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Abstract

This paper develops exact finite sample and asymptotic distributions
for a class of reduced form estimators and predictors, allowing for the
presence of unidentified or weakly identified structural equations. Weak
instrument asymptotic theory is developed directly from finite sample re-
sults, unifying earlier findings and showing the usefulness of structural
information in making predictions from reduced form systems in appli-
cations. Asymptotic results are reported for predictions from models
with many weak instruments Of particular interest is the finding that, in
unidentified and weakly identified structural models, partially restricted
reduced form predictors have considerably smaller forecast mean square
errors than unrestricted reduced forms. These results are related to the
use of shrinkage methods in system-wide reduced form estimation.
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1 Introduction

In pioneering work on reduced form estimation, Maasoumi (1978) showed how
to construct a modified Stein-like estimator of the reduced form coeffi cients in
a linear simultaneous equations system. This technique cleverly combined in-
formation from restricted and unrestricted estimation via the medium of the
system-wide overidentification test statistic for the structural restrictions. In-
novative in its use of a shrinkage method driven by structural information in
a reduced form context, this procedure had a further motivating feature that

∗A preliminary version of this paper was presented at the Emory University Conference
honoring Esfandiar Maasoumi on 15 November 2014. The author thanks Aman Ullah and
three referees for helpful comments and acknowledges support of the NSF (USA) under Grant
SES 12-58258 and Grant NRF-2014S1A2A2027803 from the Korean Government.
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it ensured a thinning of the tails of the finite sample distribution of the re-
duced form coeffi cients, thereby enhancing their utility in applications such as
forecasting. The latter advantage was seen at the time to break new ground
in reduced form estimation because of the discovery, only a few years earlier,
that many commonly used structural equation estimators such as two-stage and
three-stage least squares methods produced reduced form estimators that had
heavy tails and possessed no finite integer moments.
The second advance in Maasoumi’s paper was the customized nature of

the construction of the reduced form estimator. This estimator used Stein-
like shrinkage of the restricted reduced form estimator toward an unrestricted
reduced form estimator with a shrinkage tuning factor based on the outcome of
a statistical test of the restrictions. The methodology followed Sargan’s (1958,
1959) early work on overidentification testing and the test statistic mirrored
Malinvaud’s (1966) system-wide test of structural equation restrictions in a si-
multaneous equations setting.
The present work has a similar focus on reduced form estimation. We look

particularly at cases where there is weak structural identification and explore
the implications of such weakness for reduced form coeffi cient estimation and
prediction. The methodology we pursue follows the approach developed orig-
inally in Phillips (1989) of relating exact finite sample distribution theory to
asymptotic theory in conditions of underidentification. We provide an overview
of this approach in the first part of the paper and then proceed to develop a
similar analysis for reduced form coeffi cient estimation.
The plan of the paper is as follows. Section 2 reviews some exact finite sam-

ple theory for instrumental variable (IV) structural estimation and illustrates its
use in deriving large sample asymptotics, asymptotic expansions, limit theory
under weak identification, and many instrument asymptotics. While the capa-
bilities of this approach are well understood in structural model estimation, the
mechanism has been seldom used in other applications. Section 3 uses the ap-
proach to develop exact finite sample theory and asymptotics for reduced form
estimators and predictors that take advantage of structural information even in
the context of poorly identified structural systems. Cases of weak instrumenta-
tion and the use of many weak instruments are studied. Simulation exercises are
reported to highlight the practical implications of the findings. The conclusion
in Section 4 offers some more general reflections on exact theory and reduced
forms. Proofs are given in the Appendix.

2 Exact Distribution Theory and its Asymptotic
Implications

2.1 A Prototypical Simultaneous System

We write the linear simultaneous equations system in the following form

Byt + Czt = Axt = ut, t = 1, ..., n (1)
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where A = [B,C] is an m× (m+ k) matrix of unknown structural coeffi cients,
xt = (y′t, z

′
t)
′ is a vector ofm endogenous variables (yt) and k exogenous variables

(zt), and ut ∼iid N (0,Ωu) is a vector of serially independent disturbances on
the structural equations. Gaussianity is assumed for the development of a finite
sample theory but is not needed for the asymptotics (c.f. Phillips, 1989). The
reduced form of system (1) is written as

yt = Pzt + vt, with P = −B−1C and vt ∼iid N
(
0,Ωv = B−1ΩuB

′−1
)
. (2)

The notation in (1) and (2) mirrors that used in Maasoumi (1978) which follows
the Sargan LSE lectures (Sargan, 1988a) and the Malinvaud (1966) textbook
tradition.
The system (1) is assumed to have suffi cient restrictions to identify, at least

apparently1 , the structural coeffi cients A. These restrictions may take the form
of analytic constraints on the coeffi cients A or direct functional representa-
tion of the matrix A in terms of a subset θ of parameters such as A = A (θ) .
Identification of a particular structure, as distinct from apparent identification,
requires additional conditions, of course, but these are not necessary for estima-
tion (Phillips, 1989). When interest centers on the reduced form, the matrix P
of relevant coeffi cients in (2) may be estimated directly by unrestricted reduced
form least squares giving P̂ or indirectly by P † = −B†−1C†−1 using the struc-
tural coeffi cient estimates

[
B†, C†

]
obtained by a method such as three stage

least squares (3SLS).

(a) Maasoumi Reduced Form Estimation

We follow Maasoumi (1978) and assume the restricted estimate P † is obtained
by 3SLS. Throughout the paper we denote observation matrices by capitals,
for instance Z = [z1, ..., zn]

′
, and projection matrices by PZ = Z (Z ′Z)

−1
Z ′

and QZ = In − PZ , so that the unrestricted reduced form estimator is P̂ =
Y ′Z (Z ′Z)

−1
. Maasoumi suggested a customized reduced form estimator of P

that combined P † with P̂ using weights delivered by a shrinkage tuning factor
determined by the outcome of a statistical test of the restrictions involved in
the full specification of (1).
The test proposed by Maasoumi was based on a Wald statistic, given in

tensor trace form as

φ† = tr

[
Ω̂v

(
P̂ − P †

)
Z ′Z

(
P̂ − P †

)′]
, (3)

where Ω̂v = n−1Y ′QZY is the usual unrestricted residual moment matrix es-
timate of Ωv. The statistic φ

