

Contents lists available at ScienceDirect

Polyhedron

Diphosphine dioxide complexes of lanthanum and lutetium – The effects of ligand architecture and counter-anion

Robert D. Bannister, William Levason*, Gillian Reid, Wenjian Zhang

Chemistry, University of Southampton, Southampton SO17 1BJ, UK

ARTICLE INFO

Article history: Received 11 April 2017 Accepted 30 April 2017 Available online 10 May 2017

Keywords:
Diphosphine dioxide
Lanthanum
Lutetium
X-ray structures
³¹P NMR spectroscopy

ABSTRACT

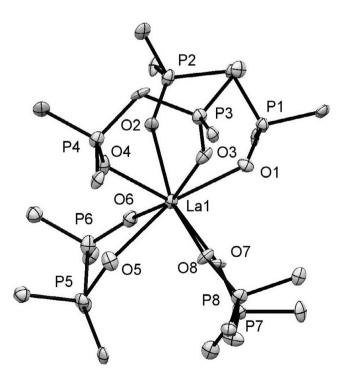
The reaction of bis(diphenylphosphino)methane dioxide (dppmO₂) with LaCl₃, LaI₃ or LaCl₃/[NH₄][PF₆] produces [La(dppmO₂)₄]Y₃ (Y = Cl, I, PF₆) which contain eight-coordinate, distorted square antiprismatic cations. In contrast, LaCl₃ or LaCl₃/[NH₄][PF₆] and 1,2-bis(diphenylphosphino)ethane dioxide (dppeO₂) produce the polymer [LaCl₃(dppeO₂)_{1.5}]_n, which has a six-coordinate La centre with three *mer*-chlorides and three Ph₂P(O)CH₂-donors from three different diphosphine dioxide ligands. The bulkier 1,2-bis (diphenylphosphino)benzene dioxide (PPO₂) forms [LaCl₂(PPO₂)₂(H₂O)₂]Cl and [LaCl₂(PPO₂)₂(H₂O)₂] [PF₆], which contain eight-coordinate La, and also the seven-coordinate [LaCl(PPO₂)₃][PF₆]₂. The smaller lutetium ion favours six-coordination in [LuCl₂(dppmO₂)₂]Cl, [Lul₂(dppmO₂)₂]I, [LuCl(dppmO₂)₂(H₂O)] [PF₆]₂·2H₂O, [LuCl₂(PPO₂)₂]Cl, [Lul₂(PPO₂)₂]I and [Lu(PPO₂)₂(H₂O)₂][PF₆]₃. All complexes were characterised by microanalysis, IR, ¹H and ³¹P{¹H} NMR spectroscopy. X-ray crystal structures are reported for [La(dppmO₂)₄]Y₃ (Y = I, PF₆), [LaCl₃(dppeO₂)_{1.5}]_n, [LaCl₂(PPO₂)₂(H₂O)(EtOH)]Cl and [LaCl(PPO₂)₃][PF₆]₂.
© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The coordination chemistries of the lanthanide elements are often viewed as very similar, with the main changes due to the lanthanide contraction, the reduction in the radius of the $\ensuremath{\text{M}}^{3+}$ ions between La (1.22 Å) and Lu (0.85 Å), and thus at some point in the series a reduction in coordination number may be driven by steric effects. However, the decrease in radius also results in an increase in the charge/radius ratio along the series and this can have significant effects on the ligand preferences, and depending upon the interplay of steric and electronic effects, discontinuities can occur at different points along the series [1-3]. Phosphine oxides (R₃PO) have proved popular ligands for lanthanide ions, and examples with a wide variety of R-groups have been reported. the majority of the work using oxygen donor anions, typically nitrate, carboxylate or triflate [4]. The effects of halide counter anions have been less studied. Thus, in acetone or ethanol solutions of LnCl₃ and Ph₃PO, ³¹P{¹H} NMR spectra show both [Ln(Ph₃PO)₃ Cl₃] and [Ln(Ph₃PO)₄Cl₂]Cl are present, the former being the major species for early lanthanides, the latter becoming favoured later in the series [5]. The pure [Ln(Ph₃PO)₃Cl₃] can be isolated from acetone solution and [Ln(Ph₃PO)₄Cl₂]Cl from EtOH (the effect of solvent is often overlooked in lanthanide chemistry [3]). For the softer bromide or iodide co-ligands the $[Ln(Ph_3PO)_4X_2]X$ (X = Br or I) are usually formed [6,7]. Use of very weakly coordinating anions, such as $[PF_6]^-$, can generate homoleptic cations, such as $[Ln(Me_3PO)_6][PF_6]_3$ for all the lanthanides [8].

Diphosphine dioxide and higher denticity phosphine oxide complexes are rarer [4], although some examples of the former have received significant study in recent years. Bis(diphenylphosphino)methane dioxide, Ph₂P(O)CH₂P(O)Ph₂ (dppmO₂) typically behaves as a chelate forming six-membered rings in the triflate complexes (8-coordinate) [La(dppmO₂)₄][CF₃SO₃]₃ and [Dy (dppmO₂)₄][CF₃SO₃]₃ and (7-coordinate) [Lu(dppmO₂)₃(H₂O)] [CF₃SO₃]₃ [9,10]. The dppmO₂/Ln(NO₃)₃ systems are more complicated, with [Ln(dppmO₂)₂(NO₃)₂][Ln(dppmO₂)(NO₃)₄], [Ln (dppmO₂)₂(NO₃)₃] and [Ln(dppmO₂)₂(NO₃)₂(H₂O)][NO₃] isolated depending upon the conditions, the solvent and the specific Ln involved [11]. Increasing the inter-donor linkage, as in Ph₂P(O) (CH₂)_nP(O)Ph₂ (n = 2, 4 or 6) disfavours chelation and di- or polymeric structures are formed with bridging diphosphine dioxides [12–14].

