
The original publication is available at http://doi.org/10.1109/ICECCS.2017.27
In The 22nd International Conference on Engineering of Complex Computer Systems (ICECCS) c© IEEE 2017.

A Composition Mechanism for Refinement-Based
Methods

Thai Son Hoang, Dana Dghaym, Colin Snook, Michael Butler
Electronics and Computer Science

University of Southampton, Southampton, UK
Email: {t.s.hoang, dd4g12, cfs, mjb}@ecs.soton.ac.uk

Abstract—Event-B developments are mostly structured around
the refinement relationship. This top-down development archi-
tecture enables system details to be gradually introduced into
the formal model. However, this results in large models with
monolithic structures. We develop a composition mechanism
allowing to develop models bottom-up. In particular, our pro-
posed mechanism works seamlessly with the existing refinement
technique in Event-B. As a result we have built a formal
development method that can take advantage of both top-down
and bottom-up approaches. We prove the correctness of machine
inclusion with refinement using the supporting Rodin platform.

Keywords—Machine Inclusion, Composition, Refinement,
Event-B

I. INTRODUCTION

Developing dependable large software systems is a chal-
leging task and formal methods are being seen as one of
the solutions for improving system quality. Event-B [1] is
a formal method for system development based on discrete-
transition systems (called machines). In particular, to cope with
system complexity, Event-B developments are mostly struc-
tured around refinement and decomposition relationships [2].
Refinement enables system details to be gradually introduced
into the formal models consistently. Decomposition allows a
model to be separated in several (smaller) sub-models which
can be further refined independently. A disadvantage of this
top-down development style is that this often results in large
models with monolitic structures.

Our motivation is to incorporate the bottom-up develop-
ment approach by reusing existing models. Our aim is the
seamless integration of composition technique with the current
existing top-down development process. This will facilitate
the reuse of existing models, result in the development of
models in separate work streams, supporting teamwork de-
velopment. While various composition techniques have been
proposed [3]–[6], most of them rely on translation and are not
smoothly integrated with the refinement development process.
(More information regarding related work can be found in
Section VII).

In this paper, we introduce the notion of machine inclusion
into Event-B. This allows to construct an Event-B machine by
composing one or more machines. The included machine is
reused in a “correct-by-construction” fashion that allows us to
utilise its properties without reproving them. Furthermore, we
illustrate that the new mechanism can be used together with
refinement-based development process with minimal effort.

Our approach enables the possibility of a top-down and
bottom-up combined development process.

The rest of the paper is organised as follows. Section II
presents some background on the Event-B modelling method
including its proof obligations. In Section III, we describe our
proposal for machine inclusion mechanism and its integration
with the refinement process. Section IV illustrates the usage
of the machine inclusion mechanism to develop a system for
controlling cars on a bridge. We discuss our implementation
supporting machine inclusion in Section V. We prove the
correctness of the proposed proof obligations for machine
inclusion in Section VI. Finally, we draw some conclusions,
discuss the related work and future research direction in
Section VII.

II. BACKGROUND

Event-B [1] is a formal method for system development.
Main features of Event-B include the use of refinement to
introduce system details gradually into the formal model. An
Event-B model contains two parts: contexts and machines.
Contexts contain carrier sets, constants, and axioms that
constrain the carrier sets and constants. A machine M contains
variables v, invariants I(v) that constrain the variables, and
events. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are
modified when the event is executed. In general, an event e has
the following form, where t are the event parameters, G(t, v)
is the guard of the event, and v := E(t, v) is the action of the
event1.

1 e == any t where G(t,v) then v := E(t,v) end

A special unguarded event (called the INITIALISATION) is
used for initialising the variables. In this paper, we do not
present a separate treatment for the INITIALISATION, it is a
special case of normal events.

An Event-B machine M corresponds to a transition system
where variables v represent the states and M’s events specify
the transitions. Event-B defines proof obligations, which must
be discharged to ensure that the formal model fulfills its
specified properties. These obligations are expressed in terms
of sequents of the form H ` G meaning that the goal G

1Actions in Event-B are, in the most general cases, non-deterministic [7].

1

http://doi.org/10.1109/ICECCS.2017.27


holds under the set of hypotheses H . For example, the proof
obligation for invariant I(v) to be preserved by event e is as
follows,

G(t, v), I(v) ` I(E(t, v)) . (INV)

I.e., under the assumption that the guard G(t,v) and the
invariant I(v) hold, the (modified) invariant I(E(t,v)) is re-
established. For convenience, we say that machine M is
consistent if all of its events maintain its invariants.

Contexts can be extended by adding new carrier sets,
constants, axioms, and theorems. Machine M can be refined
by machine N (we call M the abstract machine and N the
concrete machine). The state of M and N are related by a
gluing invariant J(v, w) where v, w are variables of M and N,
respectively. Intuitively, any “behaviour” exhibited by N can be
simulated by M, with respect to the gluing invariant J(v,w).
Refinement in Event-B is reasoned event-wise. Consider an
abstract event e and the corresponding concrete event f.
Somewhat simplifying, we say that e is refined by f if f’s
guard is stronger than that of e and f’s action is simulated by
e’s action, taking into account the gluing invariant J. More
precisely, given event e above and event f as follows2.

1 f == any t where H(t,w) then w := F(t,w) end

Event f is a refinement of e with respect to the gluing invariant
J(v,w) if the following proof obligations hold.

I(v), J(v, w), H(t, w) ` G(t, v) (GRD)
I(v), J(v, w), H(t, w) ` J(E(t, v), F (t, w)) (INV REF)

The guard strengthening obligation (GRD) states that the
concrete guard H(t,w) is stronger than the abstract guard
G(t,v). The (refinement) invariant preservation (INV REF)
states that the invariant J is maintained by the abstract event e
and the concrete event f. For convenience, we say that concrete
machine N is consistent if all its events satisfy (GRD) and
(INV REF) proof obligations.

