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Abstract—At the time of writing, vehicle-to-vehicle (V2V) com-
munication is enjoying substantial research attention as a benefit
of its compelling applications. However, the ever-increasing tele-
traffic is expected to result in overcrowding of the available band.
As a first resort, multiple-input multiple-output (MIMO) can
be utilized to enhance the attainable bandwidth efficiency or
link reliability. However, in hostile V2V wireless propagation
environments the achievable multiple-antenna gain is eroded
by the channel correlation. As a promising MIMO technique,
spatial modulation (SM) only activates a single transmit an-
tenna (TA) in any symbol-interval and hence completely avoids
the inter-antenna interference (IAI), hence showing robustness
against channel correlation. As a further powerful solution,
non-orthogonal multiple access (NOMA) has been proposed for
improving the bandwidth efficiency. Inspired by the robustness
of SM against channel correlation and the benefits of NOMA,
we intrinsically amalgamate them into NOMA-SM in order to
deal with the deleterious effects of wireless V2V environments
as well as to support improved bandwidth efficiency. Moreover,
the bandwidth efficiency of NOMA-SM is further boosted with
the aid of a massive TA configuration. Specifically, a spatio-
temporally correlated Rician channel is considered for a V2V
scenario. We investigate the bit error ratio (BER) performance
of NOMA-SM via Monte Carlo simulations, where the impact
of the Rician K-factor, spatial correlation of the antenna array,
time-varying effect of the V2V channel, and the power allocation
factor is discussed. Furthermore, we also analyse the capacity
of NOMA-SM. By analysing the capacity and deriving closed-
form upper bounds on the capacity, a pair of power allocation
optimization schemes are formulated. The optimal solutions are
demonstrated to be achievable with the aid of our proposed
algorithm. Again, instead of simply invoking a pair of popular
techniques, we intrinsically amalgamate SM and NOMA to
conceive a new system component exhibiting distinct benefits in
the V2V scenarios considered.

Index Terms—Spatial modulation (SM), non-orthogonal mul-
tiple access (NOMA), massive multiple-input multiple-output
(MIMO), vehicle-to-vehicle (V2V), channel capacity, bit error
ratio (BER).
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) schemes have

found their way into operational standards for improving

their performance. Traditionally, MIMO schemes have been

designed either to enhance the diversity gain by combating

the channel fading (e.g., Alamouti code), or for spatial multi-

plexing (e.g., Vertical Bell Laboratories Layered Space-Time,

termed VBLAST), albeit they are amalgamated by the multi-

functional MIMO concept of [1]. To accommodate the ever-

increasing demands of multimedia services and applications,

the massive MIMO concept emerged [2], [3]. Theoretically,

massive MIMO reaps all the benefits of conventional MIMO

and offers abundant degrees of freedom (DoFs). By exploiting

the knowledge of the channel state information at the trans-

mitter (CSIT), a massive antenna array becomes capable of

simultaneously serving a large number of users by sharing its

multiplexing gain among them, while providing higher data

rates and transmission reliability. In vehicle-to-vehicle (V2V)

communications, large scale MIMOs become quite attractive,

since multiple antennas can be accommodated [4], [5].

However, massive MIMOs suffer from various problems,

including the inter-antenna interference (IAI) and the high

complexity of the receivers. It would be a particularly costly

process to acquire CSIT in frequency-division duplexing

(FDD) systems. Moreover, the hardware cost (e.g., a dedicated

radio frequency (RF) chain associated with each antenna)

becomes excessive for large antenna arrays. In vehicular

wireless communications, the gravest challenge is the hostile

high-Doppler propagation imposed. For example, the dominant

Doppler effect aggravates the inter-subcarrier interference of

orthogonal frequency division multiple (OFDM) and the strong

line-of-sight (LoS) component of V2V channels would aggra-

vate the spatial correlation between antennas. Therefore, the

applications of massive antenna technologies in V2V transmis-

sions are deemed to be problematic due to the aforementioned

issues.

In recent years, spatial modulation (SM) [6] has been

regarded as a promising multiple-antenna technique of im-

proving the bandwidth efficiency. In contrast to the traditional

MIMO configurations, SM only activates a single transmit

antenna (TA), hence the IAI can be completely eliminated

and only a single RF chain is required. Thus, a reduced

implementation cost and complexity is achievable in SM

systems. Moreover, the bandwidth efficiency of SM can be

further improved by employing a large TA array, providing a

feasible transceiver solution for massive MIMO with no CSIT

[7], [8].

A recent survey of SM can be found in [9]. In [10]–[13], SM
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and its extensions were considered in vehicular environments.

A differential SM scheme was proposed for vehicle commu-

nications in [10], exhibiting robustness against time-selective

fading and Doppler effects. Fu et al. [11] studied the bit error

ratio (BER) performance of SM under a three-dimensional

V2V channel model. Peppas et al. [12] applied space shift

keying (SSK) in inter-vehicular communications and derived

a closed-form expression for the pairwise error probability. In

[13], the performance of massive SM MIMO over a spatio-

temporally correlated Rician channel was analysed under a

high-speed railway scenario. Moreover, Cui and Fang have

demonstrated that by activating a single TA, SM is capable

of alleviating the channel correlation. In conclusion, SM has

become increasingly appealing for V2V systems.

On the other hand, due to the explosive growth of data

traffic, there are increasing demands for high bandwidth

efficiency and massive connectivity in 5th generation (5G)

wireless communications. To address these challenges, various

novel multiple access techniques have been proposed such

as sparse code multiple access (SCMA), pattern division

multiple access (PDMA), and non-orthogonal multiple access

(NOMA) [14]. Among these techniques, NOMA exhibits an

appealing low receiver complexity, high bandwidth efficiency,

and massive connectivity by allowing multiple users to share

the same channel resource via power domain multiplexing.

Thus, NOMA is considered to be a promising candidate for

future wireless access [15]. To mitigate the multiple access

interference (MAI), multi-user detection (MUD) techniques

such as successive interference cancellation (SIC) [16] can

be applied at the end-user receivers for detecting the desired

signals. Through power domain multiplexing at the transmitter

and SIC at the receivers, NOMA becomes capable of fully

exploiting its capacity region hence outperforming the orthog-

onal multiple access (OMA) schemes [17].

The specific design aspects of the NOMA schemes have

been discussed in [18]–[20]. Explicitly, in [18], the concept

of basic NOMA with SIC was introduced and its performance

was compared to that of the traditional orthogonal frequency

division multiple access (OFDMA) scheme through a system-

level evaluation. A beneficial power allocation scheme was

designed in [19] for striking compelling tradeoffs between the

user fairness and system throughput. Lv et al. [20] studied a

new cooperative NOMA transmission scheme and derived the

outage probability associated with fixed power allocation.

The broad objective of vehicular communications is to

improve the travel-experience of users by offering improved

safety, internet access, and infotainment services. IEEE

802.11p forms the standard of Wireless Access for Vehicular

Environments (WAVE), providing data rates ranging from

6 to 27 Mbps for short transmission distances [21]. As

an alternative to the IEEE 802.11p-based vehicular ad hoc

network (VANET), Long-Term Evolution (LTE) based V2V is

supported by the Third-Generation Partnership Project (3GPP)

so as to provide efficient message dissemination [22]. Never-

theless, the ever-growing demands for vehicular communica-

tions increase the gravity of tele-traffic congestion.

