

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aeronautics, Astronautics and Computational Engineering

GPU Based Aeroacoustic Computation with Prefactored Compact Schemes

by

Shuming Miao

Thesis for the degree of Doctor of Philosophy

August_2015

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aeronautics, Astronautics and Computational Engineering

Thesis for the degree of Doctor of Philosophy

GPU BASED AEROACOUSTIC COMPUTATION WITH PREFACTORED COMPACT SCHEMES

by Shuming Miao

In this work a computational aeroacoustic (CAA) solver, based on finite difference method, used for

sound propagation in engineering practice, is accelerated on graphics processing units (GPUs) by

using CUDA FORTRAN. The high-fidelity CAA solver is governed by linearized Euler equations (LEE),

which features high-order, optimized prefactored compact schemes with low dissipation and

dispersion. Solving prefactored compact schemes gives rise to bidiagonal matrices and it is the

dominant computational cost in the CAA solver. Multiple methods for solving the bidiagonal matrix

are investigated on GPUs. The numerical methods achieve different performance in the x, y and z

directions due to anisotropic memory access pattern. The anisotropic memory access pattern refers

to coalesced memory access in a direction, which increases the computational performance, and

redundant memory access in the other directions, which increases the computational cost. A new

hybrid method is proposed in terms of the anisotropic memory access and a strategy is formulated

for solving the bidiagonal matrix in 3D computations. In addition, multiple-GPU implementation is

added to the solver. Different parallel strategies are applied to different subroutines in accordance

with different memory access patterns. The data transfer between multiple GPUs is also optimized

by a direct data transfer between GPUs. Based on a comparison of the wall-clock time on the same

amount of CPU cores and GPUs, speed-ups of 40-80 are achieved in double precision.

The new solver is used to investigate the scattering of propeller noise off a cylinder and the

refraction effect of boundary layer. It is found that the propagation of thickness noise concentrates

on the ring plane whereas that of loading noise concentrates on the ring plane and inclines

upstream. In addition, the refraction effect of the boundary layer is weak and negligible at M =

0.205 whereas it is significant at M = 0.75. An extension of computation shows that the refraction

effect of the boundary layer becomes important when M ≥ 0.3.

Finally, the new solver is employed to predict the scattering of propeller noise off an ATR-72 like

wing-body at a full scale. Results show that the current solver can be used to predict the large-scale

engineering cases and an acceptable wall-clock time and speed-up is achieved.

i

Table of Contents

Table of Contents .. i

List of Tables ... v

List of Figures ... vii

DECLARATION OF AUTHORSHIP ... xiii

Acknowledgements .. xv

Nomenclature .. xvii

Chapter 1: Introduction ... 1

1.1 Overview ... 1

1.2 Literature Review .. 3

1.2.1 Computational Aeroacoustics .. 3

1.2.2 CAA Numerical Schemes .. 5

1.2.3 High Performance Computing .. 14

1.2.4 The Scattering of Propeller Tonal Noise ... 27

1.3 Aims of the Current Work ... 33

1.4 Original Contributions ... 33

1.5 Structure of Thesis .. 34

Chapter 2: High-Order Scattering Solver .. 37

2.1 Governing Equations ... 37

2.2 Flowchart .. 38

2.3 Prefactored Compact Schemes .. 39

2.4 Explicit Filters .. 41

2.5 Low-Dissipation and Low-Dispersion Runge-Kutta Scheme 42

2.6 Boundary Conditions ... 43

2.6.1 Inflow Condition .. 44

2.6.2 Outflow Condition ... 45

2.6.3 Inviscid Wall Condition .. 46

2.6.4 Symmetry Condition .. 48

2.7 Index Transformation, Buffer Packing and Unpacking 48

2.8 Subroutine Categories ... 50

ii

2.9 Summary .. 50

Chapter 3: Efficient Bidiagonal Matrix Solver on a GPU 51

3.1 A Simple Serial Solver.. 51

3.2 Bidiagonal Matrix Solver on a GPU .. 55

3.2.1 Natural Method .. 55

3.2.2 Parallel Cyclic Reduction Method .. 56

3.2.3 MatMul Method .. 59

3.2.4 Hybrid Method .. 61

3.3 Performance ... 62

3.4 Analysis on Performance ... 64

3.5 Summary .. 66

Chapter 4: Development of SotonLEE on GPUs .. 67

4.1 Explicit Stencil Type .. 67

4.2 Point-wise Type .. 70

4.3 Unstructured Gather Type .. 70

4.4 Reduction Type ... 70

4.5 Minimization of Data Transfer .. 72

4.6 Performance ... 77

4.6.1 Radiation of a Spinning Mode Out off an Unflanged Duct 77

4.6.2 Scattering of a 2D Gaussian Pulse by a Cylinder 80

4.6.3 A Spinning Mode Scattering off a 2.5D Engine Bypass Duct 81

4.6.4 A Spinning Modal Radiation Out of a Generic Engine Bypass Duct ... 82

4.6.5 A Spinning Modal Propagation Out of a 3D Engine Bypass with

Bifurcations ... 83

4.6.6 Performance ... 85

4.7 Summary .. 86

Chapter 5: Acoustic Scattering off a Cylinder ... 87

5.1 Source Model.. 87

5.1.1 Analytical Solution ... 87

5.1.2 Numerical Solution .. 91

iii

5.2 Low Mach Number Setup .. 96

5.2.1 Sound Source .. 96

5.2.2 Computation Setup ... 97

5.2.3 Mean Flow ... 98

5.2.4 Results of Thickness Noise ... 98

5.2.5 Results of Loading Noise .. 103

5.3 Cruise Mach Number Setup ... 107

5.3.1 Case Setup ... 108

5.3.2 Results of Thickness Noise ... 108

5.3.3 Results of Loading Noise .. 111

5.4 Effect of Mach Numbers on Refraction Effect of Boundary Layer 114

5.5 Performance ... 117

5.6 Summary ... 117

Chapter 6: Scattering of Propeller Noise off a Wing body 119

6.1 Sound Source .. 119

6.2 Analytical Solution .. 120

6.3 Geometry .. 121

6.4 Mean Flow .. 122

6.5 Computation Setup ... 122

6.6 CAA Mesh ... 124

6.7 Results .. 126

6.7.1 Results of Thickness Noise ... 126

6.7.2 Results of Loading Noise .. 133

6.8 Performance ... 140

6.9 Summary ... 142

Chapter 7: Conclusions and Future Work ... 144

7.1 Conclusions ... 144

7.1.1 Numerical Methods ... 144

7.1.2 Introduction of Propeller Noise Source into LEE............................. 145

7.1.3 Propeller Noise Scattering off a Cylinder with Boundary Layer 146

iv

7.1.4 Propeller Noise Scattering off a Wing-Body at a Full Scale 147

7.2 Future Work ... 147

Glossary of Terms ... 149

Bibliography ... 151

v

List of Tables

Table 1-1 Features of high order methods implemented by FD, FV, DG and SD methods. 6

Table 1-2 Socket performance comparisons between used CPUs and GPUs 20

Table 1-3 The contribution of the subroutines in a typical 3D computation. 23

Table 3-1 Wall-block time taken in Natural, PCR and MatMul implementations. 61

Table 3-2 Wall-clock time and speed-ups of BenLEE (2D) with Natural, PCR and MatMul methods.

 ... 63

Table 3-3 Wall-clock time and speed-ups of BenLEE (2D) with Hybrid methods. 63

Table 3-4 Wall-clock time and speed-ups of BenLEE (3D) with Natural, PCR and MatMul methods.

 ... 63

Table 3-5 Wall-clock time and speed-ups of BenLEE (3D) with Hybrid methods. 63

Table 3-6 The computational time spent in each direction. .. 65

Table 4-1 Data transfer between two GPUs by MPI + CUDA approach....................................... 74

Table 4-2 Data transfer between two GPUs via GPUDirect RDMA. ... 75

Table 4-3 The speed-ups of the benchmark cases. .. 85

Table 5-1 Wall-clock time comparisons in seconds. .. 117

Table 6-1. Wall-clock time comparisons in seconds. ... 140

vii

List of Figures

Figure 1.1 Schematic of three sound regions in hybrid method. .. 3

Figure 1.2 Resolved wavenumbers of typical finite difference schemes. 10

Figure 1.3 Filtering performance of explicit filters. ... 11

Figure 1.4 Dissipation error of RK schemes. .. 12

Figure 1.5 Dispersion error of RK schemes. ... 13

Figure 1.6 Sketch of distributed memory model. .. 15

Figure 1.7 Sketch of shared memory model. ... 16

Figure 1.8 Sketch of hybrid programming model. ... 17

Figure 1.9 Sketch of heterogeneous programming model. ... 18

Figure 1.10 Socket floating-point operations per second (FLOPs) for CPUs and GPUs [16]. 19

Figure 1.11 Socket memory bandwidth for CPUs and GPUs [16]. ... 19

Figure 1.12 The schematics of thread and memory hierarchy in the CUDA programming model.21

Figure 1.13 Schematics of 3D data layout in explicit scheme computation on the GPU. 22

Figure 1.14 The definition of control surface. ... 29

Figure 2.1 Flowchart of SotonLEE. ... 38

Figure 2.2 Boundary conditions in the scattering of a spinning mode off a duct case. 44

Figure 2.3 Grid stretching. ... 45

Figure 2.4 Region close to wall. ... 47

Figure 2.5 Sketch of a typical mesh with the O-H topology. .. 49

Figure 3.1 Flowchart of BenLEE. .. 52

Figure 3.2 Physical domain in 2D propagation case. ... 53

Figure 3.3 Acoustic pressure contours, cx = 0.5. .. 54

viii

Figure 3.4 Pressure waveforms along y = 0, cx = 0.5. .. 55

Figure 3.5 Matrix multiplication by accumulating product of sub-matrices. 60

Figure 3.6 Summary of speed-ups of BenLEE on a GPU. ... 64

Figure 4.1 The anisotropic 2D tiling method in explicit filters... 68

Figure 4.2 Reduction with sequential addressing. .. 71

Figure 4.3 Flowchart of SotonLEE with MPI + CUDA implementation. 73

Figure 4.4 Data transfer by using MPI + CUDA approach. MPI rank 0 sends a message and MPI rank

1 receives a message. The boxes which are transmitted by the curves denote the

units the data travels through when the memory copy operation occurs. 75

Figure 4.5 Data transfer by using GPUDirect RDMA. MPI rank 0 sends a message and rank 1

receives a message. The boxes which are transmitted by the curves denote the

units the data travels through when the memory copy operation occurs. 76

Figure 4.6 Flowchart of SotonLEE with GPUDirect RDMA implementation. 76

Figure 4.7 Schematic of the physical domain with boundary conditions. 77

Figure 4.8 Acoustic radiation out of a semi-infinite duct. ... 80

Figure 4.9 Schematics of 2D cylinder scattering case. ... 80

Figure 4.10 Physical domain with boundary conditions in 2.5D bypass case. The red curves denote

inviscid solid engine wall, while the grey parts denote the outflow buffer zones

which surround the physical domain. ... 81

Figure 4.11 The background mean flow field for bypass duct radiation. 82

Figure 4.12 Acoustic pressure and SPL radiated by a 2.5D bypass duct. 82

Figure 4.13 Sound propagation out of a 3D bypass duct. ... 83

Figure 4.14 The spinning modal pattern in a generic 3D bypass duct, m =12, n = 1. 83

Figure 4.15 Computational setup for sound radiation out of an engine bypass duct with

bifurcations.. 84

Figure 4.16 Sound radiation out of an engine bypass duct with bifurcations. 84

Figure 4.17 Modal radiation patterns of the engine bypass duct with bifurcations. 85

ix

Figure 4.18 The slices of modal pattern along the bypass duct with bifurcations. 85

Figure 5.1 Sketch of ring model. .. 91

Figure 5.2 SPL directivities on the ring plane with r = 6. .. 93

Figure 5.3 Acoustic pressure along the line x = 0, z = 0. .. 93

Figure 5.4 Acoustic signature at line with x = 0, z = 5, t = 68 (0.2 s with dimensional value). 94

Figure 5.5 Scaled acoustic signature at line with x = 0, z = 5, t = 68 (0.2s with dimensional value).

 ... 95

Figure 5.6 PSDs of the first three harmonics of a ring of spinning monopoles. 96

Figure 5.7 Sketch of spinning sources and scattering cylinder. ... 97

Figure 5.8 Sketch of the physical domain with boundary conditions. ... 98

Figure 5.9 Mean flow field obtained from RANS. .. 98

Figure 5.10 Instantaneous pressure contours simulated by LEE in uniform flow. 99

Figure 5.11 SPL contours simulated by LEE in uniform flow. ... 100

Figure 5.12 SPL values on the cylinder wall along the stream-wise direction. 100

Figure 5.13 Far-field SPL directivities. .. 101

Figure 5.14 SPL values on the cylinder wall along the stream-wise direction. 102

Figure 5.15 Far-field SPL directivities. .. 102

Figure 5.16 Acoustic pressure radiated by a pair of monopoles. .. 103

Figure 5.17 Instantaneous pressure contours simulated by LEE in uniform flow. 105

Figure 5.18 SPL contours simulated by LEE in uniform flow. ... 105

Figure 5.19 Radiation pattern by three kinds of spinning dipoles. .. 105

Figure 5.20 SPL values on the cylinder wall along the stream-wise direction. 106

Figure 5.21 Far-field SPL directivities. .. 106

Figure 5.22 Mean flow field obtained from RANS. .. 108

Figure 5.23 Instantaneous pressure contours simulated by LEE in uniform flow. 109

x

Figure 5.24 SPL contours simulated by LEE in uniform flow. .. 110

Figure 5.25 SPL on the cylinder wall. ... 110

Figure 5.26 Far-field SPL directivities. ... 110

Figure 5.27 Instantaneous pressure contours simulated by LEE in uniform flow. 112

Figure 5.28 SPL contours simulated by LEE in uniform flow. .. 113

Figure 5.29 SPL on the cylinder wall. ... 113

Figure 5.30 Far-field SPL directivities. ... 113

Figure 5.31 Difference of SPL caused by boundary layer. ... 115

Figure 5.32 Acoustic wave propagation through boundary layer. .. 116

Figure 6.1 Sketch of the spinning sources. .. 120

Figure 6.2 PSDs of a single ring of spinning monopoles along the line at x = 0, z = 5 in free space.

The centre of the ring is placed at (0, 0, 0). .. 120

Figure 6.3 Dimensions of the wing-bodywing body. ... 121

Figure 6.4 Mean flow field around the wing body. ... 122

Figure 6.5 Dimensions of physical domain. ... 123

Figure 6.6 Sketch of the observer rings and FW-H control surface. .. 124

Figure 6.7 Mesh details of important locations... 125

Figure 6.8 Sound pressure contours on the solid wall. ... 127

Figure 6.9 SPL contours on the solid wall. ... 127

Figure 6.10 Instantaneous pressure contours in RANS mean flow. .. 128

Figure 6.11 SPL contours in RANS mean flow. ... 129

Figure 6.12 Comparison of SPL on the fuselage in uniform flow and in RANS flow. 130

Figure 6.13 Near-field SPL directivities. ... 131

Figure 6.14 Far-field SPL and PSDs in RANS mean flow on the half ring with the origin at (8.8, 0,

0.94) and a radius of 1000. .. 132

xi

Figure 6.15 Far-field SPL and PSDs in RANS mean flow on the ring with the origin at (8.8, 0, -

999.06) and a radius of 1000 under the wing body. 133

Figure 6.16 Sound pressure contours on the wing body. .. 134

Figure 6.17 SPL contours on the wing body. .. 134

Figure 6.18 Instantaneous acoustic pressure contours around the wing body in RANS mean flow.

 ... 135

Figure 6.19 SPL contours around the wing body in RANS mean flow. 136

Figure 6.20 Comparison of SPL on the fuselage in uniform flow and in RANS flow. 137

Figure 6.21 SPL directivities at the near-field. ... 138

Figure 6.22 Far-field SPL and PSDs in RANS mean flow on the half ring with the origin at (8.8, 0,

0.94) and a radius of 1000 on the ring plane... 139

Figure 6.23 Far-field SPL and PSDs in RANS mean flow on the ring with the origin at (8.8, 0, -

999.06) and a radius of 1000 below the wing body. 140

xiii

DECLARATION OF AUTHORSHIP

I, SHUMING MIAO, declare that this thesis and the work presented in it are my own and have

been produced by me as the result of my own original research:

‘GPU BASED AEROACOUSTIC COMPUTATION WITH PREFACTORED COMPACT SCHEMES’.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at this

University;

2. Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly attributed;

4. Where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:

 S. Miao, X. Zhang, O. G. Parchment, and X. Chen. ‘A Fast GPU Based Bidiagonal Solver for

Computational Aeroacoustics,’ 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia,

2014.

 S. Miao, X. Zhang, O. G. Parchment, and X. Chen. ‘A fast GPU based bidiagonal solver for

computational aeroacoustics,’ Computer Methods in Applied Mechanics and Engineering,

vol. 286.pp. 22-39, 2015.

 S. Miao, Y. Hou, and X. Zhang. ‘Evaluation AND COMPARISON OF LINEARIZED EULER

EQUATIONS AND EQUIVALENT SOURCE METHOD,’ The 22nd International Congress on

Sound and Vibration, Florence, Italy, 2015.

Signed: ...

Date: ...

xv

Acknowledgements

The author would like to thank my supervisors Prof. Xin Zhang, and Dr. Zhiwei Hu for providing

support, guidance and encouragement throughout the course of my PhD. Thanks must also go to

Dr. Oswald Parchment for invaluable support with high performance computing.

The author would also like to thank Sylvain Grosse who continually helped me to revise the wing

body geometry, and to Dr. David Angland who offered much data and many suggestions on the

setup of RANS simulation of the ATR 72-like wing body.

Thanks are also given to my colleagues, Xiaoxian, Yu, James, Ryu, Fernando, Fuyang and Meng who

gave much support and many suggestions.

xvii

Nomenclature

Roman

B Blade number

aF, bF, cF Coefficients of RHS forward derivative

aB, bB, cB Coefficients of RHS backward derivative

C Coefficient Matrix

c Speed of sound

ci,j Coefficients of explicit filter

Di,j,k Primitive derivative

DF
i,j,k, DB

i,j,k Forward, backward derivatives

e, s Biased coefficients of optimized prefactored compact scheme

F Force

f primitive variable matrix

f Control surface

G Green’s function

H Heaviside step function

h Elimination step

J Bessel function of the first kind

K Incremental vector at an intermediate stage

k Wavenumber

L Length

l Local force

M Mach number

M Total elimination step

xviii

m Spinning order of duct mode

n Normal vector

Nx, Ny, Nz Domain dimension in the x, y and z directions

p Pressure

pp Fraction of code which can be parallelized

PT Thickness Noise

PL Loading Noise

q Monopole strength

r Amplification factor, radius

rn Numerical amplification factor

re Exact amplification factor

s1, s2, s3, s4, s5 Source terms in LEE

sp Fraction of code in serial

t Time

Tij Lighthill’s stress tensor

U Solution vector

Utarget Forced field in buffer region

u, v, w Velocity components

V0 Velocity of mean flow

x, y, z Cartesian coordinates

Greek

α, β Coefficients of optimized prefactored compact scheme

γ Ratio of specific heat

δ Dirac Delta function

xix

ε Amplitude of perturbation

θ Angle in the azimuthal direction

ξ, η, ζ Coordinates in the computational domain

ρ Density

σ Damping coefficient

τ Source time

τij Viscous stress tensor

φ Angle on the ring plane

ω Angular frequency

Subscripts

()0 Mean flow field

()ret Values at retarded time

Superscripts

- Filtered field

()B Forward derivative

()F Forward derivative

()’ Perturbation

Abbreviations

2D Two Dimensional

2.5D Two-and-a-half Dimensional

3D Three Dimensional

AA Acoustic Analogy

ANTC Airbus Noise Technology Centre

APU Accelerated Processing Unit

xx

ATR Regional Air Transport

BEM Boundary Element Method

BL Boundary Layer

BPF Blade Passing Frequency

CAA Computational AeroAcoustics

CESM Complex Equivalent Source Method

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy condition

CGNS CFD General Notation System

CPU Central Processing Unit

CR Cyclic Reduction

cuBLAS CUDA Basic Linear Algebra Subroutines

CUDA Compute Unified Device Architecture

DG Discontinuous Galerkin

DNS Direct Numerical Simulation

DLR German Aerospace Centre

DRP Dispersion-Relation-Preserving

FDM Finite Difference Method

FEM Finite Element Method

FLOPS FLoating-point Operations Per Second

FVM Finite Volume Method

FW-H Ffowcs Williams and Hawkings

GPGPU General Purpose computing on Graphics Processing Unit

GPU Graphics Processing Unit

xxi

HPC High Performance Computing

ISVR Institute of Sound and Vibration Research

LaRC NASA Langley Research Centre

LDDRK Low-Dissipation and Low-Dispersion Runge-Kutta

LEE Linearized Euler Equations

LHS Left Hand Side

MPI Message Passing Interface

NRBC Non-Reflecting Boundary Condition

OpenACC Open Computing Language

OpenCL Open Accelerators

OpenMP Open Multi-Processing

PCI Peripheral Component Interconnect

PCR Parallel Cyclic Reduction

PGI The Portland Group, Inc

PPW Points Per Wavelength

PSD Power Spectral Density

RAM Random-Access Memory

RANS Reynolds-Averaged Navier-Stokes

RD Recursive Doubling

RDMA Remote Direct Memory Access

RHS Right Hand Side

RK Runge-Kutta

RPM Revolutions Per Minute

SD Spectral Difference

xxii

SE Spectral Element

SM Streaming Multiprocessor

SPL Sound Pressure Level

SV Spectral Volume

URANS Unsteady Reynolds-Averaged Navier-Stokes

UVA Unified Virtual Addressing

Chapter 1

1

Chapter 1: Introduction

1.1 Overview

With the development of civil aircraft design requirements, noise generated by aircrafts has

become an increasingly important issue for a number of reasons. First, the continuously growing

air traffic and a rise in public awareness of its impact on the environment have forced the

government to make new regulations on airport noise emission [1]. Second, noise emission is

treated as an important performance aspect of the airplane. For example, the whole European

aviation industry aims to reduce noise by 50% by 2020 and by 65% by 2050, compared to typical

new aircrafts manufactured in 2000 [2, 3]. Lastly, many airports regard noise as a major problem

[1, 4]. Effective measures of noise reduction have to be adopted if a long-term increase in air traffic

is to be sustained and this will require further investigation into the physics of aerodynamically

generated noise.

With the increasing demand for understanding the physics of aerodynamically generated sound as

well as the development of computational power of computers and numerical techniques,

computational aeroacoustics (CAA) is increasingly employed to study airframe/engine noise.

Computational aeroacoustics focuses on the generation, propagation and radiation of aerodynamic

sound and requires time-accurate simulations [5]. Compared to that of an aerodynamic flow field,

the amplitude of aeroacoustic field is small (normally five or six orders smaller) [6]. However, it

travels a long distance [7]. Consequently, the numerical methods in CAA must be of high-order

accuracy, and have low dissipative and dispersive properties. The resolution of a discretized mesh

has to be kept high up to observer points to accurately capture the sound wave. These factors result

in high cost and long runtime of CAA simulations, which can deter CAA methods from being applied

to real engineering problems.

A generic CAA engineering problem is the prediction of the propeller/turboprop noise scattering

off an aircraft. The computational domain is large and the grid resolution has to be high enough to

capture the necessary harmonics of the blade passing frequencies (BPF) with high sound energy. In

addition, complex geometry and requirements for the stencil size of high order schemes at

boundaries also increase the total mesh amount. Some studies have shown that direct computation

of turboprop noise generation and propagation with real-sized wings using an unsteady Reynolds-

averaged Navier-Stokes (URANS) is prohibitively expensive [8], let alone for a wing body. Therefore,

a hybrid method is preferred in some studies [9, 10]. A CAA hybrid method splits a computational

domain into different coupled regions and applies different governing equations to each region.

Chapter 1

2

Appropriate assumptions and simplifications are made in the propagation and radiation regions so

that the computational cost is reduced significantly. By using optimized CAA high-order schemes

[11-14], the total size of mesh points can be reduced further. The CAA high-order schemes provide

high-order accuracy, low dissipation and dispersion properties and resolve acoustic waves on a

much coarser mesh. Consequently, the computational cost is reduced by using CAA high-order

schemes. Given a harmonic wave ����, the resolved harmonic wave can be described by �����, in

which �, called true wave number, is a real number whereas ��, called resolved wave number, is a

complex [11-14]. The resolved wave can be expressed in real and imaginary parts:

 ()r i i r ri i i iie e e e re         (1.1)

In which, r defines the dissipation error while (�� − �) defines the dispersion error. The CAA high-

order schemes endeavour to make r as 1, which means low dissipation, and (�� − �) as 0, which

means low dispersion, at an extent of �. Though CAA codes use parallel processing, e g., message-

passing interface (MPI) [15] on a high performance computing (HPC) cluster, the unsteady

simulations, millions or even tens of millions of mesh points, and high-order schemes make the

computational cost expensive and high demand on computing resources, which prevents CAA from

being extensively applied to real engineering problems.

To address the complexity of aerodynamic noise phenomena and to meet the stringent accuracy

requirements of numerical schemes employed in sound computation, significant improvements in

the available computing resources are necessary. HPC plays an indispensable role in modern

numerical simulations. A graphics processing unit (GPU), common in desktop computers, has higher

floating-point operation performance and memory bandwidth than a multi-core central processing

unit (CPU) [16]. These features have motivated numerous studies in the area of general-purpose

computing on GPUs (GPGPU). Recent developments in the use of GPGPU applications in

computational fluid dynamics (CFD) [17-22] and room acoustics [23-25] have encouraged the

author to extend these efforts to the CAA field.

The aims of this research were to first accelerate a high-order, transient acoustic scattering

program, which features high-order, low-dissipation and dispersion schemes based on finite

difference method, with multiple GPU implementations. Second, employed this new efficient solver

to investigate the propeller noise scattering off a cylinder and the refraction effect of the boundary

layer computationally. Finally, predicted the propeller noise scattering off a wing-body at a full scale

and evaluated the speed-up on the large-scale engineering case with complex geometry.

Chapter 1

3

1.2 Literature Review

CAA simulations are transient and computationally expensive. Multiple aspects of efforts which

cover the governing equations on physics, the numerical schemes and HPC on implementation are

performed to reduce the computational cost and wall-clock time. On physical models, a hybrid

method is used to reduce the computational cost in the sound propagation and radiation regions.

On numerical methods, the CAA high-order low-dissipative and low-dispersive schemes are

employed to reduce the mesh resolution. Finally, on HPC aspects, HPC computers and GPUs are

used to accelerate CAA applications. This section reviews relevant methods used in this research.

1.2.1 Computational Aeroacoustics

CAA investigates sound generation, propagation and radiation in airflows by using numerical

methods. The CAA hybrid method splits a computational domain into different coupled regions and

applies different governing equations to each region as shown in Figure 1.1. This research focuses

on the propagation model.

Figure 1.1 Schematic of three sound regions in hybrid method.

1.2.1.1 Source Region

In the sound source region, a strong coupling exists between aerodynamic field and acoustic field.

Both fields interacts with each other and cannot be separated [5]. Non-linear effects and viscous

effects normally play an important role in sound generation and propagation in this region. The

source region is normally governed by the Navier-Stokes equations to include the non-linear effect

and viscous effect. In the low Mach number flow, the wavelength of turbulence close to a solid

object is much smaller in comparison to the acoustic length [26], thus the mesh resolution is very

high, which makes the simulation computationally expensive. The source region must be kept as

Chapter 1

4

small as possible for the sake of efficiency yet large enough to include all the important sound

sources.

1.2.1.2 Propagation Region

The propagation of sound forms a link between the generation and the radiation of noise if there

are shielding objects outside the source region as shown in Figure 1.1, because the acoustic analogy

[27] based on free-space Green’s function cannot be employed directly. The control surface used

in the computation of sound radiation has to be placed sufficiently far away so that it includes the

shielding objects. The shielding objects cause sound reflection and refraction effects. Consequently,

acoustic far-field directivities and the near-field sound pressure levels (SPL) can change due to the

shielding objects. In the propagation region, a weak coupling exists between the aerodynamic field

and acoustic field [5]. Sound is regarded as a small disturbance propagating in a non-uniform flow

field with solid geometries. The feedback of the sound field onto the flow field is ignored [26]. In

the propagation model, the noise source can be extracted from simulations in the source region,

obtained from experiments and modelled by analytical methods. The noise sources are introduced

by the inflow boundary condition or source terms at right hand side (RHS) of the governing

equations. Therefore, aeroacoustic installation effects of aircraft components can be quantified in

comparison to the noise in free space. Some innovative configuration designs, such as Rear Fuselage

Nacelle, Scarfed Aft Fan and ‘flying wing’ [28], which use airframe components as shielding objects

to reduce the sound energy received by observers on the ground, can be studied efficiently.

Another considerable advantage of the propagation model is that linear disturbance equations are

used as the governing equations, ignoring sound non-linear effects, viscosity and feedback on the

background mean flow field. This reduces the computational cost in comparison to a sound

generation solver. Based on the simplifications above in the propagation region, the general

governing equations of sound propagation in the non-uniform flow field can be described by

linearized Euler equations (LEE). LEE is used extensively in some CAA communities, such as DLR [10,

29, 30], NASA Langley Research Centre (LaRC) [31], Institute of Sound and Vibration (ISVR) [32, 33]

and Airbus Noise Technology Centre (ANTC) [34-37]. LEE can describe three types of perturbation

waves: acoustic, vortical and entropy waves. It is hard to distinguish between them by using

numerical methods. When the perturbations only contain sound waves or when other waves can

be ignored, LEE can be used to simulate the sound propagation. When numerical methods are

employed to solve LEE it is a key point for numerical schemes to keep the same wave numbers as

partial differential equations [11]. This involves high-order, low-dissipative and low-dispersive CAA

schemes used in current research which will be discussed in section 1.2.2.

Chapter 1

5

1.2.1.3 Radiation Region

The radiation region is free of solid objects, thus acoustic analogies (AA) based on free-space

Green’s function are used to predict radiation efficiently when the volume quadrupoles are ignored

[27, 38]. In the radiation region, acoustic disturbance is typically travelling in a uniform mean flow.

No coupling exists between aerodynamics and acoustics [5]. A control surface, which encompasses

all the important sound information, is used to collect the sound information. Subsequently, the

control surface is regarded as a sound source surface which radiates sound outwards.

1.2.2 CAA Numerical Schemes

Because a sound wave travels a long distance [7], spatial derivative and time integral schemes have

to be high-order, low-dissipative and low-dispersive [11-14, 39, 40]. Those acoustic waves which

are not resolved with fidelity, called spurious short waves, have to be damped by high-order filters

[41-43]. These high-order, low-dissipative and low-dispersive schemes resolve higher wave

numbers in comparison to low-order schemes in some CFD codes which mainly focus on the flow

field close to a solid object and the mean quantity such as lift coefficient. Consequently, the total

mesh amount can be reduced because fewer mesh points are required to resolve an acoustic wave

with a given frequency. Combined with a high-order low-dissipative and low-dispersive time-

marching method, the time-marching step size in time-accurate simulations is also increased in

terms of the stability and accuracy requirement [11, 40]. Therefore, the computational cost is

reduced significantly since the total steps of iteration are reduced.

1.2.2.1 High-Order Methods

In engineering field, solvers using the second-order schemes based on finite volume methods on

unstructured meshes are successful, robust and have become industry-standards in a broad range

of engineering problems for a long time [44]. High-order methods are not necessary for those

problems that low-order methods can provide required accuracy and efficiency. However, the

emerging revolutionary design of aircraft, which tries to predict the phenomena at the limits of

flight envelope, aeroacoustics and the unsteady, vortex-dominated flow, requires high-fidelity

simulations. These CFD/CAA simulations cannot be handled efficiently by low-order methods [45];

otherwise, dissipation and dispersion properties of the low-order schemes will require huge

amount of mesh size, which imposes unacceptable computational cost [46]. At these situations,

using high-order method is necessary. High-order method is a research field which focuses on the

unsteady, accurate, vortex-dominated phenomenon and aeroacoustics [44-46]. There are some

typical high-order, low-dissipative and low-dispersive spatial schemes based on different

discretization methods. It can be realized by finite difference method, finite volume method,

Chapter 1

6

Discontinuous Galerkin (DG) method and spectral difference (SD) method. In the following

paragraphs, the advantages and drawbacks of different discretization method, tabulated in Table

1-1 below, are reviewed and summarized.

Table 1-1 Features of high order methods implemented by FD, FV, DG and SD methods.

Features of high order methods FD FV DG SD

Easy to construct high order accuracy ++ - + +

Low dissipation and dispersion ++ + ++ ++

Compactness of stencil + - ++ ++

Parallelization ++ - ++ ++

Unstructured mesh - + + +

Mesh quality requirement - + ++ ++

Computational cost ++ - - -

Memory requirement ++ + - -

Robust - + + +

Programming complexity + - - -

Note: “++”,”+”,”-” denote the best, good and bad respectively.

Finite difference method discretizes conservation laws in the differential form on a structured mesh

[47]. By using a structured mesh, the computation of derivatives is decoupled between x, y and z

directions. High order accuracy is easily achieved by adding the stencil size of schemes in the

pointwise direction. As shown in Table 1-1, the main strength of finite difference method is that

high order accuracy is easy to construct and program, and algorithms are efficient in terms of

computational cost [48]. In addition, the numerical property of schemes has been well analysed

and a variety of schemes, such as DRP scheme [11] and optimized prefactored compact scheme [13,

14], optimized in terms of dissipation and dispersion, are available. Consequently, it is normally

used in computationally costly problems, such as direct numerical simulations (DNS) and

aeroacoustics [6, 46]. Its drawback is restricted to structured mesh. Smooth, high quality structured

mesh has to be used for stability reasons, which results in high effort on mesh generation for

complex geometries [47]. The high-order solvers based on finite difference method are the most

widely used in CAA, such as PIANO in DLR [10, 29, 30], sAbrinA in ONERA [49, 50], which employ

DRP schemes and SotonLEE [34-37] that utilizes prefactored compact schemes.

Finite volume method discretizes governing equations in integral formulations [47]. The fluxes

through mesh boundaries are evaluated. High order accuracy is obtained with the aid of

reconstruction procedure [47, 48] which uses the intermediate solution in adjacent cells to achieve

high order accuracy. The mesh cells in the reconstruction is called reconstruction stencil. The most

Chapter 1

7

attractive advantage of finite volume method is its well fit to unstructured meshes as shown in

Table 1-1. Therefore, the mesh generation of complex geometries is much easier. However, the

drawbacks also exist. First, the reconstruction stencil size is large. A lot of information has to be

exchanged between different CPUs therefore it is not efficient for parallelization. Second, the high-

order scheme is expensive in terms of wall-clock time and is quite complex to program, especially

in 3D computations. Third, real high-order schemes are still hard to implement on irregular meshes.

Most of high-order schemes are based on smooth, regular meshes [47].

In finite element method, the differential form of governing equations is multiplied by a test

function, which is usually a polynomial, and is integrated by parts. It splits the physical domain into

a collection of elements (which can be regarded as coarse unstructured meshes). The solution is a

linear combination of basis functions, often piecewise polynomials [47]. In finite element method,

DG method is an attractive frequently used approach in aeroacoustics [48]. In DG, no global

continuity is required between mesh elements and solution is discontinuous between mesh

elements. Conservation and high order accuracy is achieved locally in a mesh element. Double-

valued solutions exist on element interfaces. A Riemann solver [47] is used to handle the numerical

flux and couple the solutions between elements and provide dissipation for stability. In DG, test

functions are used as basis functions. First, high order accuracy is easy to construct and depends on

the degree of chosen polynomial test functions. Second, the discretization stencil is compact and

no reconstruction procedure is required. Therefore, it is well suited for parallelization and hp-

adaptations, in which h denotes to increase mesh density whereas p denotes to increase polynomial

degree to enhance solution accuracy. Third, it fits well to unstructured meshes. However, the

computational cost and programming complexity is high in comparison to finite difference method.

In addition, the memory requirement is quite high if an implicit time stepping is used.

Spectral method is another kind of high-order method which features the spectral (exponential)

convergence. In traditional spectral methods, unknown variables are expressed as a truncated

series expansion in terms of the basis function [46]. The basis functions, which are infinitely

differentiable global functions, frequently employ trigonometric functions or Chebyshev and

Legendre polynomials [51]. Two types of formulations are available: modal formulations and nodal

formulations. The modal formulations are more computationally expensive, therefore the nodal

formulations are preferred, in which unknowns are nodal values of unknown variables at so-called

collocation points. Fluxes are computed at nodal points using nodal values of unknowns. The major

shortcoming of traditional spectral methods is the restriction to simple domains [51, 52].

Recent researches [51, 52] have extended the spectral methods to complex geometries, including

spectral element (SE) method, spectral volume (SV) method and SD method, in which the SD

Chapter 1

8

method is the most efficient and requires less memory in comparison to the SE and SV methods.

SD is a type of nodal spectral method for unstructured meshes, in which in each mesh structured

nodal unknowns and fluxes distribute. In SD, the high-order local representations are employed to

achieve conservation and high-order accuracy in a manner similar to DG [46, 51]. The conservative

unknowns are defined at quadrature points so that the volume integral is simplified and

approximated to the desired order and the computational cost is reduced in comparison to the

surface integral in SV. Flux derivatives are obtained by a polynomial reconstruction of fluxes at

certain flux points located at surface quadrature points. The advantages and shortcomings of SD

are similar to those of DG. In addition, SD is more efficient than DG since the differential form of

conservation laws is used which results in a reduction in the computational cost in surface integrals.

It can be concluded that finite difference method, DG and SD fit better to high-order methods in

comparison to finite volume method. The most attractive advantage of finite difference method is

that it is easy to construct and the properties of the numerical schemes are well analysed [11-14,

39]. The computational cost is the lowest and programming complexity is relatively low. However,

the biggest drawback is its restriction to high-quality, smooth, structured meshes and is not robust.