More information about Event-B can be found in [7]. Event-
B is supported by the Rodin platform (Rodin) [8], an extensible
toolkit which includes facilities for modelling, verifying the
consistency of models using theorem proving and model
checking techniques, and validating models with simulation-
based approaches.

III. A COMPOSITION MECHANISM FOR
REFINEMENT-BASED DEVELOPMENT

In this section, we first present the machine inclusion
mechanism in Section III-A, then consider the relationship
between machine inclusion and refinement in Section III-B.

A. Machine Inclusion

We propose the machine inclusion mechanism for Event-B
as follows. Consider the following machine B0 with variables
v, invariants I0(v) and event e.

2In general the event’s parameters can also be refined.

1 machine B0
2 variables v
3 invariants
4 @I0: ”I0(v)”
5 events
6 e
7 any t where
8 @grd1: ”G0(t, v)”
9 then

10 @act1: ”v := E0(t, v)”
11 end
12 end

A machine A0 that includes machine B0 will inherit B0’s
variables v and invariants I0(v). Machine A0 can have its own
variables x. As a result, invariant J0 of A0 can refer to both v
and x, i.e., J0(v,x). Machine A0 cannot directly assign to v. In
order to modify v, events of A0, such as f, have to synchronise
with events of the included machine B0, e.g., e. Implicitly, e’s
parameters, guards and actions become parts of f.

1 machine A0
2 includes B0
3 variables x
4 invariants
5 @J0: ”J0(v,x)”
6 events
7 f
8 synchronises e
9 any u where

10 @grd2: ”H0(u, x)”
11 @grd3: ”K0(t, v, u, x)”
12 then
13 @act2: ”x := F0(u, x)”
14 end
15 end

Guards of event f can refer to parameter u and variable x
declared explicitly in A0, e.g., H0(u,x). Moreover, via event
synchronisation, a guard of f can also refer additionally to
parameter t and variable v of the included machine B0,
e.g., K0(t,v,u,x). Essentially, the guard K0 act as an explicit
synchronisation link between the including and included ma-
chines.

The semantics of machine inclusion and event synchroni-
sation are captured by the flattened machine (flattened)A0
as follows. Variables v and invariants I0(v) explicitly become
variables and invariants of (flattened)A0.

1 machine (flattened)A0
2 variables v x
3 invariants
4 @I0: ”I0(v)”
5 @J0: ”J0(v,x)”
6 events
7 (flattened)f
8 any t u where
9 @grd1: ”G0(t, v)”

10 @grd2: ”H0(u, x)”
11 @grd3: ”K0(t, v, u, x)”
12 then
13 @act1: ”v := E0(t, v)”
14 @act2: ”x := F0(u, x)”
15 end
16 end



Since the meaning of A0 is essentially represented by ma-
chine (flattened)A0, consistency of A0 is the same as that of
(flattened)A0. In particular, since A0 includes B0, reasoning
about the consistency of A0 can be separated accordingly, as
illustrated by the following theorem.

Theorem 1 (Inclusion Invariant Preservation). Given machine
B0 and A0 where A0 includes B0 as above, if machine B0 is
consistent and the following proof obligation holds for every
event f of A0

I0(v), J0(v, x), G0(t, v), H0(u, x),K0(t, v, u, x)
`
J0(E0(t, v), F0(u, x))

(INC INV)

then A0 is also consistent.

Proof (Sketch). The fact that every event maintains (implicit)
invariant I0(v) is guaranteed by consistency of B0 and event
synchronisation. Proof obligation (INC INV) guarantees that
invariant J0(v,x) is maintained by all events. As a result, A0
is consistent.

Theorem 1 allows us to reuse the consistency of the in-
cluded machine B0 (without reproving) to reason about the
consistency of the including machine A0.

Multiple instances of the same machine can be included
using prefixing. For example, the following syntax allows
machine A0 to include two instances of B0: one with prefix
First, one with prefix Second.

1 machine A0
2 includes B0 as First Second

Events, variables, and parameters of the included machine are
prefixed accordingly. For example, we use First.e to refer to
event e of the First instance of B0, and First v, First t to refer
to the corresponding variables and parameters of the same
instance of B0.

B. Machine Inclusion and Refinement

Consider the refinement B1 of B0 with the gluing invariants
I1(v,w) linking the abstract variables v and concrete variables
w.

1 machine B1
2 refines B0
3 variables w
4 invariants
5 @I1: ”I1(v, w)”
6 events
7 e
8 refines e
9 any t where

10 @grd1: ”G1(t, w)”
11 then
12 @act1: ”w := E1(t, w)”
13 end
14 end

Consider the machine A1 which includes B1 and refines A0
as follows.

1 machine A1
2 includes B1
3 refines A0
4 variables
5 x
6 events
7 f
8 synchronises e
9 refines f

10 any u where
11 @grd2: ”H0(u, x)”
12 @grd3: ”K1(t, w, u, x)”
13 then
14 @act2: ”x := F0(u, x)”
15 end
16 end

Here, we assume that the variables x from A0 are retained
in A1. We also consider the situation where minimal changes
need to be made in A1 to include B1. Comparing the abstract
event f in A0 and its corresponding event in A1, the only
necessary change is that the guard K0(t,v,u,x) is replaced by
K1(t,w,u,x). This is due to the data-refinement of v by w in
B1. Here, we avoid data refinement of A1 in order to focus on
the relationship between machine inclusion and refinement. In
general, it is possible to data-refine x at the same time.

Consistency of A1 can rely on the consistency of B1 as
stated in the following theorem.

Theorem 2 (Inclusion Guard Strengthening). Given machine
B1 (refining B0) and machine A1 (including B1) as above, if
B1 is consistent and the following proof obligation holds for
all events f of A1

I0(v), J0(v, x), I1(v, w), H0(u, x),K1(t, w, u, x), G1(t, w)
`

K0(t, v, u, x)
(INC GRD)

then A1 is also consistent.

