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Abstract—Each year automotive systems are becoming smarter
thanks to their enhancement with sensing, actuation and com-
putation features. The recent advancements in the field of
autonomous driving have increased even more the complexity
of the electronic components used to provide such services. ISO
26262 represents the natural response to the growing concerns in
terms of the functional safety of electrical safety-related systems
in this area. However, if the functional safety analysis of digital
devices is quite a stable methodology, the same analysis for analog
components is still in its infancy. This paper aims to explore the
problem of fault analysis in analog circuits and how it can be
integrated into the design processes with minimum effort. The
methodology is based on analog language manipulation, analog
fault instrumentation and automatic abstraction. An efficient and
comprehensive flow for performing such an activity is proposed
and applied to complex case studies.

Index Terms—Fault analysis, fault injection, analog circuit,
language manipulation, abstraction

I. INTRODUCTION

Recent trends in the global automotive industry are pointing
towards cars with integrated smart features. Such “smartness”
is achieved by integrating analog components, like sensors
(e.g., position, pressure, oxygen levels, etc.) and actuators (e.g.,
steering, break, etc.), inside already developed digital Intel-
lectual Property (IP) blocks. However, this process requires
extra effort in order to ensure that the whole system is able to
provide its functionality even in presence of faults. As a natural
response, all the development phases of Original Equipment
Manufacturers (OEMs) now integrate processes which allow
compliance with the functional safety guidelines defined inside
the ISO 26262 standard [1]. Right after the publication of the
standard, several works investigated its effects on the existing
approaches and how it should be applied in practice [2]–[4].
Yet if the functional safety analysis of digital devices is quite a
stable methodology, the same analysis for analog components
is still in its infancy [5].
The contributions of this work are:

• A study of how to model and inject common analog
faults through the manipulation of descriptions written
with different writing styles and abstraction levels.

• The application of an abstraction process which simpli-
fies the manipulated descriptions, while preserving their
behaviors, in order to improve simulation efficiency.
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Fig. 1: Methodology overview.

Figure 1 illustrates the problems that this work addresses. As
such, the target of this work is a model described at different
abstraction levels (i.e., circuit, macromodel, behavioral, func-
tional) and different styles and languages.

One of the reasons of this work is the rapidly increasing
complexity of analog circuits [6]. In the past this same issue
was addressed by transforming an analog design from the
circuit level to higher levels of abstraction, in particular to
macromodel, behavioral and functional levels. If on the one
hand higher levels allow us to greatly improve simulation
efficiency, on the other hand they remove the connection
between behavior and the actual circuit structure [7]. Injection
techniques which rely on the circuit’s structure cannot be
applied at all the abstraction levels. It is worth noting that
most of today’s analog circuit designs are described at circuit
level, behavioral level or a combination of the two [8].

To enhance the re-usability of digital IPs, new languages
have been developed as extensions of widely used Hard-
ware Description Languages (HDLs), e.g., VHDL-AMS and



Verilog-AMS [9]. Such languages allow the concurrent design
of digital and analog processes. Furthermore, designers are
allowed to split complex designs into submodules and to
describe each of them with a different abstraction level and
writing style. An example can be found in [8] of how this
feature is used. Most of the fault analysis techniques work
under the single fault assumption, thus injection procedures
need to inject faults only inside one submodule at a time.
As a consequence, designers can selectively describe those
submodules where the fault resides at circuit level and exploit
the efficiency of behavioral modeling for the others. However,
this freedom leads to a high heterogeneity of abstraction levels
that could be simultaneously used in one design.

