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Abstract

Construction of simultaneous confidence sets for several effective doses currently relies on in-
verting the Scheffé type simultaneous confidence band, which is known to be conservative. We
develop novel methodology to make the simultaneous coverage closer to its nominal level, for
both two-sided and one-sided simultaneous confidence sets. Our approach is shown to be consid-
erably less conservative than the current method, and is illustrated with an example on modeling
the effect of smoking status and serum triglyceride level on the probability of the recurrence of
a myocardial infarction.

Keywords

Logistic Regression, Effective Dose, Simultaneous Confidence Band, Simultaneous Inference,
Inverse Dose Response Curve

1 Introduction

Logistic regression has wide applications in dichotomous response studies, relating various stimuli
to the probability of observing a response in a subject; see its application to medicine and biology
statistics in Finney (1971), to quantitative risk and hazard assessment in Piegorsch et al. (2005)
and Peng et al. (2015), and to drug dose response curves in Carter et al. (1986) and Bretz et al.
(2008). A key goal in any such study is to identify the stimulus, usually the dose of a substance,
needed to elicit a particular probability of response in a subject based on the logistic model,
known as the Effective Dose (ED) or Lethal Dose.

Construction of confidence sets for a single ED is well studied. The two most notable
methods are due to Fieller (1954) and Cox (1990). Construction methods for confidence sets
for multidimensional single EDs are provided, for example, by Li, Zhang, Nordheim & Lehner
(2008) in a Bayesian framework, and by Li et al. (2010) and Li & Wong (2011) using asymptotic
theory and bootstrap methods. However, it is often of interest to identify multiple EDs at once.
For example when looking to identify a minimal effective dose and maximum safe dose, or when
information on safe doses for weaning patients off of a drug is warranted. The focus of this
paper is therefore on simultaneous inference, establishing confidence sets for several EDs such
that their simultaneous confidence level is at least some nominal 1− α.

Currently such confidence sets are established by inverting the Scheffé type simultaneous
confidence band (cf. Carter et al. (1986)), but are well noted (cf. Al-Saidy et al. (2003),
Nitcheva et al. (2005), Piegorsch et al. (2005), Li, Nordheim, Zhang & Lehner (2008)) to be
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unduly conservative in terms of simultaneous confidence level. We therefore develop a method
by constructing confidence sets tailored to offer simultaneous coverage for a particular number
of EDs at once, which will be less conservative. Section 3 studies two sided confidence sets,
and in Section 4 we consider one sided confidence sets. We illustrate our methodology, and
demonstrate the improvement, with a real data example in Section 5, where we find simultaneous
confidence sets for effective doses of serum triglyceride level for the recurrence of myocardial
infarction. While we develop our approach for the logistic model, it is immediately applicable
to any generalised linear model with an asymptotically normal MLE and arbitrary link function
for the linear predictor. This, and several other possible extensions, are further discussed in
Section 6.

2 Statistical setting

2.1 The Logistic model and the effective dose

Assume a Bernoulli distributed response variable Y , where the probability of observing a success
(Y = 1), p , depends on a vector of q independent explanatory variables x = (x1, . . . , xq)

ᵀ via
the logistic regression model

p(x) =
exp (xᵀβ)

1 + exp (xᵀβ)
(1)

or, equivalently,

π(p(x)) = log

(
p(x)

1− p(x)

)
= xᵀβ (2)

where xᵀ = (1, x1, . . . , xq) = (1, xᵀ) and β = (β0, β1, . . . , βq)
ᵀ is the unknown parameter vector

of interest. Note that to distinguish between the regression vector, x, in the linear predictor
of (1) and a combination of values of the explanatory variables x = (x1, . . . , xq)

ᵀ, the former
is expressed in bold face. In practice, N observations of the response and its corresponding
covariate values, denoted as Yi and xi = (xi1, . . . , xiq)

ᵀ, are used to estimate β by its maximum
likelihood estimator (MLE) β̂. We assume a sufficiently large N so that we have the large sample
asymptotic normality property (cf. Walter (1983), Faraway (2016)),

√
N(β̂ − β)

d−→
N→∞

Nq+1 (0,Σ) ,

where Nq+1 denotes the multivariate normal distribution of dimension q+1. The asymptotic co-
variance matrix Σ can be consistently estimated by NJ−1 where J−1 is the observed covariance
matrix of β̂, which is routinely provided in any statistical software. Therefore, for sufficiently
large N , the unknown Σ can be replaced by the observable NJ−1, and we have the approximate
distributional result

(β̂ − β)
d
≈ Nq+1

(
0,J−1

)
. (3)

Define the effective dose (ED), xp, as the value(s) of the covariates required to elicit a specific
probability of success p,

xp =

{
x : xᵀβ = π(p) = log

(
p

1− p

)}
=

{
x :

exp (xᵀβ)

1 + exp (xᵀβ)
= p

}
. (4)

For a multivariate model (q > 1), the ED is a set of x which satisfies the equation in (4). Li,
Nordheim, Zhang & Lehner (2008) consider the ED for a single covariate xi, conditioned on
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values for the remaining q − 1 covariates, known as the conditioning effective dose (CED). For
example, for given (x∗2, . . . , x

∗
q), the CED is defined as

xCEDp =

{
x∗ = (x1, x

∗
2, . . . , x

∗
q) : x∗ᵀβ = π(p) = log

(
p

1− p

)}
.

Point estimation of the ED or CED can be achieved by plugging in the MLE. It is of greater
interest, however, to establish a confidence region around the true EDs. For a single effective
dose, confidence sets are given in Fieller (1954) and Cox (1990), but they are unsuitable for
simultaneous inference.