Proof (Sketch). Comparing the abstract event f in A0 and the
concrete event f in A1, the action assigning to x and guard
H0 are retained. As a result, we only need to consider guard
strengthening for abstract guard K0, which is guaranteed by
proof obligation (INC GRD).

More often B1 is a superposition refinement of B0, i.e.
variables v are subset of variables w. In this case, K1 can be
the same as K0 and the proof obligation (INC GRD) becomes
trivial. This is applicable in our example in Section IV.

Later, in Section VI, we prove the correctness of Theo-
rems 1 and 2 using Rodin. Essentially, these theorems define
proof obligations associated with machine having the inclusion
clause.

IV. EXAMPLE. CONTROLLING CARS ON A BRIDGE

In this section, we illustrate the machine inclusion mech-
anism and refinement using the “cars on a bridge” example
from [1, Chapter 2]. We first present the description of
the example. Our formal models are available online from



BRIDGE

ISLAND MAINLAND

(island) trafficlight (mainland) trafficlight

sensors

Fig. 1. Cars on a bridge

the University of Southampton repository at http://doi.org/10.
5258/SOTON/D0237.

A. Description

The system is controlling cars on a one-way bridge connect-
ing the mainland to an island. The overall system can be seen
in Fig. 1. The system is equipped with two traffic lights at
both entrances to the bridge. At any time, the number of cars
on the island is limited. In order to track the number of cars
on the island, the system is equipped with four sensors that
detect cars entering and leaving the bridge at both ends. The
following set of requirements are extracted from [1, Chapter
2].

REQ 1 The bridge is one-way.

REQ 2 The system is equipped with two traffic lights at both
entraces of the bridge.

REQ 3 A traffic light is either green or red.

REQ 4 Cars are not supposed to pass on a red traffic light.

REQ 5 The system is equipped with four sensors at both entraces
detecting cars entering and leaving the bridge.

REQ 6 A sensor is either on or off.

REQ 7 An “on” sensor means that a car is willing to enter or
leaving the bridge.

REQ 8 The number of cars on the island is limited.

In the following, we present the model of the sensors (Sec-
tion IV-B), the model of the traffic lights (Section IV-C), and
finally the model of the system using the machine inclusion
mechanism (Section IV-D).

B. Model of A Sensor

Sensors are devices capable of detecting the presence of
cars. Our model of a sensor makes a clear separation between
physical equipment and the software controller associated with
the sensor. The model of the sensor is developed using the
following refinement strategy.

• Sensor m0: Model of the physical sensor.
• Sensor m1: Counting the number of (physical) cars

departed from the sensor.

• Sensor m2: Model of the signals from the sensor to the
controller.

• Sensor m3: Model of the sensor controller.
1) Sensor m0. We model the state of the sensor using

a Boolean variable SNSR, i.e., TRUE for “on” and
FALSE for “off” (REQ 6). Two events SNSR on and
SNSR off model the the situation when the sensor is
going to “on” or “off” respectively.

2) Sensor m1. A variable DEP (a natural number) is
introduced to count the number of departed cars from
the sensor. An action is added to SNSR off to increase
DEP accordingly.

3) Sensor m2. Two new variables Snsr 01 and Snsr 10
are introduced into the model to represent the signals
from the sensor to the controller when the sensor
changes from “off” to “on” and from “on” to “off”
respectively. The new invariants are as follows.

1 @inv1 1: ”Snsr 01 = TRUE⇒ SNSR = TRUE”
2 @inv1 2: ”Snsr 10 = TRUE⇒ SNSR = FALSE”
3 @inv1 3: ”Snsr 01 = FALSE ∨ Snsr 10 = FALSE”

Invariants inv1 1 and inv1 2 link the signal to the
actual state of the sensor. Invariant inv1 3 state that
at most one signal can be active at the one point.
The original events SNSR on and SNSR off are
extended with additional guards and actions accord-
ingly. Two new events ctrl Senses Snsr 01 and
ctrl Senses Snsr 10 are introduced to model the ac-
tion of the controller receiving the signals.

4) Sensor m3. In this refinement, we introduce the
variables of the controller, i.e., ctrl snsr, ctrl dep,
ctrl snsr 01, ctrl snsr 10, corresponding to the sen-
sor status, the number of cars departed, and the signals’
status as stored by the controller. Note that they are the
controller’s version of the physical entities and do not
always correspond exactly to the physical version. For
example, the invariants relating ctrl dep and DEP are
as follows.

1 @inv2 3: ”Snsr 10 = FALSE ∧ ctrl snsr 10 = FALSE⇒
ctrl dep = DEP”

http://doi.org/10.5258/SOTON/D0237
http://doi.org/10.5258/SOTON/D0237


2 @inv2 4: ”Snsr 10 = TRUE ∨ ctrl snsr 10 = TRUE⇒
ctrl dep = DEP − 1”

The invariants state that ctrl dep and DEP are the
same only if there are no pending signals indicating
that the sensor is going from “on” to “off” to process.
Two new events ctrl on and ctrl off are introduced in
this refinement for the controller to process the signals
accordingly.

C. Model of A Traffic Light

Similar to the model of the sensor, we also separate the
physical traffic light and the software controller. The refine-
ment strategy for modelling a traffic light is as follows.

• TrafficLight m0: Model of the physical traffic light.
• TrafficLight m1: Model the actuator from the controller

to the traffic light.
• TrafficLight m2: Model of the traffic light controller.
• TrafficLight m3: Model of the sensor from the traffic

light to the controller.
This refinement strategy for a control system follows the
guideline provided in [9].

1) TrafficLight m0. This first model of the traffic light
contains a variable LIGHT which is either RED or
GREEN (REQ 3). Two events GREEN 2 RED and
RED 2 GREEN change the status of the traffic light
from GREEN to RED and RED to GREEN, respec-
tively.