Efficient mixed-level simulation is needed in order to verify
most mixed-signal systems [10]. This is due to the extensive
use of top-down methodologies with large complex mixed-
signal systems. Such flows rely on high level simulation for
most of the development process, until the initial architectural
design is partitioned into detailed blocks at the lowest level. It
is clear that sooner or later mixed-level simulation is required
in such a process. Thus, a flexible fault injection methodology
is of utmost importance and should be able to inject faults
in each block, regardless the abstraction level or writing style
which has been used.
Based on such issues this work presents:

• a taxonomy of designs and analog fault models based on
their abstraction level;

• analog faults injection inside Verilog-AMS code through
automatic manipulation; and

• effective fault analysis through an efficient simulation.
Three case studies are used to better explain the application
of the methodology proposed by this paper1. The first case
study is a voltage-dependent resistor; its Verilog-AMS code is
shown in Listing 1. The second case study given in Listing 2
is a controlled voltage source with hysteresis. The third case
study shown in Listing 3 is the code of an accelerometer’s
interface. In this design, the variables from V1 to V5 are
parameters of the design, while the other elements of the
expressions are voltages and currents of electrical nodes.
Unlike the first design, the second and third designs have no
structural representations.

The paper is organized as follows. Section II contains an
analysis of the abstraction levels at which an analog design can
be described and the analog fault models that can be found
in the literature. For each fault model, the code manipula-
tions required to inject it are shown and explained. Such an
analysis allows to reason about how to automatically model
and simulate widely used analog fault models. Section III
presents the abstraction flow used to transform a design to the
functional level and explains how injected faults are preserved
by the abstraction. The correlation between analog faults and
designs is shown with the support of case studies in Section IV.
Section V shows the simulation statistics for the generated
code examples. Conclusions are drawn in Section VI.

1Downloaded from The Designer’s Guide (www.designers-guide.org).

Listing 1: A voltage-dependent resistor.
1 module Varistor(p, n);
2 inout p, n;
3 electrical p, n, pi, mid;
4 branch (p,pi) br_rseries;
5 branch (pi,mid) br_lseries;
6 branch (mid,n) br_cparallel;
7 branch (mid,n) br_nonlin;
8 parameter real R = 100u from [0:inf);
9 parameter real T = 1.0 from (0:inf);

10 parameter real C = 1.0e-12 from (0:inf);
11 parameter real L = 1.0e-9 from (0:inf);
12 parameter real B1 = 1.0 from (0:inf);
13 parameter real B2 = 1.0 from (0:inf);
14 parameter real B3 = 0.0 from (-inf:inf);
15 parameter real B4 = 0.0 from (0:inf);
16 parameter real Imax = 1.0e7 from (0:inf);
17 parameter real Imin = 1.0e-7 from (0:inf);
18 analog function real powlogV;
19 input logibr, B1, B2, B3, B4;
20 real logibr, B1, B2, B3, B4;
21 powlogV = pow(10.0, B1 + B2*(logibr) +
22 B3*exp(-logibr) +
23 B4*exp(logibr));
24 endfunction
25 analog begin : the_module
26 real ibranch, logibr, vbranch, rlin;
27 V(br_rseries) <+ R * I(br_rseries);
28 V(br_lseries) <+ L * ddt(I(br_lseries));
29 I(br_cparallel) <+ C * ddt(V(br_cparallel));
30 // Nonlinear Branch
31 ibranch = I(mid, n);
32 if (ibranch > Imin) begin
33 logibr = log(ibranch);
34 vbranch = powlogV(logibr,B1,B2,B3,B4);
35 end else if (ibranch < -Imin) begin
36 logibr = log(-ibranch);
37 vbranch = -powlogV(logibr,B1,B2,B3,B4);
38 end else begin
39 // linear interpolation for -Imin < I < Imin
40 logibr = log(Imin);
41 rlin = powlogV(logibr,B1,B2,B3,B4)/Imin;
42 vbranch = rlin * ibranch;
43 end
44 V(br_nonlin) <+ T * vbranch;
45 end
46 endmodule

Listing 2: A controlled voltage source with hysteresis.
1 module Vhys(in,out);
2 inout in, out;
3 Voltage in, out;
4 parameter real K = 40.0;
5 parameter real Vhys = 0.1;
6 parameter real Vio = 0.0;
7 parameter real Vol = -9.0;
8 parameter real Voh = 9.0;
9 real Vin, Vout, offset;

