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Abstract—Cryptographic access control offers selective access
to encrypted data via a combination of key management and
functionality-rich cryptographic schemes, such as attribute-based
encryption. Using this approach, publicly available meta-data
may inadvertently leak information on the access policy that is
enforced by cryptography, which renders cryptographic access
control unusable in settings where this information is highly
sensitive.

We begin to address this problem by presenting rigorous
definitions for policy privacy in cryptographic access control.
For concreteness we set our results in the model of Role-Based
Access Control (RBAC), where we identify and formalize several
different flavors of privacy; however, our framework should serve
as inspiration for other models of access control. Based on our
insights we propose a new system which significantly improves on
the privacy properties of state-of-the-art constructions. Our de-
sign is based on a novel type of privacy-preserving attribute-based
encryption, which we introduce and show how to instantiate.

We present our results in the context of a cryptographic
RBAC system by Ferrara et al. (CSF’13), which uses cryp-
tography to control read access to files, while write access is
still delegated to trusted monitors. We give an extension of the
construction that permits cryptographic control over write access.
Our construction assumes that key management uses out-of-band
channels between the policy enforcer and the users but eliminates
completely the need for monitoring read/write access to the data.

I. INTRODUCTION

The use of system monitors to enforce access control im-
pacts scalability and deployability: monitors are single points
of failure that need to run in protected mode, be permanently
online and deal with all access requests of users. Furthermore,
this model is simply not suitable for the ubiquitous cloud-based
paradigm, where data resides on remote, untrusted storage
unsuitable for hosting a trusted monitor.

Cryptography can alleviate these problems. The idea is
to give users (quasi) unrestricted access to the data, but in
encrypted form. The desired access restrictions (i.e. who can
access what) are then enforced by providing the appropriate
keys to the right parties. This approach has many advantages:
threshold-cryptographic techniques allow for the distribution of
trust, key management can be done off-line, and only minimal
access restrictions (such as measures against DoS attacks) need
to be implemented.

Cryptographic access control raises however some subtle
issues, which are best explained starting from the simplified
context of standard public-key encryption schemes. Here,
classic notions of provable security, such as semantic security
under chosen plaintext [22] (or ciphertext [36]) attacks, ensure
that ciphertexts do not reveal any information about their
underlying plaintext. These notions do not guarantee however
that an observer cannot link a ciphertext with its intended
recipient (i.e. the owner of the public key used to create

this ciphertext). This is not surprising, as plaintext privacy
is the central requirement, whereas hiding the recipient is
an orthogonal (and often inconsequential) security concern.
Yet, there are settings (e.g. communication via ciphertexts on
a public bulletin board) where this recipient information is
sensitive and needs to be hidden. The first rigorous treatment of
this problem was proposed by Bellare et al. [5] in the form of
key-hiding, a security notion that ensures that ciphertexts and
public keys are not linkable. They showed that many practical
schemes (e.g. ElGamal [17] and Cramer-Shoup [14]) provably
satisfy this property by default (or can be easily tweaked to
do so) whereas others, most notably RSA-based ones, do not.

Cryptographic access control raises similar but more gen-
eral privacy concerns. Here users have access to a repository of
encrypted files (much like a public bulletin board) but within
a more dynamic environment (where users come and go, files
are added and removed, etc.). The following example outlines
a simple potential failure.

Consider a hypothetical conference reviewing system
which uses a cloud provider to store the conference submis-
sions. To protect the submissions from the cloud and yet allow
reviewers to access them, the chair could encrypt them under
the public keys of the assigned reviewers. If encryption is not
key-hiding, a PC member (who has access to the encrypted
storage) may be able to tell who the reviewers of his own
submissions are. An obvious fix would be to use a secure key-
hiding scheme. While intuitively the attack described above
does not apply anymore, there are no guarantees that other,
more subtle attacks are not possible against the overall security
of the system.

Such guarantees may be critical in areas where privacy
is mandated by law or regulations (e.g. application areas like
healthcare, private enterprises, banking) where not only raw
data but also who can access it may be highly sensitive.
For instance, within a hospital it is not desirable to leak if
a patient’s chart can be accessed by an oncologist, AIDS
specialist or psychiatrist; in an enterprise one may want to hide
if and which accounting files are readable by an auditor, and
which personnel files are accessible by a redundancy expert.

In these areas strong security guarantees are clearly re-
quired. Unfortunately, formal security notions that would allow
to rigorously prove that no information is revealed when a
security policy is enforced via cryptographic access control
are currently missing. We begin to address this problem. We
propose formal foundations in the form of definitions that cap-
ture the privacy of several distinct aspects of cryptographically
enforced access-control policies. To the best of our knowledge,
our work is the first rigorous approach to policy privacy; we
expect that even though the definitions we propose are for the
RBAC model, our approach will serve as inspiration in other
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similar contexts.

Policy privacy can be achieved through designs that are
costly (in terms of storage and bandwidth). For example, a
simple way of hiding who has access to each encrypted file
uses an implementation dual to the one outlined above for the
reviewing system. Namely, associate a fresh public encryption
key to each file and provide the decryption key to every
user that should access it. Assuming that key management is
done out-of-band, it is easy to see that the access policy is
information-theoretically hidden. This implementation works
well for quasi-static systems but raises scalability concerns
for more dynamic ones. If users, files or access permissions
are often added or deleted, the associated key-management
operations may be prohibitive. The creation of each file, or
revoking access to a file requires the generation of a new
public key associated to the file and passing the corresponding
decryption key to all of the users that should have access
to it; identifying the “correct” set of recipients may also be
challenging.

The appeal of schemes like the one just outlined can
quickly vanish when they are modified to support dynamic
changes more efficiently, as such even apparently benign
changes could lead to new information leaks. For example, a
simple optimization (inspired by how RBAC simplifies access-
control management) is to group users into “roles”, associate
a public key to each role and provide the corresponding secret
key to the users having that role. Each new file can now be
encrypted with a symmetric key, which in turn is encrypted
under the public keys of the roles with access permission
to it; users with such a role can access a file by doing two
decryptions: one to obtain the symmetric key and a second to
obtain the file. This modification starts to leak information
about the access structure: e.g., anyone with access to the
encrypted storage can observe how many roles have access
to a certain file. An additional level of indirection, where a
public key is associated to a subset of roles would patch this
leak but open a new one: a user that can create files would
need to know the roles that can access that file. Other variants
of the basic design that simplify and optimize key management
by using attribute-based encryption (ABE) [37] may leak even
more information, as we discuss below.

CRYPTOGRAPHIC RBAC. Instead of presenting our defini-
tions and results on formally provable policy privacy in the
context of ad hoc schemes, like those above, we do so in
the context of RBAC systems. Before detailing our results,
we recall the framework for cryptographic role-based access
control (cRBAC) introduced by Ferrara et al. [19].

RBAC is a framework that simplifies access management
by introducing roles: users are assigned roles, and roles are
assigned permissions (such as read and write access to objects).
The user-object access-control matrix is immediate: a user u
has permission p if he has some role r which has had assigned
permission p. RBAC commands allow adding and deleting
users, roles and objects, and assigning/deassigning users to
roles and roles to permissions.

Informally, a cRBAC consists of algorithms that implement
the RBAC commands. A secure cRBAC ensures that parties
can access (in a cryptographic sense) only the data they are
entitled to according to the access-control matrix associated
with the system.

In addition to syntax and security models, [19] provides a
construction based on attribute-based encryption [37], [24].

In brief, ABE works as follows: messages are encrypted
w.r.t. sets of attributes and an authority which set up the system
parameters can derive keys corresponding to predicates (or
policies) on attributes. Such a key can then decrypt any cipher-
text whose attributes satisfy the predicate (policy) associated
to the key. Converesely, one may associate attributes to keys
and policies to ciphertexts so that only keys whose attributes
satisfy the policy associated to the ciphertext can successfully
decrypt it. ABE thus assumes a central authority that handles
the key distribution (which e.g. in RBAC will be the manager
of the file system).

Very roughly, the cRBAC implementation of [19] assigns
an attribute ar to each role r. If I is the set of roles that have
read permission to some file f then f is encrypted under the
attributes in I . Users are provided with decryption keys that
correspond to the attributes of the roles the users are assigned.

Since the roles associated to files are public, it is immediate
that the implementation sketched above reveals information
about the access structure. Therefore, it is a good concrete
implementation for which we will show how to achieve policy
privacy and prove that it satisfies our formal provable-security
definitions. One first step is to hide the mapping between
roles and files from users (as the mapping is only needed
to encrypt files under their appropriate attributes). However,
this works only in settings where solely trusted parties (e.g.
the monitor) are allowed to write to files. As soon as the
system is extended to allow users to write to files (as we do
in this paper), users need to know which roles have access
to files in order to encrypt them under the right attributes. We
show how to provide this ability in a policy-privacy-respecting
manner through our new cryptographic primitive. We detail our
contributions next.

A. Our Contributions

PRIVACY IN CRYPTOGRAPHIC ACCESS CONTROL. Our main
contribution are rigorous security definitions for privacy of
access-control policies. We view these as analogous to those
by Bellare et al. [5] in the context of public-key encryption.
Standard security notions for public-key encryption do not
ensure that an observer cannot link a ciphertext with its in-
tended recipient. Similarly, there are no formal security notions
that allow to formally prove that no sensitive information on
the access policy is revealed when the latter is enforced via
cryptographic access control. Much like Bellare et al. provide
a formal framework for proving that ciphertexts and public
keys are not linkable, our definitions also enable mathematical
proofs that an access-control system does not reveal sensitive
information about the access policy.