2) TrafficLight m1. In this refinement, we introduce the
actuators, namely, Act RED and Act GREEN, com-
manding the traffic light to RED or GREEN, re-
spectively. The original events GREEN 2 RED and
RED 2 GREEN are refined using the actuators infor-
mation. Two new events, namely, ctrl Acts RED and
ctrl Acts GREEN are added to set the value of the
actuator

3) TrafficLight m2. In this refinement, we introduce the
controller side of the traffic light. This includes variables
ctrl light to keep controller status of the light (which
might be different from the actual status of the light, i.e.,
LIGHT). Another (Boolean) variable, namely ctrl act,
is introduced to indicate that the controller needs to send
a command to change the traffic light status.

4) In this model, we complete the control-loop for
the traffic light with the sensors Snsr RED and
Snsr GREEN. They are set when the physical traffic
light changes status, i.e., in events GREEN 2 RED
and RED 2 GREEN accordingly. Two new events
ctrl Senses RED and ctrl Senses GREEN are in-
troduced to model the controller processing these sen-
sors.

D. Controlling Cars System Model using Machine Inclusion

Our refinement strategy for developing the system for
controlling cars on a bridge is as follows.

• Car m0: Model the cars on the bridge and on the island.

• Car m1: Introduce the 2 physical sensors for detecting
cars entering the bridge (from both ends) by including
two instances of Sensor m0.

• Car m2: Introduce the 2 physical traffic lights by includ-
ing two instances of TrafficLight m0.

• Car m3: Refine the number of cars on the bridges using
the 4 physical sensors by including four instances of
Sensor m1.

• Car m4: Introduce the controller for the 4 sensors by
including four instances of Sensor m3.

• Car m5: Introduce the number of cars on the bridge and
on the island as kept by the controller. This is linked with
the the 4 sensors controller introduced previously.

• Car m6: Introduce the traffic light controller by includ-
ing two instances of TrafficLight m3.

• Car m7: Refine the controller processes for the two
traffic lights properly.

The refinement and inclusion relationships (including multi-
plicity) between the different machines can be seen in Fig. 2.
In the following, we present some important modelling as-

Sensor m0

Sensor m1

Sensor m3

refines

refines

Car m0

Car m1

Car m2

refines

refines

Car m3

refines

Car m4

refines

Car m5

refines

Car m6

refines

Car m7

refines

TrafficLight m0

TrafficLight m3

refines

x 2

x 2

x 4

x 4

x 4

x 4

x 4

x 2

x 2

x 2

x 2

x 2

x 2

Fig. 2. Development of the controller for cars on a bridge

pects, focusing on the use of the machine inclusion mecha-
nism.

1) Car_m0 – Cars on the Bridge and the Island: This
machine is the same as the one presented in [1, Chapter 2].
We have three variables A, B, and C representing the (actual)
number of cars on the bridge (going into the island), the
number of cars on the island, and the number of cars on the
bridge (going into the mainland). Important invariants are as
follows.

1 @inv0 4: ”A = 0 ∨ C = 0”



2 @inv0 5: ”A + B + C ≤ D”
3 @thm0 1: ”B ≤ D” theorem

They are stating that the bridge is one-way (REQ 1) and that
the number of cars on the island is limited (REQ 8). There are
4 events, namely, ML in, ML out, IL in, IL out, to model the
situation where a car is entering/leaving the mainland (ML)
or the island (IL) respectively. For example, the event related
to the island is as follows.

1 IL in
2 when
3 @grd1: ”A 6= 0”
4 then
5 @act1: ”A := A − 1”
6 @act2: ”B := B + 1”
7 end
8

9 IL out
10 when
11 @grd1: ”B 6= 0”
12 @grd2: ”A = 0”
13 then
14 @act1: ”B := B − 1”
15 @act2: ”C := C + 1”
16 end

2) Car_m1 – Sensors for Cars Entering the Bridge: In
this model, we introduce the sensors detecting cars entering
the bridge on both ends by including (twice) Sensor m0.

1 machine Car m1
2 includes Sensor m0 as ML out IL out
3 invariants
4 @inv1 1: ”IL out SNSR = TRUE⇒ B 6= 0”

Invariant inv1 1 links the status of the IL out sensor with the
number of cars on the island: if there is a car willing to leave
the island, then the number of car on the island must not be 0.
Event IL out is refined by event synchronisation as follows.

1 IL out
2 synchronises IL out.SNSR off
3 refines IL out
4 when
5 @grd2: ”A = 0”
6 then
7 @act1: ”B := B − 1”
8 @act2: ”C := C + 1”
9 end

Note that the abstract grd1 of IL out event is removed as a
consequence of invariant inv1 1. The meaning of the event
synchronisation is that when a car leaves the island, the
sensor IL out is going “off”. Here, consider the consistency of
Car m1, we can apply Theorem 1, i.e. to prove that inv1 1
is maintained by all events of Car m1. The proofs are trivial
and are omitted here.

A new event IL out ARR models the situation where a
car arrives on the IL out sensor. As a result, this event
synchronises with IL out.SNSR on. The guard grd2 for this
event is to ensure that invariant inv1 1 is maintained.

1 IL out ARR
2 synchronises IL out.SNSR on
3 when
4 @grd2: ”B 6= 0”
5 end

3) Car_m2 – Traffic lights: In this machine, we in-
troduce the traffic lights by including two instances of
TrafficLight m0 (REQ 2). Note that this machine still includes
two instances of Sensor m0 as before. From now on, for
simplification, we only show the machine inclusion clauses
when they are changed.

