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Abstract: Fabrication capabilities of high optical quality hexagonal superstructures by chemical 

etching of inverted ferroelectric domains in Lithium Niobate platform suggests a route for efficient 

implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-

resonators are proposed as a platform for second harmonic generation (SHG) by the combined 

mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme 

for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness 

of SHG devices compared to traditional linear-type based devices. A simple theoretical model based 

on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity 

size. Furthermore numerical simulation results based on finite difference time domain (FDTD) Beam 

Propagation Method (BPM) analysis confirmed the solutions obtained by demonstrating resonant 

operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, 

optimization issues and characteristics of the proposed nonlinear device are presented.  

 

Keywords: Lithium Niobate, nonlinear, total-internal-reflection, quasi-phase-matching, 

microresonator, microcavity, second harmonic generation, simulation, optical circuits 

 

 

1.  Introduction 
Current technology trends are moving photonic devices towards smaller dimensions and higher 

integration density, while integrated optical cavities form a characteristic technological area with 

increased research and technological interest. Those cavities are aimed at trapping light, ideally 

without any loss, until they are triggered to release the stored light out of the cavity. Practically, 

eliminating losses within a cavity is very hard and a more efficient optical cavity is one that can store 

a large fraction of the light compared to that lost during the cavity lifetime. A figure of merit, used to 

describe the energy stored in the cavity, relative to the energy lost by the cavity per round trip, is the 

quality factor (Q) and therefore effective optical cavities possess high Q characteristics. In optical 

applications, such as high speed communications systems, the integration of different optical 

components with strict size and packaging requirements is crucial for the development of high 
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performance and practical devices. This imposes a size and compactness requirement on any optical 

components, such as optical cavities, as parts of high density optical integrated circuits. Thus, a high 

Q is not enough unless the corresponding cavity is small enough to be integrated with other micro-

optical components and form part of a practical optical circuit. Such optical microcavities of 

micrometers dimensions, [1, 2] have attracted increased research attention as they could play a key 

role in the enhancement of integrated optical circuits' functionality. They are normally placed near to 

at least one coupling waveguide device which then allows in-coupling and out-coupling of light [3]. 

Microcavities have been used for various applications such as micro lasers [4, 5], optical filters [6, 7] 

and non-linear devices [8, 9], amongst others. Light confinement and resonance within the 

microcavity is achieved via total internal reflection of the light beam between the guiding and the 

surrounding medium, and mode wavefront matching per round trip. With mature waveguide 

fabrication technologies available, microcavities with high modal confinements and low modal 

volume have started to emerge and several geometries of the cavities including microspheres, 

polygonal cavities [10 -13], and photonic crystal resonators have been investigated so far for a range 

of applications. Further to microcavities, current methods have been demonstrated for the efficient 

fabrication of  waveguide-based devices and integrated optical circuits even in nonlinear optical 

platforms such as Lithium Niobate [14, 15] allowing thus the future integration of different optical 

components in  single optical chips [16] for certain demanding applications. 

 

Here, we focus on optical microcavities for nonlinear applications such as nonlinear frequency 

generation [17, 18] and more specifically on SHG devices [19, 20], that have been lately implemented 

by different fabrication architectures. Our approach here is targeted to properly utilize the signal 

stored at resonance within the cavity in order to enhance the efficiency of the nonlinear optical 

process. Nonlinear processes such as SHG have a quadratic dependence on the intensity of the 

fundamental input wave (FW) (Iω), the total length of interaction during propagation (l) and the 

nonlinear coefficient χ(2) ( i.e.  I2ω ∝ (Iωχ(2))2sinc2(0.5Δkl) ). Therefore, within a medium with high χ(2), 

such as LiNbO3 [21] as an example, increasing Iω and/or l can lead to higher I2ω when phase matching 

is achieved (i.e Δk = 0).  

 

For a second order nonlinear optical process, the conversion efficiency is proportional to the square 

of the propagation length within the optical device. Obviously, higher efficiency for this kind of 

process in traditional linear devices requires longer lengths that impose a limitation for integration 

with any other micro-optical systems. However, high Q within a microcavity implies an effective 

longer integration-length within a small volume. Hence multiple round trips within the microcavity 

can compensate longer lengths in bulky devices.   