† follows Malinvaud (1966, chapter 9.5) and can
equivalently be written as an overidentification test statistic analogous to that

1By apparent identification, we mean that order conditions enumerating the number and
form of the restrictions appear, prima facie, to indicate identification, but without the assur-
ance of supporting rank conditions that confirm relevance, to use the terminology of Phillips
(1989).
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developed originally in the work of Sargan (1958, 1959). Notably, under correct
specification we have the asymptotic distribution φ† ∼a χ2

N , whereN is the total
number of overidentifying degrees in the structural system (1). In large sam-
ples, the restrictions are rejected if φ† exceeds the test critical value, although
in small samples the test typically overrejects, as was already well known in the
1970s. Maasoumi used this feature of the test to construct a combined estimator
of the reduced form matrix

P ∗ = λP † + (1− λ) P̂ = P † + (1− λ)
(
P̂ − P †

)
. (4)

If Cp is a chosen critical value for the test, then the weight λ ∈ [0, 1] is chosen
so that

λ =

{
1 if φ† ≤ Cp (hypothesis is accepted)
φ2

φ†
if φ† > Cp (hypothesis is rejected)

for some φ2 ≤ Cp. With this rule, the combined estimator has the form

P ∗ = P † + 1{Cp,∞}

(
1− φ2

φ†

)(
P̂ − P †

)
,

with the indicator 1{Cp,∞} = 1 if φ† > Cp achieving a switch from the re-
stricted estimate P † to the combined estimate P ∗ that shrinks P † toward the
unrestricted P̂ when the test rejects the restrictions. Maasoumi shows that the
combined estimator P ∗ has finite integer order moments to order n − m − k.
If Cp → ∞ as n → ∞ at an appropriate rate then there are no false positives
in the specification test and P ∗ has the same asymptotic distribution as P †,
thereby capturing any implied advantages from the structural information for
forecasting and other uses of the reduced form.
This innovative approach to reduced form estimation has several advantages.

First, the combined estimator P ∗ has finite moments and thin tails compared
with the 3SLS estimate P †, which typically has no finite sample moments and a
heavy tailed distribution (Sargan, 1976/1988). Second, under broad conditions
on the construction of the test, P ∗ has the same limit theory as P †, so it carries
all the advantages of the additional structural information, when data deems
this information correct. Third, P ∗ is a combined OLS-3SLS estimator, has the
implicit advantages of an averaging estimator, and is more readily computed
than the alternative full information maximum likelihood estimator, a significant
gain at the time, particularly for prediction purposes where regular updating is
required.
Reduced form estimation using this technique offered good prospects, as

were quickly recognized by Edmond Malinvaud in his 1980 public address to the
Econometric Society World Congress in Aix en Provence. Nonetheless, the im-
pact of this methodology on empirical research and, in particular, on forecasting
has been slow in arriving, although methods that do not use structural infor-
mation have become common. For instance, shrinkage methods were suggested
during the 1980s for use in Bayesian vector autoregressions to achieve parsi-
mony in forecasting (Doan et al, 1984) and data-driven approaches to shrinkage
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factor selection have been developed (Phillips, 1996). In the last decade, gen-
eralized approaches to shrinkage estimation such as Lasso (Tibshirani, 1996),
adaptive Lasso (Zou, 2006), bagging (Breiman, 1996) and their many variants,
have begun to impact empirical work in economics. Some of these methods now
use potential structural information or long-run behavior in adapting the Lasso
mechanism (Liao and Phillips, 2015). Recent work on averaging estimators has
also increased the popularity of these techniques (among others, see Fan and
Ullah, 1999; Hansen, 2007, 2009, 2014; Iglesias and Phillips, 2012; Kotlyarova
and Zinde-Walsh, 2006).

(b) Moment Exponents and Heavy Tails

By virtue of its construction, the restricted estimator P † = B†−1C† =
adj(B†)
det(B†)

C†

is a rational function of the elements of the structural coeffi cient estimates[
B†, C†

]
. Sargan (1976/1988) proved that such reduced form estimates (ob-

tained by least squares and related structural equation methods like 3SLS)
typically have maximal moment exponent of unity, so that no finite integral
order moments exist. The distributions of such estimates, and hence those of
the induced forecasts, inevitably therefore have heavy tails.
The elegant argument used by Sargan relies on the ratio form of P † and the

fact that most structural equation estimates
[
B†, C†

]
have a probability density

that is positive as det (B) passes through the origin. Moments of such reduced
form estimates may therefore be bounded below as follows

E
(∥∥P †∥∥r) ≥ ∫

N(|det(B)|≤δ)

‖adj (B)‖r

|det (B)|r ‖C‖
r
fB†,C† (B,C) dB × dC, (5)

where fB†,C† (B,C) is the density of the unrestricted elements of (B,C) in
(1) with respect to Lebesgue measure dB × dC on the space of those elements,
N(|det(B)|≤δ) = {(B,C) : |det (B)| ≤ δ} for some small δ > 0, and ‖·‖ is a matrix
norm. When fB†,C† (B,C) > 0 on N(|det(B)|≤δ), then the integral in (5) does not
converge and E

(∥∥P †∥∥r) =∞ for all r ≥ 1. So the maximal moment exponent is
unity and no finite integral moments of the elements of P † exist. Exceptions can
occur for triangular systems where det (B) is constant and non zero (provided
the elements of

(
B†, C†

)
also have moments to high enough order) and in some

other special situations.
We illustrate with the simple example of a single structural equation where

y′t = (y1t, y2t) with one exogenous variable zt combined with an identity (see
Phillips, 2009), so that

B =

[
1 −b
−1 1

]
, C =

[
0
−1

]
, Ωu =

[
σ2 0
0 0

]
,

and det (B) = 1 − b. Suppose b† is the ordinary least squares estimate of b
obtained from the regression of y1t on y2t. In this case, the density of b† is
known to be supported and non zero on the whole real axis, so that the density is
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positive in the neighborhood b† ∼ 1. It follows that the corresponding estimates
of the reduced form coeffi cients

P † =
1

1− b†

[
1 b†

1 1

] [
0
1

]
will have no integer finite sample moments and their distributions will have
heavy tails. By contrast, in this example, the least squares reduced form coef-
ficient estimate P̂ is normally distributed and has Gaussian tails. Moreover, if
the structural equation is estimated by maximum likelihood (which happens to
correspond to indirect least squares in this particular case) giving b̃, then it is
known that the finite sample density of estimate of b̃ has zero density at b = 1
(see Phillips, 2009)2 . The corresponding reduced form estimates are just the
least squares estimates and have finite integer moments and Gaussian tails.
This example illustrates Sargan’s (1973) important finding that FIML esti-

mates of the reduced form coeffi cients do have finite integer order moments. The

reason maximum likelihood avoids the problem of a positive density of det
(
B̃
)

at points where detB = 0 is that system maximum likelihood recognizes the
simultaneous equations nature of the system. So existence of the reduced form
(that is, det (B) 6= 0) is critical to the formation of the likelihood, which ensures

that zero density is attached to det
(
B̃
)

= 0, thereby avoiding the problem of

heavy tails in the reduced form coeffi cients.