1 machine Car m2
2 includes TrafficLight m0 as ML IL
3 includes Sensor m0 as ML out IL out
4 invariants
5 @inv2 3: ”IL LIGHT = GREEN⇒ A = 0”
6 @inv2 4: ”ML LIGHT = RED ∨ IL LIGHT = RED”

Important invariants in this machine include inv2 3 stating
that if the island traffic light (IL LIGHT) is GREEN then there
are no cars on the bridge going into the island, and inv2 4
stating that at most one of the traffic lights is GREEN at any
time.

Event IL out is refined as follows to take into ac-
count REQ 4. Notice that it still synchonises with the
SNSR off event from the IL out machine as before.

1 IL out
2 synchronises IL out.SNSR off
3 refines IL out
4 when
5 @grd2: ”IL LIGHT = GREEN”
6 then
7 @act1: ”B := B − 1”
8 @act2: ”C := C + 1”
9 end

Events changing the traffic lights are added as new events
in this machine. For example, events for changing the island
traffic light are as follows.

1 IL light GREEN
2 synchronises IL.RED 2 GREEN
3 when
4 @grd2: ”ML LIGHT = RED”
5 @grd3: ”A = 0”
6 end
7

8 IL light RED
9 synchronises IL.GREEN 2 RED

10 end

4) Car_m3 – Counting the Cars on the Bridge: In this ma-
chine, we perform data-refinement of the number of cars, i.e.,
A, B, C using the sensors. For this, we include Sensor m1
four times representing the four sensors (REQ 5, REQ 7). The
gluing invariants for removing variables A, B, and C are as
follows.

1 machine Car m3



2 includes Sensor m1 as ML out IL out ML in IL in
3 invariants
4 @inv3 1: ”A = ML out DEP − IL in DEP”
5 @inv3 2: ”B = IL in DEP − IL out DEP”
6 @inv3 3: ”C = IL out DEP − ML in DEP”

The invariants link the number of cars on the bridge and the
island with the number of cars departed from different sensors.
For example, invariant inv3 1 states that the number of cars
on the bridge going into the island is the difference between
the number of cars departed the ML out sensor (i.e., going out
of the mainland) and the number of cars departed the IL in
sensor (i.e., going into the island).

References to A, B, C in guards and actions are removed
and replaced accordingly. For instance, refinements of IL out
and IL light GREEN are as follows.

1 IL out
2 synchronises IL out.SNSR off
3 refines IL out
4 when
5 @grd2: ”IL LIGHT = GREEN”
6 end
7

8 IL light GREEN
9 synchronises IL.RED 2 GREEN

10 refines IL light GREEN
11 when
12 @grd2: ”ML LIGHT = RED”
13 @grd3: ”IL in DEP = ML out DEP”
14 end

5) Car_m4 – Sensors controller: In this machine, we
incorporate the controller sensors into the model by replacing
the inclusion (4 times) of Sensor m1 with Sensor m3.

1 machine Car m3
2 includes Sensor m3 as ML out IL out ML in IL in

Since the abstract variables in Sensor m1 are retained in
Sensor m3, we do not need to refine the guards of any
event. Moreover new events in Sensor m3 (compared to
Sensor m1 are added as new events in this machine (using
event synchronisation). For example, events for controller to
process the IL out sensor are as follows.

1 IL out ctrl on
2 synchronises IL out.ctrl on
3 end
4

5 IL out ctrl off
6 synchronises IL out.ctrl off
7 end

6) Car_m5 – Sensors Controller: Given the introduction
of the sensors controller in the previous machine Car m4,
we now start designing our controller part for counting the
number of cars. Three new variables car a, car c, and car n
representing the number of cars on the bridge going to the
island, the number of cars on the bridge going to the mainland,
and the total number of cars on the bridge and the island,
respectively (as calculated by the controller). The invariants
related to the new variables are as follows.

1 @inv5 1: ”ctrl a = ML out ctrl dep − IL in ctrl dep”
2 @inv5 2: ”ctrl c = IL out ctrl dep − ML in ctrl dep”
3 @inv5 3: ”ctrl n = ML out ctrl dep − IL out ctrl dep”

The invariants show how the controller calculate the number
of cars using the sensors. Events are extended accordingly.
For example, event IL out ctrl off is extended with actions
changing ctrl c and ctrl n as follows.

1 IL out ctrl off extended
2 refines IL out ctrl off
3 begin
4 @act1: ”ctrl c := ctrl c + 1”
5 @act2: ”ctrl n := ctrl n − 1”
6 end

7) Car_m6 – Traffic Light Controller: In this machine, we
introduce the traffic light controller by replacing the inclusion
(twice) of TrafficLight m0 with TrafficLight m3.

1 machine Car m3
2 includes TrafficLight m3 as ML IL

Similar to Section IV-D5, new events in TrafficLight m3 are
promoted accordingly. For example, events for controlling the
IL traffic light are as follows.

1 IL ctrl RED 2 GREEN
2 synchronises IL.ctrl RED 2 GREEN
3 end
4

5 IL ctrl GREEN 2 RED
6 synchronises IL.ctrl GREEN 2 RED
7 end

8) Car_m7 – Refine Traffic Light Controller: In this ma-
chine we refine the controlling of traffic lights using informa-
tion from counting the number of cars. In particular, changing
the traffic light from RED to GREEN requires attention as
this could violate system safety. Consider the refinement of
IL ctrl RED 2 GREEN below.

1 IL ctrl RED 2 GREEN
2 synchronises IL.ctrl RED 2 GREEN
3 refines IL ctrl RED 2 GREEN
4 when
5 @grd1: ”ML ctrl snsr RED = TRUE”
6 @grd2: ”ctrl a = 0”
7 @grd3: ”ML out Snsr 10 = FALSE”
8 @grd4: ”ML out ctrl snsr 10 = FALSE”
9 @grd5: ”IL in Snsr 10 = FALSE”

10 @grd6: ”IL in ctrl snsr 10 = FALSE”
11 end

Guards grd1 and grd2 assert that, according to the controller,
the ML traffic light is RED and there are no cars on the
bridge going to the island. Guards grd3–grd6 ensure that
all the releveant signals have been processed accordingly by
the controller. This is to guarantee that the controller has the
correct up-to-date information about the ML traffic light and
the number of cars on the bridge. We omit the presentation of
the relevant invariants and refinement of other events here.



