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Continuous gravitational waves from neutron stars could provide an invaluable resource to learn
about their interior physics. A common search method involves matched-filtering a modeled tem-
plate against the noisy gravitational-wave data to find signals. This method suffers a mismatch
(i.e. relative loss of signal-to-noise ratio) if the signal deviates from the template. One possible
instance in which this may occur is if the neutron star undergoes a glitch, a sudden rapid increase
in the rotation frequency seen in the timing of many radio pulsars. In this work, we use a statistical
characterization of glitch rate and size in radio pulsars to estimate how often neutron star glitches
would occur within the parameter space of continuous gravitational-wave searches, and how much
mismatch putative signals would suffer in the search due to these glitches. We find that for many
previous and potential future searches, continuous-wave signals have an elevated probability of un-
dergoing one or more glitches, and that these glitches will often lead to a substantial fraction of the
signal-to-noise ratio being lost. This could lead to a failure to identify candidate gravitational wave
signals in the initial stages of a search, and also to the false dismissal of candidates in subsequent

follow-up stages.

PACS numbers: 04.80.Nn, 97.60.Jd, 04.30.Db

I. INTRODUCTION

Electromagnetic (EM) observations of pulsar glitches
have long been one of the most fruitful sources of in-
sight into neutron star physics. They are characterized
by a sudden increase in the rotation frequency, often ac-
companied by a jump in the frequency derivative and
an exponential recovery of some fraction of the initial
frequency jump. The events happen rapidly and are suf-
ficiently disruptive that pulsar timing models often loose
phase coherence over the event.

Two leading models exist to explain glitches. In the
superfluid pinning model, some portion of the interior su-
perfluid is pinned, and does not participate in the smooth
torque-driven spin-down of the rest of the crust (where
‘crust’ refers to the actual crust, plus whatever other
parts of the star that are strongly coupled to it). Af-
ter some period, the crust will therefore have developed
a frequency lag compared to the pinned superfluid. A
glitch occurs when the two components recouple, trans-
ferring angular momentum from the pinned superfluid to
the crust and producing a spin-up of the crust [I} 2]. Al-
ternatively glitches could be caused by crust cracking as
the crust readjusts to a minimum energy configuration
brought about by the gradual decay of the spin-down
rate [3]. It is also possible that glitches result from a
combination of these two models. In either case it seems
reasonable to assume that both the crust and the core
will be involved.
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Rotating isolated neutron stars can produce continu-
ous gravitational waves (CWs) from non-axisymmetric
distortions. These distortions can be stationary as
viewed from the frame rotating with the star, so-called
“mountains” (supported by either elastic stresses in the
crust or by magnetic fields), or persistent oscillation
modes of the neutron star. In the case of mountains
the star emits a CW at a frequency f; that is twice the
rotation frequency v, i.e, fs = 2v. In the case of oscilla-
tion modes, the frequency relation will be different and
generally depends on the equation of state and the type
of oscillation (e.g. fs &~ 4v/3 in the case of r-modes. See
Prix [4] for an overview of different CW emission mecha-
nisms). In the following we assume the mountain model
for simplicity.

It is possible (see for example van Eysden and Melatos
[B], Keer and Jones [6]) that a glitch could trigger a
quadrupolar quasinormal mode resulting in a transient
burst of gravitational waves; search methodologies for
such a signal have been considered by Clark et al. [7]
for signals lasting O(ms) and Prix et al. [§] for signals
lasting O(hours — weeks). However, in this work we are
not concerned with the gravitational radiation triggered
by a glitch, but rather the impact glitches may have on
searches for CW signals. Specifically, assuming an iso-
lated rotating neutron star is producing a CW signal, if
a glitch occurs and causes a sudden increase in the CW
frequency, what will the impact be on our ability to de-
tect the signal?

Estimates for the intrinsic gravitational-wave strain
amplitude hg for canonical models of CW emissions (see
for example Abbott et al. [9]) suggest they are extremely
weak compared to the noise level of advanced detectors
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[10]. In order to detect a signal, significant effort has been
put into data analysis methods which may be capable of
identifying the putative signals. Many of these methods
rely on matched-filtering in which a template is corre-
lated with the data in the hope of detecting the presence
of the unknown signal similar to the template. The power
of these methods lies in the fact that the signal-to-noise
ratio (SNR) grows as the square-root of the observation
time (e.g. see [4] for an overview). Due to the longevity
of CW signals, this allows the weak signal to be discerned
from the noise by using a sufficiently long stretch of data.

These methods are powerful, but harbor a vulnerabil-
ity in any instance where the signal lies outside of the reg-
ular CW template manifold (as defined in Sec.[[V A)). For
CW signals from non-axisymmetric distortions of neu-
tron stars, we can expect that discrepancies from such
a template may manifest in one of two ways. First, we
know from radio pulsar timing that the spin-down of a
pulsar differs from a smooth spin-down due to timing-
notise. This is continuous low-frequency structure in the
residual between the best-fit Taylor-series timing model
and the observed pulsations (for a review see Hobbs et al.
[11]). The effect of timing-noise on CW searches was
studied by Jones [I2] and Ashton et al. [I3] where it was
found that its presence limits the coherent observation
span over which signals may be detected if searched for
using a smooth signal. However, one can attempt to mit-
igate this effect when performing a targeted search for a
known radio pulsar by including the timing-noise seen in
the EM channel into the template; a method to do this is
described by Pitkin and Woan [I4]. In this work, we will
address the second potential discrepancy between signal
and template: glitches.

There are two distinct questions to answer in the case
of glitches: “how probable is it that a glitch will occur
during our CW observation?” and “if a glitch does occur,
what effect will it have on our ability to discover the CW
signal?”. To answer these questions, we use known radio
pulsar glitch statistics to estimate the size and rate of
radio pulsar glitches for the parameter spaces considered
in typical CW searches. In other words, we assume that
the glitches we observe in the radio pulsars population
are representative of those that we may expect to see in
the population of CW signals. This is purely pragmatic
in that we do not know of any other populations to base
our assumptions on. We then quantify the effect such
glitches will have on current CW detection methods by
calculating the mismatch, i.e. the relative loss of squared
signal-to-noise ratio. We do this by modeling a glitch as
a piecewise Taylor-series expansion with a discontinuity
at the glitch; we do not model the exponential recovery
observed in some glitches, but we will discuss the signif-
icance this may have in Sec. [V.C] Ultimately, the goal of
this work is to estimate the risk faced by current and on-
going CW searches to glitches in their target population.

In Sec. [T, we will briefly describe current CW searches
and how glitches may effect them. Then, in Sec. [[I]|we in-
vestigate the statistical properties of the observed radio

pulsar glitches providing fitting formulae for the glitch
magnitudes and rates. In Sec. [[V] we calculate the mis-
match (relative loss of squared SNR) that a single glitch
will cause. Finally in Sec. [[V] we translate the observed
glitches into a prediction for mismatches during a few se-
lected current and future continuous wave searches and
discuss the risk faced by CW searches from glitches.

II. CONTINUOUS GRAVITATIONAL-WAVE
SEARCHES

Searches which target a known pulsar making use of
the observed EM emission (for example, the Aasi et al.
[15] targeted search for the Crab and Vela pulsars) are
able to handle the epoch of a glitch, either by avoiding
searches over the glitch, or allowing for a jump in the
timing solution at that point [I6, I7]. By this merit,
such searches have a very low risk of being disrupted by
a glitch coupled to the EM channel, provided the CW
channel closely follows the phase evolution of the EM
channel in between glitches.

In contrast, wide parameter-space CW searches which,
by definition, search for signals without an EM counter-
part do not have any such prior knowledge. This cate-
gory of searches includes both directed searches, where
a single sky-point is searched in which a neutron star is
believed to exist (see for example Aasi et al. [18], Wette
et al. [19], Zhu et al. [20]), and all-sky searches; in both
instances a band of frequencies and frequency-derivatives
are usually searched since they are inherently unknown.
These searches use a matched filter against smooth tem-
plates built from a Taylor expansion in the phase; as such
they do not include glitches. If a neutron star emitting
detectable levels of CW emission undergoes a glitch in
the CW channel, then the matched-filtering method will
not behave as expected because the template is a poor
match to the real, glitching signal.

Continuous CW searches ideally employ a fully-
coherent search method which consists of matched-
filtering the template against all the data. However, such
a search is typically computationally infeasible and so
CW searches use a semi-coherent method: the total ob-
servation time 7" is divided into Nyes segments of duration
Tieg- Each of these segments is fully-coherently analyzed
and then recombined incoherently to give a semi-coherent
measurement, which is insensitive to phase jumps be-
tween segments. This method provides more sensitive
searches at fixed computing cost [21I]. Typically, a semi-
coherent search is performed first, then interesting can-
didates are followed-up with longer coherent integration
times by reducing the number of segments, aiming to
eventually confirm a signal with a final fully-coherent
search; see Shaltev and Prix [22] for discussion of a two-
stage follow-up procedure and Papa et al. [23] for a multi-
stage application.



III. STATISTICAL PROPERTIES OF THE
OBSERVED GLITCHES

In this section, we study the properties of glitches in
the observed radio pulsar population using the glitch cat-
alog maintained by Espinoza et al. [24] and available at
www.jb.man.ac.uk/pulsar/glitches.html. Our goal
is to make a statement about how often glitches occur
and their magnitudes for the types of neutron star which
may be emitting CWSs in the parameter space of typi-
cal CW searches. This task is made difficult since many
searches look for young, rapidly rotating stars for which
we only have a small sample of observations or no obser-
vations at all. Therefore, we must extrapolate the glitch
properties for the population of CW-emitting neutron
stars from the observed radio pulsar population.

Radio pulsar timing methods detect glitches by fit-
ting a piecewise Taylor-series expansion in the phase
to either side of the event, with a modeled jump in
between (see Edwards et al. [25] for a detailed discus-
sion). The glitch catalog [24] reports 472 events from
165 pulsars (as of the 27" of June 2016); for each
of these events, a value is reported for the frequency
jump Jdv and frequency derivative v, if it can be mea-
sured. We cross-reference the glitch catalog with the
ATNF Manchester et al. [26] pulsar catalog available at
www.atnf.csiro.au/people/pulsar/psrcat/ in order
to obtain the glitching pulsar’s timing properties.