In comparison, DG and SD fit well to and are relatively robust on unstructured meshes. However,

the computational cost is expensive and memory requirement is high. In addition, the programming

complexity is high. Finally, the choice of high-order methods also depends on the CAA code

available. The current available CAA code in ANTC is SotonLEE [34-37] which is based on finite

difference method. SotonLEE contains features below:

 Written in FORTRAN90

 Based on Linear Euler Equations

 Multi-block curvilinear structured mesh

 Ashcroft and Zhang’s fourth-order optimized prefactored compact scheme [14] and Hixon’s

sixth-order prefactored compact scheme [13]

 Tenth-order and sixth-order explicit filters [41, 42]

 Hu’s alternating 4-6 stages low-dissipation and low-dispersion Runge-Kutta time-marching

scheme [40]

 Outflow buffer zone condition [53]

 In double precision format

 In non-dimensional format

Consequently, SotonLEE, based on finite difference method, is selected as the CAA solver in this

study. The governing equations, time-marching schemes and boundary conditions in SotonLEE in

ANTC are almost the same as two other widely used CAA propagation solvers, PIANO [10, 29, 30] in

Chapter 1

9

DLR and sAbrinA [49, 50] in ONERA. In PIANO and sAbrinA, DRP schemes are used. SotonLEE

distinguishes from these solvers by using optimized prefactored compact schemes [14], which

resolve acoustic waves better if the stencil size is the same.

1.2.2.2 CAA Numerical Schemes in Finite Difference Method

In terms of low-dissipation and low-dispersion schemes discretized by finite difference method,

there are two prototypes: explicit schemes, such as DRP schemes, and compact schemes, which are

globally dependent on the whole domain. The dissipation and dispersion of compact schemes is

lower in comparison to that of DRP schemes if the same stencil size is given [13, 14]. However, the

implementation is more complex and the requirement on the boundary conditions is more

stringent since compact schemes is globally dependent. Optimized prefactored compact scheme is

a kind of CAA high-order schemes proposed by Hixon [13] and Ashcroft and Zhang [14]. It is an

optimization of compact schemes which is globally dependent on the elements in the whole

domain. However, the coefficients in stencil computation are obtained and fixed by the

optimization of wave propagation. In sound generation and propagation areas, prefactored

compact schemes offer lower-dissipation, lower-dispersion properties and higher-order accuracy

in comparison to the explicit schemes used in the engineering field. Furthermore, it reduces

boundary stencil size in comparison to compact schemes since it splits a coefficient system into a

couple of smaller ones, which facilitates numerical implementation near boundaries [14]. A

prototype, fourth-order prefactored compact scheme used in this research can be expressed in the

following form:

  , , , , , ,

1

2
F B

i j k i j k i j kD D D  (1.2)

 1, , , , 1, , , , 1, ,

1F F
i j k i j k F i j k F i j k F i j kD D a f b f c f

x
   

     
 (1.3)

 , , 1, , 1, , , , 1, ,

1B B
i j k i j k B i j k B i j k B i j kD D a f b f c f

x
    

     
 (1.4)

in which, ��,�,� ,��,�,�
� and ��,�,�

� denote the unknown primitive derivative, the forward derivative

and the backward derivative on a mesh point respectively, whereas ��,�,� represents the known

primitive field. The coefficients, α, β, aF, bF, cF, aB, bB and cB, are constants. For a given j and k, i

varies in descending order from Nx - 1 to 2 in Eq. (1.3) and i varies in ascending order from 2 to Nx

- 1 in Eq. (1.4). The system is coupled and globally dependent. The resolved wavenumber of fourth-

order optimized prefactored compact scheme is compared with those of typical finite difference

schemes as shown in Figure 1.2:

Chapter 1

10

Figure 1.2 Resolved wavenumbers of typical finite difference schemes.

Note: The resolved wave numbers of all finite difference schemes are: second-order central scheme with 0.314; sixth-

order central scheme with 1.005; 7 point DRP scheme with 0.880; Hixon’s sixth-order compact scheme with 1.382;

Ashcroft and Zhang’s fourth-order scheme with 1.700.

Figure 1.2 illustrates that CAA finite difference schemes, such as the DRP scheme [11] and Ashcroft

and Zhang’s optimized prefactored compact schemes [14] can greatly enhance the extent of

resolved wave number, thus greatly reducing points per wavelength (PPW) and mesh resolution.

Central schemes do not give rise to any dissipation error but only dispersion error since the resolved

wave numbers of central schemes are real as shown in Eq. (1.1). When 0.001 [12, 40] is selected as

the largest tolerance between the resolved wave number and the true wave number, the red points

in Figure 1.2 indicate exact values of the maximum resolved wave numbers for all finite difference

schemes. Ashcroft and Zhang’s fourth-order optimized prefactored compact scheme offers the best

spectral performance in Figure 1.2. The maximum resolved wave number of the fourth-order

optimized prefactored compact scheme achieves 1.700, whereas it is 0.314 for the second-order

central scheme. This difference makes the PPW 3.7 for the fourth-order optimized prefactored

compact scheme and 20.0 for the second-order central scheme. Consequently, the mesh element

amount can be decreased roughly by 5 times in one dimension and 125 times in a 3D computation.

In addition, the larger mesh element size results in larger time-marching step size in unsteady

simulations if the same Courant-Friedrichs-Lewy condition (CFL) is used and the same accuracy is

required. In conclusion, the CAA high-order low dissipative and low dispersive finite difference

schemes can decrease the total amount of mesh element and computational cost significantly.

However, the compact schemes and optimized prefactored compact schemes result in tridiagonal

Chapter 1

11

and bidiagonal matrices, as shown in Eqs. (1.3-1.4), which are spatially global-dependent and make

themselves hard to solve in parallel.

As can be seen from Figure 1.2, short waves with large wave numbers cannot be resolved with

fidelity. The waves which are not resolved with fidelity by high-order finite difference schemes are

called spurious waves. Spurious waves have to be removed from solution, otherwise the solution is

contaminated and can even crash [11]. High-order spatial filters are usually used to remove the

spurious short waves from the solution [12, 41-43]. The filtering properties of two generic high-

order explicit filters are shown in Figure 1.3 below:

Figure 1.3 Filtering performance of explicit filters.

In Figure 1.3, the tenth-order filter attenuates a signature more sharply than the sixth-order filter.

When 0.001 again is chosen as the maximum wave attenuation tolerance, the resolved wave

numbers, which are denoted by black circles, are 1.320 for the tenth-order filter and 0.880 for the

sixth-order filter. Because the maximum resolved wave numbers are 1.700 for the fourth-order

optimized prefactored compact scheme and 1.38 for Hixon’s sixth-order prefactored compact

scheme, the tenth-order explicit filter with effective wave number 1.320 is used in collaboration in

this research.

In addition to spatial-scheme optimization, time schemes in CAA are also optimized to achieve low-

dissipation, low-dispersion and high-order accuracy [40]. The multi-stage Runge-Kutta (RK) scheme

is a kind of high-order time scheme and is widely used in CFD codes. However, RK schemes in CFD

are obtained to keep the maximum formal order rather than to achieve low dissipation and

dispersion, which is similar to spatial finite-difference schemes. To accommodate RK schemes with

Chapter 1

12

CAA applications, RK schemes have to be optimized in terms of dissipation error and dispersion

error. The dissipation error and dispersion error are defined in terms of an amplification factor of a

wave. The amplification factor is defined as the ratio of a wave �����(��∆�) at the next time step

between ������ at current time step [40]. The ratio between numerical amplification factor,

�����
∗(��∆�) ������⁄ in which �∗ is the numerical wavenumber, and exact amplification factor,

�����(��∆�) ������⁄ in which k is the true wavenumber, is defined below:

i

n er r r r e    (1.5)

in which, r is a complex number. rn and re denote the numerical and exact amplification factor

respectively; |r| is the dissipation error, whereas σ is the dispersion error. Both of these errors for

typical schemes are plotted in Figure 1.4 Figure 1.5 below:

Figure 1.4 Dissipation error of RK schemes.

Chapter 1

13

Figure 1.5 Dispersion error of RK schemes.

Again, as in the spatial finite-difference schemes and explicit filters, 0.001 [40] is chosen as the

maximum deviation tolerance of dissipation and dispersion errors. As illustrated in Figure 1.4Figure

1.5, optimized six-stage Runge-Kutta schemes and alternating four-six-stage Runge-Kutta (LDDRK)

schemes offer the largest accuracy limit ck*Δt which is denoted by black points. c is speed of sound

while k* is the resolved wavenumber by a finite difference scheme. Δt is the time step size. In real

practice, the LDDRK scheme is much more stable than the optimized RK6 scheme and is preferable

[40]. If the LDDRK scheme is used on a uniform mesh in collaboration with Hixon’s sixth-order

prefactored compact scheme with the maximum resolved effective wave number 1.382, then the

time step size Δt, which is derived from the accuracy limit ck*Δt < 1.64, can achieve 1.194 which is

much larger in comparison to the classical RK4 scheme. It improves time-marching efficiency

significantly.

In conclusion, the above CAA schemes based on finite difference method, which are designed for

acoustic computation and distinguish CAA solvers from traditional low-order CFD solvers, greatly

reduce the computational cost and enhance the computational efficiency of simulations. However,

these high-order schemes suffer from the stability problem which requires the high-quality, smooth

meshes and imposes much more complex implementation on boundary conditions and

programming. Therefore, though the high order methods can reduce the computational cost, a

careful implementation is necessary to apply to problems with very complex geometries in

engineering field.

Chapter 1

14

1.2.3 High Performance Computing

A hybrid method, which combines sound generation, propagation and radiation predictions, can

improve computational efficiency and reduce computational cost significantly. On numerical

schemes, by using CAA high-order spectral-like schemes the computational cost can be reduced

even further. However, CAA simulations still demand huge computing resources. To reduce design

time in real engineering applications, HPC is an indispensable tool in current numerical simulations.

The wall-clock time of CAA simulations can be significantly reduced by using HPC on high

performance computers.

To fully explore the performance of HPC computers, a CFD/CAA researcher has to focus on efficient

implementation strategies on HPC computers. In addition, efficient parallel algorithms on HPC

computers have to be developed if existing algorithms cannot achieve high efficiency in new HPC

computers. In CFD/CAA fields, a physical domain is discretized into a collection of mesh points which

are stored in data arrays in codes. Intensive computations are performed on mesh elements and

the computation on each mesh element is almost the same except for the boundary condition

operations, the cost of which can be ignored compared to other operations such as spatial

derivatives. Therefore, the computational workload can be scaled by the amount of mesh elements.

The total mesh elements are partitioned into some groups as evenly as possible and assigned to

each working task to achieve load balancing. This kind of computing fits well with today’s HPC multi-

core computers. Traditional HPC in CAA/CFD fields can be categorized into three parallel

programming models: shared memory model [54], distributed memory model [15, 55] and hybrid

model [56-58]. The parallel programming model is an abstraction above hardware and memory

architectures. Since there are many kinds of parallel programming models based on different points

of view, this review only focuses on relevant programming models based on available computing

resources.

1.2.3.1 Distributed Memory Model

The most mature and extensively used programming model is the distributed memory model based

on HPC clusters in CAA and CFD, based on the workload partition strategy mentioned above and on

the available hardware. Computing clusters are the most extensively used HPC architecture [59].

Computing clusters occupy roughly 86% of the architecture system share according to the latest

statistics [59]. A computing cluster is a collection of computers connected by fast network

connections [60]. Each computer is called a computing node and multiple CPU cores are equipped

in each node. The implementation of the distributed memory model is MPI [15, 55], which is the

industry standard for distributed memory implementation. Three key aspects are explained in the

distributed memory model (MPI): process, memory model and data exchange. A process is a

Chapter 1

15

fundamental entity implemented on a computer and each CPU core is assigned to an MPI process

normally. A process can be regarded as a computational task on a CPU core. In the distributed

memory model, many tasks (MPI processes) are set up to run a CAA/CFD application across a

number of computing nodes in parallel. These nodes together are regarded as a single super

computer with many CPU cores and large memory volume. Each task is assigned a sub-domain

(mesh blocks in structured grid) where the computation is carried out. Each task has its own local

memory and is invisible to other processes. A sketch of the distributed memory model is shown

below in Figure 1.6 Sketch of distributed memory model.:

Figure 1.6 Sketch of distributed memory model.

As shown in Fig. 1.6, the distributed memory model regards that the memory between processes

is connected via the network; therefore, data exchange is realized by sending and receiving

messages between tasks. For CFD/CAA computations, data exchange is necessary close to mesh

block interfaces for sub-domains in different processes. The data exchange is realized by calling MPI

communication routine libraries. In a CAA/CFD simulation, when the flow field at a neighbouring

sub-domain is required, the process first sends its own flow field close to the interface and then

waits for the flow field from the neighbouring blocks. Once the send and receive operations

complete, the computation starts. An MPI process keeps computing until the next time the flow

field in a neighbouring sub-domain is required. In addition to sending/receiving messages, data

exchange can also be achieved by visiting globally common memory, which is essentially the shared

memory model.

1.2.3.2 Shared Memory Model

In shared memory programming, thread model is the most popular and the most supported [54].

The most widely used implementation of the thread model is Open Multi-Processing (OpenMP)

[54]. It is compiler directive-based therefore easy to use. It is the compiler’s task to automatically

generate parallel codes according to the directives and compiling flags [54]. A sketch of the shared

memory model is shown below in Figure 1.7:

Chapter 1

16

Figure 1.7 Sketch of shared memory model.

In the thread model (shared memory), there are also three key aspects: thread, memory model and

data exchange. A thread can be regarded as an instruction stream from a CPU’s perspective though

the concept is more complicated in an operating system. A single ‘high-cost’ process has multiple

concurrent ‘low-cost’ threads. A process acquires all necessary system resources and it is ‘high-

cost’. A process performs serial work and creates multiple concurrent threads to do the parallel

work. Each thread shares the resources and memory address of a process and has local data. The

data exchange is performed through the global memory in a process. Consequently, a data race

may occur if the code is not well designed. In the thread model, two parallel strategies can be

employed on CAA/CFD applications. The first one is similar to that used in the distributed memory

model. Each thread is assigned a physical sub-domain and computations are performed on the sub-

domain. Based on the available cluster specifications [60], there are 16 CPU cores on each node.

Therefore, threads over 16 have no additional benefit in this parallel strategy. The second parallel

strategy involves using the concurrent multiple threads to solve a CAA/CFD application in each sub-

domain in parallel. As mentioned in the distributed memory model, many sub-domains are solved

by MPI processes simultaneously. However, the computation in each sub-domain is done serially.

Using multiple concurrent threads to solve each sub-domain in parallel can extend the maximum

degree of parallelism. This kind of model is called a hybrid model.

1.2.3.3 Hybrid Model

A hybrid model is a combination of the distributed memory and shared memory models [56-58]

sketched in Figure 1.8 below:

Chapter 1

17

Figure 1.8 Sketch of hybrid programming model.

As shown in Figure 1.8 in the hybrid model, there are two levels of parallelism. One consists of

parallel computations among different sub-domains. The physical domain is partitioned into a set

of sub-domains which are assigned to and solved by many MPI processes. The other consists of

concurrent intensive computations in each sub-domain. In each MPI process, multiple OpenMP

threads are set up to perform the intensive computation on each sub-domain concurrently. The

hybrid model is characterised by each MPI process being used to acquire a collection of mesh blocks

and memory volume. An MPI process is responsible for data exchange between sub-domains

through the network. The OpenMP threads are mainly used to perform the intensive computations

concurrently in each sub-domain. The hybrid model is well suited to current, common HPC clusters

with multi-core nodes.

In comparison to the distributed memory model, the advantage of the hybrid model is mainly the

reduction in message passing cost. The performance of an application running in parallel is always

proportional to the amount of used CPU cores (MPI processes in the distributed memory model).

However, due to load balancing, there must be at least one mesh block in a process, which means

the number of available MPI processes is limited to the number of mesh blocks. If more CPU cores

are to be used, the physical domain must be divided further into additional, smaller mesh blocks.

For a problem with mesh distributed among many small blocks, the granularity is fine-grain in

comparison to the same problem partitioned by fewer large mesh blocks. This indicates that higher

computational costs are accrued by data communications and related operations like buffer

packing and index transformation between two blocks.

In comparison to the shared memory model, the advantage of the hybrid model is that more CPU

cores can be used in parallel. Based on the thread model and current available IRIDIS 4 cluster [60],

the maximum thread number is 16 (usually equal to CPU cores on a single node). Therefore, if only

the shared memory model is used, the application cannot run any more than 16 times faster. The

Chapter 1

18

number of CPU cores available in the hybrid model is a product of the MPI process amount and CPU

core amount on each node, which is much larger.

However, there are also drawbacks in hybrid models. First, the hybrid model programming will

increase coding complexity and effort, though this is not a major issue if the MPI code is already

available. Second, the number of available threads is limited by the number of CPU cores in a

computing node, normally 16 in a cluster, whereas the mesh size in a mesh block can be tens of

thousands or even larger. The number of available CPU cores in each sub-domain hinders the

maximum performance benefit in a single mesh block in the hybrid model. An alternative solution

is a heterogeneous model in which ‘accelerators’ are used to improve the performance in a mesh

block. This is increasingly popular in high-end supercomputing in the world’s largest computers [59].

1.2.3.4 General Purpose Computing on GPUs

A heterogeneous model that uses ‘accelerators’ to accelerate the computation can be used to

exploit the maximum degree of parallelism within mesh blocks distributed on different processes.

A sketch of the heterogeneous model is shown below in Figure 1.9:

Figure 1.9 Sketch of heterogeneous programming model.

The accelerators in Figure 1.9 refer to some hardware architectures that are different from CPU and

offer higher computational performance. The architectures of accelerators vary and include many

types, such as GPUs [16], Intel Phi co-processors [61], and accelerated processing units (APU) [62].

GPUs and Intel Phi co-processors are the most extensively used [59]. Using accelerators to increase

the performance of an HPC cluster is an important feature in recent HPC. The performance of the

latest GPU is higher than that of the latest co-processor and GPUs are more extensively used in HPC

clusters [16]. In addition, the choice of hardware also depends on the computing resources

available. Since this research started in March 2012, there were only GPU nodes on the IRIDIS 3

cluster [60] and no Intel Phi co-processor nodes were available. In this research, GPUs are selected

as the accelerator.

Chapter 1

19

A GPU is an indispensable component of a personal computer and is used to process graphic

information for displaying. A GPU has higher floating operation power and memory bandwidth than

a multi-core CPU, as shown in Figure 1.10 andFigure 1.11 below:

Figure 1.10 Socket floating-point operations per second (FLOPs) for CPUs and GPUs [16].

Figure 1.11 Socket memory bandwidth for CPUs and GPUs [16].

As shown in Figure 1.10, the latest GPU’s double precision performance is about twice that of a CPU.

The memory bandwidth gap between the GPU and CPU is roughly 4.6 times in Figure 1.11. In this

Chapter 1

20

research, the Intel Xeon E5620 CPU and Tesla M2050 GPU were used on the IRIDIS 3 cluster, while

Intel Xeon E5-2670 CPU and Tesla K20m GPU are used on the IRIDIS 4 cluster. The double precision

operation performance and memory bandwidths are listed in Table 1-2.

Table 1-2 Socket performance comparisons between used CPUs and GPUs

 Intel Xeon E5620 Tesla M2050 Gap

Flops (Double Precision) 38.4 GFLOPs 515 GFLOPs 13.4
Peak Bandwidth 25.6 GB/s 148 GB/s 5.8

Cache Size 12MB(Level 3) 64 KB 192

 Intel Xeon E5 - 2670 Tesla K20m Gap

Flops (Double Precision) 166.4 GFLOPs 1.17 TFLOPs 7.03
Peak Bandwidth 51.2 GB/s 208 GB/s 4.1

Cache Size 20MB(Level 3) 1.25 MB 16

Table 1-2 shows that the performance gap is roughly 7 times for the peak double precision

operation and 4 times for the peak memory bandwidth. Many scientists and engineers take

advantage of GPU’s high performance to conduct general science research and engineering

computation which is called GPGPU.

As the GPU is specialized for graphics rendering, which requires parallel computing-intensive

computations, more transistors are used for data computing rather than for flow control and

caching. Because of the differences in hardware design and implementation between a CPU and a

GPU, a GPU code has its own programming model and languages that are distinct from CPU code.

From a GPU’s perspective, a computational domain can be treated as a collection of images,

whereas an element in a domain can be regarded as a pixel in an image. Multiple developing tools

based on different compiling and implementation strategies can be employed to design a code on

a GPU, such as CUDA, Open Computing Language (OpenCL) [63, 64] and Open Accelerators

(OpenACC) [65, 66]. OpenACC is an extension of existing programming languages including C,

FORTRAN and other languages. It is a high-level directive-based parallel library on GPU platforms

[67, 68]. It uses compiling derivatives to specify pieces of code implementing on a GPU, which is

similar to OpenMP. The detailed implementation of the codes on different GPUs depends on the

intelligent compilers. Therefore, the portability of the codes is better. OpenCL is a general

developing environment to implement a code on a heterogeneous architecture containing multi-

core CPUs and many-core GPUs [63, 64]. In comparison to OpenACC, OpenCL and CUDA are low-

level programming interfaces, which expose more flexibility on a GPU to programmers so that the

performance is higher [65, 66]. However, the code is more complex and the portability is poor. In

addition, CUDA is designed specifically for NVIDIA’s GPUs and can obtain higher performance on

these GPUs. CUDA is released in C by NVIDIA. In this study, PGI’s CUDA FORTRAN [69], which

Chapter 1

21

facilitates the programming on a GPU by an extension of FORTRAN, is used as the development

platform as the current code running on multiple CPUs has been coded in FORTRAN and is going to

run on NVIDIA’s GPUs. A GPU has an array of streaming multiprocessors (SMs) each containing

many CUDA cores. An SM is treated as an equivalent CPU core. To offer a brief introduction to CUDA

programming model, three key aspects are explained here: thread hierarchy, memory hierarchy

and synchronization, with a schematic shown in Figure 1.12:

Figure 1.12 The schematics of thread and memory hierarchy in the CUDA programming model.

Note: variant memories are denoted in greys: light grey denotes low access latency, while dark grey represents high

access latency. The two-way arrow denotes read and write operation, while the one-way arrow denotes that only read

operation is allowed.

In the CUDA programming model, a subroutine implemented on a GPU is called a kernel. A kernel

launches many threads which perform computations on the elements of a computational domain

concurrently. Such a large amount of threads is organized into blocks as shown in Figure 1.12. A

thread block is a collection of threads residing on an SM. All the blocks in a kernel constitute a grid

which is used to distinguish between kernels. A thread can be identified by a derived thread index

variable in its local block. Each block has a unique index variable. Thus, a thread in a kernel can be

identified globally and a one-to-one correspondence can be made between an element in a

computational domain and a thread in a kernel. The thread hierarchy refers to this kind of thread

organization in multiple levels.

The memory hierarchy denotes the variant memories and their features. A thread has its own

exclusive fast-accessed registers and slow-accessed local memory. Threads in a block can share data

via shared memory. The use of shared memory plays a key role in enabling increased performance

because the access latency to global memory is many times that of shared memory. The global

memory can be accessed by all the threads in a grid. There is an interface between the global

Chapter 1

22

memory on a GPU and the host memory (RAM). The interface refers to the peripheral component

interconnect (PCI) express whose bandwidth (8GB/s on PCI-express × 16 Gen2) is far less than a

GPU peak bandwidth (144GB/s on Tesla C2050). Thus, memory copy between a CPU and a GPU has

to be minimized to extract the maximum performance.

Synchronization is an indispensable component in parallel computing. Local synchronization can be

performed in a thread block to ensure that no thread can execute any instructions until all the

threads in a block reach the barrier. When there is data dependency between thread blocks, a

subroutine must be separated into two kernels. An implicit global synchronization occurs

automatically when a kernel terminates similarly to OpenMP.

Furthermore, the key role of coalesced memory access in the performance of GPU codes must be

emphasised. It mainly evolves 2D/3D data layout and memory padding on a GPU. The 3D data

layout determines how the arrays are accessed by a CUDA thread. In a CUDA FORTRAN code, the

3D data layout corresponds to the kernel execution configuration. In explicit scheme computations,

the 3D data layout is mainly realized by two methods: the ‘slicing method’ and the ‘tiling method’.

Schematics of the two kinds of data layouts are shown in Figure 1.3:

(a) Slicing Method. (b) Tiling method.

Figure 1.13 Schematics of 3D data layout in explicit scheme computation on the GPU.

The maximum coalesced memory access can be achieved by using the ‘slicing method’, as

demonstrated by Micikevicius [70] and Lopez et al. [25]. Given a computational domain with

dimensions of (Nx, Ny, Nz), the slicing method treats the computational domain as Nz slices. Each

slice is a 2D plane whose dimensions are (Nx, Ny). A CUDA thread in the slice sweeps in the z

direction. The ‘tiling method’ [25] also allows good coalesced memory access in x, y and z directions.

Chapter 1

23

It treats the computational domain as a mass of bricks. Each brick is a small 3D domain, e.g., with

dimensions of (16, 8, 4). In a prefactored compact scheme computation, data layouts are different

from the ‘slicing method’ or ‘tiling method’, as will be explained in the following section.

Array padding also increases the performance of the application on the GPU since it decreases the

global memory access. In the current code, if a random mesh is used, the dimension in the x

direction is padded to be a multiple of 16, whereas the dimensions in the y and the z directions

remain unchanged. There are two reasons to this: first, a memory transaction loads/writes a

memory segment with 128 bytes on the Tesla M2050 GPU. Coalesced memory access is improved

by aligning every start element in the x direction to a 128-byte segment. Second, the current code

is run in double precision format in which 8 bytes are allocated for each element. Therefore, 16 =

128 / 8 is determined. Since the padding only occurs in the x direction, no obvious performance loss

is observed from its implementation.

1.2.3.5 GPGPU in CAA

The application of GPU computing in the CAA field is quite new and, to wit, only a few study cases

have taken place thus far. CAA/CFD solvers that solve partial differential equations by finite

difference/volume/element methods share a common feature in that the spatial stencil

computation dominates the wall-clock time. For high-order finite difference solvers, stencil

computation can achieve 90% of the iteration time or even more, such as the scenario in Table 1-3.

The compactSchemeDz, compactSchemeDy and compactSchemeDx subroutines perform Hixon’s

sixth-order prefactored compact scheme computations and consume 92% of the wall-clock time.

Consequently, the performance of a code is mainly attributed to the performance of finite

difference computations for both codes on CPUs and GPUs.

Table 1-3 The contribution of the subroutines in a typical 3D computation.

Functions Implementation time (Seconds) Fraction

compactSchemeDz 111.2 61%
compactSchemeDy 49.1 27%
compactSchemeDx 8.2 4%

rhsLeeEquation 2.5 1%
explicitFilter10z 2.4 1%

incrementSummation 2.4 1%
compactBoundary 2.2 1%

explicitFilter10y 1.5 1%
bufferZone 1.4 1%

explicitFilter10x 0.2 0%

Due to the dominant wall-clock time of the finite difference scheme computation, the reviews on

CAA/CFD codes on GPUs are categorized into two types: explicit stencil and implicit stencil. Abdel-

Chapter 1

24

Hay et al. [71] ported a CAA solver, solving LEE to a GPU for the first time. In their work, the high-

order finite difference scheme used was the DRP scheme [11] which is an explicit scheme and is

easier to implement on a GPU than a compact scheme which contains a globally dependent system

to solve. SotonLEE employs optimized prefactored compact schemes, which is the main difference

between the work of Abdel-Hay et al. and SotonLEE. The governing equations, time-marching

schemes and boundary conditions are almost the same. The strategies of how to design an explicit

scheme solver have been well studied in the CFD [17-21] and room acoustics community [23-25].

As mentioned above, the slicing method and tiling method are employed to achieve the maximum

performance for explicit scheme computations on a GPU. Hu [72] accelerated a time domain

boundary element method (TDBEM) on multiple GPU cards and applied it to the acoustic scattering

case of an airplane. The application ran about 33 times faster on 3 GPUs than on 3 CPU cores.

The GPGPU on CFD has switched the research focus from solvers based on structured meshes to

those based on unstructured meshes [44, 73-76] since 2010. The key strategy to improve the

performance of an unstructured CFD solver is “index renumbering”, which tries to renumber the

indices of unstructured meshes to improve the local features of the flux computations and the

memory bandwidth [44, 73-76]. The “index renumbering” is not necessary on a CFD solver using

structured meshes since the local feature of the stencil is good. In addition, CFD programmers made

more efforts on porting these explicit solvers to multiple GPUs by using OpenACC [67, 68, 74, 77-

79]. Two causes were found: First, the strategies of porting algorithms in an explicit CFD solver to

GPUs were well developed based on the ‘slicing method’ and the ‘tiling method’. Second, the

portability, maintainability and readability of the codes on GPUs started to be emphasized. Another

noticeable trend is that some CFD groups tried to create higher level of frameworks to mitigate the

programming complexity on GPUs, including CU++ET at University of Wyoming [80] and PyFR at

Imperial College London [81]. CU++ET is based on C++ and is available on both structured and

unstructured meshes whereas PyFR is a high-order solver using flux reconstruction on unstructured

meshes written in Python. These frameworks tried to make minimal changes on existing CFD codes

on CPUs by using their own languages and generated kernels implemented on GPUs automatically

during compile time. These frameworks were based on developed algorithms on GPUs.

Considerable speed-ups on some problems with simple geometries were achieved by using these

frameworks.

In this study, the research focus is not placed on explicit schemes or solvers on unstructured meshes

but rather on the prefactored compact schemes used in the current solver based on structured

meshes. Hixon’s sixth-order and Ashcroft and Zhang’s optimized fourth-order prefactored compact

schemes require solving bidiagonal matrices. To wit, the bidiagonal matrix has not been

investigated on a GPU before, even in cuBLAS [82] and PETSC [83] libraries. The back substitution is

Chapter 1

25

directly used by subroutine DGTTRS [82] when a tridiagonal matrix is solved in double precision in

these libraries. In this work, effort is extended to the implementation of a bidiagonal matrix on

GPUs. The solution to a bidiagonal matrix on a CPU is straightforward and in serial by nature. The

back substitution or sweep is employed to solve a bidiagonal matrix in LAPACK library [84]. The

bidiagonal matrix is similar to the tridiagonal matrix. The tridiagonal matrix has been well

investigated on a GPU. Zhang et al. [85] investigated three generic algorithms on a GPU, namely

cyclic reduction (CR), parallel cyclic reduction (PCR) and recursive doubling (RD). It showed that the

PCR is the fastest generic algorithm for a tridiagonal matrix on a GPU. Then, Stone et al. [86] applied

the PCR algorithm to the tridiagonal matrix benchmarks, a speed-up of 3.6 was expected in

comparison with a Thomas algorithm on four CPU cores when data transfer was removed. Egloff

[87] also implemented the PCR algorithm in his derivative pricing solver and a speed-up of 36 was

achieved on two GPUs compared to two CPU cores.

The PCR algorithm treats the tridiagonal matrix as a recursive system. Also, the tridiagonal matrix

can be treated as a sparse matrix. Kruger and Westermann [88] realized techniques of linear

operators on matrices on a GPU. In a 2D, laminar, incompressible Navier-Stokes equation

simulation, the matrix-vector multiplication was used to build the conjugate gradient iterative

method for a large sparse matrix. Bolz et al. [89] applied the same method to the same 2D, laminar,

incompressible Navier-Stokes equation simulation, and developed the multi-grid technique on a

GPU. Tutkun and Edis [90] investigated Lele’s sixth-order compact scheme [12] which gave rise to

tridiagonal matrices on a CFD code. The generated tridiagonal matrices were directly solved by

inverting the coefficient matrix. This could be done conveniently by using the CUDA Basic Linear

Algebra Subroutines (cuBLAS) library [82].

While tridiagonal matrix solvers have been investigated on the GPU, little attention has been

devoted to a bidiagonal matrix solver. An efficient bidiagonal matrix solver on the GPU is a critical

ingredient in some applications that use prefactored compact schemes in aeroacoustic and

turbulence studies. In addition, all the studies reviewed above developed the numerical techniques

in the x direction and then applied the same techniques to all the directions in 2D/3D computations.

The anisotropic memory access pattern was ignored when the computation in the y and the z

direction was performed, which caused a loss of overall performance. In this work, an existing CAA

solver is extended to run on a multi-GPU platform. The main effort is focused on developing an

efficient way to solve the bidiagonal matrix system in solving prefactored compact schemes on

GPUs. For this purpose, a fourth-order optimized prefactored compact scheme [14] is selected in

this work. The NVIDIA Tesla M2050 GPUs serve as the computing devices and PGI’s NVIDIA CUDA

FORTRAN is used as the development tool.

Chapter 1

26

1.2.3.6 Performance Metrics

In the CAA/CFD field, the performance of a GPU is roughly equivalent to that of many CPU cores

[72, 91-93]. Therefore, using GPUs can significantly reduce wall-clock time. If only CPUs are used,

the performance of an application run in parallel is always proportional to the amount of used CPU

cores (tasks). Some performance indicators are used to evaluate parallel performance

quantitatively, such as speed-up and efficiency. Speed-up is defined as the ratio of wall-clock time

of serial execution to wall-clock time of parallel execution. It is the simplest and most widely used

indicator and denotes how many times the code runs faster in parallel execution. The maximum

speed-up of an application converges to a limited number and is explained in Amdahl’s Law [94]:

max 1 (1)speedup pp  (1.6)

in which, pp denotes the fraction of code which can be parallelized. If N processes are employed to

run an application in parallel, then the ideal speed-up is modelled by:

  1speedup pp N sp  (1.7)

where sp denotes the fraction of code in serial. Speed-up can be regarded as a function of the

number of used CPU cores. However, the speed-up also depends on problem size. When the

problem size of a CAA/CFD application is small, the serial fraction is comparable to the parallel

fraction. With the increase of the problem size, time spent on the parallel fraction will dominate

the wall-clock time of the application.

Efficiency is equal to the ratio of speed-up to number of used processes. It indicates how well the

hardware is used to solve the problem compared to the time used in communication. Given a fixed-

size problem, the amount of communication increases with the increased number of used MPI

processes and thus the efficiency decreases.

In traditional HPC, only CPU cores are used to parallelize applications by using the distributed

memory model, shared memory model or hybrid model. The speed-up can be defined exactly in

terms of Eq. (1.7). Given an application using the structured multi-block mesh, the mesh is

distributed as evenly as possible on CPU cores in terms of load balancing and the maximum CPU

cores available. However, in heterogeneous models, the accelerators are employed to parallelize

applications. The architecture of an accelerator, such as a GPU, is different from that of a traditional

CPU core. Therefore, direct use of Eq. (1.7) in GPGPU is not feasible, which makes a hard evaluation

of the speed-up. For example, the Tesla M2050 GPU contains 448 CUDA cores, which are the

arithmetic elements and are used in groups, in terms of SMs. Each SM, which can be regarded as

an equivalent independent CPU core, contains 32 CUDA cores.

Chapter 1

27

In addition, the definition of speed-up also depends on the solving strategy and implementation. In

the current research, the original CAA solver using the multi-block structured mesh, SotonLEE, has

been a parallel solver by using MPI. The mesh blocks are distributed across CPU cores in terms of

load balancing and the maximum CPU cores available. However, in each mesh block, the

implementation on mesh elements is in serial and is performed one mesh element by one mesh

element. The current research is to keep the original MPI implementation, and to extend the

parallelization on each mesh element with GPU accelerations. The implementation is actually a dual

parallelization, in which the first parallelization is at the mesh block level between different CPU

cores while the second one is at the mesh element level on GPU cards. The first parallelization is

kept the same and the gains of using GPUs are benefited from the second parallelization.

Consequently, in the current research, the speed-up is defined to evaluate the benefit from the

reduced wall-clock time between an application by using the MPI+CUDA in comparison and that by

only using MPI. The speed-up is defined as the ratio of wall-clock time of MPI implementation to

wall-clock time of MPI + CUDA implementation. The definition of the speed-up used in the current

research is defined below:

 _

_

_ _

_ _

CPU cores GPUs

CPU cores

wall clock time
speedup

wall clock time


 (1.8)

in which, wall_clock_timeCPU_cores+GPUs denotes the implementation time of an application by using

MPI + CUDA whereas wall_clock_timeCPU_cores denotes the implementation time of an application by

using only MPI.

1.2.4 The Scattering of Propeller Tonal Noise

With the multi-GPU implementation capability, the current solver is applied to a large scale

engineering application, the scattering of propeller tonal noise off an aircraft, to verify the

performance of the new CAA solver. A turboprop/propfan system offers a higher economic

efficiency than a turbofan power system and this has been a key driving factor for research on the

turboprop/propfan power system [95]. However, the radiating noise from these systems has been

a major concern. The prediction of noise generated by an isolated propeller has been well studied

and improvement is in progress [95-101]. However, installation effects also play a key role in the

prediction of propeller noise in the real world [10, 95, 102]. The acoustic installation effect refers

to the difference between the noise generated and propagated in an ideal laboratory environment

and that in the real world. The acoustic installation effect can be divided into two categories: The

acoustic installation effect on noise generation and that on noise propagation [95]. The acoustic

installation effect on noise generation mainly refers to the distortion of inflow and the aerodynamic

Chapter 1

28

interaction between the flow field and the solid geometry [95]. The acoustic installation effect on

propagation contains the reflection effect of the aircraft, and refraction effect of the non-uniform

flow field close to the aircraft surface. In this study, the CAA hybrid method is used to predict the

scattering of the propeller tonal noise off an aircraft. The propeller noise sources are assumed to

be known and the installation effect on the noise generation is ignored. The research mainly focuses

on the reflection effect off the aircraft and the refraction effect induced by the non-uniform flow

field close to the aircraft surfaces.

The propeller noise spectra are characterized by the dominant harmonics, narrow-band random

noise and broadband noise [95]. The harmonics are concerned with periodic movements of the

blades. Given a propeller with B blades rotating at a constant frequency of fb, the resulting

frequency of fundamental sound harmonic is Bfb. Other harmonics occur at multiples of BPF. In this

study, the research focuses on the propagation of the dominant tonal noise rather than narrow-

band random noise or broadband noise.