10 analog function real fcube;
11 input x, L, H;
12 real x, L, H, a;
13 begin
14 a = x / (H - L) / 1.5 + 0.5;
15 fcube = (a < 0) ? L : (a > 1) ? H :
16 L + (H - L) * (3 - 2 * a) * a * a;
17 end
18 endfunction
19 analog begin
20 @(initial_step) offset = Vio + Vhys;
21 // Get the input voltage.
22 Vin = V(in);
23 // Evaluate and set the output voltage.
24 Vout = fcube(K * (Vin - offset), Vol, Voh);
25 if (Vout == Vol) offset = Vio + abs(Vhys);
26 if (Vout == Voh) offset = Vio - abs(Vhys);
27 V(out) <+ Vout;
28 end
29 endmodule



Listing 3: The electrical interface of an accelerometer.
1 input AX, AY, AZ, TX, TY, TZ;
2 output C1, C2, C3, C4;
3 analog begin
4 I(AXD)<+ - V5 * V(AXD) + V6 * ddt(V(AX));
5 I(AYD)<+ - V7 * V(AYD) + V8 * ddt(V(AY));
6 I(AZD)<+ - V9 * V(AZD) + V10 * ddt(V(AZ));
7 I(R0D)<+ + V1 * V(R0D) + V2 * ddt(V(R0));
8 I(R1D)<+ - V3 * V(R1D) + V4 * ddt(V(R1));
9 I(R0) <+ + V23 * V(R0) - V24 * V(R1)

10 + V25 * V(TX) - V26 * V(TY) + V27 * V(TZ)
11 + V28 * V(AXD) + V29 * V(AYD) - V30 * V(AZD)
12 + V31 * ddt(V(R0D)) - V32 * ddt(V(R1D));
13 I(R1) <+ - V33 * V(R0) + V34 * V(R1)
14 - V35 * V(TX) - V36 * V(TY) - V37 * V(TZ)
15 + V38 * V(AXD) - V39 * V(AYD) - V40 * V(AZD)
16 - V41 * ddt(V(R0D)) + V42 * ddt(V(R1D));
17 // Outputs
18 V(C1) <+ + V11 * V(R0) + V12 * V(R1) + V13;
19 V(C2) <+ + V14 * V(R0) + V15 * V(R1) + V16;
20 V(C3) <+ + V17 * V(R0) + V18 * V(R1) + V19;
21 V(C4) <+ + V20 * V(R0) + V21 * V(R1) + V22;
22 end

II. FAULT TAXONOMY AND CODE MANIPULATION

In this section, we collect analog fault models from the
literature, and categorize them into a multi-level taxonomy
to show how they are applied (if possible) at each level of
abstraction. The paper focuses on the following types of faults:
short-circuit/bridge, open-circuit, potential/flow pulses and
parametric faults. The first three models are called saboteurs
and are usually injected by means of parametrized analog
blocks. Parametric faults, on the other hand, are called mutants
and produce small deviations or mutations of component
values, and for this reason they are the hardest to detect. Table I
shows a taxonomy of the aforementioned fault models based
on the four analog abstraction levels proposed in [7].

In detail, a circuit description is usually defined by con-
necting SPICE primitives and must abide by the laws of
conservation of energy. A macromodel description is a sim-
plified circuit made of controlled sources which cannot be
associated with an actual circuit but which satisfy the laws
of conservation of energy. A behavioral description is a
mathematical description with no internal structure and which
satisfies the laws of conservation of energy but only at its
external pins. A functional model is a mathematical signal
flow description, which has no internal structure and which
does not abide by the conservation laws.

TABLE I: Proposed taxonomy of analog fault models at
different levels of abstraction.