2.2 Structural Equation Estimation and Weak IV

We now consider a single structural equation of (1) containing n observations
on m+ 1 endogenous variables [y1, Y2] written in conventional observation form
as

y1 = Y2β + Z1γ + u, (6)

with conformably partitioned reduced form (where the integer symbols above
the matrices indicate column dimension)

Y =
1 m

[y1, Y2] =
K1 K2

[Z1, Z2]

[
π11 Π12

π21 Π22

]
+ [v1, V2] = ZΠ + V, (7)

and corresponding identifiability relations

2The density of b̃, first derived in Bergstrom (1962) and used later in Nelson and Startz
(1990), has the form

fb̃ (b) =

√
λn

2πσ2
1− β
(1− b)2

exp

{
− n

2σ2

(
b− β
1− b

)2}
where λn =

∑n
t=1 z

2
t is the noncentrality parameter in this system. Clearly limb→1 fb̃ (b) = 0.

By contrast, the density of the least squares estimator of b is positive at b = 1, as shown in
Phillips (2009). The density fb̃ (b) is also well known to be bimodal (Phillips and Wickens,
1978; Phillips and Hajivassilou, 1984, Nelson and Startz, 1990; Phillips, 2006, Fiorio et al.,
2010). Bimodality is particularly evident in the presence of strong endogeneity (as in this
example) when the instruments are weak (Phillips, 2006).
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π11 −Π12β = γ; π21 −Π22β = 0. (8)

Our focus of attention in what follows will be on instrumental variable (IV)
estimation of the structural equation (6) in conjunction with the estimation
of the reduced form. With no loss of generality, it is convenient to assume
standardizing transformations (see Phillips, 1983) are applied so that n−1Z ′Z =
IK whereK = K1+K2, and the covariance matrix of the elements of V = [v1, V2]
is In(m+1). Since u = v1 − V2β, it follows that E (uu′) =

(
1 + β′β

)
In and the

structural equation error variance is 1 + β′β.
We start with the estimation of (6) using an IV observation matrixH selected

from the included and excluded (that is, excluded from the structural equation
(6)) exogenous variables Z = [Z1, Z2] according to the scheme

H = [Z3, Z1] =
m+L K1

[Z2S,Z1].

Here S is a selector matrix that selects m + L ≤ K2 instruments from the
excluded covariates Z2 and the integer L ≥ 0 is the degree of (apparent) overi-
dentification or surplus instrumentation. The exogenous variable matrix Z is
taken as fixed and of full rank K, although other options are possible and em-
ployed later in the paper. The IV estimator of β can be written as

βIV = [Y ′2 (PH − PZ1
)Y2]

−1
Y ′2 (PH − PZ1

) y1 = [Y ′2CC
′Y2]
−1
Y ′2CC

′y1, (9)

where C = QZ1
Z3 (Z ′3QZ1

Z3)
−1/2 is an n × (m + L) matrix of orthonormal

vectors, so that C ∈ Vm+L,n, the Stiefel manifold of m+L orthonormal vectors
of dimension n.
We now briefly review the exact distribution theory of βIV and associated

asymptotic expansions that facilitate some of the remaining developments. This
distribution theory reveals in a simple way the weak IV asymptotics that apply
when n→∞ and the relations (8) are only weakly identifying in the sense that
Π22 = n−1/2Π∗22 = O

(
n−1/2

)
. In such cases, the identifiability relations (8)

provide only limited information about β even as n → ∞ and this uncertainty
manifests itself in the asymptotics. The theory used here draws from Phillips
(1980, 1989) and is used as a bridge to the reduced form theory derived later in
the paper. Some results on many weak IV asymptotics are also provided.

2.3 IV Exact Distributions, Asymptotics and Expansions

Under Gaussianity and standardizing transforms, the error matrix V is matrix
normal3 Nn,m+1

(
0, In(m+1)

)
and the data matrix

C ′Y ∼d Nm+L,m+1

(
M ′, I(m+L)n

)
, (10)

3We use the notation V ∼d Nn,m+1
(
0, In(m+1)

)
to signify that the matrix V is normally

distributed, i.e., the n (m+ 1) vector vec (V ) ∼d N
(
0, In(m+1)

)
.
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with mean vector

M ′ = E (C ′Y ) = (Z ′3QZ1
Z3)
−1/2

Z ′3QZ1
ZΠ = n1/2 (S′S)

−1/2
S′ [π21,Π22]

= n1/2 (S′S)
−1/2

S′Π22 [β, Im] = n1/2Π̄22 [β, Im] ,

where Π̄22 = (S′S)
−1/2

S′Π22 is (m+ L)×m with rank at most m. The sample
moment matrix Y ′CC ′Y is then distributed as noncentral Wishart of dimension
m+ 1 with covariance matrix Im+1, noncentrality matrix

MM ′ = n

[
β′

Im

]
Π̄′22Π̄22 [β, Im] , (11)

whose rank is at most m, and degrees of freedom m + L. This distribution is
written as Wm+1 (m+ L, Im+1,MM ′) and, conformable with the partition of
the structural equation (9), we may write the matrix quadratic form

Y ′CC ′Y =

[
1
a11

m
a12

a21 A22

]
∼d Wm+1 (m+ L, Im+1,MM ′) . (12)

