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ABSTRACT 

In this paper, a machinery installation is described, in which several rotational machines are attached to a 

machinery beam-like raft by discrete resilient isolations. To reduce the vibration of the host raft introduced 

by the machines installed to the raft, a vibration control method of altering only the phases between the 

machines, known as synchrophasing, is investigated both theoretically and experimentally. A method, 

known as Propeller Signature Theory (PST) is used to determine the generalized transfer mobility matrix, 

by which the full search approach is then used to find the optimum phase angle. It is shown that the 

synchrophasing can achieve a significant vibration reduction when there are only two machines. 

Meanwhile, as each machine is supported by discrete rubber isolation mounts, the effect of the stiffness of 

the isolations is also discussed from the results of further simulation.  
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1. INTRODUCTION  

As a widely-employed and traditional vibration control method, passive isolators can achieve quite 

effective reduction of the vibration transmitted from such sources as rotating machines attached to a host 

structure especially in the high frequency range. In the lower frequency bands, however, the passive 

isolators will come across a trade-off between the efficiency of the isolation performance and the stability 

of the whole system or the weight cost. Therefore, alternative approaches, e.g. active control, is typically 

introduced by applying some secondary sources in series or parallel with passive resilient mounts to 

generate forced vibration responses aiming to cancel the primary vibration transmission [1,2]. However, the 

active control method using any type of different actuators will need a back-up system including power 

amplifiers, digital controllers and so on. This could be very expensive and power-consuming. 

Synchrophasing is another alternative control method considered in this paper, which has been well 

verified and established in the area of propeller noise control in aircraft cabins [3]. The basic idea of 

synchrophasing is quite simple, coming from the idea of reducing the vibrations originating from two 

engines of a steam ship by making the two engines run at the same speed, but in anti-phase [4]. Apart from 

the patent obtained by Kalin, for a method of controlling vibration introduced by the main propulsion diesel 

engines of a ship with multiple propellers by maintaining a constant phase angle between the crank shafts 

in 1940, several patents and literature on noise control in aircraft cabins [5, 6] and duct [7, 8] have been 

published as well as two patents for reducing sound and/or vibration from multiple rotating machines [9, 

10], by adjusting the phase angle between the propellers or machines. Further research in this area has been 

extended to active synchrophasing. Microphones and accelerometers were introduced and positioned 

throughout an aircraft as the error signal in an adaptive algorithm, that were used to determine the optimum 

phase angle for minimizing the cabin noise and vibration over a wider range of flight conditions [11, 12]. In 

this process, to reduce the time needed to obtain the optimum phase angle, the Propeller Signature Theory 



 

 

(PST) described in [13] was employed.  

A few studies on controlling vibration transmission from a machinery raft to a host structure by 

adjusting the phase angles between the machines has also been reported. Recent research on 

synchrophasing by Dench and Brennan [14] demonstrated the principle of this method on a 

one-dimensional structure. They considered theoretically the behaviour of a machinery raft, together with 

an experimental study, to illustrate the application of synchrophasing to multiple machines for a marine 

application. The PST and an exhaustive search of all possible angles were used to determine the optimum 

phase angles for different scenarios. Yang subsequently extended this control method to a large scale 

floating raft system, where multiple machines were attached theoretically and then validated is 

experimentally [15].  

This paper is an extension of the work by Dench et al [14]. The application of synchrophasing to 

vibration control on the same one-dimensional structure is investigated, while each source is attached to the 

raft though a support plate and four passive isolators. In this case, both forces and moments introduced by 

the sources are taken into account i.e. the excitation sources themselves are allowed to have a primary stage 

of isolation. The effect of the primary isolation stage is discussed using the numerical model. 

