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Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid
antimicrobial resistance – yet few theoretical models exist for bacterial growth inhibition by a clini-
cally relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time-
dependent. Here, we use a theoretical model, previously applied to steady-state bacterial growth,
to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting
antibiotic. Our results depend strongly on whether the antibiotic shows reversible transport and/or
low-affinity ribosome binding (“low-affinity antibiotic”) or, in contrast, irreversible transport and/or
high affinity ribosome binding (“high-affinity antibiotic”). For low-affinity antibiotics, our model
predicts that growth inhibition depends on the duration of the antibiotic pulse, and can show a
transient period of very fast growth following removal of the antibiotic. For high-affinity antibiotics,
growth inhibition depends on peak dosage rather than dose duration, and the model predicts a pro-
nounced post-antibiotic effect, due to hysteresis, in which growth can be suppressed for long times
after the antibiotic dose has ended. These predictions are experimentally testable and may be of
clinical significance.

I. INTRODUCTION

Modern clinical practice relies on the use of antibiotics to combat bacterial infections, yet our knowledge of how
antibiotics inhibit bacteria is surprisingly incomplete. In particular, mathematical models are needed to translate
known information about the molecular processes that are targeted by antibiotics into predictions for bacterial
growth rate as a function of antibiotic concentration. Such models would allow optimisation of dosing regimes [1–3],
and provide a basis for understanding the evolution of resistance to antibiotics [4–7]. Recent work has focused on
predicting how bacterial growth responds to a fixed antibiotic concentration [2, 7–10]. Although in the clinic the
antibiotic concentration to which an infection is exposed is time-varying, there has been little mechanistic modelling
of the response of bacterial growth to a time-varying dose of antibiotic (for recent work in this direction see [11–13]).
In this paper, we present theoretical predictions for the dynamical changes in bacterial growth rate in response to
a time-varying concentration of a ribosome-targeting antibiotic. Our analysis predicts qualitative, and potentially
clinically relevant, differences in the dynamical response of bacterial growth to antibiotic treatment, depending on
the molecular parameters for antibiotic-ribosome binding and transport of antibiotic across the bacterial cell boundary.

We focus here on antibiotics that target bacterial ribosomes. Ribosomes are multi-component, molecular machines
which carry out protein synthesis – a function that is crucial for growth. Different ribosome-targeting antibiotics
can bind to different components of the bacterial ribosome and inhibit different steps in protein synthesis [14]. In
recent experimental and theoretical work [8], we showed that some ribosome-targeting antibiotics work better for
bacteria that are growing rapidly (on a rich medium) while others work better for bacteria that are growing slowly
(on a poor medium). These observations can be reproduced by a simple mathematical model that takes account of
the molecular processes of antibiotic-ribosome binding and antibiotic transport across the cell boundary, as well as
the physiological processes of cell growth and ribosome synthesis [8]. Ref. [8], however, considered only the response
to a fixed (time-invariant) antibiotic concentration. In the present paper, we extend the predictions of the model to
the more clinically-relevant case of a time-dependent antibiotic dose.

Pharmacokinetic curves describe the time-varying local antibiotic concentration at an infection site during a clinical
treatment regime [15]. These curves show a peak, since the antibiotic concentration initially increases following
ingestion, then later decreases due to metabolism and excretion [15, 16]. Pharmacodynamics attempts to link these
curves to the efficacy of antibiotic action [15, 16]. In particular, some dosing protocols are designed to maximise the
peak concentration, whereas others aim to maximise the time at which the concentration is maintained above a certain
threshold, or, alternatively, the area of the curve which is above a threshold [15]. Importantly, for some antibiotics,
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of the following set of equations for the dynamics of the concentrations:

ȧ = −F (a, ru, rb)− λa+ Pinaex − Pouta, (1)

ṙu = −F (a, ru, rb)− λru + s, (2)

ṙb = F (a, ru, rb)− λrb. (3)

Here, F (a, ru, rb) ≡ kona (ru − rmin)− koffrb describes the antibiotic-ribosome binding / unbinding kinetics. Pin and
Pout are rate constants (or permeabilities) for antibiotic transport into and out of the cell (both assumed to be linear
processes), and aex(t) is the external antibiotic concentration, which can be controlled in a lab experiment, or is set
by the dosing regime in a clinical scenario. The terms −λa, −λru and −λrb describe dilution of the cell contents by
growth at rate λ. Finally, s is the rate of synthesis of new ribosomes.