Hence we aim for designing a novel transmission scheme,

termed NOMA-SM, to intrinsically amalgamate NOMA and

SM. In synergy with the inherent demand of V2V transmis-

sions for high bandwidth efficiency, NOMA is invoked for

non-orthogonally accessing all the resources combined with

the single-RF benefits of SM. The bandwidth efficiency of the

proposed NOMA-SM scheme is further boosted by a massive

TA configuration. At the time of writing, there is a paucity of

results the amalgam of NOMA and SM, especially in inter-

vehicle communications.

Against this background, the main contributions of this

paper are three-fold:

• Firstly, we propose the novel NOMA-SM concept con-

ceived for V2V communications and quantify its link

reliability improvement. A spatio-temporally correlated

Rician channel is considered for our V2V scenario, where

the effects of the Rician K-factor, adjacent antenna

correlation coefficient, temporal correlation and power

allocation factor are all quantified. The results demon-

strate that NOMA-SM exhibits robustness against the

deleterious effects of V2V environments.

• Secondly, we derive the capacity of NOMA-SM, and

verify it by Monte Carlo simulations. The benefits of

SIC are demonstrated both theoretically and numerically.

The ergodic capacity of the collaboration-aided vehicle is

also determined for a simplified V2V channel, which is

shown to closely approximate that of a spatio-temporally

correlated Rician channel.

• Thirdly, we formulate a pair of analytical upper bounds

on the capacity of NOMA-SM in closed form and propose

a pair of power allocation optimization schemes. The

optimal solutions are demonstrated to be achievable with

the aid of the proposed power allocation algorithms.

Our numerical results verify the improved bandwidth

efficiency of NOMA-SM.

Explicitly, instead of simply combining a pair of popular

techniques, we intrinsically amalgamate their benefits. By

investigating the BER performance of NOMA in comparison

to different MIMO techniques and the bandwidth efficiency of

SM combined with distinct multiple access methods, NOMA

and SM are shown to cooperatively improve V2V transmis-

sions.

The rest of this treatise is organized as follows. In Section II,

the system model of NOMA-SM is presented, while Section

III provides the capacity analysis and mutual information (MI)

evaluation of NOMA-SM. Our capacity upper bound deriva-

tions and power allocation problem are considered in Section

IV. Simulation results and discussions for BER performance

are provided in Section V, together with the numerical capacity

analysis and power allocation optimization. Finally, Section VI

concludes by summarizing the results. For convenience, we list

the most frequent notations here.

Notation: Uppercase and lowercase bold-faced letters indi-

cate matrices and vectors, respectively. (·)−1, (·)H , det (·),
and [·]p,q represent inverse, conjugate-transpose, determinant,

and the entry in the p-th row and q-column of a matrix,

respectively. EX{·} denotes the expectation on the random

variable X . A ∈ C
M×N is a complex-element matrix with
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Phase II (exploiting NOMA-SM)

1V

2V

BS

U

Fig. 1. An illustration of the considered vehicular communication system,
where NOMA-SM is applied in Phase II.

dimensions M × N , and IN is an N × N identity matrix.

|·| and (·)∗ imply the absolute value and the conjugate of a

complex scalar, while ‖·‖ denotes the Euclidean norm of a

vector. Finally, x ∼ CN (
μ, σ2

)
indicates that the random

variable x obeys a complex Gaussian distribution with mean

μ and variance σ2.

II. PROPOSED SCHEME

We consider a generic vehicular communication system,

where the vehicle-to-infrastructure (V2I), V2V, and intra-

vehicle transmissions are all included. As shown in Fig. 1,

a base station (BS) is located at the roadside while the vehicle

V1 and V2 are in motion. There is a mobile user U in V1 who

requests to download a file locally cached at the BS. Vehicle V2
also requests to download its own intended signal from BS. We

assume that V1 has also acquired the signal of V2, as a result

of the first transmission phase, during which the messages

of V1 and V2 are transmitted simultaneously from the BS. For

example, BS employs a NOMA technique to multiplex signals

of V1 and V2 in the power domain. By involving the classical

SIC, V1 extracts the signal of V2 in the spirit of cooperation.

Another appropriate interpretation is related to the distribution

of popular multimedia contents in VANET [23], using peer-to-

peer protocols for exchanging popular packets through V2V

channels.

Therefore, as shown in Fig. 1, cooperative inter-vehicle

transmission is constructed during the second phase to enhance

the reception reliability. Specifically, V1 forwards the desired

signal to V2 for cooperatively enhancing the reception at V2.

Furthermore, the second phase scenario can be generalized to

various situations. For example, user U can be a roadside unit

(RSU), aiming for exchanging information with the onboard

unit (OBU) of the vehicle V1. While U may be a vehicle

which is much closer to V1 than V2. Similar to the concept in

[24], a VANET is formed among these vehicles for exchanging

safety information, or for cooperatively distributing popular

multimedia contents within a geographical area of interest.

In general, our model is valid in a wide range of vehicular

scenarios.

In the light of bandwidth scarcity, cognitive radio techniques

can be exploited in the second stage to opportunistically ex-

ploit the spectrum holes in the licensed spectrum. For example,

V1 may be permitted to share the cellular uplink, for which the

data traffic is typically lighter than for the downlink, hence re-
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Fig. 2. The schematic diagram of the proposed NOMA-SM strategy.

sulting in potential spectrum wastage [25]. Basically, underlay

cognitive transmission is feasible without traversing through

the primary network. However, the interference imposed by V1
on the BS in the second stage should be carefully managed,

albeit this is beyond the scope of this article. Our main focus

is on the second stage of the cooperative transmission in Fig.

1, since the performance in the first phase can be analysed

similarly. Particularly, the NOMA-SM strategy is employed in

the second stage for both V1-V2 and V1-U links.

The schematic diagram of NOMA-SM operated in the

second stage is presented in Fig. 2, where V1 assigns distinct

transmit power to V2 and U . The user access is based on

NOMA, combined with SM. Although there is literature

proposing multi-user SM schemes [26], [27], we use a clas-

sical SM designed for point-to-point transmission [6], [28] in

vehicular environments. In what follows, we first elaborate on

the principles of the proposed NOMA-SM scheme. Then our

V2V channel model is detailed.

A. The Principles of NOMA-SM

Let us assume that Nt, Nr, and Nu omnidirectional anten-

nas are employed at V1, V2, and U , respectively. As illustrated

in Fig. 2, the proposed NOMA-SM strategy is applied both

for the V1-V2 and V1-U links. At the transmitter V1, two

independent bit streams are prepared for transmission. The bit

stream for V2 is portioned into two parts: the first log2 (Nt)
bits are used for TA activation, activating a specific TA index

nt (nt ∈ {1, · · · , Nt}). The other log2 (M) bits destined

for V2 are combined with log2 (L) bits for U , employing

superposition coding.