2.2 The Scheffé Band method

For simultaneous inference, Brand et al. (1973) consider regression models that have only one
covariate. This is extended in Walter (1983) to the case of several covariates. Under the
asymptotic distribution (3), one can construct (see, e.g., Carter et al. (1986)) a (1 − α)-level
Scheffé type simultaneous confidence band for the logistic regression line of the form

π(p(x)) = xᵀβ ∈ xᵀβ̂ ±
√
χαq+1

√
xᵀJ−1x ∀ x ∈ Rq (5)

where the critical constant c =
√
χαq+1 is set to guarantee that

P
{
xᵀβ ∈ xᵀβ̂ ±

√
χαq+1

√
xᵀJ−1x ∀ x ∈ Rq

}
= 1− α.

An equivalent (1− α)-confidence band for p(x) is then given by

p(x) ∈
exp

(
xᵀβ̂ ±

√
χαq+1

√
xᵀJ−1x

)

1 + exp
(
xᵀβ̂ ±

√
χαq+1

√
xᵀJ−1x

) ∀ x ∈ Rq. (6)

Originally considered by Scheffé (1953), for a normal-error linear model, any candidate for the
true logistic model xᵀβ may be considered plausible only if it lies fully within the band over all
x ∈ Rq.

One may construct simultaneous confidence sets for the EDs or CEDs from either (5) or (6)
by inverting the confidence band at a particular value of π(p) (or equivalently p). Specifically
we define the confidence set, for a particular value of p, as

Cp =
{
x : π(p) ∈ xᵀβ̂ ±

√
χαq+1

√
xᵀJ−1x

}
=

{
x :
|xᵀβ̂ − π(p)|√
xᵀJ−1x

<
√
χαq+1

}
. (7)

By definition Cp contains all such x that the Scheffé type confidence band at x includes π(p).
We refer to this as the Scheffé Band method. It can be shown that the simultaneous coverage
probability of any k effective doses xpi lying in the corresponding Cpi for i = 1, . . . , k is at least
1− α in the following way:
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P {xpi ∈ Cpi for i = 1, . . . , k}

=P




|(xpi)ᵀβ̂ − π(pi)|√

(xpi)
ᵀJ−1xpi

<
√
χαp+1 for i = 1, . . . , k





≥P




|(xp)ᵀ(β̂ − β)|√

(xp)ᵀJ−1xp

<
√
χαp+1 ∀p ∈ (0, 1)



 (8)

=P

{
|xᵀ(β̂ − β)|√
xᵀJ−1x

<
√
χαq+1 ∀x ∈ Rq

}
(9)

=P
{
xᵀβ ∈ xᵀβ̂ ±

√
χαp+1

√
xᵀJ−1x ∀ x ∈ Rq

}
= 1− α.

Here the inequality in (8) occurs since (xpi)
ᵀβ = π(pi), and the equality in (9) is formed

because the set of all effective doses is the same as the set of all x ∈ Rq. Consequently we must
have P {xpi ∈ Cpi for i = 1, . . . , k} ≥ 1−α. Clearly these confidence sets rely on the asymptotic
distribution in (3); coverage accuracy will depend on the closeness of the distribution of β̂ to the
normal. It is worth emphasizing that all our analytical results become exact if the distributional
assumption in (3) is exact.

Note that we are guaranteed at least the nominal coverage 1 − α regardless of the choice
of k. However, from the proof above, exact simultaneous coverage 1 − α is only possible when
sets are sought for every effective dose at once. Thus for a small k, coverage tends to be
significantly larger than 1−α. A simulation study conducted in Li, Nordheim, Zhang & Lehner
(2008) showed that, for small k, coverage sometimes can be much larger than 1−α. This is also
indicated by the studies in Al-Saidy et al. (2003), Piegorsch et al. (2005) and Nitcheva et al.
(2005).

In this paper we therefore propose the following adaptation. We construct confidence sets
of the form in (7) but where the critical constant c is set so that the minimal simultaneous
coverage is guaranteed for a pre-specified number, k, of effective doses. By construction, these
confidence sets will have closer to nominal confidence level than currently possible.

3 Two-sided simultaneous confidence sets for k effective doses

In this section we establish simultaneous confidence sets of the same form as in (7)

Cp =

{
x :
|xᵀβ̂ − π(p)|√
xᵀJ−1x

< c

}
, (10)

where the critical constant c is suitably chosen so that the simultaneous coverage of the Cpi ’s
(i = 1, · · · , k) for a given value of k is at least 1 − α. For the case k = 2 our result is for a
multivariate model (i.e. q ≥ 1). For k ≥ 3, our result is for a univariate model with q = 1.
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3.1 Simultaneous confidence sets for k = 2 effective doses

We begin with the simplest situation to construct a confidence set of the form in (10) for k = 2.
In this case, c is chosen such that for any two effective doses xp1 and xp2 we have

P {xpi ∈ Cpi for i = 1, 2} ≥ 1− α. (11)

To find the smallest value of c satisfying (11), it is sufficient to find the two effective doses xp1
and xp2 that minimise the probability in (11), for any value of β ∈ Rq+1 or c > 0, that is

min
xp1 , xp2

P {xpi ∈ Cpi for i = 1, 2} ∀β ∈ Rq+1.

The value of c is then set to satisfy

min
xp1 , xp2

P {xpi ∈ Cpi for i = 1, 2} = 1− α.