We do not provide a single security model, but chose to
allow flexibility in classifying as sensitive the various pieces of
information that form the access-control structure. A benefit of
this approach are pragmatic trade-offs: designers can choose to
forgo the privacy of some aspects of the access-control system
deemed less important in order to gain efficiency.

NEW PRIVACY-PRESERVING ENCRYPTION. Previous work
eliminates the need for actively monitoring read access to files
but still requires a trusted party to deal with write requests.
In this paper we go one step further and propose an access
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AddUser
Input: (U,O, P,UA,PA), u such that u �∈ U is a user.

Output: (U ∪ {u}, O, P,UA,PA).

DelUser
Input: (U,O, P,UA,PA), u such that u ∈ U .

Output: (U \ {u}, O, P,UA \ {(u, r) ∈ UA | r ∈ R},PA).

AddObject
Input: (U,O, P,UA,PA), o such that o �∈ O is an object.

Output: (U,O ∪ {o}, P ∪ {(o, read), (o,write)},UA,PA).

DelObject
Input: (U,O, P,UA,PA), o such that o ∈ O.

Output: (U,O \ {o}, P \ {(o,read), (o,write)},
UA,PA \ {(p, r) ∈ PA | p ∈ {(o,read), (o,write)}, r ∈ R}).

AssignUser
Input: (U,O, P,UA,PA), (u, r) such that u ∈ U and r ∈ R.

Output: (U,O, P,UA ∪ {(u, r)},PA).

DeassignUser
Input: (U,O, P,UA,PA), (u, r) such that u ∈ U and r ∈ R.

Output: (U,O, P,UA \ {(u, r)},PA).

GrantPerm
Input: (U,O, P,UA,PA), (p, r) such that p ∈ P and r ∈ R.

Output: (U,O, P,UA,PA ∪ {(p, r)}).

RevokePerm
Input: (U,O, P,UA,PA), (p, r) such that p ∈ P and r ∈ R.

Output: (U,O, P,UA,PA \ {(p, r)}).

Fig. 1. RBAC symbolic implementation.

control system where access to the storage is quasi-unrestricted
and the monitor is only in charge of the key-management
operations. The real challenge in an access-control system
that allows users to write to files is to ensure the privacy
of the access policies. We have explained the problem in the
context of the ad hoc constructions briefly discussed above;
here we revisit the issue in the context of the construction
from [19]. There, each file is encrypted using attribute-based
encryption. The attributes under which a file is encrypted
correspond to the roles that have read access to it. Ciphertexts
may explicitly reveal their attributes (and therefore the roles),
since standard security notions for ABE only guarantee secrecy
of the encrypted message. Furthermore, in any system where
users have the right to write to files, they would need to know
the attributes under which to encrypt the data, meaning these
users explicitly need access to the role-permission matrix.

Existing privacy notions for ABE address the first type
of leak: predicate encryption [29] was introduced as a (key-
policy) ABE whose ciphertexts hide their attributes. However,
there are no ABE schemes that can deal with the second type
of privacy break. To do so, parties would need a way to encrypt
a message w.r.t. a set of attributes without knowing what those
attributes are. Note that even functional encryption [20] does
not help in this context.

We provide a solution to this problem. We propose a variant
of predicate encryption, where one can generate a key pk I
for any set of attributes I , so that pk I hides the elements
of I . Ciphertexts encrypted under pkI can be decrypted by
users with a secret key for a predicate/policy that holds on I .
For this new primitive we give security models and a generic
construction, which we show how to instantiate concretely.

CONSTRUCTION. We employ the primitive that we design
to construct a cryptographic RBAC which strengthens that
from [19] in the two general directions we study in this paper.
First, we show that our proposal securely enforces read and
write access control. We prove that the scheme meets some of
the policy-privacy properties that we put forth in this paper.
Stronger properties can also be achieved via more expensive
implementations but we argue that the privacy properties
of our scheme suffice for practical purposes. In particular,
if employed in the motivating scenario of RBAC-controlled

access to hospital files, our solution would hide the specialty
of a doctor that can access a patient’s file.

We remark that the main contributions of our paper are
rigorous foundations for policy privacy in cryptographic access
control and the introduction of a new encryption primitive.
The schemes that we propose are not efficient and should be
regarded as a proof of concept showing that meaningful levels
of policy privacy can be achieved. We leave the development
of efficient schemes for future work.

B. Related work
The rich literature on the interplay between cryptography

and access control ranges from schemes that employ encryp-
tion and/or key-distribution schemes to implement various
forms of hierarchical access control [21], [3], [30], [4], [16]
to the design and implementation of cryptographic file sys-
tems [27], [7], [11], [26] and on to the recent cryptographic
primitives motivated by access control [37], [24], [28], [31],
[12], [6]. However, while the syntax, functionality and security
of the primitives (e.g. attribute-based encryption) is usually
motivated by their use in access-control applications, the
step that confirms that the primitive suffices to ensure the
functionality and security of the system is seldom carried out.1

Policy privacy in the context of ABE, such as the idea that
a ciphertext does not reveal its associated policy, has been stud-
ied to some extent, yielding constructions that meet stronger
security notions [10], [31], [29], [32], [33]. However, none of
the existent policy-privacy notions for encryption suffices to
hide what access policies are in place when the schemes are
used to enforce access control. No obvious fix to this problem
is available, short of developing new cryptographic primitives
with stronger privacy guarantees, which is one of our results.

Cryptographic enforcement of RBAC policies was previ-
ously considered in [15], [41]; Ferrara et al. [19] introduced the
first formal security model for cryptographic RBAC systems
and our work continues their line of research. They also give a
cRBAC construction where cryptography controls read access
to files and write access is delegated to trusted monitors. We
extend theirs by letting cryptography also control write access.

1The only notable examples where this gap is bridged are [2], [25], [19].
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The problem of enforcing write access to files by using
cryptography has been previously considered in the design
of cryptographic file systems such as Plutus [27]. Unlike
our construction, Plutus requires the server to validate any
write access in order to prevent malicious users from making
changes to the file system. We instead propose the use of
versioning storage, where users can only append information
but not delete any. This assumption is common in distributed
systems (it has been used for example to deal with poisonous
write operations [23]) and is warranted by existing systems
(like the Google, Microsoft, or Amazon cloud storage).

II. CRYPTOGRAPHIC RBAC

The notion of a cryptographic RBAC (cRBAC) was for-
mally modeled in [19], where read access to a file system is
handled using cryptography, while write access is mediated by
the manager. We extend their notion by allowing authorized
users to execute write operations on files, thereby avoiding
the use of online monitors for both read and write operations.
In the following, we first recall the RBAC model and then
define the notion of a cryptographic RBAC with respect to
write accesses.

A. Role-Based Access Control
RBAC reduces the complexity in administration of user

permissions by grouping users into roles and assigning permis-
sions to each role [1], [18], [38]. A permission is an object-
action pair that enables access of a user to an object in a
particular mode. We consider RBAC policies for file systems
where objects are files and the access mode belongs to the set
{read, write}. A user u has permission p if there exists a role
r such that u is assigned to r and r has permission p.

We follow [19] in that we consider a fixed set of roles
R (reflecting the fact that the structure of any organization is
usually stable). Formally, an RBAC system for the set of roles
R is a tuple (U,O, P,UA,PA), where U , O and P are sets of
users, objects and permissions, respectively. Permissions p ∈
P are of the form (o,read) or (o,write) with o ∈ O. The
relation UA ⊆ U × R is the user-role assignment relation,
and PA ⊆ P × R is the permission-role assignment relation.
A pair (u, r) ∈ UA means that user u belongs to role r, and
(p, r) ∈ PA means that role r has permission p. A user u is
authorized for permission p if there exists a role r ∈ R such
that (u, r) ∈ UA and (p, r) ∈ PA.

ADMINISTRATIVE RBAC. Administrative commands allow to
add and delete users and objects, grant and revoke permissions
and modify users’ role membership. Fig. 1 shows a symbolic
implementation of these commands. Each command has the
form

(U ′, O′, P ′,UA′,PA′) ← Cmd((U,O, P,UA,PA), arg) ,

where Cmd is either AddUser , DelUser , AddObject ,
DelObject , AssignUser , DeassignUser , GrantPerm , or
RevokePerm , and arg specifies the argument of the command.

SECURITY POLICIES. The design of an access-control policy
includes the specification of security policies, which express
limits on the access of users to permissions (e.g. users belong-
ing to role r cannot be granted permissions associated to role
r̃). We consider the class of RBAC security policies identified
in [19], which is defined as follows:

Definition 1 (Security Policy [19]): Let HasAccess(u, p)
be a predicate that reflects when a user u symbolically has
access to a permission p:

HasAccess(u, p) ⇔ ∃ r ∈ R : (u, r) ∈ UA ∧ (p, r) ∈ PA .

A Security Policy Φ is a formula of the following form:

∀u ∈ U ∀p ∈ P : Cond(u, p) ⇒ ¬HasAccess(u, p) ,

where Cond(u, p) is a predicate over a user u ∈ U and a
permission p ∈ P .

An example of a security property captured by this
definition is mutual exclusion of read/write permissions
on a file. This can be formulated as: ∀u ∈ U ∀p ∈ P :
HasAccess(u, p̄) ⇒ ¬HasAccess(u, p), where p̄ is (o,write)
((o,read), resp.) if p is (o,read) ((o,write), resp.).

