Accepted Manuscript

Title: A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses

Authors: Alastair Brown, Roseanna Wright, Lisa Mevenkamp,

Chris Hauton

PII: S0166-445X(17)30182-0

DOI: http://dx.doi.org/doi:10.1016/j.aquatox.2017.06.028

Reference: AQTOX 4693

To appear in: Aquatic Toxicology

Received date: 21-2-2017 Revised date: 23-6-2017 Accepted date: 25-6-2017

Please cite this article as: Brown, Alastair, Wright, Roseanna, Mevenkamp, Lisa, Hauton, Chris, A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses. Aquatic Toxicology http://dx.doi.org/10.1016/j.aquatox.2017.06.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 A comparative experimental approach to ecotoxicology in shallow-water and deep-sea 2 holothurians suggests similar behavioural responses 3 Alastair Brown^{1*}, Roseanna Wright¹, Lisa Mevenkamp², Chris Hauton¹ 4 5 ¹Ocean and Earth Science, National Oceanography Centre Southampton, University of 6 Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK 7 ²Ghent University, Marine Biology Research Group, Krijgslaan 281 S8, 9000 Ghent, Belgium 8 *alastair.brown@noc.soton.ac.uk 9 10 11 12 **Highlights** Shallow-water and deep-sea holothurians avoided copper-contaminated sediment. 13 Shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa. 14 Avoidance behaviour may have bioenergetic consequences. 15 16 **Abstract** 17 Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding 18 ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is 19 20 technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure 21 on toxicity, and how adaptation to deep-sea environmental conditions might moderate these 22

effects, are unknown. To address these uncertainties we assessed behavioural and
physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial
sediments in a laboratory experiment using a shallow-water holothurian (Holothuria
forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both
species demonstrated sustained avoidance behaviour, evading contact with contaminated
artificial sediment. However, A. sp. demonstrated sustained avoidance of 5 mg l ⁻¹ copper-
contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance
of 5 mg l ⁻¹ copper-contaminated artificial sediment, suggesting that <i>H. forskali</i> may be more
tolerant of metal exposure over 96 h. Nonetheless, the acute behavioural response appears
consistent between the shallow-water species and the deep-sea species, suggesting that H .
forskali may be a suitable ecotoxicological proxy for A. sp. in acute (\leq 24 h) exposures which
may be representative of deep-sea mining impacts. No antioxidant response was observed in
either species, which was interpreted to be the consequence of avoiding copper exposure.
Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies
for deep-taxa, differences in methodological and analytical approaches, and in sex and
reproductive stage of experimental subjects, require caution in assessing the suitability of H .
forskali as an ecotoxicological proxy for A. sp Nonetheless, avoidance behaviour may have
bioenergetic consequences that affect growth and/or reproductive output, potentially
impacting fecundity and/or offspring fitness, and thus influencing source-sink dynamics and
persistence of wider deep-sea populations.

Keywords

- bathymetric; deep-sea mining; ecology; hydrostatic pressure; physiology; temperature;
- 46 toxicology

Introduction

49	Interest in exploiting deep-sea mineral resources is increasing, driven by rising metal prices
50	and the challenges of achieving environmentally and socio-economically acceptable solutions
51	for extraction, processing, and disposal of materials from low-grade rock deposits on land.
52	Economically important metals and rare-earth elements are present in deep-sea massive
53	polymetallic sulphides, polymetallic manganese nodules, and cobalt-rich ferromanganese
54	crusts (Petersen et al. 2016), and even muds (Kato et al. 2011). However, despite great
55	international attention the responses of targeted ecosystems to mineral extraction remain
56	largely unknown. The remoteness of deep-sea ecosystems makes experimental assessment of
57	deep-sea mining impacts challenging, and the urgency to exploit these resources may drive
58	researchers to use shallow-water ecosystems as proxies in assessments that influence policy-
59	making. The extensive data available for shallow-water taxa make this an attractive approach,
60	but the potential synergies that may arise from the interaction of stressors with environmental
61	factors, such as temperature, hydrostatic pressure, and oxygen concentration (Pörtner 2010;
62	Sokolova 2013; Brown and Thatje 2015), are typically ignored (Mestre et al. 2013).
63	Nevertheless, these synergies may be crucial to accurately project the impacts of deep-sea
64	mineral exploitation throughout species' thermal and baric distributions (Brown et al. in
65	revision). Further, whether shallow-water taxa are suitable proxies for deep-sea taxa remains
66	to be revealed; adaptation to environmental conditions in the deep sea may invalidate such an
67	approach by affecting sensitivity to potential stressors.
68	Extraction of deep-sea mineral deposits may have significant ecotoxicological impacts on the
69	deep-sea fauna. For example, the polymetallic manganese nodules which form on abyssal
70	plains comprise high concentrations of potentially toxic metals such as copper (Ramirez-
71	Llodra et al. 2011) which may be released during extraction processes (Levin et al. 2016;