Subsequently, the modulated symbol
√
αγl+

√
1− αχm is

radiated from the activated TA nt, where γl and χm are

intended for the in-car user U of V1 and for V2, respectively,

satisfying E{|γl|2} = E{|χm|2} = Es, where Es is the

average energy per transmission at V1, while α is the power

allocation factor. According to the NOMA principle [19], the

transmit power of the distant user in Fig. 2 must be higher

than that of the close-by user, that is (1− α)Es > αEs.
With this, 0 < α < 1

2 should be guaranteed since the

in-car user has a good channel. As a result, the block of

log2 (NtML) bits unambiguously identify the active TA nt
and the superimposed complex symbol

√
αγl +

√
1− αχm

transmitted from it. Hence a NOMA-SM super symbol can be

expressed as

x = ent

(√
αγl +

√
1− αχm

)
,

where ent is the nt-th column of the identity matrix INt ,

indicating that the nt-th TA of V1 is activated while the other

(Nt − 1) TAs are deactivated. Furthermore, χm is the m-th
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symbol in the M -ary amplitude-phase modulation (APM) used

for V1-V2 transmission, while γl is the l-th symbol in the L-ary

APM for V1-U transmission.

Considering the propagation inside the vehicle V1, we

assume that the in-car user U experiences a frequency-flat

Rayleigh channel. For example, the TAs of V1 are installed

on the central column of the vehicular dashboard, while the

receive antennas (RAs) of U are placed behind the passen-

ger front seat, without LoS from V1. In [29], this scenario

has been shown to be well suited to characterize diffuse

scattering. Thus, we let G ∈ C
Nr×Nt denote the channel

matrix between V1 and U , and assume that all entries of

G are independent identically distributed (i.i.d), obeying the

distribution CN (0, 1). The signal vector received at U and V2
can be written as

yU = gnt

(√
αγl +

√
1− αχm

)
+wU, (1)

yV =
√
p0hnt

(√
αγl +

√
1− αχm

)
+wV, (2)

respectively, where p0 represents the average power drop

between V1 and V2 due to the large scale fading. Furthermore,

gnt ∈ C
Nu×1 is the nt-th column of G, representing the

channel vector between U and the nt-th TA of V1, while

hnt
∈ C

Nr×1 is the nt-th column of the V2V channel

matrix H ∈ C
Nr×Nt , indicating the received complex fading

envelope between V2 and the nt-th TA of V1. Finally, w(·)
denotes a complex additive white Gaussian noise (AWGN)

vector with a power spectrum density of σ2
0 per entry. For

the inter-vehicle channel, the path loss is considerable in (2),

while it is neglected between the in-car user and the antenna

array of V1.

In our system, the transmitter and both receivers are as-

sumed to have perfect synchronization in both time and

frequency. Full channel state information is assumed to be

available at receivers (i.e., CSIR). In principle, both V2 and U
first have to detect the signal destined for V2, i.e., the activated

TA index n̂t and the APM symbol χm̂ at each particular

time instant. The corresponding optimum maximum likelihood

(ML) detector is invoked at U and V2 according to

(n̂t, χm̂) = arg min
nt,m

∥∥yU −√
1− αgnt

χm
∥∥2
, (3)

(n̂t, χm̂) = arg min
nt,m

∥∥∥yV −
√
p0 (1− α)hnt

χm

∥∥∥2

. (4)

After eliminating the interference imposed by (n̂t, χm̂) on yU,

U becomes capable of performing another ML detection to

acquire the desired signal γl̂.

B. V2V Massive MIMO Channel Model

In contrast to the conventional fixed-to-mobile cellular radio

systems, in V2V systems, both the transmitter and receiver are

in motion and both are equipped with low-elevation antennas,

which will result in quite different propagation conditions.

Hence a non-isotropic scattering V2V stochastic model was

proposed in [30] for characterizing a wide variety of V2V

scenarios by adjusting relevant model parameters. In [11],

a novel three-dimensional V2V geometry-based stochastic

channel was proposed for accurately capturing the effect

of vehicular traffic density on the channel. In this article,

we consider a spatio-temporally correlated Rician channel

model for characterizing our narrowband V2V massive MIMO

channel, which has also been exploited in [13] and [31]. We

describe the underlying V2V channel as a matrix of complex

fading envelopes, i.e., H ∈ C
Nt×Nr , which can be expressed

as

H =

√
K

K + 1
H̄+

√
1

K + 1
H̃,

where K is the Rician factor, while H̄ is the fixed part related

to the LoS component. Furthermore, H̃ represents the variable

part, whose entries are correlated complex Gaussian variables.

Given
[
H̃
]
p,q

= h̃p,q , we assume that

E

{
h̃Rp,qh̃

R
p̂,q̂

}
= E

{
h̃Ip,qh̃

I
p̂,q̂

}
,

E

{
h̃Rp,qh̃

I
p̂,q̂

}
= E

{
h̃Ip,qh̃

R
p̂,q̂

}
= 0,

where p, p̂ ∈ {1, · · · , Nr} and q, q̂ ∈ {1, · · · , Nt}. Explicitly,

for each h̃p,q , the auto-correlations of the real and imaginary

parts are identical and the cross-correlations between real and

imaginary parts are equal to zero. Hence the correlated channel

matrix H̃ can be described by the widely-used Kronecker

correlation model [32], which is expressed as

H̃ = Σ
1
2
r ĤΣ

1
2
t .

Here Σt ∈ C
Nt×Nt and Σr ∈ C

Nr×Nr are the correlation

matrices at V1 and V2, respectively, with the elements defined

as [Σt]q,q̂ = σtq,q̂ for q, q̂ ∈ {1, · · · , Nt}, and [Σr]p,p̂ = σrp,p̂
for p, p̂ ∈ {1, · · · , Nr}. Furthermore, Ĥ is the independent

Rayleigh channel matrix whose entries are i.i.d complex

Gaussian random variables, i.e., [Ĥ]p,q = ĥp,q ∼ CN (0, 1).
Specifically, the correlation matrices Σt and Σr can be de-

termined according to a concrete model. Here the exponential

model of Loyka [33] is adopted and the correlation matrix

entries are formed as σtq,q̂ = κ
|q−q̂|
t and σrp,p̂ = κ

|p−p̂|
r , where

κt and κr are the adjacent antenna correlation coefficients at

V1 and V2, respectively.

In order to mimic the influence of the V2V channel’s

time-varying effects, we take the temporal correlation into

consideration, which is defined as

δ (τ) = E

{
Ĥ (t) Ĥ (t+ τ)

}
,

where τ is the sampling time. In [13], Jakes’ model is used

for describing the temporal correlation expressed as δ (τ) =
J0 (2πfDτ), where fD is the maximum Doppler frequency

related to both the carrier frequency and the velocity of the

terminal. For simplicity of analysis, in the following we omit

the index τ . Observe that δ = 1 indicates that the underlying

V2V channel is quasi-static, while δ < 1 is related to a time-

varying channel due to mobility. Naturally, both the spatial

and temporal correlations would affect the performance of the

receivers.
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III. CAPACITY ANALYSIS OF THE NOMA-SM SYSTEM

Recall that the proposed NOMA-SM transmission scheme

relies on a pair of independent spaces: the classical signal-

domain, pertaining to the radiated superimposed symbol√
αγl +

√
1− αχm, and the TA-domain, pertaining to the

activated TA index nt. More specifically, the message intended

for V2 is conveyed by both of the two streams. While the

message destined for U is only mapped to the classical signal-

domain, superimposed with part of V2’s signal in the power

domain. In what follows, we investigate the capacity of the

collaboration-aided vehicle V2 and the in-car user U . Monte

Carlo estimates are also provided for MI evaluation, followed

by an illustrative example to augment the theoretical analysis.