2. PROBLEM FORMULATION 

2.1 Lumped parameter model 

The idealised lumped parameter model used to investigate and determine the performance of 

synchrophasing and the effect of isolation of the sources is shown in Figure 1. Two potentially synchronous 

machines are resiliently attached to a long raft, which is supported by two identical elastic springs at its 

ends respectively. The machines and the raft can all be considered as rigid bodies, therefore only the 

displacement and the rotation of each inertia needs to be taken into account i.e. the model is then a 

6-freedom-degree system. 
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Figure 1. The model and parameters of the simulated system. 

Based on the D'Alembert's principle, the equations of motion for each inertia can be written in a 

matrix form as follows 

Mw +Kw = f                                (1) 

where M, K are the two respective mass and stiffness matrices and w, f are the respective degrees of 

freedom and source forces acting at the respective degree of freedom. 

For the system shown in Figure 1, the 6×6 mass matrix is 
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and the corresponding degrees of freedom expressed as a displacement vector is  

1 1 2 2

T

M M M M b bw w w     w                      (2) 

The degrees of freedom chosen for modelling this scenario are respectively the three translations of 

the centres of mass and three rotations about the centres of masses of the two sources and one receiver mass, 

i.e. 
1Mw , 

2Mw , bw  and 
1M ,  

2M , b .  The subscripts M1, M2 , b relate to the displacements of 

machine A, machine B, raft and the corresponding rotation of each inertia mass respectively. Meanwhile, 

 are the stiffnesses of the springs connected between the machine masses and the 

host structure and between the raft and the fixed ground. 1m , 2m  and bm  are the masses of two 

machines as well as the raft; 1J , 2J  and 3J  the corresponding rotational inertia of the three masses 

about their corresponding mass centres. L is the length of the raft on which the positions of the left hand 

end of the two machines are represented by  and  respectively, which can be seen in Figure 1.  and 

 are the lengths of the two machines. 

The excitation of each machine is assumed to be introduced by the rotational motion of an out of 

balance motor, which both produces an equivalent vertical force and a moment that are assumed harmonic 

and at the same circular frequency . In general, there is a phase difference φ between the excitations of 

the two machines. That then gives the excitation force matrix in the terms of the magnitudes as well as the 

phases which will simplify the derivation 

1 1 2

T
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where 1F , 2F  are the amplitudes of the forces generated by the machines and 1 , 2  are the 

distances between the out of balance forces produced in the machines and the centres of the machines, 

which then provides the moment excitation.   is the phase between the two out of balance sources, 

noting the reference source being the source on mass A(subscript 1). No direct excitation is assumed on the 

raft, only internal forces due to the isolation springs acting between the raft and isolated machines. 

Also, the displacement vector can be rewritten in the same way, which gives 

1 1 2 2

T
j t j t

M M M M b bW W W e e        Ww           (4) 

From equation (1), the steady solution of the forced vibration of the 6-freedom-degree undamped 

system can be derived, which can be given in matrix form as 

2 1[ ] n  W K M F                              (5) 

In addition, if the system is vibrating freely, the external forces generated by the machines are zero. 

Then the characteristic matrix of the system is given by 
2[ ]S K M                                 (6) 

Consider that the system contains structural damping, equation (5) becomes 

2 -1  [(1 ) - ] nj  W K M F                           (7) 

Where, for simplicity, the same proportional damping is assumed for all stiffness components in the 

model, i.e.  indicates the damping loss factor, assumed to be the same throughout. In this way, the 

numerical solutions for 
1MW ,  

2MW , bW  and 
1M ,  

2M , b  are all in general complex. 

Separating the 6-order matrix 
2 -1  [(1 ) - ]j  α K M  in equation (7), known as the receptance 

matrix, into nine 2-order block matrices  ijα ; therefore the motion vector of the raft can be given by 

j t

B Be w W                                  (8) 

in which  
T

B b bw W  denotes the amplitude of the motion of the raft and can be written in 

terms of a sub-matrices of α  and the applied force vector nF , i.e. 

 31 32 33B nW α α α F                           (9) 

where the subscript 31, 32 and 33 denote the positions of the sub-matrix in the original full matrix for 

α . 