In the present study we have explored the chemistry and structures of complexes formed by lanthanum or lutetium chloride and iodide, with and without added $[PF_6]^-$ anions, with three diphosphine dioxides, viz $Ph_2P(O)CH_2P(O)Ph_2$ (dppmO₂), $Ph_2P(O)CH_2P(O)Ph_2$ (dppeO₂), and $o-C_6H_4(P(O)Ph_2)_2$ (PPO₂), in order to explore the interplay of anions and ligand architecture upon the complexes formed.


^{*} Corresponding author.

E-mail address: wxl@soton.ac.uk (W. Levason).

2. Results and discussion

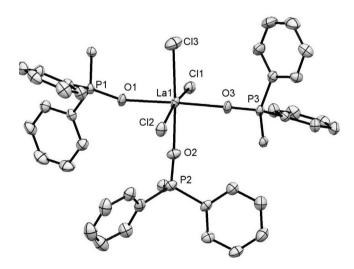
2.1. Lanthanum-dppmO2 complexes

The reaction of LaCl₃·7H₂O, LaI₃ and LaCl₃·7H₂O + 3 equivalents of [NH₄][PF₆], in ethanol with four equivalents of dppmO₂ gave the complexes [La(dppmO₂)₄]Cl₃·4H₂O, [La(dppmO₂)₄]I₃·2H₂O, and [La (dppmO₂)₄][PF₆]₃, respectively. Like other examples, these lanthanide phosphine oxide complexes are prone to retain variable amounts of solvent or water in the lattice, which are not removed by prolonged pumping in vacuo [4-6.9], a consequence of the large voids produced by the bulky asymmetric ligands. Although these non-stoichiometric solvate molecules make only small differences to the analytical results, they are evident in the spectroscopic data and in the X-ray crystal structures, where they are often difficult to model. The presence of the same [La(dppmO₂)₄]³⁺ cation in all three salts is confirmed by the ³¹P{¹H} NMR spectra in CH₂Cl₂/ CD2Cl2 solution which show a singlet with a near identical chemical shifts. The ¹H NMR spectra are also identical, except for resonances due to some solvate EtOH or water. The solubility in CH₂Cl₂ is rather poor (but adequate) and the NMR spectra were also recorded in CD₃OD where solubility was much better, giving very similar chemical shifts. The ³¹P{¹H} NMR chemical shifts of dppmO₂ are $\delta P = 25.3$ in CH₂Cl₂ and $\delta P = 29.9$ in MeOH and there is no evidence that methanol displaces the dppmO₂ from lanthanum. The residual proton signals in CD₃OD are near coincident with the $\delta(CH_2)$ resonance in the dppmO₂ in the ¹H NMR spectra, hence measurements were carried out in both solvents. The IR spectra also show two v(PO) vibrations for each complex, again at identical energies (1160, 1100 cm⁻¹) consistent with the same cation, essentially uninfluenced by the anion present. Confirmation of the presence of the $[La(dppmO_2)_4]^{3+}$ cation was provided by the X-ray crystal structures of $[La(dppmO_2)_4][PF_6]_3$ and $[La(dppmO_2)_4]$ $[I_3][I]_2$. The distorted square antiprismatic cations $[Ln(dppmO_2)_4]^{3+}$

Fig. 1. The core geometry of the cation in $[La(dppmO_2)_4][PF_6]_3$ with atom numbering scheme. H atoms are omitted and only the *ipso* carbons of the phenyl rings are shown for clarity. Selected bond lengths (Å) and angles (°): La-O = 2.471(8) - 2.565(7), (*cis*) O - La - O = 70.4(2) - 99.3(3).

(Ln = La, Dy) have previously been characterised as triflate salts [9,10]. The core of the $[La(dppmO_2)_4]^{3+}$ is shown in Fig. 1.

Pale yellow brown crystals grown from ethanolic solutions of $[La(dppmO_2)_4]I_3\cdot 2H_2O$ were found to contain $[La(dppmO_2)_4][I_3]$ $[I]_2$. The crystal quality was modest, but the data confirm the presence of the $[La(dppmO_2)_4]^{3+}$ cation. These data are presented in Table S1 (Appendix A). The formation of the $[I_3]^-$ anion is due to oxidation of I^- by traces of dioxygen, an effect observed in other lanthanide iodide systems [15]. The LaO_8 coordination environment provided by the four chelating $dppmO_2$ ligands is thus found with Cl, I, PF₆ and CF₃SO₃ [9] anions, only the strongly coordinating nitrate ions can compete for binding to the lanthanum as in $[La(dppmO_2)_2(NO_3)_3]$ [11].


2.2. Lanthanum $-dppeO_2$ complexes

In contrast, reaction of LaCl₃·7H₂O with dppeO₂ in EtOH, irrespective of the ratio of reactants, produced the polymer [LaCl₃(dppeO₂)_{1.5}]·*n*EtOH. The same complex was obtained even in the presence of excess [NH₄][PF₆] and the reaction is clearly driven by precipitation of the polymer. The lanthanum environment is shown in Fig. 2, and part of the extended structure in Fig. S2 (Appendix A).

The lanthanum is in a distorted octahedral environment composed of three chlorides and three phosphine oxide groups from three different dppeO₂ ligands, each in a *mer* geometry. The polymer assembles via the bridging dppeO₂ units. Spical et al. [12] reported similar complexes with Nd and Gd and the present complex is isomorphous.