A. Capacity Analysis of the Collaboration-Aided Vehicle V2
In the NOMA protocol, the transmit power assigned by V1

to the distant user V2 has to be higher than that to the close-by

user U . Then the distant user directly detects its signal, since

the interference induced by the close-by user is smaller and can

thus be treated as background noise. Considering that all TAs

of V1 are activated with the same probability for NOMA-SM,

the instantaneous capacity pertaining to the classical signal-

domain of V2V transmission is given by

CsigV = max
fχ

I (χ;yV |nt )

= 1
Nt

Nt∑
i=1

log2

(
Esp0‖hi‖2+σ2

0

αEsp0‖hi‖2+σ2
0

)
.

(5)

Observe that no practical modulation constellation is assumed,

when performing these capacity calculations. Since the chan-

nel capacity relates to the highest rate in bits per channel use at

which information can be sent with arbitrarily low probability

of error, in (5), we substitute χm by χ, which denotes a

random input signal alphabet with a distribution of fχ. On

the other hand, the MI conveyed by the spatial-domain TA-

constellations can be written as

I (nt;yV ) =
1

Nt

Nt∑
i=1

∫
Pr (yV |hi) log2

Pr (yV |hi)
Pr (yV )

dyV ,

(6)

where Pr (yV |hi ) denotes the probability density function

(PDF) of the channel output yV received over the i-th channel

vector of H, given by

Pr (yV |hi ) = 1

πNr det (Σi)
exp

{−yHV Σ−1
i yV

}
,

where Σi = σ2
0I+ pEshihi

H . As a result, the instantaneous

capacity of V2 in the NOMA-SM system is formulated as

CV = CsigV + I (nt;yV ) . (7)

Remark: It is worth noting that in (5), CsigV is achievable

where the optimum input distribution for χ is Gaussian. In

fact, this optimum input distribution is also regarded as the

optimum input distribution for a conventional SM system. This

is a common assumption in the majority of SM capacity-

related contributions [6], [34]–[36], effectively simplifying

the analysis. Nevertheless, a fundamental weakness of the

Gaussian input assumption is that fχ affects both I (χ;yV |nt )

and I (nt;yV ). Clearly, the Gaussian input distribution max-

imizes I (χ;yV |nt ), but it is unclear whether it maximizes

I (nt;yV ). In addition, the equiprobable activation of antennas

is a widely accepted assumption for SM-enabled systems,

albeit this activation regime cannot guarantee the optimal

spatial design capable of achieving the capacity in the TA-

domain. Actually, Liu et al. in [34] studied the optimal antenna

activation required for TA-domain capacity maximization.

Moreover, Basnayaka et al. [8] have demonstrated that the

Gaussian input does not achieve the upper limit of the MI pro-

vided by an SM-aided system. As a further insight, although

the MI conveyed by the TA-domain cannot be formulated as

an analytical expression, we are inspired to derive the capacity

upper bound and to conceive the associated power allocation

optimization schemes, which will be addressed in Section V.

Below we will derive the ergodic capacity of V2. To

calculate the specific part pertaining to the signal-domain, i.e.

EH{CsigV }, we first introduce the notation ψ = ‖hi‖2. Since

it is non-trivial to explicitly formulate the PDF fΨ (ψ) with

H being a spatio-temporally correlated Rician fading channel,

we set out to simplify the channel model. Explicitly, H is

temporarily approximated by an uncorrelated Rician channel

matrix, yielding Σt = Σr = I. Hence ψ obeys the non-central

Chi-square distribution with a degree of freedom 2Nr. Then

the PDF of ψ may be expressed as [37]

fΨ (ψ) = e−(ψ+λ)

(
ψ

λ

)(Nr−1)/2

INr−1

(√
λψ

)
,

where λ = NrK is termed as the non-centrality parameter

and Iv (y) is the modified Bessel function of the first kind,

which is a built-in function in popular mathematical software

packages, such as MATLAB or Mathematica. Therefore, the

ergodic capacity of V2 pertaining to the signal-domain is given

in analytical form as

EH{CsigV } =

∫ ∞

0

log2

(
Esp0ψ + σ2

0

αEsp0ψ + σ2
0

)
fΨ (ψ) dψ,

where the integral can be evaluated via numerical integration.

On the other hand, since there is no closed-form expression

for the mutual information of SM systems [34], it is a

challenge to derive the ergodic capacity related to the spatial

domain in closed form. As a remedy, we can resort to a Monte

Carlo estimate of (6), which is given by

I (nt;yV )≈ 1

NtS

Nt∑
i=1

S∑
s=1

log2
Pr (ysV |hi)

Nt∑
j=1

Pr (nt = j) Pr (ysV |hj)
,

(8)

where ysV associated with s = 1, · · · , S represents i.i.d

random samples drawn from yV . The value of S should be

sufficiently high to guarantee the statistically relevant eval-

uation of I (nt;yV ). Subsequently, by averaging I (nt;yV )
over multiple channel realizations and adding it to EH{CsigV },

the ergodic capacity of V2 for the uncorrelated Rician fading

channel is obtained.
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B. Capacity Analysis of the In-Car User U

In contrast to the receiver of V2, the receiver of U can detect

its own signal after removing the interference imposed by V2,

as seen in Fig. 2. To demonstrate the feasibility of this SIC

procedure, we first deduce the maximum rate of which U can

detect the message of V2. Specifically, the maximum rate for

U detecting the message related to the classical signal-domain

of V2 is given by

CV,sigU =
1

Nt

Nt∑
i=1

log2

(
Es‖gi‖2 + σ2

0

αEs‖gi‖2 + σ2
0

)
. (9)

The MI associated with U detecting the information embedded

in the TA-constellation of V2 can be written as

I (nt;yU ) =
1

Nt

Nt∑
i=1

∫
Pr (yU |gi) log2

Pr (yU |gi)
Pr (yU )

dyU ,

(10)

where Pr (yU |gi ) denotes the PDF of the channel output yU
received over the i-th channel vector of G given by

Pr (yU |gi ) = 1

πNu det (Ωi)
exp

{−yHUΩ−1
i yU

}
,

where Ωi = σ2
0I+Esgigi

H . Note that a Monte Carlo estimate

to (10) can be performed similarly as in (8), though we do not

explicitly present here due to the space limitation.

As a result, the instantaneous capacity for U detecting the

signal of V2 can be expressed as

CVU = CV,sigU + I (nt;yU ) . (11)

It may be readily seen that CVU > CV is always satisfied, since

‖gi‖2 > p0‖hi‖2, guaranteeing the success of SIC. Hence the

capacity of U detecting its own desired signal is written as

CU = max
fγ

I (γ;yU |nt, χ,G)

= 1
Nt

Nt∑
i=1

log2

(
1 + αEs

σ2
0
‖gi‖2

)
,

(12)

where γ denotes the random input signal variable related to

the desired message of U , with a distribution of fγ . The

capacity for U detecting γ indeed becomes achievable when

the channel’s input distribution fγ is Gaussian.

To formulate the ergodic capacity of U , we temporarily

introduce the notation ϕ = ‖gi‖2. Based on the assumption

that each entry of G obeys an i.i.d zero-mean unit-variance

Gaussian distribution, ϕ obeys the central Chi-square distri-

bution with the degree of 2Nu. The PDF fΦ (ϕ) is given by

[38]

fΦ (ϕ) =
1

(Nu − 1)!
ϕNu−1e−ϕ.

Therefore, the ergodic capacity of U is given in analytical form

at the top of the next page, where Ei (x)=
∫ x
−∞

eu

u du, x < 0
is the exponential integral function.

