Ewya: An Interoperable Fog Computing
Infrastructure with RDF Stream Processing

Eugene Siow, Thanassis Tiropanis, and Wendy Hall

Electronics & Computer Science, University of Southampton
{eugene.siow,t.tiropanis,wh}@soton.ac.uk

Abstract. Fog computing is an emerging technology for the Internet of
Things (IoT) that aims to support processing on resource-constrained
distributed nodes in between the sensors and actuators on the ground
and compute clusters in the cloud. Fog Computing benefits from low
latency, location awareness, mobility, wide-spread deployment and geo-
graphical distribution at the edge of the network. However, there is a need
to investigate, optimise for and measure the performance, scalability and
interoperability of resource-constrained Fog nodes running real-time ap-
plications and queries on streaming [oT data before we can realise these
benefits. With Eywa, a novel Fog Computing infrastructure, we 1) for-
mally define and implement a means of distribution and control of query
workload with an inverse publish-subscribe and push mechanism, 2) show
how data can be integrated and made interoperable through organising
data as Linked Data in the Resource Description Format (RDF), 3) test
if we can improve RDF Stream Processing query performance and scala-
bility over state-of-the-art engines with our approach to query translation
and distribution for a published IoT benchmark on resource-constrained
nodes and 4) position Fog Computing within the Internet of the Future.

Keywords: Fog Computing, Stream Processing, Interoperability, Inter-
net of Things, Query Translation, Linked Data, Workload Management

1 Introduction

In the science-fiction motion picture Avatar!, Eywa is the name of a biological
internet on the planet Pandora, made up of trees which are distributed over the
surface of the planet, that store and process information and memories. The
flora and fauna of the planet form an ubiquitous sensor network feeding Eywa.

The Internet of Things (IoT) is growing to become a similar ubiquitous net-
work of sensors and actuators for our planet. Fog computing is an emerging
technology which seeks to bridge a gap for the IoT, like the fictional Eywa on
Pandora, in between the ground where sensors and actuators are deployed and
collect/act on data, and the cloud [12], where larger amounts of resources for
processing and storing data can be provisioned dynamically.

! http://www.avatarmovie.com/

2 Ewya: An Interoperable Fog Computing Infrastructure

Some challenges for existing and past proposals of distributed system archi-
tectures within the IoT lie in 1) how the heterogeneity of device, platform and
data (which is often overlooked at the architecture level) is managed, 2) how mul-
tiple streams of data can be processed in a performant, scalable way in real-time
and 3) how and what resources can and should be provisioned for these real-
time applications. Furthermore, the architecture should also provide a means to
manage the data plane of the network, e.g. the streams, and the control plane
of the network, e.g. distribution of application processing on streams.

Bonomi et al. [7], in their paper on Fog Computing for the IoT, introduce the
defining characteristics and requirements of Fog Computing systems as 1) in-
teroperability to support heterogeneous devices and data, 2) low latency/high
performance for streaming data and real-time applications and 3) distributed
infrastructures that have the ability to scale horizontally due to the potential
wide-spread distribution and large number of resource-constrained Fog nodes.

As Fog Computing extends to the edge of the network, it benefits from low
and predictable latency due to data locality, location awareness, mobility, wide-
spread deployment and geographical distribution [6]. Furthermore, Fog Com-
puting infrastructures deployed on a network of resource-constrained devices
can enhance and support big data processing and analysing data in the cloud
by taking advantage of data locality (therefore low latency), mobility and dis-
tribution, to provide performant, interoperable and scalable services for data
integration and supporting streaming, real-time applications before cloud pro-
cessing. An example Fog Computing application given by Bonomi et al. [6] is a
Smart Traffic Light system that has local subsystem latency requirements in the
order of <10ms while requiring deep analytics over long-periods in the cloud.

The contribution of this paper is to propose a new Fog Computing architec-
ture, Eywa, and provide the components for stream processing with it, focused
on streams and data interoperability and to evaluate it based on the key metrics
of interoperability, performance and scalability (measures of a Fog Computing
system as defined by Bonomi et al. [7]) by:

1. Formally defining and implementing a means of distributing query workload
in the control plane with an inverse publish-subscribe and push mechanism.

2. Showing how streaming data from heterogeneous devices can be integrated
and made interoperable through organising data as Linked Data in the Re-
source Description Format (RDF) and taking advantage of the shape of
time-series IoT data to optimise performance in the data plane.

3. Evaluating our approach and framework, by the metrics of latency and scal-
ability, against state-of-the-art RDF Stream Processing engines using a pub-
lished Smart City benchmark, CityBench [1]. We record improved perfor-
mance and scalability for real-time applications with streaming queries on
inexpensive, mobile, resource-constrained Fog nodes.

The rest of the paper is organised as follows: we formally define a framework
for Fog Computing that allows the distribution of stream query workload for real-
time applications in Section 2 and go on in Section 3 to introduce Linked Data
and the RDF format and how it can be used to integrate and make interoperable

Ewya: An Interoperable Fog Computing Infrastructure 3

input and output from heterogeneous IoT devices. Next, Section 4 explains RDF
stream processing (RSP), how it can be optimised for time-series IoT streams and
how its implemented in Eywa. We then evaluate Eywa in Section 5 with results
and discussion in Section 6 based on the metrics of performance and scalability.
Finally, we argue for the position of Fog Computing within the Internet of the
Future as an IoT solution in Section 7 and discuss related work in Section 8.