 

The efficiency (η) for conversion of the FW to the second harmonic wave (SH) in a dispersive medium 

where n2ω≠nω is limited by the inherent phase mismatch, k2ω≠2kω, between the FW and SH. Perfect 

phase matching (PPM), temperature tuning and quasi phase matching (QPM) techniques have been 

used successfully to resolve this phase matching problem [22, 23]. Another technique used to 

achieve the phase matching between the two waves is total internal reflection-quasi phase matching 

process (TIR-QPM) [24, 25, 26], which utilizes the Fresnel phase shift between the FW and the 

generated SH upon total internal reflection to balance the phase shift due to dispersion [22, 27, 28, 

29]. TIR-QPM has an inherent advantage as it does not require an inverted domain structure along 

the propagation length, as is required for QPM, and can be used throughout the transparent window 
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of the material unlike the case of PPM. TIR-QPM can also be used in microcavities, where light is 

resonantly guided via TIR. When the light is resonantly guided, TIR-QPM can be as efficient as the 

perfect phase matching method.  

 

Here we investigate the conditions for QPM for SHG, in a hexagonal microcavity made from single 

crystal lithium niobate [30]. The TIR-QPM process allows QPM to occur along the propagation length 

by balancing the dispersion phase shift with the relative Fresnel phase shift between the FW and SH 

induced when the two signals undergo TIR at the interface [28]. In the conventional 1st order QPM 

process, the dispersion phase shift is cancelled after every coherence length lc = π/Δk = 

λ/[4(n2ω−2nω)], for example, by reversing the sign of the nonlinear coefficient [22]. The hexagonal 

geometry was chosen due to the fact that hexagonal optical cavities of superior optical quality can be 

fabricated by differential etching of inverted ferroelectric domains in lithium niobate [31], as shown 

by figure 1, and this platform is actually the technological drive behind the work presented here.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Hexagonal superstructure achieved by etching poled z-cut, LiNbO3. The –z face etches away while the 
+z face remains unetched when the crystal is immersed in an HF:HNO3 acid mixture  

 
In section 2 of this paper, a theoretical analysis of TIR-QPM will be presented and compared with the 

perfect-phase matching PPM mechanism and with conventional QPM utilizing periodic domain 

inversion. Section 3 presents the model for TIR-QPM in a hexagonal cavity followed by the analytical 

design of a suitable hexagonal microcavity. Section 4 presents FDTD simulations for the 

determination of the ideal hexagonal microcavity and the estimation of SHG efficiency via the TIR-

QPM mechanism.   

 

 

2. Theory: Operational principle of TIR-QPM mechanism 
The intensity of the generated SH (I2ω), assuming no depletion of the FW, can be written as [28]: 

 

                                               

22 2

2 2 1
2 12 2 2

2 0 1

8 sin( / 2)

/ 2

effd kl
I I l

n n c kl
 

  



 

 
  

 
                                    (1)       

 

where Iω is the intensity of the FW, λω is the wavelength of the FW and l1 is the interaction length 

between the FW and the generated SH and deff is an effective nonlinear coefficient. When l1 is of the 

order or longer than the coherence length lc, the amplitude of the SH, is modulated between zero 
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and its maximum value, because of the difference in phase velocity between the SH and the FW, at 

every even and odd multiple of lc respectively, for the Non Phase Matched (NPM) case as shown in 

figure 2. In birefringent materials, this phase mismatch is addressed by launching a polarized FW 

beam(s), with an incident angle equalling the phase matching angle (θm) at which, n2ω(θm) = nω(θm) 

leading to Δk = 0 and Perfect Phase Matching (PPM) [33].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Growth of the SH along the propagation length within a nonlinear crystal. PPM: perfect phase 
matching in a single domain crystal. Ι2ω in this figure is normalized  to that of PPM. QPM: first-order QPM in a 
periodically poled crystal and NPM: nonphase-matched interaction. TIR-QPM: total internal reflection-QPM. 
For TIR-QPM, the overall phase matching occurs not necessarily at lc  but at a length  l1 where the Fresnel phase 
shift balances the dispersion phase shift. The NPM curve is not shown clearly as it largely overlap with TIR-QPM 
(l1>> lc) curve. 