Fault Model
Abstraction

Level
Bridge/Short

Circuit
Open

Circuit
Potential/Flow

Pulse
Parametric

Functional X X
Behavioral X X

Macromodel X X X X
Circuit X X X X

p R pi L
mid

C

n

Fig. 2: Electrical topology of the voltage-dependent resistor.

A. Design taxonomy

Before moving to the categorization of the fault models, let
us see how analog and mixed-signal designs can be described
at each level of abstraction. Let us start with Listing 1, an
example of a design described at the circuit level. It represents
a variable resistor and, referring to the code, it comprises three
basic passive elements from lines 27 to 29, i.e., a resistor, an
inductor and a capacitor. It also contains a controlled voltage
source at line 44. The topology shown in Figure 2 can be
inferred from the code of Listing 1, in particular by analyzing
the differential equations defined inside the analog begin
block. In Verilog-AMS whenever an access function is used,
in this case V or I, an edge is defined inside the circuit.
The existence of a topology allows us to determine at which
abstraction level the design is described.

The design shown in Listing 2 represents a positive hystere-
sis generator controlled by the potential difference at node in.
This is an example of a behavioral description and as such the
energy conservation laws are satisfied only at the terminals,
i.e., at in and out. Internally the model has no structure;
no contribution is made between pairs of analog nodes. The
design shown in Listing 3 represents the electrical interface
of an accelerometer, which is part of a project with the goal
of designing an automotive system. This type of design is
another example of a behavioral description, but what differs
with respect to the code of Listing 2 is the writing style.
Such a design is not easily injected with faults by means of
methodologies that rely on the netlist and schematic of the
Device Under Test (DUT).

The abstraction process developed in this work and pre-
sented in Section III generates a functional description. It
produces code written in C++ that has no internal structure
and has no analog pins that have to abide by the laws of the
conservation of energy.

B. Fault taxonomy

1) Short/Bridge: The first type of fault we are going
to analyze is the short, usually caused by two bare wires
in a circuit which touch each other. Besides the different
configurations that a short can assume, it can be considered
a special case of a bridge fault with a zero resistance value.
Bridge faults usually assume values which range from 0Ω to
10kΩ [11], [12]. Given the example of Figure 2, there is a
total of ten bridge faults that can be placed inside the design:
four from the electrical nodes to ground and six between all
the pairs of nodes of the circuit. This is the estimated number
of faults without taking into account the different resistance



Listing 4: Modified voltage-dependent resistor.
1 parameter real Ropen = 1M from [0:inf);
2 analog begin : the_module
3 real ibranch, logibr, vbranch, rlin;
4 V(br_rseries) <+ R * I(br_rseries);
5 V(br_lseries) <+ L * ddt(I(br_lseries));
6 I(br_cparallel) <+ C * ddt(V(br_cparallel));
7 // Inject OpenCircuit at pi_mid
8 V(pi, mid) <+ I(pi, mid) * Ropen;
9 // Nonlinear Branch

10 ...
11 end

values that each bridge could assume. This type of fault can
be used only at the circuit and macromodel levels since it
requires knowledge about the circuit topology of the design.
With a good insight about the injected model, it is possible
to represent such a fault at the behavioral level [13], however,
since it is a design-dependent fault it cannot be automated
or generalized for other designs. For injection at circuit and
macromodel levels, a short can be modeled as a resistor. The
following example represent a 1Ω short fault injected between
node p and node pi of Listing 1:

I(p, pi) <+ V(p, pi) / 1;

While, in the following there is a 5kΩ bridge fault injected
between the same nodes:

I(p, pi) <+ V(p, pi) / 5e03;

2) Open Circuit: Open fault models are saboteurs generated
by missing contacts or cracks on the interconnections of a
circuit. But contrary to what one might think, opens do not
completely block the current flowing through an edge of the
circuit, rather, they dramatically increase the resistance of
it [14]. This fault model can be used only at the circuit and
macromodel levels, for the same reasons as short circuits. This
fault can be injected by adding a high resistance in series with
an existing edge of the circuit. The following is an example
of a 1MΩ open fault injected in series with br_lseries
which is an edge between pi and mid of Listing 1:

V(br_lseries) <+ I(br_lseries) * 1e06;

Listing 4 shows the modified Verilog-AMS code with the
aforementioned open fault injected.

