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Abstract: This paper proposes a new analytical model to predict plastic deformation and 

strain distributions in aluminium-alloy plates under low velocity impact loadings. The low 

velocity impact load on the fully clamped circular plate was idealized as a quasi-static 

normal point force acting at the center of plate. Based on apt geometrical approximation 

and assumptions, governing equations were established to predict the out-of-plane 

deflection and the radial tensile, radial and circumferential flexure strains in fully clamped 

conditions. From the deformation theory of plasticity, a new formula was derived to 

estimate the impact load by incorporating strain-energy approach, bilinear strain-hardening 

constitutive model and the one-dimensional Tresca yield criterion. Low velocity impact 

tests were performed to confirm the proposed model and good correlation was achieved 

between the predictions and actual experiments, demonstrating the practical and effective 

use of the proposed model. 
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NOMENCLATURE 

iA         transformation variable 

iC         undetermined parameter. 

D         flexure stiffness  

eE         elastic slope (or modulus) of material 

pE         plastic slope of material 
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g           gravity acceleration 

H          impact height 

rK         radial curvature 

Kθ         circumferential curvature 

m          impact mass 

P         impact load, or quasi-static normal point force acting at the center of circular plate 

rQ         shear force on the concentric circular cross-section of separated segment with a radius 

of r  

r         radial coordinate  

0r         radius of circular plate  

s         relative deviation of predictions from experiments 

t         thickness of plate 

U         total strain energy 

tU         strain energy for radial tensile deformation 

fU         strain energy for radial and circumferential flexures 

w         out-of-plane deflection of plate 

iX         nominal value of the general input variable 

Y         nominal value of the response parameter 

z         vertical coordinate 

θ         azimuth coordinate 

δ          impact dent depth 

v         Poisson ratio  

rσ         radial principal stress 

sσ         yield strength of material 

zσ         out-of-plane principal stress 

θσ         circumferential principal stress 
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eε         maximum elastic strain of material 

rε         radial flexure strain 

tε         radial tensile strain 

θε         circumferential flexure strain 

0Π         impact energy, or mgHΠ =0  

AA        aluminium alloy 

iXNSC         normalized sensitivity coefficient for the input variable iX  

 

1 INTRODUCTION 

Structures made of thin metallic plates can be subjected to low velocity impact loading from events 

such as dropped maintenance tools. Such impacts could show up as dents in the thin metallic plates 

signifying plastic deformations. Such dents can have an effect on the static strength and fatigue 

behavior of the plated structures. Hereby, there is growing interest in investigating permanent 

plastic deformation problems for thin metallic plates under low impact velocity loading.  

A significant body of literature is available dealing with the impact characteristics and permanent 

plastic deformation mechanism of thin metallic plate. These researches are classified and listed in 

Table 1 according to detailed issues. Impact experiments were conducted to reveal the effects of the 

factors of projectile shapes (e.g., blunt, hemispherical and conical noses)[1,2], thickness[2] and aspect 

ratio[3] of metallic plates, and low temperature[4,5] on the impact characteristics of metallic plates. 

Several analytical approaches/models have been proposed to predict the response and permanent 

plastic deflection of the metallic plate under low velocity impact loading by means of strain energy 

approach and non-linear strain-hardening behaviour depicted by the exponential Cowper-Symonds 

function[6-9,15,18-21], or the Johnson–Cook model[10]. FE analysis[11-13] is also important for 

understanding the impact characteristics and permanent plastic deformation mechanism of metallic 

plates.  

From the review, it is interesting to note that a number of parameters in the analytical models need 

to be determined from detailed experimental data or analysis. In addition, in order to produce the FE 

models, straight inclined segments or continuous mathematical functions have been used to depict 
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more details such as the idealized projectile nose geometry and to represent the impact path and 

dent shape of metallic plate. The one drawback of the above FE models is their intensity and 

complexity. It stands to reason that it is desirable to have a technique to address the paucity of data 

in assessing impact characteristics and permanent plastic deformation mechanism of metallic plates 

for design purposes. In other words, it is desirable to craft a technique by which the permanent 

plastic deformation or impact dent depth of metallic plates under low velocity impact loading could 

expediently be predicted using only some basic material properties and geometrical dimensions, 

without any extensive experimental investigation. The purpose of this paper, therefore, is to develop 

a new analytical method for evaluating impact characteristics and permanent plastic deformation of 

thin AA (aluminium-alloy) plates only using basic material properties and geometrical dimensions. 