In terms of these components, the IV estimator (9) is βIV = A−1
22 a21, a matrix

quotient of the components of the Wishart matrix (12). The matrix nΠ̄′22Π̄22

in (11) is called the concentration parameter matrix and is instrumental in
determining the (finite sample and asymptotic) properties of βIV because in-
formation about β is transmitted to the density (12) and hence to the density
of βIV through the noncentrality matrixMM ′ by virtue of the matrix nΠ̄′22Π̄22

and its behavior as n→∞.
The exact distribution of βIV was obtained in Phillips (1980) and the density

has the following series form

fIV (r) =
etr
{
−n2

(
I + ββ′

)
Π̄′22Π̄22

}
Γm
(
L+m+1

2

)
πm/2 [det (Im + rr′)]

(L+m+1)/2

×
∞∑
j=0

(
L
2

)
j

[(
n
2β
′Π̄′22∂

a
W Π̄22β

)j
det (Im+L +W )

L−1
2 +j

j!Γn
(
L+m

2 + j
)

× 1F1

(
L+m+1

2 , L+m
2 + j;

n
2 (Im+L +W ) Π̄22 (Im + βr′) (Im + rr′)

−1 (
Im + rβ′

)
Π̄′22

)]
W=0

(13)

where etr {·} signifies exp {trace (·)} , ∂aW = adj (∂/∂W ) is the polynomial dif-
ferential operator obtained by taking the adjoint matrix of the matrix op-
erator ∂/∂W, 1F1 (a, b;U) denotes a confluent hypergeometric function with
matrix argument U and parameters (a, b) , Γ is the gamma function, Γm de-
notes the multivariate gamma function for m > 1, and the notation (a)j =
a (a+ 1) ... (a+ j − 1) = Γ (a+ j) /Γ (a) is the Pochhammer forward factorial
function. Readers are referred to Phillips (1980, 1983) and Muirhead (1982) for
background information on the matrix spaces involved, the multivariate meth-
ods employed, and further details of the special functions 1F1 and Γm.
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The exact density (13) was obtained under Gaussian errors but may be ex-
tended in some cases, for example by using Gram Charlier representations of
more general error distributions. However, the results implied by (13) turn
out to be important and relevant in many other cases including those of non-
Gaussian errors, as detailed below. Importantly, the expression fIV (r) for
the density facilitates many further developments and specializations, includ-
ing some helpful asymptotic results. We mention particularly the following.

(i) Asymptotic theory as n→∞ follows immediately by expanding the matrix
argument 1F1 function in (13) as n→∞.

(ii) Higher order asymptotics and Laplace approximations may also be obtained
in the strong instrument case where Π̄22 has full rank. These are delivered
simply by utilizing higher order expansions of the 1F1 function as n→∞.
In particular, the Laplace approximation to the density (13) is the much
simpler expression

fIV (r) =
nm/2etr

{
−n2

Π̄′22Π̄22(r−β)(r−β)′

1+r′r

}(
det
(
Π̄′22Π̄22

))1/2 (
1 + β′r

)L+1

(2π)
m/2

(1 + r′r)
(L+m+2)/2 (

1 + 2β′r − β′β
)L/2

×
{

1 +O
(
n−1

)}
, (14)

which delivers immediately the density of the limit distribution of Xn =√
n (βIV − β) as

fX (x) =
e
− 1

2

x′Π̄′22Π̄22x

1+β′β
(
det
(
Π̄′22Π̄22

))1/2
(2π)

m/2 (
1 + β′β

)m/2 ≡ N
(

0,
(
1 + β′β

) (
Π̄′22Π̄22

)−1
)
.

(15)

(iii) Asymptotic theory in the unidentified case where Π̄22 = 0 is also easily
obtained without the Gaussianity assumption on the error matrix V . We
need only take the leading term of the series representation of the exact
density fIV (r), which gives the following (scaled) multivariate t distribu-
tion4 with L+ 1 degrees of freedom and density

Γm
(
L+m+1

2

)
πm/2Γn

(
L+m

2

)
[det (Im + rr′)]

(L+m+1)/2
=

Γ
(
L+m+1

2

)
πm/2Γ

(
L+1

2

)
[1 + r′r]

(L+m+1)/2
,

(16)
and note that a central limit theorem (CLT) produces the required Gaus-
sianity of (10) without assuming Gaussianity for V. Observe further that
when L = 0, the limiting density is multivariate Cauchy and has no integer
finite sample moments. Thus, IV estimation under conditions of apparent

4Strictly speaking the density (16) is proportional to a multivariate t distribution. In
particular, the distribution given by the density (16) is the distribution of tq/q1/2 with q =
L+ 1 where tq is multivariate t with q degrees of freedom. See Phillips (1989, theorem 2.1).
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just identification has a heavy tailed density. Asymptotic theory for sta-
tistical tests, including general Wald test of restrictions on the structural
coeffi cients β, are also easily deduced.

(iv) Asymptotics in the weakly identified case also follow immediately for re-
duced form matrices that are local to zero such as Π̄22 = n−1/2Π̄∗22 =
O
(
n−1/2

)
, for some matrix Π̄∗22 of localizing coeffi cients. In this case, the

limit distribution of βIV as n → ∞ is just the exact density fIV (r) of
βIV given above in (13) with the simple replacement of Π̄22 by n−1/2Π̄∗22.
Similarly, asymptotic theory for statistical tests concerning β follows, just
as in (iii). In all these cases, we simply can use the martingale CLT in
Philllips (1989) to deliver the limit theory without assuming Gaussianity.

(v) The case of many weak instruments may also be explored using the ex-
act theory. In particular, suppose the number of surplus instruments (or
degree of overidentification) L→∞. Then, under certain regularity condi-
tions that include the expansion rate of L, βIV is consistent with a slower
rate of convergence than

√
n and the rate of convergence depends on the

extent of the weakness in the instruments. But when L→∞ too rapidly
relative to the expansion rate of the concentration matrix Π̄∗′22Π̄∗22, then
βIV is inconsistent.