Of the 472 listed glitches, we find 15 with no ATNF
cross-reference, one with dv < 0, and four with no mea-
sured ¥ in the ATNF catalog; these pulsars are removed
from our data set. Additionally, we find 54 glitches which
have either no measured d7, or a measured value consis-
tent with zero; these will be included where possible.

A. Glitch magnitudes

Espinoza et al. [24] argued that the glitch catalog con-
tains glitches from two distinct sub-populations of pul-
sars. There is the main population with dv magnitudes
ranging from 107 to 1075 Hz (which we will refer to as
the “normal” glitches), and a second, smaller population
with larger magnitudes of dv, referred to as “Vela-like”
because the pulsars undergoing these glitches have simi-
lar characteristic ages and magnetic field strengths to the
Vela pulsar (PSR B0833-45). We reproduce the evidence
for this finding in Fig. |l where we plot the histogram of
all observed dv values. This illustrates the bimodality
found by Espinoza et al. [24].

To check that the bimodality is not an artifact of the
histogram bin sizes we estimate the probability density
function using a Gaussian kernel density estimate (KDE).
Specifically we use the Jones et al. [27] implementation.
This is also plotted in Fig. [I] and shows two distinct
peaks, although the smaller peak could also be inter-
preted as two peaks close together. By eye, it is clear
that there are at least two modes to the histogram and
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FIG. 1: The distribution of observed glitch magnitudes
ov (from the glitch catalog). This is given as both a
binned histogram and a Gaussian KDE, as discussed in
the text. The solid and long-dashed lines mark the two
components of the two-component skewed Gaussian
mixture model (GMM).

Mean Std. Dev. Weight Skew
Normal -8.391 1.591 0.700 1.056
Vela-like -4.406  0.545 0.300 -9.949

TABLE I: The properties of the fitted two-component
skewed Gaussian mixture model shown in Fig.

possibly more. We investigate this in Appendix [A] by
applying a Bayesian model comparison for Gaussian mix-
ture models (see Gelman et al. [28] for a review) varying
the number of components and also allowing for a skew
as described in O’Hagan and Leonard [29]. We find that
all models with two or more components fit the data de-
cisively better than a single component. Marginal gains
are found by allowing the models to be skewed and have
four or more components, but no single model is out-
standing amongst the others. For this reason we choose
to use a two-component model with skew; this provides a
good empirical description of the data and is pragmatic
in that we limit the number of components to two for
interpretability. We note that this description is empiri-
cal and we do not intend to make any substantive claim
regarding the underlying physics of the two components.

The mixture components and individual distributions
for the two-component skewed model are plotted in Fig.
and in Table [[] we provide the resulting mean, standard
deviation, weights and skewness of the two components in
log-space. This method identifies the two subpopulations
in a manner consistent with the observations by Espinoza
et al. [24] and notably the Vela-like component suffers a
significant skew.

We use the best-fit two-component skewed Gaussian
mixture model to label each data point as originating
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FIG. 2: Glitch magnitudes from the glitch-database
[24]. This shows a scatter plot of all pairs of v and Jv
where the coloring depends on the labeling given by the
mixture model (blue circles are the points categorized
as “normal glitches”, while orange circles are the points
from the “Vela-like” population). Histograms for both
glitch magnitudes are also given for each
sub-population. Colored markers highlight glitches from
interesting pulsars.

from one of two skewed Gaussian distributions. Specifi-
cally, to each data point we assign the label based on the
maximum probabilities of each of the two components,
given the maximum posterior model parameters derived
in the fitting process. In Fig.[2] we plot histograms for dv
and dv along with the raw data in a scatter plot. We have
separated the data into the individual sub-populations,
as labeled by the two-component skewed Gaussian mix-
ture model, and color-coded to aid the eye. Several pul-
sars of interest are picked out using colored markers. It
is interesting that not all of the Vela glitches are catego-
rized by this method as Vela-like, which can be seen by
looking at the distribution of Vela glitches in Fig.

B. Overview of the population of glitches

To give an overview of all observed glitches in the con-
text of the wider population of observed radio pulsars
listed in the ATNF catalog, in Fig. [3] we plot two copies
of the familiar v-v diagram. In panel A, for each pulsar
which has been observed to glitch we add a colored circle
with an area proportional to the number of glitches seen
in that pulsar. In panel B, we mark each pulsar that has
been observed to glitch with a colored circle, but here

the area of the colored circles marks the pulsar’s average
glitch magnitude. For both plots, different colors have
been used to partition the Vela-like and normal glitches
(note that some pulsars display glitches from both popu-
lations). Finally, dashed lines mark isoclines of constant
characteristic age, Tage = |V/7.

While the bulk of observed glitching pulsars are from
the main pulsar population, the fraction of young pul-
sars (Tage < 10° yrs) which glitch is proportionally higher
than in the normal population. Vela-like glitches occur
predominantly in the young pulsars with none seen in
pulsars with T,ee > 107 yrs. It is also noticeable that
younger pulsars display a greater number of glitches.
Note that, since we have not observed all pulsars for the
same duration, one cannot infer the relative glitch rate
from the number of glitches alone.

For the normal-glitch population, Espinoza et al. [24]
noted that “pulsars with Tage < 5 x 10® yr undergo small
or medium sized glitches (dv < 1075Hz)”. It is postu-
lated that the higher temperatures in younger pulsars
prevents the glitch mechanism working effectively. This
effect is consistent with Fig. [BB: the pulsars with the
largest average glitch sizes have T, ~ 10° yrs, while
younger pulsars tend to exhibit smaller glitches on aver-
age.

C. Extrapolating: glitch magnitudes

We would like to be able to predict the glitch magni-
tude for the unobserved neutron star population targeted
by CW searches. In particular, we need to extrapolate
up to large spin-down-rates — ~ (107° —1077) Hz/s
searched for in many recent CW searches, which are
larger than what has observed in radio pulsars.

It has previously been found [24, [30H32] that the glitch
activity (defined in the first of these references) correlates
well with || and the characteristic age Tage. We choose
not to combine the rate and magnitude information to-
gether into the activity, but estimate both separately as
these are of most direct relevance to CW searches.

We investigate correlations of the glitch magnitudes dv
and 07 with the frequency v, frequency-derivative © and
characteristic age T,ge, as shown in Table|lll This is done
for three groups: all the data together and individually
for the normal population and the Vela-like population.
For the normal population, both glitch magnitudes most
strongly correlate with spin-down rate r, although we
recognize that the correlation with 7,g. is only marginally
weaker. In contrast, év for the Vela-like population has a
weak correlation with all predictor variables, but d2 cor-
relates well with © and most strongly with the character-
istic age. For simplicity, we choose to use v as a predictor
variable for both the normal and Vela-like populations,
making it simpler to interpret later results as the same
predictor is used for both populations. In practice our
conclusions will be robust to either choice of predictor
variable.
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FIG. 3: v-v plot of all pulsars in the ATNF catalog [26]. A: A single colored point marks pulsars which have been

observed to glitch; the area of the colored circles is proportional to the number of observed glitches from that pulsar.
B: A single colored point marks pulsars which have been observed to glitch, the area of the colored circle is
proportional to the average glitch magnitude from that pulsar. We have used blue for normal glitches and orange for
Vela-like glitches, as defined by the skewed Gaussian mixture model in Sec. [[ITA] Note that in the plot showing
glitch magnitudes, the relative scaling of the Vela-like and normal populations are not equal: the area representing
the normal glitch magnitudes are scaled to be three times larger than the Vela-like glitch magnitudes.

10g,¢ |Tage| 10814 [V l0gyq |¥]
All logq [0v]| -0.634 0.538 0.68
log,, [0v]| -0.846 0.672 0.88
Normal logq [0v|| -0.631 0.390 0.64
log,, [6v|| -0.864 0.604 0.88
Vela-like logy, |ov|| 0.037 0.13  0.048
log,, |6v|| -0.62 0.376  0.593

TABLE II: The correlation coefficients between the
glitch magnitudes and the timing properties of the
source pulsar.

In Fig. @A and Fig. [dB we show scatter plots of glitch
magnitudes against the spin-down rate of the pulsar to
demonstrate the correlation. For both plots we have
added colored markers to label several interesting pul-
sars. These help to show that there can be almost as
much variation in the glitch magnitude of a single pulsar
as from the entire population.

Fitting a linear function in log-log space (see Ap-
pendix [B| for details) our resulting fitting formulae for
the frequency jump for each of the two populations is

(1)
(2)

<5V>N0rma1 :10_0'90|l'/|0‘5510i0-937

(0V) Vela-like 210_4-59|l)|0~0210:l:0.287

and for the frequency-derivative jumps is

074.17|I'/|0.9010:i:0.677

3)
(4)

<5V> Normal = 1

(60) velatike =107 703|1|0-5710*0-66

where the last factor provides an estimate of the vari-
ability about the linear fit. These fits do not provide a
precise statement about the magnitude of glitches, but
are sufficient to estimate the order-of-magnitudes that
we might expect.

D. Extrapolating: average glitch rate

In order to estimate the average rate of glitches, Es-
pinoza et al. [24] grouped pulsars by their spin-down rate
v, including pulsars which have not yet been observed to
glitch. From this grouping, the authors used the mea-
sured number of glitches N, to calculate a mean glitch
rate (Ng>. In Fig. 10 of their work they show that, to
a good approximation, in log-space the mean glitch rate
depends linearly on the spin-down rate; we reproduce this
in Fig. [5] using the data from Table 4 of Espinoza et al.

In order to extrapolate, we fit a linear function to the
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FIG. 4: A: the magnitude of dv as a function of the
pulsar’s spin-down rate. B: the magnitude of §2 against
the measured spin-down rate. The colored lines and
shaded bands are the best fits from Eq. (1)) and Eq.
for dv, and Eq. and Eq. for dr; the orange lines
mark the Vela-like fit while the blue lines mark the fit
to the normal population. Vertical clustering in the
observed data points is the result of multiple glitches
observed from a single source. Colored markers
highlight glitches from some interesting pulsars.
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FIG. 5: Reproduction of Fig. 10 from Espinoza et al.
[24], giving both the log of the glitch rate per second
(left-hand axis) and per year (right-hand axis). Black
dots are the original data points while the solid line and
shaded region are our best-fit line and a measure of the
variability as given in Eq. .

glitch rate and find the following fitting formula:

; ()

where v is measured in Hz/s. The exponent agrees with
that found by the original authors (they do not provide
the pre-factor).