2 Eywa: An Infrastructure for Fog Computing

The purpose and contribution of this section is to introduce and formally define
Eywa, 1) an infrastructural Fog Computing framework where stream processing
can be performed on resource-constrained lightweight computer nodes like Rasp-
berry Pis’ (RPis’), 2) where the processing workload can be distributed amongst
nodes within a inverse-pub-sub control plane and 3) each node can maintain its
own independence and control over access, resources, security and privacy.

An Eywa network, that forms the basis for the Eywa Fog Computing infras-
tructure, is explained in Definition 1. The utility of this network for processing
streams is to facilitate 1) stream query delivery to relevant nodes, 2) distributed
processing and 3) results delivery to requesting nodes. To this end, Definition 2
defines the 3 types of nodes in the network, Section 2.1 explains query delivery,
Section 2.2 distributed processing and Section 2.3 results delivery.

Definition 1 (Ewya Network,). An Eywa network, e, consists of a set of
nodes, N and connections, C, such that e = (N,C). Each node, n € N, can be a
source(s), client(T) or broker(b) node, such that n = {s,7,b}. Each connection,
c € C exists uniquely between two nodes such that C' C N x N.

Definition 2 (Source, s, Client, 7 and Broker, b nodes). Given the set of
source nodes, S, client nodes, T, and broker nodes, B, where N = SUT U B.
A source node, s € S, is a node that produces a set of time-series streams,
I'. A client node, 7 € T is a node with a set of queries Q) expecting a set of
corresponding results, R. A broker node, b € B, establishes a connection, c, for
new source and client nodes to enter the network.

As source and client nodes form up in a Eywa network, broker nodes 1) pro-
vide a point of entry for new nodes into the network, 2) not store or process but
forward data, 3) consume minimal resources and 4) employ redundancy (multi-
ple separate instances) within the network so as not be become single points of
failure. Hence, facilitating both the formation and data flow in Eywa.

2.1 Stream Query Delivery by Inverse-Publish-Subscribe

Once an Eywa network has been formed, stream processing can take place as
clients (7) issue stream queries (Q). Traditionally, source nodes (s) publish data
while client nodes subscribe to data. However, in Eywa, it is desirable for clients

4 Ewya: An Interoperable Fog Computing Infrastructure

to collaborate with the sources to share the workload, hence, we propose an
inverse-publish-subscribe mechanism for query delivery.

Each source node subscribes to a topic for each of its streams. Client nodes
then publish queries to the relevant topics. Uniform Resource Identifiers (URIs),
proven to work for the web, are used to provide a means of uniquely identifying
and exchanging topic names. Definition 3 formally describes the mechanism.

Definition 3 (Inverse-publish-subscribe). Given the set of topics, M, a
source node, s, subscribes to a topic, p € M for each stream within I to form
U, enr, sub(p), where Mr is the set of all topics of s and sub(u) is a function
that produces a subscription to . For each query, q € Q, from a client node,
7, a distribution function, a, builds a set of query-topic pairs o(q) = (Qu, My)
where Q,, is the set of all sub-queries in q, each referencing a particular topic
w and Mgy is the set of all topics referenced in q. Fach sub-query, q, € Q. s
published to it’s particular topic uq € My by the publish function of query x to
topic y, pub(z,y), so all publications from q is represented by |Jpub(q,, pq)-

2.2 Distributed Processing

Source nodes receive the queries, perform part of the processing and deliver the
results to clients that process the results. This forms the axis of client-source
collaboration and distributing processing workload as defined in Definition 4.
Source nodes control their own resources and response to queries. Quality of
service is not in the scope of this work but can be configured for best effort,
service-level agreements, trustless networks or consensus protocols.

Definition 4 (Distributed Source Node Processing). A source node, s,
receives a query, q, for a topic, p, and converts it into a work function, w with
a conversion function, A\(q) — w. The work function, w is applied to the cor-
responding stream for topic p, v, where v, € I', so that w(y,) = 7, and the
resulting stream, ., is pushed to the requesting client, 7.

2.3 Push Results Delivery and Sequence Diagram

Client nodes receive results streams via a direct push from source nodes. Oper-
ations involving multiple streams, like aggregations are performed on the clients
and results of the queries are published to topics as output to applications. Def-
inition 5 details the process of results delivery and query output.

Definition 5 (Push Results Delivery). A client node, 7, receives a set of
result streams, I, by push delivery. For each query, q € Q, in the set of queries
for that client, a work function, w, is produced by A;(q) — w,; and executed
on |J7r, where v, are all the result streams corresponding to the query, q. The
result, vq, from wr(Jvr) = 74 is published to a client results topic, fi-.

Fig. 1 shows the full sequence diagram of the query processing process be-
ginning from the source nodes subscribing to topic URISs, receiving queries when
published by client nodes, distributed processing and result delivery. Table 1
shows a glossary of symbols used and their corresponding definitions.

Ewya: An Interoperable Fog Computing Infrastructure 5

| Client, T | | Broker, b | | Sourcel, s; | | Source2, s,
r—-————""—"="————— -_ == = - 1
|]]] |
| a(gl) - sub(uy) |
| (qli,p1), sub(y) |
Iverse | (q12,p2) |
Publish | 7) ql, |
Subscribe pub(qlul),
| publal,p2) —y b |
L | ‘ w(q1;)
I o) |
I : I
FH—EF———— ————— F - ——— — 1+ ———
| Vi |
Push l Yr2 — |
| lg— ®(Ye1 U Vo) |
[I
L ol

Fig. 1. Sequence Diagram of Stream Query Processing in Eywa

Table 1. Glossary of special symbols and their Definitions

Description Definition(s)
T Client node 2
i Topic (Uniformed Resource Identifier) 3
v, Stream, Set of streams 3,4,5
af Distribution function, build query-topic pairs 4