C. Mutual Information

To appreciate the above theoretical analysis in terms of its

relevance, next we characterize the bandwidth efficiency of

the proposed NOMA-SM. Assuming perfect knowledge of the

instantaneous channel state information at both receivers, the

MI achieved by V2 and U with the aid of practical APM con-

stellations is evaluated by the classical Monte Carlo method.

For the collaboration-aided vehicle V2, the MI between a

discrete signal input (nt, χm) and the received signal yV can

be formulated as

I (nt, χm;yV |H) = Ent,χm,yV

{
log2

Pr(yV |nt,χm,H)
Pr(yV |H)

}
= 1
NtM

× ∫
Pr (yV |χm,hi) log2 Pr(yV |χm,hi)

Pr(yV |H ) dyV ,
(13)

where the conditional probability Pr (yV |χm,hi) is ex-

pressed as

Pr(yV |χm,hi)=
1

πNr det(Ψi)
exp

{
−
(
yV −√

p0 (1− α)hiχm

)H

× Ψ−1
i

(
yV −√

p0 (1− α)hiχm

)}
,

with Ψi = σ2
0I+ αp0Eshih

H
i . With regard to the in-car user

U performing SIC first, the MI between the information input

(nt, χm) and the received signal yU is given by

I (nt, χm;yU |G) = 1
NtM

×∫
Pr (yU |χm,gi) log2 Pr(yU |χm,gi)

Pr(yU |G ) dyU ,
(14)

where the conditional probability Pr (yU |χm,gi) is expressed

as

Pr (yU |χm,gi) = 1
πNu det(Φi)

×
exp

{
−(yU−√

1−αgiχm
)H

Φ−1
i

(
yU−

√
1−αgiχm

)}
,

with Φi = σ2
0I+ αEsgig

H
i .

Subsequently, the MI between the information input γl and

the received signal yU after perfect SIC is expressed as

I (γl; ỹU |gnt
) = 1

NtL
×∫

Pr ( ỹU | γl,gi) log2 Pr( ỹU |γl,gi)
1

NtL

∑

k,j

Pr( ỹU |γk,gj)
dỹU , (15)

where ỹU=yU − √
1− αgiχm with i ∈ {1, · · · , Nt} and

m ∈ {1, · · · ,M} denotes the received vector after SIC. The

conditional probability Pr ( ỹU | γl,gi) is given by

Pr( ỹU | γl,gi)= 1

(πσ2
0)
Nu

exp

{
−‖ỹU −√

αgiγl‖2
σ2
0

}
.

D. An Illustration

In this part, a simulation based study of our theoretical

expressions is provided with the aid of the MI attained by

practical APM constellations. We set Nt = 64, Nr = Nu = 2
for our MIMO configurations in conjunction with α = 0.1,

Es = 1 and p0 = 10−3 are given. The channel matrix

H is generated according to Section II-B, where K = 0.2,

κt = κr = 0.5, and δ = 1 are used. Each entry of G
is identically and independently generated according to a

complex Gaussian distribution CN (0, 1). In our Monte Carlo

evaluations, the 16PSK signal constellation is chosen as the
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EG{CU} =
∫∞
0

log2

(
1 + αEs

σ2
0
ϕ
)
fΦ (ϕ) dϕ

=

⎧⎪⎨
⎪⎩

− 1
ln 2

Ei
(
− σ2

0
αEs

)
exp

(
σ2
0

αEs

)
, Nu = 1

1
ln 2

Nu−1∑
n=0

1
(Nu−n−1)!

[
(−1)Nu−n

(
σ2
0

αEs

)Nu−n−1

Ei
(
− σ2

0
αEs

)
exp

(
σ2
0

αEs

)
+

Nu−n−1∑
m=1

(m− 1)!
(
− σ2

0
αEs

)Nu−n−m−1
]
, Nu > 1
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Fig. 3. Capacity and MI performance for Nt = 64, Nr = Nu = 2,

M = L = 16, and α = 0.1. Specifically, Csig
V , CV,sig

U , I (nt;yV ),
and I (nt;yU ) are obtained from (5), (9), (6), and (10), respectively. While
I (nt, χm;yV ) and I (nt, χm;yU ) are generated from (13) and (14),
respectively, after averaging over multiple channel realizations. Finally, CV

and CV
U are evaluated from (7) and (11), respectively.

APM for χm and γl, hence we have M = L = 16. The

effective transmit signal-to-noise ratio (SNR) at V1 is given

by p0Es/σ
2
0 as the horizontal axis of Fig. 3. Notice that,

the transmit-SNR cannot be readily interpreted physically,

because it relates the transmitter power to the noise power

at the receiver, but its notion is convenient to use in NOMA-

aided scenarios. Given the effective transmit-SNR at V1 as

SNR = p0Es/σ
2
0 , the average receive-SNR at V2 can be

computed as

SNRV2
r =

(1− α) SNR

1 + αSNR
.

Similarly, the average receive-SNR at U for detecting the

signal of V2 and that of itself are respectively expressed as

SNRU,V2
r = (1−α)SNR

p0+αSNR ,

SNRUr = αSNR
p0

.

Hence the effective transmit SNR at V1 is unambiguously

related to the SNRs at each receiver. Furthermore, we use

SNR = p0Es/σ
2
0 in all of the subsequent performance analy-

ses. The relevant results of Fig. 3 are discussed as follows.

• The capacity of V2 gleaned from the signal-domain,

that is CsigV obtained from (5), increases steadily upto

a saturation point as the SNR increases. By contrast, the

capacity for U detecting the signal-domain destined for

V2, i.e., CV,sigU obtained from (9) is higher than CsigV in

the low and moderate SNR domain. Clearly, a successful

detection of the signal-domain of V2 can be performed

by U .
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SNR [dB]

0

2

4

6

8

10

12

14

16

18

bp
s/

H
z

Ergodic capacity of U
Simulated Ergodic Capacity of U
Ergodic capacity of V
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Fig. 4. Ergodic capacity for Nt = 64, Nr = Nu = 2, M = L = 16,
and α = 0.1. Specifically, the simulated ergodic capacity for both V2 and U
are obtained by averaging the instantaneous capacity over multiple channel
realizations.

• The MI I (nt;yV ) generated using (6) increases with the

SNR and saturates at 6 bps/Hz, since the input entropy

of the TA-domain space is log2 (Nt). By contrast, the MI

I (nt;yU ) attained by (10) is as high as 6 bps/Hz across

almost the entire SNR range, since the channel quality

of U is much higher than that of V2, implying that U
can successfully detect the signal of V2 embedded in the

TA-domain.

• The capacity of V2, i.e., CV grows steadily as the

SNR increases upto its saturation at high SNRs, but it

remains lower than CVU . Since CV is obtained by the

summation of CsigV and I (nt;yV ), and CVU equals to the

sum of CV,sigU and I (nt;yU ). Naturally, CVU > CV is

satisfied, as CV,sigU and I (nt;yU ) are higher than CsigV
and I (nt;yV ), respectively. Therefore, U can always

perform successful SIC.