1.2.4.1 Propeller Noise Source

In terms of the noise generation mechanism, propeller noise sources are categorized into three

types: steady sources, unsteady sources and random sources [95, 103]. Steady sources are constant

in time for any point on the surface of a rotating blade. For a stationary observer, the acoustic field

of steady sources is periodic due to the cyclic rotational movement of the blades. In this study, only

steady sources are considered, which means the amplitudes of the noise sources are assumed

constant and all phases of the noise sources are the same. Steady noise sources are usually

categorized into three types: linear thickness noise, linear loading noise and non-linear quadrupole

noise.

Thickness noise comes from the periodic displacement of air due to the volume of rotating blades.

Thickness noise can be represented by a distribution of monopoles on blade chords along the span-

wise direction. The strength of monopoles is proportional to the blade volume, and dependent on

the rotational speed and blade section shape. The contribution of thickness noise is important at

high blade tip speeds [95].

Loading noise results from the thrust and torque (lift/drag) on the blade surface. Consequently, it

can be described by a distribution of dipoles on blade surfaces. The strength and direction of dipoles

are dependent on the thrust and torque [10, 95]. Loading noise is important at low to moderate

speeds.

Linear thickness noise and loading noise dominate when the blade section speed is moderate.

When the blade section speed is transonic, non-linear effects can become significant and are

Chapter 1

29

modelled by quadrupole sources [95, 96]. They contain non-linear propagation effects and viscous

effects. The thickness noise, loading noise and quadrupole noise are obtained by the solution of the

general acoustic analogy Ffowcs Williams and Hawkings (FW-H) equation [96]:

     
        22

2 2 2
02

ij i

i j i

T H f L f Q f
c c H f

x x x tt

 
 

   
            

 (1.9)

where H(f) is the Heaviside step function whereas the control surface is denoted by f = 0 as shown

in Figure 1.14 below:

Figure 1.14 The definition of control surface.

As shown in Figure 1.14, the volume space within the control surface is denoted by f < 0, whereas

f > 0 represents the volume space outside the control surface. The vector normal to the control

surface is fn . 2 denotes the Laplace operator. When the density perturbations are small and

the observation distance is far away, the term c2(ρ – ρ0) can be replaced by p’, which is acoustic

pressure. Q and Li denote distribution of mass and linear momentum on the control surface. Tij is

the Lighthill’s stress tensor and contains non-linear propagation effects and viscous effects with the

following form:

2(' ')ij i j ij ijT uu p c       (1.10)

where δij is the Kronecker Delta function. τij is the viscous stress tensor. The non-linear effects are

described by ����� whereas τij denotes the viscous effects.

In this study, a simple scenario is considered. The airplane is a full scale, ATR-72 500-like wing body

[104-106] which performs an initial climbing at a Mach number of 0.205. Only point sources

Chapter 1

30

concentrated on a ring are considered. Due to the moderate blade section speed, the point sources

only contain linear thickness noise and loading noise.

Farassat offered a linear theory for the prediction of propeller noise based on the Ffowcs Williams

and Hawkings (FW-H) equation [38]. The general form of acoustic analogy can be described by FW-

H equations [38]. In terms of linear theory offered by Farassat [96], the linear form of the FW-H

equation is shown below:

    2 2 2 2
0' 1 ' n i ip c p t v f f t l f f x                 (1.11)

where p’ is the acoustic pressure, c and ρ0 are the speed of sound and density in the undisturbed

medium; vn is the local normal velocity of the surface f = 0:

  nv f t f    (1.12)

The surface is defined by f = 0, with f > 0 outside the surface and f < 0 inside it. li is the local force

on per unit area. δ(f) is the Dirac delta function. The first term at the RHS denotes thickness noise

source, while the second refers to loading noise source. Unless the sound wavelength considered

is comparable to the blade section thickness, the detailed shape of the blade section can be ignored.

The source terms can be simplified into a volume distribution shown below:

 2 2 2 2' 1 'p c p t q t           F (1.13)

Now the thickness noise source is a distribution of monopoles with the strength of q, while the

loading noise source is a distribution of dipoles with the strength of F. The values of q and F can be

obtained from an experiment [10, 102] or a CFD simulation [49]. In this study, the strengths of

monopoles and dipoles, q and F, are assumed to be known and a small value is given to ensure a

linear acoustic propagation.

1.2.4.2 Acoustic Scattering

Acoustic scattering phenomena can be described by the acoustic installation effect on propagation

and the convection effect of the flow field. Acoustic scattering phenomena contain reflection

effects off solid surfaces and refraction effects induced by the non-uniform flow field close to the

solid wall. Based on different treatments of these two effects, scattering prediction models can be

categorized into two types: a) those that focus on the reflection effect and convection effect, and

b) those that can account for all the convection, reflection and refraction effects [29, 107]. The

reflection and convection effects can be described by an inhomogeneous, convective acoustic

equation with a uniform flow [107-109]. Solving the inhomogeneous convective acoustic equation

Chapter 1

31

can be performed by a surface method, such as boundary element method (BEM) [110-112] and

equivalent source method (ESM) [107-109]. In the surface method, only a surface mesh is required

to discretize the solid surface. Therefore, the mesh generation is much easier and it is

computationally efficient. It offers an acceptable estimation for some external flow applications

and is mainly used in engineering fields [110-112]. However, the refraction effect is significant in

some applications and should not be ignored, e. g., the refraction effect of the boundary layer is

strong when the mean flow Mach number is greater than 0.7 [29, 30, 49, 113-116]. In this study,

the research focuses on the acoustic scattering induced by the non-uniform mean flow-field around

the scattering objects. Sound Pressure Level (SPL) on the scattering object and acoustic far-field

directivities will be evaluated by CAA methods.

Some studies on the refraction effect of the non-uniform flow, especially the boundary layer close

to a fuselage surface, on sound propagation have been performed. These studies include

experiments, analytical methods and numerical methods. These studies focused on the refraction

effect at the flight Mach number around 0.8 since the sound on the fuselage surface was assumed

to be an important contributor to the cabin noise during cruise. Experiments [113, 117, 118]

revealed that considerable shielding effect on the fuselage surface by the boundary layer occurred

upstream of the propeller plane. The shielding effect was also studied by analytical methods.

Analytical methods [113-117, 119] modelled a fuselage as an infinitely long cylinder with a constant

boundary layer along its flow direction and circumferential direction. The velocity gradients in the

boundary layer was assumed responsible for the refraction effect. The velocity profile of the

boundary layer was specified and only varies in the radial direction. The governing equation in the

boundary layer was the shear-flow wave equation which is given by Goldstein [113, 117]:

2

2

2
0

1 '
2 ' 0

D D p
p p U

Dt c Dt x

  
    

 
 (1.14)

Here the prime denotes ∂/∂r. U’ only varies in the radial direction and is constant in the flow and

circumferential direction. The convective derivative is:

D

U
Dt t x

 
 
 

 (1.15)

The elementary solution was assumed to have the form P(r)eikxeinφe-iωt in the cylindrical coordinates.

Then Eq. (1.14) was solved by a Runge-Kutta integration method. The results showed that at a Mach

number around 0.8, the shielding effect was strong whereas the shielding effect diminished at

lower Mach numbers for large sound wavelengths [114, 117]. The analytical methods showed the

following deficiencies in terms of the real geometry and mean flow-field:

Chapter 1

32

 A fuselage geometry was ideally simple, normally an infinitely long cylinder.

 Boundary layer was simplified and was assumed constant along the flow direction and the

circumferential direction.

In comparison, the CAA methods show the following advantages:

 A realistic fuselage geometry is considered.

 The refraction effect of a realistic boundary layer is considered.

When a realistic boundary layer and a realistic fuselage geometry were considered, the numerical

methods must be used. CAA methods were employed to study the refraction effect recently at

cruise Mach numbers and the strong shielding effect upstream of the propeller plane was also

found. In CAA methods, the sound sources were coupled to the physical domain by an inflow buffer

zone [30, 115] or the RHS sources [10, 49] in the governing equations. LEE or the Euler equations

were utilized as the governing equations in propagation. Siefert and Delfs [29] investigated the

mean boundary layer effects on sound field on fuselage surface using a point source with different

frequencies at Mach numbers 0.7, 0.75 and 0.8. The fuselage was assumed to be a flat plate while

the boundary layer was obtained by a RANS simulation. The incoming waves radiated by a point

source was coupled into the physical domain by an inflow buffer zone. Then Dierke et al. [30]

extended the previous work to the investigation of the turbofan modes on the fuselage surface.

Garrec and Reboul [49] applied the CAA method to study the installation effect of the rotor-alone

noise of a rear CROR mounted on a single aisle aircraft. The geometry was at full scale and the mean

flow-field was obtained by a RANS simulation, which is similar to the current study. The CROR noise

sources were modelled by spinning monopolar sources. The result showed that a considerable

change on the directivity induced by the non-uniform mean flow was found in comparison to that

in a uniform flow. In contrast, the refraction effect of the non-uniform flow on an acoustic wave at

a low Mach number was often neglected in the previous research since take-off time is relatively

short and the sound on the fuselage surface is assumed to be more important at a cruise condition

than at take-off. In the current study, the CAA methods are employed to predict the refraction

effect of the boundary layer. As mentioned in Section 1.2.1, LEE can be used to describe all the

convection, reflection and refraction effects in acoustic propagation with fidelity. In this study, LEE

is selected as the governing equations to investigate the sound scattering off an aircraft, especially

the refraction effect of the non-uniform flow at both low and high Mach numbers. The acoustic

difference on the solid wall induced by the refraction effect is evaluated.

Chapter 1

33

1.3 Aims of the Current Work

In the literature review, the central part of this research has been outlined. To improve the

computational efficiency and reduce the wall-clock time of current CAA simulations, CAA hybrid

method and high-order accurate, low-dissipative and low-dispersive schemes have been used in

the current CAA solver. Furthermore, the solver can run in parallel with MPI implementation on

many CPU cores. Due to the long wall-clock time of current simulations and high computational

performance of GPUs, the current solver is extended to implementation on multiple GPUs. The new

developed CAA solver is applied to investigate the scattering of the propeller noise off an aircraft

and the refraction effects of the mean flow field. The specific aims of the study were to:

 develop an efficient algorithm and strategy to solve a bidiagonal matrix on a GPU to

implement optimized prefactored compact schemes;

 develop an efficient CAA solver based on finite difference method on a GPU to reduce the

wall-clock time of current CAA simulations;

 optimize the data exchange among multiple GPUs and multiple CPUs;

 apply the new developed CAA solver to investigate the refraction effect of non-uniform

mean flow field on the propagation of propeller noise off a cylinder;

 apply the new developed CAA solver to a large scale engineering application: the prediction

of propeller noise scattering off an aircraft, and evaluate the speed-up.

1.4 Original Contributions

The original contributions of this thesis are listed below:

 How to solve a bidiagonal matrix is focused on and investigated on a GPU for the first time.

The performance of a series of algorithms are tested and evaluated on different mesh sizes

in 2D and 3D computations.

 The best generic algorithms to solve a bidiagonal matrix are found on different mesh sizes

in 2D and 3D computations on a GPU. The best choice of the algorithms depends on the

grid size.

 The reasons why some algorithms behave better is analysed when a bidiagonal matrix is

solved on a GPU. Different algorithms are compared and even the same algorithms in the

x, y and z directions are compared and analysed.

 Anisotropic memory access pattern is found to be a key role in the performance on a GPU

for the same algorithms. For a given algorithm, the memory access is consecutive in the x

Chapter 1

34

direction whereas it is discontinuous in the y and z directions. This results in different

performance on a GPU where the memory access plays a key role in the performance.

 A new hybrid method is proposed in terms of the anisotropic memory access pattern. The

hybrid method is a combination of the best choice of different algorithms in the x, y and z

directions and achieves the best performance.

 The subroutines in the CAA solver based on finite difference methods are categorized into

five types with the aid of memory access patterns. Different parallel strategies are applied

accordingly.

 A whole CAA code based on finite difference method is paralleled on multiple GPUs. The

solver is efficient and robust on complex geometries. The performance is evaluated on a

series of problems.

 The mesh resolution at the source region is found a key role in the propagation of sound

waves computationally. In this study, the propeller noise source is introduced by

monopoles and dipoles. The resolution of monopoles is represented by a Gaussian

distribution and evaluated computationally.

 The validation of the propeller noise source model is performed by a comparison between

the CAA results and the analytical solutions of Farassat’s Formulation 1A [101] and

Hanson’s solution [99]. The validation of the propeller noise scattering off a cylinder is

performed by a comparison between the CAA results and CESM results computationally.

 The thickness noise, loading noise of a propeller scattering off a cylinder with a realistic

boundary layer is investigated by the CAA method for the first time.

 The refraction effect of the realistic boundary layer on a cylinder is investigated by the CAA

method. It is found that the refraction effect of boundary layer is weak at M = 0.205

whereas it is significant at M = 0.75. When Mach number is greater than 0.3, the boundary

layer plays an important role in the change of far-field directivity.

 The scattering of propeller noise scattering off a wing-body at a full scale is predicted

computationally. The speed-up is evaluated on the large scale engineering case.

Some of the work included in this thesis has been presented in the 20th AIAA/CEAS Aeroacoustics

Conference [93] and 22nd International Congress on Sound and Vibration [107], and has been

published in the Journal of Computer Methods in Applied Mechanics and Engineering [92].

1.5 Structure of Thesis

The remainder of the thesis is organized into three main parts. The first part is devoted to the

development of algorithms and the CAA solver on multiple GPUs and is distributed across chapters

Chapter 1

35

2 through 4. The second part (chapter 5) is concerned with the investigation of propeller noise

scattering off a cylinder computationally and the refraction effect of the boundary layer. The third

part (chapter 6) applies the developed solver to predict the scattering phenomena of propeller

noise off a wing-body with complex geometry at a full scale and to evaluate the true speed-up of

the current solver in engineering problems. The performance is analysed in detail in comparison to

the cases in the second part.

Chapter 2 gives a detailed description of the current CAA solver, called SotonLEE. The technical

details include the governing equations, flowchart, numerical schemes, boundary conditions and

index manipulations relevant to multi-block mesh and MPI operations. All the subroutines used in

SotonLEE are categorized into five types according to different memory access patterns. Different

parallel strategies will be applied to the subroutines with different memory access patterns.

In chapter 3, development of an efficient bidiagonal matrix solver on GPUs is described. A small

CAA solver which runs in serial on a single CPU core is extracted from SotonLEE. This solver is mainly

used as a workbench to develop the algorithms and strategy to solve bidiagonal matrices on a GPU,

since it keeps the core algorithms of SotonLEE in a single mesh block in serial and abandons some

advanced capabilities such as pre-processing of the mesh information. Three numerical methods

are devoted to solving the bidiagonal matrix on GPUs. Furthermore, the anisotropic memory access

pattern of all the algorithms are investigated. Finally, combinations of the numerical method, the

hybrid methods, are proposed to overcome the deficiency introduced by the anisotropic memory

access pattern. The hybrid method achieves the highest performance for large scale computation.

The performance of the solvers is recorded and compared. In conclusion, a solving strategy is

proposed with the numerical methods to offer a solution to the bidiagonal matrix on GPUs.

Chapter 4 is devoted to the development of other subroutines in SotonLEE and the optimization of

the data exchange between multiple GPUs. These subroutines do not contribute much

computational cost in comparison to the prefactored compact scheme computations. However,

they might be the potential bottleneck if they are not well settled. Subsequently, a series of

benchmark problems are implemented on multiple GPUs to evaluate the overall performance of

the new solver, called SotonLEE_GPU.

In chapter 5, the acoustic refraction effect of the boundary layer close to an infinitely long cylinder

is predicted. The infinitely long cylinder is assumed to be an ideal simplification of a fuselage and

the boundary layer is obtained by a RANS simulation. The acoustic sources are a ring of spinning

monopoles radiating thickness noise and a ring of spinning dipoles radiating loading noise, which

imitate the noise sources of a propeller. The configuration is run with a low Mach number (0.205)

setup and a high Cruise number (0.75) setup to investigate the basic features of the acoustic field

Chapter 1

36

of a propeller scattering off a cylinder and the refraction effect of the boundary layer. At last, the

acoustic refraction effect of the mean flow field is evaluated at more Mach numbers (0.3 and 0.4)

to find out at which Mach number, the refraction of the mean flow-field starts to become

important.

In chapter 6, the CAA solver with multi-GPU implementation capability is applied to investigate a

large scale engineering case with a complex geometry, the propeller noise scattering off an aircraft.

The research focus is not placed on the analysis and explanation on physical phenomena since the

engineering geometry is complex and the analysis is difficult. The numerical methods and sound

sources are kept the same as those in Chapter 5. The case with a complex geometry is mainly

devoted to demonstrate the application to a large-scale engineering case and evaluate the true

performance of the current solver in engineering problems. In addition, the speed-up is recorded

to evaluate the true speed-up of the current solver in engineering problems. The causes of the

relatively low performance of the current solver in this case with complex geometry in comparison

to the cases in Chapters 4 and 5 is also analysed in detail.

Chapter 2

37

Chapter 2: High-Order Scattering Solver

In this chapter, the existing CAA code, SotonLEE, which can be used for sound propagation and is

used throughout this work, is introduced in detail. The technical details contain governing

equations, flowchart, prefactored compact scheme, explicit filter, LDDRK, boundary conditions and

operations relevant to MPI communication which include packing/unpacking and array mapping

relevant to multi-block mesh. Furthermore, a small CAA scattering code which disables the relevant

MPI communication and advanced pre-processing capabilities is extracted from SotonLEE. The

flowchart of the basic solver is also given.

2.1 Governing Equations

The inviscid behaviour of small disturbance on a non-uniform, steady flow field can be described by

LEE. LEE in 3D Cartesian coordinate can be written in the following form [5]:

0 0 0 0 1

' ' ' ' ' ' 'u v w
u v w s

t x y z x y z

   


       
        

       
 (1.16)

 0 0 0 0
0 0 0 22

0 0

' ' ' ' 1 ' '
' ' '

u u u pu u u u p
u v w u v w s

t x y z x y z x x



 

       
         

        
 (1.17)

 0 0 0 0
0 0 0 32

0 0

' ' ' ' 1 ' '
' ' '

v v v pv v v v p
u v w u v w s

t x y z x y z y y



 

       
         

        
 (1.18)

 0 0 0 0
0 0 0 42

0 0

' ' ' ' 1 ' '
' ' '

w w w pw w w w p
u v w u v w s

t x y z x y z z z



 

       
         

        
 (1.19)

 0 0 0
0 0 0 0 5

' ' ' ' ' ' '
'

u v wp p p p u v w
u v w p p s

t x y z x y z x y z
 

           
             

            
 (1.20)

Here, u, v and w denote the velocity components in the x, y, z directions respectively. ρ and p denote

density and pressure. γ, the ratio of specific heat, is treated as a constant (1.4 for air). The prime

symbol denotes perturbation field whereas the subscript 0 represents background mean flow field.

In this work, all the variables in LEE are non-dimensional with the following reference scales: a

reference length L0, a reference speed c0, a reference density ρ0, a reference pressure ρ0c0
2 and a

reference time L0 / c0. The terms s1 to s5 denote the source of disturbance. They are normally set to

zero unless certain form of perturbation exists in the flow field and is modelled through these

sources explicitly.

Chapter 2

38

2.2 Flowchart

The current CAA solver, SotonLEE, is based on finite difference method using body-fitted, multi-

block, structured mesh. The features of SotonLEE has been listed in Section 1.2.2. For a better

understanding of the code behaviour, the flowchart of SotonLEE is given below with a description

of a typical implementation on multiple CPUs using MPI:

Figure 2.1 Flowchart of SotonLEE.

As shown in the flowchart above, when the program launches, it first performs some initialization

operations including reading inputs, checking multi-block connection and launching MPI processes.

Then, each MPI process enters into an iteration solver, which is denoted by Time_stepping in red in

Figure 2.1, after it gets its own mesh blocks and performs the Jacobian metric computation and

mean flow field manipulations. In a time step, an MPI process performs the LDDRK iteration, then

explicit filtering and if necessary, output to hard disk. In the LDDRK iteration, there are CFL

calculations, boundary treatments, spatial derivative and LEE RHS residual increment computations.

When the iteration finishes, the program finalizes MPI processes and records performance metrics.

Chapter 2

39

In the whole implementation, spatial derivative computations using the prefactored compact

schemes are the most computing-intensive part, as shown in Table 1-3.

2.3 Prefactored Compact Schemes

The high-order, low-dissipative and low-dispersive prefactored compact schemes increase the

maximum resolved wave number and reduce the total mesh element amount as stated in section

1.2.2. Furthermore, the prefactored compact schemes split the derivatives into the sum of a

forward derivative and a backward derivative. This operation reduces the stencil size and simplifies

the implementation close to boundaries [13, 14]. Meanwhile, this operation results in two

bidiagonal matrices which are easier to solve on a CPU via a forward/backward sweep operation.

Given a computational domain with dimensions of (Nx, Ny, Nz), the fourth-order optimized

prefactored compact scheme in the x direction can be expressed in a recursive form as shown

below:

  , , , , , ,

1

2
F B

i j k i j k i j kD D D  (1.21)

 1, , , , 1, , , , 1, ,

1F F
i j k i j k F i j k F i j k F i j kD D a f b f c f

x
   

     
 (1.22)

 , , 1, , 1, , , , 1, ,

1B B
i j k i j k B i j k B i j k B i j kD D a f b f c f

x
    

     
 (1.23)

in which,
, ,i j kD ,

, ,
F
i j kD and

, ,
B
i j kD denote the unknown primitive derivative, the forward derivative and

the backward derivative on a mesh point respectively, whereas fi,j,k represents the known primitive

field. The coefficients, α, β, aF, bF, cF, aB, bB and cB, are constants. For a given j and k, i varies in

descending order from Nx - 1 to 2 in Eq. (2.7) and i varies in ascending order from 2 to Nx - 1 in Eq.

(2.8). On the outer edge of a mesh block, a third-order four-point stencil explicit scheme (forward

and backward combined) is applied:

4

1, , , ,
1

B
j k i i j k

i

D s f


  (1.24)

 , , , ,
3

Nx
B
Nx j k i i j k

i Nx

D e f
 

  (1.25)

4

1, , 1 , ,
1

F
j k Nx i i j k

i

D e f 


  (1.26)

Chapter 2

40

 , , 1 , ,
3

Nx
F
Nx j k Nx i i j k

i Nx

D s f 
 

  (1.27)

On a block interface, a fourth-order eleven-point stencil explicit scheme (forward and backward

combined) is applied:

5

, , , ,
5

F
i j k m i m j k

m

D b f 


  (1.28)

5

, , , ,
5

B
i j k m i m j k

m

D b f 


  (1.29)

where si, ei and bi are fixed coefficients. Eqs. (2.6) - (2.14) constitute a recursive system. This

recursive system can be represented in matrix form:

 F F F F A d b B f (1.30)

1, ,

2, ,

3, ,

2, ,

1, ,

, ,

1 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 1

F
j k

F
j k

F
j k

F F

F
Nx j k

F
Nx j k

F
Nx j k

D

D

D

D

D

D

 

 

 

 




  
  
  
  
  

  
   
  
  
  
  
  
  

A d







       

       







 (1.31)

  1, , 2, , 3, , 2, , 1, , , ,

TF F F F F F F
j k j k j k Nx j k Nx j k Nx j kb b b b b b b   (1.32)

1, ,1 2 3

2, ,

3, ,

2, ,

1, ,

, ,3 2 1

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

j kNx Nx Nx Nx

j kF F F

j kF F F

F

Nx j kF F

Nx j kF F F

Nx j k

fe e e e

fc b a

fc b a

fb a

fc b a

fs s s

  





      
  
  
  
  

  
   
  
  
  
  
      

B f







       

       







 (1.33)

 B B B B A d b B f (1.34)

Chapter 2

41

1, ,

2, ,

3, ,

2, ,

1, ,

, ,

1 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 1

B
j k

B
j k

B
j k

B B

B
Nx j k

B
Nx j k

B
Nx j k

D

D

D

D

D

D

 

 



 




  
  
  
  
  

  
   
  
  
  
  
  
  

A d







       

       







 (1.35)

  1, , 2, , 3, , 2, , 1, , , ,

TB B B B B B B
j k j k j k Nx j k Nx j k Nx j kb b b b b b b   (1.36)

1, ,1 2 3 4

2, ,

3, ,

2, ,

1, ,

, ,2 1

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

j k

j kB B B

j kB B B

B

Nx j kB B

Nx j kB B B

Nx j kNx Nx Nx

fs s s s

fc b a

fc b a

fb a

fc b a

fe e e





 

  
  
  
  
  

  
   
  
  
  
  
      

B f







       

       







 (1.37)

Eqs. (2.15) - (2.22) constitute the matrix form of the fourth-order optimized prefactored compact

scheme. Solving the bidiagonal matrix on CPUs is quite straightforward and simple. Forward

substitution is employed to solve the lower bidiagonal matrices whereas backward substitution is

used to solve the upper bidiagonal matrix in serial. In a 3D domain, there are Ny × Nz upper and

lower bidiagonal matrices to solve. These matrices can be solved independently by a shared

memory model. A 3D computational domain exposes a massive degree of parallelism to the CPUs,

thus making the algorithm highly efficient. The fourth-order optimized prefactored compact

schemes in the y and z direction are solved in the similar way with varying index j and k, respectively.

2.4 Explicit Filters

A finite difference scheme always has a limited resolved wave number. The waves with high wave

numbers which are not resolved with accepted fidelity are called spurious waves and must be

removed. In CAA simulations, there are two ways to remove spurious waves: one way is using

artificial damping [11] and the other is using spatial filtering [12, 120-122]. Artificial damping adds

extra terms to the finite difference scheme computation and the introduced cost is comparable to

that of the finite difference scheme. Another method is using spatial filtering. Spatial filtering can

be performed every multiple time step so that the introduced cost is much lower in comparison to

that of the finite difference scheme. In this work, explicit filters are used. A tenth order explicit filter

[41, 42] is written in the following form:

Chapter 2

42

     

   
5 5 5 4 4 4 3 3 3

2 2 2 1 1 1 0

i i i i i i ii

i i i i i

f f c f f c f f c f f

c f f c f f c f

     

   

         

       
 (1.38)

in which,
if denotes the filtered field while fi is the primitive field. Eq. (2.23) describes the filter in

the interior points with a stencil size of 11. The interior stencil is symmetric. When i < 6 or i > Nx -

4, the boundary stencils must be used. The boundary stencils are asymmetrical and use different

formulations at varying positions:

at i = 1:

6

1 1,1
1

j j
j

f f c f


   (1.39)

at i = 2:

7

2 2,2
1

j j
j

f f c f


   (1.40)

at i = 3:

8

3 3,3
1

j j
j

f f c f


   (1.41)

at i = 4:

9

4 4,4
1

j j
j

f f c f


   (1.42)

at i = 5:

10

5 5,5
1

j j
j

f f c f


   (1.43)

The similar stencils apply to the points with i > Nx - 5. The filtering performance of the tenth-order

explicit filter is given in Figure 1.3.

2.5 Low-Dissipation and Low-Dispersion Runge-Kutta Scheme

In collaboration with high-order, low-dissipative and low-dispersive finite difference schemes,

requirements of low-dissipation, low-dispersion and high-order accuracy are also made on time

marching schemes. The time marching schemes attempt to start at an initial time and advance a

small time interval forward to obtain the solution at the next time step. In CAA simulations, the

explicit time marching scheme is preferable since the time interval must be small enough to retain

Chapter 2

43

the accuracy, low dissipation and low dispersion. In addition, the computational cost is much lower

in comparison to an implicit time marching method if the same time interval is used. Solving

methods on explicit schemes are also much simpler as implicit time schemes always require solving

a globally dependent matrix [123, 124]. The explicit time marching schemes can also be categorized

into two types: multi-step type [11, 125] and multi-stage type [40, 126]. A multi-step method

utilizes the information at multiple previous steps for extrapolation to achieve high-order accuracy.

In contrast, a multi-stage method discards the information at multiple previous steps. It performs

computations at multiple intermediate time stages between the current and the next time steps to

obtain high-order accuracy. Due to this difference, the multi-step method gains much higher

computational efficiency since there is only one computation between two time steps whereas the

multi-stage method has to compute the finite difference scheme, filtering, boundary condition, RHS

residual and performs MPI data exchange within each intermediate time stage. However, if high-

order accuracy must be retained, the memory volume required by a multi-step method is much

larger than a multi-stage method. This is a key limitation in some applications, such as applications

on GPUs, since the memory volume of a GPU is limited. The prototype of a multi-step method is

Adams-Bashforth method [125], whereas Runge-Kutta method is a typical multi-stage method. In

this research, the LDDRK with alternating 4/6 stages [40] has been used. The governing equation

has the following form:

  t F  U U (1.44)

A p-stage LDDRK scheme can be written in the following form:

  1
n

i i itF    K U K (1.45)

 1n n
p

  U U K (1.46)

in which, Ki is the incremental vector at an intermediate stage, while U is the solution vector.
i is

the constant coefficient. Details of the coefficients for the LDDRK with alternating 4/6 stages can

be found in Hu’s work [40].

2.6 Boundary Conditions

The boundary conditions determine the numerical solution if numerical methods and a CAA mesh

are given. In this work, the inflow, outflow, symmetry and inviscid wall boundary conditions are

utilized and will be introduced below.

Chapter 2

44

2.6.1 Inflow Condition

The inflow condition is used to introduce the input of perturbation when the perturbation is not

easy or convenient to show as a source term explicitly in the governing equations. In this work, the

inflow condition is a buffer zone which radiates the disturbance outwards. A typical inflow condition

used in the scattering of a spinning mode off a duct [34-37, 127] is shown below:

Figure 2.2 Boundary conditions in the scattering of a spinning mode off a duct case.

In Figure 2.2, the inflow condition which contains the spinning mode of the duct is located at the

left bottom corner. In the inflow condition, the acoustic field is forced into a spinning duct mode.

The acoustic field which enters into the inflow buffer is damped by the buffer. The inflow buffer

condition is given in the following form:

     1 1 1
arg

n n n
t etx

     U U U U (1.47)

   max 1x x L


   (1.48)

where U denotes the damped solution vector and Utarget is the acoustic spinning mode of the duct.

σ(x), the damping coefficient, varies smoothly throughout the buffer zone. x is the distance from

the starting position of the inflow buffer, while σmax and β are constant coefficients. In the inflow

Chapter 2

45

condition, the acoustic waves are damped out and forced to be the acoustic spinning mode of the

duct.

2.6.2 Outflow Condition

The outflow condition in this work refers to the artificial computational boundaries which truncate

the flow region of interest into a limited domain. The outflow condition endeavours to reduce the

domain with the minimum feedback on the flow/acoustic field. Based on the different phenomena

and treatments, there are two types of outflow conditions: the non-reflect boundary conditions

(NRBC) [128-130] and the absorbing layers [131, 132]. When the flow field near the boundary can

be linearized into small disturbance about a uniform flow, NRBC performs manipulations on the

boundaries so that no incoming waves exist. However, when the mean flow field is not uniform or

the flow field near the boundary cannot be linearized into small perturbation to a uniform flow

field, NRBC is not available [128-130]. The NRBC can also be extended into the non-uniform mean

flow field. However, when the perturbation is not propagating normally to the boundary, it works

less well [131, 132]. In this situation, the buffer zone that is one of the absorbing layers gains the

best performance [53, 133]. The outflow buffer zone condition is nearly the same as the inflow

buffer condition shown in Eqs. (2.32) – (2.33) except that Utarget in the outflow buffer is normally set

to zero to damp the waves. Another method is grid stretching [120, 131, 134, 135] which abandons

boundary condition at the outer edge. The mesh element is stretched to a large distance close to

the boundary so that the disturbance cannot be well resolved and is removed by explicit filters. A

typical stretched grid close to the boundary is shown below:

Figure 2.3 Grid stretching.

Chapter 2

46

In Figure 2.3, the mesh elements close to the outflow boundary are stretched so that the

perturbation waves become spurious waves which are removed by the explicit filters gradually.

Furthermore, the buffer zone condition [53, 136, 137] can be utilized to attenuate the acoustic field

further, together with the grid stretching. In this research, the buffer zone and grid stretching are

used as the outflow boundary condition depending on different cases.

2.6.3 Inviscid Wall Condition

Inviscid wall condition is another key boundary condition in CAA simulations. As mentioned in

sections 2.3 and 2.4, the high-order, low-dissipative and low-dispersive prefactored compact

scheme together with explicit filter does not sustain spurious waves. However, the spurious waves

always results from improper imposition of wall condition [138]. The improper imposition of

inviscid wall condition even results in parasite waves which have very short wavelengths (grid to

grid oscillations) and cannot be dampened or removed by spatial filtering effectively [138]. The

parasite waves are confined locally in space which contaminate and even blow up the numerical

solution occasionally. Therefore, proper imposition of inviscid wall condition plays an important

role which does not excite the spurious waves, thereby improving the quality of the solution.

The inviscid wall condition requires that the velocity component normal to the wall and also its

derivative with respect to time are zero. In this research, the implementation of inviscid wall

condition is based on the inviscid wall condition of Tam and Dong [138] and that of Hixon [13, 139-

141]. It is shown in following form:

 0p n p n p n p n                          (1.49)

 n x x n y y n z z n                     (1.50)

 n x x n y y n z z n                       (1.51)

 n x x n y y n z z n                     (1.52)

where n is the modulus of the normal vector on wall, ξ, η and ζ are variables in the computational

domain. x  , y  , z  ; x  , y  , z  ; x  , y  and z  are grid metrics

whereas x n  , y n  and z n  are normal vector components of the wall. Given an inviscid wall

simply at y = 0, an illustration of the implementation is described below:

Chapter 2

47

Figure 2.4 Region close to wall.

As shown in Figure 2.4, there are three types of points close to the inviscid wall, namely inner points,

wall points and ghost points. Recall that in terms of Eqs. (2.7) and (2.8), the computation of the

forward and backward derivatives at point i requires three points at i - 1, i, and i + 1. The inner

points starting from 2 to Nx - 1 are solved by Eqs. (2.7) and (2.8). At boundary points with i = 1 and

i = Nx, the forward and backward derivatives are solved by biased schemes in Eqs. (2.9) – (2.12)

close to the wall. However, it is found that direct application of the biased schemes on an inviscid

wall in a prefactored compact scheme is not stable. Therefore, a change is necessary to implement

a prefactored compact scheme close to the wall. If the inviscid wall locates at y = 0 (i = 1) as shown

in Figure 2.4, the forward and backward derivatives on both boundaries with i = 1 and i = Nx are

computed via a biased stencil in Eqs. (2.9) - (2.12). Then, a correction is made on the backward

derivative at point i = 1 so that the resultant pressure gradient with respect to normal direction is

zero. Lastly, the inner points are solved via Eq. (2.7) by backward substitution and Eq. (2.8) by

forward substitution. In 3D computations, there are six faces in a structured mesh block; the

implementation of the inviscid wall condition can be concluded below:

1) calculation of the pressure derivative normal to the wall by using the biased stencils;

2) judgement of segment index;

If segment index is 1 or 2, use the formulation below:

    p p n p n n                      (1.53)

For segment 1, the forward derivatives at point i = 1 and i = Nx are determined by Eqs. (2.11)

and (2.12), whereas the backward derivative at point i = Nx is computed by Eq. (2.10). However,

the backward derivative at point i = 1 is not solved by Eq. (2.9); it is determined by enforcing

p   = 0:

  0.5 F B
i ip D D     (1.54)

 2B F
i iD p D     (1.55)

Chapter 2

48

For segment 2, the backward derivatives at point i = 1 and i = Nx are determined by Eqs. (2.9)

and (2.10), whereas the forward derivative at point i = 1 is computed by Eq. (2.11). However,

the forward derivative at point i = Nx is not solved by Eq. (2.10); it is determined by:

 2F B
i iD p D     (1.56)

If segment index is 3 or 4, then replace Eq. (2.38) with the following equation:

    p p n p n n                      (1.57)

If the segment index is 5 or 6, replace Eq. (2.38) with:

    p p n p n n                      (1.58)

3) The inner points are solved by Eqs. (2.7) and (2.8).

2.6.4 Symmetry Condition

The symmetry condition is used when flow field/acoustic field is symmetric with respect to a

geometry. When the geometry can be found, the symmetry condition can be utilized to reduce the

computational cost artificially. In comparison to the inviscid wall condition, the symmetry condition

always appears as a simple geometry, such as a flat plane. Therefore, a simple mirror operation is

performed on five ghost points outside the physical domain. Then, the symmetric condition is

treated as an interface between mesh blocks and therefore the explicit symmetric schemes in Eqs.

(2.13) and (2.14) are utilized to obtain the derivatives. In this work, the method mentioned above

is used.

2.7 Index Transformation, Buffer Packing and Unpacking

The index transformation is necessary for multi-block structured mesh especially when an O-mesh

is used [142]. This situation is demonstrated by a typical O-H-mesh, which is shown below:

Chapter 2

49

Figure 2.5 Sketch of a typical mesh with the O-H topology.

As shown in Figure 2.5, the core of the domain is an H-mesh with a surrounding O-mesh. The face

iMax in block 1 is in the � direction in the computational domain whereas face jMax in block 2 is in

the � direction. The face iMax in block 1 becomes face jMax rather than iMin in block 2. This kind

of index transformation exists in the O-mesh and introduces extra computational cost into the code.

In this work, the index transformation utilizes the definition of transform in CFD general notation

system (CGNS) [142]. For example, at the interface between block 1 and block 2 in Figure 2.5,, the

shorthand notation of transformation is denoted by a transform vector [-2, 1, 3]. The first

component -2 means a minus increment occurs at j at the interface in block 2 when a positive

increment occurs on the element index at i at the interface in block 1. The second component 1

denotes when a positive increment occurs on the element index at j at the interface in block 1, a

positive increment occurs at i at the interface in block 2. In SotonLEE, the flow field close to the

interface in an adjacent mesh block is mapped as ghost points in the current block. Every time the

information on ghost points is required, the code first maps the flow field at the adjacent block into

the ghost points, then performs computation. The index transformation is independent of MPI

implementation but is only relevant to the multi-block mesh.