3) Potential/Flow Pulses: Potential and flow pulses are
components commonly used to inject the class of saboteurs
modeling Single Event Transients (SETs). This kind of fault
is physically generated by alpha particles or neutrons hitting a
sensitive node of the circuit. An example of this fault described
with VHDL-AMS can be found in [15], while an example
described in Verilog-A can be found in [16]. Such a fault can
be modeled by a controlled potential/flow source and can be
injected inside Listing 1 with the following equation:

I(pi) <+ Pulse;

where Pulse is a value controlled by the simulation envi-
ronment and updated at each simulation step to match the
waveform of the desired fault model (e.g., double exponential,
damped sinewave).

4) Parametric: Parametric faults can have many causes,
e.g. extra residues of metal during manufacturing of an In-
tegrated Circuit (IC) or even deterioration due to aging. We
can consider parametric faults to be all those that make the
design parameters fall outside acceptable boundaries. It is
infeasible to test all the possible variations of the values
of such parameters since they belong to the domain of real
numbers and, thus, can assume an infinite number of values.
As a consequence, many works which try to deal with this type
of faults have developed techniques which aim at reducing
the number of faults that have to be tested [17], [18]. Let us
take the code of Listing 1 and in particular the declaration of
the parameters R, L and C. Injection of faulty parameters can
be can be performed with two types of code manipulations.
The first is directly inside the design, by changing the default
values associated with the parameters as follows:

// Before R = 100u
parameter real R = 125u from [0:inf);
// Before L = 1.0e-9
parameter real L = 4.8e-9 from (0:inf);
// Before C = 1.0e-12
parameter real C = 9.4e-12 from (0:inf);

However, if the design is instantiated inside a hierarchical
model, parametric faults can be injected by modifying the
instantiation as follows:

varistor #(.R(125u), .L(4.8e-9), .C(9.4e-12))
varistor_instance(p, n);

Either way, the proposed flow is also compatible with tech-
niques reported in the literature aiming at reducing the number
of analyzed faults.

All the methodologies mentioned in this section have some
limitations. Some are able to perform fault injection only at a
specific abstraction level, while others allow only the injection
of a single type of fault. Furthermore, most of them are not
automatic or cannot be automated. For this reason, a gener-
alized and automatic procedure is required, as it is already
the case in the digital world. But above all, a fault model is
required, which can be used at every level of abstraction and
following different writing styles. The proposed methodology
unifies the way analog faults are injected and disregarding
the initial abstraction level of a design, it produces a unique
functional-level description with all injected faults.

III. CODE ABSTRACTION WITH FAULTS

The code abstraction process transforms the Verilog-AMS
code written at different levels of abstraction to a functional
description. Such a manipulation allows an efficient fault anal-
ysis to be performed by reducing the simulation complexity
of an Analog and Mixed-Signal (AMS) description. Figure 3
exemplifies the steps which implement the fault analysis flow.
It starts from a preliminary analysis of the code which acquires
the structure of the design, in particular the lists of nodes and
edges. The topology is used to automatically generate the list
of fault locations based on the types of fault models which
need to be injected. A new faulty description is generated for
each fault location by injecting the equations describing the
fault model associated with the location.
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Fig. 3: Overview of the fault analysis flow.

A. Abstraction flow

First, the abstraction flow performs a nodal and loop anal-
ysis by applying Kirchhoff’s laws at the nodes and edges of
the circuit. The new equations produced by the analysis are
combined with those defined inside the analog model. Then, a
Signal Flow Graph (SFG) describing the input-output behavior
of the system is generated. It associates equations to nodes
and the relations between them as branches. It contains one
equation (either potential or flow) for each edge of the circuit.
Once the graph is completed, the derivatives and integrals
functions contained in its equations are discretized by means
of numerical differentiation and integration techniques. This
process replaces these functions with symbols (i.e., variables)
which are evaluated during the simulation according to the
selected discretization technique. The system of discretized
equations is then solved using a symbolic computation library.
For this work we used the C++ library, GiNaC [19]. Such a
flow moves the complexity of solving the system of equations
from runtime to generation time.