Items (i)-(ii) are shown in Phillips (1980) and the various items in (iii) were
proved in Phillips (1989), including the asymptotic theory of the associated
statistical tests. We briefly demonstrate (iv) here as the methods are of some
pedagogical interest in view of their simplicity. First observe that the replace-
ment Π̄22 = n−1/2Π̄∗22 ensures that (10) holds with M

′ = Π̄∗22 [β, Im] as n→∞
by the martingale CLT. In particular

C ′Y − E (C ′Y ) = C ′V ∼a Nm+L,m+1

(
0, I(m+L)(m+1)

)
, (17)

because C ′V satisfies the stability and Lindeberg conditions, as shown in Phillips
(1989, lemma 2.3), when the rows of V are stationary and ergodic martingale
differences with conditional covariance matrix Im+1. Next note that βIV is a
continuous function of C ′Y by virtue of (9) and the fact that the limiting matrix
normal distribution (and the implied Wishart distribution of Y ′2CC

′Y2) is of full
rank, confirming continuity of the mapping. The exact density fIV (r) derived
under Gaussianity is then the limiting density of βIV as n → ∞ when the re-
duced form coeffi cients satisfy Π22 = n−1/2Π∗22 and the data are not necessarily
Gaussian. That is, when the instrument matrix H is weak for the endogenous
variables Y2 in the structural equation (6), the limit theory as n→∞ reproduces
the exact distribution theory under Gaussianity with all its associated parame-
ter dependencies under the simple replacement of Π22 by n−1/2Π∗22. Note that
the dependence of the density (13) on the sample size n is removed by this
replacement.
This approach brings together the exact distribution theory and the weak

instrument limit theory by virtue of the simple action of the CLT (17) from
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Phillips (1989) and continuous mapping from the matrix quotient form of the
estimator βIV . The argument is identical in this non-central (weak instrument)
case to that given in Phillips (1989) for the unidentified case. Results for sta-
tistical tests follow directly. Staiger and Stock (1998) developed results in (iv)
assuming high level conditions that require a CLT such as (17) and considered
k-class estimators as well as tests of overidentification and exogeneity.
Item (v) was considered in Chao and Swanson (2005) and the results may

be obtained in the present framework. For instance, we may assume that
the noncentrality matrix Π̄′22Π̄22 satisfies nλmin

(
Π̄′22Π̄22

)
= O

(
n2α
)
→ ∞,

where λmin (·) denotes the smallest eigenvalue of its matrix argument, and
n1−2αΠ̄′22Π̄22 → Ψ > 0 for some given α ∈

(
0, 1

2

)
and for some positive def-

inite limit matrix Ψ. Then the density of the centered and scaled estimator
Xn = nα (βIV − β) has the form

fXn (x) =
e
− 1

2

x′( n
n2α Π̄′22Π̄22)x

1+β′β
(
det
(
n
n2α Π̄′22Π̄22

))1/2
(2π)

m/2 (
1 + β′β

)m/2 {
1 +O

(
L

nα

)}
→ N

(
0, σ2

uΨ−1
)
, with σ2

u = 1 + β′β, (18)

as 1
L + L

nα → 0. So, under certain regularity conditions as the number of
weak instruments grow, βIV is consistent at a reduced rate and has a limit-
ing normal distribution with variance matrix σ2

uΨ−1 that depends on the limit
n1−2αΠ̄′22Π̄22 → Ψ and the scalar σ2

u = 1 + β′β, which is the variance of the
structural equation error ut after standardizing transformations on the reduced
form have been performed, as indicated earlier.
Recall that Π̄22 = (S′S)

−1/2
S′Π22 is (m+ L) ×m, so that the number of

rows of Π̄22 expands as L→∞. Thus, depending on the extent of the weakness
of the instruments (measured by the magnitude of the elements of Π̄22), when
there is an expanding instrument set the matrix quadratic form Π̄′22Π̄22 can
accumulate information at some rate that is related to the expansion rate of L.
This rate is given by the exponent α that appears in the excitation condition
nλmin

(
Π̄′22Π̄22

)
= O

(
n2α
)
→ ∞ and the regularity condition required is that

L not grow too fast relative to the excitation rate, so that L/nα → 0. At
the limits of its domain of definition when α = 1

2 , we have the usual strong
instrumentation case for which βIV is consistent at a

√
n rate; and when α = 0,

we have conventional weak instrumentation under which the estimator βIV is
inconsistent. Other cases may also be considered and are investigated in Chao
and Swanson (2005). A further example is considered later in this paper.
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3 Reduced Form Exact Distribution Theory and
Associated Asymptotics

We start by considering the same triangular structural system as that used
above, viz.,

y1 = Y2β + Z1γ + u, (19)

Y2 = Z1Π12 + Z2Π22 + V2, (20)

in which the second block of equations is already in reduced form. The complete
reduced form is

[y1 , Y2] = [Z1π11 + Z2π21 + v1 , Z1Π12 + Z2Π22 + V2] ,

= [Z1 (Π12β + γ) + Z2Π22β + v1 , Z1Π12 + Z2Π22 + V2] , (21)

where v1 = u + V2β. For the development of an exact theory we assume, as
earlier, that V ∼d N

(
0, In(m+1)

)
after standardizing transformations. The

Gaussian assumption is relaxed in the asymptotic theory discussed later.
The system (21) solves the structural form and leads to a reduced form

with restricted coeffi cients that involve the structural parameters. However, the
coeffi cient π11 = Π12β + γ is effectively unrestricted because it has dimension
K1×1 and the K1- vector γ is also unrestricted. On the other hand, π21 = Π22β
implies that the reduced form coeffi cients π21 are restricted by the requirement
that π21 ∈ R (Π22) , the range space of Π22, and that the specific linear combi-
nation of Π22 involves β. Note particularly that if Π22 = 0 then π21 = 0, which
imports information about Π22 from the reduced form for Y2 directly into the
reduced form for y1 as a consequence of the structural model.
The system (21) is known as a partially restricted reduced form (Kakwani

and Court, 1972) because it incorporates restrictions on the reduced form equa-
tions from a single structural equation. These restrictions may be used in esti-
mation and they lead to the partially restricted reduced form estimator (Knight,
1977) [

π̃11 = Π̂12βIV + γIV = π̂11

π̃21 = Π̂22βIV

]
, where

[
Π̂12

Π̂22

]
= (Z ′Z)

−1
Z ′Y2.