The packing and unpacking operations are only concerned with MPI implementation on multiple

CPU cores. When data exchange of flow field close to the block interface occurs, the data which

needs exchange in the array is first packed into a small buffer array and then sent out. The buffer

array received from a neighbouring mesh block in another MPI process has to be unpacked. This

kind of packing and unpacking operation is necessary for MPI implementation.

Chapter 2

50

2.8 Subroutine Categories

As mentioned in section 1.2.3.4, memory access patterns play important roles in the performance

of GPU codes. It is necessary to categorize iteration subroutines into five types according to

different memory access patterns, following the method proposed by Elsen et al. [17]. Different

types of subroutines are applied with different parallel strategies, which are discussed below.

First, subroutines such as prefactored compact scheme computations, which always require solving

a recursive system (bidiagonal or tridiagonal matrix), are categorized as implicit stencil type. Second,

subroutines such as explicit high-order filters, which demand regular information from

neighbouring elements, are categorized as explicit stencil type. Third, subroutines such as LEE RHS

residual computations, inflow and outflow conditions, which only depend on local information, are

categorized as point-wise type. Fourthly, unstructured gather type subroutines, such as those

packing/unpacking operations and index transformation appeared in the interface condition, are

used to deal with the connectivity information on interfaces for adjacent blocks. This kind of

subroutines require irregular access to the memory and are considered unstructured gather type.

Lastly, reduction type subroutines are employed to collect the maximum, the minimum or the sum

of some specific variables, such as the CFL calculation. This kind of subroutine performs a traversal

across the whole domain. Different categories of subroutines are applied with different parallel

strategies and algorithms on GPUs, as will be explained in detail in the next two chapters.

2.9 Summary

In this chapter, the high-order CAA code, SotonLEE, which can be used for sound propagation, has

been introduced in detail. The description contains governing equations, flowchart, CAA numerical

methods, boundary conditions, multi-block index transformation, and operations relevant to MPI.

Finally, all the subroutines have been categorized into five types according to their memory access

pattern which is important in GPU programming in subsequent chapters.

Chapter 3

51

Chapter 3: Efficient Bidiagonal Matrix Solver on a GPU

This chapter is devoted to the solution of prefactored compact schemes on a GPU. The prefactored

compact schemes give rise to bidiagonal matrices. Therefore, an efficient bidiagonal matrix solver

is a critical ingredient and dominates the overall performance of applications on a GPU.

Furthermore, previous researchers always developed numerical methods in the x direction and

applied the methods directly in the y and z directions in 3D computations [85, 143-145]. The

anisotropic memory access pattern, which degrades the overall performance of the numerical

methods, was ignored. In this chapter, the anisotropic memory access pattern is also investigated.

Finally, a solution of bidiagonal matrix on a GPU is proposed. It contains the implementation

strategy and algorithms. The performance is recorded and analysed on a simple CAA case.

3.1 A Simple Serial Solver

SotonLEE is a large and complex suite of CAA programs. It employs finite difference method and

body-fitted, multi-block, structured mesh. It has complex control structures, complex initialization

operations and index transformations. Consequently, it is better to first investigate the core

algorithms on a small serial solver which retains the same numerical methods as in SotonLEE. For

shorthand notation, this small serial solver is hereafter called BenLEE since it serves as a workbench

to investigate the algorithms used in SotonLEE. The BenLEE contains typical features in SotonLEE

shown below:

 Written in FORTRAN90

 Single block uniform mesh

 Ashcroft and Zhang’s fourth-order optimized prefactored compact scheme [14]1 and

Hixon’s sixth-order prefactored compact scheme [13]

 Tenth-order and sixth-explicit filters [41, 42]

 Hu’s alternating 4-6 stages LDDRK time-marching scheme [40]

 Outflow buffer zone condition [131, 132]

 In double precision format

 In non-dimensional format

The flowchart of BenLEE is shown below:

Chapter 3

52

Figure 3.1 Flowchart of BenLEE.

BenLEE runs in serial on one CPU core. It first loads parameters from an input file, performs

initialization on variables, and then loops iterations until the total time-step is reached. Lastly, it

outputs results and prints wall-clock time. The main difference in Time-stepping between BenLEE

and SotonLEE is relevant index transformation to multi-block mesh. In BenLEE, only one mesh block

is allowed and there are no inviscid wall or symmetry conditions. Since the index transformation is

not computationally intensive, ignorance of index transformation does not affect the profile of the

solver.

To build BenLEE correctly, a 2D acoustic wave propagation problem [146] is selected as the

benchmark problem. The physical domain is a rectangle with a dimension of [-50, 50] × [-50, 50]

with outflow buffer zones around it. The width of each buffer zone is 20. The whole physical domain

is shown in Figure 3.2 below:

Chapter 3

53

Figure 3.2 Physical domain in 2D propagation case.

The mesh is uniform. The LEE is non-dimensional with the following reference scales:

Length scale = Δx (grid spacing)

Velocity scale = c∞ (ambient acoustic speed)

Time scale = Δx / c∞

Density scale = ρ∞ (ambient density)

Pressure scale = ρ∞c∞2

The 2D non-dimensional LEE on a uniform mean flow field is expressed as:

 0x y

u v
c c

t x x y y

      
    

    
 (2.1)

 0x y

u u p u
c c

t x x y

   
   

   
 (2.2)

 0x y

v v v p
c c

t x y y

   
   

   
 (2.3)

 0x y

p p u p v
c c

t x x y y

    
    

    
 (2.4)

Chapter 3

54

in which, ρ, u, v and p are acoustic variables whose prime symbols are removed for simplicity. The

Mach number of mean flow in the x direction, cx is 0.5, whereas cy is zero in the y direction. The

acoustic field is initialized by a Gaussian pulse across the whole domain:

    2 2 2exp ln 2 x y d        (2.5)

    2 2 2exp ln 2p x y d       (2.6)

 0u (2.7)

 0v (2.8)

where ε denotes the acoustic amplitude, whereas d represents the half width of Gaussian pulse.

Here ε is 0.001 and d is 3.0. Time step size Δt is 0.5. The pressure contours are shown below:

a) t = 0. b) t = 30, the 60th time step.

Figure 3.3 Acoustic pressure contours, cx = 0.5.

As shown in Figure 3.3, BenLEE holds the waveform when an initial acoustic perturbation is

propagating. The exact solution is given to evaluate the quality of the solver below:

        141
0

1
0

, , , , cos
2

p x y t x y t e t J d     



    (2.9)

in which α1 = ln2 / d2, η = [(x - Mt)2 + y2]1/2 and J0 is the 0th order Bessel function of the first kind. The

acoustic pressure along the line at y = 0 is recorded in the numerical solution. A comparison

between the numerical solution and exact solution is shown in Figure 3.4.

Chapter 3

55

a) t = 25, the 50th time step. b) t = 35, the 70th time step.

Figure 3.4 Pressure waveforms along y = 0, cx = 0.5.

Good agreement is found between the analytical solution and numerical result from Figure 3.4. In

3D computations, the physical domain is constructed by duplications of the 2D domain in the z

direction. The buffer zone is also incorporated in the z direction. The simple 2D acoustic wave

propagation demonstrates the correctness and fidelity of BenLEE. It will be used to develop the

bidiagonal matrix solver on a GPU in subsequent sections.

3.2 Bidiagonal Matrix Solver on a GPU

The prefactored compact scheme gives rise to an upper bidiagonal matrix and a lower bidiagonal

one. The bidiagonal matrix is a recursive system which globally depends on all the elements in the

matrix. Therefore, it is not easy to find an efficient parallel algorithm for solving a bidiagonal matrix.

As mentioned in Section 1.2.3.5, solving a tridiagonal matrix on a GPU has been investigated and

good performance can be achieved. In this section, effort is extended to implementing a bidiagonal

matrix on a GPU. Based on different mathematical forms, four methods are employed to solve a

bidiagonal matrix. Each method is assigned a name for shorthand notation.

3.2.1 Natural Method

Natural method refers to the back substitution algorithm and is based on a recursive system form.

It can be observed from Eq. (2.7) that for forward derivative
, ,
F
i j kD to be solved,

1, ,
F
i j kD 

 has to be

known first. Also, in Eq. (2.8)
1, ,

B
i j kD 

 has to be known first for
, ,
B
i j kD to be solved. Therefore, data

dependency occurs only in the x direction when the derivatives in the x direction are solved. In a

3D computational domain, systems like Eqs. (2.7) and (2.8) with different j or k indices can be solved

independently. Eq. (2.7) can be solved by back substitution in a descending order of i from Nx - 1 to

2, whereas Eq. (2.8) is solved in an ascending order of i from 2 to Nx - 1. A CUDA thread is responsible

Chapter 3

56

for solving a bidiagonal matrix, which makes the method ‘embarrassingly parallel’. In parallel

computing, embarrassingly parallel means that the problem is naturally parallel or little effort is

required to partition the problem into smaller parallel tasks. This is a direct porting of the original

algorithm on the GPU, thus it is called the Natural method. The Natural methods in the y and z

direction are implemented in similar ways.

Since each CUDA thread is responsible for solving a recursive system, data dependency only occurs

in a thread and there is no data dependency between threads. No data reuse occurs between

recursive systems. Therefore, no shared memory is utilized in the implementation of the Natural

method.

3.2.2 Parallel Cyclic Reduction Method

The PCR method was popular in the 1980s [147-149] and research has shown it to be one of the

fastest generic algorithms for a tridiagonal system on a GPU [85, 87, 143, 150]. The PCR method is

applied to a bidiagonal system in this study. The core of the PCR method is the application of

Gaussian elimination in parallel with variant elimination strides. First, the PCR method on a simple

lower bidiagonal system is demonstrated. Then, the procedure is summarized.

If A is a ninth-rank square matrix as given below in the matrix form:

1 0 0 0 0 0 0 0 0

0.1 1 0 0 0 0 0 0 0

0 0.1 1 0 0 0 0 0 0

0 0 0.1 1 0 0 0 0 0

0 0 0 0.1 1 0 0 0 0

0 0 0 0 0.1 1 0 0 0

0 0 0 0 0 0.1 1 0 0

0 0 0 0 0 0 0.1 1 0

0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 

  
 
 
 
 
 
  

A (2.10)

the last row is unrelated to other rows and is thus removed together with the last column. The

matrix A can be expressed as:

1 0 0 0 0 0 0 0

0.1 1 0 0 0 0 0 0

0 0.1 1 0 0 0 0 0

0 0 0.1 1 0 0 0 0

0 0 0 0.1 1 0 0 0

0 0 0 0 0.1 1 0 0

0 0 0 0 0 0.1 1 0

0 0 0 0 0 0 0.1 1

 
 
 
 
 
 

  
 
 
 
 
 
 

A (2.11)

Chapter 3

57

At the first step, all the lower bidiagonal elements are eliminated by the diagonal elements in the

row above. The stride between two rows where the elimination operation is performed is 1. It gives

rise to a new matrix:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0.01 0 1 0 0 0 0 0

0 0.01 0 1 0 0 0 0

0 0 0.01 0 1 0 0 0

0 0 0 0.01 0 1 0 0

0 0 0 0 0.01 0 1 0

0 0 0 0 0 0.01 0 1

 
 
 
 
 

 
 

 
 
 

 
  

 (2.12)

At the second step, the row stride is set to 2. The lower diagonal elements in the new matrix are

eliminated by the diagonal elements which are 2 rows above in a similar way as in step one:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0.0001 0 0 0 1 0 0 0

0 0.0001 0 0 0 1 0 0

0 0 0.0001 0 0 0 1 0

0 0 0 0.0001 0 0 0 1

 
 
 
 
 
 
 
 

 
 

 
  

 (2.13)

At the third step, the row stride is set to 4. After elimination, the matrix becomes an identity matrix:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.14)

When the matrix is manipulated, the RHS vectors experience the same operation. In the code, for

less computational operations, the diagonal elements are normalized at the initialization phase so

that the RHS vectors are directly the solution when the elimination finishes. In real practice, the

matrix rank N is rarely a power of two. Given a lower system with N elements in which 2M < N ≤

2M+1, the bidiagonal matrix can be expressed as a recursive system in the form:

 2h

h h
i i ii
r D D g


  (2.15)

Chapter 3

58

in which, i denotes the element index, whereas h represents the elimination step varying from 0 to

M + 1.
2

0hi
D


 when 2 0hi   .

In the PCR kernel execution configuration, each recursive system is put into a CUDA block. Nx

threads are launched in a block and each thread is responsible for solving Eq. (3.15) with a specific

‘i’. There are Ny blocks in the y direction and Nz blocks in the z direction. The implementation

procedure of the PCR method in the x direction for a bidiagonal matrix on a GPU can be summarized

below:

1) At the initialization phase, the primitive variables are loaded from global memory to the

shared memory. The LHS coefficient ri
0 is initialized by the variable in the constant memory

of the GPU whereas the RHS vector gi
0 is initialized in the shared memory.

  0
1 1

1
i B i B i B ig a f b f c f

x
   

 
 (2.16)

 0
ir   (2.17)

2) The LHS coefficient ri
h and the RHS vector gi

h are computed in the shared memory and a

local synchronization barrier is made to ensure all the threads in a CUDA block have finished

the computation.

  1 1

2h

h h h
i i i
r r r 


   (2.18)

  1 1 1

2 2h h

h h h h
i i i i

g g g r  

 
    (2.19)

3) If h = M + 1, then 1M
i iD g  is the solution and is written back to the global memory;

otherwise, phase two must be repeated.

When a computational domain is given with Nx × Ny × Nz elements, Nx × Ny × Nz threads are

launched to solve the domain simultaneously. Ny × Nz thread blocks are launched, each block with

Nx threads solving a recursive system concurrently in the x direction. The recursive systems in the

y and z directions are solved in similar ways. The implementation leads to highly efficient operations

in the x direction. However, when the PCR is applied in the y direction, primitive variables have to

be loaded from the global memory to the shared memory at the initialization phase. The memory

stride between two neighbouring threads is a multiple of Nx which causes severe redundant

memory access. This introduces a performance penalty in the y direction. The similar performance

penalty occurs when PCR is implemented in the z direction.

Chapter 3

59

3.2.3 MatMul Method

The term MatMul stands for matrix multiplication which is the core of the MatMul method. Tutkun

and Edis [90] applied this method to Lele’s compact scheme [12], which gave rise to a tridiagonal

system. Following Tutkun and Edis’s work, the MatMul method is optimized and applied to a

bidiagonal system. It can be observed from Eqs. (2.15) and (2.19) that matrices dF and dB can be

obtained in a straightforward way by inversion of the coefficient matrices AF and AB. Tutkun and

Edis’s work can be formulated in equations below:

  () ()inv inv    d A b A B f (2.20)

in which d is the derivative matrix, A is a tridiagonal matrix, and b is a RHS vector. B is a sparse

matrix, whereas f is a known primitive field variable vector. By optimization, the two multiplication

operations can be aggregated into one shown in Eq. (3.21) below:

  ()inv    d A B f C f (2.21)

For prefactored compact schemes, it can be represented as:

 ()F F F Finv    d A B f C f (2.22)

 ()B B B Binv    d A B f C f (2.23)

  F B F B       d d d C f C f C f (2.24)

The matrix C is a dense matrix. It does not change during iterations and can be obtained by calling

the LAPACK library at the initialization phase. The derivative vector d is solved by a simple matrix

multiplication in Eq. (3.24). Since for all vectors f with different j or k, coefficient matrix C stays the

same, the whole 3D domain can be computed by a simple matrix-matrix multiplication.

 1,1 , , 1,1 , ,, , , , , , , ,j k Ny Nz j k Ny Nz
          D d d d C f f f C F    (2.25)

in which, F is a 3D matrix composed of primitive variables. The matrix multiplication solver on the

GPU comes from the CUDA FORTRAN Programming Guide and Reference [69] and is

accommodated to 3D matrix multiplication. It makes use of shared memory to reduce the access

to global memory therefore is a highly efficient matrix solver.

In Eq. (3.25), each element in matrix D is a product of a row of C and a column of F. An illustration

of the implementation of the matrix-matrix multiplication on a GPU is shown below:

Chapter 3

60

Figure 3.5 Matrix multiplication by accumulating product of sub-matrices.

The whole matrix D can be categorized into a number of sub-matrices with uniform size. The tasks

of computation of sub-matrices are performed independently in parallel. When a sub-matrix in D is

computed, it can be decomposed into the following form:

1 1 2 2sub sub sub sub sub sub sub     D C F C F C F (2.26)

in which, Dsub, Csub and Fsub are sub-matrices of D, C and F respectively. Given a Dsub with dimensions

of (B, B), then a 2D thread block containing B2 threads is launched. Each thread has unique index

(ti, tj) corresponding to the element index (i, j). The element of D(i,j) is computed by the product of

row i in matrix C and column j in matrix F:

 1 1 2 2
1

(,) (,) (,) (,) (,) (,) (,)
Nx

sub sub sub sub
k

D i j C i k F k j C i k F k j C i k F k j


       (2.27)

The computation of a sub-matrix in D can be summarized into three stages below:

1) At the first stage, a thread with index (i, j) loads an element (i, tj) in row i of a sub-matrix in

C (like Csub1) and an element (ti, j) in column j of a sub-matrix in F (like Fsub1) from global

memory to the fast shared memory. Then, a synchronization in a CUDA block is performed

to ensure that all the load operations complete.

2) The matrix-matrix multiplication is performed in Eq. (3.27) in the current sub-matrices. The

current product is accumulated to the product from previous matrix multiplication (if

available).

Chapter 3

61

3) A local synchronization is performed to ensure all the multiplications and summations

complete. If Csub and Fsub are the last sub-matrices in C and F, then Dsub is the solution, and

the results are written back into global memory. Otherwise, the next sub-matrices in C and

F are switched to by updating tj = tj + B and ti = ti + B and repeating stage 1.

The matrix multiplications in the y and z directions are similar. The difference is that the RHS matrix

F should be composed of vectors f in the y direction and z direction, respectively. In addition, it

requires an extension of the 2D thread index to 3D one when a 3D computation is performed. These

two changes do not impose significant modification upon the algorithm mentioned above, so they

are not described in detail.

In addition, it is noted that the MatMul method in fact is a general method for solving a linear

system, described by Eq. (3.25). It is reasonable to conclude that some higher order compact

schemes [12, 39] which give rise to penta-diagonal matrices can obtain a higher speed-up via the

MatMul method.

3.2.4 Hybrid Method

Implementations of the Natural method, the PCR method and the MatMul method on a typical 2D

mesh and 3D mesh are profiled. The results are shown below in Table 3-1.

Table 3-1 Wall-block time taken in Natural, PCR and MatMul implementations.

Kernel names
2D 3D

Natural PCR MatMul Natural PCR MatMul

Prefactored scheme in the x
direction

76.4% 26.9% 37.1% 72.8% 19.6% 21.5%

Prefactored scheme in the y
direction

20.0% 37.4% 41.5% 9.5% 25.4% 23.8%

Prefactored scheme in the z
direction

Null Null Null 8.8% 25.1% 27.0%

Other kernels 1.1% 17.9% 11.6% 5.8% 17.8% 21%
Buffer zone computation 0.2% 3.0% 2.5% 0.7% 2.9% 3.5%

Memory set 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Note that the 2D implementations are run on a mesh with a dimension of 128 × 128, whereas the 3D implementations

are on a mesh with a dimension of 64 × 64 × 64.

In Table 3-1, it is found that a considerable performance gap exists between the Natural method in

the x, y and z directions. The computational cost in the x direction dominates the overall

performance of the applications. The computational cost in the x direction in the Natural method

is roughly 8 times of that in the y and z direction in 3D computations whereas it is nearly 4 times in

2D computations. The main cause of low performance of the Natural method in the x direction is

Chapter 3

62

attributed to the redundant access to the global memory which will be explained in Section 3.4. The

only difference in the Natural method between different directions is the memory access pattern

since the mesh size and the arithmetic operations are the same in both/all directions. In the x

direction, the memory stride between two neighbouring threads is Nx, whereas that is 1 in the y

and the z direction. In contrast, the PCR and MatMul methods achieve high efficiency in the x

direction. Thus, the application of the PCR method or the MatMul method in the x direction only,

and preservation of the Natural method in the y and the z direction should result in improved

performance. This hybrid method is a mixed-grained parallel approach where the degree of

parallelism is fine in the x direction but coarse in the y and z direction.

3.3 Performance

BenLEE contains three categories of subroutines in terms of memory access pattern, namely the

implicit stencil type, explicit stencil type and point-wise type. The implicit type refers to the

subroutine which performs prefactored compact scheme computations, whereas the explicit type

denotes the subroutine performs explicit finite difference scheme computations. The point-wise

type of subroutines contains the buffer zone condition, and time-marching in governing equations.

It can be observed from Table 3-1 that the implicit stencil type of subroutines dominate the overall

performance. The explicit stencil type and point-wise type do not contribute considerably.

Furthermore, the algorithms on explicit stencil type of subroutines and point-wise type of

subroutines are the same when the implementations of the implicit stencil vary. Therefore, the

performance difference between different implementations is largely caused by the implicit stencil

computations. The strategy on explicit stencil type and point-wise type of subroutines will be

explained in chapter 4.

The performance is obtained by comparing the wall-clock time on a Tesla M2050 GPU with that on

a single Intel Xeon E5620 CPU core with a frequency of 2.40 GHz. The compiler used is PGI 13.3 with

–fast –Munroll –Mcuda = cc20 flags for both CPU and GPU implementations, in which the compiler

flags denote optimization of codes in terms of the fastest implementation speed, unrolling loops

and current GPUs with CUDA computing capability of 2.0, respectively. The implementation on the

CPU is the back substitution algorithm, whereas the implementations on a GPU utilize Natural, PCR,

MatMul and hybrid methods respectively. The wall-clock time and speed-ups of BenLEE

implementing different numerical methods on prefactored compact scheme on a GPU are shown

in tables below, and a summary of the speed-up is shown in Fig. 3.6 below. It is emphasized here

that the wall-clock time and speed-ups are based on the total simulation time in which the I/O time

is not included. This comparison also applies to SotonLEE. Table 3-2Table 3-3 summarize the

performance of BenLEE on a GPU in 2D computations, while the performance in 3D computation is

Chapter 3

63

tabulated in Table 3-4– Table 3-5. For 3D case studies in BenLEE, the maximum domain size on a

Tesla M2050 GPU is 256 × 128 × 128, restricted by the global memory volume capacity of the GPU.

Table 3-2 Wall-clock time and speed-ups of BenLEE (2D) with Natural, PCR and MatMul methods.

Mesh Size
Serial Natural PCR MatMul

Time Time Speed-up Time Speed-up Time Speed-up

32×32 0.06 0.50 0.1 0.05 1.2 0.02 3.2
64×64 0.30 1.12 0.3 0.07 4.5 0.04 7.2

128×128 2.29 2.91 0.8 0.19 12.0 0.22 10.4
256×256 9.50 5.91 1.6 0.60 15.9 1.13 8.4
512×512 82.72 16.83 4.9 2.63 31.5 8.05 10.3

Note that ‘Mesh Size’ refers to the amount of mesh points. ‘Serial’ denotes the serial implementation of BenLEE on a

single CPU core, whereas ‘Natural’, ‘PCR’ and ‘MatMul’ represent BenLEE implemented by the Natural, PCR and Matmul

method on a GPU, respectively. The total number of iterations in 2D computation is 90. The unit of time is second (s).

Table 3-3 Wall-clock time and speed-ups of BenLEE (2D) with Hybrid methods.

Mesh Size
Serial PCR_Hybrid MatMul_Hybrid

Time Time Speed-up Time Speed-up

32×32 0.06 0.13 0.5 0.11 0.5
64×64 0.30 0.24 1.2 0.23 1.3

128×128 2.29 0.65 3.5 0.67 3.4
256×256 9.50 1.49 6.4 1.75 5.4
512×512 82.72 3.81 21.7 6.38 13.0

Note that ‘PCR_Hybrid’ denotes the hybrid method which employs PCR in the x direction whereas ‘MatMul_Hybrid’

represents the hybrid method with MatMul in the x direction.

Table 3-4 Wall-clock time and speed-ups of BenLEE (3D) with Natural, PCR and MatMul methods.

Mesh Size
Serial Natural PCR MatMul

Time Time Speed-up Time Speed-up Time Speed-up

32×32×32 5.0 1.0 4.9 0.3 16.0 0.1 50.2
64×64×64 46.1 7.2 6.4 1.6 28.2 1.1 41.4

128×128×128 526.5 57.9 9.1 13.3 39.8 14.9 35.4
256×128×128 1158.2 114.4 10.1 29.4 39.4 38.5 30.1
128×256×128 1159.0 106.5 10.9 28.2 41.1 39.8 29.2
128×128×256 1186.4 107.3 11.1 28.4 41.8 39.2 30.3

Table 3-5 Wall-clock time and speed-ups of BenLEE (3D) with Hybrid methods.

Mesh Size
Serial PCR_Hybrid MatMul_Hybrid

Time Time Speed-up Time Speed-up

32×32×32 5.0 0.3 15.7 0.2 20.6
64×64×64 46.1 1.4 33.0 1.3 35.1

128×128×128 526.5 11.0 47.9 12.3 42.7
256×128×128 1158.2 22.2 52.2 30.9 37.5

Chapter 3

64

128×256×128 1159.0 21.8 53.1 24.5 47.4
128×128×256 1186.4 21.6 54.9 24.3 48.9

Figure 3.6 Summary of speed-ups of BenLEE on a GPU.

It can be observed from Figure 3.6 that all the mesh sizes are equal to powers of 2. However, in

practical computations, the mesh size does not need to be a power of 2 because all the matrices

will be padded congruently to be a multiple of 16 in the x direction both in the CPU and GPU codes.

This is mainly used to enforce the memory to align a cache line of 128 bytes. The code is in double

precision; therefore, the mesh size has to be a multiple of 16.

3.4 Analysis on Performance

The speed-up of the PCR method increases with the increase of the system size of the recursive

system in Figure 3.6. This illustrates that the PCR method can achieve high performance on a large

system. The PCR achieves the highest speed-up when the system dimension is greater than 128 in

2D computations whereas the MatMul is better for N < 128. In 3D computations, the MatMul

achieves the highest speed-up when N < 128 and the speed-up drops as N increases. When N > 128,

the performance of the MatMul is surpassed by the PCR and the PCR_Hybrid achieves the highest

speed-up. For a detailed analysis of the performance, the wall-clock time spent in each direction is

recorded when the system size is set to 128 × 128 × 128. The computational time spent in one

direction is obtained by disabling computations in the other two directions. The result is shown in

Table 3-6.

Chapter 3

65

Table 3-6 The computational time spent in each direction.

Implementations Wall-clock time (in seconds)

In the x direction In the y direction In the z direction

Natural 50.0 5.7 5.5
PCR 5.2 6.2 7.2

MatMul 5.9 6.3 6.8

It can be seen that the performance of the Natural method in the x direction is low; almost 1/10 of

that in the y and the z direction. The system size and the arithmetic operations are isotropic in all

directions. The only difference comes from the global memory access pattern in the different

directions. The memory stride of neighbouring threads of the Natural method in the x direction is

Nx, and each thread has to access global memory Nx times. This results in severely redundant

memory access. The memory stride of the Natural method is 1 in the y and the z direction which

results in coalesced memory access. Therefore, it is the anisotropic memory access pattern which

gives rise to large anisotropy of the performance of the Natural method in the different directions.

Also, the redundant memory access and the coalesced memory access contribute to the big

performance gap in the x direction among the Natural, PCR and MatMul methods. The memory

stride of the PCR and MatMul is 1 which makes efficient coalesced memory access. The

performance of the PCR and MatMul is nearly 10 times of that of Natural method in the x direction.

In addition, it can be observed that the performance of the PCR method in the y and the z direction

is lower than that in the x direction. This is attributed to the redundant memory access to the global

memory during the initialization phase and the final phase of the PCR, since the memory strides are

Nx in the y direction and Nx × Ny in the z direction. The cost of redundant global memory access of

PCR in the y and the z direction is much lower than that of the Natural method in the x direction

because each thread only needs to access the global memory once in the PCR method in the y and

the z direction, whereas Nx times are necessary for the Natural method in the x direction. The 3D

MatMul method achieves coalesced memory access in all three directions. The performance should

be the same in all three directions. However, there is still a performance loss when the MatMul is

applied from the x direction to the y and the z direction. The performance of the Natural method

in the y and the z direction should be the same, as should the performance of the PCR in the y and

the z direction. It is found that the cost is different when memory access occurs in different

directions. The cost is always larger when the memory access to the z direction occurs than that

when memory access to the y direction occurs.

In large scale 3D computations, the PCR and MatMul methods have been found to be efficient in

the x direction. On the other hand, high efficiency is achieved by the Natural method in the y and

the z direction. Three causes are found. First, the high efficiency of the Natural method in the y and

Chapter 3

66

the z direction results from the coalesced memory access mentioned above. Second, for the PCR

method, there is redundant memory access in the y and the z direction at the initial and final phases

which partly offsets the performance. Third, the MatMul method introduces far more arithmetic

operations than the PCR and the Natural methods if the system size is large. This trend is significant

when the system dimension is larger than 128, as shown in Figure 3.6. It can be observed that the

performance of the MatMul method decreases and that of the PCR increases with the increase of

the mesh size monotonously. When the mesh size is larger than 128, the PCR is better than the

MatMul method in 3D computations.

Therefore, the hybrid method is proposed, based on the anisotropic computational costs of the

Natural, PCR and MatMul methods. It is a combination of the numerical methods in different

directions. The hybrid method only achieves the best performance when the system size is larger

than 128 in 3D computations, as shown in Figure 3.6.

Finally, the following strategy is formulated with the numerical methods: the PCR is always used for

2D computations; the MatMul method is used for 3D computations if the mesh dimensions Nx, Ny,

and Nz are all smaller than 128; otherwise, the PCR_Hybrid is used. The strategy, together with the

numerical methods, constitutes the solution to the bidiagonal matrix solver on a GPU.

3.5 Summary

In this chapter, a simple serial CAA scattering solver, BenLEE, has been developed as a workbench

for the prefactored compact schemes which give rise to bidiagonal matrices. Three numerical

methods, namely, the Natural method, the PCR method and the MatMul method, were derived for

a bidiagonal matrix on a GPU. Then the performance and analysis followed. Furthermore, a hybrid

method has been proposed to improve the overall computational performance in 3D computations.

For 2D computations, the highest speed-up achieves about 30, whereas the highest speed-up is

roughly 55 in 3D computations in double precision.

Chapter 4

67

Chapter 4: Development of SotonLEE on GPUs

As mentioned in chapter 3, SotonLEE is a complex program which contains five types of subroutines

in terms of memory access patterns during iterations. The five types of subroutines are: implicit

stencil type, explicit stencil type, point-wise type, unstructured gather type and reduction type. The

implicit type, which refers to the computation of prefactored compact schemes, has been

investigated in detail in chapter 3. The following chapter is devoted to the parallel strategies of the

four other types of subroutines on a GPU. Furthermore, the parallel strategy on multiple GPUs by

using MPI + CUDA is also offered.

4.1 Explicit Stencil Type

The explicit type of subroutines refer to the computations of explicit filters. In SotonLEE, a tenth-

order explicit filter is utilized to suppress the spurious waves. It is described below:

     

   
5 5 5 4 4 4 3 3 3

2 2 2 1 1 1 0

i i i i i i ii

i i i i i

f f c f f c f f c f f

c f f c f f c f

     

   

         

       
 (3.1)

in which if denotes the filtered field whereas fi is the primitive field; ci is the constant coefficient

and Eq. (4.1) describes the filter in the inner points. The inner stencil is symmetric. When the points

lie at i < 6 or i > Nx – 4, the boundary stencil has to be employed. The boundary stencils are

asymmetric and utilize different formulations at varying positions. For points at i < 6, the filtering

operations are shown below:

6

1 1,1
1

j j
j

f f c f


   (3.2)

7

2 2,2
1

j j
j

f f c f


   (3.3)

8

3 3,3
1

j j
j

f f c f


   (3.4)

9

4 4,4
1

j j
j

f f c f


   (3.5)

10

5 5,5
1

j j
j

f f c f


   (3.6)

Chapter 4

68

The coefficients c1, j to c5, j denote the coefficients on the boundary points. The similar stencils apply

to the mesh points with i > Nx – 4. The computation in the y or the z direction occurs in a similar

way with varying index j or k.

As mentioned in section 1.2.3.4, the maximum performance of explicit stencil computation can be

achieved by the ‘slicing method’ or can be exploited by the ‘tiling method’ [25]. These two methods

load a piece of global memory into the fast shared memory and perform the explicit stencil

computations in x, y and z directions simultaneously. The two methods mitigate the global memory

access and thereby obtain high performance. However, in SotonLEE, the filtering in the x, y or z

direction is performed alternately at each time-step. Therefore, the slicing method which is efficient

in 3D stencil computation simultaneously does not fit well to the explicit filtering in SotonLEE.

Furthermore, it can be observed that the stencil size is large from Eq. (4.1). So it is more efficient to

use the 2D tiling method to reduce the global memory access due to the limited volume of shared

memory. The 2D tiling method in the explicit filters is shown in Figure 4.1 below:

a) In the x direction. b) In the y direction. c) In the z direction.

Figure 4.1 The anisotropic 2D tiling method in explicit filters.

As shown in Figure 4.1, the 2D tiling method is anisotropic in the x, y and z directions. When the

explicit filtering operation is performed in the x direction, the 2D tiling method in the x direction is

used. The threads in the 2D tiling method in the x direction are organized into many lines. Given a

3D domain with dimensions of (Nx, Ny, Nz) and a CUDA block with a dimension of Bx, there are

(Nx/Bx) × Ny × Nz thread lines, each of which contains Bx threads. The memory stride between two

neighbouring threads is 1; therefore, the access to the global memory is coalesced and high

performance is achieved.

The 2D tiling method in the y direction is a 2D rectangle in the xy plane. There are (Nx/Bx) × (Ny/By)

× Nz 2D rectangles in total, each of which contains Bx × By × 1 threads. The filtering operation is in

the y direction. The Bx threads in the x direction are mainly used to reduce the redundant memory

access. Each time an element in the y direction is required, a continuous global memory segment

Chapter 4

69

is loaded. The continuous memory segment by each load from global memory is not abandoned

but is shared in the x direction because the memory stride between two neighbouring threads is 1.

Therefore, the redundant memory access is reduced and high performance can be achieved in the

y direction.

The 2D tiling method in the z direction is similar to that in the y direction. The threads are organized

into a 2D rectangle in the xz plane. There are (Nx/Bx) × Ny × (Nz/Bz) rectangles if the dimensions of

a CUDA block are Bx × 1 × Bz. Also, the Bx threads in the x direction are largely used to eliminate

the redundant memory access induced by the global memory access in the z direction. The memory

stride between two neighbouring threads is 1 and high performance is achieved in the z direction.

Another important feature of the explicit filter is that the stencil operations vary across many points

close to the boundary due to the large stencil size, as shown in Eqs. (4.2) – (4.6). Therefore, the

filtering operation on boundary stencils gives rise to branching of execution which reduces the

performance on a GPU since the threads are implemented in a bunch if they have the same

instructions on a GPU. For the highest performance, a unified expression is the best choice. Eqs.

(4.2) – (4.6) can be aggregated into one equations:

10

,
1

j

i i j ji
j

f f c f




   (3.7)

, 0i jc  if 5j i 

ci, j is organized into a matrix C shown below:

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 5,10

0 0 0 0

0 0 0

0 0

0

c c c c c c

c c c c c c c

c c c c c c c c

c c c c c c c c c

c c c c c c c c c c

 
 
 
 
 
 
 
 

C (3.8)

By using Eqs. (4.7) and (4.8), only two branches are present in the filtering operations, namely inner

and boundary filtering operations. The boundary stencil accesses the corresponding row of matrix

C according to its index i. The coefficient matrix is stored in constant memory with low access

latency on a GPU.

When the explicit filter is implemented, the primitive variables are first loaded into shared memory.

Then, the computation is performed in terms of the index. When the computation completes, the

result is written back to the global memory.

Chapter 4

70

4.2 Point-wise Type

The point-wise-type subroutines can be expressed in the following form:

            A i j k B i j k C i j k  (3.9)

in which each element only depends on its local information. There is no data dependency between

neighbouring elements. Subroutines of this type contain the computation of RHS residual of

governing equations and buffer zone conditions. These subroutines are embarrassingly parallel;

therefore, no shared memory is used. No particular attention is paid to the implementation on a

GPU. The 2D tiling method is used to eliminate the redundant memory access.

4.3 Unstructured Gather Type

The unstructured gather-type subroutines contain the index transformation between two

neighbouring mesh blocks and the pack/unpack operations induced by multiple MPI processes.

When a multi-block O-mesh is utilized, the index transformation between two neighbouring mesh

blocks is necessary. The mesh elements close to the block interface in the neighbouring mesh block

are mapped into ghost points of current mesh block by using index transformation. An increase in

index i in current block may correspond to a decrease in j in the neighbouring block. Therefore, the

global memory access pattern is irregular and much attention should be paid to the index

calculation.

When multiple MPI processes are used, packing/unpacking operations occur in the vicinity of the

mesh interface. The packing operation packs the information in the vicinity of current mesh block

into a small buffer, whereas the unpacking operation unpacks the information in a small buffer into

the ghost points. The packing and unpacking can be regarded as a transformation operation

between two matrices with different dimensions that occurs in a similar way to the index

transformation. They also perform irregular memory access to the global memory. No special

algorithm is required to implement the unstructured gather type subroutines on a GPU, whereas

the index calculation requires much attention.

4.4 Reduction Type

The reduction type subroutines perform a traversal on the physical domain and collect the

maximum/minimum values on all the elements. On multiple GPUs, the reduction can be

decomposed into three phases: first, reduction on a local CUDA block; second, reduction on a mesh

block which always contains multiple CUDA blocks; lastly, reduction on the whole physical domain

Chapter 4

71

which contains many mesh blocks. The reduction operations in the first and second phases are

performed on GPUs, whereas the last phase is achieved by the MPI reduction operation [55].

