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Abstract

This paper develops exact finite sample and asymptotic distributions for structural
equation tests based on partially restricted reduced form estimates. Particular atten-
tion is given to models with large numbers of instruments, wherein the use of partially
restricted reduced form estimates is shown to be especially advantageous in statistical
testing even in cases of uniformly weak instruments and reduced forms. Comparisons
are made with methods based on unrestricted reduced forms, and numerical compu-
tations showing finite sample performance of the tests are reported. Some new results
are obtained on inequalities between noncentral chi-squared distributions with different
degrees of freedom that assist in analytic power comparisons.
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1 Introduction

Instrumental variable (IV) methods are a commonly used resource in structural equation
estimation and testing. While asymptotic theory is still the primary tool of inference in such
cases, a substantial body of finite sample theory is now available to guide applied research.
Exact finite sample distribution theory for IV estimates began with the work of Basmann
(1961), who derived the distribution of the two stage least squares estimator of the coefficient
in a special case of a structural equation with two endogenous variables driven by Gaussian
errors. The general case was explored in Phillips (1980) who derived the exact distribution of
the IV estimator of the coefficients in a structural equation with an arbitrary number (m) of
endogenous variables and gave a higher order asymptotic expansion of the exact distribution
using a Laplace approximation. Importantly, the exact theory holds for any configuration of
strong, weak, or even irrelevant instruments – cases that are determined by the strength of
the systematic component of the reduced form as measured by the reduced form parameters
or, more specifically, by the matrix noncentrality parameter matrix which appears as a key
element in the exact density (Phillips, 1980, equation (12)). This appealing feature has a
major bearing on asymptotic theory and the quality of asymptotic approximations.

When the instruments are strong and the noncentrality matrix diverges with the sample
size at the usual O (n) rate that applies with stationary data, the exact distribution yields
the standard

√
n asymptotic normal distribution for IV estimates. When the instruments are

irrelevant, the exact distribution yields the asymptotic distribution in the unidentified case
where order conditions but not rank conditions hold. In this case, the IV estimator converges
weakly to a random variable whose distribution is proportional to a t distribution, reflecting
the uncertainty in the limit that is implicit in the lack of identification. Importantly, in this
case the same asymptotic distribution holds when the Gaussian error assumption is relaxed
because a martingale central limit theorem operates with respect to the sample moment
components on which the IV estimator is based, as first demonstrated in Phillips (1989).
Thus, an invariance principle applies in the unidentified case, just as it does in the strong IV
case. An entirely analogous argument based on a noncentral version of the same martingale
central limit theorem shows that an invariance principle applies in the weak IV case where
the reduced form parameters are local to the origin at a

√
n rate, so that the limit distribution

is simply the exact finite sample distribution (under Gaussian errors) upon simple rescaling
of the noncentrality matrix without requiring Gaussianity.

The case of many weak instrument asymptotics may also be obtained quite simply from
the exact theory. As the number of instruments K grows, while m remains fixed, then a
martingale CLT enables use of the exact results to deliver the appropriate asymptotics under
conditions on the rate of expansion of K that ensure consistency of the estimator is retained.
These various uses of the exact theory in conjunction with a suitable martingale CLT are
explored in Phillips (Forthcoming). The wider literature on weak instrumentation and many
instruments is extensive and is not reviewed here. Readers are referred to Andrews and Stock
(2005) for an overview of some aspects of that literature, focusing on cases where instrument
weakness is induced by localizing coefficients to the origin, as in Staiger and Stock (1997).
Other approaches to weak instruments are possible and some alternatives are considered in
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recent work by Andrews and Guggenberger (Forthcoming) and Phillips (2006; Forthcoming).
Work on structural parameter testing dates back to Anderson and Rubin (1949) and much

of the recent literature deals with test statistics that are robust to the strength of instruments.
In particular, Kleibergen (2002) constructed a test statistic (the so-called K-statistic) whose
limit distribution is chi-squared with degrees of freedom m matching the dimension of the
structural parameter, irrespective of the strength and number of the instruments. This
reduction in degrees of freedom is a feature of the test statistic that is proposed in the
present paper, although the mechanism by which this is accomplished differs. Bekker and
Kleibergen (2003) later characterized many instrument asymptotic theory for the K-statistic.
Moreira (2003) provided an alternate method of constructing test statistics, particularly a
conditional likelihood ratio (CLR) test, that are robust under weak instrumentation, and
Andrews, Moreira, and Stock (2006) developed theoretical results on the power envelope
within the class of invariant similar tests.

While most exact theory deals with estimation, some recent work has considered re-
stricted reduced form estimation that incorporates information from the structural system.
The reduced form is particularly important for forecasting and it seems natural to import
structural information into forecasts constructed from the reduced form. Phillips (Forthcom-
ing) derives the exact distribution of forecasts obtained from the partially restricted reduced
form (Kakwani and Court, 1972), which carries restrictions from a structural equation that
is estimated by IV. The primary effect of importing such structural restrictions into forecasts
is to reduce variance in the forecasts. It turns out that even when the structural equation
is unidentified, shrinkage still occurs and is generally beneficial in concentrating the forecast
distribution and in reducing forecast mean squared error, although this is not universally so,
as noted in Kakwani and Court (1972).

Since the reduced form parameters satisfy identifiability relations, these parameters are
also useful in testing hypotheses about the structural parameters. The present paper explores
this approach to inference. We focus on the identifying relation embedded in the partially
restricted reduced form equation, and investigate both the exact finite-sample theory and
the asymptotics of the partially restricted reduced-form estimators, which we then use to
construct statistics for hypothesis testing about the structural parameters. The most closely
related work to the present paper is Chernozhukov and Hansen (2008), who examined the
unrestricted reduced-form estimator as a vehicle for structural parameter testing.

The paper’s main contribution is to develop both exact finite sample and asymptotic dis-
tributions for structural equation tests based on partially restricted reduced form (PRRF)
estimates. This approach is shown to be especially advantageous in statistical testing when
there are large numbers of instruments and this remains so even in cases of uniformly weak
instruments and reduced forms. Our main finding is that the PRRF is useful in raising the
power of structural parameter tests when the number of instruments is large especially, but
not always, when the instruments are strong and when the focus is on testing whether the
structural coefficients are zero1. Comparisons are made with tests based on unrestricted re-
duced forms. Some numerical calculations reporting finite sample performance of these tests

1In unstandardized systems, this hypothesis corresponds to absence of endogeneity.
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are reported. The paper also contributes by providing new analytic results on inequalities for
tail probabilities of noncentral chi-squared distributions with different degrees of freedom.
These results assist in making analytic power comparisons between PRRF and unrestricted
reduced form (URRF) procedures.

The paper is organized as follows. The model, identifiability relations and reduced form
estimates are given in Section 2. Section 3 develops exact and asymptotic distributions of the
estimators under standardizing transformations of the model. Section 4 considers hypothesis
tests constructed using unrestricted and partially restricted reduced form estimates. Section
5 provides limit theory for large numbers of instruments. Section 6 gives extensions for
unstandardized cases and Section 7 concludes. Proofs are provided in the Appendix.

2 Estimation with Instrumental Variables

We consider a single regression equation in the following structural form

y1 = Y2β + u (1)

where [y1, Y2] is an n × (m + 1) matrix of endogenous variables, u is a vector of structural
errors, and β is an m×1 vector of structural parameters. Extensions to structural equations
with included exogenous variables are straightforward and are not considered in what follows
for notational simplicity. Let Z be a n ×K matrix of (exogenous) instruments with order
condition K ≥ m satisfied. The associated reduced form for (1) then has the form

Y := [y1, Y2] = Z [π1,Π2] + [v1, V2] ≡ ZΠ + V. (2)

where Π = [π1,Π2] is the reduced form parameter matrix and V = [v1, V2] is the reduced
form error matrix. The restrictions imposed by the structural equation (1) on the reduced
form are

π1 = Π2β, (3)

v1 = u+ V2β.

Let Π̂ =
(
π̂1, Π̂2

)
be the unrestricted reduced form (URRF) least squares estimate of Π

with π̂1 = (Z ′Z)−1 Z ′y1 and Π̂2 = (Z ′Z)−1 Z ′Y2.
Exploiting the restrictions from the structural form implied by the identifiability rela-

tions (3), we may transform the reduced-form equation (2) to the partially restricted form
(Kakwani and Court, 1972): {

y1 = ZΠ2β + v1

Y2 = ZΠ2 + V2

(4)

which leads to the partially restricted reduced-form (PRRF) estimator Π̃ of Π (Knight, 1977):

Π̃ :=
(
π̃1, Π̂2

)
, π̃1 := Π̂2βIV ,
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where βIV =
(
Y
′

2PZY2

)−1
Y
′

2PZy1 is the IV estimator of β in (1) and PZ := Z (Z ′Z)+ Z
′
. Since

βIV =
(

Π̂
′
2Π̂2

)′
Π̂
′
2π̂1, we have π̃1 = PΠ̂2

π̂1, where PΠ̂2
:= Π̂2

(
Π̂
′
2Π̂2

)+

Π̂
′
2 is the projection

matrix to the range of Π̂2.
Interest focuses on the partially restricted reduced-form estimator π̃1, which carries in-

formation about the structural equation through the estimate βIV , and the effect of this
information on inference. We investigate both exact finite sample and asymptotic distribu-
tions. It is already known from Knight (1977) that the partially restricted reduced form
estimator has finite moments of all orders under a Gaussian error matrix V . Finite sample
density results for the PRRF estimator were first obtained in Phillips (Forthcoming), again
for Gaussian errors.

3 Exact and Asymptotic Distributions of the PRRF

Estimator

We derive the exact and the asymptotic distributions of the PRRF estimator under
three different assumptions concerning instrument strength. For simplicity and without
loss of generality (see Phillips, 1983), we employ standardizing transformations so that
Z ′Z = nIK . For the exact finite sample theory we employ Gaussian error assumptions

with V
d
= Nn,m+1

(
0, In(m+1)

)
where Nn,m+1 (A,Σ) signifies an n × (m+ 1) matrix normal

distribution with mean matrix A and covariance matrix Σ, or in vectorized form vec (V )
d
=

N (vec (A) ,Σ) . Then
1√
n
Z ′V

d
= NK,m

(
0, IK(m+1)

)
. (A1)

To develop asymptotics without Gaussianity, we assume that the rows
{
V(i)

}n
i=1

of V, coupled
with the natural filtration, form an Rm+1-valued martingale difference sequence with

E [V ] = 0 and Var [V ] := Var [vec (V )] = In(m+1). (A2)

Using the martingale central limit theory in Phillips (1989) we have the weak convergence
as n→∞

1√
n
Z ′V =

1√
n
Z ′ [v1, V2]

d−→ (ξ,Ξ)
d
= NK,m+1

(
0, IK(m+1)

)
. (A3)

It is convenient in what follows to expand the probability space as needed so that, by
Skorokhod’s representation theorem, (A3) may be replaced by strong convergence in that
space, giving

1√
n
Z ′V

a.s.−→ (ξ,Ξ)
d
= NK,m (0, IKm) , as n→∞. (A3′)

We proceed to characterize the exact finite sample and asymptotic distributions of the
PRRF estimator under three different assumptions concerning instrument strengths.
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3.1 Strong Instruments

We first consider the case of strong instruments under the following standard condition.

Assumption (S-IV). (Strong instruments) Π2 is fixed with respect to n and has full column
rank m.

Since Π = E [Y |Z] and Π
′
2Π2 is invertible under strong instruments, the structural

parameter β is identified from the reduced-form and satisfies β =
(
Π
′
2Π2

)−1
Π
′
2π1.

Lemma 1. Under (S-IV) and (A3’), the asymptotic distributions of Π̂, βIV , and π̃1 are
given by

√
n
(

Π̂− Π
)

a.s.−→ (ξ,Ξ)
d
= NK,m+1

(
0, IK(m+1)

)
(5)

√
n (βIV − β)

a.s.−→
(

Π
′

2Π2

)−1

Π
′

2 (ξ − Ξβ)
d
= N

(
0, (1 + β′β)

(
Π
′

2Π2

)−1
)

(6)

√
n (π̃1 − π1)

a.s.−→ PΠ2ξ +MΠ2Ξβ
d
= N

(
0, β

′
β · IK + (1− β′β)PΠ2

)
, (7)

where MΠ2 := IK − PΠ2.
Under (S-IV) and (A1), the finite-sample distributions of Π̂, βIV , and π̃1 are given by

Π̂
d
= NK,m+1

(
Π,

1

n
IK(m+1)

)
βIV = W−1

22 w21
d
=MN

(√
n (A′ΞAΞ)

−1
AΞΠ2β, (A

′
ΞAΞ)

−1
)

π̃1
d
=MN

(
PAΞ

Π2β,
1

n
PAΞ

)
(8)

where AΞ :=
√
nΠ2 + Ξ, and (W22, w21) form blocks of the non-central Wishart matrix

W ≡

[
1
w11

m
w12

w21 W22

]
d
= Wm+1 (K, Im+1,MM ′) ,

with K degrees of freedom, covariance matrix Im+1, and noncentrality matrix

MM ′ = n

[
β′

Im

]
Π′2Π2 [β, Im] ,

using MN (h (Ξ) , H (Ξ)) to denote the mixed normal distribution with random mean vector

h (Ξ) and random covariance matrix H (Ξ), where Ξ
d
= NK,m (0, IKm).