To complete the model, we need to describe how the growth rate λ and the ribosome synthesis rate s depend
on the state of the system (grey arrows in Fig. 1). To do this, we use the empirical “growth laws” of Scott et al.

[20, 21]. These are experimentally-established mathematical relations that describe how a bacterial cell balances the
production of new ribosomes and of other proteins, depending on its growth rate. The first of these relations states
that the growth rate λ is linearly related to the concentration of unbound ribosomes ru:

ru = rmin +
λ

κt

. (4)

Relation (4) is based on measurements in the absence of antibiotic [20, 22]; we assume here, as in Ref. [8], that it also
holds in the presence of antibiotic [37]. The constant κt = 6.1× 10−2µMh−1 is the translation rate of the ribosomes
and the constant rmin = 19.3µM is believed to arise from an inactive pool of ribosomes which may be waiting to
initiate translation or stalled during translation [20, 23]. We have implicitly assumed that these inactive ribosomes
do not bind antibiotic, through our definition of the binding function F (a, ru, rb) [38].

The ribosome synthesis rate s can be deduced from the second “growth law” of Scott et al, which states that the
total ribosome content rtot is linearly related to the growth rate [20]:

rtot = rmax −∆rλ

(

1

λ0
− 1

(κt∆r)

)

(5)

where rmax = 65.8µM is a universal maximal ribosome concentration, ∆r = rmax − rmin = 46.5µM is the dynamic
range of the active ribosome concentration and λ0 is the bacterial growth rate in the absence of antibiotic. Eq. (5)
states that the total ribosome content increases as growth rate decreases due to ribosome inhibition: this is because
of up-regulation of ribosome synthesis [24–26]. However, the slope of this increase depends on how fast the cells
were growing before they were inhibited (i.e. on λ0). Fast-growing cells, in a rich growth medium, increase their
ribosome content proportionally less than do slow-growing cells, in a poor growth medium. Intuitively, fast-growing
cells, which have a high ribosome content, already need to devote close-to-maximal protein production capacity to
ribosome production so cannot increase ribosome synthesis further upon antibiotic challenge. In contrast, slow-growing
cells, which have lower ribosome content, have excess protein production capacity that can be diverted to ribosome
synthesis. In our model the total ribosome concentration is given by rtot = ru + rb. For cells growing exponentially,
the contents of the cell are in steady state, and thus the rate of ribosome synthesis must match the rate of ribosome
removal by dilution: s = λrtot. This leads to a quadratic expression for the synthesis rate s as a function of λ:

s(λ) = λ

[

rmax − λ∆r

(

1

λ0
− 1

(κt∆r)

)]

. (6)

Eqs. (1)-(3) together with (4) and (6) constitute a complete description of the model [39].

Ref [8] focused on the stationary points of the system of equations (1)-(3), (4) and (6). Briefly, setting the time
derivatives in Eqs (1)-(3) to zero: ȧ = ṙu = ṙb = 0, using Eq. (4) to eliminate ru in favour of λ, then using eq. (3) to
eliminate rb in Eqs. (1) and (2) leads to two independent relations between a and λ, which can be solved to eliminate
a. This leads finally to a cubic equation for the stationary points of the growth rate λ [40]:

0 = −
(

λ

λ0

)3(
λ0

λ∗

0

)2 [(

1 +
κt

kon

)]

+

(

λ

λ0

)2
[

(

1 +
κt

kon

)(

λ0

λ∗

0

)2

−
(

Pout + koff

2
√
Poutkoff

)(√

κt

kon

)(

λ0

λ∗

0

)

]
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TABLE I: Parameter values used in this study to model low and high-affinity ribosome-targeting antibiotics. These values are
chosen to be within the range of the literature values collated in Ref. [8]. The universal parameters are κt = 6.1×10−2µMh−1,
rmin = 19.3µM and rmax = 65.8µM [8, 20]. Except where stated otherwise, we have assumed an antibiotic-free growth rate λ0

of 1h−1.
Parameter Value for low-affinity antibiotic Value for high-affinity antibiotic