Harris [151] performed an exhaustive research on the reduction operations on a GPU and a series

of algorithms have been developed and verified. The kernel 3 with sequential addressing is selected

in this research in phases one and two since other kernels, which are optimized further, unroll the

loops, therefore imposing difficulty in code reading. Furthermore, the reduction operation does not

contribute much to the overall performance. Therefore, kernel 3 is selected and the procedure is

illustrated in Figure 4.2 below:

Figure 4.2 Reduction with sequential addressing.

In Figure 4.2, a system with eight elements is supposed. The data on which the reduction will be

performed is first loaded from global memory into shared memory, or the data obtained from

intensive computation has already resided in the shared memory. In the first step of reduction, a

thread in the first half finds the local maximum value between itself and the corresponding thread

that is half the total thread amount away. At the second step, a thread in the first quarter repeats

the reduction in step one among the threads in the first half. At the last step, the global maximum

value is found and is put in the first element. Supposing that there are 2h < H ≤ 2h+1 systems, each

of which has a dimension of 2M < N ≤ 2M+1 and the data has been already in the shared memory,

the reduction procedure in the whole physical domain can be concluded as below:

1) At the nth step, the thread stride in a CUDA block is set to 2M+1-n. A thread in the first half of

2M+1-n finds the local maximum value between itself and the thread with the index 2M+1-n far

away, and keeps the local maximum value in its shared memory.

Chapter 4

72

2) If the step n is less than M + 1, step 1 is repeated; otherwise, the procedure completes and

the global maximum value is kept in thread 1. The result is written back to global memory.

By now, the reduction on a CUDA block completes.

3) The same procedures in steps 1 and 2 are employed to obtain the maximum value across a

mesh block. The data on which the reduction will be performed becomes an array,

composed of the local maximum values obtained from step 2 across multiple CUDA blocks.

Then, the global maximum value across a mesh block is found and copied back to RAM.

4) Lastly, an MPI reduction operation is utilized on the master process to collect the maximum

value distributed in all the mesh blocks across the physical domain.

The operations in steps 1 and 2 find the local maximum value on a CUDA block. When operations

in step 2 complete in all CUDA blocks, operations in step 3 are performed to get the maximum value

in a mesh block. When the operations in step 3 in all mesh blocks complete, operations in step 4

collect the global maximum value in the whole domain. By using this method, the maximum value

across the whole physical domain is found.

4.5 Minimization of Data Transfer

When multiple GPUs are utilized, there are data exchanges between GPUs. When data exchange

occurs, data is copied through the PCI Express whose bandwidth (8 GB/s on PCI-express × 16 Gen2)

[152] is far less than peak bandwidth of a GPU (144 GB/s on Tesla C2050) [153]. Consequently, the

data transfer has to be avoided to the minimum extent. The flowchart of SotonLEE with an MPI +

CUDA implementation with necessary data transfers is shown below:

Chapter 4

73

Figure 4.3 Flowchart of SotonLEE with MPI + CUDA implementation.

Note: H2D is the shorthand notation of host to device, while D2H denotes device to host. The memory copy in grey

denotes the memory copies occurring in mesh block interface condition computations.

Normally, some data transfers are necessary for subroutines, such as the interface condition, and

cannot be avoided. The data transfer occurs regularly in four scenarios: First, before the iteration

in SotonLEE starts, data has to be copied from RAM to GPU memory and the data has to be written

back from the GPU memory to RAM when the iteration completes. These data transfers occur only

once outside the iteration. Therefore, they contribute little to the overall performance penalty for

long-time iterations. Second, the data transfer occurs when both of the manipulations on interface

condition occur and the two neighbouring mesh blocks are distributed across different CPU cores.

The interface condition occurs in iterations and therefore contributes considerably to the overall

performance penalty. When data transfer occurs, arrays have to be copied from the GPU memory

to RAM, then copied to a network fabric buffer, and are finally sent by an MPI process. When the

arrays from a neighbouring mesh block are received, the arrays have to be copied from the network

fabric buffer to RAM, then copied to the GPU memory. The cost of this kind of communication is

high. Third, the reduction operation requires a traversal across the physical domain therefore the

Chapter 4

74

data transfer is also necessary. However, in SotonLEE, the CFL calculation is not performed as

frequently as the interface condition occurs. Furthermore, the data transfer in the CFL calculation

only involves a single variable rather than an array. Consequently, the CFL calculation does not

contribute much to the overall performance penalty. Lastly, the output of transient acoustic field

requires significant data transfers during iterations. The output always writes multiple arrays across

the whole domain and occurs every iteration step in some cases, such as outputs of data to FW-H

solver. Therefore, a substantial performance penalty occurs when the output in iteration occurs

frequently. Other data transfers have to be eliminated.

In terms of contribution to the overall performance penalty, the data transfers outside the iteration

contribute little and are necessary; therefore, they are ignored. Furthermore, the contribution of

the CFL calculation within the iteration is small and is also ignored. In addition, the output operation

does not perform any computational work and has to be performed from RAM to hard disk. This

research focuses on the optimization of the data transfers in interface conditions denoted in grey

in Figure 4.3. As shown in Figure 4.3, the data transfer has been minimized so that it only occurs at

four scenarios mentioned above.

The memory transfers between multiple GPUs contain memory copy between system RAM and

GPU memory through PCI express; memory copy between system buffer used for the GPU and the

buffer for the Infiniband; and MPI send/receive operations. When the MPI + CUDA approach is

utilized to manage multiple GPUs across multiple CPU cores, the data transfer procedure is

performed below:

Table 4-1 Data transfer between two GPUs by MPI + CUDA approach.

MPI Rank 0:
istat = cudaMemcpy(hBuffer, dBuffer, bufferSize, cudaMemcpyDeviceToHost)
call mpi_iSend(hBuffer, bufferSize, mpi_double_precision, 1, tag, mpi_comm_world, sReq, mpiErr)
call mpi_wait(sReq, sStatus, mpiErr)

MPI Rank 1:
call mpi_iRecv(hBuffer, bufferSize, mpi_double_precision, 0, tag, mpi_comm_world, rReq, mpiErr)
istat = cudaMemcpy(dBuffer, hBuffer, bufferSize, cudaMemcpyDeviceToHost)
call mpi_wait(rReq, rStatus, mpiErr)

Note that hBuffer denotes a buffer in the system RAM whereas dBuffer represents a buffer on a

GPU. A tag is used to uniquely identify a message. A send and a corresponding receive operation

have to share the same tag. The data transfer can be diagrammed as shown in Figure 4.4:

Chapter 4

75

Figure 4.4 Data transfer by using MPI + CUDA approach. MPI rank 0 sends a message and MPI rank 1

receives a message. The boxes which are transmitted by the curves denote the units the data travels

through when the memory copy operation occurs.

As shown in Figure 4.4, when a send operation occurs in MPI rank 0, there is a receive operation in

MPI rank 1. In rank 0, the GPU buffer is first copied to a buffer B2 for the GPU in system RAM

through PCI express. Then, the buffer B1 for the infiniband copies B2 and is sent by infiniband. In

rank 1, once the buffer B1 for the infiniband receives a message, the buffer B2 for the GPU copies

it and then copies it into the GPU memory through the PCI express. This kind of data exchange is

somewhat complex and inefficient. It results from the private address space of each GPU and CPU.

For instance, a variable on GPU 0 is not visible to GPU 1 and all the CPUs. With unified virtual

addressing (UVA) supported by GPUDirect [154-156], the system memory and the memory of all

GPUs in a node are combined into one addressing space. Therefore, the memory addresses are

visible for CPUs and GPUs. In the MPI implementation with GPUDirect technology, the data transfer

can be simplified. Furthermore, with GPUDirect remote direct memory access (RDMA), the

procedure can be simplified further as:

Table 4-2 Data transfer between two GPUs via GPUDirect RDMA.

MPI Rank 0:
call mpi_iSend(dBuffer, bufferSize, mpi_double_precision, 1, tag, mpi_comm_world, sReq, mpiErr)
call mpi_wait(sReq, sStatus, mpiErr)

MPI Rank 1:
call mpi_recv(dBuffer, bufferSize, mpi_double_precision, 0, tag, mpi_comm_world, rReq, mpiErr)
call mpi_wait(rReq, rStatus, mpiErr)

With GPUDirect RDMA, the data transfer is simplified and the buffer on a GPU can be directly copied

to infiniband. When the same data exchange occurs, the data exchange using the GPUDirect RDMA

is diagrammed as shown in Figure 4.5 below:

Chapter 4

76

Figure 4.5 Data transfer by using GPUDirect RDMA. MPI rank 0 sends a message and rank 1 receives a

message. The boxes which are transmitted by the curves denote the units the data travels through when

the memory copy operation occurs.

In short, using GPUDirect RDMA gives rise to two advantages: first, it is much easier to program in

comparison to the primitive MPI + CUDA; second, some acceleration techniques are used to

improve the efficiency of data exchange [154-156]. Most of all, the GPUDirect RDMA is supported

and available on IRIDIS4 and Emerald GPU cluster. Therefore, it is utilized to replace the previous

MPI + CUDA communication in this research. The final flowchart is simplified and shown below:

Figure 4.6 Flowchart of SotonLEE with GPUDirect RDMA implementation.

Chapter 4

77

4.6 Performance

In this section, a number of benchmark cases which have successfully run with MPI and been

validated in previous research, are reproduced to scale the performance of the new SotonLEE which

runs on multiple GPUs across multiple nodes. Most of these cases were coded and used by various

students at ANTC and included in the SotonLEE suite of codes. These benchmark cases contain three

2D/2.5D cases and two 3D cases. The 2D/2.5D cases include radiation of spinning modes out of an

unflanged duct [34, 127, 157-159]; scattering of an initial acoustic distribution off a cylinder [146];

and acoustic radiation from an engine exhaust duct [5, 160]. The 3D engine bypass cases contain a

spinning modal radiation out of a generic engine bypass duct [36] and sound radiation from a bypass

duct with bifurcations [37]. The analysis of the performance on these cases will be given and

summarized altogether in section 4.6.6.

4.6.1 Radiation of a Spinning Mode Out off an Unflanged Duct

This case simulates a spinning mode radiating off a semi-infinite duct. The geometry is simple. A

schematic of the physical domain with boundary conditions is shown below:

Figure 4.7 Schematic of the physical domain with boundary conditions.

As shown in Figure 4.7, the physical domain is two dimensional and the governing equation is LEE

in cylindrical coordinate system. Normally, the 3D LEE in cylindrical coordinate system takes the

form below:

Chapter 4

78

  0 0' ' ' 0t       V V (3.10)

 0 0 0' ' ' ' 0u t u u p x         V V  (3.11)

0 0 0' ' ' ' 0v t v v p r         V V  (3.12)

0 0 0' ' ' ' 0w t w w p r          V V  (3.13)

  0 0 0' ' ' ' 0p t p p p        V V V   (3.14)

x, r and θ denote the coordinates in the axial, radial and azimuthal directions respectively. The

incident acoustic disturbance radiating from the inflow buffer is a spinning duct mode which is

harmonic dependent and can be written in the following form:

    ' ' ,
i kt m

m
m

p p x r e


  (3.15)

    ' ' ,
i kt m

m
m

u u x r e


  (3.16)

    ' ' ,
i kt m

m
m

v v x r e


  (3.17)

    ' ' ,
i kt m

m

m

w w x r e


 (3.18)

Therefore, the relation below holds:

  ' 'w m k w t       (3.19)

 2 ' 'p t mkp    (3.20)

Eqs. (4.19) and (4.20) are utilized to remove the partial derivatives with respect to θ in Eqs. (4.10)

– (4.14). Furthermore, assuming that the mean flow field is axisymmetric and isentropic with no

swirl, Eqs (4.10) to (4.14) are simplified into the following form:

      0 0 0 0 0 0 0' ' ' ' ' ' ' 'tt u u x v v r m w kr v v r                     (3.21)

    0 0 0 0 0 0 0 0 0' ' ' ' ' ' ' 'u t u u x v u r u u u x v v u r p x                        (3.22)

    0 0 0 0 0 0 0 0 0' ' ' ' ' ' ' 'v t u v x v v r u u v x v v v r p r                        (3.23)

0 0 0 0' ' ' ' 't t t tw t u w x v w r mkp r w v r           (3.24)

 2
0' 'p c  (3.25)

Chapter 4

79

in which 'tw w t   . Eqs. (4.21) – (4.25) are called 2.5D LEE since they describe the 3D acoustic

behaviour on a 2D domain and all the derivative terms with respect to θ are removed. The 2.5D LEE

has been utilized on some applications [37]. The incident wave is defined as [37]:

     ' Re expm r xp J k r i kt k x m      (3.26)

  ' 'r ru k p k k M   (3.27)

 

 ' Re exp 2
m r

x
x

dJ k ra
v i kt k x m

k k M dy
 

  
         

 (3.28)

 

 
 ' Re exp 2m r

t x

x

mkaJ k r
w i kt k x m

r k k M
 

  
          

 (3.29)

   2 21xk k M  
    (3.30)

 21 M   (3.31)

 rk k  (3.32)

where ε is the non-dimensional acoustic amplitude, which is 10-4 in this case to ensure small

changes in density. m denotes the order of the spinning mode, whereas kr and kx represent the

wavenumbers in the radial direction and in the axial direction respectively. Jm is the Bessel function

of the first kind with order m. The reference length is the cylinder radius, which is 1.0 m, and the

reference velocity and density scales are set as the ambient sound speed c∞, 340 m/s and density ρ

∞, 1.225 kg/m3. The background mean flow is stationary. In this simulation, m = 13, k = 23 with a

frequency of 1245 Hz. The grid is uniform. The time-step size is set to 0.27333 × 10-2 and the

simulation lasts for 50 acoustic periods. A more detailed description of the case can be found in

Zhang et al. [34].

The total amount of the mesh points is 32,208 distributed in 12 blocks. Since the computational

scale of this case is not large, only one GPU is employed. The pressure and SPL contours are shown

below:

Chapter 4

80

a) Acoustic pressure contour at the 50th cycles. b) SPL contours.

Figure 4.8 Acoustic radiation out of a semi-infinite duct.

The result shown in Figure 4.8 is found to be identical to that implemented on CPUs, by a direct

comparison of the output files, since the total amount of mesh points is not large. The application

runs 17 times faster on a GPU than on a CPU core. The analysis of the performance will be given in

section 4.6.6.

4.6.2 Scattering of a 2D Gaussian Pulse by a Cylinder

This case is used to demonstrate the bidiagonal matrix solver for 2D computations on a multi-block

curvilinear mesh. In this benchmark case, the sound field is initialized by a Gaussian pulse expressed

by Eqs (3.5) – (3.8). The amplitude ε is 0.01 and d is 0.2. The acoustic computation is also in non-

dimensional format. The reference length is the cylinder diameter, which is 1.0 m, and the reference

velocity and density scales are set as the ambient sound speed c∞, 340 m/s and density ρ∞, 1.225

kg/m3. The background mean flow is stationary and the sound source is positioned at (2.0, 0, 0) m,

which is shown in Figure 4.9.

a) The computational domain. b) The non-dimensional pressure contour at the
1,000th time step.

Figure 4.9 Schematics of 2D cylinder scattering case.

Chapter 4

81

In this case, two blocks make up the computational domain with 1.92x105 mesh points. The inner

mesh block is the computational domain and contains 1.83x105 mesh points, whereas the outer

block is the outflow buffer and only contains 1.0x104 mesh points. The performance is dominated

by the inner mesh block. The non-dimensional time step size is set to 0.006 and the non-

dimensional pressure contours at the 1,000th time step are shown in Figure 4.9. The application

runs 77 times faster on a GPU than on a CPU core.

4.6.3 A Spinning Mode Scattering off a 2.5D Engine Bypass Duct

The case simulates a high-order acoustic spinning mode radiating off a 2D engine bypass duct by

using the 2.5D LEE. This case is mainly used to demonstrate the performance of the solver when a

complex geometry is used for 2D computations. The schematic of the computational configuration

is shown below:

Figure 4.10 Physical domain with boundary conditions in 2.5D bypass case. The red curves denote inviscid

solid engine wall, while the grey parts denote the outflow buffer zones which surround the physical

domain.

This case is similar to the semi-infinite duct case but simulates the radiation of the acoustic

disturbance from a more complex geometry. A detailed description of the geometry can be found

in Huang et al [36]. The incident wave is a spinning mode with an order of 12 at the frequency of

1500 Hz and is injected via the inflow buffer at the beginning end of the bypass duct. The bypass

duct is axisymmetric and the central axis is aligned with r = 0.05 m with symmetry boundary

condition. The mesh blocks in grey are damped through buffer zones, shown in Figure 4.10. The

reference density ρ∞ is 1.225 kg/m3 and the reference temperature is 299.2 K. The reference length

is 1 m and the reference velocity scale is 346 m/s. The background mean flow is obtained by a RANS

simulation.

Chapter 4

82

a) Mach number in the x direction. b) Non-dimensional pressure.

Figure 4.11 The background mean flow field for bypass duct radiation.

The total domain contains 22 mesh blocks with a total of 40,877 mesh points. The acoustic pressure

field at the 50th cycle and the SPL are reproduced, as shown below in Figure 4.12. The application

runs 21 times faster on a GPU than on a CPU core.

a) Acoustic pressure at the 50th cycle. b) SPL contours.

Figure 4.12 Acoustic pressure and SPL radiated by a 2.5D bypass duct.

4.6.4 A Spinning Modal Radiation Out of a Generic Engine Bypass Duct

This case simulates a spinning modal radiation out of a generic engine bypass duct [160]. It is mainly

used to demonstrate the performance of the CAA solver when multiple GPUs are employed for 3D

computations with a complex geometry. The computation is in non-dimensional format. The sound

source is a spinning mode with the spinning order of 12 with a frequency of 1500 Hz, propagating

in a generic 3D engine bypass duct. In this case, the 2D domain created in the previous case which

is shown in Figure 4.10 is duplicated in the azimuthal direction to obtain the 3D physical domain.

The 3D physical domain is set up as 1/12 of a complete 3D domain as the spinning order of the

sound source is 12. Periodic boundary condition is applied on the boundaries in the circumferential

direction. The background mean flow outside the bypass duct is stationary with a reference density

of 1.225 kg/m3 and a reference temperature of 299.2 K. The reference velocity scale is 346 m/s

whereas the reference length is set to 1 m. The physical domain contains a total of 22 mesh blocks

with 3.27x105 elements. A detailed description of the case can be found in Zhang et al [5]. The

background mean flow was also obtained through the duplication of the 2D RANS simulation shown

Chapter 4

83

in Figure 4.10 in the circumferential direction. The 3D acoustic pressure at the 50th cycle and the

SPL contours are shown in Figure 4.13. The whole 3D spinning modal radiation patterns can be

obtained by duplicating the 3D CAA domain 12 times in the circumferential direction and results

are shown in Figure 4.14. The application runs 40 times faster on two GPUs in comparison to the

performance running with two MPI processes.

a) Acoustic pressure at 50th cycle. b) SPL contours.

Figure 4.13 Sound propagation out of a 3D bypass duct.

Figure 4.14 The spinning modal pattern in a generic 3D bypass duct, m =12, n = 1.

4.6.5 A Spinning Modal Propagation Out of a 3D Engine Bypass with Bifurcations

This case is a 3D case with a larger computational scale in comparison to the fourth one. The

physical domain composes of a total of 22 mesh blocks with 1.2 million mesh points. The bifurcation

refers to the structures connecting the outer wall and the inner wall of the bypass duct, which is

Chapter 4

84

shown in Figure 4.15 b). A total of four bifurcation parts distribute evenly in an annual duct; the

computational domain is a quarter of the complete 3D bypass duct.

a) Schematic of the physical domain. b) Bifurcations.

Figure 4.15 Computational setup for sound radiation out of an engine bypass duct with bifurcations.

The simulation uses the same 2D mean flow and mesh settings as the propagation in the clean duct.

In 3D acoustic computation, the physical domain is extended to a quarter of a whole 3D domain

which is shown in Figure 4.16. The boundary condition of the bifurcation is set as inviscid wall. The

simulation is run in non-dimensional format. The boundary conditions, the reference values and

the background mean flow field are the same as those in the previous clean bypass duct case. The

setup of the present test case is shown in Figure 4.15. The pressure and SPL contours are shown in

Figure 4.16. The complete 3D modal radiation patterns are recovered by duplication four times in

the circumferential direction in Figure 4.17 and Figure 4.18. The speed-up of the application on two

GPUs achieves 54 in comparison with the performance run by two MPI processes.

a) Acoustic pressure at 50th cycle. b) SPL contours.

Figure 4.16 Sound radiation out of an engine bypass duct with bifurcations.

Chapter 4

85

Figure 4.17 Modal radiation patterns of the engine bypass duct with bifurcations.

a) x = 0.0025. b) x = 1.0525. c) x = 2.0525.

Figure 4.18 The slices of modal pattern along the bypass duct with bifurcations.

4.6.6 Performance

The speed-ups of the five benchmark cases above are summarized in Table 4-3 below:

Table 4-3 The speed-ups of the benchmark cases.

Case name Total mesh points Maximum block size Speed-up

2.5D duct 32,208 12,231 17.0
2.5D bypass 40,877 3,721 21.2
2D cylinder 192,881 183,261 77.7
3D bypass 327,016 29,768 39.6

3D bifurcation 1,267,187 115,351 54.3

First, it can be observed from Table 4-3 that the speed-ups achieved are reasonable and consistent

with the performance of the bidiagonal matrix solver obtained in chapter 3. The lowest speed-up is

17.0, whereas the highest is 77.7 for 2D computations. Second, it can be observed that the speed-

Chapter 4

86

up increases with the increase of the total amount of mesh points respectively in the 2D and 3D

computations. The lowest speed-up occurs in the 2.5D duct case with the minimum number of

mesh points, whereas the 3D bifurcation case with the largest number of mesh points achieves the

second largest speed-up 54.3. The maximum speed-up emerges in the 2D cylinder case whose total

number of mesh points is less than the 3D bifurcation case. This point does not conflict with the

conclusion made in the second point. The wall-clock time of a case is dominated by that in the block

with the maximum size and the speed-up increases monotonously with the increase of the size of

the largest mesh block. Therefore, the 2D cylinder case with the largest mesh block achieves the

highest speed-up. In addition, the cache size plays an important role in the performance of the

codes on CPUs. The largest mesh block in the 2D cylinder case is 183,261, which runs on a single

CPU core and results in severe cache miss. Therefore, a decrease in the performance on the CPU

occurs, which results in a higher speed-up. In short, the overall speed-up is dictated by both the

largest mesh block and the total number of the mesh points.

4.7 Summary

In total, there are five types of subroutines in terms of the memory access patterns in the current

solver SotonLEE. In this section, the parallel strategies of the explicit stencil type, point-wise type,

unstructured gather type and the reduction type of subroutines have been investigated and

implemented on GPUs. Furthermore, the data transfers between GPUs have been mitigated and

optimized by using GPUDirect. Lastly, some benchmark cases which have been validated in previous

research were reproduced by implementation on multiple GPUs. The speed-up was summarized.

The speed-up achieves 54 when the total amount of the mesh point is over 1.2 million in the 3D

computation.

Chapter 5

87

Chapter 5: Acoustic Scattering off a Cylinder

Chapters 2 to 4 are devoted to the development of the CAA solver, SotonLEE, on multiple GPUs.

The following two chapters will focus on the application of SotonLEE to a typical large-scale

engineering case, the propeller noise scattering off an aircraft. Before the application of

SotonLEE_GPU to the engineering case, a simplified geometry is used to verify the numerical

methods, acoustic source models and investigate acoustic refraction effect of the boundary layer

in this chapter. A single cylinder is utilized as an ideal fuselage. The propeller noise sources are

approximated by a ring of monopoles and a ring of dipoles respectively to investigate the thickness

noise and the loading noise.

As mentioned in Section 1.2.4.2, scattering of propeller noise off a cylinder has been investigated

by experimental [113, 117, 118] and analytical methods [113-117, 119]. In this study, the same

phenomenon is investigated by the CAA method for the first time. In comparison to analytical

methods, the boundary layer, obtained from a RANS simulation, is realistic, varying in both radial

and flow direction. In addition, the purpose of this chapter is mainly to validate the CAA methods

used to predict the propeller noise scattering off a cylinder, which will be employed to predict a

more complex, large-scale engineering case, propeller noise scattering off a wing-body at a full scale.

The validation contains two points: source model of propeller noise and PPW of the mesh. The

investigation refers to the refraction effect of boundary layer on the scattering of propeller noise

off a cylinder.

5.1 Source Model

This chapter examines the scattering of propeller noise off a cylinder. First, the numerical model of

the propeller noise source used in the current research has to be added in SotonLEE and validated

in free space. As mentioned in section 1.2.4.2, propeller noise sources can be modelled explicitly by

the RHS terms in LEE [10, 49, 95, 96]. The comparison between the numerical solution from LEE

implementation and analytical solution is performed. The analytical solution comes from Farassat’s

Formulation 1A [100, 101, 161] in the time domain and Hanson’s solution [99, 162] in the frequency

domain.

5.1.1 Analytical Solution

The general form of acoustic analogy can be described by FW-H equations [38, 95]. The FW-H

equation can be expressed in the following form:

Chapter 5

88

     
        22

2 2 2
02

ij i

i j i

T H f L f Q f
c c H f

x x x tt

 
 

   
            

 (4.1)

where H(f) is the Heaviside step function whereas the control surface is denoted by f = 0. The

volume space within the control surface is denoted by f < 0, whereas f > 0 represents the volume

space outside the control surface. The vector normal to the control surface is fn . 2 denotes

the Laplace operator. When the density perturbations are small and the observation distance is far

away, the term c2(ρ – ρ0) can be replaced by p’, which is acoustic pressure. Q and L denote

distribution of mass and linear momentum on the control surface. Tij is the Lighthill’s stress tensor.

The solution of the FW-H equation can be expressed as:

 

 

 

0

0

2

0

4 ' 1

1

1

r retf

i r retfi

ij r retfi j

p Q r M dS
t

L r M dS
x

T r M dV
x x









   


   


    







 (4.2)

0 i iQ U n with    0 1i i i iU u u v        (4.3)

  i ij j i n nL P n u u v   with  0ij ij ijP p p     (4.4)

  2' 'ij i j ij ijT uu p c       (4.5)

 r  x y (4.6)

where ui denotes the velocity of the flow field whereas vi is the velocity of the control surface. r

denotes the distance between the source and observer and Mr = Mi ∙ ri/r. The source element in

[]ret denotes an evaluation at the retarded time:

  ret rett c   x y (4.7)

The observer position and time is denoted by (x, t), whereas the source is described by (y, τ). δij is

the Kronecker Delta function. τij is the viscous stress tensor.

The three terms at the RHS in Eq. (5.2) denote thickness noise, loading noise and quadrupole noise

respectively. When the Mach number at the blade tip is low, the contribution of the quadrupole

sources can be ignored, leading to a linear acoustic formulation that only contains thickness noise

and loading noise [96]. The solution to the thickness noise is:

Chapter 5

89

      

    

2
0

0

32 2
0

0

4 ' , 1

1

T n r
f

ret

rn r r
f

ret

p t U r M dS

U r M c M M r M dS

 











 
  

 

  
     

  





x

 (4.8)

    n i i i i i iU U n U n U n
   

     (4.9)

r i iM M r r  (4.10)

 r i iM M r r
 

  (4.11)

The dot on the variables denotes the time derivative with respect to the source time τ. The key

point in Eq. (5.8) is the determination of the retarded time [96, 100, 161] which can be obtained by

the iteration of Eq. (5.7). For spinning monopoles with a constant strength and a given angular

frequency, the acoustic pressure at a given time t = t0 can be identified via Eq. (5.8). By using the

similar procedure, the solution to the loading noise due to the second term in Eq. (5.2) is:

    

    

    

2

0

22

0

32 2

0

1
4 ' , 1

1

1
1

rL rf
ret

r M rf ret

rr r rf
ret

p t L r M dS
c

L L r M dS

L r M c M M r M dS
c












 
   

   
 

  
       







x

 (4.12)

 r i iL L r r  (4.13)

 r i iL L r r
 

  (4.14)

M i iL L M  (4.15)

Eqs. (5.8) and (5.12) constitute the solution of FW-H equation in the time domain. For spinning

dipoles with a constant strength and a given frequency, the acoustic pressure at a given time t = t0

can also be identified. For compact sources such as rotating monopoles and dipoles, Eqs. (5.8) and

(5.12) can be reduced to:

       32 2
04 ' , 1rT n r r

ret

p t U r M c M M r M 
  

       
x (4.16)

    

    

22

32 3

4 ' , 1

1 1

L r M r

r r

ret

p t L r cL cr M

L r c M cr M






  
      

  
       

x

r M





 (4.17)

Chapter 5

90

Also, the solution of the thickness noise and the loading noise to Eq. (5.1) can also be obtained in

the frequency domain by using Hanson’s method [99, 162]:

    ' , ' imB t
T TmB

m

p t P e 






 x x (4.18)

     0
2

0 00 0

1
'

2
simB imB

TmB n mBf
P B e U imB G e d dS

   





  x  (4.19)

    ' , ' imB t
L LmB

m

p t P e 






 x x (4.20)

    
2

0 0

1
'

2
simB imBmB

LmB i sf
i

G
P B e L e d dS

y

   







 

 x (4.21)

 0 4imB r c
mBG e r  (4.22)

      
2 2 2

0 0 0r x x y y z z      (4.23)

in which p’T(x, t) denotes the thickness noise, whereas P’TmB(x) represents the mth harmonic of the

Fourier transform of p’T(x, t). B is the total number of blades, whereas ω is the angular frequency

of blade rotation. GmB is the Green’s function in the frequency domain. Eqs. (5.18) – (5.21) offer the

solution of FW-H equations in the frequency domain.

If the acoustic sources are monopoles or dipoles, then the term simBe  can be ignored. Eqs. (5.19)

and (5.21) can be expressed in the discrete form in terms of φ:

 

 

2
0 1

2 2
0 1

1 2
' ()

2

N imBj N
TmB n mBj

N imB j N
n mBj

P B U imB G e
N

i B U m N G e






 



 





  

 





x
 (4.24)

  2

1

2

1

1 2 2
'

2

2

N imB j NmB
LmB ij

i

N imBj N
i mB ij

Gj
P B L e

N y N

B j
L G y e

N N





 









 
  

 

  
    

  





x

 (4.25)

 2 , 1,j N j N    (4.26)

Comparisons will be made between the solution of FW-H equation obtained by Farassat’s

Formulation 1A, Hanson’s method and the numerical solution in next sub-section.

Chapter 5

91

5.1.2 Numerical Solution

5.1.2.1 Introduction of Source Model

In the numerical model, the sources are introduced via the RHS terms in LEE denoted by s1 to s5 in

Eqs. (2.1) to (2.5). The propeller noise sources are assumed compact, to be a ring of spinning

monopoles due to the thickness noise and a ring of spinning dipoles due to the loading noise. This

way of source introduction into LEE was proposed by Dierke et al. and realized in the CAA code

PIANO [10]. Garrec and Reboul [49] also employed this source model in Euler equations to predict

the open rotor noise scattering off a wing-body. In this study, the same source model is used.

However, the introduction of dipole source into momentum equation is found not stable in

SotonLEE. An equivalent way is used to replace the dipole source which will be introduced in detail

in section 5.2.5. A sketch of the ring of the spinning source is shown below:

Figure 5.1 Sketch of ring model.

Viewed by an observer downstream as shown in Figure 5.1, the ring source rotates in the counter

clock-wise direction. The source ring is placed in the yz plane. If the centre of the source ring is given

with the coordinate (xc, yc, zc), then the position of the ith monopole/dipole on the ring can be

identified by the relations below:

()

() cos()

() sin()

i c

i c i

i c i

x t x

y t y R t

z t z R t

 

 



  

  

 (4.27)

where R denotes the radius of the ring and φi denotes the relative position between the sources on

the ring. The velocity of a source on the ring can be derived from Eq. (5.27):

Chapter 5

92

  

() 0

() sin

() cos()

i

i i

i i

u t

v t R t

w t R t

  

  



  

 

 (4.28)

Given the amplitude of the monopole is Q = ρ0Un, the source terms are introduced by the source

terms s1 and s5 of LEE in Eqs. (2.1) – (2.5). The source terms s5 and s1 in LEE become:

  5 1 01
(), (), ()

B

n i i ii
s s U x x t y y t z z t 


     (4.29)

However, in reality, the amplitude of the monopole is determined by the blade volume. According

to the relation in reference [96]:

      0 0 1f f H f t      U n (4.30)

For the propeller noise, the wavelengths of the first and the second BPFs are large in comparison

to blade dimensions, such as the blade thickness. Consequently, blades are assumed compact

sources. For a compact source like a monopole, the source term s5 and s1 in LEE become:

   5 1 01
(), (), ()

B

B i i ii
s s V x x t y y t z z t t 


       (4.31)

in which VB is the volume of a blade. If the synthetic thrust and drag of the blade section are

projected into the x, y and z directions and are denoted as Fx, Fy and Fz, the sources of loading noise

in the momentum equations can be denoted as:

  2 (), (), ()x i i is F x x t y y t z z t     (4.32)

  3 (), (), ()y i i is F x x t y y t z z t     (4.33)

  4 (), (), ()z i i is F x x t y y t z z t     (4.34)

In reality, the Dirac Delta function cannot be realized by using the finite difference method and

therefore is smoothed using the Gaussian distribution:

 

 
         2 2 2

3 2 23

(), (), ()

1 1
exp

22

i i i

i i i

x x t y y t z z t

x x t y y t z z t



 

   


    

 
 
 

 (4.35)

where σ is a parameter. In definition of the Gaussian distribution, the point in the extent of 3σ

covers the 99.73% of the total energy.

Chapter 5

93

5.1.2.2 PPW Determination at the Source Region

PPW plays a key role in a CAA simulation. It can be utilized to describe the resolution property of a

finite difference scheme and it can also be employed to quantify the resolution of a mesh if the

wavelength of an acoustic wave is given. In this section, the PPW refers to the resolution property

of the mesh, since the fourth-order optimized prefactored compact scheme is used throughout the

study.

The requirement of PPW at the source region on a given mesh is validated for a single monopole at

the origin, radiating an acoustic wave with a frequency of 120 Hz. Simulations on meshes with

different PPWs are performed. Results of SPL and acoustic pressure are shown below:

Figure 5.2 SPL directivities on the ring plane with r = 6.

Figure 5.3 Acoustic pressure along the line x = 0, z = 0.

Chapter 5

94

It can be observed from Figure 5.2 that the SPL directivity shows a strong anisotropy when the PPW

of the mesh is set to 5, though the PPW of fourth-order optimized prefactored compact scheme is

3.7 in theory, as mentioned in section 1.2.2. The peaks of SPL occur at the angles of 45o, 135o, 225o

and 315o, whereas valleys appear at the angles of 0o, 90o, 180o and 270o. The SPL of acoustic waves

at the peaks is over-predicted, while waves at the valleys are under-predicted. The gap between

the peaks and valleys achieves roughly 1 dB. A similar scenario occurs when PPW is set to 6, but the

difference between the peaks and valleys is much smaller, 0.25 dB. When PPW is set to 7, the SPL

directivity shows the isotropy in all directions. In addition, the acoustic waveform sampled on the

line with x = 0, z = 0 also dictates that the amplitude achieves the largest value with PPW = 7. The

line with x = 0, z = 0 corresponds to the angles of 0o and 180o, as shown in Figure 5.2.

In addition, the anisotropy of the SPL directivity actually results from the resolution of the acoustic

source rather than that in the propagating region according to the PPW analysis of optimized

prefactored compact schemes in Section 1.2.2. Since the ideal Dirac Delta function cannot be

realized by using the finite difference method, it is replaced by the Gaussian distribution which,

however, introduces numerical errors into the numerical simulation.

Recall that the only parameter in Eq. (5.35) is σ which determines the resolution of the monopole

source on a given mesh. For a ring of 6 spinning monopoles with a radius of 1 m and the RPM of

1200, the acoustic wave along the line x = 0, z = 5 m with different σ values on a mesh with PPW of

7 is shown in Figure 5.4:

Figure 5.4 Acoustic signature at line with x = 0, z = 5, t = 68 (0.2 s with dimensional value).

Chapter 5

95

In Figure 5.4, it can be observed that replacement of ideal Dirac Delta function by the Gaussian

distribution introduces errors into numerical simulations. The waveforms with σ = 0.3 and σ = 0.5

have smaller amplitudes but the same phase in comparison with the analytical solution. That error

is mainly the dissipation. The waveform with σ = 0.2 contains not only dissipation error but also

dispersion error which is not negligible. The Gaussian distribution smooths the Dirac Delta function

via a sphere distribution with a finite radius of about 3σ (99.75% of the total energy). σ with values

of 0.3, 0.5 and 0.2 corresponds to Gaussian distributions in spheres with radii of 0.9 m, 1.5 m and

0.6 m which are resolved by 4.5, 7.5 and 3 mesh points respectively. The PPW of the fourth-order

optimized prefactored compact scheme is 3.7. Therefore, the Gaussian distribution with σ = 0.3 and

above are well resolved. If the errors are mainly the dissipation, the acoustic waveform can be

calibrated by an amplification on the numerical simulation. Since the governing equations used, LEE,

is a linear system, the amplification factor is obtained by the ratio of pressures between the

analytical solution and numerical solution. Once the amplification factor is obtained, it is employed

to modulate the source strength, including monopoles and dipoles, in LEE. The scaled numerical

waveforms are shown in Figure 5.5 below:

Figure 5.5 Scaled acoustic signature at line with x = 0, z = 5, t = 68 (0.2s with dimensional value).

It can be observed that modulated waveforms with σ = 0.3 and σ = 0.5 achieve good approximation

of the exact analytical solution. The dissipation and dispersion errors are negligible. The waveform

with σ = 0.2 cannot be scaled to have a good approximation of the analytical solution.

In conclusion, the replacement of an ideal Dirac Delta function with a Gaussian distribution will

introduce errors in CAA simulations. The errors are mainly caused by the value of σ on a given mesh.