E. Summary

In order to estimate the effect of the inclusion mechanism,
we compare the number of proof obligations for developments
with and without machine inclusion, assuming that we follow
the same refinement strategy (see Table I). In this example, all
proof obligations are discharged automatically. As one can

TABLE I
PROOF STATISTICS

Machine With inclusion Without inclusion
Car_m0 20 20
Car_m1 6 6
Car_m2 26 26
Car_m3 9 33
Car_m4 0 192
Car_m5 12 12
Car_m6 0 160
Car_m7 88 88
Total 161 537

see, using machine inclusion, we reduce the number of proof
obligations to about one third of this development. Taking
into account the proof obligations for the model of the sensor
(50 POs) and for the model of the traffic light (92 POs),
we reduce the number of proof obligations by using machine
inclusion by 234 POs (44% of the total number of POs without
maching inclusion). Note that this number (234 POs) roughly
corresponds to 3 times the POs for the sensor plus the POs for
the traffic light, which is what we expected to save by using
machine inclusion.

V. IMPLEMENTATION

Implementation of the inclusion feature is based on our
EMF framework for Event-B [10]. This framework has been
developed in order to leverage the extensive range of Eclipse
Modeling Framework (EMF) [11] utilities that are available
from the Eclipse foundation. It also provides a framework for
extending the Event-B language with additional features (e.g.
inclusion). Extensions are translated into “pure” Event-B and
therefore are not required to be processed by the Rodin tools.
The framework provides the following features:

• an EMF meta-model for Event-B,
• EMF Event-B model repository code (generated by the

meta-model),
• extension mechanisms for extending the Event-B meta-

model and model code,
• persistence (synchronisation) of EMF models and their

extensions using the Rodin Database,
• a facility to extend the Rodin navigator with EMF-based

extension elements,
• a generic (clone) contribution to the Rodin refine op-

eration with provision to configure how references are
handled,

• a generic translator facility to support the implementation
of translations (either to “pure” Event-B or to other target
languages).

The inclusion metamodel is an extension to the Event-
B metamodel, where machines are allowed to include other

Fig. 3. XEvent-B Extended Architecture

machines with the possibility of prefixing, and events can
synchronise with other events and can also apply prefixing.
After extending the Event-B meta-model, we define a model-
to-model transformation from the inclusion meta-model to
the Event-B meta-model. This transformation will generate a
flattened Event-B machine that can be serialised by Rodin.

We use an Xtext-based editor as a front-end for machine
inclusion. Xtext [12] is an eclipse-based open source frame-
work for the development of domain-specific languages. Using
Xtext, we define the grammar of machine inclusion which also
generates a parser, a serialiser and a smart editor. When an
Xtext machine file is saved, the Xtext generator will call the
inclusion translator, which in turn will generate the flattened
Event-B machine. The flattened machine is a normal Event-
B machine, hence the Event-B verification can be applied.
Fig. 3 summarises the architecture of the Xtext-based Event-
B (XEvent-B), and its relation to the Event-B EMF.

VI. CORRECTNESS

We have used Rodin [8] to prove the theorems in Section III
related to machine inclusion. The approach that we use is
from [13] (for proving consistency of Event-B extensions)
containing the following steps.

1) Encode the generic input model.
2) Encode the generic output model.
3) Gather the consistency conditions of the input model.
4) Prove the consistency of the output model using the

consistency of the input model.
We illustrate our verification for Theorem 1 as follows.

1) The generic input model is the machine B0 as shown in
Section III-A. In particular, to define the various generic
formulae, i.e., I0, G0, E0, we use the Theory plug-
in [14]. The theory associated with B0 is as follows
where I0, G0, E0 are defined as operators with appro-
priate types.

1 theory B0
2 types V T
3 operators
4 I0(v: ”V”)
5 G0(t: ”T”, v: ”V”)
6 E0(t: ”T”, v: ”V”): ”V”

2) The generic output model is the machine (flatten)A0
which is generated from A0 using our implementation
in Section V. We also define the generic formulae in A0
using the Theory plug-in as follows.



1 theory A0
2 imports B0
3 types U X
4 operators
5 J0(v: ”V”, x: ”X”)
6 H0(u: ”U”, x: ”X”)
7 K0(t: ”T”, v: ”V”, u: ”U”, x: ”X”)
8 F0(u: ”U”, x: ”X”): ”X”

3) The consistency condition for B0 corresponding to the
proof obligation (INV) is encoded as an axiom of the
theory B0.

1 axioms
2 @B0/e/I0/INV: ”∀ t,v· t ∈ T ∧ v ∈ V ∧ I0(v) ∧ G0(t,v)⇒

I0(E0(t,v))”

Similarly, the additional proof obligation (INC INV) in
Theorem 1 is encoded as an axiom of the theory A0.

1 axioms
2 @A0/f/J0/INV: ”∀ t,v,u,x· I0(v) ∧ J0(v,x) ∧ G0(t,v) ∧ H0(u

,x) ∧ K0(t,v,u,x)⇒ J0(E0(t,v), F0(u,x))”

Corresponding proof rules are defined according to these
axioms.

4) All the proof obligations associated with (flatten)A0
are automatically discharged by Rodin. In particular, the
fact that event f maintains invariant I0 (relying on axiom
B0/e/I0/INV) and maintains invariant J0 (relying on
axiom A0/f/J0/INV) is proved as expected.