• The MI curves I (nt, χm;yV ) and I (nt, χm;yU ) are

generated from (13) and (14), respectively, after averaging

over multiple channel realizations. It may be observed

that the simulated curve I (nt, χm;yV ) matches the an-

alytical capacity CV quite closely upto an SNR of 5

dB, but beyond that I (nt, χm;yV ) starts to drift away

from CV . By contrast, the drift of I (nt, χm;yU ) from

CVU remains nearly unchanged. Both drifts are due to the

fact that the MI attained with the aid of practical APM

modulation is upper bounded by the capacity, namely

by the maximum data rate related to the optimal input

distribution.

Moreover, we depict the ergodic capacity of both receivers

in Fig. 4. Clearly, the simulated ergodic capacity of U obtained
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from (12) after averaging over multiple channel realizations is

perfectly matched with the exact one. As for V2, the ergodic

capacity gap between the simplified channel model and the

original one are shown to be modest within the low- and high-

SNR regimes. Therefore, the ergodic capacity derived for V2
gives a good approximation of that for a spatio-temporally

correlated Rician channel.

IV. POWER ALLOCATION ALGORITHMS

It has been demonstrated that the MI conveyed by the

TA-domain cannot be readily formulated as a closed-form

expression, only by resorting to simulations. Thus, it is very

hard to perform an optimal power allocation for NOMA-SM.

To circumvent this problem, we first derive an upper bound

of the NOMA-SM capacity. Then the power allocation, which

is capable of maximizing the capacity bound is considered,

leading to the optimal solution.

A. Problem Formulation

Theoretically, the instantaneous capacity of V2 in the

NOMA-SM system can be expressed as

CV = max
fχ

I (nt, χ;yV ) = max
fχ

h (yV )− h (yV |nt, χ ) ,
(16)

where h (·) denotes the differential entropy. The conditional

differential entropy h (yV |nt, χ ) in (16) is explicitly given

by

h (yV |nt, χ ) = 1

Nt

Nt∑
i=1

log2 det
[
πe

(
p0αEshih

H
i + σ2

0I
)]
.

To determine CV , we have to evaluate h (yV ), which requires

the knowledge of the distribution of yV . It may be readily seen

that the MI I (nt, χ;yV ) is maximized if the vector variable

yV has a Gaussian distribution. Thus, we assume that the

received vector yV has a Gaussian distribution, which is a

zero-mean vector having a covariance matrix presented as

E
{
yV y

H
V

}
= HEnt

{
ent

Eχ {p0 (1− α)χχ∗} eHnt

}
HH

+HEnt

{
ent

Eγ {p0αγγ∗} eHnt

}
HH + σ2

0I

= H

{
1
Nt

Nt∑
i=1

eie
H
i p0 (1− α)Es

}
HH

+H

{
1
Nt

Nt∑
nt=1

eie
H
i p0αEs

}
HH + σ2

0I

= p0Es

Nt
HHH + σ2

0I.

An upper bound of h (yV ) can be formulated as

h (yV ) ≤ log2 det

(
πe

(
p0Es
Nt

HHH + σ2
0I

))
.

Hence we obtain an upper bound of CV which is written as

CV ≤ log2 det
(
πe

(
p0Es

Nt
HHH + σ2

0I
))

− 1
Nt

Nt∑
i=1

log2 det
(
πe

(
p0αEshih

H
i + σ2

0I
))

=
Nr∑
j=1

log2

(
p0Es

Nt
λ2j + σ2

0

)

− 1
Nt

Nt∑
i=1

log2

(
p0αEs‖hi‖2 + σ2

0

)
Δ
= CB1

V ,

(17)
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Nt = 64, Nr = 2, M = 16, and α = 0.1. Specifically, CV , CB1
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CB2
V are evaluated from (7), (17), and (18), respectively.

where λj is the j-th singular value of H with j ∈ {1, · · · , Nr}.

Clearly, CB1

V has Nr DoFs and it is the same as the capacity

of an (Nt ×Nr)-element spatially multiplexed MIMO system,

subject to inter-user interference.

On the other hand, the MI of the TA-domain has a natural

upper bound written as

I (nt;yV ) ≤ log2 (Nt) ,

which corresponds to the maximum MI that can be conveyed

by the TA-domain of the V2V transmission link. Now, another

upper bound of CV may also be formulated as

CV ≤ CsigV + log2 (Nt)

= 1
Nt

Nt∑
i=1

log2

(
Esp0‖hi‖2+σ2

0

αEsp0‖hi‖2+σ2
0

)
+ log2 (Nt)

Δ
= CB2

V .

(18)

Before proceeding, we provide a numerical illustration in

order to evaluate both of the upper bounds on the capacity of

V2. Figure 5 depicts CV and both upper bounds of the NOMA-

SM system in conjunction with Nt = 64, Nr = 2, M = 16,

and α = 0.1, which exhibit distinct approximations of CV
within certain SNR regions. The upper bound CB1

V gives a

tight bound of CV at low SNRs, indicating that the NOMA-

SM capacity at V2 is almost the same as that of a spatially

multiplexed MIMO system of the same configuration in the

presence of inter-user interference. However, the MI embedded

in the TA-domain saturates as the SNR increases, which is due

to the fact that Nt is finite. Hence, at high SNRs, CB2

V is much

tighter.

Based on the above observations, a refined upper bound on

the capacity of V2 in the NOMA-SM system is represented as

CBV
Δ
= min

(
CB1

V , CB2

V

)
. (19)

Considering the QoS of the two receivers from a practical

perspective, we define the minimum rate requirement of V2
and U as C̃V and C̃U , respectively. The optimization problem

constructed for maximizing the sum capacity with a power
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allocation factor of α can be formulated as

P : max
α

CU + CBV

s.t.

⎧⎨
⎩

CU ≥ C̃U , (a)

CBV ≥ C̃V , (b)
0 < α < 1

2 . (c)

(20)

B. The Proposed Power Allocation Algorithm

To solve the proposed optimization problem, we first express

the derivatives of CU , CB1

V , and CB2

V with respect to α as

dCU

dα = 1
Nt

Nt∑
i=1

Es‖gi‖2

αEs‖gi‖2+σ2
0

,

dC
B1
V

dα = − 1
Nt

Nt∑
nt=1

Esp0‖hi‖2

αEsp0‖hi‖2+σ2
0

,

dC
B2
V

dα = − 1
Nt

Nt∑
nt=1

Esp0‖hi‖2

αEsp0‖hi‖2+σ2
0

,

(21)

respectively. Observe from (21) that, CU is a monotonically

increasing function of α, given its positive derivative, while

both CB1

V and CB2

V are decreasing ones. Thus, when the

constraint (c) of (20) is taken into account, there exist both

minimum and maximum capacities that V2 and U can achieve.

Furthermore, to satisfy the constraint (a) and (b), we have the

following conditions for C̃U and C̃V , respectively

0 < C̃U < CU

(
α =

1

2

)
,

CBV

(
α =

1

2

)
< C̃V < CBV (α = 0) .

Given the above conditions, we can rewrite the constraints of

problem P in a compact form as

g−1
(
C̃U

)
< α < f−1

(
C̃V

)
,

where g−1 (·) and f−1 (·) indicate the inverse function of CU
and CBV , respectively. To guarantee that the feasible set of

problem P is non-empty, a further refined condition for setting

C̃V is given by

CBV

(
α =

1

2

)
< C̃V < CBV

[
α = g−1

(
C̃U

)]
.