 

2 ANALYTICAL MODEL FOR PREDICTING IMPACT DEFORMATION 

In order to analyze the low velocity impact behaviours, the fundamental assumptions made in this 

paper are as follows: 

(1) As is well known, the further strain arising from the travelling waves from the impact site out 

towards the plate periphery is negligibly small at low impact velocity as compared with that at high 

impact velocity. Consequently, the travelling wave effect is neglected at low impact velocity, which 

is up to about 20 m/s. 

(2) Previous literature [10] shows that unlike the highly strain rate sensitive materials (e.g., mild 

steel, etc.), aluminium-alloys (AAs) are not sensitive to the strain rate effect. Low velocity impact 

does not induce a strain rate effect for the slightly sensitive material to strain rate. For this reason, 

the strain rate effect is ignored in low velocity impact analysis for aluminium-alloy (AA) plates. In 

such a case, low velocity impact load on a fully clamped circular AA plate is idealized as the 

quasi-static normal point force acting at the center of circular plate (shown in Figures 1 and 2a). 

(3) Due to the symmetry of a fully clamped circular plate subjected to low velocity impact loading, 

the radial displacement and the rebound deformation are negligibly small in contrast to the 

out-of-plane deflection. Thus, the radial displacement and the rebound deformation are ignored, and 

the impact responses are approximated to only the radial tensile, and radial and circumferential 

flexure deformations. In reality, a number of analytical or empirical models[3,9,10,14,15,18-21] also 

neglected the radial displacement in order to simplify these models; despite this, the predicted 

 4 



results using the aforementioned models correlated well with experiments. Thus, the same 

simplification is adopted in this work to craft a simplified method for preliminary design purposes.  

(4) According to the Kirchhoff-love assumption, the normal stress zσ  is ignored too. 

From Figures 1 and 2a and Assumptions (2) and (3), it is obvious that for a circular AA plate 

subjected to a quasi-static normal point force of P  at the center of circular plate, the out-of-plane 

deflection w  is a function only for radial coordinate r . In order to analyze the out-of-plane 

deflection of the fully clamped circular plate, only a separated concentric circular segment with a 

radius of r  (shown in Figure 2b) is considered. From the force equilibrium of the separated 

concentric circular segment in the direction of Z  axis, one has 

2 rrQ Pπ =                                    (1) 

where r  is the radial coordinate in cylindrical coordinate system. rQ  is the shear force on the 

concentric circular cross-section of separated segment with a radius of r . P  is the quasi-static 

normal point force at the center of the circular plate. 

In light of the definition of shear force rQ  in linear elastic theory, it can be shown that  

2

2

1
r

d d w dwQ D
dr dr r dr

 
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 
                             (2) 
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( )
3
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                                 (3) 

where w , t  and D  are respectively the out-of-plane deflection, thickness and flexure stiffness of 

plate. eE  and v  are respectively the elastic slope and Poisson ratio of material.  

Substituting Equation (2) into Equation (1) leads to 

2

2

1
2

d d w dw PD
dr dr r dr rπ

 
− + = 

 
                          (4) 

Solving Equation (4), it is possible to have  

( )32
2

1
2 lnln

8
CrCrCrr

D
Pw +++=
π                        

(5) 

where 1C , 2C  and 3C  are the undetermined parameters. 

Equation (5) is the out-of-plane deflection function of fully clamped circular plate subjected to a 
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quasi-static normal point force at the center of circular plate. The parameters 1C , 2C  and 3C  in 

Equation (5) can be determined using the boundary conditions as follows in a two-stages process. 

(a) From the symmetry principle (or Assumption (3)), the maximum out-of-plane deflection appears 

at the center of circular plate, i.e.,  

0
0

=
=rdr

dw

                                   
(6) 

(b) On the basis of the fully clamped boundary condition, it can be shown that 
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where 0r  is the radius of circular plate. 

Substituting Equation (5) into Equations (6) and (7) results in 
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Substituting Equation (8) into Equation (5) induces 
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Equation (9) shows the out-of-plane deflection function on the fully clamped circular plate 

subjected to low velocity impact loading, with unknown P . Like the other mathematical models 

(e.g., the zero-order Bessel function of the first kind[15], etc.) for depicting the deflection profile of a 

circular plate, Equations (1) to (9) seek to craft the deformation profile of the impacted plate, more 

rationally and more easily. From Equation (9), it can be shown that the impact dent depth of the 

circular plate is 

D
Pr

wδ
r π16

2
0

0
==

=                                 
(10) 

Obviously, the result calculated from Equation (10) is the maximum value of impact dent depth, 

neglecting the elastic unloading. From Equations (9) and (10), it is apparent that the out-of-plane 

deflection w  and impact dent depth δ  on a fully clamped circular plate are with respect to the 
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unknown quasi-static normal point force (i.e., impact load) of P . The unknown impact load of P  

necessitates the solving from the deformation theory of plasticity by incorporating strain-energy 

approach, elastic-plastic strain-hardening constitutive model and yield criterion. If the impact load 

P  is solved and determined, then the out-of-plane deflection and impact dent depth of circular 

plate are obtained by using Equations (9) and (10). 