Chapter 5

96

If the dispersion error can be ignored and only dissipation error exists, the numerical solution can

be calibrated. The calibration is necessary for the compact source simulation.

From Hanson’s solution, the 1st, 2nd and 3rd harmonics of the power spectral density (PSD) of the

acoustic wave radiated by a ring of 6 spinning monopoles with a radius of 1 m and an RPM of 1200

are shown below:

Figure 5.6 PSDs of the first three harmonics of a ring of spinning monopoles.

It can be observed that a gap of roughly 35 dB/Hz exists between two neighbouring harmonics. The

contributions of the second and higher order harmonics can be ignored. Consequently, in the

following numerical simulation, the mesh is only necessary to resolve the first harmonic with the

frequency of 120 Hz.

5.2 Low Mach Number Setup

5.2.1 Sound Source

The noise source is first a ring of 6 rotating monopoles distributed evenly as illustrated in Figure 5.7

to study the thickness noise. Viewed by an observer downstream, the ring at the RHS of the cylinder

rotates in the counter clock-wise direction at 1200 RPM. The first harmonic of BPF is 120 Hz. The

phases of all the monopoles are set to 0, whereas the non-dimensional amplitude is set to 0.01 to

ensure a linear propagation. A ring with the origin at (0, 0, 0) and a radius of 5.2 m is utilized to

collect the near-field SPL on the ring plane, whereas another ring with the origin at (0, 0, -4) m and

Chapter 5

97

a radius of 5.2 m is used on the ground. Then, the rotating monopoles are replaced by a ring of 6

rotating dipoles with the same BPF to study the loading noise.

Figure 5.7 Sketch of spinning sources and scattering cylinder.

5.2.2 Computation Setup

In the LEE simulation, the 3D physical domain is 20 m long in the flow direction and 9 m in the radial

direction. The boundary condition at the cylinder surface is slip wall, while zones with highly

stretched grids are used at the outer boundary to attenuate the perturbations. The boundary

conditions on a profile of the physical domain in the stream-wise direction are shown below in

Figure 5.8:

Chapter 5

98

Figure 5.8 Sketch of the physical domain with boundary conditions.

PPW are set to 7 along the stream-wise and the radial directions. The mesh in the azimuthal

direction is determined by setting the PPW to 7 at r = 5 m which is the maximum position of source

on the ring in the radial direction. The final mesh has 1.2 million mesh points. Non-dimensional

variables are used in the computation. The reference length scale L is 1 m, speed scale, c∞, is 340.3

m/s, and density scale, ρ∞ is 1.225 kg/m3. The standard air properties at sea level are used.

5.2.3 Mean Flow

When the refraction effect of the boundary layer is considered, the background mean flow field is

obtained from a RANS simulation. The Mach number of the free stream is 0.205. The estimated

99% turbulence boundary layer thickness on the end of cylinder surface is 0.194m, which is quite

thin in comparison to the acoustic wavelength of 2.83m.

a) Mach number of the axial velocity. b) Mach number of the radial velocity.

Figure 5.9 Mean flow field obtained from RANS.

5.2.4 Results of Thickness Noise

5.2.4.1 Validation

In this study, the simulation results from LEE with uniform flow and complex equivalent source

method (CESM) [107, 108] are first compared to validate the numerical methods and source models

Chapter 5

99

in SotonLEE since a program of CESM has been available and used to predict the scattering of

propeller noise in ANTC. As the ESM as mentioned in Section 1.2.4, CESM solves the inhomogeneous

convective acoustic equation by a surface method. It is an extension of ESM to the complex plane.

In comparison to the traditional ESM, the sources in CESM have a directivity which can be controlled

by the ratio of the imaginary and real parts of the source. Therefore, the refraction effect of the

non-uniform mean flow is ignored in CESM. The detailed study on CESM can be found in the work

of Gounot and Musafir [163], and Hou et al. [108]. The profiles of near-field instantaneous sound

pressure field computed by LEE are shown in Figure 5.10 and those of SPL are shown in Figure 5.11.

a) Acoustic pressure on the cylinder wall. b) Acoustic pressure on the ring plane.

c) Acoustic pressure at plane y = 4. d) Acoustic pressure at plane z = -4.

Figure 5.10 Instantaneous pressure contours simulated by LEE in uniform flow.

Chapter 5

100

a) SPL on the cylinder wall. b) SPL on the ring plane.

Figure 5.11 SPL contours simulated by LEE in uniform flow.

Sound pressure is propagating spirally in Figure 5.10 b), which illustrates the rotation of the sound

sources. The convection effect of mean flow field with low Mach number inclines the propagation

of the acoustic waves upstream, as shown in Figure 5.10 c). The sound pressure contour on a plane

under the cylinder is shown in Figure 5.10 d). The propagation of acoustic waves concentrates near

the ring plane and the RHS of the cylinder where the propeller is located. The concentration of

acoustic wave propagation near the ring plane is also demonstrated by Figs.Figure 5.10 a) andFigure

5.11 a). The SPL contour on the ring plane is shown in Figure 5.11 b). It shows a strong directivity

on the ring plane and multiple peaks and valleys of SPL distribute due to the scattering of the

cylinder wall. Qualitative comparisons of the SPL on the cylinder wall and the far-field directivity

are given in Figure 5.12 andFigure 5.13 shown below:

a) SPL on the cylinder wall, θ = 0. b) SPL on the cylinder wall, θ = 1.5π.

Figure 5.12 SPL values on the cylinder wall along the stream-wise direction.

Chapter 5

101

a) SPL directivity at x = 0, r = 5.2. b) SPL directivity at z = -4 m, r = 5.2.

Figure 5.13 Far-field SPL directivities.

In Figure 5.12 a), the SPL on the cylinder wall line at θ = 0, which is defined in Figure 5.7,

concentrates on the ring plane and behaves like a Gaussian distribution along the stream-wise

direction. The difference between the peaks of SPL values obtained from CESM and LEE is 0.1 dB.

The SPL drops sharply and differences between CESM and LEE occur when the observer is far away

from the ring plane. This is attributed to the reflection of acoustic waves from the buffer zone in

LEE. When observed on the line at θ = 1.5π, which corresponds to the bottom of the cylinder wall,

the peaks of SPL values are 100.08 dB and 100.28 dB for CESM and LEE respectively. The difference

between CESM and LEE is less than 0.2 dB.

At the far-field as it is shown in Figure 5.13, two rings of observers are used to collect the SPL

directivities which are shown in Figure 5.7. θ is defined in the counter clock-wise direction in the yz

plane with θ = 0 corresponding to the positive y axis. The far-field SPL directivity also behaves like

a Gaussian distribution with respect to the angle θ on the ring plane as shown in Figure 5.13 a) and

the far-field SPL drops sharply when the angle goes far away from θ = 0. The peak achieves 133.4

dB and 133.1 dB at θ = 0 for CESM and LEE, whereas the valley is under 80 dB at θ = 210o. In addition,

the directivities of CESM agree well with those of LEE. The maximum difference of SPL, 5.4 dB,

between CESM and LEE occurs at θ = 12.43o which is denoted by dash line in Figure 5.13 a). When

observed from the ring under the cylinder (from the ground), it is found that the behaviour of the

Gaussian distribution still exists with respect to φ. The peaks achieve 99.0 dB and 99.5 dB at φ = 90o

for CESM and LEE. Furthermore, the SPL of LEE coincides well with that of CESM with the maximum

difference of 1.5 dB at φ = 155.1o upstream and 0.6 dB at φ = 351.3o downstream.

Chapter 5

102

In conclusion, the solution of current acoustic scattering solver, SotonLEE, agrees well with that of

CESM, which validates the source model, boundary conditions and numerical methods of LEE. It can

and will be utilized to predict the scattering of propeller noise off a cylinder.

5.2.4.2 Refraction Effect of Boundary Layer

The result of propeller noise scattering off a cylinder with BL is compared with that in uniform mean

flow to investigate the refraction effect of boundary layer. Quantitative comparisons of the SPL on

the cylinder wall and the far-field directivity are given in Figure 5.14 andFigure 5.15 shown below:

a) SPL on the cylinder wall, φ = 0. b) SPL on the cylinder wall, φ = 1.5π.

Figure 5.14 SPL values on the cylinder wall along the stream-wise direction.

a) SPL directivity at x = 0, r = 5.2. b) SPL directivity at z = -4 m, r = 5.2.

Figure 5.15 Far-field SPL directivities.

As it is shown in Figure 5.14 a) and b), the boundary layer reduces the SPL on the cylinder wall

upstream of the ring plane and increases that downstream. This phenomenon was also

demonstrated by results obtained from experiments [113, 117, 118] and analytical methods [113-

Chapter 5

103

117, 119], and now it is recovered by the current CAA methods. In addition, the reduction upstream

and increase downstream is stronger at the bottom than at the propeller side since the propagation

path through the boundary layer at the bottom is longer. The maximum reduction achieves 12 dB.

At far-field, the directivities obtained from LEE and LEE with BL coincide well on the ring plane as

shown in Figure 5.15 a). The refraction effect of boundary layer can be ignored on the ring plane,

which is also demonstrated at x = 0 in Figure 5.14 a) and b). The boundary layer reduces the SPL

upstream of the ring plane and increases that downstream on the ground as shown in Figure 5.15

b), which is similar to the change of SPL on the cylinder wall. The maximum reduction achieves 4.5

dB. The causes will be explained in section 5.5.

5.2.5 Results of Loading Noise

The thickness noise is investigated using a ring of spinning monopoles. The loading noise should be

investigated using a ring of spinning dipoles. However, direct use of dipoles in SotonLEE is found

not stable close to the solid wall in the current solver. It is found that spinning dipoles excite parasite

waves at the initialization phase, which propagate across the whole domain and cannot be damped

efficiently by the buffer zone in SotonLEE. Consequently, an equivalent way to simulate the dipole

noise is introduced in the current solver. Since each dipole is composed of a pair of monopoles [164,

165] out of phase separated by a small distance d with kd << 1, two rings of monopoles [49] are

used to simulate a ring of spinning dipoles. First, the replacement of a stationary dipole by a pair of

monopoles is validated in SotonLEE. For a stationary dipole with a radiating frequency of 120 Hz,

two monopoles out of phase separated by 0.1 m with the same strength and frequency are used.

The instantaneous acoustic pressure contours at t = 0.2 s are shown below:

a) Pressure contours radiated by a pair of
monopoles at the surface with y = 0.

b) Acoustic pressure radiated by a pair of
monopoles and a dipole at the line with x = -4, z =
10.

Figure 5.16 Acoustic pressure radiated by a pair of monopoles.

Chapter 5

104

It can be observed from Figure 5.16 a) that the pressure radiated by the pair of monopoles exhibits

the same radiation pattern as a dipole. The radiation is strongest at θ = 0o and θ= 180o, whereas no

sound is radiated at θ = 90o and θ = 270o. θ is defined in Figure 5.16 a). The acoustic pressure

generated by a dipole and a pair of monopoles at the line with x = -4, z = 10 from the source shown

in Figure 5.16 b) demonstrates the equivalence of the two kinds of sources.

As a dipole is a vector in space, the components of a dipole in the cylindrical coordinate system

contain the lift and drag components of the blade section. A dipole with the value of (Fx, Fr, Fθ)

contains the lift of Fx and the drag of Fθ of the blade section. In practice, the contribution of Fr is

small in comparison to those of Fx and Fθ and therefore is ignored. The values of Fx and Fθ can be

determined by experiments or numerical simulations. In this study, the ratio of Fx / Fθ is set to 4

[166] which is a bit larger than the value in reference [10]. A similar analysis to that of the scattering

of the ring of monopoles is applied to the dipole results. A comparison between LEE with uniform

flow and LEE with BL is made. The profiles of instantaneous sound pressure field are shown in Figure

5.17, whereas those of SPL are shown in Figure 5.18 below:

a) Acoustic pressure on the cylinder wall. b) Acoustic pressure on the ring plane.

c) Acoustic pressure at plane y = 4. d) Acoustic pressure at plane z = -4.

Chapter 5

105

Figure 5.17 Instantaneous pressure contours simulated by LEE in uniform flow.

a) SPL on the cylinder wall. b) SPL on the ring plane.

Figure 5.18 SPL contours simulated by LEE in uniform flow.

The acoustic pressure is propagating spirally in Figure 5.17 b), which illustrates the rotation of the

sound sources. It can be observed in Figure 5.17 a) and c) that acoustic pressure radiated by the

spinning dipoles mainly propagates in the ring plane and upstream, which is quite different from

the propagation of spinning monopoles. The propagation in the ring plane mainly comes from the

contribution of the drag of the blade section, whereas the propagation upstream is attributed to

the resultant contribution of the thrust normal to the ring plane and the drag. This conclusion is

demonstrated by the Figure 5.19 below:

a) Dipole (Fx, 0, 0). b) Dipole (0, 0, Fθ). c) Dipole (Fx, 0, Fθ).

Figure 5.19 Radiation pattern by three kinds of spinning dipoles.

The contributions of the lift, drag and the resultant forces of a ring of the spinning dipoles are

depicted in Figure 5.19 a), b) and c), respectively. The ring of spinning dipoles (Fx, 0, 0) radiates the

Chapter 5

106

acoustic waves upstream and downstream, whereas the spinning dipoles (0, 0, Fθ) mainly radiates

the acoustic waves on the ring plane. The ring of resultant spinning dipoles (Fx, 0, Fθ) radiates near

and upstream of the ring plane. The acoustic waves radiated by the ring of spinning dipoles (0, 0,

Fθ) enhance the acoustic wave upstream radiated by the ring of spinning dipoles (Fx, 0, 0) and

weaken that downstream. The result of the ring of spinning dipoles (Fx, 0, Fθ) is the resultant

interference of those of spinning dipoles (Fx, 0, 0) and (0, 0, Fθ).

The sound pressure contour under the cylinder is shown in Figure 5.17 d). Unlike the monopole

case, the radiation of the spinning dipoles to the ground does not concentrate at the RHS of the

cylinder but mainly radiates upstream. This is due to the upstream acoustic propagation of spinning

dipoles. The pressure and SPL of acoustic waves on the ring plane are shown in Figure 5.17 b)

andFigure 5.18 b). It shows a strong directivity on the ring plane and multiple peaks and valleys of

SPL distribute due to the scattering from the cylinder. To evaluate the refraction effect of the BL,

quantitative comparisons of the SPL on the cylinder wall and far-field directivities are given in Figure

5.20 andFigure 5.21 shown below:

a) SPL on the cylinder wall, θ = 0. b) SPL on the cylinder wall, θ = 1.5π.

Figure 5.20 SPL values on the cylinder wall along the stream-wise direction.

a) SPL directivity at x = 0, r = 5.2. b) SPL directivity at z = -4 m, r = 5.2.

Figure 5.21 Far-field SPL directivities.

Chapter 5

107

On the cylinder wall with θ = 0 in Figure 5.20 a), the loading noise also concentrates on the ring

plane and behaves like a Gaussian distribution along the stream-wise direction. However, the SPL

decreases more slowly upstream than downstream when the observers are the same distance away

from the ring plane due to the upstream propagation. The difference between the peaks of the SPL

values obtained from LEE and LEE with BL is less than 0.5 dB. When observed on the line θ = 1.5π,

which corresponds to the bottom of the cylinder wall in Fig. 5.18 b), the peaks of SPL are 93.8 dB

for LEE and 93.1 dB for LEE with BL. The SPL on the line θ = 1.5π drops much more sharply

downstream than upstream. The maximum difference of SPL values upstream achieves 1.8 dB on

the cylinder wall. In contrast, the difference downstream is small and negligible. The boundary layer

reduces the SPL on the cylinder wall upstream, which is consistent to the conclusion obtained in

the analytical methods [113-117, 119].

At the far-field as it is shown in Figure 5.21 a) and b), the two same rings sketched in Figure 5.7 are

used as observers to compute the SPL. In Figure 5.21 a), the directivity behaves like a Gaussian

distribution with respect to θ as well. The peak achieves 117.1 dB at θ = 0 for both LEE and LEE with

BL. The SPL directivities of LEE and LEE with BL coincide, which denotes the boundary layer does

not change the SPL directivities on the ring plane. The maximum difference is 0.4 dB.

When observed from the ring under the cylinder (from the ground) in Figure 5.21 b), it is found that

the directivity mainly concentrates upstream with a relatively smooth peak region due to the

upstream propagation. The maximum peaks of LEE and LEE with BL are 88.5 dB and 88.1 dB

respectively. The valleys are below 60 dB. In addition, the directivities of LEE and LEE with BL almost

coincide. The refraction effect of the boundary layer reduces the SPL upstream at the far-field by a

maximum of 0.8 dB. The maximum difference of SPL downstream is 0.2 dB and can be ignored.

In conclusion, the SPL behaves like a Gaussian distribution on the cylinder wall and concentrates

near the ring plane. The refraction effect of the boundary layer on the loading noise on the cylinder

wall with low Mach number flow can be ignored. On the ring plane, the boundary layer does not

contribute to the SPL directivities, whereas the boundary layer reduces the SPL upstream. However,

the reduction is smaller than 2 dB on the cylinder wall and smaller than 1 dB at the far-field

upstream. It is assumed to be important when the difference is larger than 3 dB. The refraction

effect of boundary layer does not play an important role in the far-field SPL directivity for spinning

dipoles.

5.3 Cruise Mach Number Setup

The setup of cruise Mach number case is similar to that of low Mach number case. For example,

the sound source and the physical domain with boundary conditions are similar. The main

Chapter 5

108

differences between the cruise Mach number and low Mach number cases are the mean flow field,

CAA mesh and the properties of the ambient air. The computational setup is introduced in brief

below.

5.3.1 Case Setup

The standard air properties at an altitude of 10,668 meters are used in the problem setup. In LEE

implementations, the acoustic sources, physical domain together with the boundary conditions

remain the same as those in the low Mach number case. The PPW of the mesh is set to 7. Due to

the strong convection effect, the size of the mesh upstream along the stream-wise direction is

compressed into a quarter of that in the low Mach number case, whereas the size of mesh

downstream is stretched into 1.75 times in the flow direction. The mesh sizes in the radial and

azimuthal directions are kept the same. The total amount of mesh points is 2.9 million. Non-

dimensional variables are used in the computation. The reference length scale L is 1 m, speed scale,

c∞, is 296.6 m/s, and density scale, ρ∞ is 0.38 kg/m3. The Mach number of free stream is 0.75. The

mean flow field obtained from RANS is shown below:

a) Mach number of axial velocity. b) Mach number of radial velocity.

Figure 5.22 Mean flow field obtained from RANS.

The estimated 99% turbulence boundary layer thickness on the end of cylinder surface is 0.186 m,

which is thin in comparison to the acoustic wavelength of 2.47 m.

5.3.2 Results of Thickness Noise

The profiles of instantaneous sound pressure field are shown in Figure 5.23 and those of SPL are

shown in Figure 5.24. The spiral propagation of sound pressure illustrates the rotation of the sound

sources as shown in Figure 5.23 b). In comparison to the low Mach number case, as shown in Figure

5.10 c), the acoustic wavelength upstream is shortened significantly in Figure 5.23 c) due to the

strong convection effect of the mean flow-field. The acoustic waves also concentrate near the ring

plane and at the RHS of the cylinder where the propeller is located. The concentration of acoustic

wave propagation near the ring plane is also demonstrated by Figure 5.23 a) andFigure 5.24 a). The

Chapter 5

109

SPL contour on the ring plane is shown in Figure 5.24 b). It shows a strong directivity on the ring

plane and multiple peaks and valleys of SPL distribute due to the reflection of the cylinder.

Quantitative comparisons of the SPL on the cylinder wall and far-field directivity are given to

evaluate the refraction effect, as shown in Figure 5.25 below:

a) Acoustic pressure on the cylinder wall. b) Acoustic pressure on the ring plane.

c) Acoustic pressure on the plane with y = 4. d) Acoustic pressure on the plane with z = -4.

Figure 5.23 Instantaneous pressure contours simulated by LEE in uniform flow.

Chapter 5

110

a) SPL on the cylinder wall. b) SPL on the ring plane.

Figure 5.24 SPL contours simulated by LEE in uniform flow.

a) SPL on the cylinder wall, θ = 0. b) SPL on the cylinder wall, θ = 1.5π.

Figure 5.25 SPL on the cylinder wall.

a) SPL directivity at x = 1, r = 5.2. b) SPL directivity at z = -4, r = 5.2.

Figure 5.26 Far-field SPL directivities.

Chapter 5

111

The SPL still concentrates on the ring plane and behaves like a Gaussian distribution along the

stream-wise direction as shown in Figure 5.25 a), which is the same as that in the low Mach number

case. However, the difference of SPL between the peaks is larger, 3.0 dB. The peaks are 129.0 dB

and 126.1 dB respectively at x = 1.0 for LEE and LEE with BL. The SPL drops sharply when the

observer is far away from the ring plane. The refraction effect of boundary layer increases SPL on

the cylinder wall upstream and decreases SPL downstream, which is consistent to the results

obtained in analytical methods [113-117, 119]. In comparison to the low Mach number case, the

refraction effect of boundary layer in the cruise Mach number case is much stronger. When

observed from the line with θ = 1.5π at the bottom of the cylinder shown in Figure 5.25 b), the

maximum SPL in LEE and LEE with BL is 109.3 dB and 97.8 dB occurring at x = 1.44 and 2.23

respectively. The peak is moved downstream by the strong convection of the mean flow field [113-

117, 119]. When the boundary layer is considered, the SPL in LEE with BL is roughly 15.0 dB less

than that in LEE upstream and the maximum difference of 10.1 dB occurs downstream. The

refraction effect of boundary layer is more significant upstream than downstream.

At the far-field, the same rings employed in the low Mach number case as shown in Figure 5.7 are

used to monitor the directivities as shown in Figure 5.26. The boundary layer mainly reduces SPL

by more than 20 dB in the region where the valleys distribute. In the region with 123.3o < θ < 310.6o

which is denoted by the dash line, the boundary layer always reduces the far-field SPL. The

maximum reduction is over 25 dB. When observed from the ring with z = -4 under the cylinder (from

the ground), the boundary layer reduces the SPL in most of regions. The reduction achieves 20 dB

~ 30 dB in regions where the SPL valleys distribute. In addition, the boundary layer only increases

SPL downstream in a small region with -20o < φ < 21o which is denoted by the dash line. The

boundary layer reduces the SPL upstream by about 8 dB and increases the SPL downstream by

roughly 5 dB.

In conclusion, the boundary layer mainly reduces significantly the SPL where the SPL valleys

distribute since the propagation path is longer. In addition, the SPL is increased upstream and is

reduced downstream at the far-field by the boundary layer. The refraction effect of the boundary

layer plays an important role in the cruise Mach number case.

5.3.3 Results of Loading Noise

The similar analysis to that of the scattering of the ring of monopoles is applied to the dipole results.

The profiles of the instantaneous sound pressure field are first shown in Figure 5.27 whereas those

of SPL are shown in Figure 5.28. The spiral propagation of sound pressure is shown in Figure 5.27

b). In comparison to the low Mach number case as shown in Figure 5.17 a) and c), the acoustic

Chapter 5

112

pressure radiated by the spinning dipoles travelling in the flow field with a cruise Mach number

mainly concentrates near the ring plane. The acoustic wavelength upstream is shortened

significantly. The concentration is also illustrated by Figure 5.28 a). Another noticeable difference

is that the acoustic wave concentrates at the RHS in the flow field with a cruise Mach number as

shown in Figure 5.28 d) rather than the upstream direction in the low Mach number case. This

phenomenon is similar to that of the monopole case in high Mach number due to the strong

convection effect of the mean flow-field. The pressure and SPL of acoustic waves on the ring plane

are shown in Figure 5.27 b) and 5.28 b). A strong directivity on the ring plane occurs again and

multiple peaks and valleys of SPL distribute, which is consistent to that in the low Mach number

case. Quantitative comparisons of the SPL on the cylinder wall and far-field directivity are given to

evaluate the refraction effect of the boundary layer, as shown in Figure 5.29 andFigure 5.30 below:

a) Acoustic pressure on the cylinder wall. b) Acoustic pressure on the ring plane.

c) Acoustic pressure on the plane with y = 4. d) Acoustic pressure on the plane with z = -4.

Figure 5.27 Instantaneous pressure contours simulated by LEE in uniform flow.

Chapter 5

113

a) SPL on the cylinder wall. b) SPL on the ring plane.

Figure 5.28 SPL contours simulated by LEE in uniform flow.

a) SPL on the cylinder wall, θ = 0. b) SPL on the cylinder wall, θ = 1.5π.

Figure 5.29 SPL on the cylinder wall.

a) SPL directivity at x = 1, r = 5.2. b) SPL directivity at z = -4, r = 5.2.

Figure 5.30 Far-field SPL directivities.

Chapter 5

114

The SPL peak obtained from LEE with BL is 4.4 dB less than that obtained from LEE as shown in

Figure 5.29 a). When observed from the line θ = 1.5π at the bottom of the cylinder from Figure 5.29

b), the maximum values in LEE and LEE with BL are 99.7 dB and 82.7 dB which occur at x = 1.11, and

2.26 respectively. The SPL peak simulated by LEE with BL moves downstream. When the boundary

layer is considered, the SPL in LEE with BL is roughly 23.1 dB less than that in LEE upstream at x =

0.63 and the maximum difference of 11.0 dB occurs at x = 1.11 downstream. The boundary layer

significantly reduces the SPL both upstream and downstream on the cylinder wall. The refraction

effect of boundary layer is more significant upstream than downstream.

At far-field, the two same rings employed in the low Mach number case sketched in Fig. 5.7 are

used as observers to compute the SPL directivities as shown in Figure 5.30 a). The SPL in LEE in the

region with 122.6o < θ < 314.5o which is denoted by the dash line is always larger than that in LEE

with BL. The maximum difference over 25 dB is observed on the directivity between LEE and LEE

with BL at the valley for LEE with BL at θ = 215.6o. Out of this region, the SPL in LEE is comparable

to that for LEE with BL. The boundary layer reduces the SPL significantly in the region where the

valleys distribute. When observed from the ring with z = -4 under the cylinder (from the ground) in

Figure 5.30 b), it is found that the SPL mainly concentrates at the RHS of the cylinder where the

propeller is located, which is quite different from the low Mach number case. The maximum

difference of SPL between LEE and LEE with BL is 34.5 dB at φ = 270.0o. The boundary layer reduces

the directivity at the far-field in the region opposite to the propeller side whereas the SPL of LEE

with BL is comparable to that of LEE at the propeller side in Figure 5.30 b).

In conclusion, the boundary layer mainly reduces the SPL significantly where the SPL valleys

distribute. In addition, the SPL upstream is decreased significantly both on the cylinder wall and at

the far-field by boundary layer. The refraction effect of boundary layer plays an important role in

the cruise Mach number case.

5.4 Effect of Mach Numbers on Refraction Effect of Boundary Layer

It is of interest to explore trends in refraction effect of BL with variations in flight speed. As shown

in Sections 5.2, the refraction effect is weak at M = 0.205 whereas it is strong at M = 0.75. An interval

of Mach number exists between 0.205 and 0.75. To explore at which Mach number the refraction

effect starts to be negligible, the low Mach number case is set up at M = 0.3 and M =0.4 respectively.

Mach numbers above 0.4 are considered to belong to the cruise Mach numbers. At cruise Mach

numbers, boundary layer is significant according to the research performed by Spence [113]. At M

= 0.3 and M =0.4, the same source model, boundary conditions and properties of ambient air as

those in the low Mach number case are kept whereas different CAA mesh and background mean

Chapter 5

115

flow-field are used. The acoustic wavelength decreases upstream due to the convection effect of

the mean flow-field while the wavelength increases downstream. Consequently, the mesh is

adjusted to keep the PPW upstream and downstream of the ring source still 7. Due to the reflection

of BL and the fuselage, a strong directivity exists, which is different from the free-field. In addition,

the convection of the mean flow-field at different Mach numbers causes different distribution of

the SPL lobes on the cylinder wall and directivities at far-field. A direct comparison of directivities

between different Mach numbers does not show the refraction effect of boundary layer directly.

Consequently, a comparison of the difference between the SPL on the cylinder wall and directivities

at far-field at different Mach numbers are shown. The differences of SPL on the solid wall and at

the far-field by boundary layer are shown below:

a) SPL on the cylinder wall, θ = 1.5π. b) SPL on the cylinder wall, θ = 0.

c) SPL directivity at z = -4, r = 5.2. d) SPL directivity at x = 0, r = 5.2.

Figure 5.31 Difference of SPL caused by boundary layer.

When boundary layer is considered, the reduction of SPL on the cylinder wall occurs near the ring

plane at x = 0 and upstream as shown in Figure 5.31 a). The attenuation of SPL is strongest at M =

0.4 near the ring plane whereas the attenuation is stronger at M = 0.205 when the distance is far

Chapter 5

116

away upstream of the ring plane. The maximum reduction is over 3 dB for M = 0.4. At x = -5, a strong

reduction of SPL appears on the cylinder wall for M = 0.205. The cause is attributed to the different

distribution of the SPL lobes on the cylinder wall. As explained by Hanson [117] and Belyaev [167],

an explanation is that the boundary layer changes the directivity of the source. Due to the existence

of cylinder, the propeller source has a directivity in space which is different from that in free space.

The directivity in free space is homogeneous in the ring plane. The propagation in the boundary

layer results in a change in directivity as illustrated in Figure 5.32:

Figure 5.32 Acoustic wave propagation through boundary layer.

In the absence of boundary layer, the acoustic wave propagates to the cylinder in a straight line

through the direct path whereas the refracted path is followed when the boundary layer exists. The

angle of the direct path θ, is different from that of refracted path θR. When the Mach number

increases, the velocity gap between the boundary layer and free field becomes larger. Consequently,

the difference between θ and θR becomes larger. In addition, peaks and valleys of the source

directivity exists in the streamwise direction. When the refraction effect is strong, the positions of

peaks and valleys are moved in comparison to those in the absence of boundary layer. Different

lobes of SPL occur on the same locations, which results in a different change of directivity depending

on Mach numbers.

The changes of the source directivity by the boundary layer is also illustrated in Figure 5.31 b). A

shift of the directivity by the boundary layer along the streamwise direction is significant on the

cylinder wall and the strongest change happens when M = 0.4. The shifts of directivity on the

cylinder wall for M = 0.3 and 0.4 are similar. The changes are quite different from those for M =

0.205. The different pattern of directivity change between M = 0.205 and M = 0.3, 0.4 is illustrated

by Figure 5.31 c) and d) at the far-field. It can be presumed that the refraction effect of the boundary

layer is stronger if the Mach number is higher. An explanation is that when the Mach number is

Chapter 5

117

above 0.3, a strong change on the source directivity by the boundary layer happens in comparison

to M ≤ 0.205, which causes a different reduction of SPL by the boundary layer. Different lobes of

directivity occur at the same positions and observers at the far-field. At M = 0.3 and 0.4, the lobes

of directivity changed by the boundary layer at the far-field are distributed in a similar manner,

which is different from those at M = 0.205. Therefore, it can be concluded that the refraction effect

of boundary layer plays an important role when the Mach number is higher than 0.3. When the

Mach number is above 0.3, the source directivity is significantly changed by the boundary layer in

comparison to that in the absence of the boundary layer.

5.5 Performance

In these cases, the performance running on two Tesla K20M GPUs is compared to those

implemented on four cores and on ten cores of Intel Xeon E5-2670 CPU with 2.6 GHz. Due to the

size of mesh blocks and loading balance, the maximum available and appropriate amount of MPI

process is 10. The performance is summarized below:

Table 5-1 Wall-clock time comparisons in seconds.

Case name Mesh Size
Wall-clock time (in seconds)

2 GPUs 4 CPU cores with speedup 10 CPU cores with speedup

Low Mach monopoles 1.15 M 508.2 5435.1 (21) 2490.1 (24.5)
Low Mach dipoles 1.15 M 534.8 6257.2 (23) 2781.0 (26)

Cruise Mach monopoles 2.87 M 1266.4 18046.2 (29) 8021.2 (32)
Cruise Mach dipoles 2.87 M 1392.2 20187.1 (29) 9033.8 (32)

Note that values in the parentheses denote the speed-ups.

In conclusion, 9 minutes are necessary for the cylinder cases on two GPUs at the low Mach number,

whereas 24 minutes must be spent at the cruise Mach number since the total mesh size is larger. A

speed-up of about 21~26 is achieved in the low Mach number cases running on two GPUs whereas

the speed-up is roughly 30 in the cruise Mach number cases.

5.6 Summary

In this section, the acoustic scattering of a ring of spinning monopoles and dipoles off a cylinder has

been investigated by using the CAA method for the first time. A simplified geometry was used to

verify the numerical methods, acoustic source models and investigate acoustic refraction effect of

the boundary layer in this chapter. A single cylinder is utilized as an ideal fuselage. The propeller

noise sources are approximated by a ring of monopoles and a ring of dipoles respectively to

investigate the thickness noise and the loading noise.

Chapter 5

118

When compared to the analytical solution in free space, it was found that the PPW of the mesh at

the acoustic source region plays a key role in the amplitude of the acoustic propagation. The PPW

of the mesh at the source region must meet the requirement of PPW of the numerical schemes to

mitigate dispersion error. The amplitude of the acoustic wave must be modulated to be calibrated

to the analytical solution. After the calibration, the numerical solution corresponds well with the

analytical solution.

Before CAA simulations, the contribution of each harmonic can be identified by the analytical

solution. Consequently, the highest order of the harmonic that should be resolved can be identified.

The mesh size in the numerical simulation can be determined basically. A validation was firstly

performed between the results obtained by LEE and those from CESM. The good agreement

between the results validated the source model, numerical methods in SotonLEE and PPW of the

mesh.

On the cylinder wall, both the thickness noise and loading noise behave like a Gaussian distribution

along the stream-wise direction. The propagation of thickness noise concentrates on the ring plane

whereas that of loading noise inclines upstream. The incline upstream of the propagation of loading

noise is attributed to the resultant lift and torque of the propeller. At far-field, the directivity

contains many peaks and valleys due to the reflection of the cylinder wall. The directivity on the

ring plane and on the ground behaves like a Gaussian distribution with respect to the observer

position with the peak occurring at the same side as the propeller.

At low Mach number case, the refraction effect of the boundary layer was found negligible whereas

the refraction effect is significant at Cruise Mach number computationally. The boundary layer

reduces the SPL on the cylinder and far-field directivity upstream of the ring plane. Extensions of

computation at M = 0.3 and 0.4 have been performed to determine at which Mach number the

refraction effect of boundary layer becomes important. The difference between results in the

absence of boundary layer and with a realistic boundary layer showed that the refraction effect of

the boundary layer starts to be important when Mach number is larger than 0.3.

On performance, 9 minutes are necessary for the cylinder cases on two GPUs at the low Mach

number, whereas 24 minutes must be spent at the cruise Mach number since the total mesh size is

larger. A speed-up of between 21 and 26 is achieved in the low Mach number cases running on two

GPUs whereas the speed-up is roughly 30 in the cruise Mach number cases.

Chapter 6

119

Chapter 6: Scattering of Propeller Noise off a Wing body

In chapter 5, the acoustic scattering of a ring of spinning monopoles and spinning dipoles off a

cylinder was investigated. The CAA methods used in the current solver has been validated and

verified. In addition, the refraction effect of the boundary layer was investigated computationally.

Recall that the geometries of the cases in Chapters 4 and 5 are relatively simple and the

computational scale is small. In the following chapter, the case is extended with a complex

geometry, an ATR-72-like wing body with a full scale. The research focus is not placed on the

analysis and explanation on physical phenomena since the engineering geometry is complex and

the analysis is difficult. The numerical methods and sound sources in the following chapter are kept

the same as those in Chapter 5. The current case with a complex geometry is mainly devoted to

demonstrate the application to a large-scale engineering case and evaluate the true performance

of the current solver in engineering problems. In addition, the weak refraction effect of the non-

uniform flow field at M = 0.205 around the wing body is demonstrated computationally. Lastly, the

speed-up is recorded to evaluate the true speed-up of the current solver in engineering problems.

The causes of the relatively low performance of the current solver in this case with complex

geometry in comparison to the cases in Chapters 4 and 5 is also analysed in detail.

6.1 Sound Source

In this case, both propellers rotate in the counter clock-wise direction as viewed by an observer

downstream. The sound sources are two rings of six spinning monopoles and dipoles distributed

evenly as shown in Figure 6.1, which are similar to those in the cylinder case in chapter 5. The radius

of the ring is 1.965 m and the distance between the centres of the two rings is 8.1 m [104-106].

Viewed by an observer downstream, both rings rotate in the counter-clockwise direction at 1200

RPM. The first harmonic of BPF is 120 Hz. The phases of all the monopoles and dipoles are set to 0

since only the steady noise source is considered [10, 49]. The non-dimensional amplitude is set to

0.01 to ensure a linear propagation. The ratio of the lift to drag of the blade section is assumed to

be 4 in the dipole case [10, 166].

Chapter 6

120

Figure 6.1 Sketch of the spinning sources.

6.2 Analytical Solution

As in the cylinder case in chapter 5, the analytical solution in free space is first computed to

determine which BPFs must be resolved. The PSDs of the first three harmonics of the BPF for a

single propeller in the free space are shown in Figure 6.2 below:

Figure 6.2 PSDs of a single ring of spinning monopoles along the line at x = 0, z = 5 in free space. The centre

of the ring is placed at (0, 0, 0).

Chapter 6

121

It can be observed that the difference of PSDs between the acoustic harmonics of the first BPF and

the second BPF is 5.0 dB/Hz, whereas the difference between the second BPF and the third BPF is

6.3 dB/Hz. Therefore, the contribution from harmonics which have a higher frequency than the

second BPF is ignored. In other words, the mesh in this setup resolves the acoustic waves with a

frequency up to the second BPF.

In this chapter, the main effort does not focus on the comparison between the solution from the

uniform mean flow-field and that from RANS mean flow-field. However, it focuses on the

demonstration of application of SotonLEE_GPU to the complex geometry, large-scale computation

and calculation of the speed-ups.