Let AVar (π̂1) and AVar (π̃1) denote the asymptotic variances of π̂1, π̃1. Then

AVar (π̂1)− AVar (π̃1) = (1− β′β) ·MΠ2 ≥ 0
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Since MΠ2 is positive semidefinite, it follows that π̃1 is asymptotically weakly more efficient
than π̂1 when ‖β‖ < 1. That is, when ‖β‖ < 1, γ′π̃1 is at least as efficient as γ′π̂1 in all
directions and more efficient in directions γ 6∈ R (Π2) .

The relative efficiency of the PRRF and the URRF estimators depends on the magnitude
of two opposite effects. On one hand, the partially restricted estimator π̃1 = Π̂2βIV brings
extra information from the structural equation into the estimation of π1, potentially con-
tributing to more efficient estimation. This is captured mathematically by comparing the
two terms PΠ2ξ and ξ = PΠ2ξ+(I − PΠ2) ξ in the asymptotic distributions of the PRRF and
the URRF estimators, viz., (7) for PRRF, and (5) for URRF: the former achieves a reduction
of MΠ2 = I − PΠ2 in asymptotic variation relative to the latter. On the other hand, the
PRRF estimator introduces estimation error in βIV multiplicatively with Π̂2, which can am-
plify asymptotic variance when that factor is large. This is captured through the addition of
the second term MΠ2Ξβ in the asymptotic distribution of π̃1, which is not present in that of
π̂1. This extra term contributes to the additional variance component β

′
β ·MΠ2 that figures

in the asymptotic variance of the PRRF estimator. When the length of β is less than 1, the
improvement by incorporating the information from the structural equation dominates the
extra variance it brings in, leading to smaller asymptotic variance for the PRRF estimator
π̃1.

Since N (Π2, n
−1IKm) = Π2 + N (0, n−1IKm) = Π2 + Op

(
n−1/2

)
, the representation

(8) reveals that the distribution of π̃1 is determined by
{

Π2 + n−1/2N (0, IKm)
}
×W−1

22 w21,
showing that a primary contribution to the finite sample distribution is given by Π2×W−1

22 w21.
The analytic form of this density was obtained recently in Phillips (Forthcoming) and can be
derived using the exact density of the matrix quotient W−1

22 w21, which was given in Phillips
(1980).

3.2 Totally Irrelevant Instruments

Next consider the case where the instruments are all totally irrelevant for the structural
parameter β. This case represents the polar extreme of the strong instrument case. There
is no information in the reduced form about the structural coefficients and so β is totally
unidentified.

Assumption (I-IV). (Irrelevant instruments) Π2 = 0.

Lemma 2. Under (I-IV) and (A3’), the asymptotic distributions of Π̂, βIV and π̃1 are given
by

√
nΠ̂

a.s.−→ (ξ,Ξ)
d
= NK,m+1

(
0, IK(m+1)

)
, (9)

βIV
a.s.−→

(
Ξ
′
Ξ
)−1

Ξ
′
ξ

d
=MN

(
0,
(

Ξ
′
Ξ
)−1
)

(10)

√
nπ̃1

a.s.−→ PΞξ
d
=MN (0, PΞ) with Ξ

d
= NK,m (0, IKm) (11)

Under (I-IV) and (A1), the finite-sample distributions are obtained from the above simply

by replacing “
a.s.−→” with “

d
=”.
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Define Υ := Ξ (Ξ′Ξ)−
1
2 . Since Υ is uniformly distributed on the Stiefel manifold2 VK,m,

we may alternatively take the mixture in MN (0, PΞ ≡ ΥΥ ′) with respect to Υ .
Notice that AVar(π̂1) − AVar(π̃1) = IK − E [PΞ] = E [MΞ] . Since MΞ is positive semi-

definite for each realization of Ξ and MΞ is well defined almost surely, E [MΞ] is also positive
semi-definite. Hence, the PRRF estimator π̃1 is asymptotically more efficient for π1 = 0
than the URRF estimator π̂. Importantly, as the model is totally unidentified, the relative
efficiency of π̃1 does not translate in this case into improved inference on the structural
parameter β, which will be made clear in Section 4.

3.3 Weak Instruments

Finally we consider the case where the instruments are weak in the conventional sense
that the corresponding reduced form coefficients are local to zero.

Assumption (W-IV). (Weak instruments) Π2 = 1√
n
Π∗2, where Π∗2 is of full rank m.

In this case, we say that β is weakly identified. Write Π∗ ≡ (π∗1,Π
∗
2) with π∗1 := Π∗2β.

Lemma 3. Under (W-IV) and (A3’), the asymptotic distributions of Π̂, βIV and π̃1 are
given by

√
nΠ̂

a.s.−→ Π∗ + (ξ,Ξ)
d
= NK,m+1

(
Π∗, IK(m+1)

)
,

βIV
a.s.−→

[
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1

(Π∗2 + Ξ)
′
(π∗1 + ξ)

√
nπ̃1

a.s.−→ P(Π∗2+Ξ) (π∗1 + ξ)
d
=MN

(
P(Π∗2+Ξ)Π∗2β, P(Π∗2+Ξ)

)
with Ξ

d
= NK,m (0, IKm) .

Under (W-IV) and (A1), the finite-sample distributions can be obtained from above by

replacing “
a.s.−→” with “

d
=”.

Again, AVar (π̂1) − AVar (π̃1) = E
[
M(Π∗2+Ξ)

]
is positive semi-definite, but notice that

the asymptotic distribution of π̃1 is now no longer centered at π∗1 because

E
[
P(Π∗2+Ξ) (π∗1 + ξ)

]
= E

[
P(Π∗2+Ξ)

]
Π∗2β 6= Π∗2β.

Therefore, when instruments are weak, importing structural information into reduced-form
estimation introduces bias, as compared with unrestricted reduced-form estimation. This
bias is to be expected, because the weak instrument asymptotic theory corresponds to the
Gaussian exact distribution and therefore carries all the finite sample parameter dependencies
that arise in finite sample theory, including the finite sample bias of the instrumental variable
estimator. This heuristic reasoning indicates that there may be some advantage in the use
of partially restricted reduced form estimation using the LIML estimator of β because the
LIML estimator, while having no finite sample integer moments (e.g., Phillips, 1984), is
known to be better centered about β than βIV .

2VK,m is the manifold formed by K frames of m dimensional orthonormal vectors. See, for example,
Muirhead (2005).
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4 Hypothesis Testing on β

The structural parameter β is usually the parameter of interest and we can use the

reduced-form estimates
(

Π̂, Π̃
)

to construct tests concerning β. Specifically, to test the hy-

pothesis H0 : β = β0, we may test the implied relationship between reduced-form parameters

H0 : π1 = Π2β0. Using the estimates
(

Π̂, Π̃
)

respectively, define

W
β0
UR :=

n
(
π̂1 − Π̂2β0

)′ (
π̂1 − Π̂2β0

)
1 + β

′

0β0

,

W
β0
PR :=

n
(
π̃1 − Π̂2β0

)′ (
π̃1 − Π̂2β0

)
1 + β

′

0β0

.

We call W
β0
UR the unrestricted reduced-form (URRF) test statistic, and W

β0
PR the partially

restricted reduced-form (PRRF) test statistic. The URRF statistic was proposed in Cher-
nozhukov and Hansen (2008), who showed that the asymptotic distribution of the URRF

statistic W
β0
UR is robust to assumptions concerning instrument strength.

Theorem 1. (Chernozhukov and Hansen, 2008) Under (A3) and the null hypothesis H0 :
pi1 = Π2β0,

W
β0
UR

d−→ χ2
K ,

irrespective of the strength of instruments.

The next result characterizes the asymptotic distribution of the PRRF test statistic W
β0
PR.

Theorem 2. Under (A3) and the null hypothesis H0 : π1 = Π2β0,

W
β0
PR

d−→ 1

1 + β
′

0β0

Mχ2
m,λA(Ξ,β0), (12)

where Mχ2
m,λA(Ξ,β0) denotes a mixed noncentral chi-squared distribution with m degrees of

freedom and random noncentrality parameter λA (Ξ, β0) with Ξ
d
= NK,m (0, IKm), and the

index A ∈ {S,W, I} signifies strong, weak and irrelevant instruments:

(i) A = S: under (S-IV) and (A3’),

λS (Ξ, β0) = β
′

0Ξ
′
PΠ2Ξβ0

d
= β

′

0β0 · χ2
m. (13)

In this case, equivalently we have

W
β0
PR

d−→ χ2
m.

9



Under (S-IV) and (A1), the finite-sample distribution is given by

W
β0
PR

d
=

1

1 + β
′

0β0

Mχ2
m,λS,n(Ξ,β0)

with
λS,n (Ξ, β0) = β

′

0Ξ
′
PAΞ

Ξβ0.

(ii) A = I: under (I-IV) and (A3’),

λI (Ξ, β0) = β
′

0Ξ
′
Ξβ0

d
= β

′

0β0 · χ2
K . (14)

Under (I-IV) and (A1), the finite-sample distribution coincides with the asymptotic
distribution.

(iii) A = W : under (W-IV) and (A3’),

λW (Ξ, β0) = β
′

0Ξ
′
P(Π∗2+Ξ)Ξβ0. (15)

Under (W-IV) and (A1), the finite-sample distribution coincides with the asymptotic
distribution.

Theorem 2 shows that the differences in the asymptotic distributions under different
instrument strengths are embodied in the corresponding noncentrality parameters λA(Ξ, β0).
A smaller noncentrality parameter corresponds to a more concentrated null distribution, and
thus a tighter (smaller) critical value in hypothesis testing.

As the family of noncentral chi-squared distributions with the same degree of freedom, say
m, are ordered in the sense of first-order stochastic dominance according to their noncentral-
ity parameters, we may compare distributions by comparing the noncentrality parameters
for the three instrument strengths. For any β0 and realization Ξ,

λS (Ξ, β0) ≤ λI (Ξ, β0) ,

λW (Ξ, β0) ≤ λI (Ξ, β0) ,

with the inequality being strict almost surely. So, in the case of irrelevant instruments,
the asymptotic distribution of W

β0
PR first-order stochastically dominates those with strong

and weak instruments. This is natural because with both strong and weak instruments the
reduced-form estimates contain information about the structural parameter β, while under
irrelevant instruments these estimates carry no such information. The comparison between
λS (Ξ, β0) and λW (Ξ, β0), however, is not immediately clear from (13) and (15).

We may also compare the asymptotic distributions of W
β0
PR with that of W

β0
UR. Noticing

that, regardless of instrument strengths, under (A3’)

W
β0
UR =

n
(
π̂1 − Π̂2β0

)′ (
π̂1 − Π̂2β0

)
1 + β

′

0β0

a.s.−→ (ξ − Ξβ0)
′
(ξ − Ξβ0)

1 + β
′

0β0

≥ (ξ − Ξβ0)
′
PΞ (ξ − Ξβ0)

1 + β
′

0β0

d
=

1

1 + β
′

0β0

Mχ2
m,λI(Ξ,β0).
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Thus the asymptotic distribution of W
β0
UR first-order stochastically dominates that of W

β0
PR

under all three instrument strengths.
Moreover, under the particular null hypothesis where β0 = 0, the asymptotic distribution

of W 0
PR also becomes invariant to the strength of instruments, as λA (Ξ,0) = 0 for any Ξ and

A ∈ {S,W, I}. In this case, we have W 0
PR

d−→ χ2
m in all cases. Importantly, the distribution

of the PRRF test statistic has degrees of freedom m, corresponding to the dimension of the
vector β being tested, unlike the URRF statistic whose distribution has degrees of freedom
K, corresponding to the number of instruments available from the reduced form.