 

However, the PPM method suffers from the transverse walk-off of the SH wave vector away from 

that of the input polarized FW if the phase matching angle is not normal to the optical axis, thus 

degrading the conversion efficiency. QPM is a technique commonly used to enhance the efficiency of 

nonlinear interactions, such as SHG, in cases where PPM cannot be applied [23]. One example of 

QPM is by periodic poling in LiNbO3 or KTP where the sign of the relevant nonlinear second-order 

coefficient dij is inverted after each length lc (for the case of first order QPM as shown in figure 2) to 

compensate for the phase shift between the FW and the SH [23]. The inversion of dij at every lc 

prevents the down conversion of SH into FW at every odd number of lc and enables the growth of 

SH. However the QPM technique has several advantages over the PPM technique as in QPM, the 

whole window of optical transparency and all corresponding nonlinear coefficients of a material can 

be used for effective nonlinear interaction provided that the desired QPM period (Λ) can be 

achieved. Also, QPM allows the use of the largest nonlinear coefficient which for LiNbO3 is d33, as an 

example, since the input incident angle of the FW is not limited to θm.  
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However, in the QPM process, Λ∝λ where Λ is the period of the inverted domain pattern, which 

implies the requirement of short periods for low values of wavelength which are not always 

implementable via conventional methods. Another way to achieve QPM is by utilizing the relative 

Fresnel phase shift (ΔΦF) given in equation (2)  between the FW and the induced SH, that occurs 

upon TIR of the two waves at a cavity interface after propagating for a length l1, to compensate for 

the dispersion phase mismatch (Δk · l1) [22, 28]. In this method, referred to as "TIR-QPM", both the 

FW and the induced SH are made to be reflected via TIR on a surface for the case of propagation in a 

parallel sided plate. This way FW and SH experience a relative phase difference that can cancel that 

due to dispersion. The relative Fresnel phase shift is given as: 

 

                                                                   (2 ) 2 ( )F                                                        (2)      

 

where Φγ(2ω) and Φγ(ω) are the Fresnel phase shifts of the SH and FW, respectively, which occurs 

after each TIR. Parameter γ is either p or s depending on the polarization of both FW and SH. The 

effective nonlinear coefficient (deff) can also change sign following reflection depending on the 

input/output polarizations of both FW and SH relative to the crystal symmetry. The possible change 

of sign of deff results in an extra phase shift (ξπ), with ξ being either 1 or 0, respectively. For values of 

θ above the critical angle θc, ΔΦF can take any value from 0 and 2π, as θ increases towards 90o. Thus, 

the combination of ΔΦF and ξπ can, in general, compensate for any dispersion phase shifts and 

allows for a more flexible choice of the propagation length, between adjacent reflections, as 

compared to the periodic poling case where the 2lc period constraint is strict. The global phase 

shift , between the FW and SH during TIR, is therefore the combination of all these phase shifts and 

is given in the following equation [28]. 

 

                                                
1 2 , 0,1,2,...Fkl m m                                 (3)            

 

For a given ω, θ and set input/output polarization state of the waves, the condition in equation (3) is 

only possible at certain values of l1. For a given reflectivity coefficient r for each total internal 

reflection bounce, the intensity of the generated SH (I2ω), can be written as [27]: 

                                                                                           

 

22 2

2 2 1
2 12 2 2 2

2 0 1

8 sin( / 2) 1 2 cos( )
( )

/ 2 1 2 cos( )

M M M
effd kl r r M r

I I Ml
n n c kl M r r

 

  

 

  

   
  

   
                 (4)         

        

 

while for no-reflectivity-induced loss (r=100%) it can be expressed in the simplified form:      

            

                          

2 22 2

2 2 1
2 12 2 2

2 0 1

8 sin( / 2) sin( / 2)
( )

/ 2 sin( / 2)

effd kl M
I I Ml

n n c kl M
 

  

 

  

   
    

   
                           (5)      

 

where Iω is the intensity of the FW, λω is the wavelength of the FW  and M is the number of zig-zag 

paths or single bounces. In equation (5), the first trigonometric part represents a parametric 

conversion on each path, l1, travelled by the mode between two reflections, while the second 

trigonometric part represents the interaction of all input and generated fields after each reflection. 
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For the case when l1 is exactly an odd number of lc, the combination of ΔΦF and ξπ has to sum up to 

π for QPM to occur, in which case both factors in equation (5) are maximized [28]. This case is 

referred as resonant TIR-QPM and is found to be practically more efficient as compared to the non-

resonant case. Figure 2 compares the efficiency of the PPM, QPM and TIR-QPM methods.  

 

The other advantage of TIR-QPM is that l1 can take up any values but not limited to the integral 

multiple of lc. For the case where lc > l1 the efficiency of the TIR-QPM is ideally comparable to that of 

the higher order QPM process while for lc < l1 the efficiency approaches that of PPM as shown in 

figure 2. For large values of l1 relative to the lc, the TIR-QPM efficiency is lower to that of NPM. The 

limitation to this ideal case is mostly due to the reflection losses that occur at each reflection. In 

figure 2, three values of l1=1.72, 7.35, 12.71 μm (lc =2.39 μm for λ= 955 nm) were used and the 

reflection coefficients were set to be 100%. 