Pin 2000h−1 1h−1

Pout 100h−1 0.01h−1

kon 1000µM−1h−1 1000µM−1h−1

koff 105h−1 10h−1

λ∗

0 = 2
√

Poutκtkoff/kon 49.4h−1 0.00493h−1

IC∗

50 = λ∗

0(rmax − rmin)/(2Pin) 0.574µM 0.115µM

Predicted IC50 (from Eq. (8)) 1.43µM 11.64µM

Results: Model predictions for dynamical response to antibiotic

In a clinical context, antibiotic concentrations vary in time. In this paper, we explore the predictions of the
model defined by Eqs (1)-(3), (4) and (6), for the response of bacterial growth rate to a time-dependent exposure to
antibiotic – i.e. we explore the dynamics a(t), ru(t) and rb(t) for a time-varying external antibiotic concentration
aex(t). In most cases (with some exceptions that we discuss below), these equations are not amenable to analytical
solution in the time-varying case. We therefore integrate the model equations numerically, starting from the
steady-state solution in the absence of antibiotic [42]. We compare results for two sets of parameters, representing
antibiotics which are bound and transported with “low affinity” (high values of Pout/Pin and koff/kon) and with
“high affinity” (low values of Pout/Pin and koff/kon). These parameters, which are chosen to be within the range of
literature values for tetracycline and streptomycin respectively [43], are listed in Table I.

It is important to note that the growth laws which we use in our model, Eqs. (4) and (6), are derived from
experimental measurements on exponentially growing bacteria, for which all intracellular concentrations are in steady
state. In using these constraints to make predictions for dynamical trajectories we assume that the cell adjusts its
rates of growth and ribosome synthesis rapidly in response to changing external conditions, in comparison to the
rate at which the external conditions vary. It is known that the ribosome synthesis rate can adjust within minutes
to changes in nutrient conditions [27]. A typical timescale for synthesis of a protein molecule is ∼1 minute (∼ 1000
amino acids polymerised at a translation rate of ∼ 20 amino acids per second [22]), while a conservative estimate
for the timescale for synthesis of a ribosome is ∼6 minutes (∼ 7500 amino acids in the entire ribosomal complex,
produced at ∼ 20 amino acids per second [22]). The timescale over which antibiotic concentration builds up in the
body after an oral dose is ∼30 minutes, with a slower decay time due to excretion [15]. The use of the steady-state
constraints (4) and (6) therefore seems reasonable.

Response to a step increase in antibiotic concentration

To analyse the dynamical behaviour of the model, we first consider the response to a sudden, step-like increase in
antibiotic concentration, from zero to a fixed value: aex(t) = 0 for t < t0 and aex(t) = afinalex for t > t0. In the clinical
context, this would correspond to an intravenous infusion of antibiotic; in the laboratory it could be achieved using
a continuous culture device [28, 29] or microfluidic flow device [30]).

Low-affinity antibiotic

Figure 3 explores the dynamical response of the model to a step increase in antibiotic concentration, for the
low-affinity antibiotic. The model predicts a strikingly non-monotonic response of the bacterial growth rate λ(t)/λ0,
as shown in Figure 3(a): we observe an initial rapid decrease in growth rate, followed by a slower recovery to a
steady-state value that depends on the antibiotic concentration afinalex . This steady-state value corresponds to the
fixed point of the model dynamics (Figure 2(a)). The origin of this non-monotonic response can be understood
by plotting the trajectory of the model in the 3d space of its variables a, ru and rb, as in Figure 3(b). Following
the increase in aex, the intracellular antibiotic concentration a rapidly increases, accompanied by a decrease in the
concentration of unbound ribosomes and an increase in the concentration of bound ribosomes rb. These changes
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Low-affinity antibiotic: growth-rate overshoot following antibiotic removal

Figure 7(b) shows model predictions for the bacterial growth rate, during and after a step-like pulse of a low-affinity
antibiotic. The colours indicate doses of varying duration (as shown by the bars). During the dose, bacterial growth
is suppressed, to a degree that depends on the intensity of the dose (the short, high intensity dose shown by the
blue line causes a greater degree of growth inhibition than the long, low intensity dose shown by the red line).
Interestingly, the model also predicts a “growth rate overshoot” phenomenon: a peak in λ(t) after the antibiotic dose
ends, implying a transient increase in growth rate above the antibiotic-free steady-state value λ0. The overshoot
occurs because, in our model, ribosome synthesis is upregulated during exposure to the antibiotic (s is larger,
according to Eq. (6)), such that the total ribosome concentration becomes higher than it would be in the absence of
antibiotic. Once the external antibiotic is removed, intracellular antibiotic dissociates rapidly from bound ribosomes,
since koff ≫ λ0, so that the free ribosome pool becomes transiently larger than it would have been in the absence of
antibiotic. In our model, this produces a transient increase in growth rate. This is illustrated in Figure 7(c), which
shows a trajectory in the 3d space {a, ru, rb} after removal of the antibiotic, for a pulse with intensity S = 2×IC50.
The transient increase in unbound ribosome ru (and hence in growth rate) is coupled to loss of intracellular antibiotic
a and bound ribosomes rb. The later decrease in ru back to the drug-free steady state value (red dot in Figure 7(c))
happens along the ru axis, once a and rb have both reached zero.