An abstraction flow similar to the one used in this paper
has been proposed in [20]. Here we use a similar process,
applying it to the fault-free and faulty models and then by
re-combining the resulting simplified models. However, the
aim here is to manipulate the code in such a way that
any abstraction methodology, with a similar flow, can easily
handle the injected faults. Another similar approach was
proposed [21], where Nagi, Chatterjee and Abraham discussed
a fault simulator called DRAFTS. That work exploits the
performance of high level simulation by abstracting the analog
circuit to the behavioral level and then transforming it from

the continuous s-domain of Laplace to the discrete z-domain.
At the end of the abstraction process, they perform the fault
simulation in the discretized z-domain. The work in [22] is an
example of a high-level testing framework which combines
abstraction and fault injection in the digital domain. Unlike
the work outlined here, it first abstracts the model and then
injects abstracted digital faults.

B. Preserving faulty behaviors

As shown in Figure 3, the abstraction flow is applied to
both the fault-free design and all the faulty variants. It is thus
imperative that the abstraction does not discard the information
concerning the injected faults (i.e., parameters or the entire set
of equations). For the purpose of fault analysis it is vital that
faulty behaviors are preserved by the process of abstraction.

Concerning catastrophic faults, their injection is done by
adding new equations to the existing ones, as shown in
Section II-B. Each new equation represents a new edge of the
circuit, as such its presence is considered during the generation
of Kirchhoff’s equations. When the abstraction generates the
SFG, the graph inevitably contains an equation describing
either the potential or the flow of the injected edge. The
same applies to parametric faults. These are manipulations
of components parameters which are contained inside the
equations describing the behavior of the component. As a
consequence, at least one of the two equations (i.e., the
ones describing the flow or the potential) associated with the
component is selected and thus its presence is preserved.

IV. FAULT ANALYSIS FLOW

Once the abstraction flow has been applied to all the fault-
free and faulty descriptions they are combined inside the same
model. As such, the output of the flow is a C++ class which
contains both the fault-free description and all the faulty ones.
This allows us to to improve the simulation efficiency.

An analog fault can impact on different edges of the circuit
and vice versa. Thus the equations evaluating the potential and
flow of such edges change based on the currently active fault.
An efficient mechanism which allows switching between the
faulty and fault-free equations associated with an edge must
be implemented. Since the final code is written in C++, the
natural way to do this is with a switch statement.

Listing 5 shows the result of the injection on the design of
Listing 1. As mentioned above, a switch statement is used
to change the equations describing the potential and flow
associated with an edge depending on the currently active
fault, identified by the variable faultSelector. For sake
of readability only few cases of the switch have been shown.
While building these switch statements, an analysis is carried
out to determine if there are cases with the same behavior.
This means that the these faults produce the same mutated
potential and flow equations. This allows an insight of how a
fault injected in one place of the circuit impacts on the physical
values in other places. Furthermore, it allows us to determine
equivalence between faults.



Listing 5: Injected voltage-dependent resistor.
1 void Varistor::analog_process() {
2 double ibranch, logibr, vbranch, rlin;
3 // Impact of fault at p_pi
4 switch (faultSelector) {
5 case 1: // Inject OpenCircuit at p_pi
6 case 5: // Inject OpenCircuit at pi_mid
7 case 9: // Inject OpenCircuit at mid_n
8 I_p_pi = I_pi_mid_ddt*V1 + V_mid_n_ddt*V2 + V_p*V3;
9 V_p_pi = I_pi_mid_ddt*V4 + V_mid_n_ddt*V5 + V_p*V6;