72	Gollner et al. 2017). Few studies have employed a comparative approach to explore the
73	effects of deep-sea conditions on sensitivity to toxicants, and these have predominantly
74	focused on adaptation to toxic challenges presented by hydrothermal vent environment.
75	However, these studies have assessed in situ biomarker expression (metallothioneins,
76	antioxidant enzymes, lipid peroxidation) and/or metal accumulation in hydrothermal vent and
77	coastal shrimp (Geret et al. 2002; Kadar et al. 2006; Gonzalez-Rey et al. 2007, 2008). Whilst
78	this approach identifies in situ physiology at ambient toxicant concentrations, it has yielded
79	limited information regarding similarities and/or differences in responses and sensitivity to
80	elevated toxicant concentrations among species from different environments. Such
81	information may only be revealed through a comparative experimental approach, where
82	individuals from different phylogenetically related shallow-water and deep-sea species are
83	exposed to similar challenges under native environmental conditions (e.g. hydrostatic
84	pressure, temperature).
85	Recent experimental assessment of the effects of hydrostatic pressure and temperature on
86	sublethal responses to copper exposure in the deep-sea hydrothermal vent shrimp Rimicaris
87	exoculata at 10°C and 30.0 MPa (Auguste et al. 2016) and the shallow-water shrimp
88	Palaemon varians provided the first opportunity to develop significant insight into caridean
89	adaptation to toxicity in a hydrothermal vent environment (Brown et al. in revision).
90	Comparisons suggest that sensitivity and responses to toxicants may not differ between these
91	species at a common temperature at native hydrostatic pressure, suggesting that shallow-
92	water taxa may be suitable ecotoxicological proxies for deep-sea taxa (Brown et al. in
93	revision). However, P. varians is significantly more tolerant of both copper and cadmium
94	than other shallow-water caridean shrimp species, perhaps as a result of adaptations to highly
95	variable environmental temperature, salinity, and oxygen concentration in estuarine, salt
96	marsh, and saline lagoon habitat (Brown et al. in revision). Consequently, matching the

environmental variability experienced by deep-sea species may be a key criterion for the
selection of shallow-water ecotoxicological proxy species (Brown et al. in revision).
Whilst bathyal hydrothermal vent taxa may be affected by the exploitation of seafloor
massive sulphides, extraction of polymetallic manganese nodules will impact abyssal fauna
(Levin et al. 2016; Gollner et al. 2017). Adaptations to the environmental conditions in the
abyssal deep-sea may be significantly different from adaptations to the bathyal hydrothermal
vent environment (Childress and Fisher 1992; Brown and Thatje 2014). For example,
temperature- and mass-normalised metabolic rate declines significantly with depth in
holothurians (Brown et al. under review). Consequently, ecotoxicological comparisons
between shallow-water species and bathyal hydrothermal vent species may not be
representative of other deep-sea taxa. To address this uncertainty, we assessed responses to
toxicant exposure in the temperate shallow-water holothurian Holothuria forskali and the
abyssal holothurian Amperima sp
H. forskali occurs along the Atlantic coasts of northwest Europe and in the Mediterranean
Sea, from the intertidal to 100 m depth (OBIS, 2015). <i>H. forskali</i> can grow to 49 cm length
(Tuwo and Conand 1992). H. forskali is benthic and has a tough body wall, typically
occuring on boulders and rocks and moving using locomotory podia located on the ventral
sole (personal observation). In contrast, Amperima species occur widely in the abyssal deep
sea (>4000 m depth) and have been reported in the North and South Atlantic, Southern,
Indian, and South Pacific (OBIS, 2015). A. sp. can grow to 13 cm and is capable of
swimming by undulating its body, typically make brief excursions few metres into the water
column before drifting back to the seabed (personal observation). Both <i>H. forskali</i> and <i>A.</i> sp.
are detritivores (personal observation).

Copper was selected as the experimental toxicant based on representation in deep-sea mineral
deposits (see Ramirez-Llodra et al. 2011), and the demonstration that copper has the greatest
potential for rapid release during seafloor massive sulphide extraction (Knight and Roberts
2016).

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

120

121

122

123

Materials and Methods

Shallow-water exposures

Specimens of *Holothuria forskali* were sampled by divers (depth range 16 m to 19 m) on 27th May 2015 from ~50 m² of rocky reef with sand gullies immediately south of Plymouth Mewstone (50°18.158 N, 004°06.555 W) (indicative salinity 35.3, temperature 11.2°C, dissolved oxygen 260.9 µmol l⁻¹ from 16 m to 19 m at the Western Channel Observatory L4 station at 50°25.00 N, 004°21.70 W on the 27th May 2015). Holothurians were transported to the Marine Biology and Ecology Research Centre at the University of Plymouth, and maintained for 1 week in a recirculating aquarium (salinity ~32, temperature 10°C, dissolved oxygen concentration >245 µmol l⁻¹). Subsequently, holothurians were transported to the National Oceanography Centre Southampton (NOCS) by temperature-controlled vehicle (10°C, <6 hours), and transferred to a recirculating aquarium (salinity ~32, temperature 9.8°C decreased by 1°C weekly to 4°C, pH 8.0, ammonia <0.1 mg l⁻¹, light:dark cycling following seasonal changes). Holothurians were fed approximately 15 g of Marine Cuisine (Tropical Marine Centre) three times each week. Holothurians were maintained for ≥1 weeks at 4°C prior to experimental treatments. Treatments were performed concurrently to minimise potential temporal influences on responses, but were logistically limited to 1 replicate of each treatment per week by the availability of incubators. Experimental exposures were conducted