Based on the definition the radial tensile strain tε , it is possible to have  

222
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where tε  is the radial tensile strain. 

Substituting Equation (9) into Equation (11), one has 
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Letting  

0
1 r

rr = ( )10 1 <≤ r                               (13) 
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then Equation (12) becomes 

( )2
1

2
1

2
1 ln rrPAt =ε                              (15) 

Again, with aid of the definitions of radial and circumferential curvatures, it is feasible to have 
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where rK  and Kθ  are respectively the radial and circumferential curvatures. 

From Equation (16), the radial and circumferential flexure strains can be then attained as 
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where rε  and θε  are respectively the radial and circumferential strains. z  is the vertical 
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coordinate in cylindrical coordinate system. 

 

3 ANALYTICAL SOLUTION FOR PREDICTING IMPACT LOAD 

From the elastic-plastic theory, the plastic flow law of a material is generally depicted by 

incorporating the elastic-plastic strain-hardening constitutive model and the yield criterion. From an 

engineering viewpoint, the linearized elastic-plastic constitutive relation is argued to be apt and 

effective in depicting plastic flow law of material. Hence a bilinear elastic-plastic strain-hardening 

constitutive model with an elastic slope of eE  and a maximum elastic strain eε  as well as a 

plastic slope of pE  (shown in Figure 3) is implemented to describe the plastic flow law of material 

in this work. Moreover, it is proven that the Von Mises criterion seems more appropriate and 

effective for isolating the yield condition in contrast to the Tresca rule[23]. The one drawback of the 

Von Mises criterion is the intensity and complexity in identifying the yield condition owing to its 

nonlinear form. In fact, the Tresca rule, which although simplistic and linear, is effective in isolating 

the yield condition. Thus, the Tresca rule is used for identifying the yield condition in this work.  

In the cylindrical coordinate system, the Tresca criterion can be written as 

r z s

z s

r s

θ

θ

σ σ σ

σ σ σ

σ σ σ

 − =


− =
 − =                                  

(18) 

where rσ , θσ  and zσ  are respectively the principal stresses in the radial, circumferential and 

vertical directions. sσ  is the yield strength of material. 

According to the Kirchhoff-Love assumption, it can be shown that 

0zσ =                                       (19) 

Substituting Equation (19) into Equation (18) deduces 

r s
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σ σ σ
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

=
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(20) 

Equation (20) is the one-dimensional Tresca yield criterion (i.e. the maximum principal stress yield 

criterion). From Equation (20), it is expedient and effective to identify the yield condition of plate 

by comparing the principal stresses of rσ  and θσ  with the yield strength of sσ .  
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Based on the plastic flow law of material depicted by incorporating the bilinear elastic-plastic 

strain-hardening constitutive model and the one-dimensional Tresca yield criterion (or 

Equation(20)), it can be shown that the strain energy for radial tensile deformation within the plate 

is[23] 
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where pE  and eε  are respectively the plastic slope and maximum elastic strain of material in the 

bilinear elastic-plastic strain-hardening model.  

Substituting Equation (15) into Equation (21) induces 
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Similarly, the strain energy for radial and circumferential flexure can be shown to be 
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Substituting Equation (17) into Equation (26) deduces 
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( )sepeee EErtA σεεεπ 22
07 −+=                       (30) 

From Equations (22) and (27), it is possible to have total strain energy as 

( ) ( )746
2

53
4

2 AAPAPAAPAUUU ft +++++=+=         (31) 

For a free drop-hammer, the impact energy accounting for the effect of impact dent depth can be 

expressed as 

( )δ+= HmgΠ                                (32) 

where m  is the impact mass. g  is the gravity acceleration. H  is the impact height.  

In general, the energy dissipations resulted from the air resistance, friction and thermal effects are 

negligibly small in contrast to the strain energy. As a result, from an engineering viewpoint, all 

impact energy is assumed to be changed into the strain energy and absorbed in the plate through 

radial tensile, radial and circumferential flexure deformations. 