The class of security policies identified in Def. 1 captures
many policies of interest, such as separation of duties and
privilege escalation (see [19] for details).

B. System Model
Before we explain the computational implementation of a

cRBAC system, we introduce the architecture of the underlying
system, which we contrast with that of traditional access-
control systems. In the latter, data is placed on a trusted server
and access to it is mediated by a gateway in charge of enforcing
the access-control policy. In particular, the monitor needs to
be involved both in the administrative actions (adding and
removing users to the system, changing permissions, etc) and
in read and write access to data.

In a recent paper, Ferrara et al. [19] propose a system where
data is stored in encrypted form on an untrusted storage server
to which all of the users have unrestricted read access. Data
management is still performed by an external trusted party
called in that paper a manager, a terminology that we also
adopt. The manager is in charge of implementing the adminis-
trative commands: he performs actions that have the effect of
adding users to the system, granting or revoking permissions,
etc. These actions are implemented as combinations of key-
management operations and encrypting/re-encrypting data. The
net effect is that the manager does not need to mediate read
access to files anymore. However, he must ensure that the write
operation to files is in accordance with the access policy, so
he is still involved in these.

In this paper we show how to further reduce the depen-
dency on policy-enforcing monitors. Concretely, we extend
the cRBAC system of [19] to a setting where the users have
(quasi) unrestricted read/write access to the file system and
the manager is now only in charge of the administrative
commands. We need to rely on minimal storage guarantees
to prevent malicious users from simply overwriting files.
We propose using versioning storage where users can only
append information but not delete any. These appends are then
interpreted as logical writes to files.2 Of course, such a system
requires dealing with issues specific to distributed systems
e.g. atomicity of the actions that are permitted, efficiency
implementations (e.g. the use of log-structured techniques [39],
[40]), but an in-depth discussion of these issues is beyond the
scope of this paper.

2As observed elsewhere [11], [26], this can be easily implemented on top of
a log-structured file system; see also [13] for techniques that enforce append-
only semantics in a storage system.

4949



CMD(arg)

(U,O, P,UA,PA)
← Cmd((U,O, P,UA,PA), arg)

(stM , fs, {msgu}u∈U )←$ Cmd(stM , fs, arg)
For all u ∈ Cr :

For all o ∈ O:

If HasAccess(u, (o,write)) then

T [o]← adv
For all u ∈ U \ Cr :

st [u]← Update(st [u],msgu)
Return (fs, {msgu}u∈Cr )

WRITE(u, o,m)

If u ∈ Cr
then Return ⊥

If ¬HasAccess(u, (o, write)) then

Return ⊥
fs←$ Write(st [u], fs, o,m)
For all u′ ∈ Cr :

If HasAccess(u′, (o,write)) then

Return fs
T [o]← m
Return fs

CORRUPTU(u)

If u /∈ U then Return ⊥
For all o ∈ O:

If HasAccess(u, (o,write)) then

T [o]← adv
Cr ← Cr ∪ {u}; Return st [u]

FS(query)

If query =“STATE” then

Return fs
If query =“APPEND(info)” then

fs ← fs‖info; Return fs

Fig. 2. Oracles for defining the experiment Expwrite
w-CRBAC,A that defines security of access control with respect to the write permission.

Very roughly, given such storage, “write” operations are
physically realized by appending data to the file system (i.e.,
users post the updated versions of a file). Rather than having
a reference monitor in charge of verifying each user’s autho-
rization for each write access, users only check the validity
of a file version during read operations. To perform a read
operation, a user fetches the latest version of the requested file
and determines whether it has been uploaded by an authorized
user. If not, he fetches the preceding version until a valid
version is encountered. Of course, additional care needs to
be taken for users not to write to files they are not entitled
to, reverse the content of a file to a previous state by copying,
etc; issues that will be addressed by our instantiation.

C. Cryptographic RBAC for Write Access (w-cRBAC)
A w-cRBAC scheme involves a set of users, an untrusted

publicly accessible file system, and a trusted party called
manager. While the manager is responsible for carrying out
all administrative RBAC commands, it is not involved in
read/write operations, which are executed by users only. The
global state of a w-cRBAC consists of the state of the manager
and that of each user u, respectively denoted by stM and st [u].

A w-cRBAC scheme w-CRBAC is defined by a tuple of
algorithms Init, AddUser, DelUser, AddObject, DelObject,
AssignUser, DeassignUser, GrantPerm, RevokePerm, Update,
Write and Read.

The initialization algorithm Init takes as input the security
parameter λ and the set of roles R. It outputs the initial states
of the file system fs and of the manager stM . The other
algorithms, except Update, Read and Write, implement the
RBAC administrative commands defined in Fig. 1.

More precisely, we regard each of these algorithms as a
non-interactive multi-party computation where the manager,
after some local computations, sends messages to the other
parties, who update their states using the algorithm Update.
Specifically, the administrative algorithms take as input the
state of the manager stM , the file system fs and the argument
for the command, and output the updated fs , messages msgu
for every user u and a possibly updated state for the manager.
Like Update, the Write and Read operations are algorithms
executed by the users. Update updates a user’s local state
according to the message received from the manager. The
algorithm Read allows authorized users to retrieve the current
content of a file. It takes as input the state of a user st [u], the
file system fs and a file name o and, provided that u has read

access to o, returns the content of the latest valid version of o.
If not or if the file is empty, the algorithm returns ⊥. Finally,
the algorithm Write allows a user to write content to a file. It
takes as input the state of a user st [u], the file system fs , a
file name o and content m. If user u has write access to o, u
uploads a new version of file o containing m.

W-CRBAC SECURITY. A security definition for a crypto-
graphic RBAC with respect to read operations was introduced
in [19]. A cRBAC is secure w.r.t. read accesses if whenever
a user u is not authorized to read a file o then u should
not be able to deduce anything about the content of o. This
was formalized via an indistinguishability-based definition: an
adversary, who can impersonate users, chooses two messages
m0 and m1, one of which is randomly selected and written
to a file o of the adversary’s choice; the adversary must then
determine which of the two messages was written to o.

In the following, we introduce a security definition for write
accesses. Intuitively, a cryptographic implementation of a w-
cRBAC is secure with respect to write accesses if any user who
is not authorized to write to a file o is indeed not able to do so.
We formalize this intuition via a game between the manager of
a w-cRBAC implementation and a polynomial-time adversary
A. The adversary can ask the manager to execute any of the w-
cRBAC commands, is allowed to corrupt any user u, and can
request an honest user u to write some content m to a file o,
provided that u has write permission for o. Also, the adversary
can append arbitrary content to the file system, which models
public unrestricted append-only write access.

At any time in the experiment, the adversary can output a
challenge file name o∗ along with a non-corrupt user identity
u∗. The adversary wins the game if the content of o∗, as
revealed to u∗ via Read, is different from the content that was
written to o∗ by the last honest user. Since corrupt users that
have write access to o∗ should be able to modify the content,
we require that no corrupt user has had permission (o∗,write)
since the last valid write to o∗ by an honest user. This ensures
that the experiment cannot be trivially won.

The experiment considers an adversary that can ask
the manager to perform arbitrary RBAC operations. The
experiment maintains the RBAC’s symbolic representation
(U,O, P,UA,PA) as it evolves from the initial configuration
(∅, ∅, ∅, ∅, ∅). Additionally, the experiment maintains a list
Cr ⊆ U of corrupt users and a table T indexed by objects. For
each file o, T [o] is initially set to ⊥ when o is added via the
RBAC command AddObject . Successively, T [o] will store the
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last content written to o by an honest user, or a special value
adv. Specifically, a valid write operation is recorded in T [o]
only if no corrupt user has write access to o. Moreover, the
experiment maintains the following invariant: whenever some
corrupt user has write access to o then T [o] = adv.

Definition 2: A w-cRBAC (Init, AddUser, DelUser,
AddObject, DelObject,AssignUser,DeassignUser,GrantPerm,
RevokePerm, Update, Write, Read) is secure with respect to
write accesses if for all probabilistic polynomial-time (p.p.t)
adversaries A, it holds that

Advwrite
w-CRBAC,A(λ) := Pr

[
Expwrite

w-CRBAC,A(λ) → 1
]

is negligible in λ, where Expwrite
w-CRBAC,A is defined as follows:

Expwrite
w-CRBAC,A(λ)

(U,O, P,UA,PA)← (∅, ∅, ∅, ∅, ∅); Cr ← ∅
(stM , fs, {st [u]}u∈U )←$ Init(1λ, R)

(u∗, o∗)←$A(1λ : O)
If all of the following are satisfied then return 1:

– u∗ ∈ U \ Cr ∧ HasAccess(u∗, (o∗,read))
– T [o∗] �= adv ∧ T [o∗] �= Read(st [u∗], o∗, fs))

Else Return 0

The oracles O to which the adversary has access are
specified in Fig. 2 (and discussed below).

The oracle CMD, where CMD can be either ADDUSER,
DELUSER, ADDOBJECT, DELOBJECT, ASSIGNUSER,
DEASSIGNUSER, GRANTPERM, or REVOKEPERM, allows
the adversary to execute any RBAC command: the experiment
first runs the command Cmd symbolically and then runs the
algorithm Cmd implementing the same command. Moreover,
the CMD oracle maintains the invariant on T .