143	between 17 th July and 28 st August 2015 to reduce potential variability in biochemical
144	responses resulting from annual reproductive cycles (Santos et al., 2016).
145	Static 96-hour experimental exposures were conducted in plastic aquaria ($32.5 \times 20 \times 20$ cm)
146	filled with 10 l aquarium water (salinity 32, dissolved oxygen concentration >245 µmol l ⁻¹ ,
147	pH 8.0, ammonia <0.1 mg l ⁻¹) at 4°C, covered with vented plastic lids allowing air
148	circulation, with 12:12 photoperiod. The experimental temperature was selected to represent
149	the lowest temperature occurring within the species' biogeographic range (Locarnini et al.
150	2013; OBIS, 2016). Adult holothurians were used in all treatments (size range 18 cm to 24
151	cm). Identification of <i>H. forskali</i> sex requires dissection. Post-treatment dissection indicated
152	that both male and female holothurians were used in all treatments (1 or 2 males in each
153	treatment), and that both male and female holothurians were in stage II (developing oocytes
154	or sperm) or stage III (mature oocytes or sperm) in the reproductive cycle (determined
155	according to Santos et al., 2016). Each holothurian was assigned to either a control, artificial
156	sediment addition, or copper-spiked artificial sediment addition treatments (n = 5). 500 g of
157	artificial sediment was prepared for each addition, with composition designed to reflect
158	particle-size distribution at the DISturbance and reCOLonisation (DISCOL) experimental
159	area in the abyssal Peru Basin (Grupe 2001), whilst incorporating OECD guidance (OECD
160	2004). Artificial sediment comprised 425 g white quartz sand (99% $<$ 90 μm), 70 g kaolin
161	$(96\% < 45~\mu m),$ and 5 g peat (100% $< 500~\mu m).$ Artificial sediment was spiked with copper
162	by 72 h incubation at 20°C in 250 ml of deionised water spiked with copper by the addition
163	of stock solution of CuSO ₄ ·5H ₂ O, according to OECD guidance (OECD 2004). The stock
164	solution was prepared using deionised water and analytical grade CuSO ₄ ·5H ₂ O, and
165	incubation concentrations were 0, 0.1, 1, 5, 10, and 20 mg l ⁻¹ . Artificial sediment and copper-
166	spiked artificial sediment was drained and released into the aquaria 24 hours prior to
167	introduction of the holothurian. Holothurians were gently detached from the maintenance

aquarium and transferred to the floor of the experimental aquarium with minimal aerial
exposure. Position within the aquarium (i.e. anterior and posterior height above aquarium
floor) and behaviour (e.g. contraction, ejection of cuvierian tubules, movement, feeding) were
monitored for 15 minutes immediately following introduction to experimental conditions, and
at 24-h intervals thereafter.
After 96 hours of experimental exposure, holothurians were removed from experimental
aquaria and dissected immediately. Individuals were not anaesthetised prior to dissection to
minimise potential for biochemical artefacts (Arafa et al. 2008). Feeding tentacle, body wall,
longitudinal muscle, gonad, respiratory tree, rete mirabile, digestive tract, and digestive tract
contents were sampled. Tissue was transferred to a 1.5 ml centrifuge tube, and snap frozen in
liquid nitrogen within 10 minutes of removal from experimental aquarium. Once frozen,
tissue was preserved at -80 $^{\circ}$ C until analysed. Holothurians typically uptake heavy metals and
demonstrate antioxidant responses to heavy metals in the body wall, respiratory tree, and
digestive tracts (e.g. Wang et al. 2015, Li et al. 2016, Wang et al. 2016). Holothuria forskali
digestive tract contents did not include the artificial sediment and therefore biochemical
responses were only examined in respiratory tree and body wall tissues.
Deep-sea exposures
The in situ toxicology experiment was deployed from the RV Sonne during cruise SO242-2
of the Joint Program Initiative Oceans – Ecological Aspects of Deep-Sea Mining.
Deployments were made at the southern reference site (007°07.5 S, 088°27.0 W) outside the
DISCOL experimental area in the abyssal Peru Basin (see Borowski 2001) (salinity 35.96,
temperature 1.85°C, dissolved oxygen 120.83 µmol l ⁻¹). Experimental exposures were
conducted between 12 th September and 16 th September 2015. Reproductive cycles in other