The magnitude of the transient growth-rate increase shown in 7(b) is greatest at intermediate antibiotic dose
duration; this is because for very short antibiotic pulses, the bacterium does not have time to increase its ribosome
pool significantly before the pulse ends, while for very long, low intensity pulses the antibiotic concentration is not
high enough to produce a significant upregulation of ribosome concentration. Consistent with this explanation, when
we repeat our simulations keeping the dose intensity fixed (i.e. increasing total dose as the duration increases), we
find that the maximal overshoot occurs for the longest dose duration (data not shown).

Upregulation of ribosome synthesis upon exposure to antibiotic is a growth medium-dependent phenomenon: for
bacteria growing in a poor medium (with a small drug-free growth rate λ0), the relative increase of the ribosome
synthesis rate is larger than for bacteria growing on rich medium (with a large λ0) [20]. This is captured by the
λ0-dependence of the synthesis rate s in our model (Eq. (6)). We therefore expect that the magnitude of the
growth-rate overshoot predicted by the model will be medium-dependent, with a larger overshoot for bacteria
growing on poor medium, which upregulate ribosome synthesis more strongly and therefore have a greater excess of
ribosomes after the pulse. Indeed, upon repeating our calculations for a range of values of λ0, we observe a strong
λ0-dependence of the magnitude of the overshoot. For example, for a dose of duration σ = 7h, the growth rate at
the peak of the overshoot is predicted to be λ/λ0 = 2.3, 1.7, 1.3, for drug-free growth rates of λ0 = 0.5, 1.0, 1.5h−1

respectively.

High-affinity antibiotic: post-antibiotic growth suppression and hysteresis

Figure 7(d) shows equivalent predictions for the growth-rate response to a step pulse of high-affinity antibiotic.
Here we observe a different phenomenon: the qualitative nature of the response is intensity-dependent. For
long-duration, low-intensity doses the growth rate is suppressed during the dose but recovers quickly when the
antibiotic is removed (red-green curves in Figure 7(d)). However, for shorter, high intensity doses, the model shows
a significant post-antibiotic effect: the growth rate decreases almost to zero during the dose and does not recover
until many hours after the dose has ended (blue curves in Figure 7(d)). This phenomenon arises from hysteresis
in the model. When antibiotic is added, the fixed points of the model move along the aex axis in Figure 2(b). As
illustrated in Figure 7(e), for a low-intensity antibiotic dose, the system tracks the upper stable fixed point and
reverses its trajectory when the antibiotic is removed (red line in Figure 7(e)). This corresponds to the red-green
trajectories in Figure 7(d). However, for a high-intensity antibiotic dose, the system is pushed past the bifurcation
point in Figure 2(b), forcing it to transition to the lower stable fixed point in which the growth rate is close to
zero. When the antibiotic is removed, the system moves back along the lower line of fixed points, before eventually
transitioning back to the upper fixed point (blue lines in Figure 7(e)). The timescale over which this eventual
recovery happens is controlled by the antibiotic-ribosome dissociation rate constant koff , which is small for the
high-affinity antibiotic. Although we always see eventual recovery of the bacterial growth rate in our simulations, in
a clinical setting we expect that other factors, such as immune response, would lead to elimination of the infection [31].
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Optimal dosing strategy differs for low and high-affinity antibiotics