<Ng> :10—3.00 ‘l'/|0.4710:|:0.31 S—l

IV. SIGNAL LOSS DUE TO GLITCHES

After the discussion in the previous section of the char-
acteristics of glitches seen in radio pulsars, we will now
answer the question “what is the effect of a glitch in a
CW signal on matched-filtered searches?”. In the next
section this will be combined with the predictions of the
previous section to try and quantify the risk posed by
glitches to CW searches. We begin this section by intro-
ducing the mismatch, followed by analytic and numerical
estimates for the mismatch of glitching signals.

A. General mismatch definitions

We assume the template family consists of a regular
CW phase model (without glitches) with phase parame-
ters 0, defined at some reference time t,cf:

D(t) = Dt — trer; ). (6)

The mismatch () is generally defined as the relative
loss of (squared) signal-to-noise ratidﬂ p? due to an offset
between signal parameters 65 and template parameters
0, namely

92(0s3 0s) — p2(98§ o)
p2(933 95)

where p?(6s;6) denotes the expected squared SNR in
template 6 in the presence of a signaﬂ with parameters
s, and ps = p(bs;65) is the maximal “perfect-match”
SNR. When considering the loss of SNR due to a glitch
(or timing noise) in the emitting neutron star, we are in
the situation of signals that lie outside of the regular CW
template manifold T, as originally discussed in Aposto-
latos [34] and Owen [35]. This effect can be quantified by
the “fitting factor” F'F' [34], or equivalently the minimal
mismatch pfr?i)n in the limit of an infinitely finely-spaced
template bank, i.e.

,U,(O) (953 9) = € [07 ” ) (7)

(0) — im0 (g .
Hrin (05) = min 47 (65 60) . (8)

I Obviously using any quantity that is merely proportional to the
SNR would also yield the same mismatch definition.

2 For simplicity in the following we are suppressing the depen-
dency on polarization parameters, see Prix [33] for more detailed
discussion of this common “phase metric” approximation.



Evidently, if the signal lies inside the template manifold
T, i.e. if there is a 6 = 65 € T, then the minimal mismatch
would be zero, while for signals outside of the template
manifold it would be nonzero. Therefore any additional
mismatch from a finitely-spaced template bank will fur-
ther increase the total loss of SNR, but in the following
we are only interested in the minimal match for glitching
signals, which is independent of template-bank spacing.

The metric-mismatch p is a common and useful ap-
proximation [35137] to the (full) mismatch p(?) of Eq. (7)
for small offsets Af = 6—6, between template and signal,
i.e. by Taylor-expanding we obtain

10 (05;0) = u(6s;0) + O (A6?) ,  with (9)
11(6s; 6) = g5 (6s) AG°AY € [0,00) (10)

where g;; is referred to as the metric.

The metric-mismatch of Eq. generally a good ap-
proximation for small mismatches, and empirically one
finds that deviations between u(®) and g start to be-
come noticeable for mismatches above p 2 0.3 — 0.5 [e.g.
see [33, [38]. For larger offsets the (unbounded) metric-
mismatch will tend to increasingly overestimate the ac-
tual (bounded) mismatch x(?), which only slowly asymp-
totes to 1, corresponding to a total loss of SNR. See Wette
[39] for a more detailed discussion of this effect and an
empirical fit to extend the applicability of the metric-
mismatch. This distinction will be relevant in the follow-
ing discussion, as glitches can result in large parameter-
space offsets Af compared to the range of validity of
the metric approximation, and therefore one needs to be
careful in interpreting results obtained via the metric-
mismatch.

B. Glitching CW signals

The model of a signal containing Ng glitchesﬁ is de-
fined as a piecewise CW phase function of the form of
Eq. @ over Ny + 1 continuous “domains” labeled by
a,b,... € [0,Ng], i.e. a =1 1is the domain following the
first glitch, etc. For each continuous stretch a, the signal
phase function is therefore

(bs(t) = (I)(t — tref; G(G)), for te [t(a),t(a+1)) , (11)

and the length of each continuous stretch a is T(,) =
t(a+1) — t(a)- We further denote the fractional length of
each domain as

Tia
Ry = ,}) . (12)

3 Here and in the following we consider a general sequence of
glitches, which would also allow one to model the effect of timing
noise, considered as a sequence of small “glitches” (and allowing
for both positive and negative jumps in frequency). However,
in order to simplify the terminology, we continue to refer to the
effect as “glitches”.

A neutron-star glitch would produce a jump ¢’ f in sig-
nal frequency and a jump ¢’ f in spin-down. We will also
consider a phase jump ¢§’'¢. Such a jump in phase is not
normally considered in radio pulsar astronomy, as the
uncertainty in the time t..¢ at which a glitch occurs is
much greater than the pulsar spin period. This is related
to the fact that glitches often contain initial transient
jump components in frequency and spin-down that de-
cay away on various timescales (hours to days or longer)
[3I]. Given that these transient glitch components are
not included in our simplified glitch model, we can ef-
fectively consider the asymptotic persistent jump to also
contain a phase jump §’¢. Such phase jumps are poten-
tially relevant to gravitational wave searches, however,
and so need to be included in our analysis.

We therefore define glitch a as a discontinuity at time
t(q) in signal parameters with offset {0’ ¢(4), " f(a), 8" f(a) },
while all other signal parameters (e.g. sky-position 7
and higher-order spin-down terms f yeee
bital parameters) remain constant.

and binary or-

We denote the
phase parameters explicitly as 0 = {¢, f, f, f, ...},
so the jump induced by glitch a would be §'0(,) =
{090y, 0" fla), 5’f(a), 0,0,...}. Successive jumps would
be cumulative, and so we define

80y =Y 80, and (13)
b=1

0(@) = 9(0) + 59(@) for a>1, (14)
where the cumulative effect is a simple sum because all
phase parameters 6 refer to the same fixed reference
time tyof, and are therefore constant in time (in between
glitches). The offset between signal and template param-
eters in each stretch a is denoted as

Aé)(a) = 9((1) —0. (15)

C. Single-glitch metric-mismatches

The general expressions for the metric-mismatch for
N; glitches are derived in Appendix Q Here we only
present the explicit results obtained for the special case of
a single glitch, occurring after time T(g) = RT, where T
is the total observation time, and where we average over
the unknown fraction R € [0,1]. These metric results
are limited to the case of “directed searches” where the
SNR is minimized over a search space {f, f ...}, but the
sky-position of the source is assumed to be known.

1. Coherent searches

Consider three different search scenarios: a 4D search
covering {f, f, f, f }, a 3D search including up to f and a
2D search covering only {f, f}. For these three cases we



explicitly (see Appendix |C3)) find the R-averaged mini-
mal coherent glitch mismatches as

up 564 5rT? n2 T4

D — §f2 -5 f 52

Fanin = o5~ T 1518 "0~ 090) * igeig 0
(16)

. 2802 2w T2 . w24 f2
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2D (62— 58 52, (1

Fomin -0~ 1 630 (mof* —dpdf) + 13360 07 (18)

These mismatches are minimal in the sense defined by
Equation , i.e. the mismatches that remain once one
has searched over an infinitely finely-spaced template
bank. These expressions illustrate the effect of correla-
tions in parameter space: including more search dimen-
sions lowers the minimal achievable glitch mismatch over
the template bank. In particular, including f as a search
dimension compared to only f reduces the mismatch of
a pure spin-down-jump Jf by a factor of ~ 10, a pure
frequency jump df by a factor of ~ 3, and a pure phase
jump d¢ by roughly ~ 35%. Including both f and f
reduces the mismatch even more: a spin-down-jump by
a factor of 39, a frequency jump by a factor of ~ 6 and
a phase jump by ~ 70% compared to a search up to f.
Similarly, including sky position 77 as a search dimension
would likely further reduce the achievable minimal mis-
match as well, but there is no simple analytic way to
estimate this effect due to the intrinsic complications of
the sky metric [38].

Note however that as a consequence of this “compen-
sation” effect, there will be biases in the estimated pa-
rameters of a glitching signal, which can lead to prob-
lems when following up or interpreting such candidates
without taking into account the fact that the signal has
potentially undergone a glitch.

As an interesting application of these R-averaged met-
ric expressions we can derive maximal coherent observa-
tion times T for a given glitch jump in either f or f (using
canonical values corresponding to the largest observed
jumps) and a maximal tolerated glitch mismatch (using
a canonical value of 0.1). For pure frequency jumps 4 f
we find

ANYE 1 N
< {T7. . . — T
T{70,48,29}days<0.1) <10_5HZ> , (19)

for a 4D, 3D or 2D search, respectively. In the case of a
pure spin-down jump Jf we find

o\ 1/4 ; /
i |6f]
_ o .
T < {100, 70, 40} days <0.1> (10—12 Hz/s

(20)

2. Semi-coherent searches

In a semi-coherent search the total observation time T
is divided into Ngee; segments of length Tiep = T/Nseg,

each segment £ is analyzed coherently and the results
are combined incoherently by summing the “power” from
each segment (e.g. see Prix and Shaltev [2I], Brady and
Creighton [40]).

For simplicity, we assume the glitch to happen on a
segment boundary, after Ny = R Nsg segments. If a
glitch happens inside a segment, the additional mismatch
in that segment is bounded within [0, 1] and at most con-
tributes 1 /Nseg to the total mismatch.

From the detailed derivations in Sec.[C 4} we can obtain
explicit R-averaged glitch mismatch expressions in the
limit of a large number of segments Nyeg in the three dif-

ferent search spaces (4D:{f,f,f, f}, 3D:{f7faf:} and
2D={f, f}), namely

212 T2 w2 N2, T4 .
~4D seg 2 seg * seg 2
~ 7T2 TSQe 7T2 Ns2€ T;4e ¢
b, = SR e R g (2)
~ 7T2 TSQe 7T2 Ns2€ T;4e ¢
i = — 5 201+ — 50 (23)

Here we see again how parameter-space correlations act
to reduce the minimal glitch mismatch when including
more search dimensions. Note that the phase jump
d0¢ does not appear in these expressions, as in a semi-
coherent search, the SNR in each segment is separately
maximized over the phase of the signal within that seg-
ment, so that phase jumps in between segments have no
effect.