 

Intensity Iω in Eq. (1) is defined at the input and it stays at that value throughout l1, so the value I2ω 

increased mainly due to l1. Within a single-resonant microcavity where FW resonates, Iω increases 

after each round trip until the steady state condition is met. Basically, Iω is amplified until steady 

state. Therefore, I2ω, increases not only due to increment of l1 but also due to the amplification of Iω. 

In a doubly-resonant microcavity where SH also resonate, I2ω is further amplified. Since the idea is to 

use the stored and cavity-enhanced FW (by the cavity) to increase the efficiency of the SHG, the ideal 

cavity of size αs is the cavity that can simultaneously accommodate and sustain the resonance of both 

FW and SH (doubly resonant).  

 

 

3.  TIR-QPM Model in Hexagonal Cavity 
Previous published works have been focussed on the study of waveguiding in hexagonal 

microcavities [34, 35, 36], where the incident angle dependence of the optical power build-up in a 

hexagonal cavity was investigated showing an increase of number of cavity round trips resulting in 

sharp resonance for a reflection angle of 60o. Only at this angle can the length between subsequent 

reflections be constant and support long lived resonances with high Q. This restriction is also critical 

for QPM operation inside the cavity, as will be demonstrated here by two-dimensional (2D) FDTD 

(RSOFT Simulation Software) simulation studies. In the FDTD simulation the permittivity tensor of 

Lithium Niobate was fully considered as it was included as a built in option in the simulation 

software. Input field FW is being launched within the cavity in order to maintain the 60 reflection 

angle [34]. In our analysis we followed this launching approach instead of the side evanescent wave 

coupling in order to focus on the operational principle rather than on other technical issues such as 

the design of side coupling sections. At this reflection angle, we avoid open-loop trajectories which 

although they also lead to cavity resonance modes (provided they are waterfront-matched after each 

cavity round-trip), they however have a short cavity life-time [28, 35]. A reflection angle of 60 also 

guarantees that the length (l1) between subsequent TIRs in the regular hexagonal cavity is equal, 

which simplifies the expression for phase compensation. 

 

The first step of the analysis will be to determine by a simplified but effective analytical model the 

optimal cavity size which supports both a resonance for the FW and provides TIR-QPM for second 

harmonic generation.  
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3.1 Analytical Design 

First, we consider the requirement for the FW to resonate in a hexagonal microcavity. The angle () 

of incidence at each reflective surface within this cavity is set at 60o and is fixed at this value for the 

entire model. Our model is based on a LiNbO3 crystal as a bulk platform and, since this crystal is both 

uniaxial and dispersive, we have to pay attention to the polarization of the FW and use the 

corresponding refractive index.  

 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Hexagonal cavity showing schematic resonance propagation of both the FW and SH.  

 

We consider here s-polarization for the FW, assuming that the c-axis of the crystal is perpendicular to 

the plane of the hexagonal cavity hence it experiences the extraordinary refractive index (nω). For 

dispersion calculation, the Sellmeier equations were used to determine the corresponding indices of 

refraction. For a given free space wavelength λο, resonance of a given mode, defined by θ inside the 

hexagonal cavity, has to satisfy the wavefront matching condition given below [35, 36]: 

 

                              ( ) 3 ( ) 3 (120 ) 2 , 0,1,2,3o

o g F Fk n L m m                             (6)      

 

where k0 is the free space propagation constant and the integer mω is the azimuthal mode order, of a 

six-bounce wavefront-matched cavity mode travelling over a single cavity-round trip of length 

( ) 3 sin(30 )oL     within a cavity with size α. 

 

As far as the resonance of the FW is concerned, what remains is to find the correct cavity size 

αω=L(60o)/3 at the given wavelength, such that the left side of equation (6) equals to an integer 

multiple of  2π. Since cos(mπ) = ±1, for integer values of m, the resonance condition in equation (6) 

for FW can be rewritten as: 
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, ,

1
cos 6 cos( ) 1

2
o e sf k n L m

    
 

        
 

                                            (7)  

 

Likewise, the resonance condition for the SH can be written as: 

 

                      
22 ,2 ,2 2

1
cos 6 cos( ) 1

2
o e sf k n L m

    
 

        
                                        

   (8) 