10 break;
11 case 2: // Inject ShortCircuit at p_pi
12 I_p_pi = I_pi_mid_ddt*V7 + V_mid_n_ddt*V8 + V_p*V9;
13 V_p_pi = I_pi_mid_ddt*V10+ V_mid_n_ddt*V11+ V_p*V12;
14 break;
15 ...
16 default: // Fault Free
17 I_p_pi = I_pi_mid_ddt*V29+ V_mid_n_ddt*V30+ V_p*V31;
18 V_p_pi = I_pi_mid_ddt*V32+ V_mid_n_ddt*V33+ V_p*V34;
19 break;
20 }
21 // Impact of fault at pi_mid
22 switch (faultSelector) { ... }
23 // Impact of fault at mid_n
24 switch (faultSelector) { ... }
25 // Nonlinear Branch
26 ibranch = I_mid_n;
27 if (ibranch > Imax) {
28 logibr = log(ibranch);
29 vbranch = powlogV(logibr, B1, B2, B3, B4);
30 }
31 else if (ibranch < -Imin) {
32 logibr = log(-ibranch);
33 vbranch = -powlogV(logibr, B1, B2, B3, B4);
34 }
35 else {
36 // linear interpolation for -Imin < I < Imin
37 logibr = log(Imin);
38 rlin = powlogV(logibr, B1, B2, B3, B4) / Imin;
39 vbranch = ibranch * rlin;
40 }
41 V_mid_n_1 = vbranch;
42 // Updating variables
43 I_pi_mid_ddt = I_pi_mid;
44 V_mid_n_ddt = V_mid_n;
45 }

Listing 6: Injected positive voltage hysteresis.
1 double Vhys::fcube( double x, double L, double H ) {
2 double a = x / (H - L) / 1.5 + 0.5;
3 return (a<0)?L:(a>1)?H:(L+(H-L)*(3-2*a)*a*a);
4 }
5 void Vhys::initial_step() {
6 offset = Vio + Vhys;
7 }
8 void Vhys::analog_process() {
9 // Inject Potential Pulse at in

10 V_in += potential_pulse_01
11 Vin = V_in;
12 Vout = fcube(K * (Vin - offset), Vol, Voh);
13 if (Vout == Vol) offset = Vio + abs(Vhys);
14 if (Vout == Voh) offset = Vio - abs(Vhys);
15 // Inject Potential Pulse at out
16 V_out = Vout + potential_pulse_02;
17 }

Listing 6 shows the result of the injection on the design
shown in Listing 2. As mentioned in Section II-A, this is a
behavioral description which lacks a structure and thus it can
be injected only with potential pulses. As a consequence, no
switch statement is required. However, a unique variable called
pulse is generated for each injected fault (i.e., two in this

Listing 7: Injected accelerometer’s interface.
1 void Accelerometer::analog_process() {
2 // Inject Potential Pulse at R0
3 V_R0 = V_AX * V1 + V_AX_ddt * V2 +
4 V_AY * V3 + V_AY_ddt * V4 +
5 V_AZ * V5 + V_AZ_ddt * V6 +
6 V_R0_ddt * V7 + V_R0D_ddt * V8 +
7 V_R1_ddt * V9 + V_R1D_ddt * V10 +
8 potential_pulse_01 * V11;
9 // Inject Potential Pulse at R1

10 V_R1 = V_AX * V12 + V_AX_ddt * V13 +
11 V_AY * V14 + V_AY_ddt * V15 +
12 V_AZ * V16 + V_AZ_ddt * V17 +
13 V_R0_ddt * V18 + V_R0D_ddt * V19 +
14 V_R1_ddt * V20 + V_R1D_ddt * V21 +
15 potential_pulse_02 * V22;
16 ...
17 // Inject Potential Pulse at C4
18 V_C4 = V_AX * V23 + V_AX_ddt * V24 +
19 V_AY * V25 + V_AY_ddt * V26 +
20 V_AZ * V27 + V_AZ_ddt * V28 +
21 V_R0_ddt * V29 + V_R0D_ddt * V30 +
22 V_R1_ddt * V31 + V_R1D_ddt * V32 +
23 potential_pulse_10 * V33;
24 // Updating variables
25 V_AX_ddt = AX; V_AY_ddt = AY; V_AZ_ddt = AZ;
26 V_R0_ddt = V_R0; V_R1_ddt = V_R1;
27 V_R0D_ddt = V_R0D; V_R1D_ddt = V_R1D;
28 }