Moreover, since ‖gnt
‖2 > p0‖hnt

‖2 is always satisfied, the

derivative of
(
CU + CBV

)
can be guaranteed to have a positive

value. Accordingly, the objective function of problem P is

a monotonically increasing function and can be maximized,

when α reaches the upper bound of its feasible set. With C̃U
and C̃V being appropriately set, we find that the upper bound

of α’s feasible set is related to the constraint (b) of (20), and

the lower bound corresponds to the constraint (a) of (20). Thus,

the optimal solution of problem P is

αP
opt = f−1

(
C̃V

)
. (22)

This optimal solution implies that the amount of power

allocated to V2 is ‘just’ sufficient to meet the minimum rate

requirement C̃V , while the remaining power is used for U ,

aiming for maximizing its capacity. Nevertheless, we should

notice that there may exist some practical considerations,

which require us to give high priority to the V2V transmission

link, such as those of safety applications, which have to

be served reliably. By contrast, the transmissions for in-car

users are typically related to infotainment applications, for

example, peer-to-peer video sharing and multimedia advertise-

ments [39]. Hence it may be desirable to maximize the data

rate of the V2V link, while guaranteeing the minimum rate

requirement of the in-car user. To this end, we develop an

alternative optimization problem formulated as

O : max
α

CBV

s.t.

⎧⎨
⎩

CU ≥ C̃U , (a)

CBV ≥ C̃V , (b)
0 < α < 1

2 . (c)

(23)

Clearly, the objective function of (23) is a monotonically

decreasing function of α and it is maximized, when the

constraint (a) is inactive. Therefore, the optimal solution of

problem O can be written as

αO
opt = g−1

(
C̃U

)
. (24)

So far, we have proposed a pair of power allocation schemes

and analysed the solvability of the optimization problems

considered. Explicitly, we provided an algorithm for finding

the optimal solution of each problem, which are summarized in

Table I. The proposed algorithm essentially performs bound-

ing through with the aid of a bisection procedure, yielding

globally optimal solutions at linearly increasing computational

complexity [40]. In specific, the minimum rate requirements

of V2 and U are respectively set as

C̃U =
CU(α= 1

2 )
2 ,

C̃V =
CB

V (α= 1
2 )+C

B
V [α=g

−1(C̃U)]
2 ,

(25)

for simplicity. Basically, both of the two power allocation

optimization problems satisfy realistic practical considerations

and the suitable one can be flexibly selected based on the

specific data priority of the distinct transmission links.

V. SIMULATIONS AND DISCUSSIONS

In this section, simulation results are provided for evaluating

the performance of the proposed NOMA-SM scheme. The

system parameters are summarized as follows. The MIMO

configurations for the NOMA-SM system are set as Nt = 64,

Nr = Nu = 2. We fix p0 = 10−3, or, equivalently, the path

loss exponential is set 3 and the distance between V1 and

V2 is assumed to be 10 meters, which is typical for urban

environments, especially during rush hours.

A. BER Results

In this subsection, the BER performance of the NOMA-

SM scheme is compared to NOMA relying on the popular

VBLAST technique, where NOMA-VBLAST is used as a

reference. Specifically, we focus on the receiver performance

of V2. The effects of the Rician K-factor, adjacent antenna

correlation coefficient, temporal correlation, and power al-

location factor are all taken into consideration. The Rician

K-factors are configured as K = 2.186 and K = 0.2 for
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TABLE I
POWER ALLOCATION ALGORITHM

Power Allocation Algorithm for Problem P and Problem O
1. Initialization

Set tolerance 0 < ε � 1. Calculate CU

(
α = 1

2

)
and set C̃U =

CU

(
α = 1

2

)
/2.

2. Determine the lower bound of α and find the optimal solution
of problem O

Set αL= 0 and αU= 1
2

.
While αL − αU > ε

Set α = αL+αU
2

. Calculate CU (α).

If CU (α)− C̃U > 0
αU = α

Else
αL = α.

End
End

Set C̃V =
[
CB

V

(
α = 1

2

)
+ CB

V

(
α = αL+αU

2

)]
/2.

The optimal solution to the problem O is obtained as αO
opt =

αL+αU
2

. Calculate CU

(
αO
opt

)
and CB

V

(
αO
opt

)
.

3. Determine the upper bound of α and find the optimal solution
of problem P

Set αmin = αL+αU
2

and αmax = 1
2

.
While αmax − αmin > ε

Set α = αmin+αmax
2

. Calculate CB
V (α).

If CB
V (α)− C̃V > 0
αmin = α

Else
αmax = α.

End
End
The optimal solution of the problem P is obtained as αP

opt =
αmin+αmax

2
. Calculate CU

(
αP
opt

)
and CB

V

(
αP
opt

)
.
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Fig. 6. BER comparisons with different Rician K-factor when κt = κr =
0.2 and δ = 1 are given, and the power allocation factor is fixed at α = 0.001,
as evaluated by the Monte Carlo simulation with 106 channel realizations.

low and high vehicular traffic density, respectively (see [30]

for more details). More specifically, QPSK and 16QAM are

applied for NOMA-SM and NOMA-VBLAST, respectively.

The MIMO configuration of the reference is the same as that

of NOMA-SM except for using Nt = 2. Thus, the following

BER comparisons are carried out for the same bandwidth

efficiency of 8 bits per channel use (bpcu). The optimum ML

detector described in (4) is employed at V2 in both schemes.

All simulation results of this subsection are obtained through

a Monte Carlo method.

In Fig. 6, we show the BER performance for different Rician

K-factor. It is observed that NOMA-SM significantly outper-

forms the benchmark. Additionally, the increase of K imposes
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Fig. 7. BER comparisons with different adjacent antenna correlation
coefficient at V1, i.e., κt, when K = 0.2, κr = 0.5, and δ = 1 are given,
and the power allocation factor is fixed at α = 0.001, as evaluated by the
Monte Carlo simulation with 106 channel realizations.
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Fig. 8. BER comparisons with different temporal correlation coefficient δ
when K = 0.2 and κt = κr = 0.5 are given, and the power allocation factor
is fixed at α = 0.001, as evaluated by the Monte Carlo simulation with 106

channel realizations.

a more dominant degradation on NOMA-VBLAST, which

relies more vitally on the presence of rich non-LoS scattering.

This phenomenon can be explained as follows. The higher

Rician factor K represents a stronger LoS component, which

increases the spatial correlation among the adjacent channel

paths. For NOMA-VBLAST, the multiple-stream information

is conveyed with the aid of multiple DoFs. By contrast, for

NOMA-SM, although the more severe spatial correlation of

the LoS scenario makes it difficult to determine the index

of the activated TA, the remaining information related to the

APM signal-domain is transmitted over a single DoF, hence it

is less susceptible to spatial correlation.

Figure 7 investigates the BER results associated with dif-

ferent adjacent TA-correlation coefficients at V1. Compared

to κt = 0.8, κt = 0.2 represents an insignificant spatial

correlation. Again, observe from Fig. 7 that NOMA-SM is

less susceptible to spatial correlation. This phenomenon can

be interpreted similarly to the trend of Fig. 6.