2.3. Lanthanum-PPO2 complexes

The diphosphine dioxides, dppeO₂ and PPO₂, both produce seven-membered rings upon chelation, but the latter is preorganised for chelation, as well as being bulkier. These different steric effects would be expected to lead to different geometries or coordination numbers, even on a large metal ion like La³⁺. The reaction of LaCl₃·7H₂O with four equivalents of PPO₂ in ethanol

Fig. 2. The lanthanum coordination environment present in the polymer $[LaCl_3(dppeO_2)_{1.5}]_n$ with atom numbering scheme. H atoms are omitted for clarity. Only the $OPPh_2CH_2$ fragment from each of the distinct ligands is shown. Selected bond lengths (Å) and angles (°) are: La1-O1=2.375(3), La1-O3=2.382(3), La1-O2=2.414(3), La1-Cl3=2.7170(16), La1-Cl2=2.7892(14), La1-Cl1=2.8005(14), O1-La1-O2=86.97(11), O3-La1-O2=92.12(11), O1-La1-Cl3=89.38(8), O3-La1-Cl3=91.71(8), O1-La1-Cl2=89.59(8), O3-La1-Cl2=87.07(8), O3-La1-Cl2=85.89(8), Cl3-La1-Cl2=97.44(4), O1-La1-Cl1=90.78(8), O3-La1-Cl1=92.36(8), O2-La1-Cl1=82.88(8), Cl3-La1-Cl1=93.82(4).

produced a white powder on work-up, with composition [LaCl₂ $(PPO_2)_2(H_2O)_2$ Cl. In the presence of $[NH_4][PF_6]$, the product was [LaCl₂(PPO₂)₂(H₂O)₂][PF₆], in both cases the formulation is confirmed by the microanalytical data. The [PF₆] vibrations apart, the IR spectra of the two complexes also show the presence of the same cation, in particular, the v(PO) were identical. The ^{31}P $\{^1H\}$ NMR spectra of $[LaCl_2(PPO_2)_2(H_2O)_2]Cl$ were different in CD_2Cl_2 and CD_3OD solutions, with singlets at $\delta = 40.1$ (CD_3OD) and $\delta = 35.5$ (CD₂Cl₂). The ³¹P{¹H} NMR resonances for PPO₂ are $\delta P = 31.4$ in CH_2Cl_2 and $\delta P = 37.5$ in MeOH. A crystal grown from an EtOH solution showed the formation of [LaCl2(PPO2)2(H2O) (EtOH)]Cl (Fig. 3), which strongly suggests that the differing ³¹P ¹H} NMR chemical shifts can be accounted for by changes in speciation, with [LaCl₂(PPO₂)₂(H₂O)₂]Cl present in the non-coordinating CH_2Cl_2 and $[LaCl_2(PPO_2)_2(H_2O)_{2-x}(ROH)_x]Cl$ in CD_3OD with the alcohol competing with the water for the lanthanum centre. There is no evidence that alcohols displace the PPO₂ from lanthanum.

In a separate experiment a few crystals were grown from an EtOH solution of [LaCl₂(PPO₂)₂(H₂O)₂][PF₆]. These proved, upon structure solution, to be a rearrangement product, [LaCl(PPO₂)₃] [PF₆]₂, with three chelating PPO₂ ligands on a seven-coordinate, distorted capped octahedral lanthanum centre. The capping chloride ligand was disordered over two sites, but this was satisfactorily modelled (Fig. 4). The crystallisation of different complexes from solution is a common observation in lanthanide coordination chemistry, for example [Ln(Ph₃PO)₃(NO₃)₃] or [Ln(Ph₃PO)₂(EtOH) (NO₃)₃] crystallise from ethanol solutions of Ln(NO₃)₃ + Ph₃PO under very similar conditions [4,5,16,17]. The formation of a tris-PPO₂ complex compared with the tetrakis-dppmO₂ cation described above, is probably a consequence of the greater steric demands of PPO₂. In the [LaCl₂(PPO₂)₂(H₂O)₂]⁺ and [LaCl₂(PPO₂)₂ (H₂O)(EtOH)]⁺, two chelating PPO₂ ligands are present and the large lanthanum centre achieves eight-coordination by binding four smaller ligands. Seven-coordination with three PPO2 ligands and one chloride is also possible, as in [LaCl(PPO2)3][PF6]2, but

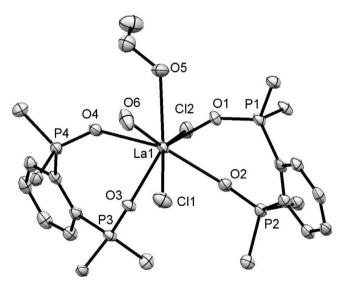


Fig. 3. The structure of the cation in [LaCl₂(PPO₂)₂(H₂O)(EtOH)]Cl-3.5EtOH with atom numbering scheme. H atoms are omitted for clarity. Selected bond lengths (Å) and angles (°) are: La1-O3 = 2.448(3), La1-O1 = 2.458(3), La1-O2 = 2.493(3), La1-O4 = 2.523(4), La1-O5 = 2.607(4), La1-O6 = 2.637(4), La1-C12 = 2.8261(14), La1-Cl1 = 2.9073(15),Cl2-La1-Cl1 = 150.01(4),03-La1-02 = 86.32(11), O1-La1-O2 = 71.15(11), O3-La1-O4 = 68.65(11), 01-La1-05 = 68.61(12). 04-La1-05 = 74.15(11), 04-La1-06 = 76.76(12)01-La1-06 = 74.85(12). 05-La1-06 = 69.25(13), O3-La1-Cl2 = 87.91(8). O2-La1-Cl2 = 74.67(8)O4-La1-Cl2 = 83.20(8),05-La1-Cl2 77.75(10), O3-La1-Cl1 = 77.15(8),O1-La1-Cl1 = 79.02(9), O2-La1-Cl1 = 78.51(8), O6-La1-Cl1 = 65.05(11).