2.2 Cost function definition and choice for vibration control 

One requirement for vibration control might be the reduction of the transmitted forces though the 

isolations of the raft. This would suggest reducing the motion at the attachment points of the lower isolation 

to the raft. A consequence might be some reduction of the raft response specially averaged but this is not 

guaranteed 

To capture the motion of the raft for subsequent comparison of the response under different 

synchrophase situations, a suitable cost function can be given as 



 

 

H

e eJ  w w                                 (10) 

for which ew  is the vector of the two end velocities of the raft and the superscript H denotes the 

Hermitian transpose. This produces a cost function J which is simply the sum of the squares of the two 

modulus of the velocities. The velocity vector ew  can be expressed in terms of the raft degrees of 

freedom as 
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for which the square matrix L is the transfer matrix between the ends and the centre of mass degrees of 

freedom. 

Combining Equations (8), (9), (10) and (11) gives the cost function in terms of the transfer matrix and 

the system receptances. 

   H H 2 H H 2 H HH
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Equation (12) can be rewritten as 

H H  J Φ Γ ΓΦ                                (13) 

where jΓ αA  and 
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A   is the amplitude of the forces 

present, while the phase of the forces is given by the vector 
T

1 1 0 0j je e     Φ . In this 

case, as the ‘transfer function’ matrix Γ  is independent of the phase between the forces introduced by the 

machines and it is just frequency related, it is relatively easy to determine the optimum phase angle   of 

the secondary source with respect to the primary source for certain working conditions or frequency.  

2.3 Synchrophasing and achieving control 

As mentioned above, synchrophasing is an approach whereby altering the phase angles between the 

synchronous machines, such as electric motors etc., the vibration of the host structure onto which the 

machines are resiliently attached can be reduced.  

A cost function to denote the vibration of the host raft has been described in the former section and it 

can be rewritten as follows in a more general way by which one can acquire the principal method to get the 

optimal value of the cost function using synchrophasing. 
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where Φ̂  is a 2(n+1)-length vector that shows the phase angles of the n machines that will introduce 

both force and moment in the same time and iγ  is a Q-length vector that denotes the generalized transfer 

mobility containing the force and the moment information as well from the ith machine to Q identified 

positions at which the velocities are used to determine the corresponding cost function.  

Furthermore, Eq. (14) can be written as the sum of three parts, so that 

ˆ
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Note that for the three parts of the cost function Ĵ , Equation (16a) shows that the first part AJ  is 

the sum of the terms on the leading diagonal of the inner matrix in Equation (15), i.e. the general transfer 

mobility contains no phase information; therefore, changing the phase angle would not change the value of 

AJ . Equation (16b) gives the direct relationship between the phase angle between the control machines and 

the reference machine. The third part of the cost function CJ  includes the interaction between the control 

machines where there are three or more machines. 

Normally, the mobility vectors can be evaluated by measuring the accelerations at the identical 

positions and gathering the input signal to each machine when the machine is driven by an input signal 

which is band limited random noise. 

3. NUMERICAL SIMULATIONS FOR ISOLATED MACHINES 

Of interest in this section is to determine the influence of the phase angle between the two machines, 

the effect of the isolation and also whether the harmonic out of balance excitations are acting at frequencies 

above or below the isolation frequency for the machines.  

3.1 Performance of synchrophasing 

For numerical simulations and results, complemented by later experimental validation, the following 

parameters were assumed: m1 =1.85kg, m2 = 1.82kg, mb = 2.3kg, L = 1.2m, l1 = 0.4m, l2 = 0.3m, x1 = 0.1m, 

x2 = 0.85m, k1 = k2 = k3 = k4 = 2.34×104Nm-1, k5 = k6 = 1.94×104Nm-1. The rotational inertia were 

consequently calculated to be 
2

1 0.025J kgm , 
2

2 0.01J kgm , 
2

3 0.28J kgm . In this particular 

case, the two machines are on opposite sides of the centre of mass of the raft. 