)
A0 Conversion function, converts query to work function 4
) Work function, applied to streams 4,

3 Linked Data for Interoperability

The Internet of Things (IoT) is currently beset by product silos and to unlock
its potential, an open ecosystem based upon open standards for identification,
discovery and interoperation of services is required?. As previously noted, inter-
operability is an important metric for Eywa. To provide for interoperability, we
consider Linked Data, a means of publishing data on the Web so that distributed
structured data can be interconnected, exchanged and retrieved through seman-
tic queries [5]. A common way of representing Linked Data is with the Resource
Description Format (RDF) where the use and referencing of common identi-
fiers and ontologies helps to integrate data. Furthermore, sensor ontologies like
the Semantic Sensor Ontology (SSN) [9] have been developed for Linked Data
which encourages providing machine-interpretable descriptions within RDF to
describe what data represents, where it originates from, how it can be related
to its surroundings, who is providing it, and what its attributes are e.g. a unit

2 https://www.w3.org/2014/12 /wot-ig-charter.html

6 Ewya: An Interoperable Fog Computing Infrastructure

of measure for each sensor reading, its sensor platform and location. Barnaghi
et al. [3] further support the view that Linked Data is a means of connecting
and integrating cyber, social or physical world data in the IoT.

RDF documents are composed of tuples of triples formed from a subject,
predicate and object. For example, in the statement ‘sensorl has weatherObser-
vationl’, the subject is sensorl, the predicate is has and the object is weath-
erObservationl. ‘weatherObservationl hasValue 30knots’ is another triple and
the set of these triples forms an RDF graph in which we know sensorl had an
observation with a value of 30knots. This is formally expressed in Definition 6.

Definition 6 (RDF triple, ¢ and RDF graph, G). t is a tuple (s,p,0) €
(IB)xIx(IBL) where s, p and o are subject, predicate and object respectively. I,
B and L are disjoint infinite sets of Internationalised Resource Identifiers, blank
nodes and literals respectively. G is a set of triples such that G = {z : x € t}.

The use of Internationalised Resource Identifiers (IRIs), URIs that support
unicode characters, like ‘http://purl.oclc.org/NET /sao/hasValue’, enables re-
sources to be uniquely identified and referenced. Blank node’s are anonymous
resources without an IRI and literals are values like strings and dates. SPARQL
is a language used for querying RDF.

Hence, Linked Data provides IoT interoperability as 1) RDF graphs allow
structured data to be interconnected with IRIs providing common identifiers that
can be referenced across sources, 2) SPARQL provides a means for semantically
querying RDF graphs and 3) there exist many ontologies like the SSN Ontology
[9] that provide a reference and model for organising sensor data.

4 RDF Stream Processing (RSP) for the IoT

Stankovic [18] explains that the IoT will increasingly be composed of “a very large
number of real-time sensor data stream” and that a “given stream of data will be
used in many different ways”. RDF stream processing (RSP) is the area of work
which enables Linked Data to be produced, transmitted and continuously queried
as RDF streams®. RSP enables us to take advantage of the interoperability of
RDF on streams while preserving the power of semantic queries. However, as
Buil-Aranda et al. [8] have shown with Linked Data on the web, performance is
an issue especially when dealing with a series of non-trivial queries.

We have previously surveyed about 20,000 unique IoT schema from pub-
lic IoT data streams and discovered that a large majority of the sampled de-
vices had flat schemata and wide schemata (99.5% and 76.3% respectively) [17].
Flat schemata have no nested layers (table-like rather than tree-like) and wide
schemata have more than one property besides the timestamp.

We then looked at the ontologies for integrating time-series sensor data in
RDF and observed that linked sensor data is produced from these ontologies as
1) device metadata like the location and specifications of sensors, 2) observation

% https://www.w3.org/community /rsp/

Ewya: An Interoperable Fog Computing Infrastructure 7

metadata like the units of measure and types of observation and 3) observation

data like timestamps and actual readings. A large portion of the triples produced

consisted observation metadata which was repetitive and made up of IRIs with

additional 128-bit universally unique identifier strings. Our results showed across

various scenarios that this data was often redundant and not used eventually.
It follows that Eywa’s RSP for time-series streams can be optimised to:

. Store observation data succinctly in flat and wide rows instead of graphs.

. Abstract the small set of device metadata to store as RDF mappings.

. Compress observation metadata as bindings and only materialise if needed.

. Distribute part of a query to be applied on streams on a Eywa source node
which can reduce the bandwidth required and share the workload.

=W N

When an RSP query is registered, it is translated with reference to the metadata
expressed in mappings, part of the query is distributed to the relevant source
streams and the rest of the query is applied on the subset of stream data received
on the client side as a continuous query. Any additional metadata is materialised
and added to the results. We walkthrough an example query from a smart city
scenario published in CityBench [1], a published benchmarking suite for stream-
ing applications on smart city data gathered from IoT sensors deployed within
the city of Aarhus in Denmark from February 2014 to November 2015.

Table 2 shows a weather observation from a CityBench stream. This is a
stream of actual flat and wide time-series observation data and consists of hu-
midity, temperature and wind speed readings connected to a timestamp. A source
node with this stream subscribes to the URI ‘http://...#AarhusWeatherData0’.

Table 2. CityBench: Observation from AarhusWeatherData0 Stream

timestamp hum tempm wspdm

2014-08-01T00:00:00 56.0 18.0 7.4

Listing 1.1 is the corresponding RDF mapping that stores the sensor and
observation metadata of the weather data stream. It also contains bindings to
fields from the underlying stream data e.g. ‘AarhusWeatherData0.tempm’.