Fig. 4. The structure of the cation in $[LaCl(PPO_2)_3][PF_6]_2$ with atom numbering scheme. H atoms are omitted for clarity. The chloride was disordered over two sites in the ratio 9:1 and only the major form one is shown. Selected bond lengths (Å) and angles (°) are: La1-O3=2.413(4), La1-O6=2.413(4), La1-O4=2.436(4), La1-O5=2.450(3), La1-O2=2.453(3), La1-O1=2.454(3), La1-C11A=2.747(15), O3-La1-O4=70.52(14), O6-La1-O5=70.53(12), O4-La1-O5=71.16(12), O3-La1-O2=87.22(13), O6-La1-O2=86.64(13), O5-La1-O2=77.50(12), O3-La1-O1=86.09(14), O6-La1-O1=82.71(13), O2-La1-O1=70.49(11), O3-La1-C11A=61.9(6), O6-La1-C11A=116.3(6), O4-La1-C11A=79.8(5).

eight-coordination with a tetrakis-PPO $_2$ cation is probably ruled out on steric grounds.

2.4. Lutetium-dppmO₂ complexes

The reaction of LuCl₃·6H₂O with three equivalents of dppmO₂ in ethanol gave a bis-dppmO₂ complex on the basis of microanalytical data, which was formulated as [LuCl₂(dppmO₂)₂]Cl, containing sixcoordinate lutetium. Lutetium iodide formed the corresponding $[LuI_2(dppmO_2)_2]I$. The IR spectra of each complex showed two ν (PO) stretches at slightly different frequencies, reflecting the different halides present. The ³¹P{¹H} NMR spectrum of the [LuCl₂(dppmO₂)₂]Cl in CH₂Cl₂, in which it was poorly soluble, was a singlet at δ = 36.3, whilst in MeOH solution the resonance was at δ = 39.1. This seems too large a difference to be a solvent shift, probably suggesting that the MeOH displaced the coordinated chloride as in some of the lanthanum complexes described above. The reaction of LuCl₃·6H₂O with three equivalents of dppmO2 in the presence of [NH4][PF6] gave a complex of microanalytical composition [LuCl(dppmO₂)₂][PF₆]₂·3H₂O. The presence of a six-coordinate cation, [LuCl(dppmO₂)₂(H₂O)]⁺ seems highly probable. There is again a 4 ppm difference between the ³¹P{¹H} NMR chemical shifts of the cation in CH₂Cl₂ and MeOH, probably due to some displacement of the chloride or water ligand in MeOH. The ³¹P{¹H} NMR spectrum of [LuI₂(dppmO₂)₂]I in CH₂Cl₂ solution shows four sharp resonances suggesting a mixture of species present in solution which are not undergoing fast exchange on the NMR timescale. None of the resonances corresponded to that of free diphosphine dioxide. Previous studies of LnCl₃/Ph₃PO system showed slow exchange between *tris*- and *tetrakis*-LuCl₃-Ph₃PO complexes, whereas the lanthanum systems showed only single broad resonances due to fast exchange [5]. Unfortunately, none of the lutetium–dppmO₂ complexes afforded X-ray quality crystals despite numerous attempts, but the presence of six-coordinate lutetium centres appears likely, and in contrast to the higher coordination numbers found in the lanthanum complexes.

2.5. Lutetium-PPO2 complexes

The lutetium–PPO $_2$ complexes isolated were $[LuCl_2(PPO_2)_2]Cl$, $[Lu(PPO_2)_2(H_2O)_2][PF_6]_3$ and $[Lul_2(PPO_2)_2]I$, all based upon six-coordinate lutetium. The solution $^{31}P\{^1H\}$ NMR spectra show a single sharp resonance for each complex, consistent with the presence of one significant species in each with equivalent phosphine oxide groups [5,15].

3. Experimental

Infrared spectra were recorded as Nujol mulls between CsI plates using a Perkin-Elmer Spectrum 100 spectrometer over the range $4000-200~\rm cm^{-1}$. ^{1}H and $^{31}P\{^{1}H\}$ NMR spectra were recorded using a Bruker AV–II 400 spectrometer and are referenced to the protio resonance of the solvent, and 85% $H_{3}PO_{4}$, respectively. Microanalyses were undertaken by London Metropolitan University. Lanthanum and lutetium salts, solvents and other reagents were obtained from Sigma–Aldrich and used as received. The diphosphine dioxides were obtained by air-oxidation of the corresponding diphosphines in anhydrous $CH_{2}CI_{2}$ solution catalysed by SnI_{4} [18]. Syntheses were routinely carried out under a dinitrogen atmosphere, which is essential in the case of the iodide complexes to prevent polyiodide formation [15].