The analysis above focuses on the asymptotic distribution of W 0
PR under the null hypoth-

esis H0 : β = β0. To obtain a complete comparison of hypothesis tests based on the URRF
and the PRRF test statistics, we need to compute the power functions.

Consider tests of size α for the null hypothesis H0 : β = β0 based on the URRF and the
PRRF test statistics. Let KUR (β1; β0), KPR (β1; β0) denote the asymptotic power functions
of the test of the null hypothesis H0 : β = β0 against an alternative involving the localiz-

ing parameter β1 (specified precisely later), and let K(n)
UR (β1; β0), K(n)

PR (β1; β0) denote the
corresponding finite-sample power functions. Let q1−α

k denote the (1− α)-th quantile of χ2
k

and Ψ (x; k, λ) denote the upper tail (survivor function) probability of χ2
k,λ. We state the

following lemma before giving the results on power.

Lemma 4.

(i) ∀x > 0, ∀λ ≥ 0, ∀k ∈ N+, Ψ (x; k + 1, λ) > Ψ (x; k, λ).

(ii) ∀k ∈ N+, ∀x > 0, Ψ (x; k, λ) is increasing in λ.

(iii) For any even k ∈ N and for small enough α ∈ (0, 1), there exists some λ > 0 such that
∀λ ∈

(
0, λ
)
, Ψ
(
q1−α
k+2 ; k + 2, λ

)
< Ψ

(
q1−α
k ; k, λ

)
.

The inequality in Lemma 4(iii) appears to be the first result of this kind for noncentral chi-
squared distributions. The result gives an inequality for the tail probabilities of noncentral
chi-squared variates evaluated at different quantiles and with different degrees of freedom.
The result is relevant to power comparisons in many circumstances in which alternative test
statistics have finite sample or asymptotic ch-squared distributions with differing degrees of
freedom.

A stronger version of Lemma 4(iii) would state: for small enough α ∈ (0, 1), ∀k ∈ N,
Ψ
(
q1−α
k+1 ; k + 1, λ

)
< Ψ

(
q1−α
k ; k, λ

)
. This inequality seems expected on the following heuris-

tic grounds: a chi-squared distribution with a higher degree of freedom is more dispersed,
so a shift in the noncentrality parameter of a given size should have a smaller impact
on the tail probability of the resultant chi-squared distribution with a higher degree of
freedom when evaluated at corresponding quantiles under the null. We have numerically
verified that the inequality holds uniformly for α ∈ {0.01, 0.05, 0.1}, k ≤ 200 and λ ∈
{0.01, 0.02, ..., 0.99, 1, 2, ..., 50}.3

3The calculations were performed in MatLab with a machine epsilon of approximately 2 × 10−16, and
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A proof of this more general version of the inequality appears difficult due to the com-
plicated nonlinear dependence of the quantiles q1−α

k on both k and α, as well as the analytic
complexity of the chi-squared CDF, which involves an incomplete gamma function. A proof
of the power comparison inequality would probably require relatively tight upper and lower
bounds on the quantiles of the associated chi-squared distributions, which play a significant
role in the comparison. Further analysis of such comparisons is therefore left for future work.

Theorem 3. (Hypothesis testing against the null H0 : β = β0)

(i) Under (S-IV) and (A3’), and testing H0 against H1 : β = β̃n := β0 + 1√
n

(β1 − β0)
with size α, we have

KUR (β1; β0) = Ψ

(
q1−α
K ; K,

(β1 − β0)
′
Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

)
,

KPR (β1; β0) = Ψ

(
q1−α
m ; m,

(β1 − β0)
′
Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

)
.

Under (S-IV) and (A1),

K(n)
UR (β1; β0) = Ψ

(
q1−α
K ; K,

(β1 − β0)
′
Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

)
.,

K(n)
PR (β1; β0) = E

[
Ψ
((

1 + β
′

0β0

)
q1−α
m ; m, κn (Ξ)

)]
with

κn (Ξ) = (Ξβ0 − Π2 (β1 − β0))
′
PAΞ

(Ξβ0 − Π2 (β1 − β0)) .

(ii) Under (I-IV) and (A3’), and testing H0 against H1 : β = β1 with size α, we have

KUR (β1; β0) = KPR (β1; β0) = α.

Under (I-IV) and (A1), the finite-sample power functions coincide with the asymptotic
power functions.

(iii) Under (W-IV) and (A3’), and testing H0 against H1 : β = β1 with size α, we have

KUR (β1; β0) = Ψ

(
q1−α
K ; K,

(β1 − β0)
′
Π∗
′

2 Π∗2 (β1 − β0)

1 + β
′

0β0

)
KPR (β1; β0) = E

[
Ψ
((

1 + β
′

0β0

)
c1−α
β0

; m, (Ξβ0 − Π∗2 (β1 − β0))
′
P(Π∗2+Ξ) (Ξβ0 − Π∗2 (β1 − β0))

)]
we found that: the maximum difference Ψ

(
q1−αk+1 ; k + 1, λ

)
− Ψ

(
q1−αk ; k, λ

)
is negative and has a magnitude

larger than 10−8, and the maximum log ratio log
(
Ψ
(
q1−αk+1 ; k + 1, λ

)
/Ψ
(
q1−αk ; k, λ

))
is also negative and has

a magnitude larger than 10−5.
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where Ξ
d
= NKm (0, IKm) and c1−α

β0
is such that

P

{
Mχ2

m,β
′
0Ξ′P

(Π∗2+Ξ)
Ξβ0
≥
(

1 + β
′

0β0

)
c1−α
β0

}
= α.

If β0 = 0, then c1−α
β0

= q1−α
m and

KPR (β1;0) = E
[
Ψ
(
q1−α
m ; m,

)]
Under (W-IV) and (A1), the finite-sample power functions coincide with the asymptotic
power functions.

These results facilitate several power comparisons between the URRF and the PRRF
tests. First, with strong instruments, the PRRF test is typically more powerful than the
URRF test for any null β0 and (local) alternative β1 under the conditions of Lemma 4(iii)
or, more extensively, as supported by the stated numerical computations; and we conjecture
that the power domination comparison holds more generally. Second, with irrelevant instru-
ments, power equals size and neither the PRRF nor the URRF test is informative about β.
Third, with weak instruments, the power comparison is indeterminate. Take for example
the case of β0 = 0. Recall that Ψ

(
q1−α
k ; k, λ

)
is increasing in λ and decreasing in k, so

β
′

1Π∗
′

2 P(Π∗2+Ξ)Π∗2β1 < β
′

1Π∗
′

2 Π∗2β1 almost surely. But in overidentified models m < K and

so Ψ (q1−α
m ; m, ) may be larger or smaller than Ψ

(
q1−α
K ; K,

)
, depending on the values of

m,K, Π∗2 and the realization of Ξ. With Ξ integrated out, the power comparison remains
dependent on Π∗2 and β1.

5 Asymptotic Power with K →∞
To construct a framework that allows for an increasing number of instruments, we assume

that
Π2 =

[
Π′2(1), ...,Π

′
2(K)

]′
, with Π2(k) ∼iid (01×m,ΩΠ2) , ΩΠ2 > 0. (16)

Then, as K → ∞, we have K−11
′
KΠ2

a.s.−→ 0 and K−1Π
′
2Π2

a.s.−→ ΩΠ2 > 0. Next let K =
K (n) → ∞ slowly relative to n so that K

n
→ 0. With this framework, we can derive

asymptotic power functions of the URRF test and the PRRF test allowing for different
strengths in the increasing number of instruments. First note that under the nullH0 : β = β0,

Assumption A1 or A3, and suitable centering and standardization, the URRF statistic W
β0
UR

is asymptotically normal, viz.,

W̃
β0
UR =

√
K

(
1

K
W

β0
UR − 1

)
=
√
K

 1
K
n
(
π̂1 − Π̂2β0

)′ (
π̂1 − Π̂2β0

)
1 + β

′

0β0

− 1


d−→ lim

K→∞

√
K

[
1

K

(ξ − Ξβ0)
′
(ξ − Ξβ0)

1 + β
′

0β0

− 1

]
d
= N (0, 2) .
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This limit theory is used to obtain critical values of the URRF statistic when K →∞.

Theorem 4. (Hypothesis testing of H0 : β = β0 with K →∞)

(i) (Strong instruments, 1√
nK

-local alternatives) Suppose that Π2(k) ∼iid (01×m,ΩΠ2) and
consider a size-α test of H0 against

H1 : β = β̃n := β0 +
1√
nK

(β1 − β0) (17)

based on the (asymptotic distributions of) the test statistics W̃
β0
UR =

√
K
(

1
K
W

β0
U − 1

)
and W

β0
PR as (K,n)→∞ with K

n
→ 0. Under (S-IV) and (A3’), the PRRF test has non-

trivial asymptotic power while the URRF test is asymptotically blind to O
(

1/
√
nK
)

local alternatives. In particular

KPR (β1; β0) = Ψ

(
q1−α
m ;m,

(β1 − β0)
′
ΩΠ2 (β1 − β0)

1 + β
′

0β0

)
> α = KUR (β1; β0) .

(ii) (Strong instruments, 1√
nK1/4 -local alternatives) Suppose that Π2(k) ∼iid (01×m,ΩΠ2) and

a size-α test of H0 is performed against the local alternative

H1 : β = β̃n := β0 +
1√
nK1/4

(β1 − β0) (18)

using W̃
β0
UR and W

β0
PR. Then, under (S-IV) and (A3’), the URRF test has nontrivial

asymptotic power while the PRRF test has unit power asymptotically:

KPR (β1; β0) = 1 ≥ KUR (β1; β0) = Φ

(
Φ−1 (α)− 1√

2

(β1 − β0)
′
ΩΠ2 (β1 − β0)

1 + β
′

0β0

)
.

(iii) (Weak instruments, 1√
nK

-local alternatives) Let Π2(k) = 1√
n
Π∗2(k) with Π∗2(k) ∼iid

(
01×m,ΩΠ∗2

)
and ΩΠ∗2

> 0. Size-α tests of H0 are performed against the local alternative

H1 : β = β̃n := β0 +
1√
K

(β1 − β0)

using W̃
β0
UR and W̃

β0
PR, with

W̃
β0
PR :=


W 0
PR, β0 = 0,

1√
K

(
W

β0
PR −

m+Kβ
′
0

(
ΩΠ∗2

+Im
)−1

β0

1+β
′
0β0

)
, β0 6= 0.
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Then, under (W-IV) and (A3’),

KUR (β1; β0) = α.

KPR (β1; β0) =


Ψ
(
q1−α
m ;m,β

′

1ΩΠ∗2

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
β1

)
≥ α, β0 = 0;

Φ

(
Φ−1 (α) +

2β
′
0

(
ΩΠ∗2

+Im
)−1

ΩΠ∗2
(β1−β0)

1+β
′
0β0

)
, β0 6= 0.

(iv) (Weak instruments, 1√
nK1/4 -local alternatives) Let Π2(k) = 1√

n
Π∗2(k) with Π∗2(k) ∼iid(

01×m,ΩΠ∗2

)
and ΩΠ∗2

> 0. Size-α tests of H0 are performed against the local alter-
native

H1 : β = β̃ := β0 +
1

K1/4
(β1 − β0)

using W̃
β0
UR and W̃

β0
PR. Then, under (W-IV) and (A3’),

KUR (β1; β0) = Φ

(
Φ−1 (α)−

(β1 − β0)
′
ΩΠ∗2

(β1 − β0)
√

2
(
1 + β

′

0β0

) )
,

KPR (β1; β0) =


1, β0 = 0 ∨ β

′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) < 0,

Φ

Φ−1 (α)− µ√
AVar

[
W̃
β0
PR

]
 , β0 6= 0 ∧ β

′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) = 0,

0, β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) > 0.

where

µ :=
(β1 − β0)

′
Ω
′

Π∗2

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0)

1 + β
′

0β0

≥ 0,

and AVar
[
W̃

β0
PR

]
is some finite positive constant.

A particularly interesting outcome of Theorem 4 is the robust superiority of the PRRF
test over the URRF test for the null hypothesis H0 : β = 0: irrespective of the instrument
strength, so that KPR (β1;0) ≥ KUR (β1;0) . Notably, with weak instruments, the URRF test
is blind against local alternatives that converge to the null β = 0 at rates faster than 1

K1/4 ,
while the PRRF test is informative against these and other local alternatives that converge
at rates up to 1√

K
.