case). This allows control of the activation of each fault by
modifying the value of its pulse variable. Even if the number
of catastrophic faults is limited in this case, the design presents
a number of different parameters that the proposed flow can
modify with parametric faults.

Listing 7 shows a piece of the injected code of the ac-
celerometer’s interface of Listing 3. Such a code presents the
same features of the voltage-dependent resistor, thus the only
injectable faults where pulses.

V. EXPERIMENTAL RESULTS

This section presents the results of the application of the
manipulation and abstraction flow to the three case studies
presented in Section I. The experiments have been performed
on a 64-bit Linux machine, equipped with 8 GB of memory
and a CPU with two 2.70GHz cores. All the steps and
manipulations presented in this paper have been implemented
in an automatic tool which makes use of the APIs provided by
a commercial tool [23]. These APIs provide only the front-end
to parse Verilog-AMS code and a back-end to produce C++
codes. The generated C++ code has been compiled with gcc
4.8.5. Simulation of the original Verilog-AMS code has been
performed with a leading commercial SPICE-based simulator.

Table II shows the injection statistics for the three types of
fault presented in Section II-B. It reports the number of open
circuits, short circuits, potential pulses, flow pulses and the
total number of injected faults. Table II also reports the time
required to simulate the fault-free original code, the fault-free
abstracted code and the time required to perform the entire
fault campaign. All the three scenarios have been executed
with a step of 1 us for 1 second of simulated time.

Final results shown that performing an entire fault campaign
with the proposed flow takes much less time than simulating



TABLE II: Injection statistics for the proposed case studies.

Injection Statistics Simulation Statistics

Verilog-AMS C++

Benchmark Open Short Pot. Pulse Flow Pulse Total Fault Free Fault Free Fault Campaign

Accelerometer Interface 0 0 10 0 10 341.03 s 0.07 s 0.87 s
Varistor 3 10 6 6 25 256.16 s 0.11 s 3.05 s
Voltage Hysteresis 0 0 2 0 2 244.93 s 0.05 s 0.11 s

the original code. Even though this paper does not directly
address the problem of parametric fault injection, such high
simulation performances can be used to test a great number
of deviations of designs parameters, thus also improving the
efficiency of parameter fault analysis.

VI. CONCLUDING REMARKS

This paper presents a methodology to manipulate and ab-
stract analog circuit models in order to perform an efficient
fault analysis. An overview is given of the main problems that
designers and also tools have to face to perform fault analysis.
The heterogeneity of modeling styles and abstraction levels,
with which an analog model can be described, complicates
even further the process of fault injection. To shed some light
on this, a taxonomy of the analog fault models that can be
found in literature is presented in conjunction with the fault
model that can be applied at each level of abstraction.

An abstraction flow is also presented aiming at speeding up
the simulation of the injected description. This is achieved by
transforming the description from any abstraction level to the
functional level. It is also shown that this process of abstraction
does not remove or nullify the effects of injected faults. Then,
the entire flow is applied to a series of case studies described
at different abstraction levels and with different writing styles.
The simulation results show the validity of the presented work
even with a heterogeneous set of designs.

Extensive analog fault analysis becomes feasible in this
way. The results confirm that the effectiveness of fault models
which can be found in the literature is tightly dependent on
the modeling style and abstraction level at which the design is
written. In future work, we will study a generalized fault model
which can be effectively injected into any type of design.
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