Turning these R-averaged expressions into bounds on
the coherent segment length for a pure frequency jump
we find

i 1/2 5f -1
<{l. . . -— TE
Toeg < {11, 10,08}days<0.1> (10_5HZ> :
24

while for a pure spin-down jump we obtain

Tyeg < {5.3, 3.2, 1.3} days

) i 1/2 T -1 5 -
0.1 365 days 10—12Hz/s

(25)

D. TUpper bounds on glitch mismatches
1. Coherent searches

The metric-mismatches discussed in the previous sec-
tion can be a useful tool, for example to estimate bounds
on the maximal safe observation-span in the presence of
a glitch, as given in Egs. 7 and Egs. 7.
However, the metric is of somewhat limited use for pre-
dicting mismatches from glitches in general, because the
parameter jumps 66 will often not be small enough for the
metric approximation of Eq. to be applicable. In



fact it is the regions of “large” mismatches ~ O (1) that
would be most relevant for a realistic assessment of the
impact of glitches on the detectability of signals. While
numerical extrapolations to the metric-mismatch do ex-
ist for large template mismatches [39], it is unclear to
what extent they would be applicable in the present case
of off-manifold signal mismatches. However, we can also
obtain simple analytic upper bounds on the mismatches,
which can be useful to estimate the relevant “scale” of
the expected mismatches.

Namely, we can always find a template that perfectly
matches the signal over the longest time stretch o/, i.e.
R4y = max, R(g) during which the difference between
the template and signal is zero. While it is in principle
possible for other time stretches a # a’ to reduce the
total SNR by contributing noticeable negative contribu-
tions in the (complex) coherent matched-filtering ampli-
tude (cf. Eq. (C9)), this is generally quite unlikely: off-
sets in frequency A f(,) or spin-downs A f(a) would re-
sult in a rapidly oscillatory matched-filtering integrand
AP (where A®(t) is the difference between the sig-
nal phase and the template phase defined in Eq. ),
and so the corresponding contributions would typically
be small, while only pure phase jumps A¢,) ~ 7 could
result in canceling contributions. Therefore, generally
the matched-filtering amplitude of Eq. will be X =
max, R, (assuming the template is perfectly matched
in this segment, but contributes neither positively or neg-
atively elsewhere). And so we obtain an upper bound on
the coherent glitch mismatch as

2 1
i 51— (maxR) S 1- ( (26)

min ~ Ng + 1)2 ’
where the second inequality is obtained by observing that

1
maXg, R(a) Z @

2. Semi-coherent searches

By re-grouping Eq. (C39) over the inter-glitch time
stretches, we can write the semi-coherent glitch mismatch
as

N,

—~ = ~(0
M(O) = Z R(a) Mga; . (27)
a=0

Using the same argument as before, there will always
be a template that perfectly matches the signal over the
longest inter-glitch time stretch max, R(q) T, where the
mismatch would be zero, while it would be at most be 1
the rest of time (but quite possibly less). This yields the
(strict) upper glitch mismatch bound of

~(0)

min

N,
< 1- m(?XR(a) < Ng j_ 1’ (28>

which contrary to the coherent case of Eq. is linear
in max, R(,) instead of quadratic.

E. Numerical estimates of the mismatch

The metric estimates discussed in Sec. [V.C| describe
the behavior of small glitch mismatches, while the results
of Sec. [[VD] provide useful analytical upper bounds. In
order to verify these expressions as well as interpolate
between the two regimes of small and maximal glitch
mismatches, we also use direct numerical computation of
the mismatch. In this section, we present two different
approaches to numerically estimate the mismatch: (i) a
relatively simpler numerical evaluation of the simplified
matched-filter amplitude of Appendix with a min-
imization over the template parameters, and (ii) direct
evaluation of the full CW F-statistic [4I] over the tem-
plate space using an efficient MCMC search.

Understanding the intermediate regime between met-
ric estimates and upper mismatch bounds will be im-
portant when quantifying the risk posed by glitches to
real searches, as glitches will often be sufficiently large
to cause substantial mismatches (2 0.3), as was seen al-
ready from the simple estimates in Eqgs. 7, and

Bos. @) @),

1. Mismatch from simplified matched-filter amplitude

Given a particular glitching signal, we can estimate
the mismatch by numerically evaluating the simplified
matched-filtering amplitude X defined in Eq.[C8over the
template manifold. This approach therefore only involves
the differences between the template phase model and the
signal phase model, while still neglecting antenna-pattern
and polarization parameters.

Calculating the fully-coherent mismatch involves gen-
erating two time-series, namely the signal- and template
phase functions. The phase difference A®(t) = Py(t) —
D (t) is then used to compute the simplified matched-
filtering amplitude X, and the fully-coherent mismatch
is estimated as 1 — | X|?, as discussed in Appendix
and numerically minimized over the template search pa-
rameters using a Nelder-Mead minimization (the Jones
et al. [27] implementation) which was found to be effec-
tive for small mismatches. For larger mismatches, how-
ever, the mismatch topology contains multiple minima
and this method requires careful selection of the initial
guess.

In Fig. [6] we show the results of a simple Monte-
Carlo study using this approach in the context of a semi-
coherent search. For each simulation, we generate a sig-
nal lasting 100 days with a single fixed glitch of mag-
nitude 6f = 5 x 1077 Hz, and we choose the time at
which the glitch occurs uniformly over the entire data
span. In the upper plot we show the average mini-
mal mismatch of a 2D search over {f, f} as a function
of the coherent segment length Ty, of the search (and
hence the number of segments), comparing the result to
the metric prediction of Eq. . The fractional differ-
ence between the two estimates is shown in the lower
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FIG. 6: Comparison of the mismatch (averaged over the
time at which a single glitch occurs) of the numerical
simplified matched-filtering amplitude of Sec.

(solid dots) with the metric-mismatch estimate of
Eq. (dashed line). For this comparison, an
observation time of 7' = 100 days was used and the
glitch had a fixed magnitude of 6 f = 5 x 10~7 Hz.

plot. For short segment lengths, the mismatch is small
(1) < 0.1 and so the numerical estimates agree well with
the metric-mismatch approximation. However, as the
segment length increases, the mismatch grows and the
approximation starts to overestimate the numerical re-
sults.

In addition to verifying the behavior of the metric-
mismatch approximation, Fig. [6] also demonstrates that
for a fairly typical glitch size (compare with Fig. [2| for
example) 10% of the squared SNR can be lost for longer
segments. Moreover, this also provides an insight into
what will happen to a signal during a follow-up procedure
when the segment length is increased to test the signif-
icance of candidates. For short segment lengths, only a
small amount of SNR is lost, but this mismatch will in-
crease as the segment length is increased. Therefore the
SNR will not increase as it is expected to for a CW signal
and the candidate might potentially be classified as “not
following the presumed signal model”.

2. Full F-statistic mismatch using an MCMC' search

The second approach consists in directly computing
the mismatch of Eq. by evaluating the F-statistic
over the template manifold using an MCMC search. For
this we generate data containing a glitching signal (using
lalapps_Makefakedata v5 [42]) and then search for it
over the template manifold (not including glitches) using
the LALSuite [42] implementation of the F-statistic. The
mismatch is then obtained as the fractional difference
between the recovered maximal F-statistic value and a
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perfectly matched signal (including the glitches).

This method allows one to include the effect of a sky
search (that is to answer the question “can searching over
the sky position further reduce the minimal glitch mis-
match similar to what was found when searching over
higher-order spin-downs?”).

The F-statistic is the log-likelihood ratio of the signal
versus Gaussian noise, analytically maximized over the
four amplitude parameters hg, cost € [—1,1], ¢ € [0, 27],
and ¢ € [—7/4,7/4] where ¢ is the inclination angle of
the source, ¢ is the initial phase, and 1 is the polar-
ization angle. We compute the mismatch averaged over
these amplitude parameters, by randomly drawing these
amplitude parameters from their prior ranges. Note that
we fix the amplitude of the signal to hy = 1, and gen-
erate data without noise in order to obtain the expected
F-statistic, which is directly related to the SNR p via
E[2F) = 4+ p? [41], which enters the mismatch expres-
sion Eq. @

In order to minimize the glitch mismatch, we use a
Markov-chain Monte-Carlo (MCMC) minimization step
with priors for each of the search parameters chosen in
order to allow all correlations to be fully explored. A
gridded search would yield equivalent results, provided
the grid points where sufficiently dense such that the
template-bank mismatch was negligible; an MCMC ap-
proach (which must equivalently be run for a long enough
period to ensure a good approximation of the true maxi-
mum) was found to be simpler and computationally less
demanding than a gridded search.

As a simple demonstration of this method, in Fig. [7]
we show the results of a Monte-Carlo study of a semi-
coherent search (with T' = 60 days and Ty, = 15 days)
for a signal containing a single glitch which occurs exactly
one quarter of the way through the search; this setup
is chosen such that in the large-glitch limit, the maxi-
mum mismatch will be exactly 0.25 where the template
matches 3/4 segments (see the discussion in Sec. for
more details). We plot the mismatch (averaged over am-
plitude parameters) versus a realistic range of the jump
size 0 f in frequency (e.g. see Fig. [2).

This search is repeated for three different parameter
spaces: a 2D search over {f, f}, a (242)D search over
{f,f.sky}, and a 3D search over {f, f, f}. In the case
of searching over sky we found that the minimum mis-
matches where found up to ~ 0.1 rad away from the
true sky position, which indicates that glitches can in-
duce substantial biases in the recovered parameters of a
search over a non-glitch template bank. The plot also
shows the metric-mismatch predictions for comparison,
as derived in Appendix without taking the large- Nyeg
limit (the exact expressions are lengthy and not generally
useful and have therefore been omitted).

This confirms and extends the findings of Sec. [V.C|
that searching over more parameters can yield a reduc-
tion in mismatch, which also applies to searching over the
sky. The glitch mismatch reduction due to minimization
over the sky is found to be somewhat smaller but compa-
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FIG. 7: Semi-coherent mismatch as a function of glitch
frequency jump ¢ f for three different parameter spaces
searched (2D={f, f}, 3D={/f, f, f} and “2D+sky”). In
this example the search set-up is fixed (7' = 60 days and
Tseg = 15 days), as well as the time of the glitch, which
occurs 1/4 of the way through the observation. Solid
lines denote the mismatch computed using the
F-statistic method of Sec. [VIE2l The horizontal line
marks the mismatch upper bound at 0.25, since
max, () = 0.75. Black dashed lines indicate the
metric-mismatch estimates of Appendix for the 2D
and 3D cases.

rable to searching over an extra spin-down parameter f .