6.3 Geometry

The investigated configuration is a generic turbo-prop aircraft that has a similar geometry to the

ATR-72 500 wing body [104-106]. The aircraft is a simplification of a real aircraft at full scale. The

geometries of high-lift devices, engines, horizontal tail and vertical tail are not included. The

geometry is used to demonstrate the application of SotonLEE_GPU to real engineering cases. No

experimental results are available for comparison. The geometry is depicted below in Figure 6.3:

Figure 6.3 Dimensions of the wing-body.

As shown in Figure 6.3, the wing span is 27.2 m with a wing area of 61 m2. The propeller is 8.8 m

away from the fuselage nose. The fuselage is 27.0 m long with a maximum diameter of 2.2 m.

Chapter 6

122

6.4 Mean Flow

This study focuses on the initial climbing of flight. The aircraft climbs at a Mach number of 0.205, at

the sea level, with an angle of attack of 5o of the fuselage. The background mean flow field is

obtained by a RANS simulation. The estimated 99% turbulence boundary layer thickness at the aft

of the fuselage is 0.25 m, which is quite thin in comparison to the acoustic wavelengths of 2.83 m

of the first harmonic and 1.42 m of the second harmonic. The mean flow field is shown in Figure

6.4 below:

a) Pressure contours. b) Mach number in the x direction at wing section
at y = 12.0 m.

c) Mach number in the x direction near the ring
plane.

d) Mach number in the x direction near the aft of
the fuselage.

Figure 6.4 Mean flow field around the wing body.

6.5 Computation Setup

The physical domain is a box with the dimension of (40, 40, 26) m in the x, y and z directions. On

the solid wall, an inviscid wall boundary condition is used, while the stretched mesh is employed to

Chapter 6

123

attenuate the acoustic waves at the far-field. The dimension of the CAA domain is shown below in

Figure 6.5:

Figure 6.5 Dimensions of physical domain.

At far-field, four rings of observers are used to show the SPL directivities as shown in Figure 6.6.

Two rings are located on the ring plane with a radius of 10 m and 1000 m respectively with the

origin at (8.8, 0, 0.94) m, which is the middle of two propeller centres. Two other rings are placed

under the aircraft with a radius of 10 m and the origin at (8.8, 0, -9.06) m and with a radius of 1000

m and the origin at (8.8, 0, -999.06) m respectively. The SPL on the two rings, with radii of 10 m, is

computed directly by LEE during the simulation, while the SPL on the two rings with radii of 1000

m is obtained by using an FW-H solver [100, 161]. The box in grey is the FW-H integration surface,

which is used to collect the information of perturbations. The dimension of the box is (28, 28, 8) m.

The dimension of the FW-H integration surface is as small as possible to reduce the mesh amount

on the control surface and computational cost but sufficiently large to cover the whole geometry

and all the acoustic sources at the same time. In this research, the dimension of the FW-H control

surface cannot be reduced to the minimum extent by placing it on the solid wall because the

acoustic sources of propellers are in the flow field. Otherwise, the most important acoustic

contributions would come from the outside of the FW-H control surface, which would render a false

result.

Chapter 6

124

Figure 6.6 Sketch of the observer rings and FW-H control surface.

The computation is in a non-dimensional format. The standard air property at the sea-level is used.

The reference length L∞ is 1 m with the reference velocity 340.2 m/s. The reference density of 1.225

kg/m3 and reference temperature of 288.2 K are utilized.

6.6 CAA Mesh

For a given CAA solver, such as a commercial solver, the most important and time-consuming part

in an application with a complex geometry is the generation of the smooth, high-quality structured

mesh. As in chapter 5, the PPW of the CAA mesh is set to 7. In total, there are 1,704 mesh blocks

and 23 million mesh points in the physical domain. The largest mesh block contains 78 k mesh

points. 16 Tesla K20M GPUs, each with a memory volume capacity of about 4.5 GB, are necessary

for performing the computation. In this study, 16 GPUs are employed.

Since high-order schemes are used and the current solver is found not stable enough if a 3D O-mesh

is used, much attention and time is spent on the improvement of the quality of mesh. Otherwise,

spurious parasite waves close to the solid wall mentioned in Section 2.6.3 are easily excited. Some

important local details of the mesh are shown below:

Chapter 6

125

a) Mesh near the nose. b) Mesh near the aft.

c) Mesh at the leading edge at the wing tip. d) Mesh at the trailing edge.

Figure 6.7 Mesh details of important locations.

It can be observed that the mesh near the nose in Figure 6.7 a) and near the aft in Figure 6.7 b) is

smooth and the growth rate is 1.1. At the wing tip, a 2D O-mesh stretched straight to the far-field

boundary is utilized to improve the mesh at the leading edge as shown in Figure 6.7 c). The mesh

density is high at the trailing edge, which makes the overall amount of mesh points large. In the

mesh around a complex geometry, the mesh size is more dependent on the minimum mesh points

allowed by the numerical schemes and some important locations of the geometry. For example,

the thickness of the trailing edge at the wing tip is 0.02 m which is only 0.7% of the wavelength of

the first harmonic. However, due to the requirement of the explicit filters, there must be at least 7

points along the trailing edge. A smooth increase on the mesh size also must be ensured near the

trailing edge. Consequently, the mesh size is greatly increased due to the locations with small

geometric size but important geometric features.

Chapter 6

126

In addition, the most common way to improve the quality of the structured mesh is using the O-

mesh close to the solid wall. However, the application using a 3D O-mesh always diverges near the

mesh interface close to the solid wall in the current solver. Many attempts have been made to

improve the mesh quality and it is found a 2D O-mesh at the wingtip straight to the far-field

boundary is allowed as shown in Figure 6.7 c). The cause is attributed to the smoothness and quality

of the mesh near the block interfaces close to the solid wall [168], which makes the numerical flux

through the interface non-conservative. Since smoothness is not good enough and the grid metrics

are discontinuous near the interface of the O-mesh, the parasite waves are excited. The parasite

waves are very short (grid to grid oscillations), and cannot be dampened and removed by spatial

filtering effectively. This also poses many challenges to mesh generation and increases the

difficulty.

6.7 Results

The same procedure of analysis used in the cylinder cases in chapter 5 is employed here. First, the

result of spinning monopoles is shown. Then, the investigation is performed on dipole results.

6.7.1 Results of Thickness Noise

The profile of instantaneous sound pressure field on the surface of the wing body is shown in Figure

6.8. First, it can be observed in Figure 6.8 that the pressure contours on the wing body are

asymmetric with respect to the symmetry plane of the wing body when both propellers rotate in

the counter clock-wise direction viewed by an observer downstream. The acoustic waves

concentrate more on the wing at the LHS than at the RHS. This is also demonstrated by the SPL

contours in Figure 6.9 a) and b). In addition, the acoustic waves concentrate on the ring plane as

shown in Figure 6.9 a) and b), which is the same as that in the cylinder case.

Chapter 6

127

Figure 6.8 Sound pressure contours on the solid wall.

a) SPL on the upper surface in RANS flow. b) SPL on the lower surface in RANS flow.

Figure 6.9 SPL contours on the solid wall.

The contours of instantaneous acoustic pressure field around the wing body in the RANS mean flow

are shown in Figure 6.10 below. The acoustic pressure on the ring plane is shown in Figure 6.10 a).

The sound pressure is propagating spirally which denotes that the rotation of both rings is in the

counter clock-wise direction. In Figure 6.10 b), the acoustic pressure on the symmetry plane is

shown and the propagation of acoustic waves near the ring plane is illustrated. The propagation of

acoustic wave is inclined slightly upstream due to the convection effect of the mean flow field. The

acoustic waves on the planes parallel to the ground are shown in Figure 6.10 c) and d). The plane

goes through the ring centres at z = 0.94 in Figure 6.10 c), while the plane is 10 lower than the ring

centre in Figure 6.10 d).

a) Sound pressure on the ring plane (x = 8.8). b) Sound pressure on the symmetry plane (y = 0).

Chapter 6

128

c) Sound pressure at z = 0.94. d) Sound pressure at z = -9.06.

Figure 6.10 Instantaneous pressure contours in RANS mean flow.

The SPL contours captured on the same planes as those shown in Figure 6.10 are shown in Figure

6.11. Multiple peaks and valleys of the SPL distribute on the ring plane as shown in Figure 6.11 a).

The directivity is strong due to the existence of the wing body. In addition, difference of SPL occurs

between the LHS and RHS with respect to the symmetry plane. The SPL contours at the symmetry

plane are shown in Figure 6.11 b). The propagation of acoustic waves concentrates near the ring

plane, which are also demonstrated in Figure 6.11 c) and d).

a) SPL on the ring plane (x = 8.8). b) SPL on the symmetry plane (y = 0).

Chapter 6

129

c) SPL at z = 0.94. d) SPL at z = -9.06.

Figure 6.11 SPL contours in RANS mean flow.

6.7.1.1 Refraction Effect of RANS Mean Flow

6.7.1.1.1 SPL on Wing Body

As mentioned in chapter 5, the sound propagations in the uniform flow and in RANS flow are similar

at M = 0.205. To demonstrate the weak refraction effect of the mean flow, four curves on the

fuselage are used to collect the SPL, which are shown as the black curves in Figure 6.9. The curves

are at the top, the bottom, the LHS and the RHS of the fuselage, respectively. A quantitative

comparison of the SPL is made on the fuselage shown in Figure 6.12 below:

a) On the top line. b) On the bottom line.

Chapter 6

130

c) On the LHS line. d) On the RHS line.

Figure 6.12 Comparison of SPL on the fuselage in uniform flow and in RANS flow.

The difference between the SPL in the uniform and that in RANS flow on the fuselage wall is small,

especially near the peak region as shown in Figure 6.12 a), b), c) and d). The maximum difference

between the SPL in the uniform and that in then RANS flow is 1.0 dB on the top curve, 0.5 dB on

the bottom curve, 1.0 dB on the LHS and 0.3 dB on the RHS curves respectively. In conclusion, the

refraction effect of non-uniform flow on the fuselage is weak.

6.7.1.1.2 Directivities

At the near-field, the observer rings with radii of 10 m, shown in Figure 6.6, are used to compute

the SPL around the wing body. The SPL on the ring with the origin at (8.8, 0, 0.94) is shown in Figure

6.13 a). The definitions of the angles used in the directivity are the same as those in the cylinder

case as shown in Figure 5.7. The SPL no longer behaves like a Gaussian distribution with respect to

θ when both propellers are rotating, which occurs when a single propeller rotates. Instead, many

peaks and valleys are distributed on the ring plane. In addition, the SPL from LEE coincides well with

that in RANS flow. The difference is small and the maximum difference is 0.4 dB denoted by the

dotted line in Figure 6.13 a).

Chapter 6

131

a) SPL on the ring plane with the origin at (8.8, 0,
0.94) and a radius of 10.

b) SPL under the fuselage with the origin at (8.8, 0, -
9.06) and a radius of 10.

Figure 6.13 Near-field SPL directivities.

When observed from the ring with the origin at (8.8, 0, -9.06), the behaviour of SPL like a Gaussian

distribution with respect to φ occurs again but with two relatively flat peaks at φ = 90o and at φ =

270o respectively. The peak at φ = 90o corresponds to the RHS of the symmetry plane while the

peak at φ = 270o denotes the LHS. Two valleys occur at φ = 0o and φ = 180o which denote the

upstream and downstream direction respectively. Still, concentration on the ring plane is the basic

feature of the directivity. The maximum difference between the SPL in uniform flow and that in

RANS flow is 1.4 dB. The difference in other regions is small and can be ignored.

6.7.1.2 Contributions of Harmonics on Directivities

At the far-field, a half ring under the fuselage with the origin at (8.8, 0, 0.94) and a radius of 1000

as shown in Figure 6.6 is utilized to show the far-field directivity on the ring plane. In addition,

another ring with the origin at (8.8, 0, -999.06) under the fuselage is also used to show the far-field

directivity. The far-field directivities of the overall SPL and PSDs of the first and second harmonics

in the uniform flow are shown in Figure 6.14 below:

Chapter 6

132

a) SPL on the half ring. b) PSDs on the half ring.

Figure 6.14 Far-field SPL and PSDs in RANS mean flow on the half ring with the origin at (8.8, 0, 0.94) and a

radius of 1000.

No behaviour of the Gaussian distribution on the ring plane occurs at the far-field, which is similar

to that at the near-field as shown in Figure 6.14 a). Multiple peaks and valleys distribute over the

half ring. The peak of the overall SPL occurs at θ = 270.1o with the peak value of 92.8 dB, whereas

the value of valley is 80.2 dB at θ = 207.9o. A gap of 12.6 dB exists between the peak and the valley,

which shows a strong directivity.

A difference of 1.8 dB occurs between the peaks of the overall SPL and the first harmonic whereas

the difference between the overall SPL and the second harmonic is 7.4 dB. The peaks and valleys of

the overall SPL occur together with those of the first harmonic at the same positions. It denotes

that the shape of the overall SPL is dictated by the shape of the first harmonic. However, big

difference exists between the valleys of the overall SPL and the first harmonic. This mainly results

from the contribution of the second harmonic as shown in Figure 6.14 a). It can be observed that

there is always a peak of the second harmonic when a valley of the overall SPL or the first harmonic

occurs. The valleys of the first harmonic are compensated for by the peaks of the second harmonic.

The second harmonic dominates the value of the valleys of the overall SPL. In addition, the amount

of the peaks and valleys of the second harmonic is twice of those of the first harmonic and overall

SPL, which is also demonstrated by the PSD shown in Figure 6.14 b).

Qualitative comparisons of the far-field directivities of the overall SPL and the PSDs of the first and

second harmonics on the ring with the origin at (8.8, 0, -999.06) and a radius of 1000 under the

fuselage in the uniform flow are shown in Figure 6.15 below:

Chapter 6

133

a) SPL on the ring. b) PSDs on the ring.

Figure 6.15 Far-field SPL and PSDs in RANS mean flow on the ring with the origin at (8.8, 0, -999.06) and a

radius of 1000 under the wing body.

The behaviour of Gaussian distribution occurs again on the ring under the fuselage as shown in

Figure 6.15 a), which is similar to that at the near-field shown in Figure 6.13 b). A gap of roughly 30

dB exists between the peak and valley of the overall SPL. The peaks of the overall SPL and the SPL

of the first harmonic coincide well, which denotes that the first harmonic dominate the directivities.

The main differences occur at the valley regions where the second harmonic plays an important

role in the overall SPL. This behaviour is also demonstrated by the PSDs shown in Figure 6.15 b).

6.7.2 Results of Loading Noise

The analysis similar to that on thickness noise is made on the result of loading noise. The profile of

instantaneous sound pressure field on the wing body is shown in Figure 6.17. Three features which

are the same as that in the thickness noise case are found. First, the pressure contours on the wall,

especially on the wing, are asymmetric with respect to the symmetry plane of the wing body when

both propellers rotate in the counter clock-wise direction viewed by an observer downstream as

shown in Figure 6.16. The propagation of acoustic waves concentrates more at the LHS than at the

RHS. This is also demonstrated by the SPL contours in Figure 6.17 a) and b). In addition, the acoustic

waves concentrate near the ring plane as shown in Figure 6.17 a) and b).

Chapter 6

134

Figure 6.16 Sound pressure contours on the wing body.

a) SPL on the upper surface in RANS flow. b) SPL on the lower surface in RANS flow.

Figure 6.17 SPL contours on the wing body.

The contours of instantaneous acoustic pressure field around the wing body in the RANS mean flow

are shown in Figure 6.18. The acoustic pressure on the ring plane is shown in Figure 6.18 a). The

spiral propagation of sound pressure illustrates the rotation of both rings in the counter clock-wise

direction. In Figure 6.18 b), the acoustic pressure on the symmetry plane is shown and the

concentration of acoustic waves near the ring plane can be observed. The propagation of acoustic

wave is inclined upstream as that in the cylinder case. Furthermore, the incline of the acoustic wave

is also illustrated in Figure 6.18 c) and d). The acoustic waves on the planes parallel to the ground

Chapter 6

135

are shown in Figure 6.18 c) and d). The plane goes through the ring centres at z = 0.94 in Figure 6.18

c), whereas the cut plane below the wing body is 10 lower than the ring centre in Figure 6.18 d).

a) Sound pressure on the ring plane (x = 8.8). b) Sound pressure on the symmetry plane (y = 0).

c) Sound pressure at z = 0.94. d) Sound pressure at z = -9.06.

Figure 6.18 Instantaneous acoustic pressure contours around the wing body in RANS mean flow.

The SPL contours captured on the same planes as those shown in Figure 6.18 are shown in Figure

6.19. Multiple peaks and valleys of the SPL distribute on the ring plane shown in Figure 6.19 a). The

SPL contours at the symmetry plane are shown in Figure 6.19 b). It can be observed that the

propagation concentrates near the ring plane. Furthermore, the incline of SPL upstream is much

stronger in comparison to that in the case of thickness noise. The concentration near the ring plane

and the incline upstream are also demonstrated in Figure 6.19 c) and d).

Chapter 6

136

a) SPL on the ring plane (x = 8.8). b) SPL on the symmetry plane (y = 0).

c) SPL at z = 0.94. d) SPL at z = -9.06.

Figure 6.19 SPL contours around the wing body in RANS mean flow.

6.7.2.1 Refraction Effect of RANS Mean Flow

6.7.2.1.1 SPL on Wing Body

It has been known in chapter 5 that the sound propagations in the uniform flow and that in RANS

flow are similar at M = 0.205. To demonstrate the weak refraction effect of the mean flow, the

same four curves on the fuselage are used to collect the SPL in the monopole case, which are shown

as the black lines in Figure 6.17. The lines are at the top, the bottom, the LHS and the RHS of the

fuselage, respectively. A quantitative comparison between the SPL in the uniform flow and in the

RANS flow is made on the SPL on the fuselage shown in Figure 6.20 below:

Chapter 6

137

a) On the top line. b) On the bottom line.

c) On the LHS line. d) On the RHS line.

Figure 6.20 Comparison of SPL on the fuselage in uniform flow and in RANS flow.

It is illustrated in Figure 6.20 a), b) c) and d) that the difference between the SPL in the uniform and

that in RANS flow on the fuselage wall is small, especially near the peak region, which is similar to

that in the spinning monopole case. The maximum difference between the SPL in the uniform and

that in then RANS flow is 0.3 dB for the LHS and the RHS respectively. In conclusion, the refraction

effect of non-uniform flow on the fuselage is weak and can be ignored.

6.7.2.1.2 Directivities

At near-field, the observer rings with radii of 10 m shown in Figure 6.6 are used to compute the SPL

around the wing body. The SPL on the ring with the origin at (8.8, 0, 0.94) is shown in Figure 6.21

a). As in the monopole case, many comparable peaks and valleys are distributed on the ring plane.

In addition, the SPL from LEE coincides well with that in RANS flow. The difference is small and the

maximum difference is 0.4 dB denoted by the dash line in Figure 6.21 a). These features are similar

to those of the monopole case.

Chapter 6

138

a) SPL on the ring plane with the origin at (8.8, 0,
0.94) and a radius of 10.

b) SPL under the fuselage with the origin at (8.8, 0, -
9.06) and a radius of 10.

Figure 6.21 SPL directivities at the near-field.

When observed from the ring parallel to ground with the origin at (8.8, 0, -9.06), the behaviour like

the Gaussian distribution with respect to � of SPL occurs again but with two relatively flat peaks

inclined upstream at φ = 124.3o and at φ = 247.9o respectively, which is different from that in the

spinning monopole case. The peak at φ = 124.3o corresponds to the RHS of the symmetry plane,

whereas the peak at φ = 247.9o denotes the LHS. In the cases of thickness noise, the concentration

on the ring plane is the basic feature of the directivity. In contrast, the concentration inclined

upstream of the ring plane is the key behaviour of the directivity. This is due to the interference of

the propagation of forces Fx and Fθ. The maximum difference between the SPL in uniform flow and

that in RANS flow is small, about 1.2 dB denoted by the dotted line shown in Figure 6.21 b). The

difference in other region is small and can be ignored.

6.7.2.2 Contributions of Harmonics on Directivities

At far-field, the same rings used in the spinning monopole cases are utilized again. A half ring under

the fuselage with the origin at (8.8, 0, 0.94) and a radius of 1000 is utilized to show the far-field

directivity on the ring plane. In addition, another ring with the origin at (8.8, 0, -999.06) parallel to

ground under the fuselage is also used to show the far-field directivity. The far-field directivities of

overall SPL and PSDs of the first and second harmonics in the uniform flow are shown in Figure 6.22

below:

Chapter 6

139

a) SPL on the ring with the origin at (8.8, 0, 0.94) and
a radius of 1000.

b) SPL under the fuselage with the origin at (8.8, 0,
0.94) and a radius of 1000.

Figure 6.22 Far-field SPL and PSDs in RANS mean flow on the half ring with the origin at (8.8, 0, 0.94) and a

radius of 1000 on the ring plane.

The directivity on the ring plane at the far-field shown in Figure 6.22 a) is similar to that at the near-

field. Multiple peaks and valleys are distributed on the half ring. The peak of overall SPL occurs at θ

= 270.0o with the peak value of 80.7 dB, whereas the value of the valley is 69.7 dB at θ = 226.0o. A

gap of 11.0 dB exists between the valley and the peak, which shows a strong directivity.

At θ = 270.0o the peak is 75.2 dB for the first harmonic and 78.4 dB for the second harmonic. A

difference of 5.5 dB occurs between the peaks of the overall SPL and the first harmonic, whereas

the difference between the overall SPL and the second harmonic is 2.3 dB. It can be observed that

the peaks and valleys of the overall SPL occur at the same position as those of the second harmonic.

It denotes that the shape of the overall SPL is dictated by the shape of the second harmonic, which

is quite different from that in the spinning monopole case. However, big difference exists between

the valleys of the overall SPL and the second harmonic. This mainly results from the contribution of

the first harmonic as shown in Figure 6.22 a). It can be observed that the first harmonic dominates

the overall SPL when a valley of the overall SPL or the second harmonic occurs. The valleys of the

second harmonic are compensated for by the first harmonic. In addition, the amount of the peaks

and valleys of the first harmonic is half of that of second harmonic and overall SPL, which is also

demonstrated by the PSD shown in Figure 6.22 b).

Qualitative comparisons of the far-field directivities of the overall SPL and PSDs of the first and

second harmonics on the ring parallel to ground with the origin at (8.8, 0, -999.06) and a radius of

1000 under the fuselage in the RANS mean flow are shown in Figure 6.23 below:

Chapter 6

140

a) SPL on the ring. b) PSD on the ring.

Figure 6.23 Far-field SPL and PSDs in RANS mean flow on the ring with the origin at (8.8, 0, -999.06) and a

radius of 1000 below the wing body.

The directivity on the ring under the fuselage is similar to that at the near-field shown in Figure 6.21

b). A gap of roughly 33 dB exists between the peak and valley of the overall SPL. In addition, the

peaks of the overall SPL and the SPL of the first harmonic coincide well upstream, whereas

difference occurs downstream. In comparison to the directivity on the ring plane, the first harmonic

plays a more important role at the far-field under the fuselage. The amount of the peaks and valleys

of the overall SPL is determined by that of the first harmonic. The main difference between the

overall SPL and the first harmonic occurs at the valley regions where the second harmonic

contributes considerably to the overall SPL. This behaviour is also demonstrated by the PSDs shown

in Figure 6.23 b). A gap of 10 dB/Hz – 20 dB/Hz is observed between the PSDs of the first harmonic

and the second harmonic at the peaks of the first harmonic upstream.

6.8 Performance

The computational performance is an important aspect in this research in addition to the physical

phenomena. In the current case, the minimum allowable amount of GPUs is 16 due to the

requirement on the memory volume if an output to the FW-H solver is performed. Consequently,

the performance is compared on 16 CPU cores and 16 GPU cards for both the monopole case and

the dipole case. The performance is summarized below:

Table 6-1. Wall-clock time comparisons in seconds.

Case name Mesh size
Wall-clock time (in seconds)

16 GPUs 16 CPU cores Speed-up

Thickness noise 22.6 M 40420.7 478260 11.9
Loading noise 22.6 M 58530.7 703478 12.2

Chapter 6

141

As shown in Table 6-1, 11 hours are necessary for the prediction of the thickness noise on 16 GPUs,

whereas 16 hours have to be spent on the case of loading noise. In comparison, 133 hours and 195

hours are necessary on 16 CPU cores. However, the speed-up on GPUs is not high, about 12 for

both cases. Four causes are analysed here:

1) Though the overall mesh size in the current case is large, the maximum size of the mesh

block is small, which reduces the overall performance. Recall that, as mentioned in section

4.6, the performance on the GPU increases with the mesh size and the performance on the

maximum mesh block dominates the overall performance. On the other hand, a total of

1704 mesh blocks exist, whereas the largest mesh block contains only 78 K mesh points in

this application as mentioned in section 6.6. The performance of these small mesh blocks

on GPUs is relatively low in comparison to the 3D cases in section 4.6. The overall mesh is

distributed across many small mesh blocks since strong controls have to be made on the

mesh quality via many small mesh blocks, which decreases the overall performance.

2) The overall performance is reduced by the data transfers among CPU cores though good

loading balance is achieved. In this case, all the mesh blocks are distributed evenly among

GPUs, each of which is distributed roughly 107 mesh blocks and 1.4 million grid points.

However, the connection amount is high and a total 4261 connections exist between all the

mesh blocks. Although these connections are not all the connections between the mesh

blocks distributed on different GPUs, they contribute considerably to the overhead of data

transfer and index transformation, and result in the final performance penalty.

3) The performance gap between the Tesla K20m GPU and the Intel Xeon E5–2670 is smaller

as tabulated in Table 1-2. In Table 1-2, the gap of Flops in double precision between the

later GPU and CPU drops from 13.4 to 7 which is nearly the half of the gap between the

older GPU and CPU. Consequently, the speed-up also decreases.

4) The cache size plays a more important role in the speedup of the codes on CPUs over GPUs.

Recall that the performance of the codes with small mesh blocks is high in section 4.6.6.

Data access to the cache, fast access memory on a CPU, is implicitly managed and optimized

by compilers. Therefore, the effect of the cache size on the performance of the codes is

high. The performance on the small mesh blocks is high on CPUs. On a GPU, the shared

memory, fast access memory on a GPU, is explicitly managed by the codes. The

performance on the small mesh blocks is relatively low on GPUs. As a result, the speedup

of the codes on GPUs over CPUs decreases.

Chapter 6

142

In conclusion, though the speed-up decreases, the GPU still offers a feasible way to fast predict the

large-scale engineering cases. The speed-up can be even higher if the high-order code, SotonLEE, is

more stable on a structured mesh since the size in the mesh blocks can be larger.

6.9 Summary

In this section, the case of propeller noise scattering off an aircraft has been predicted by CAA

methods and the speedup has been evaluated. The numerical methods and sound sources in the

following chapter were kept the same as those in Chapter 5. The research focus was not placed on

the analysis and explanation on physical phenomena but was mainly devoted to demonstrate the

application to a large-scale engineering case and evaluate the true performance of the current

solver in engineering problems.

For the thickness noise radiated by the ring of spinning monopoles, the key findings were:

 The thickness noise is asymmetric with respect to the symmetry plane both around and on

the wing body.

 The thickness noise concentrates on the ring plane of the wing body.

 The refraction effect of the RANS flow field around the wing body at M = 0.205 is weak and

illustrated again in the current case.

 At far-field, two peaks of the directivity occur corresponding to the propeller positions.

 At far-field, the first harmonic dominates the basic directivity of the overall SPL, whereas

the second harmonic offers important contribution to the valleys of the overall SPL. The

peaks of the overall SPL are dictated by those of the first harmonic. In addition, the amount

of the peaks and valleys of the overall SPL is determined by the amount of those of the first

harmonic.

For loading noise radiated by the ring of spinning dipoles, the key findings are:

 The loading noise is also asymmetric with respect to the symmetry plane both around and

on the wing body.

 The loading noise concentrates upstream the ring plane of the wing body.

 A substantial difference occurs on the ring plane between far-field directivity in the dipole

case and that in the monopole case. It is the second harmonic which dominates the basic

directivity of the overall SPL, whereas the first harmonic plays an important role in the

valleys of the overall SPL. The peaks of the overall SPL are dictated by those of the second

harmonic. In addition, the number of the peaks and valleys of the overall SPL is determined

by the number of those of the second harmonic.

Chapter 6

143

 At the far-field under the wing body, the first harmonic dominates the basic directivity of

the overall SPL again, whereas the second harmonic offers important contribution at the

valleys of the overall SPL. The peaks of the overall SPL are dictated by those of the first

harmonic. In addition, the number of the peaks and valleys of the overall SPL is determined

by that of the first harmonic.

A speed-up of about 12 was achieved based on the implementations on 16 GPUs and those on 16

CPU cores in the current cases. 11 hours were necessary for the thickness noise computation on 16

GPUs, while 16 hours must be spent on the simulation of the dipole case, which offers an acceptable

wall-clock time for computation of propeller noise scattering off a wing-body at a full scale. The

relative low speed-up in the current case in comparison to those in Chapter 4 has been summarized.

The causes include:

 The relatively small scale of the maximum mesh block size in the current case decreases

the overall performance.

 The overall performance is reduced by the data transfers among small mesh blocks on

different CPU cores.

 The hardware is different, which results in a smaller performance gap between the CPUs

and GPUs. Moreover, the performance of the applications implemented on CPUs benefits

more from the larger cache size on the current CPU chip. Consequently, the speed-up

decreases.

Chapter 6

144

Chapter 7: Conclusions and Future Work

7.1 Conclusions

Noise generated by aircrafts has become an increasingly important issue with the development of

civil aircraft design requirements. With the increasing demand on the physics of aerodynamic sound

as well as the development of computational power of computers and numerical techniques, CAA

has been increasingly employed to study airframe/engine noise. However, the high computational

cost and the long run-time prevent the widespread CAA application to real engineering problems.

A hierarchy of methods has been developed and utilized to accelerate the implementation of CAA

simulations, including the CAA hybrid methods on the physical aspect, the CAA numerical schemes

on the numerical aspect and the HPC method on the implementation.

The aim of this research was to accelerate an existing high-order, CAA scattering solver, based on

finite difference method, on multiple GPUs and investigate the refraction effect of the boundary

layer on propeller noise computationally, and finally apply it to a large-scale engineering case.

Consequently, this research was divided into three phases: the development of the CAA programme

the investigation of the refraction effect of boundary layer computationally, and the application on

engineering problems. First, this research employed the GPU to reduce the wall-clock time of an

available CAA scattering solver which features the CAA hybrid method and the numerical schemes

with high-order accuracy, low-dissipation and low-dispersion. Second, the propeller noise

scattering off a cylinder with boundary layer was investigated computationally using the new CAA

scattering solver. Finally, the propeller noise scattering off a full-scaled wing body was predicted

and the computational performance was analysed.

7.1.1 Numerical Methods

At the development phase, the research focused on the development of efficient algorithms and

strategies of implementation of the existing high-order CAA solver, SotonLEE, on multiple GPUs.

First, it was found that the computation of prefactored compact scheme is the most computing-

intensive part and dominates the overall performance of the current CAA solver. The other

subroutines do not contribute considerably to the overall performance. Consequently, the key to

the efficient solution of the current CAA solver on a GPU is to find an efficient solution of the

optimized prefactored compact schemes. Second, the optimized prefactored compact schemes

give rise to bidiagonal matrices. As a result, the key to the efficient solution of optimized

prefactored compact schemes on a GPU is to find an efficient solution of bidiagonal matrices. Three

Chapter 6

145

methods were employed for the first time to solve the bidiagonal matrix on the GPU, namely

Natural method, PCR method and MatMul method. The PCR method is the most efficient in 2D

computations and in large-scale 3D computations. The MatMul method is efficient in small mesh

block size in 3D computations whereas the Natural method achieves poor performance. Third, in

the development of algorithms, it was found that the memory access pattern plays a key role in the

performance of an application implemented on the GPU. The memory access pattern contains

coalesced memory access and redundant memory access. The coalesced memory access results in

high performance whereas the redundant memory access causes performance penalty. Fourth, the

anisotropic memory access pattern was investigated for the first time. The poor performance of the

Natural method results from the redundant memory access in the x direction whereas the PCR and

MatMul methods achieve good performance with the aid of coalesced memory access pattern in

the x direction. However, the redundant memory access in the y and z directions still exists for the

PCR method. Finally, a hybrid method has been proposed in terms of anisotropic memory access

pattern. It combines the best performance of different algorithms and achieves the highest

performance in 2D and 3D computations. Accordingly, the solving strategy has been also

formulated dependent on the mesh sizes.

In terms of different memory access pattern, subroutines in SotonLEE were categorized into five

types: implicit stencil type, explicit stencil type, point-wise type, unstructured gather type and

reduction type. Accordingly, different types of subroutines have been applied with different parallel

strategies. The “tiling method” was applied to the explicit stencil type whereas the unstructured

gather type was paid much attention on the index transformation. The reduction type was

investigated by using Harris Kernel 3. In addition, the cost of data transfer between multiple GPUs

has been mitigated by using the GPUDirect. The new solver, SotonLEE_GPU, achieves a series of

speed-ups over multiple academic and engineering cases. For 2D computations, the maximum

speed-up achieves 78 for the 2D cylinder case whereas the peak speed-up achieves 54 for the 3D

engine bifurcation case.

7.1.2 Introduction of Propeller Noise Source into LEE

At the second phase, the study investigated the scattering of the noise of a single propeller off a

cylinder by using the CAA method for the first time. In LEE, the thickness noise of a propeller is

imitated by a ring of spinning monopoles, introduced into LEE by the term s1 in the continuity

equation or s5 in the pressure equation. The loading noise is modelled by a ring of spinning dipoles,

introduced into LEE by the terms s2, s3 and s4 in the momentum equations. The Dirac Delta function

in the monopoles and dipoles is smoothed by the 3D Gaussian distribution in which the parameter

σ plays a key role in the numerical implementation. The numerical solution of a ring of spinning

Chapter 6

146

monopoles in the free space was calibrated to analytical solution of Hanson’s method in the

frequency domain and Farassat’s Formulation 1A in the time domain. It was found that the PPW of

the mesh at the acoustic source region plays a key role in the amplitude of the acoustic propagation.

The PPW of the mesh at the source region must meet the requirement of PPW of the numerical

schemes to mitigate dispersion error. The amplitude of the acoustic wave must be modulated to

be calibrated to the analytical solution. After the calibration, the numerical solution corresponds

well with the analytical solution. Before CAA simulations, the contribution of each harmonic can be

identified by the analytical solution. Consequently, the highest order of the harmonic that should

be resolved can be identified. The mesh size in the numerical simulation can be determined

basically.

7.1.3 Propeller Noise Scattering off a Cylinder with Boundary Layer

In the LEE implementations, the mesh only resolved the first harmonic since the contribution of the

second harmonic was much smaller. A validation was firstly performed between the results

obtained by LEE and those from CESM. The good agreement between the results validated the

source model, numerical methods in SotonLEE and PPW of the mesh. Then, the LEE implementation

has been employed to investigate the scattering of propeller noise off a cylinder and the refraction

effect of the boundary layer.

On the cylinder wall, both the thickness noise and loading noise behave like a Gaussian distribution

along the stream-wise direction. The SPL drops sharply when the observer is some distance away

from the ring plane. The propagation of thickness noise concentrates on the ring plane whereas

that of loading noise inclines upstream. At far-field, the directivity contains many peaks and valleys

due to the reflection of the cylinder wall. The SPL directivity on the ring plane and on the ground

behaves like a Gaussian distribution with respect to the observer position with the peak occurring

at the same side as the propeller. At low Mach number case, the refraction effect of the boundary

layer was found negligible whereas the refraction effect is significant at Cruise Mach number

computationally. The boundary layer reduces the SPL on the cylinder and far-field directivity

upstream of the ring plane. Extensions of computation at M = 0.3 and 0.4 have been performed to

determine at which Mach number the refraction effect of boundary layer becomes important. The

difference between results in the absence of boundary layer and with a realistic boundary layer

showed that the refraction effect of the boundary layer starts to be important when Mach number

is larger than 0.3.

On performance, 9 minutes are necessary for the cylinder cases on two GPUs at the low Mach

number, whereas 24 minutes must be spent at the cruise Mach number since the total mesh size is

Chapter 6

147

larger. A speed-up of between 21 and 26 is achieved in the low Mach number cases running on two

GPUs whereas the speed-up is roughly 30 in the cruise Mach number cases.

7.1.4 Propeller Noise Scattering off a Wing-Body at a Full Scale

At the application phase, the study predicted the scattering of the double propeller noise off a wing

body with a real size. This case is an extension of the cylinder case on the complexity of the CAA

mesh and the computational cost. The performance on GPUs and on CPU cores has been recorded

and compared.

When both propellers rotate in the counter clock-wise direction viewed by an observer

downstream, the acoustic field on the wing body wall and around the wing body is asymmetric with

respect to the symmetry plane of the wing body. The propagation of thickness noise concentrates

on the ring plane whereas that of loading noise inclines upstream. At far-field, two peaks of the

directivity occur corresponding to the propeller positions. On the ring plane, the shape of the

overall SPL of thickness noise is dominated by the first harmonic, whereas the second harmonic

contributes significantly at the valleys of the overall SPL. The second harmonic dictates the basic

shape of the overall SPL of loading noise whereas the first harmonic contributes considerably to the

valleys of the overall SPL. On the ground at the far-field, the first harmonic dominates the overall

SPL again, which is similar to that in the thickness noise. The second harmonic contributes

considerably to the valleys of the overall SPL. In addition, the refraction effect of the non-uniform

flow around the wing body is demonstrated weak and can be ignored.

On performance, 11 hours are necessary for the thickness noise computation on 16 GPUs, while 16

hours have to be spent on the simulation of the dipole case, which offered an acceptable wall-clock

time for computation of propeller noise scattering off a wing-body at a full scale. A speed-up of

about 12 is achieved in the current cases. The causes on the performance have been analysed:

including the overall mesh size, the largest mesh block size, the cache size on the CPU and difference

between the hardware used in IRIDIS 3 and IRIDIS 4.