Note that

P {xpi ∈ Cpi for i = 1, 2} = P




|(xpi)ᵀ(β̂ − β)|√

(xpi)
ᵀJ−1xpi

< c; i = 1, 2



 = P {|Zi| < c; i = 1, 2} ,

where Zi =
(xpi

)ᵀ(β̂−β)√
(xpi

)ᵀJ−1xpi

is a standard normal variable due to (3). It follows immediately from

Sidak’s Inequality (cf. Hsu (1996)) that

min
xp1 , xp2

P {xpi ∈ Cpi for i = 1, 2} = (P {|Zi| < c})2 ,

provided there exists xp1 and xp2 for which

Cov(Z1,Z2) =
(xp1)ᵀJ−1xp2√

(xp1)ᵀJ−1xp1

√
(xp2)ᵀJ−1xp2

= 0,

i.e. (xp1)ᵀJ−1xp2 = 0. Since we allow the effective doses xp1 and xp2 to lie over the whole real
space, there must exist xp1 and xp2 such that (xp1)ᵀJ−1xp2 = 0. Therefore c is set to satisfy
{P {|Zi| < c}}2 = 1 − α and so c = z(

1− 1−
√
1−α
2

), where zγ is the γth quantile of the standard

normal distribution.

3.2 Simultaneous confidence sets for k(≥ 3) effective doses

Note that q = 1 in this case. We construct confidence sets of the same form as in (10) for a
univariate logistic model (q = 1), where now c is chosen so that for a specific k ≥ 3

min
−∞<xp1 , ..., xpk<∞

P {xpi ∈ Cpi for i = 1, . . . , k} = 1− α, (12)

where −∞ < xpi < ∞ ∀i = 1, . . . , k. We note that the method for k = 2 relies on the
independence of the two Zk, which cannot be achieved, however, for k ≥ 3. Let P 2 = J−1 and

5



let N = P−1(β̂ − β) ∼ N(0, I2) due to (3). Note that we may write

P {xpi ∈ Cpi for i = 1, . . . , k}

=P




|(xpi)ᵀ(β̂ − β)|√

(xpi)
ᵀJ−1xpi

< c for i = 1, . . . , k





=P





∣∣∣∣
{
P

(
1
xpi

)}ᵀ
N

∣∣∣∣
∥∥∥∥P

(
1
xpi

)∥∥∥∥
< c for i = 1, . . . , k





=P{N ∈ V(xpi) for i = 1, . . . , k} = P{N ∈ Vk}

where

V(xp) =




N :

∣∣∣∣
{
P

(
1
xp

)}ᵀ
N

∣∣∣∣
∥∥∥∥P

(
1
xp

)∥∥∥∥
< c





is the region given in the N = (n1, n2)
ᵀ-plane by the stripe bounded by the two parallel lines

that are perpendicular to the directional vector P

(
1
xp

)
= Pxp and c distance from the origin,

and Vk = ∩ki=1V(xpi) is a 2k-sided polygonal region, depicted in Figure 1 for k = 4. Figure 1
(and also Figures 2, 3 and 5) have been created using the Ipe software http://ipe.otfried.org/.

Denote the angle between any two directional vectors Pxpi and Pxpj by θij as shown in
Figure 1. It is clear from Figure 1 that P{N ∈ Vk} is equal to the probability of N in the
parallelogram region ABCD less twice the probability of N in the upper right shaded region.
Manipulation similar to Liu (2010) (pages 36-39) gives that P{N ∈ Vk} can be expressed as

1

π

{∫ θ1k
2

θ1k−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ π−θ1k
2

−θ1k
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

− 2

k−1∑

i=2

∫ c

l3(i)
φ(n2)

[
Φ

(
−n2cot(θ(i−1)k) +

c

sin(θ(i−1)k)

)

− Φ

(
−n2cot(θ(i−1)i) +

c

sin(θ(i−1)i)

)]
dn2 (13)

with l3(i) =
c(sin(θ(i−1)k)−sin(θ(i−1)i))

sin(θ(i−1)k−θ(i−1)i)
. This is possible since the probability of N ∈ Vk is rotation

invariant at the origin and therefore for arbitrary xpi we may assume without loss of generality
that the vectors Pxpi are always arranged as in Figure 1.

The expression in (13) clearly depends on the k effective doses through the angles θij . For
−∞ < xpi <∞ we have that 0 ≤ θij ≤ π. Therefore it is sufficient to minimise the expression in
(13) with respect to the θij under the condition that 0 ≤ θij ≤ π. This is given by the following
theorem.
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n1

n2

P

(
1

xλ1

)

P

(
1

xλ2

)

c

c

c

P

(
1

xλ4

)

P

(
1

xλ3

)

c

θ12 θ23
θ34

θ14

θ13

θ24

A B

CD

Figure 1: The region V4, as the parallelogram ABCD less the four grey shaded regions.

Theorem 1. The probability P{N ∈ Vk} is minimised with respect to the θij when Vk takes a

regular 2k-sided polygonal shape, that is when θij = (j−i)π
k for all 1 ≤ i ≤ j ≤ k .

The proof of Theorem 1 hinges on the following result.

Lemma 1. Suppose that k−1 directional vectors Pxpi are fixed, and only one Pxpj is allowed
to vary between adjacent Pxpj−1 and Pxpj+1. Then P{N ∈ Vk} is minimised when Pxpj lies
halfway between Pxpj−1 and Pxpj+1.

The proof of Lemma 1 is given in the appendix, and the proof of Theorem 1 is then immediate
by the following argument. Note that the essence of Lemma 1 is we may choose any three
adjacent directions available and always improve P{N ∈ Vk} by setting the middle direction
halfway in between the other two. Therefore one cannot reduce the probability further only
when all 2k directions lie equally spaced from each other, which occurs when θij = (j−i)π

k as
given by Theorem 1.