While the explicit F-statistic search requires greater
computational resources than the simplified matched-
filtering approach of the previous section, it models the
effects of realistic searches most fully, and will therefore
be used as the method of choice to estimate the risk to
real CW searches in the next section.

V. THE RISK POSED BY GLITCHES TO CW
SEARCHES

In this paper so far, we have provided an empirical
study of glitches in the radio pulsar population (Sec.
and a discussion on how one or more glitches in the CW
signal will produce a non-zero mismatch in a matched-
filtered gravitational wave search (Sec. [[V]). We will now
combine these two analyses, to assess the possible impact
of glitches on some past and possible future CW searches.

Our crucial assumption is that the statistical prop-
erties of glitches in the known pulsar population are a
good indicator of those of the target population of grav-
itational wave emitters. To be more precise, the fitting
formulae of Sec. [[TT} for glitch size and rate, used the spin
down rate © as the indicator variable. For the results to
be presented here, assessing the possible impact on CW
searches, we will need to extrapolate up to spin-down
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rates of the order of 107 Hz/s. This is about two orders
of magnitude larger than largest the spin-down rates seen
in the radio pulsars; see Figs. [4 and [5]

Given that the physical mechanism(s) underlying
glitches are not well understood, it is difficult to assess
the safeness of this assumption, although it seems reason-
able to suppose that whatever the mechanisms are, they
will apply to all spinning down neutron stars (but see the
discussion of gravitars, below). Of course, the eventual
observation and statistical characterization of glitches in
a population of such rapidly spinning down CW sources
would provide a test of this assumption. Note that for
spin-down rates with || > 1077 Hz, the fitting formulae
for the glitches sizes dv for the normal and Vela-like pop-
ulations cross, casting added doubt over their validity at
such high spin-down rates; see Fig. [d] The same is true
for the 0v jumps; see Fig. Fortunately, we will not
need to extrapolate into this regime.

Gravitational wave astronomers sometimes postulate
the existence of a population of gravitars, electromag-
netically unseen neutron stars that spin-down mainly
through gravitational wave emission [43] [44]. Such stars
would necessarily have very low external magnetic fields,
or else they would be visible as pulsars, and would
be acted upon by significant electromagnetic spin-down
torques.

If the internal magnetic field is also small, one might
wonder if the glitch mechanism might somehow be sup-
pressed, as compared to the radio pulsar population. We
can simply note that for glitches due to superfluid un-
pinning, if the pinning takes place in the inner crust, the
large scale stellar magnetic fields probably plays no sig-
nificant role [I], so such glitches are still to be expected
in gravitars. On the other hand, if, as has been suggested
relatively recently [45], pinning takes place in the core,
on magnetic flux tubes, the lack of a significant internal
magnetic field might indeed suppress this glitch mecha-
nism. For crustquakes, which can be expected to occur
alongside whatever superfluid glitch mechanism might be
operative, the magnetic field is not expected to play any
significant role [3], implying that crustquakes should oc-
cur also in gravitars.

To sum up, we can reasonably expect the glitch mecha-
nisms that apply to the radio pulsar population to apply
in whole or (at least) in part to the hypothetical gravitar
population.

A. The glitch rate and associated probability

CW searches typically use stretches of data from tens
of days to a few months with a small number of searches
spanning longer than a year or two. The first question
which must be answered to understand the risk is “given
that a signal does exist in the data, how probable is
it that one or more glitches will occur during the data
span?”.

In Equation [5] we reproduced the glitch-rate fitting for-



mula for (N,) given by Espinoza et al. [24], which pro-
vides an estimate of the glitch-rate per second as a func-
tion of the source pulsar’s spin-down rate and includes
the effect of pulsars which have not been observed to
glitch. From this rate, we can estimate the expected
number of glitches given a span of data as a function
of the spin-down rate. Elsewhere in Sec. [[TI} for the
glitch magnitude fitting formulae, we split the population
of glitches into two sub-populations (normal and Vela-
like) to avoid over estimating the glitch magnitude for
large spin-down rates. To use these fitting formulae, we
will present results in this section similarly split by sub-
population. However, the fitting formulae for the glitch
rate was calculated by Espinoza et al. [24] from the whole
population; therefore, we define

<Ng>n0rma1(pa T)= wnorma1<Ng>T (29)

<Ng>Vela—like(ﬂ7 T) = WvVela-like <Ng>T7 (30)

as the expected number of normal and Vela-like glitches
where Wnormal and Wvela-like are the weights of the two
populations as given in Table[[}] Implicit in this definition
is a prior specification that the proportion of normal and
Vela-like pulsars in the target population is the same as
in the observed population. There is some evidence that
in fact the proportion of Vela-like pulsars increases with
U; this could be modeled by a r-dependent weighting,
however we will ignore this effect here.

The average number of glitches in a given search is
a useful quantity, but it is not easy to interpret; for
a low average number of glitches, there remains signif-
icant probability of having zero glitches and hence no
loss of signal. To better understand this risk, we will
therefore apply a simple substantive model, a Poisson
process. Melatos et al. [46] demonstrated that glitch
waiting times are consistent with an avalanche process
transferring angular momentum from the core superfluid
to the crust. Choosing 9 pulsars which had glitched 5
times or more, they found that 7 of these where consis-
tent with a constant-rate Poisson process such that each
glitch event is statistically independent. In the remain-
ing two, PSR, J0537-6910 and PSR B0833-45 (Vela), they
find that a quasiperiodic component (i.e. the glitches oc-
cur quasiperiodically) coexists with the Poisson process
and accounts for about 20% of the events, this is sugges-
tive that these periodic glitches originate from a different
mechanism.

Of all events in the glitch catalog, PSR J0537-6910
accounts for 23 and PSR B0833-45 (Vela) for 17 of the
total 472 events. Assuming that 20% of these are due to
the quasiperiodic component, this is ~ 1.7% of the to-
tal number of observed glitches. It is possible that other
pulsars also exhibit a quasiperiodic component, so the
total fraction of glitches from a quasiperiodic component
may be larger than 1.7%, but it seems likely that a Pois-
son like process should provide a good description of the
probability of glitches occurring in general.

Assuming the Poisson process is responsible for all the
glitches in the catalog, we can calculate the probability of
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one or more glitches occurring given the expected number
of glitches. To do this, we take the estimated number of
glitches during a typical search A and sum the Poisson
probability mass function from 1 to infinity:

o0 —
ANse—A

g

Ng=1

(31)

Note that in practice we truncate the summation at a
finite level where the mass function is negligible. We will
apply this separately to the normal and Vela-like popula-
tions with A=(Ng)normal and A=(Ng)vela-like. The total
expected number of glitches is the sum of the individ-
ual expectations, from this the total probably could be
calculated.

In Fig. [§| we illustrate how this probability varies with
the data span for four fixed spin-down rates. This shows
that for the Normal population, if the data span is shorter
than a month or so, glitches are unlikely even for large
(absolute) spin-down rates. However, for more typical
data spans = 100 days, the probability of seeing one
glitches rises above a half with the effect correlating with
the magnitude of the spin-down. The same general pat-
tern is found by the Vela-like population, with the effect
being marginally weaker due to our prior weighting.

B. Past and future searches

We have shown that neutron stars with large spin-
down rates will have larger and more frequent glitches
than those with smaller spin-down rates; see Figs. []
and B It follows that gravitational wave searches that
search over larger spin-down ranges and over longer spans
of data will suffer greater mismatches due to glitches than
searches over smaller ranges in spin-down rate and over
shorter observation spans. In this section, we aim to
quantify the potential mismatch for some recent and on-
going CW searches.

For each CW search that we consider, we estimate the
probability of glitches and the mismatch if one or more
glitches did occur. We evaluate these quantities for sig-
nals with the largest spin-down rate (i.e. largest value of
—1) considered in each search. In this respect it repre-
sents a worst-case scenario, but we note that the results
would not change much if we had instead averaged over
the spin-down rate of the search: averaging uniformly
over spin-down would still correspond to the scale set by
the largest spin-down rate. These numbers are there-
fore still qualitatively representative for the “expected”
effects over the whole search space.

For each search listed in Table [Tl we summarize the
relevant search parameters followed by our estimates for
the effect of glitches in this search. Splitting the results
up by their source population (such that to get the total
expected number of glitches one adds the normal and
Vela-like expectations), we list the expected number of
glitches, the probability for one or more glitches, and the
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TABLE III: Predicted effect of glitches on some recent and planned CW searches, note that the “S6 EQH all-sky
HFU*” search refers to stage 4 of the hierarchical follow-up. For each search we summarize the search parameters,
followed by estimates for the number and probability of glitches, and the resulting averaged semi-coherent ({(j1(?)))

and fully-coherent ((1(?))) F-statistic mismatches (see text for details). These quantities are calculated at the
largest spin-down rate considered in the search. We also provide the average value of the corresponding mismatch
upper bounds (given in brackets), see text for details.

min(fs)| Tseg | Nseg| T |Ref.

Normal population

Vela-like population

[nHz/s] | [hrs] [days] (Ng) | P> 1 [ () w1 [ () w1 [ (Va) | P21 [ () vy 1 [ (39 vy >1
S6 EQH all-sky 27 | 60| 90 | 255 |E7|[ 1.1 | 68% |0.16 (0.35)]0.40 (0.54)| 0.5 | 39% |0.18 (0.29) | 0.34 (0.47)
S6 EQH all-sky HFU*| —2.7 280 | 22 | 257 |[23]|| 1.1 | 68% |0.27 (0.36)|0.44 (0.53)| 0.5 | 39% |0.26 (0.31) | 0.39 (0.47)
S6 EQH Cas. A —106.0| 140 | 44 | 257 |[20]|| 6.3 | 100% | 0.64 (0.63)|0.93 (0.84) | 2.7 | 93% |0.44 (0.45) | 0.76 (0.66)
01 EGH all-sky —2.6 |210| 12 | 105 |[E8]|| 0.5 | 37% |0.17 (0.33)]0.25 (0.46) | 0.2 | 18% [0.17 (0.30) | 0.25 (0.43)
01 EQH Cas. A —144.0|245 | 12 | 122.5 |[@8] || 3.5 | 97% |0.54 (0.54) |0.77 (0.71) | 1.5 | 78% |0.38 (0.40)| 0.59 (0.56)
01 E@H Vela Jr. —67.9 [369| 8 |123.0 |@8]|| 2.5 | 91% [0.47 (0.49)]0.66 (0.64)| 1.1 | 65% |0.35 (0.39) | 0.51 (0.52)
O1 EQH G357.3 —29.7 | 489 | 6 [122.25|[48] || 1.7 | 81% |0.41 (0.46) | 0.59 (0.58)| 0.7 | 51% |0.34 (0.39) |0.50 (0.49)

semi-coherent and fully-coherent mismatch expectations
if one or more glitches did occur.