 

where α2ω is the resonating cavity size for SH while 
2

,L L
  

represent the round cavity length 

corresponding to optimum cavity sizes αω and α2ω by assuming θ=60ο.  For a doubly resonating cavity 

size for both the FW and the SH, equations (7-8) must be satisfied simultaneously, in which case αω= 

α2ω. Also for the TIR-QPM process, the global phase shift in equation (3) can be expressed as: 

 

                                    
1

1
cos ( ) cos( ) 1

2
Ff kl m    

 
         

 
                           (9) 

 

where αφ is the cavity size at which the dispersion phase shift will be balanced by the Fresnel phase 

shift. The ideal cavity size is  αm = αω = α2ω = αφ. Within the ideal cavity, all the factors in equations (7-

9) have values of ±1 and so their products as described by the resulting equation (10) that combines 

the above three equations:  

  

                                (10)  

 

Figure 4 shows the variation of the functions fω, f2ω, fφ and f in equations (7-9) for the s-polarized FW 

and SH in z-cut LiNbO3 at λ=0.959μm. Each of these functions has maximum values of ±1, at which 

resonance of the corresponding wave is achieved. For example at α=2.907μm, f2ω=−1 while fω≈ 0.1 

which means SH will resonate in the cavity of this size while FW will not. In calculating equations (7-

9) an s-polarization was selected so to make it possible for use of largest of the nonlinear coefficients 

(d33) of the z− cut LiNbO3 to be used for generation of SH.  

 

         

 

 

 

 

 

 

 

 

 

 

2( ) ( ) ( ) 1m m mf f f f        
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Figure  4: Plot showing the dependence of the cavity resonances of the FW, SH, TIR-QPM condition and the 
ideal condition on the cavity of dimension α.  The ideal cavity size is therefore αm = 2.98μm for λ=0.959 μm. 

 

Figure 4 displays six values of α2ω shown by ±1 values of the blue dashed curve, three values of αω 

shown by ±1 values of the red long-dash curve, from where it is obtained that the optimum cavity 

size is  αm=2.98μm, since is satisfied α2ω=αω=αφ. Figure 5 shows the variation of the combined 

function f and also the function  fφ corresponding to global phase shift factor, against the cavity size, 

which shows the locations of other possible cavity dimensions αm at αm1=2.98μm, αm2=12.73μm, and 

αm3=22.35μm, for λ=0.959μm.  

 

The value of αm is determined from the constraints formulated above and will be used in the next 

section as a guide to locate the ideal cavity size from the FDTD simulation results. Also, the cavity 

characteristics, i.e repetition of the solution of the FW in figure 4, will be used as a benchmark to 

validate the FDTD solutions. 
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Figure 5: Plot showing the dependence of the  combined  function f  versus  the cavity size. The dashed line 
represents the factor fφ corresponding to global phase shift φ.  

 

 

4. Simulation Results 
FDTD simulations were performed to investigate the response of an ideal hexagonal microcavity for 

both FW and SH waves. Emphasis was given to the individual propagation of the FW and SH within 

the microcavity. It has to be stressed that the SH here does not refer to the directly calculated second 

harmonic signal generated by the FW, but simply to a mode launched at half the wavelength of the 

FW. The evolution of this mode within the microcavity will have similar properties to the SH 

generated by FW. Thereafter we incorporate the propagation characteristics of the cavity for both 

FW and SH to estimate the SHG efficiency. The refractive index of the cavity at FW and SH 

corresponds to the extraordinary refractive index of congruent LiNbO3, as given by the Sellmeier 

equation for λ and λ/2. The polarization of the launched mode was set to TE (E-field is perpendicular 

to the cavity plane). 

 

4.1 Determination of the ideal cavity size using FDTD simulation 

Using the FDTD simulation software we will calculate a suitable resonator size (a value of αm) for 

simultaneous resonance of FW and SH. This more rigorous numerical approach will be also used to 

validate the optimum resonator size that was calculated earlier using the simplified analytical model.  

 

Continuous simulation runs of the cavity for a range of αm and for the two different resonant modes 

FW and SH were performed. From figure 6 we identify the optimum parameter α at the value 2.98 

μm where both FW and SH exhibit their maxima. Within the convergence range for both FW and SH 

simulation, the values of αm approach their calculated value. This procedure was used to determine 

the value of αm ≈ 2.98 μm in figure 4 from the TIR-QPM model. For a given wavelength λ, sustained 

cavity modes have similar properties. Hence, a full study of the cavity at the FW and SH can be 

achieved by sustained cavity modes of the individual resonances.  The SH is estimated based on the 

FW power amplification and on the Q-factors of both the FW and SH launched individually in the 

cavity.  
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Figure 6: FDTD simulation showing the optimum cavity parameter  α  for simultaneous FW and SH resonance. 
The continuous scanning of the cavity gives the value αm1 = 2.98μm where α2ω=αω. 