Listing 1.1. CityBench AarhusWeatherDataO0 RDF Mapping (abbreviated)

@prefix ssn:<http://purl.oclc.org/NET/ssnx/ssn#>

@prefix sao:<http://purl.oclc.org/NET/sao/>

@prefix ct:<http://.../citytraffic#>

@prefix ns:<http://../SampleEventService#>

@prefix iot:<http://iot.soton.ac.uk/s2s/s2sml#>

_:obsl a ssn:0Observation;
ssn:observedProperty ns:Property-1i;
sao:hasValue "AarhusWeatherDataO.tempm"~~iot:literalMap;
ssn:observedBy ns:AarhusWeatherDataOl.

ns:Property-1 a ct:Temperature.

_:obs2 a ssn:Observation;
ssn:observedProperty ns:Property-2;
sao:hasValue "AarhusWeatherDataO.hum"~~iot:literalMap;
ssn:observedBy ns:AarhusWeatherDataO.

ns:Property-2 a ct:Humidity.

_:obs3 a ssn:0Observation;
ssn:observedProperty ns:Property-3;
sao:hasValue "AarhusWeatherDataO.wspdm"~~iot:literalMap;
ssn:observedBy ns:AarhusWeatherDataOl.

ns:Property-3 a ct:WindSpeed.

8 Ewya: An Interoperable Fog Computing Infrastructure

This mapping references various ontologies like the Semantic Sensor Network
(SSN) Ontology* and City Traffic Ontology, providing a common way of describ-
ing sensor data, increasing interoperability. A formal definition of the mapping
language is covered in our previous paper [16] and as a specification®.

Similarly, a mapping is available for the stream of traffic data at various
locations in the city. The traffic stream consists of fields like avgSpeed and con-
gestionLevel connected to a timestamp.

Listing 1.2 shows Query 2 of CityBench expressed in the W3C recommended
RSP-QL syntax for RSP engines®, that at the time of writing no other engines
support yet. When registered, it processes both traffic and weather streams for
observations of traffic congestion level and weather (e.g. temperature), from a
particular stretch of road, for the last 3 seconds. The semantic expressivity of the
RDF graph query provides for interoperability, however, the underlying values
vl to v4 are actually from just 2 fields from each flattened stream.

Listing 1.2. CityBench Query 2: Finding the traffic congestion level and weather
conditions of my planned journey (abbreviated)

SELECT ?vl ?v2 ?v3 7v4
FROM NAMED WINDOW :traffic ON <http://...#AarhusTrafficDatal58505> [RANGE PT3S]
FROM NAMED WINDOW :weather ON <http://...#AarhusWeatherDataO> [RANGE PT3S]
WHERE {
WINDOW :weather {
7obIdl a ssn:0Observation;
ssn:observedProperty 7pi;
sao:hasValue ?vil;
ssn:observedBy ns:AarhusWeatherDataO.
?pl a ct:Temperature. ... }
WINDOW :traffic {
70bId4 a ssn:0Observation;
ssn:observedProperty ?7p4;
sao:hasValue 7vd;
ssn:observedBy ns:AarhusTrafficDatal58505.
?p4 a ct:CongestionLevel. } }

This query is then translated using the RDF mappings as explained in Section
4.1, distributed by Eywa’s inverse-pub-sub, processed and returned to the client
for processing as in 4.2 and are streamed to downstream applications. The entire
architecture of Eywa’s RSP engine is summarised in 4.3.

4.1 Query Translation

Firstly, the RSP-QL query is broken down into algebra as in Diagram 1.1.
The algebra tree is traversed from leaf to root. At the Window.yeather node,
the basic graph pattern (BGP), BGPyeather, Which compromises:

?0bId1l a ssn:Observation;
ssn:observedProperty 7pi;
sao:hasValue ?vi;
ssn:observedBy ns:AarhusWeatherData0.
?pl a ct:Temperature. (...humidity and wind speed parts)

is matched against the AarhusWeatherData0 RDF mapping from Listing 1.1.
This matching can be done by any in-memory SPARQL engine and in our im-

* http:/ /www.w3.org/ TR /vocab-ssn/
® https://github.com/eugenesiow /sparql2sql/wiki/S2SML
5 https://www.w3.org/community /rsp/

Ewya: An Interoperable Fog Computing Infrastructure 9

Project
|

Join

Window.eather Window:traffic

| |
BGPweather BGPtraffic

Diagram 1.1. Algebra of CityBench Query 2 from Listing 1.2

plementation we provide interfaces for popular open source engines’. The re-
sults of this step includes a result set bindings variable ?vi from BGPyecather
to the field AarhusWeatherData0.tempm in the stream and so forth. Similarly,
from Window.irayfic We retrieve the binding of variable ?v4 to AarhusTraffic-
Data158505.congestionLevel from the result set.

At the Join node, since no variables overlap from the weather and traffic
windows, the result sets are passed upwards to the Project node.