Substituting the numbers into the equation (6), the six natural frequencies as well as the corresponding 

modal shape are given in Table 1 below. 

 

 

 

 



 

 

Table 1. Natural frequencies and mode shapes of the system 

Natural frequency/Hz 11.84 17.42 40.14 44.07 44.30 57.37 

Mode shape as a vector of 

the degrees of freedom 

1 1 2 2

T

M M M M b bW W W   
   

0.42 -0.48 0.22 -0.06 0.26 0.10 

0.05 0.85 4.43 3.85 -0.53 -2.26 

0.46 0.47 -0.11 -0.05 0.26 -0.18 

0.05 0.85 4.09 -6.62 -2.56 -2.35 

0.35 -0.04 -0.12 0.11 -0.53 0.07 

-0.05 -0.72 -0.72 0.04 -0.01 -1.61 

From Table 1, it can be clearly seen that the fundamental mode of the system is mainly the vertical 

displacement of the three masses and the sixth mode is primarily the rotation of the machines and raft. The 

fifth mode is the rotation of the secondary machine, whilst the second mode cannot be so specifically 

described as they comprise both displacements of and rotations about the centres of mass of the three 

bodies. For the third and fourth natural frequencies, the rotations of two machines both dominate, while 

since the fourth natural frequency is quite close to the fifth one, the rotational motion of the secondary 

machine is more dominant. 

For the simulations, the force and moment introduced by machine A are taken into account as the 

reference excitation, whilst the forces that are generated by machine B are the control sources. In addition, 

assuming the excitation source is due to unbalance, the magnitudes of the forces are in proportion to the 

square of the rotational speeds of the machines and the moment amplitudes are the products of the forces 

and the eccentricities of the sources about the machine mass centres. Therefore, in the present numerical 

simulations one can assume that the magnitudes of the forces F1 and F2 are proportional to 
23  and 

22.5  respectively with the corresponding eccentricities are 0.2m and 0.15m respectively. The loss factor 

was assumed constant and equal 0.05. 

By altering the phase angle between the two machines, a full search through the phase angle from 0º to 

360º in step size of 7.2º was used to determine the optimum phase angle between the two machines to 

minimize or maximize the value of the cost function in the frequency band of 1Hz to 200Hz which covers 

the first six resonances. For this situation, the reference source was at 1 / 1/12x L   and control source 

was at 2 / 17 / 24x L  . 

  

                    (a)                                      (b) 

Figure 2. Plots of the minimum (blue solid line) and maximum (red dash line) cost function obtained 

searching the sum of the squared velocity magnitudes for the two ends of the raft (a) and the corresponding 

phase angles (b).  



 

 

Figure 2 shows the minimum (blue solid line) and maximum (red dash line) cost function obtained 

searching the sum of the squared velocity magnitudes for the two ends of the raft (a) and the corresponding 

phase angles (b). The blue circles show the phase that minimizes the cost function and the red squares show 

the phase which maximizes the cost function. As shown in Fig. 2(a), the first two resonances in the 

corresponding modes of the system can be clearly recognized. While the third to fifth natural frequencies 

being too close to each other, the figure cannot show them distinctly. Also, it shows considerable reduction 

across the frequency range from 0Hz up to 200Hz, especially at the fundamental and sixth natural 

frequencies. In Fig. 2(b), it is clear that the phase angle either to minimize the cost function or to maximize 

it between the reference source and the control source is either 0º or 180º respectively at almost all of the 

frequencies evaluated.  

Besides, comparing Figures 2(a) and (b), they show that the phase angle to minimize or maximize the 

cost function shifts from 0º to 180º or vice versa at two particular frequencies which are around 14.8Hz and 

32.4Hz respectively. Moreover, the difference between the minimum and maximum of the cost function at 

these two frequencies is quite small, which means that around these particular frequencies changing the 

phase of the two machines would not make much difference to the value of the cost function. This is mainly 

because that at these two frequencies, the translational and rotational motions of the raft are equally 

dominant and, since the two sources are positioned at each end of the raft, changing the phase angle of the 

secondary source may reduce the vertical displacement of the raft but increase the rotation of the raft or 

vice versa. 