Therefore the value of c which satisfies (12) can be solved numerically from P{N ∈ Vk} =

1− α using the expression in (13) with θij = (j−i)π
k .

4 One-sided simultaneous confidence sets for k effective doses

Often the focus in effective dose problems is to find a worst or best case scenario, that is, the
smallest or largest plausible candidate for the ED. In this case upper or lower one-sided confi-
dence sets are more informative. These are easily constructed (cf. Deutsch & Piegorsch (2012))
by inverting the upper or lower one sided simultaneous confidence bands. In this section we
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adapt the methods of Section 3 to construct one sided confidence sets having 1−α simultaneous
coverage for a specific k. We focus again on the case q = 1.

4.1 Simultaneous one-sided sets for k = 2 effective doses

We construct a lower one-sided confidence set of the form

C−p =

{
x :
xᵀβ̂ − π(p)√
xᵀJ−1x

< c

}
, (14)

and want to find the critical constant c so that

min
xp1 ,xp2

P
{
xpi ∈ C−pi for i = 1, 2

}
= 1− α.

Similar to the two-sided case we have

P
{
xpi ∈ C−pi for i = 1, 2

}
= P{N ∈ V−2 }

withV−2 ≡ V(xp1)− ∩ V(xp2)− where

V(xp)
− =




N :

{
P

(
1
xp

)}ᵀ
N

∥∥∥∥P
(

1
xp

)∥∥∥∥
< c





is a region in the N -plane, which includes the origin and is bounded by the line perpendicular
to Pxp with distance c from the origin in the direction of Pxp. Again, V−2 is rotation invariant
around the origin. Thus it may be represented as in Figure 2 with the angle between the two
direction vectors denoted by θ3.

Similar to the two-sided case, one can show by using manipulation similar to Liu (2010) that
P{N ∈ V−2 } can be expressed as

1

2π

{∫ π
2

− θ3
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ θ3
2

−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}
+
π − θ3

2π
. (15)

Again, this expression depends on the effective doses through the angle θ3. If we allow the
effective doses to lie over the whole real line, it is sufficient to minimise this expression with
respect to 0 < θ3 ≤ π, which is given by Lemma 2.

Lemma 2. Expression (15) is minimised with respect to 0 < θ3 ≤ π at θ3 = π.

Proof. We calculate the derivative of expression (15) with respect to θ3 to get

1

2π

{∫ π
2

− θ3
2

d

dθ3

(
1− exp

{
− c2

2cos(θ)2

})
dθ − (−1

2
)

(
1− exp

{
− c2

2cos(− θ3
2 )2

})}

+
1

2π

{∫ θ3
2

−π
2

d

dθ3

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

1

2

(
1− exp

{
− c2

2cos( θ32 )2

})}
− 1

2π

=
1

2π

{
1− exp

{
− c2

2cos( θ32 )2

}
− 1

}
= − 1

2π
exp

{
− c2

2cos( θ32 )2

}
(16)
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n1

n2

P

(
1

xλ1

)

P

(
1

xλ3

)θ3

B

ξ1

c

cθ3 +
π
2

Figure 2: The region V−2

as a result of cosine being an even function and the Leibniz integral rule. It is clear from (16)
that the derivative is negative for all θ3. Hence (15) is a monotonically decreasing function of
0 < θ3 ≤ π, and is therefore minimised in θ3 = π as required.

Note that P{N ∈ V−2 } at θ3 = π is equal to the probability thatN lies in the region bounded
by the two lines parallel to the n2 axis with distance c from the origin in the direction of the n1
axis. Therefore we have

min
xp1 , xp2

P{N ∈ V−2 } = P{−c ≤ n1 ≤ c,−∞ ≤ n2 ≤ ∞} = P{−c ≤ n1 ≤ c}.

Since n1 has a univariate normal distribution it is clear that c = z(1−α2 ).

4.2 Simultaneous one-sided sets for k(≥ 3) effective doses

For the general k ≥ 3 case we want to find the value of c such that

min
xp1 , ..., xpk

P
{
xpi ∈ C−pi for i = 1, . . . , k

}
= 1− α. (17)

It is clear that we may write

P
{
xpi ∈ C−pi for i = 1, . . . , k

}
= P{N ∈ V−k }

where V−k = ∩ki=1V(xpi)
−. By rotational invariance, V−k may always take the form as shown in

Figure 3, with the largest angle between any two directional vectors being θ1k.
Following Liu (2010) (pages 41-44), we can show that P{N ∈ V−k } can be expressed as
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n1

n2

P

(
1

xλ1

)

P

(
1

xλ2

)

c

c

c

P

(
1

xλ4

)

P

(
1

xλ3

)

c

θ12 θ23
θ34

θ14

θ13

θ24

A B

CD

Figure 3: The region V−4 , expressed as the region bounded above by lines A and C, and the
intercept B, less the grey shaded regions.

1

2π

{∫ π
2

− θ1k
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ θ1k
2

−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

+
π − θ1k

2π
−
k−1∑

i=2

∫ c

l3

φ(n2)

[
Φ

(
−n2cot(θ(i−1)k) +

c

sin(θ(i−1)k)

)

−Φ

(
−n2cot(θ(i−1)i) +

c

sin(θ(i−1)i)

)]
dn2. (18)

As in the two-sided case, it is sufficient to minimise expression (18) with respect to 0 ≤ θij ≤
π, which is given by the following theorem.