These mismatches have been computed using an F-
statistic based MCMC search as described in Sec.
while the glitch parameters have been sampled as follows:
given the expected number of glitches computed at the
largest spin-down rate, we draw the actual number of
glitches from a Poisson distribution, cf. Eq. . If the
number of glitches is zero, the mismatch would be zero
(since we assume an infinitely-fine template bank). In
the case of nonzero glitches, we pick the glitch times uni-
formly throughout the search span. For each glitch, we
draw glitch sizes based on a Gaussian distribution with
a mean and standard deviation (in log-space) obtained
from the fitting formulae in Equations f. For each
such glitching signal, we then numerically compute the
mismatch using the F-statistic MCMC search described
in Sec. over the search dimensions of the origi-
nal search. Subsequently, we average these mismatches
(excluding cases where no glitches occur) to produce the
expected mismatch numbers given in Table

In brackets, next to the averaged mismatch, we also
provide the average upper bound of Egs. and ,
respectively. This number is computed directly from
(Ng) as follows. First draw a large sample of random
Poisson variables N} ~ Poisson((N)). For each instance
Ngi7 generate a realization of the fractional time at which

the glitches occur (i.e. draw Né uniform random vari-
ables from [0,1]), and record the maximum interglitch
fractional duration max, Ria), which fully determines the
mismatch upper bounds. We note that for many cases in
this table, the average expected mismatch is close to and
in some cases even larger than the average upper bound.
In the cases where it is larger than the upper bound,
this indicates that our MCMC minimization failed to al-
ways find the true minimum. Upon inspection, it appears
that this happens most when there are a large number
of glitches (as is the case for the S6 EQH Cas. A search
and O1 EQH Mult. Dir. Cas. A). In the cases where it

is close to the upper bound, we conclude that the glitch

sizes are so large that the mismatch often saturates at
the upper bounds.

This table shows that for these searches considered,
there is both a substantial probability of glitches occur-
ring and these glitches would result in a significant frac-
tion of SNR being lost. The table also reiterates one of
the earlier findings shown in Fig. [6} the mismatches will
increase in the follow-up. In this case, we have estimates
of the mismatch during the initial semi-coherent stage
and the mismatch if followed up fully-coherently. Tak-
ing as an example the S6 EQH all-sky search, during the
initial stage only 0.16 of the squared SNR would be lost
and hence the signal (if it where strong enough) might
be classified as a candidate. However, if immediately fol-
lowed up fully-coherently, the mismatch may increase to
0.40 such that the signal would appear to be weaker than
it should be if it had matched the presumed signal model.

C. Including the recovery from glitches

In this work, we have used the glitch catalog [24] which
provides v and Jv, estimates of the change in rota-
tion frequency and spin-down rate of the pulsar at the
glitch. However, in addition to this instantaneous behav-
ior, some pulsars also undergo a short-term exponential
relaxation of some fraction @ of the total glitch magni-
tude over timescales 7¢ which are typically tens to hun-
dreds of days [3T]. This may have an important effect on
our estimates since, if a large fraction of the glitch is re-
covered in a timescale short compared to the observation
time, we will over-estimate the mismatch. On the other
hand, if not explicitly included in the search template,
the relaxation itself could also cause a mismatch, which
would tend to vanish when 7 <« T, but be maximal
when 74 ~ T.

One can ask what the available pulsar data tell us
about the likely values of Q). Unfortunately, the issue of
extracting the recovery parameter ) from pulsar data is a
subtle one. As noted by [24] in relation to the glitch cat-
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FIG. 8: Probability of one or more glitches occurring
during a search of duration T, for a normal population
(upper plot) and a Vela-like population (lower plot),
plotted for four different spin-down rates (in units of
Hz/s). The right-hand-axis shows the corresponding
expected number of glitches.

alog: “The results presented in this paper do not involve
fitting of short- term recoveries because their parameters
depend so critically upon the usually poorly known glitch
epoch”. Furthermore, if the recovery timescale is short
compared to the baseline on which pulsar timings are
constructed, the recovery will not be apparent, and will
effectively be absorbed into the measured dv values. If in-
stead the recovery is on a timescale long compared to the
baseline on which the pulsar timings are made (but not
so long that one cannot see the recovery by connecting
different timing solutions), then the recovery will be vis-
ible in the data, and recovery values @) estimated. Such
procedures have been carried out, with recovery values
quoted for many glitches in, e.g. Lyne et al. [3I] and Yu
et al. [49]. The results of Lyne et al. [31] pointed to a cor-
relation between ) and spin-down rate, with the largest
recovery fractions being found in the pulsars with the
largest spin-down rates (see their Figure 6). However,
the more recent data of Yu et al. [49] point to a more
complex picture, with the largest glitches having values
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of Q from ~ 1072 up to Q ~ 1.

Given this, it is unclear what @ we might expect for
the target population of all-sky and directed gravitational
wave searches. It is certainly possible that in the stars of
interest to us, the recovery fraction may be large (Q ~ 1),
so that the results of Table [[TI] overestimate the effect of
glitches on CW searches. However, on the basis of the
available evidence, it is not possible to say more than this.
The only way of settling the issue definitively would be
to allow for relaxation in CW templates, and see what
the gravitational wave data itself prefers.

VI. CONCLUSIONS

This work investigates the effects of glitches in the CW
signal on searches that matched-filter the data against
non-glitching templates. We started with an initial study
developing empirical fitting formulae for the size and rate
of glitches in the pulsar population (as cataloged by Es-
pinoza et al. [24]). Subsequently, we developed different
ways to estimate and evaluate the loss of SNR in fully-
coherent and semi-coherent searches due to the presence
of glitches. Finally, we used our fitting formulae to pre-
dict the loss of SNR for typical CW searches and the
probability of one or more glitches occurring.

The work is developed with three motivations: (i) to
understand if glitches pose a risk to our ability to detect
CWs from isolated neutron stars in wide-parameter space
searches, (ii) to help guide decisions about planned future
searches in order to minimize any risk, and (iii) to make
a statement on how the risk manifests and what can be
done to mitigate it.

With regard to the first motivation, it is clear from
Sec. [V] that glitches, if they occur in CW signals with
similar properties to those observed in pulsars, can both
be frequent enough and of a sufficient magnitude to result
in large losses of SNR for both semi-coherent and fully-
coherent searches. This is particularly true for searches
spanning long stretches of data and searching large spin-
down rates, two attributes usually associated with in-
creased detectability.

The main uncertainty in our analysis lies in extrapo-
lating glitch sizes and rates from the known pulsar pop-
ulation to regions of large spin-down-rates appropriate
to CW searches. In the results presented here, we have
had to extrapolate by about two orders of magnitude in
spin-down rate . We have also not attempted to account
for post-glitch relaxation in our analysis, as there is not
a sufficiently clear pattern of how the amount of relax-
ation correlates with other quantities. We simply note
that glitch recovery could serve to significantly reduce
the impact of glitches on gravitational wave searches, if
the amount of relaxation is sufficiently large, and if it
occurs on timescales of relevance to CW searches.

For semi-coherent searches, the impact of glitches is
reduced by using shorter segment lengths. However, this
loss of SNR is not the primary risk: even if a glitching



signal has been identified as a candidate in the initial
wide-parameter space search, the greater risk potentially
lies in the follow-up procedure of these candidates, which
is often considered the test for a real signal [23]. During
the follow-up, for standard CW signals it is expected that
the squared SNR grows linearly with increasing segment
length (e.g. see Eq. (C7))). However, for a glitching signal
(as seen in Fig. the mismatch will also grow and so
the SNR will not increase in the expected way and the
candidate may potentially be dismissed.

This is of concern to both future and past searches for
CWs from neutron stars. If the effect of glitches is ig-
nored, detectable signals could easily be missed due to
the presence of glitches. We therefore recommend that
the setup design of semi-coherent searches and follow-ups
take the possibility of glitching signals into account, espe-
cially when searching at large spin-down rates. Further-
more, more work is needed to investigate and implement
modifications to current follow-up procedures in order to

15

account for the possibility of glitches and ideally be able
to fully localize them in CW signals.
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Appendix A: Bayesian model comparison: test of
mixture models

It seems clear by eye that the histogrammed magni-
tudes of the frequency change in a glitch, log,, |dv|, as
shown in Fig. I} exhibit at least two distinct modes. To
model this empirically, we will use a Gaussian mixture
model (GMM) [28] with N components. This model as-
sumes that the measured data is taken from a population
with N sub-populations, each having a Gaussian distri-
bution with separate mean, variance and weight (u;, o2,
w;) where i € [1, N]; note that Zf[ w; = 1. Furthermore,
we can also allow each of the components to be skewed
with a dimensionless skew parameter «; which can be
either positive or negative determining the direction of
the skew, or 0, for which there is no skew. Following
O’Hagan and Leonard [29] then the probability density
function of the i** skewed Gaussian component is

x

J (@5 i, 04, 05) = 2N (@5 1, 05) N (ogx; pi, o)de,

— inf
(A1)
where N denotes the Gaussian distribution.

Let y be the set of measured values of logy, |dv| and
¥ = {pi, 04, aj,w; } be the collection of all model param-
eters. Then the probability density for a GMM with N
components is

N
P(y|model, 9) = Zwif(yi; Wiy Ty OG-

i=1

(A2)

To compare different choices of N, we will perform
a Bayesian model comparison [50] between each of the
mixture models and the simplest hypothesis, a mixture
model with N=1.