6 Correspondence with the Unstandardized Model

Removing the standardizing transformation (A2) on the variance matrix of V, we now
assume that the rows

{
V(i)

}n
i=1

of V have common variance Var
[
V(i)

]
= Ω, and use the
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triangular decomposition Ω = L′L where

L =

(
ω

1
2
11·2 0

Ω
− 1

2
22 ω21 Ω

1
2
22

)
with ω11·2 = ω11 − ω

′
21Ω−1

22 ω21. Let Y 0 := Y L−1, Π0 := ΠL−1 and V 0 := V L−1. Then

Var
[
V 0

(i)

]
= L−1′ΩL−1 = I so that this transformation leads to the standardized system

(Phillips, 1983). Defining β0 = Lβ, we obtain the standardized structural-form y0
1 = Y 0

2 β
0 +

u0 and corresponding reduced-form Y 0 = ZΠ0 + V 0, where y0
1 = ω

− 1
2

11·2
(
y1 − Y2Ω−1

22 ω21

)
,

Y 0
2 = Y2Ω

− 1
2

22 , β
0 = ω

− 1
2

11·2Ω
1
2
22

(
β − Ω−1

22 ω21

)
, and u0 = ω

− 1
2

11·2u. All previous results apply to this

standardized model with variables superscripted by 0. Importantly, note that E
(
u0
iY

0
2(i)

)
=

−β0, so that β0 measures the extent of endogeneity in the standardized model.
Hypothesis testing on β in the unstandardized model corresponds to tests on the stan-

dardized parameter β0 in the standardized model. Thus, H0 : β = β0 has the following
standardized parametric form (with superscripts 0 denoting standardized parameters)

H0 : β0 = β0
0 := ω

− 1
2

11·2Ω
1
2
22

(
β0 − Ω−1

22 ω21

)
.

We can then apply the results obtained in the standardized case in previous sections. In
particular, we note the following correspondences.

(i) Testing the null hypothesis H0 : β0 = 0 in the standardized case is equivalent to testing

H0 : β = β∗ := Ω−1
22 ω21

in the unstandardized system. This particular value β∗ corresponds to the null hy-
pothesis that Y2 is exogenous in the structural equation, viz., H0 : E

[
Y2(i)u(i)

]
= 0.

To see this, note that

E

[
Y2(i)

m×1

u(i)

1×1

]
= E

[(
Π
′

2
m×K

Z(i)

K×1

+ V2(i)

m×1

)(
v1(i)

1×1

− V ′2(i)

1×m

β
m×1

)]
= Π

′

2E
[
Z(i)v1(i)

]
− Π

′

2E
[
Z(i)V

′

2(i)

]
β + E

[
V2(i)v1(i)

]
− E

[
V2(i)V

′

2(i)

]
β

= 0 + 0 + ω21 − Ω22β

= 0 if and only if β = β∗.

Hence, all previous results for testing the null hypothesis H0 : β = 0 in the standardized
case correspond to tests of exogeneity of Y2 in the unstandardized structural equation.

(ii) Tests of H0 : β = 0 in the unstandardized system similarly correspond to tests in

the standardized system of H0 : β0 = ω
− 1

2
11·2Ω

− 1
2

22 ω21 = ρ/ (1− ρ′ρ)1/2 , where ρ =

ω
−1/2
11 Ω

− 1
2

22 ω21 is the correlation vector of y1(i) and Y2(i) in the unstandardized model.

(iii) Results for testing a general null hypothesis such as H0 : β0 = β0
0 for arbitrary β0

0

correspond to similar general hypotheses in the unstandardized system.
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Figure 1: Strong IV

7 Numerical Results

7.1 Numerical Evaluation of the Power Functions

For simplicity in the following calculations we set m = 1 and H0 : β = 0. The graphics are
computed numerically using the analytic forms of the density functions given in Theorems
3 and 4. We consider separately the case of a fixed number K of instruments and the case
of many instruments where K increases.

Case (i): Fixed Number of Instruments

We fix K = 3 and set Π∗2 ≈ (0.5377, 1.8339, 2.2588)
′
, based on random drawings from a

standard normal distribution. For the case with strong instruments, i.e., Π2 = Π∗2, we plot
in Figure 1a the asymptotic power functions KUR (β1;0), KPR (β1;0) of the tests against the
local alternative H1 : β = 1√

n
β1 for different values of β1. We also plot the finite-sample

power functions K(n)
UR (β1;0), K(n)

PR (β1;0) of the same tests for n = 100 in Figure 1b. For
the case with weak instruments, i.e., Π2 = 1√

n
Π∗2, we plot in Figure 2 the asymptotic (and

finite-sample) power functions KUR (β1;0), KPR (β1;0) of the test against the alternative
H1 : β = β1 for different values of β1.

As noted in Section 4, the power comparison in the weak-IV case is ambiguous and de-
pends on the value of Π∗2. For the case shown in Figure 2, it is clear that power for the PRRF
test exceeds that of the URRF test except when both powers are close to unity. To compare
the “average” performance of the PRRF and URRF tests across multiple specifications of
Π∗2, we draw 150 different Π∗2 from normal distributions with three configurations of means
and variances, and plot the average power functions in the three graphs of Figure 3. These
graphs show that PRRF power continues to exceed power of the URRF test for alternatives
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Figure 2: Weak IV

close to the null. When the elements of Π∗2 are very small on average as in Figure 3(a), the
URRF power tends to exceed PRRF power for alternatives further from the null and when
power for both tests is greater than 50%. But when the elements of Π∗2 are centred away
from the origin as in Figure 3(c), PRRF power is uniformly greater than URRF power.

Case (ii): Many Instruments K →∞

For the strong-IV case, we assume Π2(k) ∼iid (0,ΩΠ2) and set ΩΠ2 = 1. For the weak-IV
case, we assume Π∗2(k) ∼iid

(
0,Ω∗Π2

)
and set Ω∗Π2

= 1.
In all of the cases considered, the gains are apparent from using the partially restricted

reduced form for testing. The strong instrument and many instrument cases reveal un-
equivocal gains. The gains are especially evident in cases where there are many instruments
(Figures 4 and 5). In the weak instrument case (Figure 2 and 3) the power gains are clear for
all alternatives that are close to the null. Loosely speaking, if the magnitude of Π∗2 is large
relative to the variance of Ξ, then only for alternatives far from the null where power for
the PRRF and URRF tests are both closer to unity does the URRF power function exceed
the PRRF power function. So even in the weak instrument case, strength in the remaining
signal from the reduced form continues to matter in the performance of structural parameter
tests.

8 Conclusion

One advantage of using reduced forms as a vehicle for testing structural hypotheses is
that the effect of employing many instruments on testing is immediately apparent in the
dimensional linkage between reduced form and structure. The partially restricted reduced
form approach takes advantage of this linkage in using the additional information that comes
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Figure 3: Weak IV: Average Power
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Figure 4: Strong IV, Asymptotic

Figure 5: Weak IV
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from a higher dimensional reduced form while at the same time exploiting the dimensional
reduction of the restrictions that produce the structural parameters. The power gains from
lower degrees of freedom in the chi-squared limit theory are especially notable when instru-
ments are strong and the number of instruments is large, as might be expected. Gains are
also apparent in weakly identified cases especially for local departures from the null, but
they do not hold uniformly in the parameter space in this case. The results of the paper
therefore help to reveal how strength and weakness in the reduced form are transmitted to
structural coefficient testing. The approach taken in the paper also shows some of the close
connections that exist between exact finite sample distributions and asymptotic theory in
structural model testing, underlining the value of the trail pioneered by Basmann (1961) and
Bergstrom (1962).
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Appendix: Proofs

Proof of Lemma 1

Proof. Under (S-IV) and (A3′),

√
n
(

Π̂− Π
)

=
1√
n
Z ′V

a.s.−→ (ξ,Ξ) ,

√
n (βIV − β) =

(
Π̂
′

2Π̂2

)−1

Π̂
′

2

[√
n (π̂1 − π1)−

√
n
(

Π̂2 − Π2

)
β
]

a.s.−→
(

Π
′

2Π2

)−1

Π
′

2 (ξ − Ξβ) ,

√
n (π̃1 − π1) =

√
n
(

Π̂2 − Π2

)
(βIV − β) + Π2

√
n (βIV − β) +

√
n
(

Π̂2 − Π2

)
β

a.s.−→ PΠ2 (ξ − Ξβ) + Ξβ = PΠ2ξ +MΠ2Ξβ,

establishing the limit theory (5) - (7).

Under (S-IV) and (A1), Π̂
d
= NK,m+1

(
Π, n−1IK(m+1)

)
. So the matrix quadratic form

nΠ̂′Π̂ = Y ′PZY = Y ′CC ′Y, where C = Z (Z ′Z)−1/2 , is distributed as noncentral Wishart of
dimension m+ 1 with covariance matrix Im+1 and noncentrality matrix MM ′ where

M ′ = E (C ′Y ) = (Z ′Z)
− 1

2 Z ′ZΠ =
√
n [π1,Π2] =

√
nΠ2 [β, Im] .

This distribution is written as Wm+1 (K, Im+1,MM ′) . Partitioning the Wishart matrix W :=
Y ′CC ′Y conformably with the structural equation (1), we can write the matrix quadratic
form

W =

[
1
w11

m
w12

w21 W22

]
=

[
y′1Pzy1 y′1PzY2

Y ′2Pzy1 Y ′2PzY2

]
d
= Wm+1 (K, Im+1,MM ′) , (19)

where the noncentrality matrix

MM ′ = n

[
β′

Im

]
Π′2Π2 [β, Im] , (20)

has deficient rank m. Then βIV =
(

Π̂
′
2Π̂2

)′
Π̂
′
2π̂1

d
= W−1

22 w21, showing the exact finite sample

distribution of βIV to be a matrix quotient of the components of the non-central Wishart
matrix W. The analytic form of this density is derived in Phillips (1980). We may also write

this distribution in mixed normal form as βIV
d
= MN

(√
n (A′ΞAΞ)−1AΞΠ2β, (A

′
ΞAΞ)−1) ,

where AΞ =
√
nΠ2 + Ξ, by noting that AΞ = C ′Y2

d
= NK,m

(√
nΠ2, IK(m+1)

)
and C ′y1

d
=

NK (
√
nΠ2β, IK) . Continuing under the Gaussian assumption (A1) we have

π̃1 = PΠ̂2
π̂1

d
= PAΞ

(
Π2β +

1√
n
ξ

)
d
=MN

(
PAΞ

Π2β,
1

n
PAΞ

)
again with Ξ

d
= NK,m (0, IKm) and PAΞ

= AΞ (A′ΞAΞ)−1A′Ξ.
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Proof of Lemma 2

Proof. Under (I-IV) and (A3’),

√
nΠ̂ =

1√
n
ZV

a.s.−→ (ξ,Ξ)
d
= NK,m+1

(
0, IK(m+1)

)
βIV =

(√
nΠ̂

′

2

√
nΠ̂2

)−1√
nΠ̂2

√
nπ̂1

a.s.−→
(

Ξ
′
Ξ
)−1

Ξ
′
ξ

d
=MN

(
0,
(

Ξ
′
Ξ
)−1
)

√
nπ̃1 =

√
nΠ̂2

(√
nΠ̂

′

2

√
nΠ̂2

)−1√
nΠ̂2

√
nπ̂1

a.s.−→ PΞξ
d
=MN (0, PΞ)

Under (I-IV) and (A1),
√
nΠ̂ = 1√

n
ZV

d
= (ξ,Ξ), and the stated results follow.

Proof of Lemma 3

Proof. Under (W-IV) and (A3’), notice that

√
nΠ̂ =

1√
n
Z ′ (ZΠ + V ) = Π∗ +

1√
n
Z ′V

a.s.−→ Π∗2 + (ξ,Ξ) ,

βIV
a.s.−→

[
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1

(Π∗2 + Ξ)
′
(Π∗2β + ξ)

√
nπ̃1 =

√
nΠ̂2

[√
nΠ̂

′

2

√
nΠ̂2

]−1√
nΠ̂

′

2

√
nπ̂1

a.s.−→ P(Π∗2+Ξ) (π∗1 + ξ) = P(Π∗2+Ξ) (Π∗2β + ξ) .

Under (W-IV) and (A1),
√
nΠ̂

d
= Π∗2 + (ξ,Ξ) and the stated results follow.

Proof of Theorem 2

Proof. We prove the proposition for the three cases with strong, irrelevant and weak instru-
ments separately.