192	Amperima species appear linked to changes in the flux or organic matter to the seafloor
193	(Wigham et al. 2003). However, the DISCOL region is a site with low organic matter flux
194	(Weber et al. 2000) suggesting that populations here may be sink populations rather than
195	source populations.
196	In situ treatments were conducted using corrals (Fig. 1). The internal dimensions of each
197	corral tapered from 40 cm \times 40 cm to 30 cm \times 30 cm, and each corral was covered by a fine
198	mesh. The corrals were deployed to the seafloor at 4196.5 m depth on the GEOMAR Remote
199	Operated Vehicle (ROV) elevator platform. Subsequently, the GEOMAR ROV Kiel 6000
200	collected each corral, located an Amperima sp. individual, and carefully placed the corral
201	over the holothurian. A. sp. was selected as the test species based on high abundances
202	observed during ROV dives on preceeding days. Adult holothurians were used in all
203	treatments (size range 8 cm to 10 cm). Whilst post-treatment dissection did not resolve A. sp.
204	sex (all A. sp. were in stage I in the reproductive cycle without identifiable gonad), A. spp.
205	reach maturity at small size, e.g. 10 mm in Amperima rosea (Wigham et al. 2003). Each
206	holothurian was assigned to either a control, artificial sediment addition, or copper-spiked
207	artificial sediment addition treatment (n = 2). Control treatments remained undisturbed,
208	whereas artificial sediment or copper-spiked artificial sediment was released into each corral
209	using the ROV manipulator. Artificial sediment was transported to the seafloor aboard the
210	ROV, in 1 litre plastic bottles adapted to facilitate opening using the ROV manipulator. The
211	appropriate plastic bottle was inverted immediately above the mesh covering the corral, and
212	inserted through a flap in the mesh to release the artificial sediment. Preparation of artificial
213	sediments and copper-spiking were performed as described previously, but incubation
214	concentrations were limited to 0 and 5 mg l ⁻¹ due to logistical constraints of operating in the
215	deep sea. Incubation concentrations were selected based on behavioural data from the
216	Holothuria forskali exposures. After ~94 hours holothurians were sampled using the ROV

suction pump, which was inserted through the flap in the mesh. Additional holothurians were
sampled to assess the effect of corral enclosure (n = 3). Holothurians were isolated in the
ROV suction pump chambers and recovered to the surface where they were dissected in a
temperature controlled laboratory (2°C). As with <i>Holothuria forskali</i> , individuals were not
anaesthetised prior to dissection. The anatomy of Amperima sp. differed from that of
Holothuria forskali and separation of different tissues was challenging. Consequently, only
bulk tissue samples (predominantly body wall) were taken from Amperima sp. individuals.
Tissue was transferred to a 1.5 ml centrifuge tube, and snap frozen in liquid nitrogen. Once
frozen, tissue was preserved at -80°C until analysed.
Biochemical response
Biochemical response
Tissue samples were removed from -80°C and maintained on ice. A \sim 10 mg subsample was
dissected for biochemical analysis. Total protein and enzyme activities were determined by
absorbance using a microplate reader (FLUOstar OPTIMA, BMG Labtech). Total protein
was assessed at 584 nm absorbance using an assay kit employing the Lowry method with
Peterson's modification (Sigma-Aldrich TP0300). Superoxide dismutase (SOD) activity was
assessed at 450 nm absorbance using an assay kit employing inhibition of xanthine oxidase
activity (Sigma-Aldrich 19160). Glutathione peroxidase (GPx) activity was assessed at 340
nm absorbance using an assay kit employing NADPH oxidation in the presence of excess
glutathione reductase, reduced glutathione, and corresponding peroxide (Abcam ab102530).
Statistical analysis
H. forskali position and biochemical data were homoscedastic (Levene's test, p > 0.05).
Consequently, the effect of exposure to copper-spiked artificial sediment on <i>H. forskali</i>

position was assessed using two-way repeated measures analysis of variance (ANOVA), with
treatment (control, copper-spiked artificial sediment additions) and exposure duration as
fixed factors ($\alpha = 0.05$). The <i>post-hoc</i> Holm-Sidak multiple comparisons test was used to
determine significant differences from initial positions within treatments. Statistical
inferences were confirmed using the repeated measures ANOVA on ranks employing Dunn's
test to assess to assess differences in holothurian anterior and posterior position within each
treatment over exposure duration. The effect of exposure to copper-spiked artificial sediment
on H. forskali biochemistry was assessed using two-way ANOVA, with tissue (body wall,
respiratory tree) and treatment (control, copper-spiked artificial sediment additions) as fixed
factors (α = 0.05). The effects of exposure to copper-spiked artificial sediment on Amperima
sp. position and biochemistry were not assessed statistically because of the low replication
(Vaux 2012).
Results

255 Positional response

Holothuria forskali responded to copper-spiked artificial sediment exposure by moving both anterior and posterior away from ≥5 mg l⁻¹ copper-contaminated artificial sediment (Fig. 2) (respectively, $F_{20,96} = 1.726$, p = 0.042 and $F_{20,96} = 3.391$, p < 0.001, with post-hoc test p < 0.05). However, only anterior position in the 5 mg l⁻¹ treatment differed significantly from starting position and only after 24 hours exposure duration.

