures was introduced and applied to the wake of the

rigid and elastic TE. Apart from small differences no evidence of a topological change

of the orientation of turbulent structures was found. Part of these results are published

in Schlanderer & Sandberg (2016).

8.1.5 Concluding Remarks About the Effect of Elasticity

In general, the potential of elastic TE’s to reduce noise that was predicted by the ana-

lytical studies of Jaworski & Peake (2013) and Cavalieri et al. (2016) as well as Manela

(2011) and Manela & Huang (2013) could be confirmed with the numerical studies con-

ducted in this work. On the one hand, the actual noise reduction that can be achieved

critically depends on the response of the structure to the fluid loading. Therefore, the

contribution from motion induced sound has to be taken into account in analytical mod-

els which is not the case in the study of Jaworski & Peake (2013). On the other hand,

the strength of this noise source is likely to become less important for very low Mach
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number flows as the scaling of the motion induced noise is M6 compared to M5 of TE

noise.

Structural damping appears to be an important parameter to enhance the benefits of

an elastic TE significantly. The conversion of kinetic energy of the moving structure

into internal energy reduces the fluctuations of the structural deflections. Consequently,

the motion induced noise is reduced or completely eliminated. Furthermore, the energy

from the fluid flow is not only redistributed to the natural frequencies of the structure

but also dissipated.

8.2 Future Work

The main contribution of the work was the development of a versatile numerical frame-

work for fluid-structures interaction simulations in the context of aeroacoustics. In addi-

tion initial studies on the effect of TE elasticity have been carried out. In the following

paragraphs avenues for further studies are outlined.

In-depth Data Analysis To date, a rigorous correlation between the noise received

in the far-field and the motion of the elastic TE has not been carried out. Such a

correlation would give further insight into how the far-field noise is influenced by the

near-field motion. Furthermore, it would be interesting to model the motion-induced

sound analytically based on the deflection time history and determine the exact contri-

bution to the overall noise radiation and its directivity pattern. With the insight from

these studies criteria to achieve a noise attenuation could be developed.

Effect of Elasticity on Broadband Trailing-Edge Noise In the present work

the noise sources investigated showed a tonal behaviour with dominant peaks in the

spectra in the acoustic far-field but also of the structural motion. An interesting research

question is how an elastic TE would respond to a broad band pressure loading from a

turbulent boundary layer and in particular how this would affect the potential for a

noise reduction and if excess motion induced noise can be observed as well.

Fully Three Dimensional Structural Deflections The structural model that was

employed for the three dimensional simulations in this work did not account for variations

in the spanwise direction and thus the structural motion was coherent in this direction.

However, a structure that was able to also deform in the spanwise direction would be

able to react more directly to local pressure disturbances in the flow and thus lead to

reduced correlation length of the flow in the spanwise direction. It is anticipated that

this could increase the benefits of elastic TE’s for noise reduction.
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Elastic Serrated Trailing-Edge Since TE serrations have been shown to be an

effective measure for TE noise reduction it would be interesting to investigate if the

noise reduction potential of elastic TE’s can enhance the benefits of serrated TE’s. To

that end the BDIM would need to be extended to fully three dimensional geometries

and coupled to a finite-element solver to calculate the structural deflections.
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