(i). Strong instruments: Under the null π1 = Π2β0,

√
n
(
π̃1 − Π̂2β0

)
=
√
nΠ̂2 (βIV − β0) =

√
nΠ̂2

((
Π̂
′

2Π̂2

)−1

Π̂
′

2π̂1 − β0

)
= PΠ̂2

[√
n (π̂1 − π1) +

√
n
(

Π2 − Π̂2

)
β0

]
a.s.−→ PΠ2 (ξ − Ξβ0)

d
= N

(
0,
(

1 + β
′

0β0

)
PΠ2

)
Define C := Π2

(
Π
′
2Π2

)− 1
2 . Then CC

′
= PΠ2 and C ′C = Im, so

C ′ξ
d
= N (0, C ′C = Im) ,

C ′Ξ
d
= Nm,m (0, Imm) ,

C ′ξ − C ′Ξβ0
d
= NK,m

(
0,
(

1 + β
′

0β0

)
Im

)
.
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Hence,

W
β0
PR =

n
(
π̃1 − Π̂2β0

)′ (
π̃1 − Π̂2β0

)
1 + β

′

0β0

a.s.−→ (ξ − Ξβ0)
′
PΠ2 (ξ − Ξβ0)

1 + β
′

0β0

=
(C ′ξ − C ′Ξβ0)

′
(C ′ξ − C ′Ξβ0)

1 + β
′

0β0

d
=

1

1 + β
′

0β0

Mχ2

m,β
′
0Ξ′PΠ2

Ξβ0

d
= χ2

m.

As C ′Ξβ0
d
= N

(
0, β

′

0β0 · Im
)

,

1

β
′

0β0

λS (Ξ, β0) =
β
′

0Ξ
′
C√

β
′

0β0

 C ′Ξβ0√
β
′

0β0

 d
= χ2

m.

Under the Gaussianity assumption (A1), note that

√
n
(
π̃1 − Π̂2β0

)
= PΠ̂2

[√
n (π̂1 − π1) +

√
n
(

Π2 − Π̂2

)
β0

]
d
= PAΞ

(ξ − Ξβ0)
d
=MN (−PAΞ

Ξβ0, PAΞ
)

Hence,

W
β0
PR

d
=

(ξ − Ξβ0)
′
PAΞ

(ξ − Ξβ0)

1 + β
′

0β0

d
=

1

1 + β
′

0β0

Mχ2

m,β
′
0Ξ′PAΞ

Ξβ0

(ii). Irrelevant instruments: Under the null π1 = Π2β0 ≡ 0,

√
n
(
π̃1 − Π̂2β0

)
=
√
nΠ̂2 (βIV − β0)

=
1√
n
Z ′V2

[(
1√
n
V
′

2Z
1√
n
Z ′V2

)−1
1√
n
V
′

2Z
1√
n
Z ′v1 − β0

]
a.s.−→ PΞ (ξ − Ξβ0) d = N (−Ξβ0, PΞ)

Define Υ := Ξ (Ξ′Ξ)−
1
2 . As Υ ′Υ = I, the conditional distribution of Υ ′ξ given any

realization of Υ is N (0, Υ ′Υ = Im), which does not depend on Υ , so

Υ ′ξ
d
= N (0, Im) .
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Hence,

W
β0
PR =

n
(
π̃1 − Π̂2β0

)′ (
π̃1 − Π̂2β0

)
1 + β

′

0β0

a.s.−→ (ξ − Ξβ0)
′
PΞ (ξ − Ξβ0)

1 + β
′

0β0

=
(Υ ′ξ − Υ ′Ξβ0)

′
(Υ ′ξ − Υ ′Ξβ0)

1 + β
′

0β0

d
=

1

1 + β
′

0β0

Mixed χ2

m,β
′
0Ξ′Ξβ0

.

As Ξβ0
d
= N

(
0, β

′

0β0 · IK
)

,

1

β
′

0β0

λU (Ξ, β0) =
β
′

0Ξ
′√

β
′

0β0

Ξβ0√
β
′

0β0

d
= χ2

K .

(iii). Weak instruments: Under the null π1 = Π2β0 ≡ 0,

√
n
(
π̃1 − Π̂2β0

)
=
√
nΠ̂2 (βIV − β0)

=

(
Π∗2 +

1√
n
ZV2

)
[(

Π∗2 +
1√
n
ZV2

)′ (
Π∗2 +

1√
n
ZV2

)]−1

(
Π∗2 +

1√
n
ZV2

)′ (
Π∗2β0 +

1√
n
Z ′v1

)
− β0

}

=

(
Π∗2 +

1√
n
ZV2

)[(
Π∗2 +

1√
n
ZV2

)′ (
Π∗2 +

1√
n
ZV2

)]−1

(
Π∗2 +

1√
n
ZV2

)′ (
1√
n
Z ′v1 −

1√
n
Z ′V2β0

)
a.s.−→ P(Π∗2+Ξ) (ξ − Ξβ0)

d
=MN

(
−P(Π∗2+Ξ)Ξβ0, P(Π∗2+Ξ)

)
.

Define ΥΠ∗2
:= (Π∗2 + Ξ)

(
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

)− 1
2
. As Υ

′

Π∗2
ΥΠ∗2

= I, the condition dis-

tribution of Υ
′

Π∗2
ξ given any realization of Ξ is N

(
0, Υ

′

Π∗2
ΥΠ∗2

= Im

)
, which does not

depend on Ξ, so

Υ
′

Π∗2
ξ

d
= N (0, Im) .
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Hence, as ΥΠ∗2
Υ
′

Π∗2
= P(Π∗2+Ξ),

W
β0
PR =

n
(
π̃1 − Π̂2β0

)′ (
π̃1 − Π̂2β0

)
1 + β

′

0β0

a.s.−→
(ξ − Ξβ0)

′
P(Π∗2+Ξ) (ξ − Ξβ0)

1 + β
′

0β0

=

(
Υ
′

Π∗2
ξ − Υ ′Π∗2Ξβ0

)′ (
Υ
′

Π∗2
ξ − Υ ′Π∗2Ξβ0

)
1 + β

′

0β0

d
=

1

1 + β
′

0β0

Mχ2

m,β
′
0Ξ′P

(Π∗2+Ξ)
Ξβ0

.

Proof of Lemma 4

Proof. (i). Let ξi ∼iid N (0, 1). ∀x > 0,

Ψ (x; k + 1, 0) = P

(
k+1∑
i=1

ξ2
i ≥ x

)
> P

(
k∑
i=1

ξ2
i ≥ x

)
= Ψ (x; k, 0) .

Then, ∀λ > 0,

Ψ (x; k + 1, λ) =
∞∑
j=0

e−
λ
2

(
λ
2

)j
j!

Ψ (x; k + 1 + 2j, 0)

≥
∞∑
j=0

e−
λ
2

(
λ
2

)j
j!

Ψ (x; k + 2j, 0) = Ψ (x; k, λ) .

(ii). ∀x > 0, k ∈ N+,

∂

∂λ
Ψ (x; k, λ) = −1

2
e−

λ
2Ψ (x; k, 0) +

∞∑
j=1

e−
λ
2

(
λ
2

)j−1

j!

(
j

2
− λ

4

)
· Ψ (x; k + 2j, 0)

=
1

2

∞∑
j=1

e−
λ
2

(
λ
2

)j−1

(j − 1)!
Ψ (x; k + 2j, 0)− 1

2

∞∑
j=0

e−
λ
2

(
λ
2

)j
j!

Ψ (x; k + 2j, 0)

=
1

2
[Ψ (x; k + 2, λ)− Ψ (x; k, λ)] (21)

> 0 by (i).

(iii). As Ψ (x; k + 1, 0) > Ψ (x; k, 0) ∀x > 0, ∀k ∈ N+, we have, ∀α ∈ (0, 1),

q1−α
k+1 > q1−α

k .
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For any even k ∈ N+, define

g2 (λ) := Ψ
(
q1−α
k+2 ; k + 2, λ

)
− Ψ

(
q1−α
k ; k, λ

)
.

Taking the first-order derivative at λ = 0, by (21),

g
′

2 (0) =
1

2

[
Ψ
(
q1−α
k+2 ; k + 4, 0

)
− α− Ψ

(
q1−α
k ; k + 2, 0

)
+ α

]
=

1

2

Γ
(
k+4

2
,
q1−α
k+2

2

)
Γ
(
k+4

2

) −
Γ
(
k+2

2
,
q1−α
k

2

)
Γ
(
k+2

2

)
 ,

where Γ (s, x) denotes the upper incomplete gamma function. For integer s, we have the
finite series representation

Γ (s, x) = (s− 1)! · e−x
s−1∑
j=0

xj

j!
.

Using a slight abuse of notation, it is frequently convenient in the following to suppress
the index 1 − α in q1−α

k and instead use a superscript on qk to denote powers of qk as in:
qxk ≡

(
q1−α
k

)x
. However, whenever α becomes relevant in derivations, the index 1−α will be

retained in q1−α
k . With this notation in mind, for even k, we have

g
′

2 (0) =
1

2

(k2 + 1
)
! · e−

qk+2
2

∑ k
2

+1

j=0

qjk+2

2jj!(
k
2

+ 1
)
!

−
(
k
2

)
! · e−

qk
2

∑ k
2
j=0

qjk
2jj!(

k
2

)
!


=

1

2

e−qk+2

k/2∑
j=0

qjk+2

2jj!
+ e−qk+2

q
k
2

+1

k+2

2
k
2

+1
(
k
2

+ 1
)
!
− e−qk

k/2−1∑
j=0

qjk
2jj!
− e−qk q

k
2
k

2
k
2

(
k
2

)
!


=

1

2

α + e−
qk+2

2
q
k
2

+1

k+2

2
k
2

+1
(
k
2

+ 1
)
!
− α− e−

qk
2

q
k
2
k

2
k
2

(
k
2

)
!


=

1

2

e− qk+2
2

q
k
2

+1

k+2

2
k
2

+1
(
k
2

+ 1
)
!
− e−

qk
2

q
k
2
k

2
k
2

(
k
2

)
!


=

1

2
k
2

+2
(
k
2

+ 1
)
!

[
e−

qk+2
2 q

k
2

+1

k+2 − (k + 2) e−
qk
2 q

k
2
k

]
, (22)

where the third line follows from the observation that:

α = Ψ (qk; k, 0) = e−
qk
2

k
2
−1∑
j=0

qjk
2jj!

. (23)
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Note that the ratio of the two terms in the square bracket in (22) is

e−
qk+2

2 q
k
2

+1

k+2

(k + 2) e−
qk
2 q

k
2
k

=

(
qk+2

qk

) k
2

· qk+2

k + 2
· 1

e
1
2

(qk+2−qk)
.

Taking logarithms, we have

log

 e−
qk+2

2 q
k
2

+1

k+2

(k + 2) e−
qk
2 q

k
2
k

 =
k

2
(log qk+2 − log qk) + log qk+2 − log (k + 2) +

1

2
(qk − qk+2)

≤ k

2
(qk+2 − qk) ·

1

qk
+ log qk+2 − log (k + 2) +

1

2
(qk − qk+2)

= log qk+2 − log (k + 2)− 1

2
(qk+2 − qk)

(
1− k

qk

)
,

where the inequality follows from the mean-value theorem and the fact that qk+2 > qk. By
Inglot (2010, Proposition 5.1), for k ≥ 2 and α ≤ 0.17, we have the inequality

qk ≥ k + 2 log
1

α
− 5

2
,

so that

log

 e−
qk+2

2 q
k
2

+1

k+2

(k + 2) e−
qk
2 q

k
2
k

 ≤ log qk+2−log (k + 2)−1

2
(qk+2 − qk)

(
1− k

2k + 4 log 1
α
− 5

)
, (24)

the last term of which

1− k

2k + 4 log 1
α
− 5
→ 1 as α↘ 0.

Now, recall that αe
q1−α
k+2
2 =

∑ k
2
j=0

(q1−α
k+2 )

j

2jj!
by (23). Taking derivatives with respect to α on

both sides, we have

e
q1−α
k+2
2 + e

q1−α
k+2
2 · 1

2

∂

∂α
q1−α
k+2 =

k
2∑
j=0

j
(
q1−α
k+2

)j−1

2jj!
· ∂
∂α

q1−α
k+2 =

1

2

∂

∂α
q1−α
k+2 ·

k
2
−1∑
j=0

(
q1−α
k+2

)j
2jj!

=
1

2

∂

∂α
q1−α
k+2 ·

αe q1−αk+2
2 −

(
q1−α
k+2

) k
2

2
k
2

(
k
2

)
!

 ,
which implies that

∂

∂α
q1−α
k+2 =

e
q1−α
k+2
2

αe
q1−α
k+2
2 − (q1−α

k+2 )
k
2

2
k
2 ( k2 )!

− e
q1−α
k+2
2

= − 1

1− α +
e−

q1−α
k+2
2 (q1−α

k+2 )
k
2

2
k
2 ( k2 )!