Amperima sp. in the control treatment remained on the seafloor. In contrast, individuals exposed to uncontaminated or copper-spiked artificial sediment immediately engaged in swimming. After ~94 hours, individuals in both the control treatment and the uncontaminated

artificial sediment addition treatment were on the seafloor. However, individuals exposed to

265	copper-spiked artificial sediment were attached inverted to the mesh covering the corral (Fig.
266	1).
267	
268	Biochemical response
269	Exposure to copper-spiked artificial sediment had no effect on body wall and respiratory tree
270	superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in <i>H. forskali</i> (Fig. 3)
271	(respectively, $F_{5,48} = 0.541$, $p = 0.744$ and $F_{5,48} = 1.188$, $p = 0.329$). Exposure to copper-
272	spiked artificial sediment appeared to have no significant effect on bulk tissue (predominantly
273	body wall) SOD or GPx activity in Amperima sp. (Fig. 4).
274	
275	Discussion
276	Differences in methodological (static laboratory exposures compared with <i>in situ</i> exposures)
277	and analytical approaches (tissue-specific analysis compared with bulk tissue analysis), and
278	in sex (male and female compared to undetermined) and reproductive stage (II or III
278279	in sex (male and female compared to undetermined) and reproductive stage (II or III compared with I) of experimental subjects, require caution in assessing the suitability of
279	compared with I) of experimental subjects, require caution in assessing the suitability of
279 280	compared with I) of experimental subjects, require caution in assessing the suitability of <i>Holothuria forskali</i> (a shallow-water species) as an ecotoxicological proxy for <i>Amperima</i> sp.
279280281	compared with I) of experimental subjects, require caution in assessing the suitability of <i>Holothuria forskali</i> (a shallow-water species) as an ecotoxicological proxy for <i>Amperima</i> sp. (a deep-sea species): these factors may affect results. Further, the low replication achieved
279280281282	compared with I) of experimental subjects, require caution in assessing the suitability of <i>Holothuria forskali</i> (a shallow-water species) as an ecotoxicological proxy for <i>Amperima</i> sp. (a deep-sea species): these factors may affect results. Further, the low replication achieved during <i>in situ</i> experimentation allows only extremely limited confidence in inferences.
279280281282283	compared with I) of experimental subjects, require caution in assessing the suitability of <i>Holothuria forskali</i> (a shallow-water species) as an ecotoxicological proxy for <i>Amperima</i> sp. (a deep-sea species): these factors may affect results. Further, the low replication achieved during <i>in situ</i> experimentation allows only extremely limited confidence in inferences. Nonetheless, <i>A</i> . sp. demonstrated sustained avoidance of 5 mg l ⁻¹ copper-contaminated
279280281282283284	compared with I) of experimental subjects, require caution in assessing the suitability of <i>Holothuria forskali</i> (a shallow-water species) as an ecotoxicological proxy for <i>Amperima</i> sp. (a deep-sea species): these factors may affect results. Further, the low replication achieved during <i>in situ</i> experimentation allows only extremely limited confidence in inferences. Nonetheless, <i>A.</i> sp. demonstrated sustained avoidance of 5 mg l ⁻¹ copper-contaminated artificial sediment whereas <i>H. forskali</i> demonstrated only temporary avoidance of 5 mg l ⁻¹

forskali may be a suitable ecotoxicological proxy for A. sp. in acute (\leq 24 h) exposures, which
may be representative of deep-sea mining impacts.
The positional response to exposure to copper-spiked artificial sediment displayed by both
the shallow-water and deep-sea holothurians likely represents an adaptive behavioural
response, contributing directly to individual survival (Dill 1987). Holothurians putatively
possess chemosensing capability, detecting sediment patches with higher organic carbon
content (Slater 2010) and selecting organic carbon-rich particles (Paltzat et al. 2008). The
avoidance behaviour observed in both shallow-water and deep-sea species suggests that the
chemosensory ability extends to potential toxicants. The absence of any antioxidant response
in either species may be a consequence of avoiding sustained copper exposure through
behavioural modification: analysis of copper concentrations or metallothionein
concentrations would be required to confirm this. However, sediment plume avoidance or
avoidance of redeposited contaminated sediments in deep-sea holothurians may be ineffective
in the mining context. Individuals may engage in swimming, but will may drift with the same
prevailing current that will disperse the potentially toxic sediment plume (Levin et al. 2016;
Gollner et al., 2017). Individuals may subsequently settle in areas with contaminated
sediment redeposition, thus maintaining metal exposure and stimulating further avoidance
behaviour. Bioenergetic consequences of avoidance behaviour or responses to sustained
sublethal metal exposures may be critical (Sokolova et al. 2012). Avoidance behaviour
increases energy allocation to activity through energetic trade-offs: increased allocation of
energy to activity during stress diminishes energy available for other functions, and
consequently reduces scope for growth and reproductive output (Kooijman 2010; Sokolova et
al. 2012). Responses to sustained sublethal metal exposures may have similar energetic
impacts (Sokolova et al. 2012).