At the Project node, variables Tvl to 7v4 are projected. Any variable renam-
ing/aliases will be taken care of in the projection as well. The simplified stream
query expressed in Event Processing Language (EPL)® is shown in Listing 1.3:

Listing 1.3. CityBench Query 2 simplified and translated to EPL

SELECT AarhusWeatherDatal.tempm AS v1 ,
AarhusWeatherDataO.hum AS v2 ,
AarhusWeatherData0O.wspdm AS v3 ,
AarhusTrafficDatal58505.congestionLevel AS v4

FROM AarhusWeatherData0.win:time(3 sec) ,
AarhusTrafficDatal58505.win:time (3 sec)

Query 5 which discovers the traffic congestion level on the road where a given
cultural event is happening® has algebra (in Diagram 1.2):

Project
|

Filters;ai2 4 s1on2<0.1

Join

T

Window.traf fic Join

BGP, i
G traf fic Gmphsensor GTaphcultural

\ |
BGPsenso'r BGPcultural

Diagram 1.2. Algebra of CityBench Query 5

Window.irqf fic produces a similar result set as in Query 2. However, Graphgensor
and Graphcyitural reference a static/graph source instead of a stream, hence the

" https://github.com /eugenesiow/sparql2sql /wiki/SWIBRE
8 http://www.espertech.com/products/esper.php
9 https://github.com/eugenesiow /Benchmark /wiki/Q05

10 Ewya: An Interoperable Fog Computing Infrastructure

simplified translated syntax produced is SQL instead of EPL, though the method
of executing against an RDF mapping is the same e.g. Graph.yiturq; produces
the following SQL when translated against the AarhusCulturalEvents mapping:

‘SELECT title, lat, lon FROM AarhusCulturalEvents ‘

So at the first Join in the tree from the leaf, the SQL is integrated into the
FROM clause of the translated EPL statements produced:

FROM sql:AarhusCulturalEvents [¢SELECT title, lat, lon
FROM AarhusCulturalEvents‘] AS AarhusCulturalEsvents ,
sql:SensorRepository [¢SELECT lat, lon FROM SensorRepository‘] AS SensorRepository

At the next Join above, as there is a variable ?p2 present in both inbound
nodes, a join is performed between the RDF metadata from Window.irqf fic and
the previous Join, so the SQL within becomes (note the extra WHERE clause):

. [“SELECT lat, lon FROM SensorRepository
WHERE propId=\’Property-b9f9...\’¢] AS SensorRepository,
AarhusTrafficDatal58505.win:time (3 sec)

Finally, a filter on the addition of the square delta of latitude and longitude
constrains the traffic sensor and cultural event locations to within 0.1 units. All
queries and corresponding translations can be found on our engine’s wiki'?.

4.2 Query Distribution

Query distribution is the process whereby part of a query workload, w,, is dis-
tributed from the client (where the query is registered and the results are ex-
pected), to the source node (where the data is produced or stored).

For example, for Query 2 in CityBench (Listing 1.2), at the Project operator
at the top of the algebra tree, the engine tracks that hum, tempm and wspdm are
the fields required from Window.eather While only congestionLevel is required
from Window.irqfric. Hence, the projection of these fields is the work function,
w;, pushed to each source node producing the traffic and weather streams. The
projection tree for the streams in Query 2 are shown below in Diagram 1.3.

Weather{tempm, hum,wspdm }, Traffic{ congestionLevel }

tempm,hum,wspdm congestionLevel
201,202, 208 v/

Diagram 1.3. Projection tree for Query 2 streams

Following RSP Query Translation (Section 4.1), the resulting simplified,
translated EPL query is registered on the client. The root of the projection
tree is distributed through Eywa’s inverse-pub-sub mechanism to the subscrib-
ing source nodes of the IRIs of Window.yeather and Window.irqfric. Hence,
each source node pushes only an effective subset of each stream, 7,, with only
the projected fields to the client which further processes the EPL stream.

10 https://github.com/eugenesiow /sparql2sql /wiki

Ewya: An Interoperable Fog Computing Infrastructure 11

For static sources, the work function, w;,, also comprises SQL queries dis-
tributed to the source nodes. In Query 5 of CityBench, an SQL query:

‘ SELECT lat , lon FROM SensorRepository WHERE propId=\’Property-b9f9...\’ ‘

is executed on the static SensorRepository source node, returning results to the
client using a Java Database Connectivity (JDBC) connection.

4.3 Eywa’s RSP Architecture

Source Node, s I Broker Node, b

1

I I I |
| |2 | | | Query Translation |d-|—
| Static Source (SQL) |—>| Publish-Subcribe |<_| A L] |
- Stream Distributor | IRIS RDF EPL |
|

-

|
I Mappings Engine
L | —_ —_—— 4 L — e — —_ — — _I |

Q
&
=S
z
Q

(=9
o

-

Publish

Subscribe

RSP-QL
Queries

Sensor Data

Fig. 2. Architecture of Eywa’s RSP Fog Computing framework

Fig. 2 shows the architecture of Eywa’s RSP implementation consisting client,
source and broker nodes. The brokers use lightweight ZeroMQ sockets and binary
transmission protocol with minimal overhead to support publish-subscribe IRI
topics. Client nodes receive queries in RSP-QL and projected streams via push
from source nodes. They process complex events in queries using an EPL engine
that registers translated queries with RDF mappings. Source nodes produce
streams of time-series IoT data or store static data, e.g. sensor location data,
cultural event data. A stream distributor component pushes projected streams,
vg, to client nodes as required. Static queries utilise JDBC connections.

5 Experimentation Evaluating Eywa

The experiment uses the Smart City benchmark for Linked Data, CityBench [1],
that features real-time datasets (e.g. vehicle traffic, parking, weather, pollution,
etc.) from the city of Aarhus and streaming queries based on smart city applica-
tion requirements (e.g. parking space finder, admin console). Linked Data goes
towards fulfilling the interoperability metric and hence we evaluate Eywa’s RSP
framework by latency (performance) and scalability metrics.

The streaming and static source nodes, client nodes and broker nodes used
resource-constrained lightweight computers, in the form of Raspberry Pi 2 Model
B-+s’, suitable for inexpensive, mobile and broad Eywa Fog Computing networks.
Each had 1GB RAM, a 900MHz quad-core ARM Cortex-A7 CPU and Class 10
SD Cards. 256mb (the recommended and default 1/4th of system memory) was

12 Ewya: An Interoperable Fog Computing Infrastructure

assigned to the Java Virtual Machine on Raspbian 4.1. Ethernet connections
were used between the nodes for reliable transport.