ΠU =                                     (33) 

or 

( ) ( ) 097486
2

53
4

2 =+++++++ AAAPAAPAAPA                  (34) 

with 

πD
mgr

A
16

2
0

8 −=                                 (35) 

and 

09 ΠmgHA −=−=                              (36) 

where 0Π  is the impact energy, or mgHΠ =0 . 

The value of impact load P  can be obtained by solving Equation (34). As mentioned previously, 

if P  is solved and determined, the out-of-plane deflection w  and the impact dent depth δ  can 

then be determined from Equations (9) and (10). Actually, in the case of dynamic loads, the inertia 

of the plate itself and the striking mass change with time. Even though presumably the final state 

of a plate would be the same as the predictions of a quasi-static analysis by using the same total 

energy input and deformation profile and by ignoring any potential history effects, they would not 

be the same for the sensitive material to the strain rate. Thus, as mentioned in assumption (2), the 

analytical solution in this work is suited only for the slightly sensitive materials to the strain rate 
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effect. 

 

4 COMPARISONS BETWEEN EXPERIMENTS AND PREDICTIONS 

4.1 Verifying example 1 

As shown in previous literature [10], low velocity impact tests were conducted on AA 5083-H116 

circular plates with a radius of 125 mm and three different thicknesses of 3 mm, 5 mm and 6 mm, 

by using a gas gun projectile launching system with an impact mass of 5.0 kg. The mechanical 

properties and specifications as well as experimental data of AA 5083-H116 circular plates are 

shown in Tables 2 and 3. From mechanical properties and plate specifications listed in Table 2 and 3, 

the impact dent depths and loads are predicted by using Equations (10) and (34) respectively 

(shown in Table 3). From Table 3, it is seen that the predicted values of impact dents using the 

proposed method are higher than the experimental values. This is because the influence of the strain 

component du dr  arising from the radial displacement u  and the high-order terms of Taylor 

expansion for ( )2 2dw dr dr dr+ −  on the radial tensile strain tε  are neglected. This causes the 

values of radial tensile strain in the model to be lower than the actual ones. Thus, the plate in the 

model needs more deformation to absorb the same impact energy. 

4.2 Verifying example 2 

Low velocity impact tests were carried out on fully clamped AA 2524-T3 circular plates at room 

temperature and moisture by using a free drop-hammer impact device (shown in Figure 4). The 

geometry and dimensions of specimen are shown in Figure 5. The mechanical properties of material 

and specifications are shown in Table 4. As shown in Table 4, the radius and thickness of the fully 

clamped circular plate are 11.5 mm and 1.6 mm, respectively. A conical nose was employed in low 

velocity impact tests. The mass of drop-hammer was 8.23 kg. Meanwhile, the central circular hole 

with a radius of 11.5 mm was fabricated on the rigid fixture base and the support fixture. The 

specimens were symmetrically and fully clamped on the rigid fixture base through the support 

fixture and four steel bolts.  

According to the ASTM D7136/D7136M–07[22], three sets of impact tests were conducted under 

three different levels of impact energy 0Π  and at least five specimens were employed for each set 

of impact tests. During tests, all specimens were struck by the free drop-hammer at a specific level 
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of impact energy, which was controlled by adjusting the impact height of drop-hammer from the 

rigid fixture base. The dent depths on the impacted specimens were measured using a square caliper. 

The experimental results are shown in Figures 6 and Table 5. 

Again, from Equations (10) and (34) together with mechanical properties of material and 

specifications listed in Table 4, the impact dent depths on fully clamped AA 2524-T3 circular plates 

are predicted (shown in Figure 6 and Table 5). From Figure 6 and Table 5, it is evident that the 

values derived from the proposed model are less stiff than those shown in the experimental ones.  

4.3 Strain analysis 

Substituting the mechanical properties of material and specifications (listed in Table 4) into 

Equations (15) and (17), the strain distributions in radial tensile, radial and circumferential 

directions are obtained for fully clamped AA 2524-T3 circular plate at low impact velocity (shown 

in Figures 7 to 9). From Figures 7 to 9, it can be seen that the maximum circumferential flexure 

strain decreases with the increasing relative radial distance of r/r0. In contrast, the maximum radial 

flexure strain increases with the increasing relative radial distance of r/r0. Unlike the maximum 

radial and circumferential flexure strains, the radial tensile strain firstly increases and then decreases 

with the increasing relative radial distance of r/r0, and there exists an inflection point on the curve 

of radial tensile strain versus relative radial distance. 