3.1. $[La(dppmO_2)_4]Cl_3.4H_2O$

LaCl₃·7H₂O (0.025 g, 0.067 mmol) was dissolved in ethanol (10 mL). DppmO₂ (0.11 g, 0.264 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture and stirred for 16 h. The solution was concentrated, cooled at -4 °C overnight and then filtered. The resulting white solid was washed with n-hexane (5 mL) then ice-cold ethanol (10 mL) and dried $in \ vacuo$. Yield: 0.045 g, 34%. Required for C₁₀₀H₉₆LaO₁₂P₈ (1982.9): C, 60.57; H, 4.88. Found: C, 60.41; H, 4.56%. 1 H NMR (CD₂Cl₂): δ = 1.56 (s, H₂O), 3.36 (m, [2H]), 7.15 (br, [8H]), 7.37 (br, [4H]), 7.84 (br, [8H]). 31 P{ 1 H} NMR (CD₂Cl₂): δ = 33.1 (s). IR spectrum (Nujol mull)/cm $^{-1}$: 3500 vbr, 1623 m (H₂O), 1159 s, 1100 m (PO).

3.2. [La(dppmO₂)₄][PF₆]₃

LaCl₃·7H₂O (0.025 g, 0.067 mmol) and [NH₄][PF₆] (0.033 g, 0.202 mmol) were dissolved in ethanol (10 mL). DppmO₂ (0.11 g, 0.264 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture which immediately became cloudy. The resulting mixture was stirred for 16 h. The solvent was removed *in vacuo* and the residual white solid was washed with *n*-hexane (5 mL) then cold ethanol (10 mL), the solid separated and dried *in vacuo*. Yield: 0.097 g, 65%. Required for C₁₀₀H₈₈F₁₈LaO₈P₁₁ (2239.3): C, 53.64; H, 3.96. Found: C, 53.50; H, 3.79%. ¹H NMR (CD₂Cl₂): δ = 3.30 (t, [2H], ²J_{HP} = 12 Hz), 7.13 (m, [8H]), 7.74 (m, [4H]), 7.64 (m [8H]). ³¹P{¹H} NMR (CD₂Cl₂): δ = 33.5 (s, [8P], PO), -143.6 (sept, [3P], PF₆). IR spectrum (Nujol mull)/cm⁻¹: 1157 s, 1098 m (PO), 836 s (PF₆), 557 s (PF₆). Crystals were grown by layering a solution of dppmO₂ in ethanol on top of a solution of LaCl₃·7H₂O and [NH₄][PF₆] (4:1:3 M ratio) in ethanol.

3.3. $[La(dppmO_2)_4]I_3 \cdot 2H_2O$

DppmO $_2$ (0.16 g, 0.385 mmol) was dissolved in dry ethanol (15 mL). LaI $_3$ (0.05 g, 0.096 mmol) dissolved in dry ethanol (10 mL), under nitrogen, was then added to the ligand solution and stirred for 16 h. The solvent was removed *in vacuo*, and the residual bright yellow solid was washed with dry dichloromethane (5 mL) and dried *in vacuo*. Yield: 0.151 g, 71%. Required for C $_{100}$ H $_{92}$ I $_3$ LaO $_{10}$ P $_8$ (2185.2): C, 54.07; H, 4.17. Found: C, 52.20; H, 4.21% -the slightly low values reflect some small amounts of [I $_3$] - present, see discussion. ¹H NMR (CD $_2$ Cl $_2$): δ = 1.56 (s, H $_2$ O), 3.47 (br, [2H]), 7.12 (s [4H]), 7.35 (br, [8H]), 7.71 (br [4H]), 7.95 (br, [4H]). 31 P $_4$ H} NMR (CD $_3$ OD): δ = 33.8 (s, PO). IR spectrum (Nujol mull)/cm $_3$ 1: 3500 vbr, 1623 m (H $_2$ O), 1161 s, 1098 s (PO). Crystals were grown by layering a solution of dppmO $_2$ in ethanol on top of a solution of LaI $_3$ (4:1 M ratio) in ethanol.

3.4. $[LaCl_3(dppeO_2)_{1.5}]_n$

LaCl₃·7H₂O (0.05 g, 0.135 mmol) was dissolved in ethanol (10 mL). DppeO₂ (0.09 g, 0.21 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture. Solid immediately precipitated out and the mixture was stirred for 16 h. The mixture was filtered and the white solid was washed with n-hexane (5 mL) and dried *in vacuo*. Yield: 0.081 g, 67%. Required for C₇₈H₇₂Cl₆La₂ O₆P₆ (1781.76): C, 52.58; H, 4.07. Found: C, 52.68; H, 3.89%. ¹H NMR (CD₃OD): δ = 2.80 (m [4H]), 7.46 (m, [8H]), 7.62 (m, [4H]), 7.79 (m, [8H]). ³¹P{¹H} NMR (CD₃OD): δ = 43.2 (s). IR spectrum (Nujol mull)/cm⁻¹: 1144 s, 1091 s (PO). Crystals were grown by layering a solution of dppeO₂ in ethanol on top of a solution of LaCl₃·7H₂O (2:1 M ratio) in ethanol.

3.5. [LaCl₂(PPO₂)₂(H₂O)₂]Cl

LaCl₃·7H₂O (0.01 g, 0.0269 mmol) was dissolved in ethanol (10 mL). 1,2-Bis(diphenylphosphino)benzene dioxide (0.05 g, 0.11 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture and stirred for 16 h. The solvent was removed *in vacuo*, and the residual white solid was washed with n-hexane (5 mL) and ice cold ethanol (10 mL) and dried *in vacuo*. Yield: 0.028 g, 84%. Required for C₆₀H₅₂Cl₃LaO₆P₄ (1238.19): C, 58.20; H, 4.23. Found: C, 57.35; H, 3.98%. ¹H NMR (CD₂Cl₂): δ = 1.67 (s, H₂O), 7.15 (m), 7.32 (m), 7.50 (m). ³¹P{¹H} NMR (CD₃OD): δ = 40.1 (s, PO); (CD₂Cl₂): δ = 35.5. IR spectrum (Nujol mull)/cm⁻¹: 1158 s (PO), 1095 s (PO), 208 m (LaCl). Crystals were grown by dissolving the product in ethanol and cooling the solution in a freezer. These were identified as [LaCl₂(PPO₂)₂(H₂O)(EtOH)]Cl by X-ray crystallography.