The potential ecological implications of holothurian avoidance behaviour extend beyond
individual holothurian species. Holothurians are keystone deep-sea species (Gage & Tyler
1991; Kuhnz et al. 2014), deepening the oxic sediment horizon through bioturbation and
therefore influencing the distribution of infaunal species (Iken et al. 2001; Soto et al. 2010).
Further, bioturbation by holothurians can moderate toxicity to both epi- and infauna by
distributing toxicants within sediments (Storelli et al. 2001; Yuan et al. 2016). Reduced
bioturbation resulting from behavioural avoidance may therefore also affect the persistence of
both epi- and infaunal species (Mermillod-Blondin 2011) in areas impacted by sediment
plumes incorporating toxicants. Sediment re-deposition may occur over scales of 10-100 km
from mining sites (see Wedding et al. 2013), therefore the behavioural avoidance reported
here may have significant farfield ecosystem scale effects that require consideration in
environmental management of deen-sea mineral exploitation

Acknowledgements

AB and CH conceived the study. AB, RW, and LM collected and analysed the data. AB wrote the paper with input from all authors. The research leading to these results has also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the MIDAS project, grant agreement n° 603418. The SO242-2 research cruise was funded by the German Ministry of Education and Science (BMBF, grant number 03F0707A-G) as a contribution to the European project JPI Oceans – Ecological Aspects of Deep Sea Mining. AB is supported through an IMarEST Stanley Gray Fellowship. The authors are grateful to the professional diving team at Plymouth University Marine Station for sampling shallow-water holothurians, and to the Plymouth University Marine Biology & Ecology Centre technical staff for maintaining shallow-water holothurians prior to

transportation. The authors thank the crew of the RV Sonne SO242-2 and the ROV Kiel 6000
team for delivering deep-sea experimentation, as well as PI Antje Boetius, Felix Janssen, and
the scientific party. This publication reflects only the views of the authors; the EC is not
liable for any use that may be made of the information contained herein.

341	References
342	Auguste M, Mestre NC, Rocha TL, Cardoso C, Cueff-Gauchard V, Le Bloa S, Cambon-
343	Bonavita MA, Shillito B, Zbinden M, Ravaux J, Bebianno MJ. 2016. Development of an
344	ecotoxicological protocol for the deep-sea fauna using the hydrothermal vent shrimp
345	Rimicaris exoculata. Aquat. Toxicol. 175:277-285.
346	Brown, A., Thatje, S. (2014). Explaining bathymetric diversity patterns in marine benthic
347	invertebrates and demersal fishes: Physiological contributions to adaptation of life at depth.
348	Biol. Rev. 89, 406-426.
349	Brown, A., Thatje, S. (2015). The effects of changing climate on faunal depth distributions
350	determine winners and losers. Glob. Change Biol. 21, 173-180.
351	Brown, A., Hauton, C., Stratmann, T., Sweetman, A., van Oevelen, D., Jones, D.O.B. (under
352	review) Bathymetric decline in metabolic rate in a benthic and benthopelagic echinoderm
353	class challenges the visual interactions hypothesis. Proc. R. Soc. B.
354	Brown, A., Thatje, S., Hauton, C. (in revision). The effects of temperature and hydrostatic
355	pressure on metal toxicity: Insights into toxicity in the deep sea. Environ. Sci. Technol.
356	Borowski (2001) Physically disturbed deep-sea macrofauna in the Peru Basin, southeast
357	Pacific, revisited 7 years after the experimental impact. Deep-Sea Research II 48, 3809-3839
358	Childress, J.J., Fisher, C.R. (1992). The biology of hydrothermal vent animals: physiology,
359	biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Annu. Rev. 30, 337-441.
360	Danovaro, R., Snelgrove, P.V.R., Tyler, P. (2014). Challenging the paradigms of deep-sea
361	ecology. Trends Ecol. Evol. 29, 465-475.
362	Dill, L.M. (1987). Animal decision making and its ecological consequences: the future of
363	aquatic ecology and behaviour. Can. J. Zool. 65, 803-811.

- Geret, F., Riso, R., Sarradin, P.-M., Caprais, J.-C., Cosson, R.P. (2002). Metal
- bioaccumulation and storage forms in the shrimp, Rimicaris exoculata, from the Rainbow
- 366 hydrothermal field (Mid-Atlantic Ridge); preliminary approach to the fluid-organism
- relationship. Cah. Biol. Mar. 43, 43-52.
- Gollner, S., Kaiser, S., Menzel, L., Jones, D.O.B., van Oevelen, D., Menot, L., Colaço, A.,
- Brown, A., Canals, M., Cuvelier, D., Durden, J.M., Gebruk, A., Aruoriwo, E.G., Haeckel, M.,
- 370 Marcon, Y., Mestre, N.C., Mevenkamp, L., Morato, T., Pham, C.K., Purser, A., Sanchez-
- Vidal, A., Vanreusel, A., Vink, A., Arbizu, P.M. (2017). Resilience of benthic deep-sea fauna
- to mineral mining activities. Mar. Env. Res.
- Gage, J.D. & Tyler, P.A. (1991). Deep-Sea Biology: A Natural History of Organisms at the
- 374 Deep-Sea Floor. Cambridge University Press, Cambridge.
- Gonzalez-Rey, M., Serafim, A., Company, R., Bebianno, M.J. (2007). Adaptation to metal
- toxicity: A comparison of hydrothermal vent and coastal shrimps. Mar. Ecol. 28, 100-107.
- Gonzalez-Rey, M., Serafim, A., Company, R., Gomes, T., Bebianno, M.J. (2008).
- 378 Detoxification mechanisms in shrimp: Comparative approach between hydrothermal vent
- fields and estuarine environments. Mar. Env. Res. 66, 35-37.
- 380 Grupe, B., Becker, H.J., Oebius, H.U. (2001). Geotechnical and sedimentological
- investigations of deep-sea sediments from a manganese nodule field of the Peru Basin. Deep-
- 382 Sea Res. II 48, 3593-3608.
- Iken, K., Brey, T., Wand, U., Voigt, J., Junghans, P. (2001). Food web structure of the
- benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis.
- 385 Prog. Oceanogr. 50, 383-405.