 

Figure 6 shows the scan of the FW (SH) for λω=959nm (λ2ω=λω/2). The refractive indices of the FW and 

the SH were set to ne,ω=2.1627 and ne,2ω=2.2632, respectively. From the above defined TIR-QPM 

model it was shown that an ideal cavity size can be located for f(αm)=±1, at a given wavelength. In 

figure 6, the ideal cavity size corresponds to the value αm≈2.98μm where fω×f2ω≈1.  

 

The determination of the ideal cavity size based on the analytical simplified TIR-QPM model shown in 

figure 4 is justified by comparing this figure with figure 6 obtained from the FDTD simulation. From 

figure 4, the period of the FW resonating cavity size, denoted by the separation between the 

adjacent absolute maxima fω=±1 is 140nm, which is similar to the separation of the FW modes in 

figure 6. The same applies for the SH, where the period is about half that of the FW. This direct 

comparison between the FDTD simulation of the scan results and the TIR-QPM model results 

validates our theoretical approach  in terms of the six-bounce propagation trajectory in a hexagonal 

microcavity. 

 

4.2 Steady-state Cavity Response 

In order to obtain the cavity response on resonance, the steady-state simulations were performed at 

the resonance wavelength. This was achieved by launching the fundamental mode and measuring 

the cavity response as a function of time until the cavity response reached the steady state, at which 

point the cavity loss per round trip and the cavity amplification per round trip are equal. A moderate 

cavity was used to minimize the cavity losses due to the sharp corners and also to minimize the large 

computational time required by a large cavity size. For λ=955nm, the corresponding suitable ideal 

cavity size is found to be αm2=13.95 μm which is equivalent to a solution for λ=959nm in figure 5. 

Here, the value of αm2 is for λ=955nm instead of λ=959nm due to the fact that fm(955) was closer to a 

unity value than fm(959).  
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Figure 7 shows power build-up for FW and SH corresponding to λ and λ/2 wavelength assuming a 

perfect hexagonal cavity. For this ideal cavity size, the cavity has a higher Q for λ/2 than for λ, as 

shown by maximum number of round trips (Nmax) and the corresponding time before steady-state. 

For FW, the amplification of the power due to cavity resonance and power build-up stops at about 5 

ps which equate to about Nmax,FW =13 round trips. At steady state, it is understood that the cavity gain 

per round trip is equal to the cavity loss per round trip and therefore there is no more amplification 

of the beam. The FW reaches steady state in about 5 ps while the SH beam would take about 12 ps 

which corresponds to Nmax,SH =33 roundtrips.  

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The cavity response for both FW and SH at a moderate ideal cavity size of αm2 =13.95μm.  The power 
output is normalized to that of SH at steady state. 

 

For the FDTD simulation a monitor functionality, common in such simulations, was employed and the 

monitor's surface was virtually located inside the cavity bisecting one of the sharp corners of the 

hexagon. The monitor allows for the field components, power or energy density to be detected and 

monitored versus elapsed time at that position in the cavity. The input beam is launched away from 

the monitor in a way to be reflected at the wall of the hexagon at the desired angle and to be 

detected at the monitor only after the completion of six bounces or a round trip. The step like 

behavior therefore, shows the build up at the monitor per total round trips or the corresponding 

elapsed time. 

  

Figure 8 shows an exponential growth curve fitted to the cavity power profile of FW in figure 7 and 

the following power profile was determined versus the count of round trips N: 

 

                                           (11) 

 

where Pω,max is the maximum amplified power of the FW while b=0.330 and represents the cavity loss 

per round trip. The FW amplification for the hexagonal cavity modelled in figure 7 follows this 

,max( ) (1 exp( ))P N P bN   
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equation (11). By using the values in figure 7 for Nmax and amplification values for FW given by 

equation (11) the SHG output from the cavity is estimated in the next section. 

                     
Figure 8: A curve fitting to the power evolution for the FW versus the N number of round trips, within a 
hexagonal microcavity, to determine the cavity loss per round trip b for an ideal cavity size of αm2 =13.95μm, 
and b=0.33. 