3.6. [LaCl₂(PPO₂)₂(H₂O)₂][PF₆]

LaCl₃·7H₂O (0.01 g, 0.027 mmol) and [NH₄][PF₆] (0.012 g, 0.081 mmol) were dissolved in ethanol (10 mL). PPO₂ (0.05 g, 0.11 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture and stirred for 16 h, the solution remained clear in this time. The solvent was removed *in vacuo*, and the residual white solid was washed with hexanes (5 mL) then cold ethanol (10 mL) and dried *in vacuo*. Yield: 0.02 g, 65%. Required for $C_{60}H_{52}Cl_2F_6LaO_6P_5$ (1347.05): C, 53.45; H, 3.89. Found: C, 53.36; H, 3.72%. ¹H NMR (CD₂Cl₂): δ = 1.56 (s, H₂O), 7.04 (m), 7.26 (m), 7.41 (m), 7.72 (m). ³¹P[¹H} NMR (CD₃OD): 40.0 (s, PO), -143.2 (sept, PF₆); (CD₂Cl₂): δ = 35.4 (PO), -143.2 (sept, PF₆). IR spectrum (Nujol mull/cm⁻¹) 3200 br, 1620 m (H₂O), 1156 s, 1095 s (PO), 841 s, 559 m (PF₆). A small number of crystals grown from this complex in ethanol proved to be [LaCl(PPO₂)₃][PF₆]₂.

Table 1Crystallographic data.^a

Compound	$[La(dppmO_2)_4][PF_6]_3 \cdot 2EtOH$	$[LaCl_3(dppeO_2)_{1.5}]_n \cdot nEtOH$	$[LaCl(PPO_2)_3][PF_6]_2{\cdot}3.5EtOH{\cdot}2.8H_2O$
Formula	$C_{104}H_{98}F_{18}LaO_{10}P_{11}$	$C_{41}H_{42}C_{13}LaO_4P_3$	$C_{97}H_{98.6}ClF_{12}LaO_{12.3}P_{8}$
M	2329.40	936.92	2111.28
Crystal system	monoclinic	triclinic	triclinic
Space group (no.)	Cc (9)	PĪ (2)	$P\bar{1}$ (2)
a (Å)	19.551(3)	13.049(5)	13.3783(10)
b (Å)	19.565(4)	13.779(5)	14.6431(10)
c (Å)	28.384(5)	14.880(6)	26.1970(10)
α (°)	90	106.674(4)	91.251(2)
β (°)	102.974(5)	97.070(2)	90.9680(10)
γ (°)	90	116.987(3)	99.7980(10)
$U(\mathring{A}^3)$	10580(3)	2180.9(14)	5054.8(5)
Z	4	2	2
$\mu(\text{Mo K}\alpha) \text{ (mm}^{-1})$	0.659	1.311	0.655
F(000)	4744	946	2162
Total number reflections	29447	18 685	82915
R _{int}	0.082	0.061	0.055
Unique reflections	16131	8545	19883
No. of parameters, restraints	1191, 187	496, 4	1254, 206
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.078, 0.171	0.044, 0.136	0.063, 0.168
R_1 , wR_2 (all data)	0.115, 0.196	0.050, 0.143	0.083, 0.188
Compound			[LaCl ₂ (PPO ₂) ₂ (H ₂ O)(EtOH)]Cl·3.5EtOH
Formula			. , , , , , , , , , , , , , , , , , , ,
			C ₆₉ H ₇₇ Cl ₃ LaO _{9.50} P ₄ 1427.45
M Constal sections			
Crystal system			triclinic
Space group (no.)			PĪ (2)
a (Å)			11.463(3)
b (Å)			11.583(3)
c (Å)			26.786(4)
α (°)			79.027(4)
β (°)			85.736(4)
γ (°)_			75.822(5)
$U(Å^3)$			3384.0(13)
Z			2
μ (Mo K α) (mm ⁻¹)			0.900
F(000)			1470
Total number reflections			54018
R _{int}			0.102
Unique reflections			13311
No. of parameters, restraints			836, 35
$R_1, wR_2 [I > 2\sigma(I)]^b$			0.062, 0.159
R_1 , wR_2 (all data)			0.079, 0.178

^a Common data: T = 293 K; wavelength (Mo K α) = 0.71073 Å; θ (max) = 27.5°.

3.7. $[LuCl_2(dppmO_2)_2]Cl$

LuCl₃·6H₂O (0.05 g, 0.13 mmol) was dissolved in ethanol (10 mL). DppmO₂ (0.16 g, 0.39 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture and stirred for 16 h. The solvent was removed *in vacuo* and the residual fawn solid was washed with cold ethanol (5 mL) and dried *in vacuo*. Yield: 0.08 g, 55%. Required for $C_{52}H_{50}Cl_3LuO_5P_4$ (1160.16): C, 53.84; H, 4.34. Found: C, 53.55; H, 3.65%. ¹H NMR (CD₂Cl₂): δ = 3.72 (br s, [2H]), 7.25 (br s, [8H]), 7.42 (t, [4H]), 7.91 (br s, [8H]). ³¹P{¹H} NMR (CD₂Cl₂): δ = 36.4 (s, PO); (CD₃OD): δ = 40.1. IR spectrum (Nujol mull)/cm⁻¹: 1158 s, 1098 s (PO).