In a clinical setting, antibiotic dosing protocols target different features of the pharmacokinetic curve: some are
designed to maximise the peak antibiotic concentration, while others aim to maximise the time the concentration is
above a threshold, or the area of the curve above the threshold [15, 32]. Although our simulated step-like dosing
protocol (Figure 7(a)) is simplistic, we do see clear differences in optimal dosing strategy for low-affinity and high-
affinity antibiotics. These differences are illustrated in Figure 7(f), where we plot the time required for the bacterial
growth rate to recover from a step-like antibiotic dose, as a function of the duration of the dose (and hence its inverse
intensity, as shown on the upper horizontal axis). Here, we define time to recovery as the time taken for the growth
rate λ to recover to 90% of its antibiotic-free steady state value λ0, having previously fallen to below this value.
For the low-affinity antibiotic (Figure 7(f), solid line), the recovery time is proportional to dose duration: this is
consistent with the growth inhibition trajectory (Figure 7(b)), in which growth is suppressed during the dose and
recovers rapidly afterwards. Therefore, for ribosome-targeting antibiotics which bind with low affinity and/or are
transported reversibly, the model suggests that an optimal protocol would maximise the time over which the dose
is maintained above a threshold. This is consistent with the fact that tetracycline antibiotics, which fall into the
low affinity class in Ref. [8], are categorized in the clinical pharmacodynamic literature as time-dependent, i.e. the
duration of the dosage controls efficacy of treatment [33]. In contrast, for the high-affinity antibiotic (Figure 7(f),
symbols), the model predicts that the recovery time increases dramatically, to many times longer than the dose,
when the dose intensity exceeds a well-defined threshold (i.e. for shorter dose durations in our simulations). This is
also consistent with the growth inhibition trajectories of 7(d). Thus our model suggests that for ribosome-targeting
antibiotics which bind with high affinity and/or are transported irreversibly, it may be more important to maximise
the peak concentration of the pharmacokinetic curve than the duration of the dose. This prediction is consistent with
the fact that aminoglycoside antibiotics, which fall into the high-affinity class in Ref. [8], are categorized clinically
as concentration-dependent, i.e. the peak concentration controls the treatment efficacy [33]. Our predictions are also
consistent with the fact that aminoglycosides can show significant post-antibiotic effects [17–19, 32, 34].

Response to a more realistic pulse of antibiotic

In a clinical scenario, the antibiotic concentration in the body decreases gradually after a dose, rather than suddenly.
The pulse profile shown in Figure 8(a), in which the concentration increases very rapidly, but decreases exponentially
with a decay time Tx, could mimic a dose that is given intravenously and removed by metabolism/excretion. We there-
fore simulated the response of our model to such a pulse, represented by the function aex(t) = Sx exp [−(t− t0)/Tx] for
t > t0 = 3h, and aex = 0 otherwise. We varied the duration Tx, keeping the integrated dose constant: SxTx = 4×IC50.

Figure 8(b) shows results for the low-affinity antibiotic. As for the step pulse, the bacterial growth rate is
suppressed during the pulse, to an extent that depends on pulse intensity (the longer, less intense pulse shown by the
red curve produces longer duration but weaker growth suppression than the shorter, more intense pulse shown by
the blue curve). The model also predicts the same growth-rate overshoot phenomenon for the exponentially decaying
pulse which we observed for the step pulse. However, the growth-rate overshoot only happens if the pulse decays
quickly enough; for slowly-decaying pulses (large Tx), the overshoot is masked by the growth-rate suppression due to
the antibiotic.

The response to an exponentially-decaying pulse of a high-affinity antibiotic (Figure 8(c)) is also qualitatively
similar to that for the step pulse (Figure 7(d)). As for the step pulse, for pulses of intensity below a threshold value,
the growth rate recovers quickly following the antibiotic dose. However for pulses with intensity above the threshold,
there is a post-antibiotic effect, in which growth suppression persists for long times after the antibiotic has been
removed (longer than those shown in Figure 8(c)).

Figure 8(d) shows the predicted recovery time after an exponentially-decaying pulse of antibiotic, defined as the
time to recover to λ = 0.9λ0. For the low-affinity antibiotic (solid line in Figure 8(d)), the time to recovery increases
with the dose duration. This supports our prediction that for the low-affinity antibiotic, dose duration is the key
determinant of treatment efficacy. For the high-affinity antibiotic (symbols in Figure 8(d)), the time to recovery shows
qualitatively similar behaviour to that for the step-like pulse (compare to Figure 7(f)), in that the time to recovery is
very long for short, intense pulses, but decreases dramatically for pulses with intensity below a threshold.