= − 1

1− α + 2ψ
(
q1−α
k+2 ; k + 2, 0

) , (25)
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where ψ (x; k, 0) denotes the pdf of χ2
k. By Lemma 5, which is stated and proved below, we

have
0 < ψ

(
q1−α
k+2 ; k + 2, 0

)
< ψ

(
q1−α
k ; k, 0

)
, (26)

and so by (25)

0 >
∂

∂α
q1−α
k >

∂

∂α
q1−α
k+2 . (27)

Next consider

h (α) := log qk+2 − log (k + 2)− 1

2
(qk+2 − qk) , (28)

and

h
′
(α) =

∂

∂α

(
log q1−α

k+2 − log (k + 2)− 1

2

(
q1−α
k+2 − q

1−α
k

))
=

1

q1−α
k+2

· ∂
∂α

q1−α
k+2 +

1

2

∂

∂α
q1−α
k − 1

2

∂

∂α
q1−α
k+2

=
1

2

∂

∂α
q1−α
k −

(
1

2
− 1

q1−α
k+2

)
· ∂
∂α

q1−α
k+2

> 0. (29)

By Chen and Rubin (1986), noting that 1
2
χ2
k ∼ Gamma

(
k
2
, 1
)
, we have the inequality

1

2
k − 1

3
<

1

2
q

1
2
k <

1

2
k, or k − 2

3
< q

1
2
k < k,

so that

h

(
1

2

)
= log q

1
2
k+2 − log (k + 2)− 1

2

(
q

1
2
k+2 − q

1
2
k

)
< log (k + 2)− log (k + 2)− 1

2
((k + 2− 1)− k) = −1

2
< 0.

As h (α) is strictly increasing on
(
0, 1

2

)
by (29), we have

h (α) < 0, ∀α ∈
(

0,
1

2

)
.

Hence, following equation (24), for α small enough, we have

log

 e−
qk+2

2 q
k
2

+1

k+2

(k + 2) e−
qk
2 q

k
2
k

 < 0,

i.e. e−
qk+2

2 q
k
2

+1

k+2 − (k + 2) e−
qk
2 q

k
2
k < 0, and thus by (22) it follows that

g
′

2 (0) < 0.
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Hence, locally in a neighborhood of 0, i.e., ∀λ ∈
(
0, λ
)

for some λ > 0, we have

Ψ
(
q1−α
k+2 ; k + 2, λ

)
< Ψ

(
q1−α
k ; k, λ

)
,

as required.

Lemma 5. For any k ≥ 2 and small enough α ∈ (0, 1),

ψ
(
q1−α
k ; k, 0

)
> ψ

(
q1−α
k+2 ; k + 2, 0

)
,

where ψ (x; k, 0) denotes the pdf for χ2
k.

Remark. We have numerically verified the stronger inequality ψ
(
q1−α
k ; k, 0

)
> ψ

(
q1−α
k+1 ; k + 1, 0

)
for all combinations of α ∈ {0.01, 0.05, 0.1} and k ≤ 1000.4

Proof. First recall that ψ (x; k, 0) = e−
x
2 x

k
2−1

2
k
2 Γ( k2 )

, so

ψ (qk + x; k, 0)

ψ (qk+2 + x; k + 2, 0)
=

e−
qk+x

2 (qk+x)
k
2−1

2
k
2 Γ( k2 )

e−
qk+2+x

2 (qk+2+x)
k
2

2
k
2 +1Γ( k2 +1)

=
e

1
2

(qk+2−qk)

k
·

(
(qk + x)

k
2
−1

(qk+2 + x)
k
2

)
. (30)

Taking logarithms of the fraction in parenthesis, we obtain

f (x) := log

(
(qk + x)

k
2
−1

(qk+2 + x)
k
2

)
=

(
k

2
− 1

)
log (qk + x)− k

2
log (qk+2 + x) ,

and

f ′ (x) =
(k − 2) qk+2 − kqk − 2x

2 (qk + x) (qk+2 + x)
. (31)

By Proposition 5.1 of Inglot (2010), and by Laurent and Massart (2000), cited in Inglot
(2010) as Theorem A, for k ≥ 2 and α ≤ 0.17, we have

qk+2 ≤ k + 2 + 2 log
1

α
+ 2

√
(k + 2) log

1

α
,

qk ≥ k + 2 log
1

α
− 5

2
,

4Computations were performed in MatLab with a machine epsilon of approximately 2 × 10−16. The
minimum difference ψ

(
q1−αk ; k, 0

)
− ψ

(
q1−αk+1 ; k + 1, 0

)
was found to be a magnitude larger than 10−7, and

the minimum ratio ψ
(
q1−αk ; k, 0

)
/ψ
(
q1−αk+1 ; k + 1, 0

)
was found to be a magnitude larger than 1 + 10−4.
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and thus

(k − 2) qk+2 − kqk

≤ (k − 2)

(
k + 2 + 2 log

1

α
+ 2

√
(k + 2) log

1

α

)
− k

(
k + 2 log

1

α
− 5

2

)
=2 (k − 2)

√
k + 2

√
log

1

α
− 4 log

1

α
+

5

2
k − 4

<0 for small enough α. (32)

Plugging the inequality (32) into (31), we have

f ′ (x) ≤ (k − 2) qk+2 − kqk
2 (qk + x) (qk+2 + x)

< 0, ∀x ∈ (0,∞) .

Hence, f (x) is decreasing in x, and so is ψ(qk+x; k,0)
ψ(qk+2+x; k+2,0)

by (30).

Now, suppose that ψ
(
q1−α
k ; k, 0

)
≤ ψ

(
q1−α
k+2 ; k + 2, 0

)
, i.e.,

ψ (qk; k, 0)

ψ (qk+2; k + 2, 0)
≤ 1.

Then, by the above, for α ≤ 0.17, we have

ψ (qk + x; k, 0)

ψ (qk+2 + x; k + 2, 0)
< 1, ∀x ∈ (0,∞) . (33)

which implies

α = Ψ
(
q1−α
k+2 ; k + 2, 0

)
=

ˆ ∞
0

ψ
(
q1−α
k+2 + x; k + 2, 0

)
dx

<

ˆ ∞
0

ψ
(
q1−α
k + x; k, 0

)
dx = Ψ

(
q1−α
k ; k, 0

)
= α,

giving a contradiction.

Proof of Theorem 3

Proof. By Theorem 2, under the null H0 : β = β0, W
β0
UR

d−→ χ2
K , so the critical value for a

size-α test of H0 is given by q1−α
K . In the following we prove the proposition for the three

cases with strong, irrelevant and weak instruments separately.

(i). Strong instruments: For the URRF test, under H1 : β = β̃n := β0 + 1√
n

(β1 − β0),

√
n
(
π̂1 − Π̂2β0

)
=
√
n (π̂1 − π1)−

√
n
(

Π̂2 − Π2

)
β̃n + Π̂2 (β1 − β0)

a.s.−→ ξ − Ξβ0 + Π2 (β1 − β0) ,
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so

W
β0
UR

a.s.−→ [ξ − Ξβ0 + Π2 (β1 − β0)]
′
[ξ − Ξβ0 + Π2 (β1 − β0)]

1 + β
′

0β0

d
= χ2

K,(β1−β0)
′
Π
′
2Π2(β1−β0)/(1+β

′
0β0)

,

and thus

KUR (β1; β0) = Ψ

(
q1−α
K ; K,

(β1 − β0)
′
Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

)
.

Under the Gaussianity assumption,

√
n
(
π̂1 − Π̂2β0

)
=
√
n (π̂1 − π1) +

√
n
(

Π2 − Π̂2

)
β̃n + Π̂2

√
n
(
β̃n − β0

)
d
= ξ − Ξβ̃n +

(
Π2 +

1√
n

Ξ

)
(β1 − β0) .

= ξ − Ξβ0 + Π2 (β1 − β0) .

Hence,

W
β0
UR

d
=

[ξ − Ξβ0 + Π2 (β1 − β0)]
′
[ξ − Ξβ0 + Π2 (β1 − β0)]

1 + β
′

0β0

d
= χ2

K,(β1−β0)
′
Π
′
2Π2(β1−β0)/(1+β

′
0β0)

,

and thus

K(n)
UR (β1; β0) = Ψ

(
q1−α
K ; K,

(β1 − β0)
′
Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

)
.

For the PRRF test, as W
β0
PR → χ2

m under H0, so the critical value of the size-α is given
by q1−α

m . Under H1 : β = β̃n,

√
n
(
π̃1 − Π̂2β0

)
= Π̂2

√
n
(
βIV − β̃n

)
+ Π̂2 (β1 − β0)

= PΠ̂2

√
n (π̂1 − π1)− PΠ̂2

√
n
(

Π̂2 − Π2

)
β̃n + Π̂2 (β1 − β0)

a.s.−→ PΠ2 (ξ − Ξβ0) + Π2 (β1 − β0) ,

so

W
β0
PR

a.s.−→ [PΠ2 (ξ − Ξβ0) + Π2 (β1 − β0)]
′
[PΠ2 (ξ − Ξβ0) + Π2 (β1 − β0)]

1 + β
′

0β0

d
= χ2

m,(β1−β0)
′
Π
′
2Π2(β1−β0)/(1+β

′
0β0).
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Note that, under the conditions for Lemma 4 (iii), we have

KPR (β1; β0) = Ψ

(
q1−α
m ; m,

(β1 − β0)
′
Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

)

> Ψ

(
q1−α
K ; K,

(β1 − β0)
′
Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

)
= KUR (β1; β0) ,

Under the Gaussianity assumption,

√
n
(
π̃1 − Π̂2β0

)
d
= PAΞ

(
ξ − Ξβ̃n

)
+ AΞ (β1 − β0)

= PAΞ
(ξ − Ξβ0 + Π2 (β1 − β0))

so

W
β0
PR

d
=

1

1 + β
′

0β0

χ2
m,κn

with

κn = (Ξβ0 − Π2 (β1 − β0))
′
PAΞ

(Ξβ0 − Π2 (β1 − β0)) .

Hence,

K(n)
PR (β1; β0) = Ψ

((
1 + β

′

0β0

)
q1−α
m ; m, κn

)
(ii). Irrelevant instruments: For the URRF test, under H1 : β = β1,

√
n
(
π̂1 − Π̂2β0

)
a.s.−→ ξ − Ξβ0

d
= N

(
0,
(

1 + β
′

0β0

)
· IK

)
so W

β0
UR

d−→ χ2
K , and thus

KUR (β1; β0) = α.

For the PRRF test, the asymptotic distributions of W
β0
PR under H0 and under H1 are

the same

W
β0
PR

d−→ 1

1 + β
′

0β0

χ2
m,λI(Ξ,β0),

so
KPR (β1; β0) = α.

(iii). Weak instruments: For the URRF test, under H1 : β = β1 6= β0,

√
n
(
π̂1 − Π̂2β0

)
=
√
n
(
π̂1 − Π̂2β1

)
+
√
nΠ̂2 (β1 − β0)

a.s.−→ ξ − Ξβ1 + (Π∗2 + Ξ) (β1 − β0)

= ξ − Ξβ0 + Π∗2 (β1 − β0) ,
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so

W
β0
UR

a.s.−→ (ξ − Ξβ0 + Π∗2 (β1 − β0))
′
(ξ − Ξβ0 + Π∗2 (β1 − β0))

1 + β
′

0β0

d
= χ2

K,(β1−β0)
′
Π∗
′

2 Π∗2(β1−β0)/(1+β
′
0β0)

,

and thus

KUR (β1; β0) = Ψ

(
q1−α
K ; K,

(β1 − β0)
′
Π∗
′

2 Π∗2 (β1 − β0)

1 + β
′

0β0

)
.

For the PRRF test, under H0, W
β0
PR

d−→ 1

1+β
′
0β0

Mχ2
m,λW (Ξ,β0). Let c1−α

β0
be the critical

value of the size-α test such that

P
{

1

1 + β
′

0β0

Mχ2

m,β
′
0β0·χ2

K

≥ c1−α
β0

}
= α.