The oracle CORRUPTU allows the adversary to corrupt a
user. It returns the user’s state to the adversary, adds the user
to the corrupt-user list Cr and updates T appropriately. The
oracle WRITE allows the adversary to request an honest user
to write some content to a file o. If such a user has write access
to o, it runs the Write algorithm. The new content is stored
in the table T only if no corrupt user has write access to o.
In order to model adversarial read and write operations, the
oracle FS allows the adversary to read the entire file system
and to append file versions to it.

The adversary wins the game if he outputs a non-corrupt
user u∗ and a file o∗ such that T [o∗] = adv, that is, no corrupt
user has had permission (o∗,write) since the last write
operation by an honest user on o∗, and T [o∗] = Read(st [u∗],
o∗, fs), that is, the content written to o∗ by the last honest user
is different from what an honest user would read.

SECURITY POLICIES ENFORCEMENT W.R.T. WRITE AC-
CESSES. We say that a w-cRBAC enforces a security policy,
as defined in Def. 1, with respect to write accesses if any
coalition of users C such that Cond(u, (o,write)) = 1, for
each u ∈ C, is not able to write any content to o.

We formalize this via a game between an adversary and the
manager of a w-cRBAC implementation who ensures that the
symbolic RBAC always satisfies the security policy φ. The
adversary is allowed to ask the manager for the execution
of any RBAC command, request an honest user to write
some content to a file and corrupt any user. The experiment

terminates when the adversary outputs a file name o∗ and
the identity u∗ of an honest user who has read access to o∗
and it wins the game if no corrupt user has had permission
(o∗,write) at least since the last valid write operation on
o∗, the content written by such an operation is different from
the one stored in T [o∗], and every corrupt user u satisfies
Cond(u, (o∗,write)).

Definition 3: For any security policy φ of the form

∀u ∈ U ∀p ∈ P : Cond(u, p) ⇒ ¬HasAccess(u, p) ,

a w-cRBAC securely enforces φ with respect to write accesses
if for all p.p.t. adversaries A,

Advwrite-φ
w-CRBAC,A(λ) := Pr

[
Expwrite-φ

w-CRBAC,A(λ) → 1
]

is negligible in λ, where Expwrite-φ
w-CRBAC,A is defined as follows:

Expwrite-φ
w-CRBAC,A (λ)

(U,O, P,UA,PA)← (∅, ∅, ∅, ∅, ∅); Cr ← ∅
(stM , fs, {st [u]}u∈U )←$ Init(1λ, R)

(u∗, o∗)←$A(1λ : Oφ)
If all of the following are satisfied then return 1:

– u∗ ∈ U \ Cr ∧ HasAccess(u∗, (o∗,read))
– T [o∗] �= adv ∧ T [o∗] �= Read(st [u∗], o∗, fs))
– For all u ∈ Cr , Cond(u, (o∗,write)) = 1

Else Return 0

The oracles Oφ are the same as those of Fig. 2 with
the exception of CMD, shown in Fig. 3, which executes the
corresponding RBAC command only if the resulting access-
control policy does not violate the security policy φ.

Since the winning condition of Expwrite-φ
w-CRBAC implies that

of the experiment in Def. 2, it is easy to see that the following
theorem holds.

Theorem 1: If w-CRBAC is secure with respect to write
accesses then for any security policy φ, w-CRBAC securely
enforces φ with respect to write accesses.

Although the proof of Theorem 1 is immediate, we notice
that the definition of a security policy being computationally
satisfied is an important step to provide a rigorous approach
to the analysis of cryptographic enforcement of access control.
The fact that the notion of security policy of Def. 1 models
requirements of users not having write permissions makes it

CMD(arg)

(U ′, O′, P ′,UA′,PA′)← Cmd((U,O, P,UA,PA), arg)
If (U ′, O′, P ′,UA′,PA′) satisfies φ then

(U,O, P,UA,PA)← (U ′, O′, P ′,UA′,PA′)
Else Return ⊥
(stM , fs, {msgu}u∈U )←$ Cmd(stM , fs, arg)
For all u ∈ Cr :

For all o ∈ O:

If HasAccess(u, (o,write)) then T [o]← adv
For all u ∈ U \ Cr :

st [u]← Update(st [u],msgu)
Return (fs, {msgu}u∈Cr )

Fig. 3. RBAC oracle for Expwrite-φ
w-CRBAC
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immediate that as long as the policy is enforced symbolically,
the policy is also enforced computationally. In other settings
(for example, when a larger class of policies is considered)
similar relations may not exist so that proving secure enforce-
ment of policies may be more intricate.

III. PRIVACY ISSUES IN CRYPTOGRAPHIC ACCESS

CONTROL

The examples we gave in the introduction show that
cryptographic implementations (including the one from [19])
may leak sensitive information about the access policies in
place. The first step towards understanding and coping with
this issue is to establish models that clearly identify the abilities
of an attacker and specify what are to be considered privacy
breaches.

Here we are faced with a choice. One possibility is to
provide an all-encompassing, general privacy definition that
would ask that an adversary not be able to distinguish among
any changes to the access structure. For example, we could
require that the adversary cannot tell if at some point a user
had been added to the system, or a permission had been
revoked from some role. Instead, we pursue a more nuanced
approach where we identify privacy requirements separately,
for various aspects of the system. This approach allows for
privacy/efficiency trade-offs where designers might choose
to sacrifice the privacy of some components deemed less
important in order to gain efficiency. One first distinction that
we make is to consider privacy of the two matrices UA and
PA separately, and for each of these components we identify
two further refinements. For privacy notions regarding the PA
matrix we define two distinct notions: the first, p2r-privacy,
models the idea that a cryptographic RBAC scheme hides
the assignment that maps a permission to the roles that have
it. Conversely, r2p-privacy demands that an implementation
hides which permissions a certain role has. At first glance,
the distinction may seem strange: if an adversary can link
a role to a permission, does it not also mean that it can
link permissions to roles? To understand the advantage of
splitting privacy of PA in this way, consider the execution of
some RBAC administrative command that involves both roles
and permissions, e.g. assigning a permission to a role. In an
ideal situation neither the role nor the permission involved
are revealed. However, it is possible that the visible effects
of the action on the file system reveal to an adversary which
permission had been involved in the operation but not which
role (so p2r-privacy holds but r2p-privacy does not).

Similarly, we define u2r-privacy and r2u-privacy to model
that a cryptographic RBAC scheme hides the assignment of a
user to her roles and which users have a certain role.

We describe our formalization of these notions below. For
conciseness, we present one security game for the privacy of
the information in UA and another game for PA. The four
different notions are obtained as instances of these two games.

The games maintain the state of a cryptographic RBAC
with which the adversary can interact through several oracles,
which we give in Fig. 4.

The adversary drives the execution by issuing RBAC
commands to oracle CMD(arg) and can corrupt arbitrary users
(thereby learning their local state) using oracle CORRUPTU(u)
and ask an arbitrary non-corrupted user to write to an arbitrary
file using oracle WRITE(u, o,m). Moreover, the adversary

is able to query the current state of the file system and to
append information to it by calling the file-system oracle
FS. Privacy of the information in PA is captured via oracle
CHLLPA. The adversary can call this oracle once, with one
of the two RBAC commands GrantPerm or RevokePerm
and a quadruple (p0, p1, r0, r1) ∈ P 2 × R2. Depending on a
challenge bit b, the oracle executes the command on the pair
(pb, rb). After that, the adversary must guess the challenge
bit b. The intuition behind the definition is that an adversary
that observes the execution should not learn which of the two
roles and which of the two permissions were involved in the
command. We obtain the two notions that capture the different
flavors of privacy for matrix PA by requiring that either
p0 = p1 (this restriction defines p2r-privacy) or that r0 = r1
(hence obtaining r2p-privacy). For instance, the p2r-privacy
notion models the fact that a cRBAC scheme hides which roles
have a certain permission by requiring that, given two roles and
a permission, an adversary is not able to tell to which of the
two roles the permission has been granted/revoked.

We also define a weaker notion of p2r-privacy that we call
p2r∗-privacy. This notion is defined just like p2r-privacy except
that the adversary is only allowed to query the challenge oracle
with the assign permission command. Although very simple,
the p2r∗-privacy notion is relevant for practical purposes. In-
deed, in our motivating example of RBAC controlled access to
hospital files, p2r∗-privacy suffices to guarantee that granting
access to the clinical record of patient X to a doctor would
not reveal the specialty of the doctor.

Oracle CHLLUA serves the analogous purpose for defining
privacy of the information in UA; the security notions u2r-
privacy and r2u-privacy are the immediate analogs.

For the notion r2p-privacy a further refinement is mean-
ingful. Currently, the game demands that the adversary cannot
tell which of two possible permissions have been granted to
(revoked from) some role r. Yet, if the two permissions are of
different nature (e.g. write and read), the information may be
difficult to hide. A possible refinement is to demand that the
adversary cannot distinguish between permissions from some
class (e.g. only write permissions). Formally, this notion is
obtained by demanding that the two permissions passed to
the challenge oracle come from some class C of permissions,
which is added as a parameter to the experiment.

The following definition formalizes the different notions of
privacy that we consider.