The first component π̃11 = π̂11 is unrestricted and is Gaussian with all its
moments finite. It is the second component π̃21 = Π̂22βIV which is of primary
interest because it carries the effects of the structural information into reduced
form estimation. Knight’s (1977) work showed that the partially restricted
reduced form estimator has finite moments of all orders.
Since π̃11 = π̂11 is an unrestricted estimator, we need not be concerned with

this component. In what follows, therefore, we eliminate the included exogenous
variables from (19) and consider the structural equation

y1 = Y2β + u (22)

12



with no included exogenous variables, and the associated reduced form

[y1, Y2] = Z [π1,Π2] + [v1, V2] = ZΠ + V, (23)

in which π1 = Π2β ∈ R (Π2) .Without loss of generality, we continue to assume
that standardizing transformations are applied to (23) so that Z ′Z = nIK and
V ∼d N

(
0, In(m+1)

)
.

3.1 Reduced Form Predictors

As in Maasoumi (1978), we are particularly interested in the effects of reduced
form estimation on prediction. We concentrate on obtaining one period ahead
forecast distributions for the first structural equation using restricted and unre-
stricted estimation. The forecast object is therefore y1,n+1 = z′n+1π1 + v1,n+1,
where y1,n+1 is the forecast period value of the endogenous variable in (22) and
the reduced form error v1,n+1 ∼d N (0, 1) is independent of V. In what follows,
we will maintain the Gaussian assumption to develop the exact theory and relax
this assumption in developing the asymptotics.

(a) Exact Theory and Asymptotics in the Unidentified Case

We start by exploring the leading case where the submatrix Π22 = 0 and the
structural coeffi cient β is unidentified. The exact theory for the reduced form is
simpler for this case, just as it is for structural estimation theory, but suffi ces to
reveal interesting features of the restricted reduced form estimator. Note that
in this case π1 = Π2β = 0.
The two predictors (based on the unrestricted estimate π̂1 and the restricted

estimate Π̂2βIV of π1) are given by

ŷ1,n+1 = z′n+1π̂1 and ỹ1,n+1 = z′n+1π̃1 = z′n+1Π̂2βIV .

With no loss of generality it is convenient to maintain the standardizing trans-
formations and add the normalizing condition z′n+1zn+1 = 1 on the forecast
period exogenous variables. Then the unrestricted forecast

ŷ1,n+1 ∼d N
(
z′n+1π1, z

′
n+1 (Z ′Z)

−1
z′n+1

)
= N

(
z′n+1π1,

1

n

)
(24)

is unbiased with variance 1/n. The distribution of the restricted forecast ỹn+1

is more complex and involves the product Π̂2βIV of the unrestricted reduced
form estimate Π̂2 = (Z ′Z)

−1
Z ′Y2 and the structural form IV estimate βIV .

The exact densities of the two predictors of y1,n+1 are given in the following
result.

Theorem Under Gaussianity, the stated conditions for the model (22) - (23),
and in the leading case where π1 = Π2β = 0, the exact densities of the

13



normalized unrestricted and restricted reduced form predictors ŷP1,n+1 =

z′n+1 (
√
nπ̂1) and ỹP1,n+1 = z′n+1

(√
nΠ̂2βIV

)
are given by

fŷP1,n+1
(y) =

e−
y2

2

√
2π

, (25)

fỹP1,n+1
(y) =

e−
y2

2

√
2π

∞∑
j=0

(
K−m

2

)
j

(
1
2

)
j

j!
(
K
2

)
j

1F1

(
−j, 1

2
;
y2

2

)
, (26)

where 1F1

(
−j, 1

2 ; y
2

2

)
=
∑j
k=0

(−j)(−j+1)...(−j+k−1)

k!( 1
2 )
k

(
y2

2

)k
is a terminat-

ing confluent hypergeometric series.

The proof of (26) is given in the Appendix and relies on a simple conditioning
argument. The idea is that, for the model (22) - (23), the restricted reduced
form estimate has the following decomposition

√
nΠ̂2βIV =

√
n (Z ′Z)

−1
Z ′Y2 × (Y ′2CC

′Y2)
−1
Y ′2CC

′y1

= C ′V2 (V ′2CC
′V2)

−1/2 × (V ′2CC
′V2)

−1/2
(V ′2CC

′v1) , (27)

where C ′ = (Z ′Z)
−1/2

Z ′ and the component variates C ′V2 (V ′2CC
′V2)

−1/2

and (V ′2CC
′V2)

−1/2
(V ′2CC

′v1) are independent. The standardized estimate√
nΠ̂2βIV therefore has a mixed normal distribution

5 , from which the density
can be evaluated by direct integration over the space Vm,K of the K×m matrix
variate Υ = C ′V2 (V ′2CC

′V2)
−1/2

.

As noted in the statement of the theorem, the component factor 1F1

(
−j, 1

2 ; y
2

2

)
is a terminating hypergeometric series. This series is of special interest because
it arises in the computation of moments of a non-central normal distribution.
In particular, as shown in the proof of the theorem, if X ∼ N

(
µ, σ2

)
the even

moment formula (e.g., Winkelbauer, 2014)

E
(
X2j

)
= σ2j2j

Γ
(
j + 1

2

)
√
π

1F1

(
−j, 1

2
,− µ2

2σ2

)
,

yields ∫ ∞
−∞

1√
2π
e−

(s+iy)2

2 s2jds = 2j
(

1

2

)
j

1F1

(
−j, 1

2
,
y2

2

)
,

upon setting µ = iy and σ = 1.

5A matrix variate X has a (variance matrix) mixed normal distribution if the density of
X is a compound distribution of the form pX (x) =

∫
A>0 ϕ (x,A) p (A) (dA) where ϕ (x,A)

is the matrix normal density with covariance matrix A and the integral is taken over the
matrix space A > 0 with respect to the invariant measure (dA) on the cone of positive definite
matrices weighted by the probability density p (A) of A. See Muirhead (1982) for further
details.
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When K = m, the series (26) truncates at the first term giving fỹP1,n+1
(y) =

e−
y2

2 /
√

2π = fŷP1,n+1
(y) . In this case, the structural model is (apparently) just

identified and there are no effective restrictions on the reduced form, so that
π̂1 = Π̂2βIV and the predictors are equivalent (i.e., ỹP1,n+1 = ŷP1,n+1). In this
case there is no gain from using the structural form estimate βIV because the
two reduced form estimates are equivalent.
The following moment results enable a straightforward comparison between

the two predictors in terms of variance and forecast mean square error.