We compared our approach, Eywa RSP, against state-of-the-art native RSP
streaming engines CQELS [11] and C-SPARQL [2]. For each query, we varied
the amount of concurrent queries and the number of data streams.

For each query and experimental configuration, we tested each engine for the
latency and memory consumption. Tests were run for 15 minutes and averaged
over 3 runs. The goal was to measure the performance (latency of queries) and
scalability (the memory consumption while varying the number of data streams
and concurrent queries). Additionally, to measure the benefits in scalability of our
Fog Computing infrastructure, Eywa-RSP was tested and compared with client,
source and broker on a single node against when they were across multiple nodes
(3 nodes) with workload distribution.

6 Results & Discussion

6.1 Latency Evaluation

The latency of a query refers to the average time consumed by the engine between
when a stream observation arrives and when the results from the query output
are generated. Nodes are synchronised using the Network Time Protocol (NTP).

15 | ‘ ‘ | | —@— CQELS
—@— Eywa-RSP
—%— C-SPARQL
o
—~
Z 10 .
>
Q
=
Q
-
3
5 - -
b
0 | |

5 10 15

Experiment Time (min)

Fig. 3. Latency of CityBench Q1 across time

Fig. 3 shows the latency over time of each of the engines for Query 1'* which
measures the traffic congestion level on two roads. As we can see, Eywa-RSP
has the lowest latency and hence best query performance. All other queries

" https://github.com/eugenesiow /Benchmark /wiki/QO01

Ewya: An Interoperable Fog Computing Infrastructure 13

show similar results, with Eywa having the lowest latency over time and are
summarised by averaging over the 15 minute interval as shown in Fig. 4.

0o CQELS o Eywa-RSP B C-SPARQL
15 F

| | | | | | | | | | | |
10 |- B
| |
ol HD HD HD T ||]
T T T T T T T T T T T T
1 2 3 5 6 7 8 9 10 11 12
Query

Average Latency (s)

Fig. 4. Average latency of CityBench Queries on RSP Engines

Bars with zero values are queries that cannot be run on that engine (Eywa:4, CQELS:4,10,12, C-SPARQL:4,6,11,12)

The reason that Eywa has a lower latency than CQELS and C-SPARQL is
because it abstracts metadata triples to mappings, which are processed in the
query translation process as opposed to in the stream itself.

Diagram 1.4 shows the algebra of the translated query 1 from CityBench,
registered on the client node. II is the operator for retrieving the projected
columns (e.g. congestionLevel) from each event in the stream window.

Project
\

Join

Window:trafficl Window:traffic2

HcongestionLevel HcongestionLevel

Diagram 1.4. Algebra of Query 1 for Eywa-RSP

The algebra for CQELS and C-SPARQL on the other hand, as shown in
Diagram 1.5, requires the retrieval of, Tpgp, for each event in the stream. The

14 Ewya: An Interoperable Fog Computing Infrastructure

extra triples are shown in Listing 1.4, representing the observation metadata
(lines 1 to 3) and relation to sensor metadata (line 4).

Listing 1.4. Additional metadata triples

7obIdl a 7ob.

70bIdl ssn:observedProperty ?pil.

7obIdl sao:hasValue ?7vl.

70obIdl ssn:observedBy <...#AarhusTrafficDatal182955>.

Project
\

Join

Window:t'rafficl Window:t'raffic2
| |

TBGP TBGP

Diagram 1.5. Algebra of Query 1 for CQELS and C-SPARQL

It is more expensive in terms of overall latency when retrieving the extra
triples and processing the query without workload distribution at the source.
Hence, Eywa-RSP proves faster than the other tested engines.

6.2 Scalability Evaluation

Scalability evaluation looks at the amount of memory resources used by each
RSP engine and the results when increasing the number of concurrent queries
and increasing the number of data streams. The lower the memory resources
used, the more scalable the system is, especially on resource-constrained nodes.

—@®— CQELS
—@— Eywa-RSP
% C-SPARQL

200

Memory Consumed (mb)

L B B e B o o
0 5 10 15

Experiment Time (min)

Fig. 5. Memory Consumed by CityBench Query 2 across time on client

Ewya: An Interoperable Fog Computing Infrastructure 15

Fig. 5 shows the memory consumption of each engine across time. Eywa-RSP
streams a more concise format of just time-series data and only the necessary
projected fields from the source node, as compared to the verbose set of triples,
in Listing 1.5, for other engines. This is consistent for other queries in CityBench
with the more complex Q5, a filter operation on 2 graphs and a stream, taking
the most memory and Q11, checking for observations from weather sensors on a
single stream, the least on all engines.

Listing 1.5. Triples from a row/event of the Traffic Stream

:Propertyl a ct:CongestionLevel.

:Observationl a ssn:0Observation;
ssn:observedProperty :Propertyl;
sao:hasValue "congestionLevel";
ssn:observedBy ns:AarhusTrafficDatal58505;
time:inXsdDateTime "timestamp".

:Observation2 a ssn:0bservation;
ssn:observedProperty :Property2;
sao:hasValue "avgSpeed";
ssn:observedBy ns:AarhusTrafficDatal58505;
time:inXsdDateTime "timestamp".