4.4 Discussion 

Geometrical and material parameters of the specimen and impact energy affected the dent depth 

during tests. A sensitivity analysis is conducted to determine the effect of all input parameters on 

the dent depth using the new model proposed in this paper. Normalized sensitivity coefficient (NSC) 

is defined as[24] 

2

i

i
X

i

XYNSC
Y X

 ∆
=  ∆ 

                             (37) 

where 
iXNSC  is the normalized sensitivity coefficient of the input variable iX , iX  is the 

nominal value of the general input variable, and Y  is the nominal value of the response parameter.  

Since the sensitivity coefficients of all input variables (i.e. geometrical and material parameters of 

the specimen and impact energy) are normalized relative to the same nominal value of the response 

parameter (i.e. dent depth), it is convenient to estimate and compare the sensitivity effect of each 

variables. The verifying example 2 is used in the sensitivity analysis, and a small change of the 
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input variable is assumed to be 5%. The calculated normalized sensitivity coefficients are shown in 

Figure 10. From Figure 10, it is evident that the dent depth is most sensitive to the plate thickness, 

especially for the lower impact loading case (e.g. 0Π =2.5 J). The dent depth has almost the same 

sensitivity to the impact energy, plate thickness and yield strength. This indicates that even a small 

change of the plate thickness can lead to a relative significant influence on the dent depth. That 

could be the reason for large relative deviation for a few cases. 

Jones[14] also proposed an analytical solution for the same problem considered in this paper. In the 

two verifying examples, the predicted impact dent depths using the Jones’ model are also obtained 

(shown in Tables 3 and 5). From Tables 3 and 5, it is clear that the predicted dent depths using the 

new model proposed this paper are higher than experimental results. This can be attributed to the 

simplification of the radial tensile strain in the new model that is mentioned at the end of the section 

4.1, especially for the case of the plate with thickness 1.6 mm and under the ultra lower impact 

loading (e.g. the case of 0Π =2.5 J listed in Table 5). However, the new model seems to have a 

better prediction accuracy than the Jones’ model for the cases of thicker plates. The new model and 

the Jones’ model seem to be complementary in predictions of the dent depth.  

Babaei and Darvizeh[15] also proposed an analytical model to predict the plastic deformation of 

clamped circular plates under impulsive loading. Two explosive conditions (i.e. uniform load and 

localized load) were considered in their model, and the Cowper-Symonds empirical equation with 

two material constants D and q was used in the model. In their model and experiments, the plates 

were made from the mild steel with various thickness and radii. Thus, the specific material 

constants D and q for mild steel should be chosen or determined to predict the plastic deformation. 

However, in this work, the plates were made from AA 2524-T3, and the material constants D and q 

for AA 2524-T3 are unavailable at present.  

From the above comparisons, it is clear that through Equations (10) and (34), the impact dent depth 

and strain distributions on fully clamped circular AA plates subjected to low-velocity impact 

loading could expediently be predicted without any significant experimental investigation. In other 

words, only the input of basic material properties and specifications of fully clamped circular AA 

plate is needed to predict impact dent depth and strain distributions. A reasonable correlation is 

achieved between the predictions using the proposed model and actual experiments. 
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5 CONCLUSIONS 

The focus of this paper has been to develop a new analytical method to predict the permanent 

plastic deformation and strain distributions on fully clamped circular AA plate subjected to 

low-velocity impact loading, by incorporating strain energy approach, bilinear strain-hardening 

constitutive model and one-dimensional Tresca yield criterion. Low velocity impact tests were 

conducted to confirm the new model. The new model has been proven successfully and reasonable 

correlation is achieved between predictions and actual experiments. The new model is argued to be 

a valid and rational basis for evaluating the permanent plastic deformation and strain distributions in 

fully clamped circular AA plates at low impact velocity ranged up to 13.2 m/s. 
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Figure 1  Fully clamped circular plate subjected to low velocity impact 

 

(a) Idealized fully clamped circular plate    (b) Separated concentric circular segment 

Figure 2  Idealized geometrical model 

 
Figure 3  Bilinear elastic-plastic strain-hardening constitutive model 
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Figure 4  Free drop-hammer impact device 

 

Figure 5  Geometry and dimensions for specimen (unit: mm) 
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Figure 6  Impact dent depth versus impact energy 

 