For each model parameter we must specify a prior. We
list these in Eq. having defined (y), |y|, and std(y) as
the average, range, and standard-deviation of the data.

P(p:) = Unif((y) — [yl, () + [y)),
P(0;) = Half-Cauchy (0, std(y)) ,
P(w;) = Unif(0, 1),
P(a;) = N(0,10 x std(y)).

(A3)

For the mean p; we use a uniform prior over a range
of values containing all data points. For the standard-
deviation o;, we will use a Half-Cauchy distribution with
zero-mean as suggested by Gelman et al. [51]. A large
standard-deviation, as compared to the standard devi-
ation of the data itself, provides a weakly informative

prior. Instead, we use a standard deviation of %(y) to
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model log,, (}3(1;(:107%)
2-components 39.12 £ 0.19
2-components (skewed) 41.60 £+ 0.21
3-components 42.70 + 0.23
4-components 44.27 + 0.24
5-components 44.18 £+ 0.22
6-components 43.21 4+ 0.22
7-components 42.26 £+ 0.22

TABLE 1V: Bayes factor for all models considered in
this study compared to the simplest N=1 GMM. The
error is an estimate of the numerical error in the
thermodynamic integration.

favor GMM components with small standard-deviations
as compared to the data. That is, our prior disfavors
models in which any of the components are wide and
flat. The prior for w; is uniform on [0,1] and for «; is
normally distributed with zero mean and a wide, weakly-
informative standard deviation. The choice of a zero
mean favors non-skewed components. Note that, the
non-skewed models do not include «; as a model param-
eter and the GMM with N = 1 does not include w;.

We use this choice of prior for the model parameters
of each component in the GMM with N components. In
this way, models with larger values of N have a larger
‘prior volume’ and hence there is a natural Occam-factor
favoring the simpler models with fewer components; this
prevents over-fitting.

We will present results for the Bayes factor between
a GMM with N components and the simplest model, a
GMM with N = 1 components. This is computed by

_ Jy PHwi}IN GMM) P(6)df A
[y PQui}IN=1 GMM) P(9)d9"

P(model|{y;})
P(N = 1{yi})

We use the emcee [52] MCMC algorithm to sample
from the posterior and thermodynamic integration to es-
timate the evidence integrals [53]. In Table[[V]we provide
the log;, of the Bayes factor for several possible models.
The Bayes factor between any two of the models given in
Table [V] can be calculated from their difference.

This table clearly shows that the data is decisive: a
Gaussian mixture model with N > 2 fits the data a
great deal better than the simple N = 1 GMM. This is
unsurprising given the distinct multimodal nature of the
data. However, the differences between the other models
is more subtle. No single model distinguishes itself by a
decisive odds-ratio compared to its neighboring models.
We have checked that these results are robust to small
changes in the prior specification.

To help illustrate the differences between these mod-
els, in Fig. 0] we plot the probability density for the
maximum posterior model parameters found in a few
selected models. It is clear from these plots that the
N = 2 model does not explain the number of glitches
found in between the two primary subpopulations around
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0.6 4
[ Data histogram \
05 ] — N=2 GMM '
N=2 GMM (skewed)
oud —- N=4GMM

Normalised count

log1g |07 1

FIG. 9: The distribution of glitch sizes in frequency
jump along with the predictions for the components of
several GMM; the Bayes-factor for these models can be

found in Table [[V]

log,, |6v/Hz| = —5.5; by comparison the N > 2 models
and the N = 2 model which allows for skewness can ex-
plain these points and this is reflected in the Bayes factor.

From this analysis it is difficult to decide which model
best fits the data. However, what is clear is that simply
modeling the data as a GMM with two components with
a skew provides a reasonable empirical model. For this
reason, in our analysis of the glitch population we will
use this model and not any of the models with a greater
number of components.

It is important to realize that this comparison is purely
empirical, in that the result was not conditioned on a
substantive physical model. It would be interesting to
include such modeling, this may provide some insight into
the appropriateness of the mixture model and the number
of components.

Appendix B: Linear regression in log-space

In Sec. [[IT] we perform several linear regressions in log-
space in order to calculate power-law fits. This assumes
that the observed values log(y;) depend on the predictor
values log(z;) as

log(y;) = mlog(z;) + ¢ + €, (B1)

where the ¢; are independent and identically central nor-
mally distributed variables with a standard-deviation o.
In this way, m and c are the linear fit free variables, while
o is a measure of the variability in the observation about
this linear fit.

We use a Bayesian linear regression in which we es-
timate the posterior distributions of all three parame-
ters using a Markov-chain Monte-Carlo algorithm; for
the prior distributions we use non-informative priors and



test that these do not induce any bias. In all cases we
find the resulting posteriors to be Gaussian and so can
take their mean values to get best-fit parameters. The
advantage of this method compared to a simple least-
squares linear regression is that we also estimate (o), the
variation about the linear fit. The linear fit can therefore
be written as

log(y(z)) = (m)log(z) + {c) £ (o)

We can then rearrange this equation to give the corre-
sponding power law fit in linear space

(B2)

y(z) =10 im0 (B3)
where the last term gives the variability about the mean.
Hence neglecting this term gives the mean.

This is an inherently problematic approach since many
functions besides a power law can appear linear in a log-
log plot and the assumption of Gaussian error may not
be a good description. Nevertheless, we will still apply
this approach since we need only order-of-magnitude es-
timates and can always check our predictions; we must
be clear that the power-law fit gives a good empirical fit,
but is not intended to signify any substantive underlying
model.

Appendix C: Derivation of glitch mismatches
1. Coherent matched-filtering approximation

In order to study glitch mismatches, it is useful to
review the (simplified) matched-filtering amplitude in-
troduced in Prix and Itoh [54], from which the met-
ric can easily be derived. The coherent matched-filter
scalar product for narrow-band, long-lasting signals can
be written [41] as

2T
(zly) = 5= (zy) , (C1)
h
in terms of the time-average
1 to+T
@=7[ Q. (2)
to

where ty denotes the start time and T' the duration of
the data span analyzed. The log-likelihood ratio In A of
the signal model versus Gaussian noise is found as (e.g.
see citePrix2009)
1

In A(z;0) = (2[h(0)) — 5 (R(O)n(0)) ,  (C3)
where z(t) is the data time-series, and h(t;0) is a tem-
plate waveform with phase parameters 6. In order to

derive the phase metric, it is useful to consider a simpli-
fied constant-amplitude signal model of the form

h(t;0) = A cos ®(t — tyef;0) . (C4)
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We note that the dominant term in the phase function is
®(t) o< 27 f t, where typical signal frequencies in ground-
based detectors are f 2 10Hz and typical observation
times T are of order of a day or longer, which results in
(h|h) ~ L g2 (C5)
Sh
Assuming the data to be dominated by a signal (neglect-
ing noise), i.e. x(t) =~ s(t) = Ag cos ®(t — tyef;0s), and
maximizing the log-likelihood ratio In A over the tem-
plate amplitude A (but not yet over the initial phase
¢ = ®(0; 6), which contrary to the standard treatment is
left as an explicit template parameter for now) yields the
(partial) maximum-likelihood expression

2A2T
Sh

1

In Ay, (0) = (cos D cos )

Q

(C6)

with the perfect-match signal squared SNR. defined as
A%2T
= (sls) ~ 2

and the (coherent) “matched-filtering amplitude” X de-
fined as

p3 (C7)

X(0:0) = (20 | (C8)
with | X]? < 1 and where A® = ®(t;6,) — ®(¢;0). Note
that contrary to the discussion in Prix and Itoh [54],
here X still depends on the initial-phase parameter ¢,
and one can verify that maximizing X over ¢ yields
again the expression found in Prix and Itoh [54], namely
InAu, , = 302 [X|%

From Eq. (C6) it is natural to define the “mismatched
(¢-coherent) SNR” p(6s;0) as

720 0) = p2 [RX (6507, (C9)

and plugging this into the mismatch definition of Eq. @
yields the ¢-coherent mismatch

0 (05:0) = 1 — [RX (65;6))" . (C10)

Specializing this to the glitching signal model of Eq. ,
we obtain

X = Z R(a) X(a) , with
a=0

(C11)

1

tat1) )
= T(a)/ exp{i [@(t; Oa)) — @(L; 9)]}

t(a)

Taylor-expanding to second order around the perfect-
match case Af(,) = 0 in each continuous stretch yields

(C12)

1 (@) x
RX (@) (03 Aba) ~ 1 = 5 gug A6C AOL



with implicit summation over repeated phase-parameter

indices «, 3, and with the ¢-coherent metric gé‘lﬁ) for
stretch a defined as
() 1 tat1)
i = / 0.0 050dt.  (C13)
(a) Ji(a)

This “¢-coherent” form of the phase metric differs from
the standard “coherent” expression (e.g. see Prix [33],
Brady et al. [36]) as it still covers the initial-phase pa-
rameter ¢. Minimizing the ¢-coherent mismatch over ¢
one can easily recover the usual form of the standard
coherent metric, namely
gij = (0:20;®) — (0;®) (9;®) , (C14)

where indices 7,5 = 1,... run over the phase-parameters
excluding ¢, while indices «, 8 label all phase parameter
including ¢.