3.2 The effect of source isolation 

For the model used in this paper, each source mass with its corresponding support isolation can be 

seen as an uncoupled two degree of freedom mass-spring-damping system. As each single system contains 

two natural uncoupled frequencies, i.e. the modes being pure vertical motion and pure rotation in the 

symmetric model case, assume that the corresponding uncoupled natural frequencies of the three 

subsystems are 1f , 2f  for the machines as well as bf  for the raft, and the rocking frequencies are 1

Rf , 

2

Rf  and 
R

bf  respectively. Clearly, the vertical and rocking natural frequencies of each uncoupled system 

can be calculated by the equations as follows. 
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where i=1, 2 and b indicates the three uncoupled systems and l, r denotes the corresponding isolations 

at each end of the three masses. 

To compare with the case described in former section, two cases in which the stiffnesses of the 

isolations for the sources were set to be relatively soft and hard respectively; therefore, the vertical natural 

frequencies and rotational natural frequencies of each mass for two different cases can be calculated and 

given in Table 2 below.  

Table 2. Natural frequencies of the uncoupled two degree of freedom system for two different cases. 

 
1f /Hz 2f /Hz bf /Hz 

1

Rf /Hz 
2

Rf /Hz R

bf /Hz 

Case A 90.64 85.07 20.83 155.94 172.15 35.82 

Case B 5.23 5.01 20.83 9.00 10.13 35.82 



 

 

For Case A, the stiffness of the isolations for Machine A were set as 3×105Nm-1 and that for Machine 

B was 2.6×105Nm-1, then the source machine vertical and rotational natural frequencies are greater than 

that of the raft; while in the Case B, the corresponding stiffnesses were set to 1×103Nm-1 and 

respectively; so the machine natural frequencies are lower than that of the raft. 

Using the same full searching approached at step size of 7.2º used in the last section, Figures 3 and 4 

show respectively the minimum (blue solid line) and maximum (red dash line) cost function (a) and the 

corresponding phase angles (b) for Case A and Case B. The blue circles show the phase that minimizes the 

cost function and the red squares show the phase which maximizes the cost function. From these two 

figures, similar with what was shown in Figure 2, the phase angles in the two cases between the two 

machines to achieve minimum or maximum cost function are also 0º or 180º respectively. Besides, in 

Figure 3, there are also two particular frequencies, about 51Hz and 77Hz, for which the phase would shift 

from 0º to 180º or vice versa. In Figure 4, however, the most noteworthy part is that the phase angles to 

minimize or maximize the cost function did not change to opposition at any frequency. Although, at around 

35Hz the cost function did not show any changes with altering the phase angle of the secondary source. The 

reason is unlike the other two cases, each mode shows quite clear motion of each mass at every natural 

frequency when the isolators for the sources are soft enough. Therefore, with the changes in the frequency, 

there will not be the change of the dominant motion of the system. In other words, in this situation, the 

translational motion of the raft can be seen as the ‘dominant movement’ in the frequency band of 0Hz to 

200Hz as the phase angle that can minimize the cost function remains at 180º. 

 

(a)                                      (b) 

Figure 3. Plots of the minimum (blue solid line) and maximum (red dash line) cost function (a) and the 

corresponding phase angles (b) when the stiffnesses of the isolations for the sources are relatively higher 

than that for the raft. 

 

(a)                                    (b) 

Figure 4. Plots of the minimum (blue solid line) and maximum (red dash line) cost function (a) and the 

corresponding phase angles (b) when the stiffnesses of the isolations for the sources are relatively softer 

than that for the raft. 