3.8. $[LuCl(dppmO_2)_2(H_2O)][PF_6]_2 \cdot 2H_2O$

LuCl₃·6H₂O (0.05 g, 0.13 mmol) and [NH₄][PF₆] (0.063 g, 0.39 mmol) were dissolved in ethanol (10 mL). DppmO₂ (0.16 g, 0.38 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture which immediately turned cloudy. The resulting mixture was stirred for 16 h. The solvent was removed *in vacuo* and the residual fawn solid was washed with cold ethanol (5 mL) and dried *in vacuo*. Yield: 0.15 g, 85%. Required for C₅₀H₅₀ClF₁₂ LuO₇P₆ (1386.60): C, 43.27; H, 3.63. Found: C, 43.37; H 3.64%. 1 H NMR (CD₂Cl₂): δ = 2.38 (br, H₂O), 3.84 (br, [2H]), 7.25 (s, [8H]),

7.46 (m, [4H]), 7.66 (m, [8H]). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂): δ = 35.8 (s, PO), -143.2 (sept, PF₆); (CD₃OD): δ = 40.1 (s, PO), -143.2 (sept, PF₆). IR spectrum (Nujol mull)/cm⁻¹: 3200 br, 1620 m (H₂O), 1152 s, 1096 s (PO), 839 s, 557 s (PF₆).

3.9. [LuI2(dppmO2)2]I

Lul₃ (0.022 g, 0.04 mmol) was dissolved in dry ethanol (10 mL). DppmO₂ (0.05 g, 0.12 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture, which was stirred for 16 h. The solvent was removed *in vacuo* and the resulting product washed with *n*-pentane (5 mL) and ethanol (5 mL) and dried *in vacuo*. Yield: 0.046 g, 82.5%. Required for C₅₀H₄₄I₃LuO₄P₄ (1387.90): C, 43.25; H, 3.19. Found: C, 43.64; H, 3.09%. ¹H NMR (CD₂Cl₂): δ = 4.49 (br s [2H]), 7.21 (s, [8H]), 7.47 (s, [4H]), δ 7.94 (m, [8H]). ³¹P{¹H} NMR (CD₂Cl₂, 300 K): δ 41.4 (s), δ 40.6 (s), δ 39.1 (s), δ 36.0 (s). IR spectrum (Nujol mull)/cm⁻¹: 1147 br s, 1094 s (PO).

3.10. [LuCl2(PPO2)2]Cl

LuCl $_3$ ·6H $_2$ O (0.014 g, 0.035 mmol) was dissolved in ethanol (10 mL). PPO $_2$ (0.05 g, 0.10 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture, which was then stirred for 16 h. The solvent was removed *in vacuo*, and the residual white

^b $R_1 = \sum ||F_0| - |F_c||/\sum |F_0|$; $wR_2 = [\sum w(F_0^2 - F_c^2)^2/\sum wF_0^4]^{1/2}$.

solid was washed with n-hexane (5 mL) then cold ethanol (10 mL) and dried *in vacuo*. Yield: 0.022 g, 83%. Required for $C_{60}H_{48}Cl_3LuO_4$ P_4 (1238.23): C, 58.20; H, 3.91. Found: C, 57.95; C, 4.08%. CH NMR (CD_2Cl_2): C = 7.25 (br, [8H]), 7.47 (br [16H]). CH} NMR (CD₂Cl₂): C = 42.1 (s, PO), (CD₃OD): C = 40.7 (s, PO). IR spectrum (Nujol mull)/ cm⁻¹: 1156 br s, 1094 s (PO).

3.11. [Lu(PPO₂)₂(H₂O)₂][PF₆]₃

LuCl₃·6H₂O (0.014 g, 0.035 mmol) and [NH₄][PF₆] (0.017 g, 0.105 mmol) were dissolved in ethanol (10 mL). PPO₂ (0.05 g, 0.104 mmol) dissolved in ethanol (15 mL) was then added to the reaction mixture, which was then stirred for 16 h. The solvent was removed *in vacuo*, and the residual white solid was washed with *n*-hexane (5 mL), then cold ethanol (10 mL) and dried *in vacuo*. Yield: 0.05 g, 90%. Required for $C_{60}H_{52}F_{18}LuO_6P_7$ (1584.78): C, 44.96; H, 3.27. Found: C, 45.61; H, 3.57%. ¹H NMR (CD₂Cl₂): δ = 1.26 (s, H₂O), 7.26 (br [8H]), δ 7.42 (br [16H]). ³¹P {¹H} NMR (CD₂Cl₂): δ = 41.1 (br, PO), -143.2 (sept, PF₆). IR spectrum (Nujol mull)/cm⁻¹: 1155 br, 1094 m (PO) 839 s, 560 s (PF₆).

3.12. [Lu(PPO₂)₂I₂]I

Lul₃ (0.05 g, 0.088 mmol) was dissolved in dry ethanol (10 mL). PPO₂ (0.182 g, 0.38 mmol) dissolved in ethanol (15 mL). The solution was stirred for 20 min and then taken to dryness *in vacuo*. The white product was dissolved in acetonitrile and the solution cooled to -4 °C overnight, resulting in a white powder. This was filtered off and dried *in vacuo*. The solid was finally recrystallised by layering a solution in dichloromethane with n–hexane. Yield: 0.055 g, 41%. Required for C₆₀H₄₈I₃LuO₄P₄ (1511.93): C, 47.62; H, 3.20. Found: C, 47.84; H, 3.31%. ¹H NMR (CD₂Cl₂): δ 7.00–7.42 (br m). ³¹P{¹H} NMR (CD₂Cl₂): δ = 42.5 (br). IR spectrum (Nujol mull)/cm⁻¹: 1142 s, 1094 s (PO).