Then, under H1,

√
n
(
π̃1 − Π̂2β0

)
=
√
nΠ̂2 (βIV − β1) +

√
nΠ̂2 (β1 − β0)

= P√nΠ̂2

(√
nπ̂1 −

√
nΠ̂2β1

)
+
√
nΠ̂2 (β1 − β0)

a.s.−→ P(Π∗2+Ξ) (ξ − Ξβ1) + (Π∗2 + Ξ) (β1 − β0)

≡ P(Π∗2+Ξ) (ξ − Ξβ0 + Π∗2 (β1 − β0))

so

W
β0
PR

d−→ 1

1 + β
′

0β0

Mχ2

m,(Ξβ0−Π∗2(β1−β0))
′
P
(Π∗2+Ξ)(Ξβ0−Π∗2(β1−β0))

,

and thus

KPR (β1; β0) = P
{

1

1 + β
′

0β0

Mχ2

m,(Ξβ0−Π∗2(β1−β0))
′
PΠ∗2+Ξ(Ξβ0−Π∗2(β1−β0))

≥ c1−α
β0

}
= E

[
Ψ
((

1 + β
′

0β0

)
c1−α
β0

; m, (Ξβ0 − Π∗2 (β1 − β0))
′
P(Π∗2+Ξ) (Ξβ0 − Π∗2 (β1 − β0))

)]
.

For the special case of β0 = 0, c1−α
β0

= q1−α
m , and W 0

PR
d−→Mχ2

m,β
′
1Π∗
′

2 PΠ∗2+ΞΠ∗2β1

. Hence

we have
KPR (β1; β0) = E

[
Ψ
(
q1−α
m ; m, β

′

1Π∗
′

2 P(Π∗2+Ξ)Π∗2β1

)]
.
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Proof of Theorem 4

Proof. We prove the result for different strengths of instruments.

(i). Strong instruments, against H1 : β = β̃n := β0 + 1√
nK

(β1 − β0): For the URRF test,

under H0 : β = β0, W̃
β0
UR

d→ N (0, 2) , so the critical value for the size-α test under
the null is

√
2Q−1 (α), where Q (x) = 1 − Φ (x) denotes the survival function for the

standard normal distribution with cdf Φ and density ϕ. Under H1 : β = β̃n and (A3’)

W̃
β0
UR =

√
K

 1
K
n
(
π̂1 − Π̂2β̃n + 1√

nK
Π̂2 (β1 − β0)

)′ (
π̂1 − Π̂2β̃n + 1√

nK
Π̂2 (β1 − β0)

)
1 + β

′

0β0

− 1


a.s.−→ lim

K→∞

√
K

 1

K

(
ξ − Ξβ0 + 1√

K
Π2 (β1 − β0)

)′ (
ξ − Ξβ0 + 1√

K
Π2 (β1 − β0)

)
1 + β

′

0β0

− 1


The term

1

K

(
ξ − Ξβ0 + 1√

K
Π2 (β1 − β0)

)′ (
ξ − Ξβ0 + 1√

K
Π2 (β1 − β0)

)
1 + β

′

0β0

(34)

is 1
K

times a noncentral chi-squared distribution with K degrees of freedom and non-
centrality parameter

(β1 − β0)
′ 1
K

Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

a.s.−→ (β1 − β0)
′
ΩΠ2 (β1 − β0)

1 + β
′

0β0

.

The term (34) can also be interpreted as the sample average ofK i.i.d. random variables
drawn from the noncentral chi-squared distribution with one degree of freedom and
noncentrality parameter

1

K
·

(β1 − β0)
′ 1
K

Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

.

The mean and variance of a χ2
1,λ variate are (1 + λ) and 2 (1 + 2λ), so that under H1

we have

W̃
β0
UR =

√
K

(
1

K
W

β0
U − 1− 1

K

(β1 − β0)
′ 1
K

Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

)

+
1√
K
·

(β1 − β0)
′ 1
K

Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

d−→ N (0, 2) .
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It follows that the URRF test has trivial asymptotic powerKUR (β1; β0) = Q (Q−1 (α)) =
α against local alternatives H1 : β = β0 + 1√

nK
(β1 − β0) . For the PRRF test, under

H0 : β = β0 we have,

W
β0
PR

a.s.−→ χ2
m,

so the critical value is given by q1−α
m . Under (A3’) and H1 : β = β0 + 1√

nK
(β1 − β0),

we have

W
β0
PR

a.s.−→ lim
K→∞

[
C
′
(ξ − Ξβ0) + 1√

K
C
′
Π2 (β1 − β0)

]′ [
C
′
(ξ − Ξβ0) + 1√

K
C
′
Π2 (β1 − β0)

]
1 + β

′

0β0

d
= χ2

m,limK→∞
1
K

(β1−β0)
′
Π
′
2Π2(β1−β0)/(1+β

′
0β0)
≡ χ2

m,(β1−β0)
′
ΩΠ2

(β1−β0)/(1+β
′
0β0)

,

so the PRRF test has nontrivial asymptotic power given by

KPR (β1; β0) = Ψ

(
q1−α
m ;m,

(β1 − β0)
′
ΩΠ2 (β1 − β0)

1 + β
′

0β0

)
.

(ii). Strong instruments, against H1 : β = β0 + 1√
nK1/4 (β1 − β0). A replication of the above

analysis reveals that under H1

W̃
β0
UR =

√
K

(
1

K
W

β0
U − 1− 1

K

(β1 − β0)
′ 1√

K
Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

)
+

(β1 − β0)
′ 1
K

Π
′
2Π2 (β1 − β0)

1 + β
′

0β0

d−→ N

(
(β1 − β0)

′
ΩΠ2 (β1 − β0)

1 + β
′

0β0

, 2

)

so that the URRF test has nontrivial asymptotic power

KUR (β1; β0) = Q

(
Q−1 (α)− 1√

2

(β1 − β0)
′
ΩΠ2 (β1 − β0)

1 + β
′

0β0

)
> α,

while the PRRF test has unit asymptotic power

KPR (β1; β0) = lim
K→∞

Ψm

(
q1−α
m ;m,

√
K

(β1 − β0)
′
ΩΠ2 (β1 − β0)

1 + β
′

0β0

)
= 1.

(iii). Weak instruments, against H1 : β = β0 + 1√
K

(β1 − β0): For the URRF test, under

H0 : β = β0, W̃
β0
UR

d−→ N (0, 2), so the critical value remains the same. Under (A3’)
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and H1, we have
√
n
(
π̂1 − Π̂2β0

)
a.s.−→ ξ − Ξβ0 + Π∗2

1√
K

(β1 − β0) and therefore

W̃
β0
UR

a.s.−→ lim
K→∞

√
K

 1

K

(
ξ − Ξβ0 + Π∗2

1√
K

(β1 − β0)
)′ (

ξ − Ξβ0 + Π∗2
1√
K

(β1 − β0)
)

1 + β
′

0β0

− 1


d
= lim

K→∞

√
K

 1

K

(
ξ − Ξβ0 + 1√

K
Π∗2 (β1 − β0)

)′ (
ξ − Ξβ0 + 1√

K
Π∗2 (β1 − β0)

)
1 + β

′

0β0

− 1− λK
K


+

λK√
K

d
= N (0, 2) .

with

λK :=
(β1 − β0)

′ 1
K

Π∗
′

2 Π∗2 (β1 − β0)

1 + β
′

0β0

a.s.−→
(β1 − β0)

′
ΩΠ∗2

(β1 − β0)

1 + β
′

0β0

,

and 1√
K
λK

a.s.−→ 0. So the URRF test again has trivial asymptotic power KUR (β1; β0) =
α. For the PRRF test, under H0,

W
β0
PR

a.s.−→ lim
K→∞

(ξ − Ξβ0)
′
P(Π∗2+Ξ) (ξ − Ξβ0)

1 + β
′

0β0

d
= lim

K→∞

1(
1 + β

′

0β0

)Mχ2

m,β
′
0ΞP

(Π∗2+Ξ)
Ξβ0

For β0 = 0, then W̃ 0
PR = W 0

PR
d−→ χ2

m, so the critical value is given by

c1−α
0 = q1−α

m .

For β0 6= 0,

β
′

0ΞP(Π∗2+Ξ)Ξβ0 = K · 1

K
ΞP(Π∗2+Ξ)Ξβ0

a.s.−→∞.

By Muirhead (1982, p. 46, Problem 1.18) ,

χ2
m,λ −m− λ√
2 (m+ 2λ)

d−→ N (0, 1) as λ→∞.

Hence, conditional on the sigma algebra σ
((

Ξ(k)

)∞
k=1

)
, and expanding the probability

space as needed to replace weak convergence by a.s. convergence we have

(ξ − Ξβ0)
′
P(Π∗2+Ξ) (ξ − Ξβ0)−m− β ′0Ξ

′
P(Π∗2+Ξ)Ξβ0√

m+ 2β
′

0ΞP(Π∗2+Ξ)Ξβ0

a.s.−→ N (0, 2) .
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As the limit distribution does not depend on Ξ, the unconditional limit distribution
will also be given by N (0, 2). As

1

K
Ξ
′
Ξ

a.s.−→ Im,
1

K
Π∗
′

2 Π∗2
a.s.−→ ΩΠ∗2

,
1

K
Π∗
′

2 Ξ
a.s.−→ 0,

we have

1

K
β
′

0ΞP(Π∗2+Ξ)Ξβ0 =
1

K
β
′

0Ξ
′
(Π∗2 + Ξ)

[
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1
1

K
(Π∗2 + Ξ)

′
Ξβ0

a.s.−→ β
′

0

(
ΩΠ∗2

+ Im
)−1

β0.

Let (Ξ′Ξ)ij denote the ij-th element of the m×m matrix Ξ′Ξ. Since (Ξ′Ξ)ii ∼ χ2
K ,

√
K

(
1

K
(Ξ′Ξ)ii − 1

)
d−→ N (0, 2) .

Also, for i 6= j, (Ξ′Ξ)ij =
∑K

k=1 ΞkiΞkj with E [ΞkiΞkj] = 0 and E
[
Ξ2
kiΞ

2
kj

]
= 1, so

1√
K

(
Ξ
′
Ξ
)
ij

d−→ N (0, 1) .

It is easily shown that Cov
[(

Ξ
′
Ξ
)
ij
,
(
Ξ
′
Ξ
)
hl

]
= 0 ∀ (i, j) 6= (h, l) . Let ΩΞ′Ξ denote

the asymptotic variance-covariance matrix as described above. Then, working in the
expanded probability space, the limiting matrix variate

∆Ξ′Ξ := lim
K→∞

√
K

(
1

K
Ξ′Ξ− Im

)
d
= Nm,m (0,ΩΞ′Ξ) .

is well-defined almost surely with nondegenerate limit distribution. Also, notice that

1√
K

Π∗
′

2 Ξ ∼MNm,m

(
0, Im ⊗

1

K
Π∗
′

2 Π∗2

)
d−→ N

(
0, Im ⊗ ΩΠ∗2

)
,

and so we may similarly define ∆Π∗
′

2 Ξ := limK→∞
1√
K

Π∗
′

2 Ξ. By direct algebraic decom-
position, we can write

1√
K

Ξ
′
P(Π∗2+Ξ)Ξ−

√
K
(
ΩΠ∗2

+ Im
)−1

=
1

K
Ξ
′
(Π∗2 + Ξ)

[
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1(
1√
K

Π∗
′

2 Ξ +
√
K

(
1

K
Ξ
′
Ξ− Im

))
+

(
1√
K

Ξ
′
Π∗2 +

√
K

(
1

K
Ξ
′
Ξ− Im

))[
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1

+
√
K

[
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1

−
√
K
(
ΩΠ∗2

+ Im
)−1

(35)
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Define the limiting matrix variate ∆Π∗
′

2 Π∗2
:= limK→∞

√
K
(

1
K

Π∗
′

2 Π∗2 − ΩΠ∗2

)
and let

MK =
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ) , M := ΩΠ∗2

+ Im.

By virtue of the above limit theory we have

√
K (MK −M) =

√
K

(
1

K
Π∗
′

2 Π∗2 − ΩΠ∗2

)
+
√
K

(
1

K
Ξ
′
Ξ− Im

)
+

1√
K

Π∗
′

2 Ξ +
1√
K

Ξ
′
Π∗2

a.s.−→ ∆Π∗
′

2 Ξ +∆Ξ′Ξ + ∆
′

Π∗
′

2 Ξ
+∆Π∗

′
2 Π∗2

=: ∆.