Theorem 2. Let θik be the largest angle between all the Pxpis which is spanned by Pxp1 and
Pxpk, as depicted in Figure 3. Furthermore, allow these two vectors, and therefore θik, to be
fixed. Then the expression of P{N ∈ V−k } in (18) is minimised , when Pxp2 , . . . ,Pxpk−1 are
allowed to vary freely between Pxp1 and Pxpk, at the configuration that the angle between two
adjacent vectors Pxpj and Pxpj+1 is equal to θ1k

k for all j = 1, . . . , k − 1.

Proof. We note that if θ1k is fixed and say only Pxp2 is allowed to change between the two
adjacent Pxp1 and Pxp3 , then P{N ∈ V−k } is equal to the probability of N in the region
RABC bounded by the half lines BA and BC subtracting the probability of N in the grey
shaded regions, as depicted in Figure 3. When Pxp2 changes between Pxp1 and Pxp3 , the
probability of N in RABC does not change, only the probability of lying in the grey shaded
region, which is the same as in the two-sided case depicted in Figure 1. Therefore Lemma 1
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applies and P{N ∈ V−k } is minimised when Pxp2 is halfway between Pxp1 and Pxp3 . The
theorem then follows from repeated applications of Lemma 1 on Pxp2 . . .Pxpk−1 .

To find the minimum probability in (17), we still need to minimise P{N ∈ V−k } in (18)

with respect to θ1k ∈ (0, π], with θj(j+1) = θ1k
k for all j = 1, . . . , k − 1. While we are unable

to establish any analytical result, this minimisation can easily be done numerically since only
a one-variable search is involved. Hence the minimum probability in (17) for a given c can be
easily computed using Theorem 2 and a one-variable numeric search. By using the bisection
method or other search algorithm on c, combined with a numeric search for the minimum at
each step, the c which sets the minimum probability in (17) to 1− α can be computed quickly
and accurately.

4.3 A note on upper one-sided confidence sets

Suppose we look for an equivalent upper one-sided confidence set, formed from a lower one sided
confidence band of the form

C+
p =



x :

−
(
xᵀβ̂ − π(p)

)

√
xᵀJ−1x

< c



 . (19)

Once again we may set

P
{
xpi ∈ C+

pi for i = 1, . . . , k
}

= P{N ∈ V+
k },

where V+
k = ∩ki=1V(xpi)

+ and

V(xp)
+ =




N :

{
−P

(
1
xp

)}ᵀ
N

∥∥∥∥P
(

1
xp

)∥∥∥∥
< c




.

It is immediate that
P{N ∈ V+

k } = P{N ∈ V−k }

by rotational invariance. Therefore the required c is the same as the c for the lower one-sided
confidence sets.

5 Illustration

5.1 Values of c and comparison

In this section we compare the simultaneous confidence sets obtained by the Scheffé band
method (S) to the two-sided confidence sets (AS2) of Section 3 and the upper one-sided con-
fidence sets (AS1) of Section 4. We have computed the critical constants c for AS2, AS1 and
S for k = 2, 3 and 4 in Table 1 below. Source code (files: “c values AS2.R” and “c values
AS1.R”) to reproduce the results is available as Supporting Information on the journal’s web
page (http://onlinelibrary.wiley.com/doi/xxx/suppinfo).
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Table 1: Values of c for AS2, AS1 and S simultaneous confidence sets

AS2 AS1 S for q = 1 S for q = 2

k 1− α c
√
χα2

√
χα3

0.99 2.806225 2.575829 3.034854 3.368214
2 0.95 2.236477 1.96 2.447747 2.795483

0.90 1.948822 1.644854 2.145966 2.500278

0.99 2.913494 2.712313 3.034854 3.368214
3 0.95 2.343701 2.123498 2.447747 2.795483

0.90 2.052293 1.823565 2.145966 2.500278

0.99 2.962385 2.787521 3.034854 3.368214
4 0.95 2.38728 2.19572 2.447747 2.795483

0.90 2.092173 1.89069 2.145966 2.500278

The relative size of each confidence set may be directly compared by the size of c. In each
case a smaller c indicates a smaller confidence set or bound. Thus the relative improvement over
S type confidence sets at level 1− α is

∣∣∣∣∣

√
χαq+1 − c√
χαq+1

∣∣∣∣∣ ∗ 100.

Table 1 shows a clear reduction in the size of c by the new confidence sets proposed in this
paper. For α = 0.05 and q = 1, AS2 shows a relative improvement of 8.6%, 4.25% and 2.5%
for k = 2, 3 and 4 respectively. For AS1 the corresponding improvements are 19.9%, 13.2% and
10.3%. AS2 for k = 2 can be used for multivariate models with q ≥ 2. For q = 2 there is a
significant jump in improvement, to approximately 23%.

5.2 Application to Myocardial Infarction data

To illustrate the benefits of our new methodology, we consider a real data example. The Ontario
Exercise Heart Collaborative Study (Walter 1983) recorded data from 341 patients and measured
the recurrence of a Myocardial Infarction (MI) over a four year period. Logistic analysis is
performed on the recurrence of MI with respect to smoking status (x1) and serum triglyceride
level (x2). The model gave results

β̂ = (−2.2791, 0.7682, 0.001952)ᵀ, J−1 =




0.06511
−0.04828 0.09839
−0.0001915 −0.00003572 0.000002586


 .

We construct simultaneous confidence sets for the CEDs of serum triglyceride level for non
smokers (x1 = 0), at α = 0.05, for k = 2 when interest is in any two of the three CEDs for
p = 0.4, 0.5 and 0.6, using the S and AS2 methods for k = 2. Hence the values of the critical
constant c are c = 2.236 and c = 2.448 for the AS2 and the S method, respectively. To construct
Cp for xp (or xCEDp ) with critical constant c, the lower bound is the value of x (or x∗ for the
CED) that solves

p−




exp
(
xᵀβ̂ + c

√
xᵀJ−1x

)

1 + exp
(
xᵀβ̂ + c

√
xᵀJ−1x

)


 = 0,
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and the upper bound solves

p−




exp
(
xᵀβ̂ − c

√
xᵀJ−1x

)

1 + exp
(
xᵀβ̂ − c

√
xᵀJ−1x

)


 = 0.