 

 

4.3 SHG efficiency via TIR-QPM in a hexagonal cavity 

Due to limitations in the capabilities of the FDTD simulation software it was not possible the direct 

calculation of SHG conversion yield within the cavity. Therefore the SHG conversion yield was 

estimated only indirectly by using the TIR-QPM model, together with values obtained from the 

simulation to estimate the SHG efficiency. We reasonably assume that the ideal cavity size obtained 

from the FDTD simulation has equivalent properties to those obtained from the model above. Our 

assumption has been justified above by comparing the cavity size, as this was obtained by the FDTD 

simulation, and the one obtained by using the model of six-reflection wavefront matched 

trajectories. It was found that the separation between the -1 and +1 solution in the TIR model is 

similar to the peaks' separation obtained in Figure 6. Also as described in the previous section, the 

obtained fitting curve allows the determination of the cavity loss per round trip. Based on the above 

assumptions we can then use the cavity Q factor and the number of round trips for both FW and SH 

together with the value of the power for each of the FW round trips up until the steady state 

obtained from the FDTD simulation to estimate the SH growth in the cavity. 

 

 For the SHG efficiency estimation, we would need to know the cavity Q factor for both the FW and 

SH and also the cavity amplification for FW. The cavity Q factor for SH, which is different from the 

FW, defines the maximum number of the SH round trips (Nmax,SH). We will assume that, when the FW 

has reached the steady state (Nmax,FW), there will be no more SH build-up within the cavity once the 

Nmax,SH is reached. The SH will grow in the cavity until its growth is balanced by its loss, at which point 

the SH output will be constant for the case where QFW<QSH.  

 

SH growth is attributed to the combination of two mechanisms: firstly, the conversion growth due to 

the presence of the FW over the entire length of the FW propagation with the cavity and secondly, 
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the gain growth of the SH as it builds up within the cavity. The latter growth contribution is due to 

the fact that the cavity resonate both the FW and SH. If, for example, the cavity did not resonate the 

SH, the only SH growth mechanism would be that due to the presence of the FW similar to the 

normal QPM. This individual conversion growth mechanism, must lead to high SHG efficiency per 

volume of the hexagon via the quadratic dependence of the SH on the resonated FW. In other words, 

this conversion mechanism will be the dominant one, however it will not be effective on its own as 

most of the SH signal will be radiated out if the latter signal itself is not resonated. 

 

Equation (5) was then used to estimate the SH build-up within the cavity until it reaches the steady 

state, determined by Nmax,SH. The angle of incidence was fixed at 60o and only the six-bounce 

trajectory per round trip, with equal propagation length between adjacent reflections was 

considered. This is because, though these modes are wavefront matched, the SHG will not be the 

same when the lengths per bounce (l1) are not the same. The longer path length between sequential 

reflections will undergo the TIR-QPM later than the shorter path ones, leading to different SHG 

efficiency per length.  

 

Figure 9 shows the estimation of the growth of the SH in a regular hexagonal cavity (with no corners 

rounding) via the use of equation (4) for different values of the reflection coefficient (r). 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Estimated power of SH growth (versus the number of round trips) via TIR-QPM for a regular hexagon 
with no rounding, for λ= 0.955μm with αm2 = 13.95 μm and for different reflectivities r. The total length of a 
linear devices used to estimate the SH growth for PPM and QPM is 3Nα = 1.25mm. For r = 100%, the TIR-QPM 
in a hexagonal cavity greater than that from PPM method for an equivalent length while for r = 99% degrades 
down toward that of NPM. 
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In equation (4) the input Iω is not a constant value up to until 13 round-trips but takes the values of 

FW from figure 7 for TIR-QPM. For PPM and QPM, Iω was constant and equal to the starting Iω used 

for TIR-QPM because there is no resonance of the FW in these conditions. The SH wave was allowed 

to propagate until it reached the steady state, after which no further build-up is occurred. After 13 

round trips, the growth in SH is mostly due to the resonance of the SH but not the conversion from 

FW. Iω is amplified after each of the round trips by the resonance of FW within the cavity. This 

amplification, boosts the SH efficiency (via the TIR-QPM) to be more efficient than that via PPM and 

QPM methods. Without this amplification, TIR-QPM method will never be more efficient than the 

PPM method, and for our choice of the cavity size αm2=13.95μm, it will be less efficient as compared 

to the QPM method (see figure 2). The total length of the devices used to estimate the SH growth for 

PPM and QPM is NL=3Nα=1.25mm, about 90 time longer than the hexagonal microcavity used for 

TIR-QPM.  