Below we investigate the impact of the V2V channel’s time-

varying nature. Observe from Fig. 8 that compared to the
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Carlo simulation with 106 channel realizations.
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Fig. 10. Capacity of V2 and U , or the sum capacity versus SNR for the
NOMA-SM and OMA-SM scheme with a fixed power allocation factor, i.e.,
α = 0.1. Specifically, CB

V and CU in NOMA-SM are evaluated from (19)

and (12), while CB
V and CU in OMA-SM are obtained from (26).

performance of no time-varying effect associated with δ = 1,

the BER has been substantially degraded in both schemes for

δ = 0.9. Although a perfect channel estimation procedure is

assumed for the receivers, the estimated channel coefficients

used for ML detection becomes partially outdated due to the

channel’s time-varying nature, hence resulting in a degraded

BER performance. Nevertheless, the proposed NOMA-SM

scheme maintains its advantage over the reference, regardless

of the grade of temporal correlation.

Figure 9 shows the BER performance associated with

different α values. For both schemes, the lower α values

exhibit a better detection performance, since less power is

allocated to U and hence V2 suffers from a lower inter-

user interference. More importantly, we observe that NOMA-

SM consistently outperforms NOMA-VBLAST. By jointly

considering the above observations, we conclude that NOMA-

SM constitutes a potent amalgam.
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Fig. 11. Capacity of V2 and U , or the respective QoS versus SNR for NOMA-
SM with power allocation optimization P or O. Specifically, CB

V and CU in
NOMA-SM with P or O are evaluated with the aid of the algorithm in Table
I. The QoS for CB

V and CU , i.e., C̃V and C̃U are set according to (25).
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Fig. 12. Capacity of V2 and U versus SNR for NOMA-SM with power
allocation optimization P or O, and OMA-SM with power allocation opti-
mization Q, respectively. Specifically, CB

V and CU in NOMA-SM with P or

O are evaluated with the aid of the algorithm in Table I. While CB
V and CU

in OMA-SM with Q are obtained from a full-search algorithm.

B. Capacity Results and Discussions

Below we evaluate the capacity of the NOMA-SM system

associated with different power allocation strategies. All re-

sults presented in this subsection are obtained by averaging the

instantaneous capacities over multiple channel realizations. For

convenience, 16PSK is applied to both V2 and U . In particular,

we fix K = 0.2, κt = κr = 0.5, and δ = 1 unless otherwise

stated. For benchmarking, we use an OMA-SM system, where

V1 transmits messages to V2 using SM in the first slot. Then

V1 sends messages through the previous activated antenna to

U , without activating another antenna. This OMA-SM model

constitutes a fair reference for the NOMA-SM system, since

the signal intended for V2 is conveyed by both the APM

signal- and TA-domain, whereas the signal destined for U is

only embedded in the classical signal-domain. The distinctive

feature of OMA-SM is that data transmissions destined for

V1-V2 and V1-U are operated in an orthogonal time-division

way within the classical APM signal-domain. Accordingly, the
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evaluated with the aid of the algorithm in Table I. While CB
V and CU in

OMA-SM with Q are obtained from a full-search algorithm.

capacity upper bound for V2 and the capacity for U in the

OMA-SM system are expressed as

CBV = min
{
CB1

V , CB2

V

}
,

CU = 1
2Nt

Nt∑
i=1

log2

(
1 + αEs

σ2
0
‖gi‖2

)
,

(26)

respectively, where

CB1

V = 1
2Nt

Nt∑
i=1

log2

(
1 + (1−α)Esp0

σ2
0

‖hi‖2
)
+ 1

2 log2 (Nt),

CB2

V = 1
2 log2 det

[
I+ (1−α)Esp0

σ2
0Nt

HHH
]
.

(27)

Let us first check the capacity associated with a fixed power

allocation, that is α = 0.1. Figure 10 depicts the capacity

of V2 and U , as well as the sum capacity versus SNR for

both NOMA-SM and OMA-SM. Compared to OMA-SM,

NOMA-SM provides substantial capacity gains both for the

collaboration-aided vehicle V2 and for the in-car user, and

accordingly obtains a significant sum capacity enhancement.

Specifically, the capacity CU of the in-car user has been

beneficially boosted by the proposed scheme, about twice as

high as that of OMA-SM. Since the APM signal-domain of

the proposed scheme is combined with a NOMA strategy,

each user accesses the channel resources via power domain

multiplexing.

Subsequently, we investigate the efficiency of the proposed

power allocation optimization. Specifically, the power alloca-

tion optimization denoted by Q is considered for OMA-SM,

which is formulated as

Q : max
α

CU + CBV

s.t.

⎧⎨
⎩

CU ≥ C̃U ,
CBV ≥ C̃BV ,
0 < α < 1.

(28)

For simplicity, the minimum rate requirements of V2 and U are

set to C̃U = CU (α=1)
2 and C̃BV =

CB
V (α=0)

2 , which respectively

correspond to the lower bound and upper bound of α’s feasible

set. Then a full-search algorithm is applied for OMA-SM

within the feasible set.

Figure 11 illustrates the capacity of V2 and U for NOMA-

SM with optimization P or O, where the QoS of the

collaboration-aided vehicle V2 and the in-car user U , i.e., C̃BV
and C̃U , are also plotted for reference. It can be observed

that CBV always meets the requirement of C̃BV with the aid of

the optimization P , and CU associated with the optimization

O exactly meets the QoS C̃U . This observation is in accor-

dance with the foregoing analysis, which indicates that the

optimization P intends to maximize CU , while maintaining

the QoS C̃BV for V2V transmission, whereas the optimization

O aims for maximizing CBV while guaranteeing the minimum

rate requirement C̃U for the in-car user. Thus, we find that

the optimized CU of P is higher than that of O, whereas the

optimized CBV of O outperforms that of P . Accordingly, the

more appropriate optimization scheme can be readily selected

based on the data priority of distinct transmission links.

Figure 12 compares the results of the optimization Q to

that of P and O. Let us contrast P and Q first. Clearly,

both CBV and CU in P have been remarkably improved,

demonstrating that the NOMA strategy offers a bandwidth

efficiency improvement. By considering the results of O and

Q in Fig. 12, we find that CU of NOMA-SM associated with

optimization O is tightly lower bounded by that of OMA-

SM associated with optimization Q, and CBV with O provides

a substantial gain, achieving more than twice that of Q.

Clearly, the NOMA-SM system associated with optimization

O is capable of offering better user fairness than that of

optimization P .

Furthermore, it can be observed from Fig. 13 that the

NOMA-SM systems achieve higher sum capacity than OMA-

SM. Specifically, optimization P provides higher capacity gain

than O, since P aims for maximizing the data rate of the in-

car user U , which experiences a much better channel than the

collaboration-aided vehicle V2.

VI. CONCLUSIONS

The new NOMA-SM transmission strategy has been pro-

posed in this treatise. Its BER performance has been in-

vestigated with the impact of the Rician K-factor, spatial

correlation of antenna array, time-varying effect of the V2V

channel, and the power allocation factor being discussed.

Compared to NOMA relying on VBLAST, NOMA-SM has

been demonstrated to exhibit improved robustness against the

spatial and temporal effects of the V2V channel. By analysing

the capacity and deriving analytical upper bounds in closed

form, a pair of power allocation optimization schemes have

been formulated for NOMA-SM. The optimal solutions have

also been shown to be achievable with the aid of the pro-

posed power allocation algorithm. Our numerical results have

verified that with the aid of an appropriate power allocation,

NOMA-SM is capable of satisfying the QoS support of a low

priority flow, whilst maximizing the throughput of the high

priority flow. In summary, NOMA-SM has been demonstrated

to cooperatively improve the link reliability and bandwidth

efficiency of V2V transmissions.
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