The verification for Theorem 2 is similar and is omitted
here. The models are available online from the University
of Southampton repository at http://doi.org/10.5258/SOTON/
D0237

VII. CONCLUSION

In this paper, we present a machine inclusion mechanism
for Event-B. The proposed mechanism allows us to construct a
model ‘bottom-up’ by combining existing models. Moreover,
we illustrate that the new mechanism integrates seamlessly
with the existing refinement development process of Event-
B. By including multiple instances of a machine, we also
reuse the modelling and proving effort in developing the
formal model. We have extended Rodin to support machine
inclusion using EMF and Xtext. Using the developed plug-
in tool, we verify the correctness of the proof obligations
related to machine inclusion by constructing generic models
and reason about them with the Theory plug-in.

A. Related Work

Various composition approaches have been proposed before
for Event-B [3]–[6]. The initiative of our work can be found
in [15]. In [3], the authors introduced a modularisation ap-
proach for including a “module” via operation calls. However,
modules are a new construct introduced by the modularisation
approach and need to be treated differently from machines, in-
cluding different proof obligations. In [5], the authors defined

an architecture for incorporating a refinement-chain (called a
pattern) into a development. While reusing a refinement-chain
is similar to our approach, the pattern needs to be matched
with a part of the current development. In our approach,
we can directly reuse the pattern using machine inclusion.
In [4], the author presented a notion of event fusion for
Event-B and proved that event fusion preserved refinement.
Event fusion allows combining events of models with shared
variables, whereas in our approach, included machines con-
tribute different sets of variables to the including machine.
Moreover, composition of refinement patterns in [4] gave a
quite rigid modular arrangement. For example, each refinement
step in the pattern results in a corresponding refinement
step in the main development. As shown in the example in
Section IV, our development architecture is quite flexible in
terms of where or when to include the refinement of the
patterns. In [6] the authors used shared-event composition to
construct a composed-machine from existing models. However
the composed-machine itself does not have any variables and
it is more restricted than the machine inclusion mechanism.

Our machine inclusion mechanism is influenced by the
similarly named mechanism in classical B [16], including
machine renaming and restrictions on modifying variables of
the included machine. In classical B, operations of included
machines are called from the including machine, whereas
we use event synchronisation. Furthermore, machine inclusion
in classical B only supports including a specification; i.e.,
the top-level abstraction of a refinement-chain. The reuse of
refinement-chains in our approach is basically applying some
refinement pattern as specified by the included refinement-
chain. The same idea has been developed for classical B into
a tool for automatic refinement [17]. The difference between
BART and our tool is that BART is a model transformation
tool (according to some user-defined rules) and still requires
proofs in order to make sure that the proposed refinement is
correct.

B. Future Work

In order to include a machine, both the including and the
included machines need to have the same context and this
does not hold priori. In order to realise the full potential of
reusing existing models, we need to apply generic instantiation
to instantiate the context of the included machine accordingly.
We can benefit from the experience of existing approaches [6],
[18] to ensure the consistency of instantiation. Currently our
implementation of the supporting tool generates a flattened
model corresponding to the machine with its inclusion clauses.
This is to utilise the existing support for static checking
and proof-obligation generating capability of Rodin. However,
this also means that obligations which have already been
proven in the included machine are regenerated again in the
including machine. Our immediate task is to ensure that only
necessary proof obligations as specified in Theorems 1 and
2 are generated. At the same time, we need to evaluate
our approach on more case studies, including those from
the Enable-S3 project [19], for example the RailGround case

http://doi.org/10.5258/SOTON/D0237
http://doi.org/10.5258/SOTON/D0237


study [20]. Our inclusion mechanism enables the possiblity of
reusing formal models. As a result, we would like to develop
a library of reusable models, such as the model of sensors,
that are useful for many different systems.

ACKNOWLEDGMENT

This work has been conducted within the ENABLE-S3
project that has received funding from the ECSEL Joint
Undertaking under Grant Agreement no. 692455. This Joint
Undertaking receives support from the European Union’s
HORIZON 2020 research and innovation programme and
Austria, Denmark, Germany, Finland, Czech Republic, Italy,
Spain, Portugal, Poland, Ireland, Belgium, France, Nether-
lands, United Kingdom, Slovakia, Norway.

REFERENCES

[1] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[2] J. Abrial and S. Hallerstede, “Refinement, decomposition, and
instantiation of discrete models: Application to Event-B,” Fundam.
Inform., vol. 77, no. 1-2, pp. 1–28, 2007. [Online]. Available: http:
//content.iospress.com/articles/fundamenta-informaticae/fi77-1-2-02

[3] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi,
D. Ilic, and T. Latvala, “Supporting reuse in event B development:
Modularisation approach,” in Abstract State Machines, Alloy, B and
Z, Second International Conference, ABZ 2010, Orford, QC, Canada,
February 22-25, 2010. Proceedings, ser. Lecture Notes in Computer
Science, M. Frappier, U. Glässer, S. Khurshid, R. Laleau, and
S. Reeves, Eds., vol. 5977. Springer, 2010, pp. 174–188. [Online].
Available: https://doi.org/10.1007/978-3-642-11811-1 14

[4] M. Poppleton, “The composition of Event-B models,” in Abstract
State Machines, B and Z, First International Conference, ABZ 2008,
London, UK, September 16-18, 2008. Proceedings, ser. Lecture Notes
in Computer Science, E. Börger, M. J. Butler, J. P. Bowen, and P. Boca,
Eds., vol. 5238. Springer, 2008, pp. 209–222. [Online]. Available:
https://doi.org/10.1007/978-3-540-87603-8 17

[5] T. S. Hoang, A. Fürst, and J. Abrial, “Event-B patterns and their tool
support,” Software and System Modeling, vol. 12, no. 2, pp. 229–244,
2013. [Online]. Available: https://doi.org/10.1007/s10270-010-0183-7

[6] R. Silva and M. J. Butler, “Supporting reuse of Event-B developments
through generic instantiation,” in Formal Methods and Software
Engineering, 11th International Conference on Formal Engineering
Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009.
Proceedings, ser. Lecture Notes in Computer Science, K. K. Breitman
and A. Cavalcanti, Eds., vol. 5885. Springer, 2009, pp. 466–484.
[Online]. Available: https://doi.org/10.1007/978-3-642-10373-5 24

[7] T. S. Hoang, “An introduction to the Event-B modelling method,” in
Industrial Deployment of System Engineering Methods. Springer-
Verlag, 2013, pp. 211–236.