We have also performed equivalent simulations for a Gaussian pulse profile, with qualitatively similar results (see
Appendix C).
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Here, we go beyond the steady-state analysis of Ref. [8], to investigate the response of the model to dynam-
ical changes in antibiotic concentration. Our results show that low-affinity and high-affinity ribosome-targeting
antibiotics show qualitatively different dynamical responses to antibiotic treatment. Low-affinity antibiotics show
a non-monotonic response, with a rapid decrease in growth rate upon exposure to antibiotic, followed by a slower
partial recovery mediated by up-regulation of ribosome synthesis. Up-regulation of ribosome synthesis during
exposure also means that these antibiotics may show a growth rate overshoot upon removal of the antibiotic. In
contrast, high-affinity antibiotics show a concentration-dependent response: upon antibiotic exposure, the growth
rate decreases very little if the antibiotic concentration is below a threshold given by the bifurcation point of the
model dynamics, but it decreases almost to zero upon exposure to antibiotic concentrations above the threshold.
Close to the threshold concentration the time taken to reach this maximal inhibition can, however, be very long:
this behaviour can be understood by the fact that the dynamical trajectories of the model slow down as they
pass close to the location where the two fixed points have merged. Furthermore, the model predicts a pronounced
post-antibiotic suppression of growth upon removal of a high-affinity antibiotic, for concentrations above the threshold
– a phenomenon that results from hysteresis in the model dynamics.

Mathematical models that integrate the molecular mechanism of antibiotic action with bacterial physiology are
rare, and those that do exist mostly consider only the response to a time-invariant antibiotic concentration [2, 7–10].
Of those that do consider time-dependent doses of antibiotic, probably the recent work of Abel zur Wiesch et al.

[11, 12] is closest to ours. In that study, a genetic model for antibiotic transport and target binding is considered, and
shown to reproduce a range of pharmacodynamic phenomena. However, target-specific physiology (here, the interplay
between ribosome concentration and growth rate) is not considered. Here we show that this interplay can play a
key role, leading to qualitatively new features such as growth-medium dependent responses and growth-rate overshoots.

Are the predictions of our model realistic? Of course many factors have not been included in the model. For
example, we have assumed throughout that growth rate is determined solely by the active ribosome abundance,
via Eq. (4). Although this relation is well-established for steady-state growth, other factors may come into play
during transient growth-rate change. In particular, the growth rate may become limited by the supply of amino
acids rather than by the abundance of free ribosomes. This might tend to suppress the growth-rate overshoot
predicted by our model for the low-affinity antibiotics. More specifically, during an antibiotic pulse, when translation
is inhibited, the total ribosome abundance is close to maximal (rtot ≈ rmax in Eq. (5)). According to the proteome
partitioning model, this increased production of ribosomes comes at the expense of producing metabolic enzymes
necessary for amino acid supply [20, 26]. Thus, when the antibiotic is removed and ribosomes are released, there
may be a transient period when the rate of growth is limited by amino acid supply, before metabolic enzymes
are re-synthesized to restore the balance between amino acid influx and the demands of translating ribosomes
[26]. In this scenario, we would still expect an overshoot in the total ribosome concentration upon removal of
the antibiotic, but this might not be coupled to an increase in growth rate. Our model also neglects any other
effects of the antibiotics on bacterial physiology: for example, aminoglycosides are believed to increase membrane
permeability through the production of misfolded protein [35]. In addition, we do not model bacterial killing, either
directly by antibiotic action, or indirectly via the body’s immune system [31]. Inclusion of these killing effects
in the model would be likely to prevent the long-time recovery dynamics predicted here for the high-affinity antibiotics.

To conclusively assess the realism of the predictions reported here, one would need experimental tests. Several
recently-developed bacterial growth techniques make such tests feasible. At the level of bulk cultures, continuous
culture devices have been developed that allow measurement of growth rate during time-dependent antibiotic
exposure [28, 36]. Interestingly, turbidostat data for Enterococcus faecalis populations exposed to a sudden influx of
the ribosome-targeting antibiotic tigecycline, which is expected to be in the low-affinity class, does show rapid growth
rate suppression followed by slower partial recovery, as predicted by our model (see Fig. 1C of Ref.[29]) [44]. At the
level of individual cells, microfluidic devices in which the antibiotic concentration can be changed rapidly as growth
is monitored in a microscope are also now possible [30]. The latter would be an especially interesting approach since
the bistability which is manifested in our model for high-affinity antibiotics might lead to heterogeneous responses to
antibiotic exposure among cells in a population.