7.2 Future Work

In this research, some deficiencies were found in the current CAA solver. Some possible topics are

suggested here to make the solver more robust in future work:

 Improvement of the far-field boundary conditions. It was found that the far-field condition

was the main bottleneck when the scattering of dipole noise was simulated in LEE. More

Chapter 6

148

sophisticated far-field conditions should be incorporated into the current solver to reduce

the dimension of the physical domain and to mitigate the reflection.

 Robust support of 3D O-mesh. It is found that the 3D O-mesh is not well sustained in the

current solver when it is close to the solid wall. The simulations using the 3D O-mesh around

the solid wall blows up at the block interfaces in the current solver since the smoothness

the mesh is not good enough. This causes the numerical flux through the interface non-

conservative. Therefore, it makes the mesh generation difficult and time-consuming, and

increases the total mesh amount. The new interface conditions [168] can be probably

utilized to improve the support of the 3D O-mesh in future work.

Regarding the scattering of the propeller noise, more investigations are suggested below for future

work:

 Investigation of distributed source: In this research, only point sources were investigated.

The distributed sources must be investigated if further application to the engineering

problem is to be performed.

 Investigation of higher harmonics: In this study, only the first and second harmonics were

investigated. The higher harmonics were proved to be unimportant. However, the higher

harmonics might contribute, to some extent, at the valleys of the overall SPL. In addition,

the refraction effect of the non-uniform flow is stronger when the acoustic wavelength is

shorter. The refraction effect of the boundary layer on higher harmonics should be

investigated.

 Reduced investigated geometry downstream from the ring plane: In this study it was found

that the propagation of the thickness and the loading noise mainly concentrates near the

ring plane and upstream. The SPL some distance away from the ring plane downstream is

much smaller in comparison to that on the ring plane. This implies that the geometry some

distance downstream from the ring plane might be removed to reduce the total number of

mesh points and the computational cost in future work.

Glossary

149

Glossary of Terms

Access Latency

The time between a request for an access to the RAM being issued, and the data becoming available

Anisotropic memory access pattern

Different memory access strides in the x, y and z direction. The memory access stride refers to the

interval between two elements in an array accessed by two adjacent loops.

Array padding

Allocating dummy additional elements at the end of an array to match the size of a cache and to

improve the cache use

Data race

Multiple write operations or write and read operations occurring simultaneously on the same RAM

Load balancing

Workloads are divided into many small portions which are distributed across working tasks. Load

balancing aims to distribute the workloads as evenly as possible.

Thread

A process is an instance of a program implemented on a computer. It may contain multiple

concurrent threads. A thread is a component of a process. Multiple threads share the instructions

and some variables of a process.

Bibliography

151

Bibliography

References

1. N. E. Antoine, and I. M. Kroo. "Aircraft optimization for minimal environmental impact," Journal
of aircraft, vol, 41, No. 4, pp. 790-797, 2004.

2. P. Argüelles, M. Bischoff, P. Busquin, B. Droste, S. R. Evans, W. Kröll, J. Lagardere, A. Lina, J.
Lumsden, and D. Ranque. "European Aeronautics: A vision for 2020," European Commission,
2001.

3. "Flightpath 2050 Europe’s Vision for Aviation," Report of the High Level Group on Aviation
Research, European Commission, 2011.

4. A. Filippone. "Aircraft noise prediction," Progress in Aerospace Sciences, vol, 68, pp. 27-63, 2014.

5. X. Zhang. "Aircraft noise and its nearfield propagation computations," Acta Mechanica Sinica,
vol, 28, No. 4, pp. 960-977, 2012.

6. X.-d. Li, M. Jiang, J.-h. Gao, D.-k. Lin, L. Liu, and X.-y. Li. "Recent advances of computational
aeroacoustics," Applied Mathematics and Mechanics, vol, 36, No. 1, pp. 131-140, 2015.

7. S. W. Rienstra, and A. Hirschberg. An introduction to acoustics. Eindhoven University of
Technology, 2003.

8. J. Yin, A. Stuermer, and M. Aversano. "Aerodynamic and Aeroacoustic Analysis of Installed
Pusher-Propeller Aircraft Configurations," Journal of Aircraft, vol, 49, No. 5, pp. 1423-1433,
2012.

9. J. Yin, and A. Stuermer. "Fast simulation of noise radiation and reduction from installed pusher
propeller aircraft," CEAS Aeronautical Journal, vol, 4, No. 4, pp. 443-458, 2013.

10. D. Juergen, A. A. Rinie, D. Jan, and E. Roland. "Installation Effects of a Propeller Mounted on a
Wing with Coanda Flap. Part II: Numerical Investigation and Experimental Validation," 20th
AIAA/CEAS Aeroacoustics Conference, Atlanta Georgia, No. 2014-3189, 2014.

11. C. K. W. Tam, and J. C. Webb. "Dispersion-Relation-Preserving Finite Difference Schemes for
Computational Acoustics," Journal of Computational Physics, vol, 107, No. 2, pp. 262-281, 1993.

12. S. K. Lele. "Compact finite difference schemes with spectral-like resolution," Journal of
Computational Physics, vol, 103, No. 1, pp. 16-42, 1992.

13. R. Hixon. "Prefactored Small-Stencil Compact Schemes," Journal of Computational Physics, vol,
165, No. 2, pp. 522-541, 2000.

14. G. Ashcroft, and X. Zhang. "Optimized prefactored compact schemes," Journal of Computational
Physics, vol, 190, No. 2, pp. 459-477, 2003.

Bibliography

152

15. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. "A high-performance, portable implementation of
the MPI message passing interface standard," Parallel Computing, vol, 22, No. 6, pp. 789-828,
1996.

16. NVIDIA. "NVIDIA CUDA C Progamming Guide 5.5," NVIDIA Corporation, 2013.

17. E. Elsen, P. LeGresley, and E. Darve. "Large calculation of the flow over a hypersonic vehicle
using a GPU," Journal of Computational Physics, vol, 227, No. 24, pp. 10148-10161, 2008.

18. J. Cohen, and M. J. Molemaker. "A fast double precision CFD code using CUDA," Parallel
Computational Fluid Dynamics: Recent Advances and Future Directions, Moffett Field, CA.pp.
414-429, 2009.

19. T. Brandvik, and G. Pullan. "Acceleration of a two-dimensional Euler flow solver using
commodity graphics hardware," Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, vol, 221, No. 12, pp. 1745-1748, 2007.

20. B. Tobias, and P. Graham. "Acceleration of a 3D Euler Solver Using Commodity Graphics
Hardware," 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, No. 2008-607,
2008.

21. T. Brandvik, and G. Pullan. "An Accelerated 3D Navier–Stokes Solver for Flows in
Turbomachines," Journal of Turbomachinery, vol, 133, No. 2, pp. 021025-021025, 2010.

22. J. Dana, T. Julien, and S. Inanc. "An MPI-CUDA Implementation for Massively Parallel
Incompressible Flow Computations on Multi-GPU Clusters," 48th AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, No.
2010-522, 2010.

23. C. J. Webb, and S. Bilbao. "Computing room acoustics with CUDA - 3D FDTD schemes with
boundary losses and viscosity," 2011 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Prague.pp. 317-320, 2011.

24. C. J. Webb, and S. Bilbao. "Virtual Room Acoustics: A Comparison of Techniques for Computing
3D-FDTD Schemes Using CUDA," Audio Engineering Society Convention 130, London, UK, No.
8438, 2011.

25. J. J. López, D. Carnicero, N. Ferrando, and J. Escolano. "Parallelization of the finite-difference
time-domain method for room acoustics modelling based on CUDA," Mathematical and
Computer Modelling, vol, 57, No. 7–8, pp. 1822-1831, 2013.

26. R. Ewert, and W. Schröder. "Acoustic perturbation equations based on flow decomposition via
source filtering," Journal of Computational Physics, vol, 188, No. 2, pp. 365-398, 2003.

27. M. J. Lighthill. "On Sound Generated Aerodynamically. I. General Theory," Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol, 211, No. 1107,
pp. 564-587, 1952.

28. D. C. Mincu, and E. Manoha. "Numerical and experimental characterization of fan noise
installation effects," AerospaceLab, pp. 1-11, 2014.

29. S. Malte, D. Jan, and C. Bastien. "Refraction and Scattering in High Mach Number Boundary
Layers," 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference),
Portland, Oregon, No. 2011-2847, 2011.

Bibliography

153

30. D. Juergen, E. Roland, D. Jan, S. Christian, and R. Marco. "The Effect of a Boundary Layer on
Engine Noise propagating to the Fuselage at Flight Conditions," 19th AIAA/CEAS Aeroacoustics
Conference, Berlin, Germany, No. 2013-2006, 2013.

31. F. Farassat, and C. Jay. "Towards an Airframe Noise Prediction Methodology: Survey of Current
Approaches," 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, No. 2006-210,
2006.

32. R. J. Astley. "Numerical methods for noise propagation in moving flows, with application to
turbofan engines," Acoustical Science and Technology, vol, 30, No. 4, pp. 227-239, 2009.

33. M. Dieste, and G. Gabard. "Broadband Interaction Noise Simulations using Synthetic
Turbulence," 16th International Conference in Sound and Vibration, Krakow, Poland, No. 451,
2009.

34. X. Zhang, X. Chen, C. Morfey, and P. Nelson. "Computation of spinning modal radiation from an
unflanged duct," AIAA Journal, vol, 42, No. 9, pp. 1795-1801, 2004.

35. S. Richards, X. Chen, X. Huang, and X. Zhang. "Computation of fan noise radiation through an
engine exhaust geometry with flow," International Journal of Aeroacoustics, vol, 6, No. 3, pp.
223-241, 2007.

36. X. Huang, X. Chen, Z. Ma, and X. Zhang. "Efficient Computation of Spinning Modal Radiation
Through an Engine Bypass Duct," AIAA Journal, vol, 46, No. 6, pp. 1413-1423, 2008.

37. X. Chen, X. Huang, and X. Zhang. "Sound Radiation from a Bypass Duct with Bifurcations," AIAA
Journal, vol, 47, No. 2, pp. 429-436, 2009.

38. J. F. Williams, and D. L. Hawkings. "Sound generation by turbulence and surfaces in arbitrary
motion," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, vol, 264, No. 1151, pp. 321-342, 1969.

39. J. W. Kim, and D. J. Lee. "Optimized compact finite difference schemes with maximum
resolution," AIAA journal, vol, 34, No. 5, pp. 887-893, 1996.

40. F. Q. Hu, M. Y. Hussaini, and J. Manthey. "Low-dissipation and low-dispersion Runge–Kutta
schemes for computational acoustics," Journal of Computational Physics, vol, 124, No. 1, pp.
177-191, 1996.

41. C. A. Kennedy, and M. H. Carpenter. "Several new numerical methods for compressible shear-
layer simulations," Applied Numerical Mathematics, vol, 14, No. 4, pp. 397-433, 1994.

42. C. A. Kennedy, and M. H. Carpenter. "Comparison of several numerical methods for simulation
of compressible shear layers," NASA-TP-3484, NASA Langley Research Center, Hampton, VA,
1997.

43. O. V. Vasilyev, T. S. Lund, and P. Moin. "A general class of commutative filters for LES in complex
geometries," Journal of Computational Physics, vol, 146, No. 1, pp. 82-104, 1998.

44. R. L. Manuel, S. Abhishek, R. B. Jonathan, D. E. Thomas, R. Joshua, E. W. Jerry, M. W. David, P.
Francisco, J. Antony, and E. M. David. "Verification and Validation of HiFiLES: a High-Order LES
unstructured solver on multi-GPU platforms," 32nd AIAA Applied Aerodynamics Conference,
Atlanta, GA, No. 2014-3168, 2014.

45. Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann, K.
Hillewaert, H. T. Huynh, N. Kroll, G. May, P.-O. Persson, B. van Leer, and M. Visbal. "High-order

Bibliography

154

CFD methods: current status and perspective," International Journal for Numerical Methods in
Fluids, vol, 72, No. 8, pp. 811-845, 2013.

46. J. Antony. "Advances in Bringing High-Order Methods to Practical Applications in Computational
Fluid Dynamics," 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, No.
2011-3226, 2011.

47. B. Landmann. "A parallel discontinuous Galerkin code for the Navier-Stokes and Reynolds-
averaged Navier-Stokes equations," PhD thesis, Institution of Aerodynamics and Gasdynamics,
University of Stuttgart, 2008.

48. J. A. Ekaterinaris. "High-order accurate, low numerical diffusion methods for aerodynamics,"
Progress in Aerospace Sciences, vol, 41, No. 3–4, pp. 192-300, 2005.

49. G. Thomas Le, and R. Gabriel. "Computational AeroAcoustics of Counter Rotating Open Rotor
Model on rear full scale airplane in cruise condition," 18th AIAA/CEAS Aeroacoustics Conference
(33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, No. 2012-2125, 2012.

50. S. Redonnet, G. Desquesnes, E. Manoha, and C. Parzani. "Numerical Study of Acoustic
Installation Effects with a Computational Aeroacoustics Method," AIAA Journal, vol, 48, No. 5,
pp. 929-937, 2010.

51. Y. Liu, M. Vinokur, and Z. J. Wang. "Spectral difference method for unstructured grids I: Basic
formulation," Journal of Computational Physics, vol, 216, No. 2, pp. 780-801, 2006.

52. Z. J. Wang, Y. Liu, G. May, and A. Jameson. "Spectral Difference Method for Unstructured Grids
II: Extension to the Euler Equations," Journal of Scientific Computing, vol, 32, No. 1, pp. 45-71,
2007.

53. S. Richards, X. Zhang, X. Chen, and P. Nelson. "The evaluation of non-reflecting boundary
conditions for duct acoustic computation," Journal of Sound and Vibration, vol, 270, No. 3, pp.
539-557, 2004.

54. B. Chapman, G. Jost, and R. V. D. Pas. "Using OpenMP: portable shared memory parallel
programming," The MIT Press, Cambridge, Massachusetts, 2008.

55. B. Barney. "Message Passing Interface (MPI)," https://computing.llnl.gov/tutorials/mpi/, Last
accessed. 15/04/2013.

56. E. Lusk, and A. Chan. "Early Experiments with the OpenMP/MPI Hybrid Programming Model,"
OpenMP in a New Era of Parallelism: 4th International Workshop, IWOMP 2008 West Lafayette.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 36-47.

57. R. Rabenseifner, G. Hager, and G. Jost. "Hybrid MPI/OpenMP Parallel Programming on Clusters
of Multi-Core SMP Nodes," 2009 17th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, No. 1066-6192.pp. 427-436, 2009.

58. F. Wolf, and B. Mohr. "Automatic performance analysis of hybrid MPI/OpenMP applications,"
Journal of Systems Architecture, vol, 49, No. 10–11, pp. 421-439, 2003.

59. "Top 500," https://www.top500.org/, Last accessed. 25/04, 2015.

60. U. o. Southampton. "Iridis," http://cmg.soton.ac.uk/iridis, Last accessed. 01.05, 2013.

61. J. Jeffers. "Intel® Xeon Phi™ Coprocessors," Modern Accelerator Technologies for Geographic
Information Science. Springer US, Boston, MA, 2013, pp. 25-39.

Bibliography

155

62. M. Daga, A. M. Aji, and W. c. Feng. "On the Efficacy of a Fused CPU+GPU Processor (or APU) for
Parallel Computing," 2011 Symposium on Application Accelerators in High-Performance
Computing, No. 2166-5133.pp. 141-149, 2011.

63. A. Munshi. "The OpenCL specification," 2009 IEEE Hot Chips 21 Symposium (HCS).pp. 1-314,
2009.

64. J. E. Stone, D. Gohara, and G. Shi. "OpenCL: A Parallel Programming Standard for Heterogeneous
Computing Systems," Computing in Science & Engineering, vol, 12, No. 3, pp. 66-73, 2010.

65. A. Hart, R. Ansaloni, and A. Gray. "Porting and scaling OpenACC applications on massively-
parallel, GPU-accelerated supercomputers," The European Physical Journal Special Topics, vol,
210, No. 1, pp. 5-16, 2012.

66. T. Hoshino, N. Maruyama, S. Matsuoka, and R. Takaki. "CUDA vs OpenACC: Performance Case
Studies with Kernel Benchmarks and a Memory-Bound CFD Application," Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on.pp. 136-143, 2013.

67. B. Behzad, J. M. Andrew, and J. R. Christopher. "Multilevel Parallelism for CFD Codes on
Heterogeneous Platforms," 46th AIAA Fluid Dynamics Conference, Washington, D.C., No. 2016-
3329, 2016.

68. L. Lixiang, R. E. Jack, and L. Hong. "Performance Assessment of Multi-block LES Simulations using
Directive-based GPU Computation in a Cluster Environment," 52nd Aerospace Sciences Meeting,
National Harbor, Maryland, No. 2014-1130, 2014.

69. "CUDA FORTRAN programming guide and reference," The Portland Group, 2012.

70. P. Micikevicius. "3D finite difference computation on GPUs using CUDA," Proceedings of 2nd
Workshop on General Purpose Processing on Graphics Processing Units. ACM, 2009, pp. 79-84.

71. J. A. Hay, C. Richter, L. Panek, and F. Thiele. "Acceleration of CAA methodology for liner
applications using graphics processors," Proceedings of the Seventeenth International Congress
on Sound and Vibration, Cairo, Egypt. 2010.

72. Q. H. Fang. "An efficient solution of time domain boundary integral equations for acoustic
scattering and its acceleration by Graphics Processing Units," 19th AIAA/CEAS Aeroacoustics
Conference, Berlin, Germany, No. 2013-2018, 2013.

73. C. Andrew, K. Kailas, L. Junhui, R. Ravi, S. Douglas, and D. Johann. "A Hybrid Grid Compressible
Flow Solver for Large-Scale Supersonic Jet Noise Simulations on Multi-GPU Clusters," 50th AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,
Nashville, Tennessee, No. 2012-0564, 2012.

74. X. Yidong, L. Lixiang, L. Hong, L. Jialin, R. E. Jack, and M. Frank. "On the Multi-GPU Computing of
a Reconstructed Discontinuous Galerkin Method for Compressible Flows on 3D Hybrid Grids,"
7th AIAA Theoretical Fluid Mechanics Conference, Atlanta, GA, No. 2014-0381, 2014.

75. E. W. Jerry, R. Joshua, and J. Antony. "Multi-GPU, Implicit Time Stepping for High-order Methods
on Unstructured Grids," 46th AIAA Fluid Dynamics Conference, Washington, D.C., No. 2016-
3965, 2016.

76. W. Dawes, D. Caleb, and K. William. "Acceleration of an Unstructured Hybrid Mesh RANS Solver
by Porting to GPU Architectures," 49th AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition, Orlando, Florida, No. 2011-944, 2011.

Bibliography

156

77. L. Jialin, X. Yidong, L. Lixiang, L. Hong, R. E. Jack, and M. Frank. "OpenACC-based GPU
Acceleration of a p-multigrid Discontinuous Galerkin Method for Compressible Flows on 3D
Unstructured Grids," 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, No. 2015-
0822, 2015.

78. L. Lixiang, R. E. Jack, L. Hong, and M. Frank. "GPU Port of A Parallel Incompressible Navier-Stokes
Solver based on OpenACC and MVAPICH2," 7th AIAA Theoretical Fluid Mechanics Conference,
Atlanta, GA, No. 2014-3083, 2014.

79. L. Jialin, X. Yidong, L. Lixiang, L. Hong, R. E. Jack, and M. Frank. "OpenACC directive-based GPU
acceleration of an implicit reconstructed discontinuous Galerkin method for compressible flows
on 3D unstructured grids," 54th AIAA Aerospace Sciences Meeting, San Diego, California, No.
2016-1815, 2016.

80. C. Dominic, S. Jayanaryanan, and M. Dimitri. "CU++ET: An Object Oriented Tool for Accelerating
Computational Fluid Dynamics codes using Graphical Processing Units," 20th AIAA
Computational Fluid Dynamics Conference, Honolulu, Hawaii, No. 2011-3222, 2011.

81. V. Peter, D. W. Freddie, M. F. Antony, N. George, C. V. Brian, S. P. Jin, and S. I. Arvind. "PyFR:
Next-Generation High-Order Computational Fluid Dynamics on Many-Core Hardware (Invited),"
22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX, No. 2015-3050, 2015.

82. Nvidia. "CUBLAS," http://docs.nvidia.com/cuda/cublas/index.html, Last accessed. 20/02, 2012.

83. "Portable, Extensible Toolkit for Scientific Computation," https://www.mcs.anl.gov/petsc/, Last
accessed. 01/06, 2016.

84. "LAPACK — Linear Algebra PACKage," http://www.netlib.org/lapack/#_users_guide, Last
accessed. 15/02, 2012.

85. Y. Zhang, J. Cohen, and J. D. Owens. "Fast tridiagonal solvers on the GPU," ACM Sigplan Notices,
vol, 45, No. 5, pp. 127-136, 2010.

86. H. S. Stone. "An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations," Journal of the ACM (JACM), vol, 20, No. 1, pp. 27-38, 1973.

87. D. Egloff. "High performance finite difference PDE solvers on GPUs," QuantAlea GmbH,, Zurich,
Switzerland, 2010.

88. J. Krger, and d. Westermann. "Linear algebra operators for GPU implementation of numerical
algorithms," ACM SIGGRAPH 2005 Courses, Los Angeles, California.pp. 234, 2005.

89. J. Bolz, I. Farmer, E. Grinspun, and P. Schrder. "Sparse matrix solvers on the GPU: conjugate
gradients and multigrid," ACM SIGGRAPH 2005 Courses, Los Angeles, California.pp. 171, 2005.

90. B. Tutkun, and F. O. Edis. "A GPU application for high-order compact finite difference scheme,"
Computers & Fluids, vol, 55, pp. 29-35, 2012.

91. P. Micikevicius. "3D finite difference computation on GPUs using CUDA," Proceedings of 2nd
Workshop on General Purpose Processing on Graphics Processing Units, Washington, D.C.,
USA.pp. 79-84, 2009.

92. S. Miao, X. Zhang, O. G. Parchment, and X. Chen. "A fast GPU based bidiagonal solver for
computational aeroacoustics," Computer Methods in Applied Mechanics and Engineering, vol,
286, pp. 22-39, 2015.

Bibliography

157

93. S. Miao, X. Zhang, O. G. Parchment, and X. Chen. "A Fast GPU Based Bidiagonal Solver for
Computational Aeroacoustics," 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, No.
2014-2317, 2014.

94. J. L. Gustafson. "Reevaluating Amdahl's law," Commun. ACM, vol, 31, No. 5, pp. 532-533, 1988.

95. H. H. Hubbard. "Aeroacoustics of flight vehicles: Theory and practice. volume 1. noise sources,"
NASA-RP-1258-VOL-1, NASA Langley Research Center; Hampton, VA, 1991.

96. F. Farassat. "Linear Acoustic Formulas for Calculation of Rotating Blade Noise," AIAA Journal,
vol, 19, No. 9, pp. 1122-1130, 1981.

97. F. Farassat, D. Mark, T. Ana, and N. Douglas. "Open Rotor Noise Prediction Methods at NASA
Langley: A Technology Review," 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA
Aeroacoustics Conference), Miami, Florida, No. 2009-3133, 2009.

98. F. B. Metzger. "A review of propeller noise prediction methodology: 1919-1994," NASA-CR-
198156, Metzger Technology Services; Simsbury, CT, United States, 1995.

99. D. B. Hanson, and D. J. Parzych. "Theory for noise of propellers in angular inflow with parametric
studies and experimental verification," NASA-CR-4499, NASA. Lewis Research Center,
Washington, United States, 1993.

100. P. di Francescantonio. "A NEW BOUNDARY INTEGRAL FORMULATION FOR THE PREDICTION
OF SOUND RADIATION," Journal of Sound and Vibration, vol, 202, No. 4, pp. 491-509, 1997.

101. F. Farassat. "Derivation of Formulations 1 and 1A of Farassat," NASA/TM-2007-214853, NASA
Langley Research Center; Hampton, VA, United States, 2007.

102. A. A. Rinie, P.-P. Michael, B. Heino, D. Jan, and A. Daniela. "Installation Effects of a Propeller
Mounted on a High-Lift Wing with a Coanda Flap. Part I: Aeroacoustic Experiments," 20th
AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, No. 2014-3191, 2014.

103. J. E. Marte, and D. W. Kurtz. "A review of aerodynamic noise from propellers, rotors, and lift
fans," Jet Propulsion Laboratory, California Institute of Technology, 1970.

104. M. Niţă. "Aircraft design studies based on the ATR 72," PhD thesis, Hamburg University of
Applied Sciences, 2008.

105. K. Seeckt. "Application of PreSTo: Aircraft preliminary sizing and data export to CEASIOM,"
Technical report, Royal Institute of Technology, 2011.

106. K. Seeckt, and D. Scholz. "Application of the aircraft preliminary sizing tool PreSTo to
kerosene and liquid hydrogen fueled regional freighter aircraft," Proceedings: Deutscher Luft-
und Raumfahrtkongress 2010, 2010.

107. S. Miao, Y. Hou, and X. Zhang. "Evaluation AND COMPARISON OF LINEARIZED EULER
EQUATIONS AND EQUIVALENT SOURCE METHOD," The 22nd International Congress on Sound
and Vibration, Florence, Italy, No. 169, 2015.

108. H. Yu, Z. Xin, and A. David. "A Complex Equivalent Source Method for Scattering Effect of
Aircraft Noise," 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, No. 2014-3302, 2014.

109. Y. J. Gounot, and R. E. Musafir. "Simulation of scattered fields: Some guidelines for the
equivalent source method," Journal of Sound and Vibration, vol, 330, No. 15, pp. 3698-3709,
2011.

Bibliography

158

110. M. R. Bai. "Application of BEM (boundary element method)‐based acoustic holography to
radiation analysis of sound sources with arbitrarily shaped geometries," The Journal of the
Acoustical Society of America, vol, 92, No. 1, pp. 533-549, 1992.

111. M. Eric, J. Xavier, and R. Francois. "Numerical Simulation of Aircraft Engine Installation
Acoustic Effects," 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California, No. 2005-
2920, 2005.

112. R. Stéphane, P. Céline, M. Eric, and L. Delphine. "Numerical Study of 3D Acoustic Installation
Effects Through a Hybrid Euler/BEM Method," 13th AIAA/CEAS Aeroacoustics Conference (28th
AIAA Aeroacoustics Conference), Rome, Italy, No. 2007-3500, 2007.

113. P. L. Spence. "Effects of fuselage boundary layer on noise propagation from advanced
propellers," Journal of Aircraft, vol, 29, No. 6, pp. 1005-1011, 1992.

114. D. Hanson. "Shielding of Prof-Fan cabin noise by the fuselage boundary layer," Journal of
Sound and Vibration, vol, 92, No. 4, pp. 591-598, 1984.

115. M. G, and J. R. J. Rawls. "Effects of boundary layer refraction and fuselage scattering on
fuselage surface noise from advanced turboprop propellers," 22nd Aerospace Sciences Meeting,
Reno,NV, No. 1984-249, 1984.

116. H. Y. Lu. "Fuselage boundary-layer effects on sound propagation and scattering," AIAA
Journal, vol, 28, No. 7, pp. 1180-1186, 1990.

117. D. Hanson, and B. Magliozzi. "Propagation of propeller tone noise through a fuselage
boundary layer," Journal of Aircraft, vol, 22, No. 1, pp. 63-70, 1985.

118. S. M, T. A. M. C, B. R, and G. J. "An experimental and theoretical investigation of the
propagation of sound waves through a turbulent boundary layer," 10th Aeroacoustics
Conference, Seattle,WA, No. 1986-1968, 1986.

119. G. McAninch. "A note on propagation through a realistic boundary layer," Journal of Sound
and Vibration, vol, 88, No. 2, pp. 271-274, 1983.

120. V. Miguel, and G. Datta. "Computation of aeroacoustic fields on general geometries using
compact differencing and filtering schemes," 30th Fluid Dynamics Conference, Norfolk,VA, No.
1999-3706, 1999.

121. M. Visbal, and D. Rizzetta. "Large-eddy simulation on general geometries using compact
differencing and filtering schemes," 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno,NV,
No. 2002-288, 2002.

122. R. Hixon. "Prefactored compact filters for computational aeroacoustics," 37th Aerospace
Sciences Meeting and Exhibit, Reno,NV, No. 1999-0358, 1999.

123. A. Najafi-Yazdi, and L. Mongeau. "A low-dispersion and low-dissipation implicit Runge–Kutta
scheme," Journal of Computational Physics, vol, 233, pp. 315-323, 2013.

124. M. Parsani, G. Ghorbaniasl, C. Lacor, and E. Turkel. "An implicit high-order spectral difference
approach for large eddy simulation," Journal of Computational Physics, vol, 229, No. 14, pp.
5373-5393, 2010.

125. R. Bulirsch, and J. Stoer. "Numerical treatment of ordinary differential equations by
extrapolation methods," Numerische Mathematik, vol, 8, No. 1, pp. 1-13, 1966.

Bibliography

159

126. J. A, S. Wolfgang, and T. Eli. "Numerical solution of the Euler equations by finite volume
methods using Runge Kutta time stepping schemes," 14th Fluid and Plasma Dynamics
Conference, Palo Alto,CA, No. 1981-1259, 1981.

127. X. Zhang, X. Chen, and C. Morfey. "Acoustic radiation from a semi-infinite duct with a
subsonic jet," International Journal of Aeroacoustics, vol, 4, No. 1, pp. 169-184, 2005.

128. J. W. Kim, and D. J. Lee. "Generalized Characteristic Boundary Conditions for Computational
Aeroacoustics," AIAA Journal, vol, 38, No. 11, pp. 2040-2049, 2000.

129. J. W. Kim, and D. Joo. "Generalized Characteristic Boundary Conditions for Computational
Aeroacoustics, Part 2," AIAA Journal, vol, 42, No. 1, pp. 47-55, 2004.

130. M. L. Caraeni, and L. Fuchs. "Investigation of Nonreflective Boundary Conditions for
Computational Aeroacoustics," AIAA Journal, vol, 44, No. 9, pp. 1932-1940, 2006.

131. T. I. M. Colonius, S. K. Lele, and P. Moin. "Boundary conditions for direct computation of
aerodynamic sound generation," AIAA Journal, vol, 31, No. 9, pp. 1574-1582, 1993.

132. J. B. Freund. "Proposed Inflow/Outflow Boundary Condition for Direct Computation of
Aerodynamic Sound," AIAA Journal, vol, 35, No. 4, pp. 740-742, 1997.

133. R. Hixon, and S. i. R. R. S-Hmankbadi. "Evaluation of boundary conditions for computational
aeroacoustics," 33rd Aerospace Sciences Meeting and Exhibit, Reno,NV, No. 1995-160, 1995.

134. K. Benjamin, and E. Gunilla. "Evaluating stretched grids and introducing black hole layers as
alternative non-reflecting buffer zone," 19th AIAA/CEAS Aeroacoustics Conference, Berlin,
Germany, No. 2013-2220, 2013.

135. E. Nathan, and V. Miguel. "A General Buffer Zone-type Non-Reflecting Boundary Condition
for Computational Aeroacoustics," 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, Hilton
Head, South Carolina, No. 2003-3300, 2003.

136. T. Kenji, Z. Xin, and N. Philip. "Linearized Euler Simulations of Leading-Edge Slat Flow," 41st
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, No. 2003-364, 2003.

137. F. Q. Hu. "Absorbing Boundary Conditions," International Journal of Computational Fluid
Dynamics, vol, 18, No. 6, pp. 513-522, 2004.

138. C. K. W. Tam, and Z. Dong. "Wall boundary conditions for high-order finite-difference
schemes in computational aeroacoustics," Theoretical and Computational Fluid Dynamics, vol,
6, No. 5, pp. 303-322, 1994.

139. R. Hixon. "Curvilinear wall boundary conditions for computational aeroacoustics," 35th Joint
Propulsion Conference and Exhibit, Los Angeles,CA, No. 1999-2395, 1999.

140. R. Hixon, S. H. Shih, and R. R. Mankbadi. "Evaluation of Boundary Conditions for the Gust-
Cascade Problem," Journal of Propulsion and Power, vol, 16, No. 1, pp. 72-78, 2000.

141. R. Hixon. "Radiation and Wall Boundary Conditions for Computational Aeroacoustics: A
Review," International Journal of Computational Fluid Dynamics, vol, 18, No. 6, pp. 523-531,
2004.

142. P. Diane, A. Steven, M. Douglas, S. Matthew, and E. Francis. "The CGNS system," 29th AIAA,
Fluid Dynamics Conference, Albuquerque,NM, No. 1998-3007, 1998.

143. H. S. Kim, S. Wu, L. w. Chang, and W. m. W. Hwu. "A Scalable Tridiagonal Solver for GPUs,"
2011 International Conference on Parallel Processing, Taipei City.pp. 444-453, 2011.

Bibliography

160

144. H. S. Stone. "An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of
Equations," J. ACM, vol, 20, No. 1, pp. 27-38, 1973.

145. X. H. Sun, H. Zhang, and L. M. Ni. "Efficient tridiagonal solvers on multicomputers," IEEE
Transactions on Computers, vol, 41, No. 3, pp. 286-296, 1992.

146. J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam. "ICASE/LaRC workshop on benchmark problems
in computational aeroacoustics," NASA-CP-3300, NASA Langley Research Center; Hampton, VA,
1995.

147. G. H. Golub, L. Shui-Hong, T. L. Franklin, and R. J. Plemmons. "Cyclic reduction—history and
applications," Scientific Computing, Proceedings of the Workshop, 10 - 12 March 1997, Hong
Kong. Springer Singapore, 1997, pp. 73-85.

148. R. A. Sweet. "A Parallel and Vector Variant of the Cyclic Reduction Algorithm," SIAM Journal
on Scientific and Statistical Computing, vol, 9, No. 4, pp. 761-765, 1988.

149. P. Amodio, and N. Mastronardi. "A parallel version of the cyclic reduction algorithm on a
hypercube," Parallel Computing, vol, 19, No. 11, pp. 1273-1281, 1993.

150. S. Christopher, D. Earl, Z. Yao, C. David, D. Roger, and O. John. "GPGPU parallel algorithms for
structured-grid CFD codes," 20th AIAA Computational Fluid Dynamics Conference, Honolulu,
Hawaii, No. 2011-3221, 2011.

151. M. Harris. "Optimizing Parallel Reduction in CUDA," http://developer.download.nvidia.com/
compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf, Last accessed.
26/01, 2007.

152. B. Ravi, A. Don, and S. Tom. "PCI express system architecture," Addison-Wesley Professional,
2003.

153. Nvidia. "Tesla M2050/M2070 GPU Computing Module: Supercomputing at 1/10th the cost,"
http://www.nvidia.co.uk/docs/IO/43395/NV_DS_Tesla_M2050_M2070_Apr10_LowRes.pdf,
Last accessed. 23/01, 2010.

154. G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott, G. Scantlen, and P. S. Crozier. "The
development of Mellanox/NVIDIA GPUDirect over InfiniBand—a new model for GPU to GPU
communications," Computer Science - Research and Development, vol, 26, No. 3, pp. 267-273,
2011.

155. S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda. "Efficient Inter-node
MPI Communication Using GPUDirect RDMA for InfiniBand Clusters with NVIDIA GPUs," 2013
42nd International Conference on Parallel Processing, Lyon, France.pp. 80-89, 1-4 Oct. 2013,
2013.

156. H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda. "GPU-Aware MPI on RDMA-
Enabled Clusters: Design, Implementation and Evaluation," IEEE Transactions on Parallel and
Distributed Systems, vol, 25, No. 10, pp. 2595-2605, 2014.

157. P. Joseph, and C. L. Morfey. "Multimode radiation from an unflanged, semi-infinite circular
duct," The Journal of the Acoustical Society of America, vol, 105, No. 5, pp. 2590-2600, 1999.

158. G. F. Homicz, and J. A. Lordi. "A note on the radiative directivity patterns of duct acoustic
modes," Journal of Sound and Vibration, vol, 41, No. 3, pp. 283-290, 1975.

159. R. M. Munt. "The interaction of sound with a subsonic jet issuing from a semi-infinite
cylindrical pipe," Journal of Fluid Mechanics, vol, 83, No. 04, pp. 609-640, 1977.

Bibliography

161

160. S. K. Richards, X. X. Chen, X. Huang, and X. Zhang. "Computation of Fan Noise Radiation
through an Engine Exhaust Geometry with Flow," International Journal of Aeroacoustics, vol, 6,
No. 3, pp. 223-241, 2007.

161. D. Casalino. "An advanced time approach for acoustic analogy predictions," Journal of Sound
and Vibration, vol, 261, No. 4, pp. 583-612, 2003.

162. D. B. Hanson. "Direct frequency domain calculation of open rotor noise," AIAA Journal, vol,
30, No. 9, pp. 2334-2337, 1992.

163. Y. J. R. Gounot, and R. E. Musafir. "Simulation of scattered fields: Some guidelines for the
equivalent source method," Journal of Sound and Vibration, vol, 330, No. 15, pp. 3698-3709,
2011.

164. D. A. Russell, J. P. Titlow, and Y.-J. Bemmen. "Acoustic monopoles, dipoles, and quadrupoles:
An experiment revisited," American Journal of Physics, vol, 67, No. 8, pp. 660-664, 1999.

165. M. J. Crocker. "Handbook of acoustics," USA, Canada: John Wiley & Sons, Inc, 1998.

166. S. Martínez-Aranda, A. L. García-González, L. Parras, J. F. Velázquez-Navarro, and C. d. Pino.
"Comparison of the Aerodynamic Characteristics of the NACA0012 Airfoil at Low-to-Moderate
Reynolds Numbers for any Aspect Ratio," International Journal of Aerospace Sciences, vol, 4, No.
1, pp. 1-8, 2016.

167. I. V. Belyaev. "The effect of an aircraft’s boundary layer on propeller noise," Acoustical Physics,
vol, 58, No. 4, pp. 387-395, 2012.

168. J. Gao. "A block interface flux reconstruction method for numerical simulation with high
order finite difference scheme," Journal of Computational Physics, vol, 241, pp. 1-17, 2013.