As expected, when increasing the number of concurrent queries on each en-
gine, Eywa-RSP once again achieved the lowest memory consumption. The mem-
ory consumed was also the only one consistent and did not increase over time like
C-SPARQL and CQELS. This can be seen from Fig. 6 which shows the results
of Query 5 at two different configurations of a single query and 20 concurrent
queries. There were consistent results from these 2 configurations for other City-
Bench queries. Q2 and Q8 took up significantly more memory for C-SPARQL,
Q1 and Q3 took up significantly more memory for CQELS while other queries
took slightly more memory (about 10MB). Eywa-RSP had a slight, stable 2-5MB
increase in memory consumption on increasing concurrent queries.

@ CQELS
d/}//*_a —m— Bywa-RSP

—

e} 150 = L | —%— c-sPARQL

é /“ —6— CQELS(20)

g __» —@®— BEywa-RSP(20)

g . & y C-SPARQL(20)

= 100 = N

& /

S

O 6O O0———8 v

- &

S 50

g

3]

=

Experiment Time (min)

Fig. 6. Memory Consumed when increasing # Concurrent Queries on CityBench Q5

16 Ewya: An Interoperable Fog Computing Infrastructure

Fig. 7 shows the memory consumption when increasing the number of pol-
lution data streams from 2 to 5 in CityBench’s query 10 which looks for the
most polluted area in the city in real-time!?. Eywa-RSP once again has the low-
est memory consumption and C-SPARQL actually runs out of memory on the
resource-constrained client in the 5 stream configuration just before 15 minutes.

—@— CQELS(2)
— @ Eywa-RSP(2)

) .
E 200 [| | —*&— C-SPARQL(2)
Na¥ —46— CQELS(5)
"g —&— Eywa-RSP(5)
E C-SPARQL(5)
j=}
0
=)
Q
© 100}
>
f—
e}
=
)
=)
0

5 10 15

Experiment Time (min)

Fig. 7. Memory Consumed by CityBench Q10 with varying data stream configurations

Finally, we want to observe how much the Eywa fog computing framework,
through the projection operator on the source node, actually improves the mem-
ory consumption and scalability across an increasing amount of data streams.
Fig. 8 shows the amount of memory consumed by the distributed fog execution
of the query and the single node execution of the query.

As the projection operator is distributed to the source nodes and only the
applicable part of the stream is sent to the client, there is a significant difference
in memory consumed when the number of incoming data streams are increased.
At 2 and 5 streams for query 10, the memory consumed is similar for fog and
single-node (non-fog) setups. When there were 8 streams on query 10, however,
the fog computing approach consumed less memory. This is due to the flow of
data being significantly large enough that the projection operation passed down
to the source node of each stream also has a significant effect on the overall
memory consumed. Hence, as the amount of streams increase, the Eywa’s Fog
Infrastructure provides greater scalability. Evaluation experiments forked from
the CityBench benchmark harness are available on Github!3.

12 https://github.com/eugenesiow/Benchmark/wiki/Q10
13 https://github.com/eugenesiow /Benchmark

Ewya: An Interoperable Fog Computing Infrastructure 17

—@— Fog(s)
—— Fog(8)
——k— Single(5)
—6— Single(8)

Memory Consumed (mb)

Experiment Time (min)

Fig. 8. Fog vs Single-Node: Memory Consumed while increasing streams on Q10

7 Fog Computing within the Internet of the Future

The Internet has been a great motor of socio-economic activity in the past decade
and the Internet of the Future has the potential to do even more. Like the fic-
tional Eywa in Avatar, Eywa as a Fog Computing infrastructure has the potential
to make the IoT and the planet more intelligent, more connected and at the same
time more engaged and social while valuing privacy and security.

Learning from the web, that grew as a free, open and standards-based infor-
mation space on top of the internet [4], the IoT needs to endeavour to support
interoperability. Linked Data not only encourages interoperation through the use
of URIs and common ontologies, it also represents concepts as machine-readable
graphs [5] which goes towards solving challenges like discovery and data inte-
gration in the IoT. Fog Computing that serves as a layer between sensors and
actuators and the cloud and possesses comparatively more compute and storage
than sensors, serves as the entry level of interoperability and integration.

The current business model for many web services is that free content is
exchanged for our personal data. However, as Berners-Lee states, ‘as our data
is held in proprietary silos, out of sight to us, we lose out on the benefits we
could realise if we had direct control over this data and chose when and with
whom to share it'4’. Fog Computing on lightweight, distributed computers means
that data that is collected from sensors and devices are stored and processed
locally. As access controls evolve, specific privacy policies and access control
with additional trust and fault tolerance mechanisms can be created [15].

Furthermore, as data is stored and processed by some applications locally, we
minimise the need to shuttle data to and from the cloud, there is more quality

1 https://www.theguardian.com /technology /2017 /mar/11/tim-berners-lee-web-
inventor-save-internet

18 Ewya: An Interoperable Fog Computing Infrastructure

of service guarantee for mission-critical IoT apps and there is less dependency
on supporting high bandwidth global connections. In disaster management loT
scenarios, where last-mile connectivity is lost, having data locality and offline
access is especially valuable. There are also performance benefits over storing
encrypted data in traditional clouds as a means to maintain privacy because it
is easier to perform processing (no need for crypto-processors or to apply special
encryption functions) over data. When necessary and access controls permit,
data can still be sent to the cloud for big data processing.

Finally, as the Internet and IoT advance, studying the social-technical as-
pects of the intersection between intelligent, cooperative autonomous machines
in the IoT and human users is gaining importance. Fog Computing, as a dis-
tributed, interoperable application layer between the network, autonomous IoT
end-devices, applications and human end-users can serve to 1) build and manage
this social network, 2) facilitate information flow/sharing, 3) host applications
and 4) serve as an observation platform for the study of these emerging networks.

Hence, we argue for the importance of research in Fog Computing technolo-
gies as part of the future, next-generation internet.