 

The effective number of reflections inside the microcavity is limited by the Goos-Hanchen shift and 

by the surface roughness on the sidewalls of the cavity which controls the value of r [18]. There is an 

effective number of single bounces M or equivalently of corresponding number N of round trips for a 

given reflectivity r after which there will be no wave's build-up as can be derived by the asymptotic 

behaviour of the following trigonometric factor of equation (4):  

 

                                    (12) 

 

 

where   is the global phase shift given by Eq. (3). The effect of reflectivity r is shown in figure 9 

where I2ω drops as the reflection losses increase. 

                      
Figure 10: Growth of the SH for different degrees of rounding of the hexagonal corners, for λ=0.955μm with 
α=13.95μm. The corresponding steady state modeled patterns illustrate the scattering effect at the corners of 
the cavity as attributed to the effect of rounding.  
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It was studied also the optimization of hexagonal cavity's shape by considering the effect of corners 

rounding. The degree of rounding is described by the parameter R/α where R is the local radius of 

the curvature of the circle that induces the rounding in the hexagon and varies from 0 to 0.5α 

corresponding to hexagonal and circular microcavities respectively.  As R/α increases, the Q factor 

increases, leading to longer cavity lifetime for both the FW and the SH and hence to SH efficiency 

increase. By increasing R/α ratio this results in a blue-shift in the resonance wavelength, while this 

can be attributed to the growth of the cavity size per rounding resulting in a longer cavity path 

length. Hence, to keep the resonating wavelength constant, the cavity size has to be reduced per 

rounding for the cavity path length to remain constant. As the employed TIR-QPM model does not 

see any rounding effects applied to the cavity within the six-bounce trajectories, we keep the 

wavelength and cavity size constant and use the rounding-effect results.  

 

Figure 10 shows the estimated normalized SH signal as related to the degree of cavity rounding. The 

inset colour images illustrate indicatively different steady state resonance of SH for different degrees 

of rounding, demonstrating also the decreased scattering effect at the rounded corners' compared to 

non-rounded corners in the typical hexagonal cavity. The SH wave increases with smoothing of the 

corners of the cavity owing to the increasing Q-factor at resonance. The rounding effect for 

(R/α)>20% is not shown as the propagation mechanism within the cavity changes from a six-bounce 

trajectory to whispering gallery type. 

 

5. Conclusions   
Microresonators are key components for high density integrated optical circuits suitable for a variety 

of applications, from sensing, to high channel count optical filters for DWDM systems. In addition the 

integration of nonlinear optical resonators, in integrated optical circuits is expected to greatly 

enhance their overall functionality and improve their role in more demanding applications. The 

proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and 

also the compactness of SHG devices compared to traditional linear-type based devices. A simple 

theoretical model based on six-reflection trajectory and phase matching conditions of the FW and SH 

via the TIR-QPM technique was capable for obtaining simple design rules for the determination of 

optimal cavities. Furthermore numerical simulation results based on FDTD BPM analysis confirmed 

the solutions obtained by demonstrating resonant operation of the microcavity first in the FW and 

also in the SH wave produced by TIR-QPM. These results suggest the feasibility of this proposed 

scheme that could also be extended to higher order polygons.  

 
The efficiency of the proposed TIR-QPM method is shown to be limited mostly by the reflection 

losses which limits the number of round trips to an effective number of round trips and hence 

compromises the build-up of the SH per cavity round. However TIR-QPM is capable of a high SH 

efficiency, even greater than that of perfect phase matching, for the ideal case of 100% reflectivity, 

due to the simultaneous resonance of both the FW and SH within the same cavity. The loss induced 

by the sharp corners which is a common problem in polygonal resonators and can degrade also the 

performance of passive devices could be overcome by the use of smoothed round cornered micro 

cavities, as it has been shown that the associated improvement in the Q factor and finesse can lead 

to drastical improvement in their operational characteristics. Further work is currently in progress in 

order to consider improved and more realistic FDTD simulation methods, combined also with 
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rigorous multi-parametric optimization strategies [37] for the overall improvement of nonlinear 

microresonators performance.  

 

Lithium Niobate can serve as a useful material platform to demonstrate and implement effectively 

the proposed SHG scheme because of its high non-linearity and its preferred hexagonal shaped 

resonators which result during chemical etching of the inverted ferroelectric domains. Furthermore 

current techniques of direct laser writing of waveguides in Lithium Niobate can be combined for the 

hybrid integration of different linear and non-linear components in multifunctional optical circuits. 

 

Acknowledgements: T.J.S. gratefully acknowledges the Commonwealth Scholarship Commission of 

the United Kingdom for financial support. 
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