Definition 4: A scheme w-CRBAC preserves x-privacy,
where x ∈ {u2r, r2u, p2r, r2p}, if for all p.p.t. adversaries A,

Advx-privacy
w-CRBAC,A(λ) :=

∣∣Pr[Expx-privacy
w-CRBAC,A(λ) → 1]− 1

2

∣∣

is negligible in λ, where the experiment Expx-privacy
w-CRBAC,A is

defined as follows:

Expx-privacy
w-CRBAC,A(λ)

b←$ {0, 1}
State ← (∅, ∅, ∅, ∅, ∅); Cr ← ∅; challd← 0

(stM , fs, {st [u]}u∈U )←$ Init(1λ, R)

b′ ← A(1λ : Ox)
Return (b = b′)

Here Ou2r and Or2u consist of all oracles in Fig. 4 except
CHLLPA. Analogously, Op2r and Or2p are the oracles defined
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CMD(arg)

If challd = 1 then Return ⊥
State ← Cmd(State , arg)
(stM , fs, {msgu}u∈U )

←$ Cmd(stM , fs, arg)
For all u ∈ U \ Cr :

st [u]← Update(st [u],msgu)
Return (fs, {msgu}u∈Cr )

CORRUPTU(u)

If challd = 1 then Return ⊥
If u /∈ U then Return ⊥
Cr ← Cr ∪ {u}; Return st [u]

WRITE(u, o,m)

If challd = 1 then Return ⊥
If u ∈ Cr then Return ⊥
If ¬HasAccess(u, (o,write)) then Return ⊥
fs←$ Write(st[u], fs, o,m); Return fs

FS(query)

If query =“STATE” then Return fs
If query =“APPEND(info)” then fs ← fs‖info; Return fs

CHLLUA(x)(cmd , (u0, u1, r0, r1))

If challd = 1 or x /∈ {u2r, r2u}
or (x = u2r ∧ u0 �=u1)

or (x = r2u ∧ r0 �=r1) then

Return ⊥
If cmd /∈{AssignUser,DeassignUser}

then Return ⊥
If u0 ∈ Cr or u1 ∈ Cr then

Return ⊥
(stM , fs, {msgu}u∈U )

←$ Cmd(stM , fs, (ub, rb))
For all u ∈ U \ Cr :

st [u]← Update(st [u],msgu)
challd← 1
Return (fs, {msgu}u∈Cr )

CHLLPA(x)(cmd , (p0, p1, r0, r1))

If challd = 1 or x /∈ {p2r, r2p}
or (x = p2r ∧ p0 �= p1)

or (x = r2u ∧ r0 �= r1) then

Return ⊥
If cmd /∈{GrantPerm ,RevokePerm}

then Return ⊥
For all u ∈ Cr

If (u, r0) ∈ UA or (u, r1) ∈ UA
Return ⊥

(stM , fs, {msgu}u∈U )
←$ Cmd(stM , fs, (pb, rb))

For all u ∈ U \ Cr :

st [u]← Update(st [u],msgu)
challd← 1
Return (fs, {msgu}u∈Cr )

Fig. 4. Oracles for Expx-privacy
w-CRBAC,A where x ∈ {u2r, r2u, p2r, r2p} and State = (U,O,P,UA,PA). Oracle CHLLUA(u2r) defines u2r-privacy (as u0 = u1

must hold) and CHLLUA(r2u) defines r2u-privacy (r0 = r1). Analogously, oracles CHLLPA(p2r) and CHLLPA(r2p) define p2r-privacy and r2p-privacy, resp.

in Fig. 4 except CHLLUA. The adversary can call the challenge
oracle only once, and is not allowed further queries after this.

IV. PREDICATE ENCRYPTION WITH SPECIFIC PUBLIC

KEYS

Ferrara et al. [19] introduce a restricted variant of predicate
encryption, which is sufficient for their implementation of
cryptographic RBAC and on which we base our schemes as
well. A predicate encryption for non-disjoint sets (PENDS) is
defined over an attribute universe A; messages are encrypted
w.r.t. sets of attributes y ⊆ A, and keys are associated to sets
x ⊆ A and can decrypt any ciphertext for y with x ∩ y = ∅.

In predicate encryption (PE), as defined in [29], ciphertexts
are associated to “identities”3 I and keys are associated to
predicates f . A key for f can decrypt a ciphertext for I if
f(I) = 1. (By letting “identities” be sets of attributes, this
immediately yields a key-policy ABE.) Any PE scheme (with
sufficiently expressible predicates) can be used to instantiate
PENDS by letting identities be sets of attributes y ⊆ A and
by associating a predicate f with a subset x and defining
fx(y) = 1⇔ x ∩ y = ∅.

PE was introduced as a type of ABE that not only hides the
messages but also w.r.t. which identity I (set of attributes) it
was encrypted. We require additional privacy in that not even
the encryptor should know this identity (since in a w-cRBAC
instantiation a user should be able to write to a file without
knowing which roles have read access to that file). This is
not achievable with classical PE, as the encryption algorithm
requires the identity I as explicit input. We overcome this by
introducing identity-specific public keys: we define a public-
key generation algorithm that given the master public key and

3Katz et al. [29] call I an “attribute”; we prefer the term “identity” here
in order to avoid confusion, as when instantiating ABE from PE, identities
correspond to sets of attributes.

an identity I outputs an encryption key pkI , which can be
used to encrypt a message obliviously w.r.t. I .

A. The Model
We extend PE to predicate encryption with (identity-)

specific public keys (PE-SK) as a tuple of algorithms PE =
(Setup,PKGen,DKGen,Enc,Dec). The setup algorithm Setup
on input the security parameter λ (and optional parameters
such as the attribute universe) returns a pair (mpk ,mdk) of a
master public and master secret (decryption) key. The public-
key generation algorithm PKGen on inputs mpk and I returns
a public encryption key pkI for identity I . The decryption-key
generation algorithm DKGen on inputs mdk and a predicate f
returns a decryption key dk f for f . The encryption algorithm
Enc on inputs pk I and m returns a ciphertext c. The decryption
algorithm Dec on inputs skf and a ciphertext c returns a string
m (or ⊥).

CORRECTNESS. A PE-SK scheme PE is correct if for all
λ, f, I,m, r, all (mpk ,mdk ) output by Setup(1λ), all pk I out-
put by PKGen(mpk , I) and all dkf output by SKGen(mdk , f)
we have Dec(dk f ,Enc(pk I ,m; r)) = m if and only if f(I) =
1. Since when knowing mdk one can always derive a key and
then decrypt, we also directly write Dec(mdk , c).

IDENTITY-HIDING PUBLIC KEYS. We first introduce a security
notion that formalizes the requirement that keys do not reveal
for which identity they are. An adversary must guess a random
bit b after getting the master public key mpk and access to
a challenge oracle LR, which on input (I0, I1) returns an
encryption key for Ib. (Note that this also formalizes the fact
that an adversary cannot tell whether two keys are for the same
identity: given mpk , it can produce a key for pk I0 and being
given pkIb guess b by linking keys.)

The adversary is also provided a DKGEN oracle, which
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models collusions between users. To prevent trivial attacks, we
require the following restriction. When queried on f , DKGEN

first checks whether f(I0) = f(I1) for all (I0, I1) queried
to LR (otherwise the decryption key could be used to test
whether a ciphertext produced with the challenge key pk Ib
decrypts correctly or not). Analogously, LR only answers
queries (I0, I1) if f(I0) = f(I1) for all f queried to DKGEN.

Definition 5 (Identity-hiding public keys): The following
game formalizes that ID-specific public keys do not reveal any
non-trivial information about the identities they are for:

Expid-h-pk
PE,A(λ)

b←$ {0, 1};F ← ∅;Ch ← ∅
(mpk ,mdk)←$ Setup(1λ)
b′←$A(mpk : DKGEN, LR)
Return (b′ = b)

DKGEN(f)

For all (I0, I1) ∈ Ch:

If f(I0) �= f(I1) then Return ⊥
F ← F ∪ {f}
Return dkf ←$ DKGen(mdk , f)

LR(I0, I1)

For all f ∈ F :

If f(I0) �= f(I1) then Return ⊥
Ch ← Ch ∪ {(I0, I1)}
Return pk ←$ PKGen(mpk , Ib)

We say a PE-SK scheme PE has identity-hiding encryption
keys if for any p.p.t. adversary A

Advid-h-pk
PE,A (λ) :=

∣
∣Pr[Expid-h-pk

PE,A (λ) → 1]− 1
2

∣
∣

is negligible in λ.

MESSAGE-HIDING. While our first security notion ensures that
public keys (and ciphertexts created from them) do not reveal
their associated identity, the second notion formalizes that
ciphertexts of different messages should be indistinguishable.
In contrast to the first notion, this also exists for standard PE,
where it is sometimes called payload-hiding [29].

This notion is formalized via a game where the adver-
sary must distinguish messages encrypted under a key whose
corresponding secret key it must not know. We give the
adversary access to an oracle that generates public keys pk I
for I of the adversary’s choice. The adversary then chooses
one such key and two equal-length messages (M0,M1) and
gets an encryption of Mb under that key. More formally, the
game stores queried keys pk I and the identity I in the first
empty index of two lists PK and I, respectively. When the
adversary asks for a challenge under the j-th key by querying
(j,M0,M1), it receives an encryption of Mb under PK [j].
The corresponding identity I[j] is then added to the list of
challenges Ch .

The adversary can also query decryption keys for any
predicate f , which is then added to a list F . To prevent trivial
attacks, the experiment maintains the invariant that for all
f ∈ F and I ∈ Ch it should hold that f(I) = 0; otherwise, if
for some f and I we had f(I) = 1, the adversary could query
a challenge under the key for I and then decrypt it using dkf .