If confirmed experimentally, the phenomena reported here would be of considerable clinical significance. In
particular, our results make a clear prediction for the optimal pharmacodynamic strategy: for low-affinity drugs
one should aim to maximise the time of exposure, while for high-affinity drugs, one should aim to maximise the
peak dosage. Moreover, the latter are predicted to show a pronounced post-antibiotic effect, meaning that they can
be effective for much longer than the actual duration of exposure. Post-antibiotic effects are a widely recognised,
but poorly understood, pharmacodynamic phenomenon, and occur for various antibiotics including aminoglycosides
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As we show in Fig. 2, the model described by Eqs. (1) – (3) may have different numbers of stationary points
(stable and unstable fixed points), depending on the parameter values. Changes in the number and character
of the fixed points of the model occur at critical parameter values, and are known as bifurcation points. Fig. 9
illustrates these bifurcation points in more detail. Here we use a parameter set intermediate between the low and
high-affinity cases studied in the rest of the paper: Pin = 1h−1, Pout = 1h−1, kon = 1000µM−1h−1. We vary
the parameter koff and plot the fixed points of the model as a function of aexPin. Fig. 9(a) shows results with
koff = 1000 h−1, for which there is only a single fixed point. In contrast, for a smaller value of koff = 100 h−1,
as shown in Fig. 9(b), for some values of aexPin the model has one fixed point (which is stable), and for other
values of aexPin there are three fixed points, two of which are stable and one unstable. The regime in which
there are three fixed points is bistable (shaded) and is bounded by two bifurcation points, labelled a∗ex,low and

a∗ex,high in Fig. 9(b), where the number of fixed points changes. The upper bifurcation point a∗ex,high is associ-
ated with a steep decrease in the growth rate λ, since at this bifurcation point the upper stable fixed point is lost
and λ drops to the lower fixed point. This critical value a∗ex,high is very close to (though not exactly equal to) the IC50.

The bifurcation points can be calculated by noting that the fixed points of the model dynamics are given
by the roots of Eq. (7). The number of roots — and thus the number of fixed points – is determined by the
discriminant of Eq. (7): if the discriminant is positive there are three roots, otherwise, there is only one root.
Thus the zeros of the discriminant mark the bifurcation points. Since Eq. (7) is a cubic equation in λ, it may
be written as aλ3 + bλ2 + cλ + d, with discriminant ∆ = b2 − 4ac3 − 4b3d − 27a2d2 + 18abcd. The zeros of
the discriminant can be computed numerically. Fig. 9(c) shows the results of such a computation: here the
bifurcation points a∗ex,low and a∗ex,high are plotted as a function of koff . Since the discriminant itself is cubic in aex it

may have either one or three zeros; those at positive aex correspond to a∗ex,low and a∗ex,high [45]. For low values of

koff there are two bifurcation points as in Fig. 9(b), while for high values of koff there is no bifurcation, as in Fig. 9(a).

We can also obtain an analytical estimate for the upper bifurcation point aex = a∗ex,high, which corresponds to the

antibiotic concentration at which the model predicts a threshold drop in growth rate. To this end, we rewrite Eq. (7)
in the form

0 =
λ

koffPout

(

aexPin

∆r
+ λ− 1

λ0
λ2

)

(9)

+

(

κt

kon

)[

1 +

(

1

Pout
+

1

koff
− 1

λ0

)

λ−
(

1

Poutλ0
+

1

koffλ0
− 1

Poutkoff

)

λ2 − 1

Poutkoffλ0
λ3

]

,

(note that we have multiplied Eq. 7 by a factor of 4). Interestingly, this equation depends only on the combination
aexPin rather than on aex and Pin independently. This is why we have used the parameter combination aexPin in Fig.
9; it also implies that the critical values a∗ex scale as a∗ex ∼ 1/Pin. For kon ≫ κt, and koffPout not too large, the second
term in Eq. (9) can be neglected and we arrive at the quadratic equation

0 =
aexPin

∆r
+ λ+

1

λ0
λ2. (10)

The zero of the discriminant is then at

a∗exPin =
∆rλ0

4
. (11)

Setting rmin = 19.3µM, rmax = 65.8µM, and λ0 = 1h−1, as in Table I, this gives a∗exPin = 11.625µMh−1, shown in
Fig. 9(c) as the blue dashed line. Fig. 9(c) shows that for small values of koff this provides a very good estimate for
the upper bifurcation point a∗ex,high. Thus, a∗ex = 11.625µMh−1/Pin is a good estimate for the threshold antibiotic
concentration and the IC50 for high-affinity antibiotics. Remarkably, this approximation does not explicitly depend
on Pout, koff or kon. For large values of koff or Pout, however, this approximation does not hold anymore, since the
prefactor 1/(koffPout) in Eq. (9) decreases the importance of the first term relative to the second term.