In this case we set x∗ = (0, x2) to establish the appropriate CED and the confidence sets are
shown in Table 2 below, and illustrated in Figure 4. Source code (file: “Case Study Heart
Exercise.R”) to reproduce the results is available as Supporting Information on the journal’s
web page (http://onlinelibrary.wiley.com/doi/xxx/suppinfo). The code will recreate Figure 4,
and generate the lower bound values for AS2 and S type bands in Table 2.

Table 2: Cp for the S type, and AS2 type sets for k = 2

AS2 for k = 2 S

p Lower Upper Lower Upper

0.4 364.9 ∞ 315.9 ∞
0.5 442 ∞ 384 ∞
0.6 517.8 ∞ 450.4 ∞

It is clear from Table 2 that the AS2 method demonstrates a noticeable improvement over
the original S method.

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

Serum Triglyceride

p

Regression
AS2 For k=2
S For k=2

Figure 4: The confidence bands for the S and AS2 methods for k = 2 at x1 = 0, for the Heart
Exercise Data.

Figure 4 shows the Scheffé and the AS2 confidence bands for p as a function of the serum
triglyceride level, and illustrates the construction of the confidence set for the effective level x0.4,

13



i.e. the level with expected response rate p = 0.4. From the intersection of the horizontal line
at p = 0.4 with the respective upper confidence band, we move vertically to the x-axis. The
level of serum triglyceride corresponding to this point is the lower bound of the confidence set
for x0.4.

We see that the confidence band that generates Cp, for AS2 sets, clearly has a significantly
smaller average width over the whole range than the simultaneous confidence band of the S
method. This results in smaller confidence sets, as demonstrated by Table 2, in which the sets
constructed from the AS2 method have an improved lower bound of around 50-70 units. There
is no upper bound as a result of the shape of the logistic curve. In fact, it is well known (cf.
Fieller (1954)) that Cp is not guaranteed to be a closed or even a single interval.

6 Discussion

We have proposed a new method to construct improved simultaneous confidence sets on effec-
tive doses, and have demonstrated that our approach shows notable reductions in the size of
simultaneous confidence sets. AS2 sets for k ≥ 3 may exhibit only a small improvement for
q = 1. However, for k = 2, AS2 confidence sets may be obtained for multivariate models and
show significant improvement, particularly for large values of q. As such, AS2 sets offer excellent
utility in minimum and maximum effective dose problems. AS1 sets show a further and more
significant reduction in the size of the appropriate bound than the equivalent AS2 set as expected
including for k = 2. Establishing AS2 and AS1 sets at k > 2 for a multivariate model represents
a significant challenge, however since many challenging practical models involve multivariate
regression, there exists motivation for further study on this subject.

Though the focus of this paper is on logistic regression, the methods described here require
only that there exists a regression line of the form xᵀβ̂ = f(p(x)) with f() being some link
function and an approximately normal β̂ with some covariance matrix J−1. The simultaneous
confidence sets considered in this paper immediately extend to the probit model, log logistic or
even the Weibull models such as those described in Buckley & Piegorsch (2008) and Deutsch &
Piegorsch (2012). Indeed these methods also extend to the normal linear regression model in
which the unknown variance σ2 needs to be estimated too. We look to apply the AS methods
to a practical study of different models as further work.

A further interesting topic for future research will be to investigate simultaneous confidence
sets for several EDs or CEDS when the covariates are constrained to some bounded region, e.g.
the dose of a drug may have an upper limit for safety reasons.

Acknowledgements: The authors would like to thank the Editor, the Associate Editor
and the two reviewers, whose insightful suggestions have led to a considerable improvement of
an earlier version of this paper.

The authors have declared no conflict of interest.
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7 Appendix

Proof of Lemma 1

To prove Lemma 1, we will first focus on the case k = 3. Denote the angle between Pxp1
and Pxp2 as θ1 and the angle between Pxp1 and Pxp3 as θ3 as shown in Figure 5. It is then
immediate from (13) that P{N ∈ V3} is equal to

1

π

{∫ θ3/2

(θ3−π)/2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ (π−θ3)/2

−θ3/2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

−2

∫ c

l
φ(n2)

[
Φ

(
−n2cot(θ3) +

c

sin(θ3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2 (20)

where l = c(sin(θ3)−sin(θ1))
sin(θ3−θ1) . As a next step, we will show that for fixed value of θ3, the minimum

in (20) is attained at θ1 = θ3/2; see Lemma 3 below.

Lemma 3. For given 0 < θ∗3 ≤ π the probability in Equation (20) is minimised with respect to

θ1 ∈ (0, θ∗3), when θ1 =
θ∗3
2 .