[8] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: An open toolset for modelling and reasoning in Event-
B,” Software Tools for Technology Transfer, vol. 12, no. 6, pp. 447–466,
Nov. 2010.

[9] S. Hudon and T. S. Hoang, “Development of control systems
guided by models of their environment,” Electr. Notes Theor.
Comput. Sci., vol. 280, pp. 57–68, 2011. [Online]. Available:
https://doi.org/10.1016/j.entcs.2011.11.018

[10] C. Snook, F. Fritz, and A. Iliasov, “Event-B and Rodin Documentation
Wiki: EMF Framework for Event-B,” http://wiki.event-b.org/index.php/
EMF framework for Event-B, 2009, accessed July 2017.

[11] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, Eclipse
Modeling Framework, 2nd ed., ser. The Eclipse Series. Addison-Wesley
Professional, December 2008.

[12] M. Eysholdt and H. Behrens, “Xtext: Implement Your Language
Faster Than the Quick and Dirty Way,” in Proceedings of the ACM
International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, ser. OOPSLA ’10.
New York, NY, USA: ACM, 2010, pp. 307–309. [Online]. Available:
http://doi.acm.org/10.1145/1869542.1869625

[13] S. Hallerstede and T. S. Hoang, “Refinement of decomposed models by
interface instantiation,” Sci. Comput. Program., vol. 94, pp. 144–163,
2014. [Online]. Available: https://doi.org/10.1016/j.scico.2014.05.005

[14] M. J. Butler and I. Maamria, “Practical theory extension in Event-B,”
in Theories of Programming and Formal Methods - Essays Dedicated
to Jifeng He on the Occasion of His 70th Birthday, ser. Lecture
Notes in Computer Science, Z. Liu, J. Woodcock, and H. Zhu,
Eds., vol. 8051. Springer, 2013, pp. 67–81. [Online]. Available:
https://doi.org/10.1007/978-3-642-39698-4 5

[15] M. Butler, S. Hallerstede, T. S. Hoang, M. Leuschel, and L. Voisin, Eds.,
Proceedings of the Rodin Workshop 2016. University of Southampton,
May 2016.

[16] J. Abrial, The B-book - assigning programs to meanings. Cambridge
University Press, 2005.

[17] A. Requet, “BART: A tool for automatic refinement,” in Abstract
State Machines, B and Z, First International Conference, ABZ 2008,
London, UK, September 16-18, 2008. Proceedings, ser. Lecture Notes
in Computer Science, E. Börger, M. J. Butler, J. P. Bowen, and
P. Boca, Eds., vol. 5238. Springer, 2008, p. 345. [Online]. Available:
https://doi.org/10.1007/978-3-540-87603-8 33

[18] A. Fürst, T. S. Hoang, D. A. Basin, N. Sato, and K. Miyazaki, “Large-
scale system development using abstract data types and refinement,”
Sci. Comput. Program., vol. 131, pp. 59–75, 2016. [Online]. Available:
https://doi.org/10.1016/j.scico.2016.04.010

[19] The Enable-S3 Consortium, “Enable-S3 European project,” 2016, www.
enable-s3.eu.

[20] K. Reichl, “RailGround model on github,” 2016, https://github.com/
klar42/railground/ (Accessed 20/04/2017).

[21] E. Börger, M. J. Butler, J. P. Bowen, and P. Boca, Eds., Abstract
State Machines, B and Z, First International Conference, ABZ 2008,
London, UK, September 16-18, 2008. Proceedings, ser. Lecture Notes
in Computer Science, vol. 5238. Springer, 2008. [Online]. Available:
https://doi.org/10.1007/978-3-540-87603-8

http://content.iospress.com/articles/fundamenta-informaticae/fi77-1-2-02
http://content.iospress.com/articles/fundamenta-informaticae/fi77-1-2-02
https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1007/978-3-540-87603-8_17
https://doi.org/10.1007/s10270-010-0183-7
https://doi.org/10.1007/978-3-642-10373-5_24
https://doi.org/10.1016/j.entcs.2011.11.018
http://wiki.event-b.org/index.php/EMF_framework_for_Event-B
http://wiki.event-b.org/index.php/EMF_framework_for_Event-B
http://doi.acm.org/10.1145/1869542.1869625
https://doi.org/10.1016/j.scico.2014.05.005
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-540-87603-8_33
https://doi.org/10.1016/j.scico.2016.04.010
www.enable-s3.eu
www.enable-s3.eu
https://github.com/klar42/railground/
https://github.com/klar42/railground/
https://doi.org/10.1007/978-3-540-87603-8

	Introduction
	Background
	A Composition Mechanism for Refinement-based Development
	Machine Inclusion
	Machine Inclusion and Refinement

	Example. Controlling Cars on a Bridge
	Description
	Model of A Sensor
	Model of A Traffic Light
	Controlling Cars System Model using Machine Inclusion
	Car_m0 – Cars on the Bridge and the Island
	Car_m1 – Sensors for Cars Entering the Bridge
	Car_m2 – Traffic lights
	Car_m3 – Counting the Cars on the Bridge
	Car_m4 – Sensors controller
	Car_m5 – Sensors Controller
	Car_m6 – Traffic Light Controller
	Car_m7 – Refine Traffic Light Controller

	Summary

	Implementation
	Correctness
	Conclusion
	Related Work
	Future Work

	References