- Jones, D.O.B., Yool, A., Wei, C.-L., Henson, S.A., Ruhl, H., Watson, R.A., Gehlen, M.,
- 387 (2014). Global reductions in seafloor biomass in response to climate change. Glob. Change
- 388 Biol. 20, 1861-1872.
- Kadar, E., Costa, V., Santos, R.S. (2006). Distribution of micro-essential (Fe, Cu, Zn) and
- toxic (Hg) metals in tissues of two nutritionally distinct hydrothermal shrimps. Sci. Total
- 391 Environ. 358, 143-150.
- Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R.,
- Nakashima, T., Iwamori, H. (2011). Deep-sea mud in the Pacific Ocean as a potential
- resource for rare-earth elements. Nat. Geosci. 4, 535-539.
- Knight, R., Roberts, S. (2016). Initial results of batch reactor experiments to determine
- sulphide oxidation rates and trace metal release under seafloor conditions. Appl. Earth Sci.
- 397 125, 88-89.
- Kooijman, S.A.L.M. (2010). Dynamic Energy Budget Theory for Metabolic Organisation.
- 399 Cambridge University Press, Cambridge.
- Kuhnz, L.A., Ruhl, H.A., Huffard, C.L., Smith, K.L. (2014). Rapid changes and long-term
- 401 cycles in the benthic megafaunal community observed over 24 years in the abyssal northeast
- 402 Pacific. Prog. Oceanogr. 124, 1-11.
- Levin, L.A., Mengerink, K., Gjerde, K.M., Rowden A.A., Van Dover C.L., Clark M.R.,
- Ramirez-Llodra E., Currie B., Smith C.R., Sato K.N., Gallo N., Sweetman A.K., Lily H.,
- Armstrong C.W., Brider J. 2016. Defining "serious harm" to the marine environment in the
- 406 context of deep-seabed mining. Mar Pol. 74:245-259.
- Li, L., Tian, X., Yu, X., Dong, S. (2016). Effects of acute and chronic heavy metal (Cu, Cd,
- and Zn) exposure on sea cucumbers (*Apostichopus japonicus*). BioMed Res. Int. 4532697.

- 409 Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K.,
- Zweng, M.M., Paver, C.R., Reagan, J.R., Johnson, D.R., Hamilton, M., Seidov, D. (2013).
- World Ocean Atlas 2013, Volume 1: Temperature. Levitus, S., Ed., Mishonov, A., Technical
- 412 Ed.; NOAA Atlas NESDIS 73, 40 pp.
- 413 Mermillod-Blondin, F. (2011). The functional significance of bioturbation and biodeposition
- on biogeochemical processes at the water-sediment interface in freshwater and marine
- 415 ecosystems. J. N. Am. Benthol. Soc. 30, 770-778.
- Mestre, N.C., Calado, R., Soares, A.M.V.M. (2013). Exploitation of deep-sea resources: The
- 417 urgent need to understand the role of high pressure in the toxicity of chemical pollutants to
- deep-sea organisms. Environ. Pollut. 185, 369-371.
- OBIS (2016) Data from the Ocean Biogeographic Information System. (Intergovernmental
- 420 Oceanographic Commission of UNESCO).
- Paltzat, D.L., Pearce, C.M., Barnes, P.A., McKinley, R.S. (2008). Growth and production of
- 422 California sea cucumbers (*Parastichopus californicus* Stimpson) co-cultured with suspended
- 423 Pacific oysters (*Crassostrea gigas* Thunberg). Aquacult. 275, 124-137.
- 424 Petersen, S., Krätschell, A., Augustin, N., Jamieson, J., Hein, J.R., Hannington, M.D. (2016).
- News from the seabed Geological characteristics and resource potential of deep-sea mineral
- 426 resources. Mar. Pol. 70, 175-187.
- Pörtner, H.O. (2010). Oxygen- and capacity-limitation of thermal tolerance: a matrix for
- integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881-893.
- Ramirez-Llodra, E., Tyler, P.A., Baker, M.C., Bergstad, O.A., Clark, M.R., Escobar, E.,
- 430 Levin, L.A., Menot, L., Rowden, A.A., Smith, C.R., Van Dover, C.L. (2011). Man and the