Corollary Under the same conditions as above, the normalized unrestricted
and restricted reduced form predictors have variances

E
{(
ŷP1,n+1

)2}
= 1, and E

{(
ỹP1,n+1

)2}
=
m

K
. (28)

When K = 2 and m = 1 we have E
{(
ỹP1,n+1

)2}
= 1

2 , so the variance of the

restricted reduced form predictor is one half the variance of the unrestricted pre-
dictor ŷP1,n+1. When m = 1 and K ≥ 2 we have a variance reduction to 1/K of
the variance of the unrestricted reduced form predictor ŷ1,n. The distribution of
the restricted reduced form predictor is therefore much less dispersed than that
of the unrestricted estimate. This finding is intriguing in light of the fact that
the restrictions are only apparent in the present case. Indeed, the restricted pre-
dictor ỹPn+1 depends on structural estimation of an unidentified parameter and
the structural estimator βIV itself is inconsistent. Yet the partially restricted
reduced form estimator substantially reduces variance in the predictor.
How is it, then, that the restricted estimator π̃1 = Π̂2βIV , which depends

on the inconsistent estimator βIV , can be less dispersed than the unrestricted
estimator π̂1? The explanation is that π̃1 is the product of two estimators Π̂2

and βIV , both of which are centred on the origin and the first of which is con-
sistent for Π2 = 0. The product distribution enhances concentration around the
origin, thereby reducing variance. In effect, when we use the information in
βIV in reduced form estimation we employ both Π̂2, which is centred on zero
(just like the unrestricted RF estimate π̂21) and βIV , which is also centered on
zero, giving a combined effect of double centering on zero through the product
Π̂2βIV . In effect, shrinkage (achieved in this case by multiplication) helps to
reduce variance, mirroring one of the broad ideas in Maasoumi (1978). Impor-
tantly, structural information is seen to be useful here where there is apparent
overidentification even though the structural parameters themselves are uniden-
tified and even though there are ostensibly more coeffi cients estimated in the

pair
(

Π̂2, βIV

)
than there are in the simple unrestricted reduced form estimate

π̂1.
The corresponding forecast mean square error (FMSE) values are

E (ŷ1,n+1 − y1,n+1)
2

= 1 +
1

n
, and E (ỹ1,n+1 − y1,n+1)

2
= 1 +

m

nK
,
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so that the restricted forecast also has a lower FMSE than the unrestricted
forecast in this case.
The exact densities (25) and (26) do not depend on n. When we relax the

assumption of Gaussianity in the error matrix V and use instead the CLT (17),
we again obtain (25) and (26) but now as the limit distributions of ŷP1,n+1 and
ỹP1,n+1 as n→∞. Thus, all of the above stated properties of the two predictors
hold asymptotically without Gaussianity.
A particularly interesting feature of the exact distribution (26) is that we may

consider its limit as the number of instrumentsK (or degree of overidentification
K − m) passes to infinity. This limit is most easily obtained by using the
characteristic function of ζ = ỹP1,n+1 = z′n+1 (

√
nπ̃2) that is given in the proof

of the theorem in (37), viz.,

cfζ (s) = e−
s2

2 1F1

(
K −m

2
,
K

2
;
s2

2

)
= e−

s2

2

∞∑
j=0

(
K−m

2

)
j

j!
(
K
2

)
j

(
s2

2

)j
. (29)

This characteristic function is the exact finite sample and asymptotic (as n →
∞) characteristic function of ζ. When K → ∞ (under the assumption that
K < n→∞) it is clear from (29)6 that

lim
K→∞

cfζ (s) = e−
s2

2

∞∑
j=0

1

j!

(
s2

2

)j
= 1.

It follows that the limit distribution of the restricted predictor ỹP1,n+1 = z′n+1 (
√
nπ̃2)

has a point probability mass of unity at the origin. Hence, ỹP1,n+1 →p 0 as

K → ∞. Correspondingly, the predictor variance E
{(
ỹP1,n+1

)2}
= m

K → 0 as

K → ∞. Thus, increasing the number of (irrelevant) instruments has a dra-
matic shrinking effect on the restricted predictor, just as it does in fact for the
distribution of βIV .

7

(b) The Weak IV Case

We next consider the weak IV case. We have the same predictors ŷ1,n+1 =

z′n+1π̂1 and ỹ1,n+1 = z′n+1π̃1 = z′n+1Π̂2βIV , but now [π1,Π2] = n−1/2 [π∗1,Π
∗
2]

with π∗1 = Π∗2β. The normalized unrestricted reduced form estimates satisfy
√
n
[
π̂1, Π̂2

]
∼d N

(
[π∗1,Π

∗
2] , IK(m+1)

)
= N

(
[Π∗2β,Π

∗
2] , IK(m+1)

)
so that ŷP1,n+1 =

6The result follows by examining the expansion (29), letting K → ∞, and noting that(
K−m
2

)
j
/
(
K
2

)
j
→ 1 as K → ∞ for all j. Alternatively, we may use the large-parameter

asymptotic expansion 1F1 (a, c;x) = ex
[
1 +O

(
|c|−1

)]
which holds when c → ∞ and c − a

and x are bounded, as in the present case (see Erdélyi, 1953, p. 279).
7Recall from footnote 4 that the exact density (16) of βIV in the irrelevant instrument

case is the scaled multivariate t- distribution tq/q1/2, with q = K−m+1 degrees of freedom,
which collapses to the origin as K →∞.
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√
nŷ1,n+1 =

√
nz′n+1π̂1 ∼ N (z′Π∗2β, 1) . For the restricted reduced form estima-

tor, we know that in this weak IV case with K fixed we have βIV ⇒ ζβ where
ζβ has the distribution given in (13) as n → ∞ after making the replacements
Π̄22 7→ n−1/2Π∗2 and m+ L 7→ K in the density. Then, as n→∞,

ỹP1,n+1 =
√
nỹ1,n+1 =

√
nz′n+1Π̂2βIV

= z′ (Π∗2 + C ′V2)βIV ∼a N (z′Π∗2, Im)× ζβ ,

where βIV can be written in component form as follows

βIV = [(Π∗′2 + V ′2C) (Π∗2 + C ′V2)]
−1

[(Π∗′2 + V ′2C) (π∗1 + C ′v1)] .