Proof of Lemma 3

Note that the probability of N lying in the parallelogram ABCD depends on θ3 but not θ1. As
a result, with a fixed value of θ3, Equation (20) varies only with the probability of lying in the
grey shaded region (see Figure 5).

n1

n2

P

(
1

xλ1

)

P

(
1

xλ2

)

P

(
1

xλ3

)

c

c

c

θ1
θ2

θ3

A B

CD

Figure 5: An expression of the region V3
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It is therefore clear that to prove Lemma 3 is is sufficient to find θ1 ∈ (0, θ∗3) which maximises
the expression

∫ c

c(sin(θ∗3)−sin(θ1))

sin(θ∗3−θ1)

φ(n2)

[
Φ

(
−n2cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2. (21)

This is done in two steps, Result 1 and Result 2, which are proven at the end of the Appendix:

Result 1. The differential of the expression (21) with respect to θ1 is given by

1√
2π

exp

{
−c

2

2

}
φ
(
c− ccos(θ1)
sin(θ1)

)
− φ




c(sin(θ∗3)−sin(θ1))
sin(θ∗3−θ1)

− ccos(θ1)
sin(θ1)




 . (22)

Result 2. As a function of θ1 ∈ (0, θ∗3) with θ∗3 < π, the expression (22), denoted D(θ1), has

only one zero point at θ1 =
θ∗3
2 . Furthermore, D(θ1) > 0 for θ1 ∈ (0,

θ∗3
2 ) and D(θ1) < 0 for

θ1 ∈ (
θ∗3
2 , θ3).

Lemma 3 follows now immediately from Result 2, which tells us that the point θ1 =
θ∗3
2 is a

maximum point of (21), and subsequently, (20) is also minimized at the stationary point for a
fixed θ3. �

We may now prove Lemma 1. Form Vk as the intersection of V(xpj−1) and V(xpj+1) less the
remaining k − 2 regions of the form P

{
N ∈ V(xpj−1) ∩ V(xpj+1) ∩ Vc(xpi)

}
; i 6= j − 1, j + 1. If

only Pxpj can vary then the probability of N in Vk depends only on the grey shaded region
P
{
N ∈ V(xpj−1) ∩ V(xpj+1) ∩ Vc(xpj )

}
. By rotational invariance this is equivalent to the region

in (21) with θj−1,j+1 = θ3, and the proof is then immediate from the proof of Lemma 3. �

Proof of Result 1

Let

φ(n2)

[
Φ

(
−n2cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
= g(n2, θ1)

and l3(θ1) = c(sin(θ3)−sin(θ1))
sin(θ3−θ1) . Applying the Leibniz integral rule to the differential of (21) yields

d

dθ1

∫ c

l3(θ1)
g(n2, θ1)dn2 =

∫ c

l3(θ1)

dg(n2, θ1)

dθ1
dn2 − g(l3, θ1)

dl3(θ1)

dθ1
.

Further noting that

g(l3, θ1) = φ(l3)

[
Φ

(
−l3cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−l3cot(θ1) +

c

sin(θ1)

)]
= 0,
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the differential of (21) becomes
∫ c

l3

d

dθ1
φ(n2)

[
Φ

(
−n2cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2

=

∫ c

l3

d

dθ1
φ(n2)Φ

(
−n2cot(θ∗3) +

c

sin(θ∗3)

)
dn2

−
∫ c

l3

d

dθ1
φ(n2)Φ

(
−n2cot(θ1) +

c

sin(θ1)

)
dn2

=−
∫ c

l3

d

dθ1
φ(n2)Φ

(
−n2cot(θ1) +

c

sin(θ1)

)
dn2

=

∫ c

l3

φ(n2)φ

(
−n2cot(θ1) +

c

sin(θ1)

)[
c(cos(θ1))− n2

sin(θ1)2

]
dn2. (23)

Through manipulation involving the normal pdf, we have

φ(n2)φ

(
−n2cot(θ1) +

c

sin(θ1)

)
=

1

2π
exp

{
−n

2
2

2
−

(−n2cot(θ1) + c
sin(θ1)

)2

2

}

=
1√
2π

exp

{
−c

2

2

}
φ(z)

where z = n2−ccos(θ1)
sin(θ1)

and φ(z) is the standard normal pdf for z. Hence (23) becomes

∫ c

l3

1√
2π

exp

{
−c

2

2

}[
c(cos(θ1))− n2

sin(θ1)2

]
φ(z)dn2

=

∫ c

l3

ccos(θ1)

sin(θ1)2
√

2π
exp

{
−c

2

2

}
φ(z)dn2 −

∫ c

l3

n2

sin(θ1)2
√

2π
exp

{
−c

2

2

}
φ(z)dn2. (24)

(24) consists of two terms, which we evaluate individually. For the first term we change the
variable of integration to z, noting that dz/dn2 = 1/sin(θ1), which gives

∫ c

l3

ccos(θ1)

sin(θ1)2
√

2π
exp

{
−c

2

2

}
φ(z)dn2 =

∫ c−ccos(θ1)
sin(θ1)

l3−ccos(θ1)
sin(θ1)

ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
φ(z)dz

=

[
ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(z)

]t1

t2

=
ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
[Φ(t1)− Φ(t2)] (25)

where t1 = c−ccos(θ1)
sin(θ1)

and t2 = l3−ccos(θ1)
sin(θ1)

. For the second term, we apply integration by parts to
give

∫ c

l3

n2

sin(θ1)2
√

2π
exp

{
−c

2

2

}
φ(z)dn2

=

[
n2

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(z)

]c

l3

−
∫ c

l3

1

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(z)dn2

=
1

sin(θ1)
√

2π
exp

{
−c

2

2

}
[n2Φ(z)]cl3 −

1√
2π

exp

{
−c

2

2

}∫ t1

t2

Φ(z)dz

=
1

sin(θ1)
√

2π
exp

{
−c

2

2

}
[n2Φ(z)]cl3 −

1√
2π

exp

{
−c

2

2

}
[zΦ(z) + φ(z)]t1t2 (26)
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where the result
∫ t1
t2

Φ(z)dz = [zΦ(z) + φ(z)]t1t2 is an immediate consequence of integration by
parts used in Ng & Murray (1969) (Section 4.1, Result 1). By using the two expressions (25)
and (26) above, (24) can be expressed as

ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
[Φ(z)]t1t2 −

1

sin(θ1)
√

2π
exp

{
−c

2

2

}
[n2Φ(z)]cl3

+
1√
2π

exp

{
−c

2

2

}
[zΦ(z) + φ(z)]t1t2

=

[(
ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(t1)

)
−
(

ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(t2)

)]

−
[(

c

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(t1)

)
−
(

l3

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(t2)

)]

+

[(
t1√
2π

exp

{
−c

2

2

}
Φ(t1)

)
−
(

t2√
2π

exp

{
−c

2

2

}
Φ(t2)

)]

+

[(
1√
2π

exp

{
−c

2

2

}
φ(t1)

)
−
(

1√
2π

exp

{
−c

2

2

}
φ(t2)

)]

=
1√
2π

exp

{
−c

2

2

}
[φ(t1)− φ(t2)]

=
1√
2π

exp

{
−c

2

2

}
φ
(
c− ccos(θ1)
sin(θ1)

)
− φ




c(sin(θ∗3)−sin(θ1))
sin(θ∗3−θ1)

− ccos(θ1)
sin(θ1)






as required. �

Proof of Result 2

The differential is the difference of two standard normal pdf values, multiplied by some constant
term. Consequently, the behaviour of the differential with respect to θ1 hinges on the relationship
between the absolute values of the two arguments of the pdfs. Specifically, we are comparing

∣∣∣∣
c− ccos(θ1)
sin(θ1)

∣∣∣∣ to

∣∣∣∣∣∣

c(sin(θ∗3)−sin(θ1))
sin(θ∗3−θ1)

− ccos(θ1)
sin(θ1)

∣∣∣∣∣∣
.

Since φ(x)− φ(y) ≥ 0 if and only if |x| − |y| ≤ 0, we have D(θ1) ≤ 0⇔ d(θ1) ≥ 0 where

d(θ1) =

∣∣∣∣
c− ccos(θ1)
sin(θ1)

∣∣∣∣−

∣∣∣∣∣∣

c(sin(θ∗3)−sin(θ1))
sin(θ∗3−θ1)

− ccos(θ1)
sin(θ1)

∣∣∣∣∣∣

=
c

|sin(θ1)|

(
|1− cos(θ1)| −

∣∣∣∣
sin(θ∗3)− sin(θ1)

sin(θ∗3 − θ1)
− cos(θ1)

∣∣∣∣
)
.

Since c > 0 and θ1 ∈ (0, π), it is sufficient to focus on the sign of

g(θ1) = |1− cos(θ1)| −
∣∣∣∣
sin(θ∗3)− sin(θ1)

sin(θ∗3 − θ1)
− cos(θ1)

∣∣∣∣

=(1− cos(θ1))−
∣∣∣∣
sin(θ∗3)− sin(θ1)

sin(θ∗3 − θ1)
− cos(θ1)

∣∣∣∣
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as (1− cos(θ1)) is always positive. Also,
sin(θ∗3)−sin(θ1)
sin(θ∗3−θ1)

− cos(θ1) is always negative, and thus it

is sufficient to evaluate

g(θ1) =1− cos(θ1)−
(
cos(θ1) +

sin(θ1)− sin(θ∗3)

sin(θ∗3 − θ1)

)

=
sin(θ∗3 − θ1)− 2cos(θ1)sin(θ∗3 − θ1)− sin(θ1) + sin(θ∗3)

sin(θ∗3 − θ1)

=
sin(θ∗3 − θ1) + sin(2θ1 − θ∗3)− sin(θ1)

sin(θ∗3 − θ1)

using the product to sum formulae. It is clear that, at θ1 = θ3∗
2 , g(θ1) = 0 and therefore D(θ1) =

0. Thus θ1 = θ3∗
2 is a stationary point of D(θ1). For the sign of g(θ1) over 0 < θ1 < θ∗3 < π, it

suffices to focus on the numerator

h(θ1) = sin(θ∗3 − θ1) + sin(2θ1 − θ∗3)− sin(θ1).

Let θ1 =
θ∗3
2 − ε for ε ∈ (0,

θ∗3
2 ), then

h(
θ∗3
2
− ε) =sin(θ∗3 − θ1) + sin(2θ1 − θ∗3)− sin(θ1)|

θ1=
θ∗3
2
−ε

=sin(θ∗3 − (
θ∗3
2
− ε)) + sin(2(

θ∗3
2
− ε)− θ∗3)− sin(

θ∗3
2
− ε)

=sin(
θ∗3
2

+ ε)− sin(2ε)− sin(
θ∗3
2
− ε)

=sin((
θ∗3
2
− ε) + 2ε)− sin(2ε)− sin(

θ∗3
2
− ε)

=sin(
θ∗3
2
− ε)cos(2ε) + sin(2ε)(cos(

θ∗3
2
− ε)− 1)− sin(

θ∗3
2
− ε)

<sin(
θ∗3
2
− ε)cos(2ε)− sin(

θ∗3
2
− ε) < 0

as (cos(
θ∗3
2 − ε)− 1) must always be negative. Furthermore, from

sin(
θ∗3
2

+ ε)− sin(2ε)− sin(
θ∗3
2
− ε) < 0

established above, it follows that

h(
θ∗3
2

+ ε) = −(sin(
θ∗3
2

+ ε)− sin(2ε)− sin(
θ∗3
2
− ε)) > 0.

This tells us that the function d(θ1) is negative as the value of θ1 approaches the stationary point,
and hence D(θ1) is positive, and that the reverse is true as we move away past the stationary
point, as required. �
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