Appendix B: Analytical calculation of inhibition time for a high-affinity antibiotic using the adiabatic

approximation

Incorporating expression (6) for the ribosome synthesis rate into the dynamical equations (1)-(3), our model can
be expressed as:

ȧ = −λa− kon(ru − rmin)a+ Pinaex − Pouta+ koffrb (12)
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This gives the following result:

Tc =
1

√

(1 + cκt)C − (∆rκt)2/4

∫ u(λc)

u(λ0)

du
1

1 + u2
(20)

=
1

√

(1 + cκt)C − (∆rκt)2/4

(

arctan

(

κt∆r/2− (1 + cκt)λc
√

(1 + cκt)C − (∆rκt)2/4

)

− arctan

(

κt∆r/2− (1 + cκt)λ0
√

(1 + cκt)C − (∆rκt)2/4

)

)

Setting λc = 0.01λ0 in Eq. (20) leads to the results shown as the solid curve in Figure 6. Note that this integration
is only valid if (∆rκt)

2 − 4(1 + cκt)C < 0. Otherwise, the denominator becomes zero and Tc diverges. This would be
the case if the system is at the upper stable fixed point of the dynamics, such that the growth rate is not significantly
decreased upon exposure to the antibiotic.

This analysis also allows us to understand the origin of the very slow inhibition dynamics for the high-affinity
antibiotic, for values of aex just above the bifurcation point, as shown in Figure 4(a). Figure 10 shows the rate of

change of the growth rate, λ̇, plotted as a function of λ, as predicted by Eq. (18), for the high-affinity parameter
set. Figure 10(a) shows results for aex = 0.95×IC50 (just below the bifurcation point): the fixed points correspond

to zeroes of λ̇ and the stable one is indicated by the arrow (there is of course also another stable fixed point at very
small λ, but this is lost in the quadratic approximation of Eq. (18)). Figure 10(b) shows equivalent results for a
slightly higher antibiotic concentration, aex = 1.05×IC50, just above the bifurcation point. Here the fixed points are
lost, but the rate of change of λ still comes close to zero, implying that the speed of inhibition by the antibiotic will
be very slow. This slow dynamics close to the bifurcation point can be thought of as a “bottleneck” in the inhibition
trajectory.

Appendix C: Response to a Gaussian pulse of antibiotic

As an example of a dosage profile without any discontinuities, we also simulated the response of the model to a
Gaussian pulse of antibiotic, of the form aex(t) = Sg exp [−2(t− tmax)

2/T 2
g ], as shown in Figure 11(a). We varied the

intensity Sg and the duration Tg, keeping the integrated dose, which is given approximately by
√

(π/2)SgTg, fixed at
4×IC50. The results are qualitatively similar to those for the step-dose and the exponentially decaying dose, described
in the main text. For the low-affinity antibiotic, Figure 11(b) shows that the bacterial growth rate is suppressed
during the Gaussian pulse, to an extent that depends on pulse intensity, and we see the same growth-rate overshoot
phenomenon following the Gaussian antibiotic pulse which we observed for the step and exponentially-decaying pulses.
For the high-affinity antibiotic, Figure 11(c) shows that for pulses of intensity below a threshold value, the growth rate
recovers quickly following the antibiotic dose, but for pulses with intensity above the threshold growth suppression
persists for long times after the antibiotic has been removed. Figure 11(d) shows the predicted recovery time after
a Gaussian pulse of antibiotic, defined as the time to reach λ = 0.9λ0. For the low-affinity antibiotic (solid line in
Figure 11(d)), the time to recovery increases with the dose duration, whereas for the high-affinity antibiotic (symbols
in Figure 11(d)), the time to recovery is very long for short, intense pulses, but decreases dramatically for pulses with
intensity below a threshold. The more complex shape of the plot for low-intensity pulses, compared to the results for
the step and exponentially-decaying pulses, is due to the shape of the Gaussian pulse; for values of Tg above ∼ 9h,
the growth rate no longer decreases below 0.9λ0.
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