8 Related Work

Bonomi et al. [6] introduce Fog Computing as a platform for the Internet of
Things, its defining principles, its utility for real-time streaming applications and
the concept of distributed orchestration. These principles provide guidelines for
the formal design and implementation of our framework which registers queries
on streams and pushes results to real-time applications while introducing a novel
inverse publish-subscribe model for workload management and orchestration.

In Wireless Sensor Networks literature, identifies base station nodes as “pow-
erful devices with PC-like capabilities” which support the idea of Eywa Fog
Computing nodes and are already widely-deployed. The innovation of a Fog
Computing framework should come from managing the workload on and opti-
mising performance of these nodes.

There has been previous work on RSP with the C-SPARQL [2]| engine that
supports continuous pull-based queries over RDF data streams by using Esper'®,
a complex event processing engine, to form windows in which SPARQL queries
can be executed on an in-memory RDF model. Another engine is CQELS [11],
which is a purely native RSP, supporting both push and pull queries. Due to the
‘white-box’ approach, there is full control over query optimisation and execution.
We compare against both of these engines.

Efficient SPARQL-to-SQL translation has been investigated by Rodriguez-
Muro et al. [14] and Priyatna et al. [13]. The state-of-the-art reduces redundant
self-joins and applies query containment and semantic query optimisation to
translations. However, neither of the engines are designed to work on IoT streams
or for Fog Computing scenarios yet.

15 http:/ /www.espertech.com/products/esper.php

Ewya: An Interoperable Fog Computing Infrastructure 19

There are a few benchmarks on streaming Linked Data including: SRBench
[19], which in our previous work we have evaluated on [17], CityBench [1], which
we compare against and LSBench [10] comprising social network stream data.

9 Conclusion and Future Work

The Internet of Things has huge research potential and Fog Computing, we
argue, that is implementing a layer between the ’ground’ and the ’cloud’, can
benefit from efficient, interoperable RDF stream processing (RSP) to support
real-time applications on lightweight computers and networks. This does not re-
place, but seeks to complement large-scale processing and analytics in the cloud
by providing collection, integration and continuous querying capabilities across
distributed nodes. We go on to formally define and implement a Fog Computing
infrastructure, Eywa, that utilises inverse-publish-subscribe and push as a distri-
bution mechanism together with a query translation approach to RSP optimised
for IoT time series data. In evaluation benchmarks, Eywa showed better per-
formance and scalability as compared to state-of-the-art RSP approaches while
preserving the interoperability of Linked Data.

Furthermore, with specialised distribution mechanisms for Fog Computing,
we can maintain control, security and privacy on a per node level.

There is also potential to explore query distribution that pushes down a range
of operators to the source nodes, Quality of Service guarantees and Service Level
Agreements for source nodes and consensus algorithms for streams and sensors.

References

1. Ali;, M.I., Gao, F., Mileo, A.: CityBench: A configurable benchmark to evaluate
RSP engines using smart city datasets. Lecture Notes in Computer Science (2015)

2. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF
streams with C-SPARQL. ACM SIGMOD Record 39(1), 20 (2010)

3. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the Internet of
Things: early progress and back to the future. International Journal on Semantic
Web and Information Systems 8(1), 1-21 (2012)

4. Berners-Lee, T., Fischetti, M., Foreword By-Dertouzos, M.L.: Weaving the Web:
The original design and ultimate destiny of the World Wide Web by its inventor.
HarperInformation (2000)

5. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems 5, 1-22 (2009)

6. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog Computing: A Platform for
Internet of Things and Analytics, vol. 546 (2014)

7. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog Computing and Its Role in the
Internet of Things. Proceedings of the first edition of the MCC workshop on Mobile
cloud computing pp. 13-16 (2012)

8. Buil-Aranda, C., Hogan, A.: SPARQL Web-Querying Infrastructure: Ready for
Action? In: Proceedings of the International Semantic Web Conference (2013)

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Ewya: An Interoperable Fog Computing Infrastructure

Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K.,
Kelsey, W.D., Le Phuoc, D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A.,
Page, K., Assant, A., Sheth, A.: The SSN ontology of the W3C semantic sensor
network incubator group. Journal of Web Semantics 17, 25-32 (2012)

Danh, L.P., Minh, D.T., Pham, M.D., Boncz, P., Eiter, T., Michael Fink: Linked
Stream Data Processing: Facts And Figures. Proceedings of International Semantic
Web Conference 2012 (2012)

Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. Pro-
ceedings of the International Semantic Web Conference (2011)

Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Tech. rep. (2011),
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and Experiences of R2RML-
based SPARQL to SQL Query Translation using Morph. In: Proceedings of the
23rd International Conference on World Wide Web. pp. 479-489 (2014)
Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
Web Semantics: Science, Services and Agents on the WWW 33, 141-169 (2014)
Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and
privacy in distributed internet of things. Computer Networks 57(10), 2266-2279
(2013)

Siow, E., Tiropanis, T., Hall, W.: Interoperable & Efficient : Linked Data for the
Internet of Things. In: Proceedings of the 3rd International Conference on Internet
Science (2016)

Siow, E., Tiropanis, T., Hall, W.: SPARQL-to-SQL on Internet of Things
Databases and Streams. In: Proceedings of 15th International Semantic Web Con-
ference (2016)

Stankovic, J.A.: Research Directions for the Internet of Things. IEEE Internet of
Things Journal 1(1), 3-9 (2014)

Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.P.: SRBench: A streaming RD-
F/SPARQL benchmark. In: Proceedings of the International Semantic Web Con-
ference. Lecture Notes in Computer Science (2012)