- Last Great Wilderness: Human Impact on the Deep Sea. PLoS ONE 6:e22588.
- 432 doi:10.1371/journal.pone.0022588.
- Rex, M.A., McClain, C.R., Johnson, N.A., Etter, R.J., Allen, J.A., Bouchet, P., Warén, A.
- 434 (2005). A source-sink hypothesis for abyssal biodiversity. Am. Nat. 165, 163-178.
- Santos, R., Dias, S., Pinteus, S., Silva, J., Alves, C., Tecelão, C., Pedrosa, R., Pombo, A.
- 436 (2016). Sea cucumber *Holothuria forskali*, a new resource for aquaculture? Reproductive
- biology and nutraceutical approach. Aquacult. Res. 47, 2307-2323.
- Slater, M.J. (2010). The sea cucumber *Australostichopus mollis*: juvenile feeding ecology and
- habitat. PhD thesis, University of Auckland, New Zealand.
- Sokal, R.R., Rohlf, F.J. (1995). Biometry: the principles and practices of statistics in
- biological research. New York: Freeman. 887 p.
- Sokolova, I.M., Frederich, M., Bagwe, R., Lannig, G., Sukhotin, A.A. (2012). Energy
- 443 homeostasis as an integrative tool for assessing limits of environmental stress tolerance in
- aguatic invertebrates. Mar. Environ. Res. 79, 1-15.
- Soto, E.H., Paterson, G.L.J., Billett, D.S.M., Hawkins, L.E., Galéron, J., Sibuet, M. (2010).
- Temporal variability in polychaete assemblages of the abyssal NE Atlantic Ocean. Deep-Sea
- 447 Res. II 57, 1396-1405.
- Storelli, M.M., Storelli, A., Marcotrigiano, G.O. (2001). Heavy metals in the aquatic
- environment of the Southern Adriatic Sea, Italy: Macroalgae, sediments and benthic species.
- 450 Environ. Int. 26, 505-509.
- Tuwo, A., Conand, C. (1992). Reproductive biology of the holothurian *Holothuria forskali*
- 452 (Echinodermata). J. Mar. Biol. Ass. U.K. 72, 745-758.

- 453 Underwood, A.J. (1997). Experiments in ecology: their logical design and interpretation
- using analysis of variance. Cambridge: Cambridge University Press. 504 p.
- Vaux, D.L. (2012). Know when your numbers are significant. Nature 492, 180-181.
- Wang, J., Ren, T., Han, Y., Zhao, Y., Liao, M., Wang, F., Jiang, Z. (2015). The effects of
- dietary lead on growth, bioaccumulation and antioxidant capacity in sea cucumber,
- 458 Apostichopus japonicus. Environ. Toxicol. Pharamacol. 40, 535-540.
- Wang, J., Ren, T., Wang, F., Han, Y., Liao, M., Jiang, Z., Liu, H. (2016). Effects of dietary
- cadmium on growth, antioxidants and bioaccumulation of sea cucumber (Apostichopus
- *japonicus*) and influence of dietary vitamin C supplementation. Ecotox. Environ. Safety 129,
- 462 145-153.
- Weber, M.E., von Stackelberg, U., Marchig, V., Wiedicke, M., Grupe, B. (2000). Variability
- of surface sediments in the Peru basin: dependence on water depth, productivity, bottom
- water flow, and seafloor topography. Mar. Geol. 163, 169-184.
- Wedding, L.M., Friedlander, A.M., Kittinger, J.N., Watling, L., Gaines, S.D., Bennett, M.,
- 467 Hardy, S.M., Smith, C.R. (2013). From principles to practice: a spatial approach to
- systematic conservation planning in the deep sea. Proc. Roy. Soc. B 280, 20131684.
- Wigham, B.D., Tyler, P.A., Billett, D.S.M. (2003). Reproductive biology of the abyssal
- 470 holothurian Amperima rosea: an opportunistic response to variable flux of surface derived
- 471 organic matter? J. Mar. Biol. Ass. U.K. 83, 175-188.
- Yuan, X., Meng, L., Wang, L., Zhao, S., Li, H. (2016). Responses of scallop biodeposits to
- bioturbation by a deposit-feeder *Apostichopus japonicus* (Echinodermata, Holothuroidea):
- does the holothurian density matter? Aquacult. Res. 47, 512-523.

Figures

Fig. 1. *In situ* ecotoxicology experiments. (a) Introduction of artificial sediment to a corral using the ROV *Kiel 6000* manipulator. (b) *Amperima* sp. position ~94 hours after exposure to 5 mg 1^{-1} copper-spiked artificial sediment. The internal dimensions of each corral tapered from $40 \text{ cm} \times 40 \text{ cm}$ to $30 \text{ cm} \times 30 \text{ cm}$.

Fig. 2. Effect of exposure to copper-spiked sediment on *Holothuria forskali* position above the sediment surface (mean \pm SD; n = 5). Error bars are absent where all individuals were positioned on the floor of the aquarium.

Fig. 3. Effect of exposure to copper-spiked sediment on body wall and respiratory tree superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in *Holothuria forskali* (mean \pm SD; n = 5). Error bars appear absent where SD is smaller than the data point.

Fig. 4. Effect of exposure to copper-spiked sediment on bulk tissue (predominantly body wall) superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in *Amperima* sp. (individual data).