 

 

4. EXPERIMENTAL VALIDATION 

4.1 Test rig 

A photograph of the experimental test rig is shown in Figure 5(a). A 1.2m×0.102m ×0.025m 

aluminium box section beam was used as the support platform which was resiliently attached to the ground. 

On the top the raft, two aluminium smaller plates was mounted by 4 rubber mounts respectively. Each plate 

supports a Data Physics IV40 inertial shaker. The shakers were installed away from the centre of each plate, 

in which case, both forces and moments can be introduced into the support raft below. All other relevant 

properties were used in the numerical simulation described in the previous section. A block diagram of the 

experimental test rig, including the instrumentation, is shown in Figure 5. One of the shakers (left-hand side 

one) was to simulate the reference machine, while the other one was used as a control machine, for which 

the phase was adjustable.  

 

(a)                                        (b) 

Figure 5. Photograph of the experimental test rig, details of which can be found in Table 3 (a) and the 

block diagram of the experimental test rig (b). 

4.2 Manual synchrophasing test 

As shown in Figure 5(b), the excitation signals supplied to each shaker through the power amplifier 

were generated by a two-channel signal generator by which the precise phase angle between the two signals 

can be adjusted manually. Although the phase between the forces applied to the system by the shakers was 

unknown, measuring the transfer mobilities can take this into account and then be used to determine the 

optimum phase angle between the driving signals that will minimize or maximize the cost function. Rather 

than driving the shakers with band limited white noise and measuring the responses of the identical 

positions, which is not suitable for the real rotating machines as described above, the PST method was used 

to determine the generalized transfer mobilities at several separate frequencies. 

Once the mobilities have been determined, the minimum and maximum cost function as well as the 

corresponding phase angle can be calculated mathematically and numerically using Matlab. The results of 

the cost function are shown in Table 4 below. 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4. Maximum and minimum value of the cost function calculated by an exhaustive search 

through 0º to 360º at certain frequencies using the transfer mobilities determined by the PST. 

Frequency/HZ 12 17.5 20 22 24 25 26 28 30 32 

Minimum cost 

function/dB 
-37.50 -35.90 -37.50 -35.90 -32.37 -32.37 -24.47 -27.75 -27.41 -20.20 

Maximum cost 

function/dB 
-33.12 -29.28 -33.12 -29.28 -28.34 -28.34 -20.85 -17.92 -22.01 -15.51 

Frequency/HZ 34 35 36 40 43 50 57 61 80 100 

Minimum cost 

function/dB 
-22.75 -24.47 -15.69 -27.75 -22.62 -20.20 -22.75 -15.69 -22.91 -20.40 

Maximum cost 

function/dB 
-17.45 -20.85 -11.79 -17.92 -7.16 -15.51 -17.45 -11.79 -12.98 -14.57 

It is clear that different levels of reductions of the cost function, from 4dB to 15dB can be achieved 

using synchrophasing at these particular frequencies. More importantly, the phase angles show how well 

they agree with the simulation results, especially at the low frequencies. When the excitation frequency was 

less than 20 Hz, the phase needed to minimize the cost function is 0º or 180º and the change appears around 

16Hz, which is quite similar to the numerical results. On the other hand, however, in the frequency range 

from 30Hz to 70Hz, although there is a clear shift of the phase angle in the simulation, the experimental 

results show a more complicated change required for the phase angle due to the elasticity of the raft. 

5. CONCLUSION 

This paper has extended previous work on synchrophasing vibration control. The experimental 

validation took place on an aluminium extruded box section beam excited by several shakers, while the 

shakers in this study were supported by a separated beam and then resiliently attached by four rubber 

mounts to the host raft. This kind of machinery installation is quite common in reality such as on a ship; 

therefore, the forces and moments introduced by the machines were taken into account. 

As shown both theoretically and experimentally in this paper, adjusting the relative phase angle 

between the shakers can reduce the cost function which is the sum of the squares of velocities of each end 

of the raft.  
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