Figure 7  Radial tensile strain versus relative radial distance 
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Figure 8  Maximum radial flexure strain versus relative radial distance  

 
Figure 9  Maximum circumferential flexure strain versus relative radial distance 
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Figure 10  Normalized sensitivity coefficient (NSC) 
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Table 1  Impact analysis on plates using experimental, analytical and FE methods 

Issues Experimental work 
Analytical or 

empirical models 
FE models 

Material 

Steel 

[1] [3] [4] [6] [11] 

[12] [15] [17] [18] 

[20] 

[6] [7] [8] [9] [13] 

[14] [15] [17] 

[18] [19] 

[11] [12] [13] 

Aluminium alloy [2] [5] [6] [10] [17] 
[5] [6] [7] [10] 

[13] [17] 
[10] [13] 

Multi-layered 

metallic 
[17] [21] [17] [21]  

Configuration 

Projectile shapes 

and dimensions 

[1] [3] [4] [5] [6] 

[11] [12] 

[5] [6] [9] [13] 

[14] 
[11] [12] [13] 

Plate geometry and 

dimensions 

[2] [3] [6] [10] [15] 

[16] [17] [20] [21] 

[6] [7] [8] [9] [14] 

[15] [16] [17] 

[18] [19] [20] 

[21] 

[10] 

Velocity 
Low velocity 

[2] [3] [4] [5] [10] 

[15] [21] 

[5] [7] [8] [9] [10] 

[14] [15] [21] 
[10] 

High velocity [1] [6] [12] [17] [6] [13] [17] [11] [12] [13] 

Boundary 

condition 

Fully clamped 

[1] [2] [3] [4] [5] 

[6] [10] [11] [12] 

[15] [17] [20] [21] 

[5] [6] [7] [8] [9] 

[10] [13] [14] 

[15] [17] [18] 

[19] [20] [21] 

[10] [11] [12] 

[13] 

Simply supported - [9] [14] - 

Failure mode 

Plastic dent 
[4] [10] [15] [16] 

[17] [20] [21] 

[7] [8] [9] [10] 

[15] [16] [17] 

[18] [19] [20] 

[21] 

[10] 

Perforation 
[1] [2] [3] [4] [5] 

[6] [11] [12] 
[5] [6] [13] [11] [12] [13] 
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Temperature 
High or low 

temperatures 
[4] [5] [5] - 

 

 

Table 2  Mechanical properties for AA5083-H116[10] 

sσ  (MPa) eE  (MPa) pE  (MPa) v  eε  

200 68400 375 0.3 0.0029 

 

Table 3  Specifications and impact dent depths 

Radius 

0r  (mm) 

Thickness 

t  (mm) 

Impact 

energy 

0Π  (J) 

Experiments[10] 

δ  (mm) 

New 

model 

δ  (mm) 

Relative 

deviation 

Jones’ 

model[14] 

δ  (mm) 

Relative 

deviation 

125 3 203.4 12.80 15.31 19.6 % 11.71 -8.48% 

125 3 193.6 12.75 15.04 18.0 % 11.37 -10.82% 

125 3 208.4 12.95 15.45 19.3 % 11.89 -8.21% 

125 5 378.8 13.20 14.08 6.7 % 10.8 -17.84% 

125 5 400.1 13.05 14.41 10.4 % 11.24 -13.86% 

125 5 402.0 13.12 14.44 10.0 % 11.28 -14.05% 

125 6 436.9 12.08 13.03 7.9 % 9.83 -18.63% 

125 6 429.0 12.70 12.92 1.7 % 9.71 -23.57% 

125 6 435.6 12.75 13.01 2.0 % 9.81 -23.06% 

 

Table 4  Mechanical properties and specifications for AA2524-T3  

sσ  (MPa) eE  (MPa) pE  (MPa) v  eε  t (mm) 0 r (mm) 

324 71000 50 0.35 0.0045 1.6 11.5 
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Table 5  Impact dent depths for AA2524-T3 plate 

Impact energy 0Π  (J) 2.50 6.05 12.09 

Experiments δ  (mm) 

0.79 1.55 2.31 

0.81 1.54 2.30 

0.80 1.55 2.20 

0.79 1.50 2.24 

0.82 1.47 2.24 

Mean δ  (mm) 0.80 1.52 2.26 

New model δ  (mm)  0.99 1.65 2.56 

Relative deviation 23.80% 8.60% 13.30% 

Jones’ model[14] δ  (mm) 0.77 1.56 2.57 

Relative deviation -3.75% 2.63% 13.7% 
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