Since M−1 > 0 and MK > 0 a.s., we deduce by standard matrix delta methods that√
K
(
M−1

K −M−1
) a.s.−→ −M−1∆M−1, i.e.,

√
K

[
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1

−
√
K
(
ΩΠ∗2

+ Im
)−1 a.s.−→ −

(
ΩΠ∗2

+ Im
)−1

∆
(
ΩΠ∗2

+ Im
)−1

Then, in view of (35), we have

1√
K

Ξ
′
P(Π∗2+Ξ)Ξ−

√
K
(
ΩΠ∗2

+ Im
)−1

a.s.−→
(
Im + ΩΠ∗2

)−1
(

∆Π∗
′

2 Ξ + ∆Ξ′Ξ

)
+
(

∆Π∗
′

2 Ξ + ∆Ξ′Ξ

)′ (
Im + ΩΠ∗2

)−1

−
(
ΩΠ∗2

+ Im
)−1

∆
(
ΩΠ∗2

+ Im
)−1

. (36)

Hence,

W̃
β0
PR :=

1√
K

(
W

β0
PR −

m+Kβ
′

0

(
ΩΠ∗2

+ Im
)−1

β0

1 + β
′

0β0

)

=

√
m
K

+ 2 · 1
K
β
′

0ΞP(Π∗2+Ξ)Ξβ0

1 + β
′

0β0

·
(ξ − Ξβ0)

′
PΠ∗2+Ξ (ξ − Ξβ0)−m− β ′0ΞP(Π∗2+Ξ)Ξβ0√

m+ 2β
′

0ΞP(Π∗2+Ξ)Ξβ0

+
β
′

0

[
1√
K

Ξ
′
P(Π∗2+Ξ)Ξ−

√
K
(
ΩΠ∗2

+ Im
)−1
]
β0

1 + β
′

0β0

a.s.−→ 1

1 + β
′

0β0

[
N
(

0, 4β
′

0

(
ΩΠ∗2

+ Im
)−1

β0

)
+ 2β

′

0

(
Im + Ωi

Π∗2

)−1 (
∆Π∗

′
2 Ξ + ∆Ξ′Ξ

)
β0

−β ′0
(
ΩΠ∗2

+ Im
)−1

∆
(
ΩΠ∗2

+ Im
)−1

β0

]
d
= N

(
0,AVar

[
W̃

β0
PR

])
.
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The asymptotic normality of W̃
β0
PR follows from the fact that the component vari-

ates ∆Π∗
′

2 Ξ,∆Ξ′Ξ,∆ are jointly all normally distributed with zero mean. However, the

asymptotic variance is complicated (though analytically derivable) due to the correla-
tion between the random variables. The critical value is then given by

c1−α
β0

=

q
1−α
m , β0 = 0√
AVar

[
W̃

β0
PR

]
·Q−1 (α) , β0 6= 0

.

Under H1 : β = β̃n = β0 + 1√
K

(β1 − β0), we have as n→∞

√
n
(
π̃1 − Π̂2β0

)
a.s.−→ P(Π∗2+Ξ)

(
ξ − Ξβ0 + Π∗2

1√
K

(β1 − β0)

)
For β0 = 0, the noncentrality parameter λK for the asymptotic distribution of W̃ 0

PR =
W 0
PR is

λK =
1

K
β
′

1Π∗
′

2 P(Π∗2+Ξ)Π∗2β1
a.s.−→ β

′

1ΩΠ∗2

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
β1,

and so
W̃ 0
PR

a.s.−→ χ2

m,β
′
1ΩΠ∗2

(
ΩΠ∗2

+Im
)−1

ΩΠ∗2
β1

.

Hence, the PRRF test has nontrivial power:

KPR (β1;0) = Ψ
(
q1−α
m ;m,β

′

1ΩΠ∗2

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
β1

)
≥ α.

For β0 6= 0, note that now the noncentrality parameter λK for the asymptotic distri-

bution of W
β0
PR is such that

1√
K
λK −

√
Kβ0

(
ΩΠ∗2

+ Im
)−1

β0

=

[
1√
K
β
′

0Ξ
′
P(Π∗2+Ξ)Ξβ0 −

√
Kβ0

(
ΩΠ∗2

+ Im
)−1

β0

]
− 2

[
1√
K
β
′

0Ξ
′
P(Π∗2+Ξ)Π∗2

1√
K

(β1 − β0)

]
+

1√
K

[
1√
K

(β1 − β0)
′
Π∗2P(Π∗2+Ξ)Π∗2

1√
K

(β1 − β0)

]
(37)

Notice that

1

K
Π∗
′

2 P(Π∗2+Ξ)Π∗2 =
1

K
Π∗
′

2 (Π∗2 + Ξ)

[
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1
1

K
(Π∗2 + Ξ)

′
Π∗2

a.s.−→ Ω
′

Π∗2

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(38)

1

K
Ξ
′
P(Π∗2+Ξ)Π∗2

a.s.−→
(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(39)
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Hence, applying (36), (38) and (39) to the corresponding terms in the three square
brackets in (37), we have

1√
K
λK −

√
Kβ0

(
ΩΠ∗2

+ Im
)−1

β0

a.s.−→2β
′

0

(
ΩΠ∗2

+ Im
)−1
(

∆Π∗
′

2 Ξ + ∆Ξ′Ξ

)
β0 − β

′

0

(
ΩΠ∗2

+ Im
)−1

∆
(
ΩΠ∗2

+ Im
)−1

β0

− 2β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) , (40)

so that

W̃
β0
PR :=

1√
K

(
W

β0
PR −

m+Kβ
′

0

(
ΩΠ∗2

+ Im
)−1

β0

1 + β
′

0β0

)

=

√
m
K

+ 2λK
K

1 + β
′

0β0

·

(
ξ − Ξβ0 + Π∗2

1√
K

(β1 − β0)
)′
P(Π∗2+Ξ)

(
ξ − Ξβ0 + Π∗2

1√
K

(β1 − β0)
)
−m− λK

√
m+ 2λK

+

1√
K
λK −

√
Kβ0

(
ΩΠ∗2

+ Im
)−1

β0

1 + β
′

0β0

a.s.−→ N

(
−

2β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0)

1 + β
′

0β0

,AVar
[
W̃

β0
PR

])
It follows that the power of the PRRF test for β0 6= 0 is given by

KPR (β1; β0) = Q

Q−1 (α) +
2β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0)√

AVar
[
W̃

β0
PR

]
·
(
1 + β

′

0β0

)
 ,

and KPR (β1; β0) ≥ α if and only if

β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) ≤ 0.

(iv). Weak instruments, against H1 : β = β0 + 1
K1/4 (β1 − β0): Note that the null distri-

butions of the URRF and the PRRF test statistics both remain the same as in (iii).
Under H1, the URRF test statistic

W̃
β0
UR

a.s.−→ lim
K→∞

√
K

[
1

K

(
ξ − Ξβ0 + 1

K1/4 Π∗2 (β1 − β0)
)′ (

ξ − Ξβ0 + 1
K1/4 Π∗2 (β1 − β0)

)
1 + β

′

0β0

− 1

]
d
= lim

K→∞

√
K

[
1

K

(
ξ − Ξβ0 + 1

K1/4 Π∗2 (β1 − β0)
)′ (

ξ − Ξβ0 + 1
K1/4 Π∗2 (β1 − β0)

)
1 + β

′

0β0

− 1− λK
K

]
+

λK√
K

d
= N

(
(β1 − β0)

′
ΩΠ∗2

(β1 − β0)

1 + β
′

0β0

, 2

)
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where

λK :=
(β1 − β0)

′ 1√
K

Π∗
′

2 Π∗2 (β1 − β0)

1 + β
′

0β0

,

1√
K
λK =

(β1 − β0)
′ 1
K

Π∗
′

2 Π∗2 (β1 − β0)

1 + β
′

0β0

a.s.−→
(β1 − β0)

′
ΩΠ∗2

(β1 − β0)

1 + β
′

0β0

.

Hence, the asymptotic power of the URRF test is

KUR (β1; β0) = Φ

(
Φ−1 (α)−

(β1 − β0)
′
ΩΠ∗2

(β1 − β0)
√

2
(
1 + β

′

0β0

) )
.

For the PRRF test,

√
n
(
π̃1 − Π̂2β0

)
 P(Π∗2+Ξ)

(
ξ − Ξβ0 +

1

K1/4
Π∗2 (β1 − β0)

)
.

For β0 = 0, the noncentrality parameter λK diverges to infinity:

λK =
√
K · 1

K
β
′

1Π∗
′

2 P(Π∗2+Ξ)Π∗2β1
a.s.−→∞,

so the PRRF test has unitary power:

KPR (β1;0) = 1.

For β0 6= 0, note that now the noncentrality parameter λK is such that

1√
K
λK −

√
Kβ0

(
ΩΠ∗2

+ Im
)−1

β0

=

[
1√
K
β
′

0Ξ
′
P(Π∗2+Ξ)Ξβ0 −

√
Kβ0

(
ΩΠ∗2

+ Im
)−1

β0

]
− 2

[
1√
K
β
′

0Ξ
′
P(Π∗2+Ξ)Π∗2

1

K1/4
(β1 − β0)

]
+

[
1√
K
· 1

K1/4
(β1 − β0)

′
(

Π∗2P(Π∗2+Ξ)Π∗2

) 1

K1/4
(β1 − β0)

]
(41)

By (40), the term in the first square bracket converges to a nondegenerate random
variable. By (38), the term in the third bracket converges to a finite constant:

(β1 − β0)
′
Ω
′

Π∗2

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0)

By (39),

1

K
β
′

0Ξ
′
P(Π∗2+Ξ)Π∗2 (β1 − β0)

a.s.−→ β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) .
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If the right-hand side is nonzero, the term in the second bracket of (41) may diverge to

positive or negative infinity, depending on the sign of β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) 6=

0. Then:

1√
K
λK −

√
Kβ0

(
ΩΠ∗2

+ Im
)−1

β0
a.s.−→

{
∞, β

′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) < 0,

−∞, β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) > 0.

In the particular case where

β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) = 0,

notice that

1√
K
β
′

0Ξ
′
P(Π∗2+Ξ)Π∗2

1

K1/4
(β1 − β0)

= β
′

0

1

K
Ξ
′
(Π∗2 + Ξ)

[
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1
1

K3/4

(
Π∗
′

2 Π∗2 + Ξ
′
Π∗2

)
(β1 − β0)

= K−
1
4 · β ′0

1

K
Ξ
′
(Π∗2 + Ξ)

[
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1

×
(√

K

(
1

K
Π∗
′

2 Π∗2 − ΩΠ∗2

)
+

1√
K

Ξ
′
Π∗2

)
(β1 − β0)

+K−
1
4 · β ′0

1

K
Ξ
′
(Π∗2 + Ξ)

[
1

K
(Π∗2 + Ξ)

′
(Π∗2 + Ξ)

]−1√
KΩΠ∗2

(β1 − β0)

= oa.s. (1)−K−
1
4β
′

0

(
1√
K

Ξ
′
Π∗2 +

1√
K

Ξ
′
Ξ

)(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0)

= oa.s. (1)− oa.s (1)−K−
1
4β
′

0

√
K

(
1

K
Ξ
′
Ξ− I

)(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0)

+K−
1
4

√
Kβ

′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0)

= oa.s. (1)

since β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) = 0. In this particular case, by (41),

1√
K
λK −

√
Kβ0

(
ΩΠ∗2

+ Im
)−1

β0

a.s.−→2β
′

0

(
ΩΠ∗2

+ Im
)−1
(

∆Π∗
′

2 Ξ + ∆Ξ′Ξ

)
β0 − β

′

0

(
ΩΠ∗2

+ Im
)−1

∆
(
ΩΠ∗2

+ Im
)−1

β0

+ (β1 − β0)
′
Ω
′

Π∗2

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) .

44



Hence,

W̃
β0
PR :=

1√
K

(
W

β0
PR −

m+Kβ
′

0

(
ΩΠ∗2

+ Im
)−1

β0

1 + β
′

0β0

)

=

√
m
K

+ 2λK
K

1 + β
′

0β0

·

(
ξ − Ξβ0 + Π∗2

1√
K

(β1 − β0)
)′
PΠ∗2+Ξ

(
ξ − Ξβ0 + Π∗2

1√
K

(β1 − β0)
)
−m− λK

√
m+ 2λK

+

1√
K
λK −

√
Kβ0

(
ΩΠ∗2

+ Im
)−1

β0

1 + β
′

0β0

a.s.−→


+∞, β

′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) < 0,

N
(
µ,AVar

[
W̃

β0
PR

])
, β

′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) = 0,

−∞, β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) > 0.

where

µ :=
(β1 − β0)

′
Ω
′

Π∗2

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0)

1 + β
′

0β0

≥ 0.

Thus, the asymptotic power of the PRRF test is given by

KPR (β1; β0) =


1, β

′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) < 0,

Q

Q−1 (α)− µ√
AVar

[
W̃
β0
PR

]
 ≥ α, β

′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) = 0,

0, β
′

0

(
ΩΠ∗2

+ Im
)−1

ΩΠ∗2
(β1 − β0) > 0.
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