Definition 6 (Message hiding): The following game for-
malizes the fact that ciphertexts hide the encrypted message:

Expmsg-hide
PE,A (λ)

b←$ {0, 1}; ctr ← 1;PK , I, F,Ch ← ∅
(mpk ,mdk)←$ Setup(1λ)
b′←$A(mpk : PKGEN, DKGEN, LR)
Return (b′ = b)

PKGEN(I)

pk I ←$ PKGen(mpk , I)
I[ctr ]← I ;PK [ctr ]← pk I ; ctr ← ctr + 1
Return pkI

DKGEN(f)

For all I ∈ Ch:

If f(I) = 1 then Return ⊥
F ← F ∪ {f}
Return dkf ←$ DKGen(mdk , f)

LR(j,M0,M1)

If |M0| �= |M1| then Return ⊥
Let (pkI , I)← (PK [j], I[j])
For all f ∈ F :

If f(I) = 1 then Return ⊥
Ch ← Ch ∪ {I}
Return C←$ Enc(pk I ,Mb)

We say a PE-SK scheme PE has message-hiding cipher-
texts if for any p.p.t. adversary A

Advmsg-hide
PE,A (λ) :=

∣
∣Pr[Expmsg-hide

PE,A (λ) → 1]− 1
2

∣
∣

is negligible in λ.

B. Instantiation
Having formally defined predicate encryption with specific

public keys, we now discuss how to instantiate it. We first
present a generic transformation of any predicate-encryption
scheme PE into a PE with ID-specific public keys that hide
their identities, provided that PE satisfies some extra proper-
ties. We then present a PE scheme with these properties.

PE satisfies two security notions: on the one hand, cipher-
texts do not reveal anything about the message they encrypt; on
the other hand, they do not reveal anything about their identity
either. Our approach to constructing PE-SK is the following:
Suppose the message space forms a group (G, ·) (which is
the case for many instantiations) and let 1 denote its neutral
element. Then we define a public key for an identity I as a
ciphertext encrypting 1. Since keys are PE ciphertexts, which
hide their identity, this immediately implies our first security
notion from Def. 5.

To encrypt a message M , we need to turn a public key,
which is an encryption of 1 under I , into an encryption of a
specific M under I . This can be done if the PE is malleable,
which is typically the case for existing schemes [37], [9], [29],
[34], where a ciphertext contains an element Ck = P ·M , that
is, M blinded by some factor P ∈ G.

Being an encryption of 1, a public key would contain such
P , thus it suffices to multiply it by the message that is to
be encrypted. However, this would not be secure, as from a
ciphertext and its key one could easily retrieve the message
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by dividing the ciphertext component by the key component.
To amend this, we require a second property, which is full
randomizability of encryptions of 1. This means that given an
encryption of 1 under some identity I , anyone can compute
a fresh encryption of 1 under the same identity—which is
unknown to him (that is, an encryption that is distributed like
the output of EncPE(mpk , I, 1)).

Suppose our base PE scheme has these two properties; then
we can define encryption for a PE-SK as follows. Take the
public key for identity I , randomize it to get a fresh encryption
of 1 under I and then use malleability to transform it into
an encryption of the message. Since the public key and the
ciphertext are now completely unrelated (other than being for
the same I), the message-hiding property (Def. 6) follows from
the security of the underlying PE scheme.

We first present the definition of PE, following [29], and
then formalize our new requirements in Def. 9 and 10.

Definition 7: A predicate encryption scheme PE consists
of the algorithms Setup,DKGen,Enc and Dec, where Setup
takes a security parameter 1λ and outputs the public key pk
and the master secret (decryption) key mdk . DKGen on input
mdk and a predicate f outputs a decryption key dkf . Enc
takes the public key pk , an identity I and a message M , and
outputs a ciphertext C. On input dkf and C, Dec outputs M .
We require that for all (pk ,mdk) output by Setup, for all f , all
skf output by DKGen(mdk , f), all I and M , and all C output
by Enc(pk , I,M) we have M ← Dec(sk f , C) iff f(I) = 1.

Security of predicate encryption is defined as follows:

Definition 8 (Indistinguishability for PE): The following
notion formalizes the fact that ciphertexts should be ID-hiding
and message-hiding at the same time:

Expind
PE,A(λ)

b←$ {0, 1};F ← ∅;Ch ← ∅
(pk ,mdk)←$ Setup(1λ)
b′←$A(pk : DKGEN, LR)
Return (b′ = b)

DKGEN(f)

For all (I0, I1,M0,M1) ∈ Ch:

If f(I0) �= f(I1) then Return ⊥
If f(I0) = f(I1) = 1 and M0 �= M1 then Return ⊥

F ← F ∪ {f}
Return dkf ←$ DKGen(mdk , f)

LR(I0, I1,M0,M1)

For all f ∈ F :

If f(I0) �= f(I1) then Return ⊥
If f(I0) = f(I1) = 1 and M0 �= M1 then Return ⊥

Ch ← Ch ∪ {(I0, I1,M0,M1)}
Return C←$ Enc(pk , Ib,Mb)

We say a predicate-encryption scheme PE has indistin-
guishability if for any p.p.t. adversary A

Advind
PE,A(λ) :=

∣
∣Pr[Expind

PE,A(λ) → 1]− 1
2

∣
∣

is negligible in λ.

Definition 9 (Message malleability): Let 1 be a fixed ele-
ment from the message space (typically the neutral element
of the group that forms the message space). We say that a

predicate-encryption scheme PE is message-malleable if there
exists an algorithm Maul that takes the public key pk , a
message M and an encryption of 1 w.r.t. some identity I and
outputs an encryption of M under the identity I .

Definition 10 (Randomizability): We say that a (message-
malleable) predicate-encryption scheme PE has (full) random-
izability of encryptions of 1 if there exists an algorithm Rand
that takes the public key pk and an encryption of 1 w.r.t. any
identity I and outputs a fresh encryption of 1 w.r.t. I , that is,
the output of Rand is distributed as the output of Enc(pk , I, 1).
(Note that Rand does not get I as input.)

GENERIC CONSTRUCTION. Let PE = (Setup,DKGen,Enc,
Dec) be a predicate-encryption scheme that is message-
malleable and has randomizable encryptions of 1. Then we
construct a predicate-encryption scheme with ID-specific pub-
lic keys PE ′ as follows:

• Setup′(1λ) returns (mpk ,mdk)←$ Setup(1λ).
• PKGen′(mpk , I) returns pk I ←$ Enc(mpk , I, 1).
• DKGen′(mdk , f) returns dkf ←$ DKGen(mdk , f).
• Enc′(pk I ,M) runs C′ ←$ Rand(mpk , pk I) and re-

turns C ←$ Maul(mpk ,M,C ′).
Correctness of this construction follows easily by inspec-

tion; we now prove that it is secure:

Theorem 2: If PE has indistinguishability (Def. 8), mes-
sage malleability (Def. 9) and randomizability (Def. 10) then
the scheme PE ′ constructed above is a PE scheme with ID-
specific keys which are ID-hiding (Def. 5) and with message-
hiding ciphertexts (Def. 6).

Proof: The fact that keys are ID-hiding follows immedi-
ately from the security of PE , since keys are ciphertexts: In
particular, from an adversary A which breaks IHPK (Def. 5)
of PE ′, we construct B which breaks IND (Def. 8) of PE .
B is given pk , from its challenger and forwards it as mpk to
A. Whenever A queries its LR oracle on (I0, I1), B queries
its own LR oracle on (I0, I1, 1, 1) and forwards the response.
Queries to DKGEN are simply relayed by B and B’s final
output is what A outputs. It is immediate that when A wins

Exp
id-h-pk

PE′ then B wins Expind
PE .

It remains to prove that PE ′ has message-hiding cipher-

texts (Def. 6). Consider an adversary A winning Expmsg-hide
PE′ .

Again, we construct an adversary B for Expind
PE . B is given

pk from its challenger and forwards it as mpk to A. It
initializes a counter ctr ← 1 and a list I ← ∅. Whenever A
queries PKGEN(I), B sets I[ctr ] ← I; ctr ← ctr + 1, and
returns pk ←$ Enc(mpk , I, 1). Queries to DKGEN are simply
relayed by B to its own challenger. Finally, when A queries
LR(j,M0,M1), B queries LR(I[j],M0,M1) and forwards the
response to A.

The reason why B perfectly simulates Expid-h-pk
PE′ is that

encryption of PE ′ first fully randomizes the public key be-
fore mauling the message in. When querying LR(j,M0,M1),
A is supposed to get Enc′(PK [j],Mb), which is defined
as Maul(mpk ,Mb,Rand(mpk ,PK [j])). By the properties of
Rand and Maul, this is however distributed exactly as Cb :=
Enc(mpk , I[j],Mb). Now Cb is precisely the value that B
receives from its challenger, meaning it perfectly simulates
the game for A. Finally, B outputs what A outputs and wins
exactly whenever A wins.

5555



CANDIDATE PE SCHEME. The first predicate-encryption
schemes [9], [29], [35], which were only “selectively secure”,
are all message-malleable, but do not seem to be fully random-
izable. In 2012 Okamoto and Takashima [34] presented the first
adaptively secure inner-product encryption (IPE) scheme [29],
a special type of PE, which we define below. Interestingly,
their scheme only relies on the decision-linear assumption [8]
in prime-order pairing groups. A description of the relevant
parts of the scheme, following the notation from [34], can be
found in the full version, where we show that the scheme sat-
isfies both message malleability (Def. 9) and randomizability
(Def. 10).