Substituting Eq. into Eqgs. and and
keeping only terms up to second order in Af,) we obtain
the ¢-coherent metric-mismatch approximation as

Ng
fi=" R 45 AO%) AOL (C15)
a=0

2. Minimal coherent metric-mismatch

We can use the general ¢-coherent multi-glitch mis-
match expression of Eq. to express the minimal
mismatch over an infinitely fine template bank of Eq. .
For this purpose we parametrize the offsets A6, of
Eq. between signal and template in terms of the
offset in the first continuous stretch a = 0 before the first
glitch, i.e. we write

Abgy = AB,
Ae(a) = A0+ 56‘(a) for

(C16)

a>1, (C17)

and so we can minimize the mismatch over the template

bank by varying Af. From Eq. (C15)) we obtain

Ng
fi = Jas AO°A% + 23" Rigy gL 665, A0

N o=t (C18)
g
v(a) le% B
+ > Ria) G 500 06,
a=1

where g = Zivio §(®) is the ¢-coherent metric for non-
glitching signals over the whole duration 7. Minimizing
Eq. over A by solving 9ji/0A0* = 0 yields the
minimizing template offset as

A0 = =57 Riay 39 063, , (C19)
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where we denoted the inverse ¢-coherent metric for non-
glitching signals as g% = {g~!}*?. Inserting this into
Eq. (C18) yields the minimal coherent glitch mismatch
as

Ng
~ _ a (a)b) spB
Hmin = Z 60((1) Gaﬁ 50(1,) )

a,b=1

(C20)

in terms of

GS)" = b Riay 3) — Riay Ry 82 7° 457 - (C21)

3. Coherent metric-mismatch for a single glitch

In the special case of a single glitch N, = 1, we write
59(1) =00 and R = R(O) = T(O)/T and therefore Ry =
1-R,and T(;) = (1-R) T, and so Egs. (C20) and (C21]
yield

fimin = 00% Gopd6®,  with (C22)

Gos = (1= R) g} - (1= R g g5y . (C23)
and assuming the glitch occurs with uniform probability
in R € [0,1], the expected mismatch for a single glitch
can be found as

~ oy Loy s
(Fimin) = 0% | 5 649 — 5,989 57 g5 | 067 (C24)

9 Jap

In order to obtain an explicit estimate for the mini-
mal expected glitch mismatch of Eq. , we consider
the case of a “directed” search for a target with known
sky-position and binary-orbital parameters, where the
search space only includes frequency f and spin-downs
{f,f,...}. Note, however, that generally there will be
metric correlations also between sky-position or binary-
orbital phase parameters and the set of “glitch param-
eters” {¢, f, f}, which can result in further reductions
in the minimal mismatch of Eq. compared to the
example given here.

Assuming a directed search, the phase model is simply

(AL 0) = ¢+ 2r fAt—i—;f'Atz—i—gl'f'At?’—i—..} ,

(C25)
where At =t — t,¢ is the offset from the reference time
trer at which the phase parameters {¢, f, f, f,...} are de-
fined. It is easy to see that changing the reference time
to tl.¢ = trer + 7 results in new coordinates

9 = 0% (trer +7) = T5(T) Qﬁ(tref) )

with the reference-time shift operator 7 (7) given by

(C26)

1 277 772 %7’3
0 1 T %72
0 0 0 1



which moves the reference time forward in time by 7, and
which has the property 7—!(7) = T(—7). Note that the
functional form of Eq. remains unchanged under a
change of reference time, which simply takes the form of
a Taylor expansion around the new reference time, with
corresponding Taylor coefficients 6’. We therefore obtain
the reference-time shift operation on the metric, as the
metric-mismatch p is invariant under changes of reference
time, and so

o= A (tref) gaﬁ (tref) Aeﬁ (tref)
= A0 (tret + T) Jap(tret +7) A0 (treg +7)  (C28)
= A0* (tref) [T’ya(T)g’yﬁ(tref + T)T(S,B(T)} Aeﬁ (tref) )

from which we obtain

Gap(tret +7) = T7a(=T) Gys(tret) Tp(=7) . (C29)

This relation is very useful as the metric of Eq.
takes the simplest form when evaluated for a reference
time in the middle of the time segment T for which the
metric is computed, namely for tef = tg + T/2 we find

S

o T 274

Imid = 7T12 20 . 7T80 20 . (030)
o =~ L o =T

For evaluating the mismatch of Eq. , however, it
will be most convenient to chose the reference time at the
time of the glitch, i.e. tyef = t(1), such that 66 refers di-
rectly to the instantaneous changes in parameters at time
t(1)- We can compute the corresponding metric simply
by appropriately shifting the reference time of Eq. ,
namely

7O (twy) =T (r0) - 3% - T (r0) (C31)
3N (b)) =TT (1) - Ghaia - T (71)
with
RT 1-R)T
=" 715( 2) (C32)

Combining these expressions and substituting into
Eq. (C23) yields the following R-dependent expressions
for the mismatch
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fim (R) = 60 R(1 — R)
x (1764R® — 7056 R” + 11704R% — 10416 R®
+ 5376 R* — 1624R® 4+ 276 R* — 24R + 1)
2
Lof2T? % R3(1 - R)®
x (588RS — 1764R° + 2100R*
— 1260R? 4 399R? — 63R + 4)
2
-2 s
§f T* — R°(1—R)°
+of T = R )
x (180R* — 360R* + 260R* — 80R + 9)
+06¢0fT 2r R*(1 — R)>(2R—1)(TR> — TR+ 1)
x (42R* — 84R® + 56 R* — 14R + 1)
.
+0¢0f T? % R3(1 — R)*(252R% — T56R°
+ 890R* — 520R® + 156 R* — 22R + 1)
. 2
+ofefTe % RY(1 - R)* (2R - 1)x

x (6R* — 6R + 1)(14R? — 14R + 3)
(C33)

fioin (R) = 66 R(1 — R)
x (175R® — 525R° + 615R*
—355R? + 105R? — 15R + 1)
4 2
+of2T? % R3(1-R)®
x (21R* — 42R® + 30R* —9R + 1)

vofiTt Z—; R5(1 — R)°(35R? — 35R +9)
+640f T 2r R*(1 — R)*(2R — 1)

x (5R? —5R+1)(TR> = TR +1)
+0p0fT? %”33(1—3)3

x (35R* — TOR® 4 48R* — 13R + 1)
+6f6fT° %234(%3)4

x (2R —1)(14R? — 14R + 3)
(C34)



R)(20R* — 40R® + 28R* —~8R + 1)

fimo, (R) = 6¢* R(1 —
+0f2T? % R3(1— R)3(15R? — 15R + 4)

_ R)5
— R)*(2R—1)(5R* = 5R + 1)

+5f'2T4%QR5(1
+5¢5fT27TR2(1
+6¢6fT2
+6f6fT% n® R*(1

3 " R3(1— R)}(6R* — 6R + 1)
—R*(2R-1)

(C35)

Averaging this over R or directly evaluating Eq. (C24)
yields the explicit R-averaged metric-mismatch expres-

sions given in Egs. - (18).

4. Semi-coherent glitch mismatch

Here the coherent SNR would have been maximized
independently over the initial phase ¢ in each segment ¢
separately before adding, which means that contrary to
the ¢-coherent case of the previous section using the full
phase-parameters 0 = {¢, f, f,...}, here we are dealing
with the usual coherent statistic in each segment, using
the subset of “phase-evolution” parameters

)‘:{fafafiv"'}a

and we use parameter indices 7,7 = 1,2,... to label the
components of A. Using Eq. (C9)) we can obtain the per-
segment phase-maximized coherent SNR of segment ¢ as

(C36)

i A) = B2 [Xe(Asi M) (C37)

and the expectation of the resulting incoherent statistic
is simply given by summing this over all segments, i.e.

Necg
PPN =D Pi(As ).
=1

(C38)

The corresponding mismatch of Eq. (]ZD is now obtained
asfl]
D)

ﬁ(o) Ps — P~ P

(C:39)

4 Note that p is not the incoherent SNR, but is only proportional
to it, which is sufficient for the mismatch definition of Eq. to
apply in the usual sense as mentioned earlier.
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where we assumed a constant per-segment perfect-match
SNR ps. By Taylor-expanding in small offsets A = A +
A\ around the signal location Ag, using Eq. and
dropping terms of higher order, we obtain the incoherent
metric-mismatch approximation as

Nseg
1 :
= g}:g”m LAN (C40)
se, 221

where gw is the usual coherent metric (i.e. minimized
mismatch over ¢) for segment ¢, as given in Eq. -
We consider again a signal that undergoes N glitches
at times t(4) with a = 1,... Ny, and for simplicity we as-
sume these glitches to fall at or near segment boundaries,
i.e. t(q) = {(q) Tseg- Note that if a glitch happens inside a

Segment ¢, the mismatch ,ug ) is bounded within [0,1) and
at most contributes 1/Ngeg to the total mismatch. One
can always derive an upper bound on the mismatch by
effectively removing the affected segment, assuming the
glitch to happen in between segments, and adding 1/Ngeg
to the final mismatch. In this section we will mostly con-
sider the large Nyeg-limit, and so this correction will be
neglected.

We denote as N(,) the number of segments between
glitch g(a) and f(aJrl) = K(a) + N(a), with l(o) = 1 and
E(Ng—i-l) = Neg, and R(a) = N(a)/Nseg7 and A)\(a) are the
parameter offsets in the time stretch following glitch a.

By re-grouping the expression of Eq. over the
inter-glitch stretches a we obtain

Ng
=" R gy ANgAN, .

(C41)
a=0
where we defined
1T, (C42)
ij = Nea A 9ij

Note that Eq. (C41)) is formally identical to the coherent

case of Eq. (C15), and when minimizing this over the
template bank we therefore obtain the analogous result

to Eq. (C20]), namely

= j
fimnin = Z Ny G M, (C43)
a,b=1
where we defined
G = 60 Riay Gy — Riay Ry 9™ 3%, (C44)
with
@\l] ZR @\1(.;1 N Z gz] ) an (045)
SC8 =1
g7 = {3_1}”, (C46)



in perfect analogy to the coherent case of Sec.

Considering the single-glitch case of Sec. we can
again derive explicit mismatch expressions. Using the
large-Ngeg limit we find the R-dependent mismatch ex-
pressions as

2
~. ™
:ufn?n (R) = 5f2 Ts2eg ? R(l - R)
x (175R% — 525R® 4 615R*

—355R% + 105R? — 15R + 1)
SENETY TR - R
+ f seg T seg 5 ( - )

x (2LR* — 42R® + 30R* - 9R + 1)
2

—0f 0f NegT2, % R2(1-R)*2R-1)
x (5R* —=5R+1)(TR* = TR+ 1)

(Ca7)

2
~ ™
M?nll)n (R) = 5f2 Ts2eg ? R(l - R)

x (20R* — 40R® + 28R* — 8R + 1)

. 2
+6f° N2, T, % R3(1 — R)’(15R? — 15R + 4)

A 2
— 51 6f NuogT2, % R2(1 - R)?
x (2R —1)(5R* —5R + 1)

(C48)
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2
022 (R) = +6f2T2, T R(1— R)(3R* - 3R + 1)

min seg g

2 o ma T g 3
+6f NsegTseg ?R (1_R)

. 2
~0f 6] Nuwg T2 5 R*(1 = R)* (2R~ 1)
(C49)

while the R-averaged mismatch expressions are given in

Eqs. @0)-(@3)-
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