3.13. X-ray experimental

Details of the crystallographic data collection and refinement parameters are given in Table 1. Crystals suitable for single crystal X-ray analysis were obtained as described above. Data collections used a Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum ($\lambda = 0.71073 \text{ Å}$) rotating anode generator with VHF Varimax optics (70 µm focus) with the crystal held at 100 K (N₂ cryostream). Structure solution and refinements were performed with either SHELX(S/L)97 or SHELX(S/L)2013 [19]. All the structures have disordered co-solvent, either water or ethanol. No attempt was made to locate the protons on the co-solvent. For the compound [La(dppmO₂)₄]I₃, the structure contains two iodides and one triiodide as the counter ions rather than three iodides, although one iodide and the triiodide are refined in a disordered mode and we could not locate all the iodine atoms with full occupancy due to the disorder. For the compound, [LaCl(PPO₂)₃][PF₆]₂, the fluorine atoms of one PF₆ were refined in a disorder model as well. H atoms bonded to C were placed in calculated positions using the default C-H distance and refined using a riding model. The crystallographic data in cif format have been deposited as CCDC 1538426 ([La(dppmO₂)₄][I₃][I]₂), 1538427 ([La(dppmO₂)₄] $[PF_6]_32EtOH)$, 1538428 $([LaCl(PPO_2)_3][PF_6]_23.5EtOH\cdot 2.8H_2O),$ 1538429 ([LaCl₂(PPO₂)₂(H₂O)(EtOH)]Cl·3.5EtOH), 1538430 ([LaCl₃(dppeO₂)_{1.5}] $_n$:nEtOH).

4. Conclusions

The large La^{3+} ion (r = 1.22 Å) readily achieves eightcoordination with four dppmO2 ligands involving six-membered chelate rings even in the presence of the coordinating anions Cl or I. In contrast, the extra CH₂ unit present in the backbone in the dppeO₂ ligand leads to only polymeric (six-coordinate) species being formed with La. However, the bulkier and more rigid, preorganised (PPO₂) also forms eight-coordinate La in [LaCl₂(PPO₂)₂ $(H_2O)_2$ Cl and $[LaCl_2(PPO_2)_2(H_2O)_2][PF_6]$, but the coordination sphere is composed of a mixture of two PPO2 ligands and four small monodentate ligands (Cl⁻ and H₂O). Three PPO₂ ligands are probably the maximum that can be accommodated even on this large metal ion, as in the seven-coordinate [LaCl(PPO₂)₃][PF₆]₂. The smaller lutetium ion is six-coordinate in all six complexes reported; [LuCl₂(dppmO₂)₂]Cl, [LuI₂(dppmO₂)₂]I, [LuCl(dppmO₂)₂ (H_2O) [PF₆]₂, [LuCl₂(PPO₂)₂]Cl, [LuI₂(PPO₂)₂]I and [Lu(PPO₂)₂ $(H_2O)_2][PF_6]_3.$

Acknowledgement

We thank EPSRC for support (EP/I033394/1, EP/K039466 and EP/N035437/1) and for a studentship (RDB).

Appendix A. Supplementary data

CCDC 1538426–1538430 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://dx.doi.org/10.1016/j.poly.2017.04.039, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.poly.2017.04.039.

References

- [1] S.A. Cotton, Lanthanide and Actinide Chemistry, John Wiley, Chichester, 2006.
- [2] S.A. Cotton, in: J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, 4, Elsevier, Oxford, 2004, p. 93.
- [3] S.A. Cotton, P.R. Raithby, Coord. Chem. Rev. 340 (2017) 220.
- [4] A.W.G. Platt, Coord. Chem. Rev. 340 (2017) 62.
- [5] M.J. Glazier, W. Levason, M.L. Matthews, P.L. Thornton, M. Webster, Inorg. Chim. Acta 357 (2004) 1083.
- [6] A. Bowden, A.W.G. Platt, K. Singh, R. Townsend, Polyhedron 363 (2010) 243.
- [7] J.-C. Berthet, M. Nierlich, M. Epritikhine, Polyhedron 22 (2003) 3475.
- [8] N.J. Hill, S.L. Leung, W. Levason, M. Webster, Inorg. Chim. Acta 343 (2003) 169.
- [9] J. Fawcett, A.W.G. Platt, Polyhedron 22 (2003) 967.
 [10] Q.-H. Jin, J.-Q. Wu, Y.-Y. Zhang, C.-L. Zhang, Z. Krystallogr, NCS 224 (2009) 428.
- [11] A.M.J. Lees, A.W.G. Platt, Inorg. Chem. 42 (2003) 4673.
- [12] Z. Spichal, M. Necas, J. Pinkas, Inorg. Chem. 44 (2005) 2070.
- [13] Z. Spichal, V. Petricek, J. Pinkas, M. Necas, Polyhedron 27 (2008) 283.
- [14] Z. Spichal, M. Necas, J. Pinkas, Z. Zdrahal, Polyhedron 25 (2006) 2006.
- [15] N.J. Hill, W. Levason, M.C. Popham, G. Reid, M. Webster, Polyhedron 21 (2002) 445.
- [16] D.R. Cousins, F.A. Hart, J. Inorg. Nucl. Chem. 29 (1967) 1745.
- [17] W. Levason, E.H. Newman, M. Webster, Polyhedron 19 (2000) 2697.
- [18] W. Levason, R. Patel, G. Reid, J. Organomet. Chem. 688 (2003) 280.
- [19] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.