C. Predicate Encryption for Non-Disjoint Sets from IPE
In Section IV-B we showed the existence of a PE-SK

scheme, whose security is based on a standard hardness
assumption, for inner-product predicates, which were shown to
encompass many classes of predicates [29]. Here we show that
predicate encryption for non-disjoint sets, as defined in [19]
and used for RBAC, can also be expressed via inner products.

INNER-PRODUCT ENCRYPTION. Katz et al. [29] define PE for
inner-product predicates, and call it inner-product encryption
(IPE). In IPE, identities I (with respect to which messages are
encrypted) correspond to vectors �z of some length n, whose
elements are typically from Zq (where q is the order of the
group over which the IPE is defined). Predicates f , for which
decryption keys can be issued, are also associated to vectors
�v ∈ Zn

q and an identity �z satisfies a predicate f�v if and only if
the inner product of �v and �z is 0, i.e. f�v(I�z) = 1 ⇔ 〈�v,�z 〉 :=∑n−1

i=0 vi ·zi = 0 over Zq . (For consistency we index all vectors
starting from 0.)

PENDS FROM IPE. As shown in [29], IPE can be used to
implement predicates corresponding to polynomial evaluation:
keys are associated to degree-(n− 1) polynomials p, and
messages are encrypted w.r.t. values y. A key for p should
be able to decrypt a ciphertext for y if and only if p(y) = 0.

To implement this with IPE, a key for a polynomial p is
issued for �v where vi is set to the i-th coefficient of p. When
encrypting w.r.t. to a value y, one constructs an IPE encryption
w.r.t. �z where we set zi ← yi. Since p(y) =

∑n−1
i=0 vizi, we

have
p(y) = 0 ⇔ 〈�v,�z 〉 = 0 .

Our goal is to implement predicate encryption for non-disjoint
sets (PENDS), for subsets of A = {0, . . . , � − 1}, where
ciphertexts and keys are associated to sets of attributes x and
y, respectively, and decryption should succeed iff

∨�−1
i=0 (i ∈ y ∧ i ∈ x) . (1)

We define the characteristic vector �c for y (that is, ci = 1
if i ∈ y and ci = 0 otherwise); we define a slightly different

vector �d for x with di = 1 if i ∈ x and di = 2 otherwise. Now
(1) can be rewritten as

∏�−1
i=0 (ci − di) = 0, whose left-hand

side we will express as a sum via a multivariate polynomial
in order to apply IPE.

In detail, in order to issue a key for a set of attributes x ⊆
A, define �d ∈ {1, 2}� with di ← 1 if attribute i is contained
in x, and di ← 2 if it is not. Then consider the polynomial

p(X0, . . . , X�−1) :=
∏�−1

i=0 (Xi − di), which (letting j[i], for
i = 0, . . . , �−1, denote the i-th bit of j ≤ 2�−1 in binary) can

be expanded to
∑2

�−
1

j=0 vj
(∏�

−
1

i=0 X
j[i]
i

)
for some coefficients

vj , 0 ≤ j ≤ 2� − 1. A key for x ⊆ A is then an IPE key for

the vector �v ∈ Z2�

q .

When encrypting w.r.t. to a set of attributes y ⊆ A,
we represent y by its characteristic string �c ∈ {0, 1}� and

compute an IPE ciphertext w.r.t. �z with zj =
∏�−1

i=0 c
j[i]
i for

j = 0, . . . , 2� − 1. Now decryption succeeds if

0 = 〈�v,�z 〉 = ∑2�−1
j=0 vjzj =

∑2�−1
j=0 vj(

∏�−1
i=0 c

j[i]
i ) =

= p(c0, . . . , c�−1) =
∏�−1

i=0 (ci − di) ,

which holds if and only if for some i we have ci = 1 = di,
which is the case iff the set of attributes y corresponding to
the ciphertext and the set of attributes x for the key share a
common attribute.

The drawback of this construction is of course that for �
attributes we need an inner-product encryption for vectors of
length 2� (which linearly determines the size of ciphertexts and
keys). We however chose to construct a PE with ID-specific
keys for predicates as general as possible. We leave it as an
open problem to construct more efficient PE-SK schemes for
the specific functionality of non-disjoint sets.

V. AN IMPLEMENTATION OF CRYPTOGRAPHIC RBAC
WITH POLICY PRIVACY

In this section we provide a high-level description of
an implementation for w-cRBAC. Here we use notation that
differs slightly from that used in the full version, but which
has the advantage of being more compact and readable. We
first describe how files are stored and then briefly sketch
how RBAC administrative actions are implemented via a
combination of key-management and resigning/re-encrypting
operations.

The main ingredient of our scheme is a PE-SK scheme
which is used as follows. To each role r in the system we
associate two attributes: attribute rr to which we refer as the
read attribute of role r and which we use to control the reading
rights associated to the role, and attribute rw to which we refer
as the write attribute of role r. We use the latter to control
writing rights, as described below. To all users that have role
r we provide the decryption keys associated to rr and rw.
More precisely, each user will actually only have two keys:
one corresponding to the write attributes for all of the roles
to which he belongs, and another corresponding to the read
attributes of the same roles.

To control read access to file o, we simply encrypt the file
under a public key that corresponds to all of the read attributes
of roles that have read right to o (recall that computing such
keys is one of the functionalities provided by PE-SK schemes).
A user with role r that has read access to o can simply use
rr to access it. To control write access, we use a standard
digital signature scheme. Since all users can append to the
storage, the challenge is to ensure that only users that can
write to a file can actually append a valid update. We proceed
as follows. To each file o we associate a signing/verification
key pair sko, vko. Users can update o by adding the modified
variant to the storage, but only the updates that are signed
with sko are valid updates, indeed, only such updates could
be verified by using vko. To ensure that only the right users
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can obtain sko, we encrypt it under the write attributes that
correspond to the roles that have the right to write to o.

In more detail, we assume an append-only file system fs
(logically) organized as a matrix. Each row corresponds to a
file and each column to a version of the file. The structure of
a row in the file system fs is thus a vector of the form

(pk; vk; sk), (ctx1; sig1), (ctx2; sig2), . . . , (ctxi; sigi)

whose components we describe next.

In position i = 0 is the header of the file o to which the
row corresponds. The information there is publicly readable
but can be written only by the manager. It consists of three
fields which, for a file o, we identify by fs [o][0].pk, fs [o][0].vk
and fs [o][0].sk. These are an encryption key fs [o][0].pk that
corresponds to the read attributes of the roles that can read
o, a verification key fs [o][0].vk for the signature scheme, and
an encryption fs [o][0].sk of the signing key associated to vk.
This last encryption is under the write attributes of all roles
that have write access to o. We control write access through
an appropriate distribution of keys which allow to recover
encrypted signing keys.

Users can add new versions of the file o by appending them
to the row that corresponds to o. Thus, any position i such that
i > 0 contains the i-th update of the file which we identify by
(fs [o][i].ctx, fs [o][i].sig). However, a valid entry on the row of
file o is of the form (ctx, sig) where sig is a valid signature
on ctx with respect to fs [o][0].vk; in a normal execution ctx is
an encryption of the file under fs [o][0].pk. The last valid row
entry corresponds to the latest version of the file. To add a new
version to o, an authorized user first encrypts the new content
under fs [o][0].pk, obtains sko by decrypting fs [o][0].sk and
uses it to sign the ciphertext. To prevent roll-back attacks where
a malicious user simply copies some old entry, the signature
is on the ciphertext together with the index i that corresponds
to the next empty position of the row corresponding to file o.
The user then posts the ciphertext-signature pair to position i,
and this becomes the most recent version of the file.

Whenever an authorized user wishes to read a file o, she
fetches the latest version of the file (fs [o][i].ctx, fs [o][i].sig),
for some i > 0, and determines whether fs [o][i].sig is a valid
signature and whether the signed index is equal to i. If not, she
fetches a previous version until a valid entry is encountered.

Whenever a role loses writing privileges to o, a new signa-
ture key pair for o is freshly generated. The new verification
key is made public and the signing key is encrypted under the
roles that still have the right to write. The latest valid version
of the file is signed by the manager (who for space efficiency,
can also erase all the previous versions), so that the signature
is valid under the new verification key associated to o.

Since multiple (encrypted) versions of the file are present
in the system, the management of keys needs to be carefully
crafted to avoid pitfalls where newly assigned rights permit
access to old content. For example, whenever a read access
is revoked from role r, the manager (1) assigns a fresh read
attribute to role r, (2) recomputes all the public keys for files
to which r has still read access (to account for the changed
attribute for r), (3) re-encrypts all latest (valid) ciphertexts
under these public keys, and (4) sends the decryption keys
associated to rr to all users assigned to r.

Whenever a user is deassigned from a role r, the attribute

for r is also changed and all the steps (1)–(4) are executed as
above. In addition, all signature key pairs for files to which r
has write permission are also renewed; in particular, the new
signing key is encrypted, and the concerned files will be re-
signed to maintain validity under the new verification key.

A detailed description of the algorithms of our w-cRBAC
implementation CRBAC[PE ,Σ] based on a PE-SK scheme PE
and a signature scheme Σ can be found in the full version of
the paper.

There we also provide the following theorem which es-
tablishes that our construction is secure with respect to read
accesses, provided that the encryption scheme used in the im-
plementation is message-hiding. Our proof is for the scenario
where users that have the right to write to some file also have
read access to it.

Recall that in the model proposed by Ferrara et al. a
cRBAC is said to be secure with respect to read access if
for any user who does not have the read permission of a file
should not be able to deduce anything about the content of
that file. Since w-cRBAC extends the notion of cRBAC, we
need to reintroduce the security model regarding read accesses
to make it work for w-cRBAC.

Definition 11: A w-cRBAC is secure with respect to read
accesses if for all p.p.t. adversaries A, we have

Advind
w-CRBAC,A(λ) :=

∣
∣Pr[Expind

w-CRBAC,A(λ) → true]− 1
2

∣
∣

is negligible in λ, where Expind
w-CRBAC,A is defined as follows:

Expind
w-CRBAC,A(λ)

b←$ {0, 1}; Cr ,Ch ← ∅
(stM , fs, {st [u]}u∈U )←$ Init(1λ, R)

b′←$A(1λ,FS : O)
Return (b′ = b)

The oracles O to which the adversary has access are specified
in Figure 5.

Theorem 3: If PE-SK scheme PE is message-hiding, then
CRBAC[PE ,Σ] is secure with respect to read accesses.

This theorem extends the earlier result of [19]. Some care
is needed to deal with situations specific to our new scheme
(e.g., in [19] all write operations were performed by the
manager, meaning the simulator always knew the content of
the file system). Although we require a more involved security
reduction, the proof relies on a similar intuition.

The next theorem (which we prove in the full version)
shows the security of our scheme with respect to write access.
Here, security relies both on the privacy ensured by the
encryption scheme (used to encrypt the signing keys associated
to files) and on the security of the signature scheme itself.

Theorem 4: If the signature scheme Σ is existentially un-
forgeable under adaptive chosen-message attacks and PE-SK
scheme PE is message-hiding, then CRBAC[PE ,Σ] is secure
with respect to write accesses.

PROOF IDEA. Intuitively, the only way an adversary could
break the security of the scheme with respect to the write-
access is to somehow modify the content of a file, that is,
appending a new version of the file with a valid signature
attached to it. More formally, we prove the theorem by a
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CMD(arg)

(U ′, O′, P ′,UA′,PA′)
← Cmd((U,O, P,UA,PA), arg)

For all u ∈ Cr and all o ∈ Ch:

If ∃r ∈ R:

(u, r) ∈ UA′ ∧ ((o, read), r) ∈ PA′

then Return ⊥
(U,O, P,UA,PA)← (U ′, O′, P ′,UA′,PA′)
If Cmd = DELUSER then

Parse arg as u; Cr ← Cr \ {u}
If Cmd = DELOBJECT then

Parse arg as o; Ch ← Ch \ {o}
(stM , fs, {msgu}u∈U )←$ Cmd(stM , fs, arg)
For all u ∈ U \ Cr :

st [u]← Update(st [u],msgu)
Return (fs, {msgu}u∈Cr )

WRITE(u, o,m)

If u /∈ U then Return ⊥
If ¬HasAccess(u, (o,write))

then Return ⊥
fs←$ Write(stM , fs, o,m)
Return fs

CORRUPTU(u)

If u /∈ U then Return ⊥
For all o ∈ Ch:

If HasAccess(u, (o,write))
then Return ⊥

Cr ← Cr ∪ {u}; Return st [u]

CHALLENGE(o,m0,m1)

If o /∈ O then Return ⊥
For all u ∈ Cr :

If HasAccess(u, (o,write))
then Return ⊥

Ch ← Ch ∪ {o}
fs←$ Write(stM , fs, o,mb)
Return fs

FS(query)

If query =“STATE” then

Return fs
If query =“APPEND(info)” then

fs ← fs‖info; Return fs

Fig. 5. Oracles for defining the experiment Expind
w-CRBAC,A that defines security of access control with respect to the read permission.

sequence of games. The first game is the original attack
game for the scheme regarding write access. The second game
proceeds as the first game, except that it does not encrypt the
signing keys but random strings of the same length instead,
and stores these in the headers of files. In order to distinguish
these two games, one must distinguish the encrypted signing
keys from the encrypted random strings of the same length and
therefore break the message-hiding notion of the underlying
PE-SK scheme. In this modified game an adversary that
succeeds in breaking security regarding write access must be
able to produce a forgery corresponding to one of the signing
keys, meaning it breaks EUF-CMA security of the signature
scheme. We thus conclude that the advantage that adversary
can gain in winning the original attack game is negligible,
which proves the theorem.

POLICY PRIVACY. As explained in the introduction, the cryp-
tographic RBAC scheme of [19] leaks the entire PA matrix
that records the association between roles and permissions:
since read access is controlled by requiring users to encrypt
files under all of the (attributes associated to) roles that should
have access to these files, this information is in the clear.
The implementation that we presented in the previous section
bypasses this problem by associating to a set of attributes I an
encryption key pkI , which users can use to encrypt for the roles
associated to the attributes in I . Intuitively, if the encryption
key hides the associated set of attributes then one should not
be able to determine which roles have access to a certain file,
in other words, our scheme should satisfy p2r-privacy. This is
indeed true, in a static sense: an adversary that can access the
file system cannot observe the link between the ciphertexts in
the system and the roles which have access to them.

As discussed in Section III, dynamic changes to the files
may reveal some of this information, especially if the adversary
has some partial knowledge on the access structure. For
example, deassigning a read permission from a role requires
changing the attribute that corresponds to the role in question,
and re-encrypting the files to which the role still has read
access. If, say, there is only one particular role that has access
to particular set of re-encrypted files then information about the
role is leaked by what the adversary can observe. We discuss
later in the paper on ways that prevent this leak. Our scheme

satisfies however p2r∗-privacy, that is, assigning permissions
to roles preserves policy privacy.

Theorem 5: The scheme CRBAC[PE ,Σ] is p2r∗-private if
PE has attribute-hiding keys.

PROOF IDEA. Our scheme hides the mapping between
write permissions and the roles to which these are assigned.
This is because the ciphertexts that encrypt the signing keys
do not reveal to which attributes they correspond. In particular,
we show how to construct from an adversary A that breaks
p2r∗-privacy an adversary B that breaks the privacy notion
(Def. 5) of the underlying encryption scheme PE-SK. At a high
level, the signature scheme involved in the implementation
is run entirely by B, whereas the identity-specific keys are
used from the experiment that B is involved in. The crux of
the simulation is that whenever adversary A issues a grant-
permission challenge request, which demands that one of two
roles r0 and r1 be granted read permission p, adversary B
uses its challenge oracle to obtain an encryption key that
corresponds to roles S ∪{rb} (where S is the set of roles that
already have permission p). If A guesses correctly which of
the two roles was involved, adversary B also guesses correctly
his challenge bit. The proof can be found in the full version.

VI. CONCLUSION AND FUTURE WORK

In this paper we started to address the issue of policy
privacy in cryptographic access control, which we study in
the context of cryptographically enforced Role Based Access
Control. We show through realistic examples that access poli-
cies may be rather sensitive information. We take advantage of
the fact that access-control policies are not specified through
some monolithic quantity but have clearly identifiable parts,
and we design models for each of these parts separately. We
also propose a construction that securely enforces read and
write access to a file system, while offering a certain degree
of privacy for the underlying policy. Our work opens many
interesting avenues for future research, some of which we
discuss below.

ALTERNATIVE SECURITY MODELS. Our privacy definitions
are based on games that measure the ability of an adversary
to distinguish between two possible executions. This type of
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definition come with compelling intuition and are standard in
cryptographic literature. An alternative definitional framework
is based on simulation: a system is secure if whatever infor-
mation it leaks to an adversary is necessarily leaked even by
an idealized functionality for the same task. These definitions
are also intuitive but often cumbersome to use. It would
be interesting however to design such definitions for policy-
hiding access control, investigate the links with our approach,
and assess the feasibility of implementations that meet this
(typically stronger) notions.

EFFICIENT IMPLEMENTATIONS. Finding more efficient imple-
mentations for schemes that meet game-based security notions
is also worth pursuing. Our scheme leaves room for both
several obvious refinements (e.g. use hybrid encryption to
encrypt files, allow the manager to periodically clean the file
system only keeping the last valid version of each file) but
also for more conceptual changes. For example, an intriguing
question is whether we can employ policy-based signatures
[6] in a way similar to our use of encryption. The use would,
in some sense, be dual to our current approach. Specifically,
we could assign to each file a verification key that encodes
the roles that have the right to sign that file, and provide users
with signing keys that correspond to their roles. This approach
however seems to require new privacy definitions for policy-
based signatures, as a straightforward implementation would
link the roles to the files to which they have write permission.

STRONGER FORMS OF PRIVACY. Our scheme is trivially r2u
private. The reason is that assigning users to roles does not
require any change to the file system while the changes
due to deassignment do not leak the identity of the user.
Unfortunately, as we have discussed previously, our scheme
does not meet p2r-privacy. Indeed, revoking read permission
p from some role r may reveal information about the role, as
the files pertaining to r need to be re-encrypted. The resulting
change may be sufficient to identify r. For similar reasons,
our scheme does not achieve r2p-privacy and u2r-privacy. One
inefficient way to achieve p2r-privacy is to re-encrypt not only
the files pertaining to r, but also all files pertaining to some role
r′ which has permission p. Another, more efficient, possibility
but one that requires more intricate key management is not to
re-encrypt all files, but have users that belong to that role keep
both the old and the new key. The latter can be used to decrypt
newly encrypted files for role r whereas the old keys can be
used to still access the old files. Finding a way to combine
these keys in order to simplify key management and reduce
storage space is a research direction that we plan to pursue.
Similar expedients can be employed to achieve r2p-privacy and
u2r-privacy at the expense of efficiency.
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