Under either Gaussianity or asymptotically as n → ∞, we have C ′V2 ∼d
N (0, IKm) and, as before, C ′V2 is independent of C ′v1 ∼d N (0, IK) .

Setting WΠ = (Π∗2 + C ′V2) ∼d N (Π∗2, IKm), we have the following represen-
tation, by virtue of initial conditioning on C ′V2,

(Π∗2 + C ′V2)βIV = WΠ (W ′ΠWΠ)
−1

[W ′Π (Π∗2β + C ′v1)]

= PWΠΠ∗2β + PWΠC
′v1 ∼d MN (PWΠΠ∗2β, PWΠ) ,

which involves a mean and covariance matrix normal mixture, for which we use
the symbolism MN (·, ·). Hence, the normalized predictor

ỹP1,n+1 =
√
nz′n+1Π̂2βIV ∼d MN (z′PWΠΠ∗2β, z

′PWΠz) . (30)

When Π∗2 = 0 this distribution reduces to MN (0, z′PC′V2
z) as in the decom-

position (27) used for the central case; and, when β = 0, we have ỹP1,n+1 ∼d
MN (0, z′PWΠz) . In both these cases we have a variance matrix normal mixture.
Since PWΠ

is a projection matrix and WΠ has a full rank normal distribution
which implies thatW ′Πz 6= 0 with probability one, it follows that z′PWΠ

z ∈ (0, 1)
a.s.. So, just as in the completely unidentified case, the variance of the normal-
ized restricted predictor is smaller than the variance of the unrestricted predictor
in the weak IV case when β = 0.
It is also possible to analyze the case of many weak instruments as K →∞.

For example, suppose z = iK/
√
K where iK = (1, ..., 1)

′ is a K- vector with
unity in each position, and assume that K−1i′KΠ∗2 →p 0 and K−1Π∗′2 Π∗2 →p

ΩΠ > 0 for some positive definite m×m matrix ΩΠ. These conditions are sat-
isfied, for instance, when Π∗2 = [Π∗21, ...,Π

∗
2K ]
′ in which the component vectors

Π∗2k ∼iid (0,ΩΠ) and are independent of V. Since C ′V2 ∼d N (0, IKm) either ex-
actly under Gaussianity or asymptotically using (17), we haveK−1V ′2CC

′V2 →p

Im, K
−1V ′2CΠ∗2 →p 0, and K−1i′KC

′V2 →p 0. The quadratic form z′PWΠ
z =
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K−1i′KPWΠiK then satisfies

z′PWΠ
z =

1

K
i′K (Π∗2 + C ′V2) [(Π∗′2 + V ′2C) (Π∗2 + C ′V2)]

−1
(Π∗′2 + V ′2C) iK

=

(
i′KΠ∗2
K

+
i′KC

′V2

K

)[(
Π∗′2 Π∗2
K

+
Π∗′2 C

′V2

K
+
V ′2CΠ∗2
K

+
V ′2CC

′V2

K

)]−1

×
(

Π∗′2 iK
K

+
V ′2CiK
K

)
→ p 0.

Hence, we may expect the variance of the predictor ỹP1,n+1 to decrease asK →∞
in the many weak IV case, just as in the unidentified case.
The location variate in (30) is also of interest when β 6= 0. If we assume

the conditions above that the weak reduced form parameters Π∗2k ∼iid (0,ΩΠ)
and are independent of V, then K−1/2i′KΠ∗2 ⇒ ζΠ2

∼a N (0,ΩΠ) and since
K−1/2i′KC

′V2 ⇒ ζV ∼d N (0, Im) , we find that

z′PWΠΠ∗2β =
1√
K
i′K (Π∗2 + C ′V2) [(Π∗′2 + V ′2C) (Π∗2 + C ′V2)]

−1
(Π∗′2 + V ′2C) Π∗2β

=

(
i′KΠ∗2√
K

+
i′KC

′V2√
K

)[(
Π∗′2 Π∗2
K

+
Π∗′2 C

′V2

K
+
V ′2CΠ∗2
K

+
V ′2CC

′V2

K

)]−1

×
(

Π∗′2 Π∗2
K

+
V ′2CΠ∗2
K

)
β

⇒
(
ζ ′Π2

+ ζ ′V
)

(ΩΠ + Im)
−1

ΩΠβ,

which shows that prediction bias can be expected in the many weak IV case
when the structural coeffi cients β 6= 0. This bias is related to the fact that the IV
estimate βIV is inconsistent in this particular many weak IV case. Specifically,
for given K the finite sample (or asymptotic distribution under (17) as n→∞)
distribution is given by

βIV = [(Π∗′2 + V ′2C) (Π∗2 + C ′V2)]
−1

[(Π∗′2 + V ′2C) (π∗1 + C ′v1)]

= (W ′ΠWΠ)
−1
W ′Π (π∗1 + C ′v1) = (W ′ΠWΠ)

−1
W ′Π (Π∗2β + C ′v1)

∼ d MN
(

(W ′ΠWΠ)
−1
W ′ΠΠ∗2β, (W

′
ΠWΠ)

−1
)
.

As above, we have

K−1W ′ΠWΠ =

(
Π∗′2 Π∗2
K

+
Π∗′2 C

′V2

K
+
V ′2CΠ∗2
K

+
V ′2CC

′V2

K

)
→p ΩΠ + Im,

when K →∞, and so

(W ′ΠWΠ)
−1
W ′ΠΠ∗2β =

(
W ′ΠWΠ

K

)−1
W ′ΠΠ∗2β

K
→p (ΩΠ + Im)

−1
ΩΠβ

=
[
Ω−1

Π − Ω−1
Π

(
Ω−1

Π + I
)−1

Ω−1
Π

]
ΩΠβ = β − (ΩΠ + Im)

−1
β.
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Hence, in this case,
βIV →p β − (ΩΠ + Im)

−1
β (31)

and the IV estimator is inconsistent, a result that was obtained earlier in Chao
and Swanson (2005, theorem 2.4(b)). While a limit distribution theory is pos-
sible, it is obviously of less interest due to the inconsistency. Observe that
Π∗′2 Π∗2 = O (K) here, which ensures that in Chao and Swanson’s notation their
rn = K, and so rn/K → 1, thereby establishing the correspondence with their
result. By contrast, the many weak IV case (iv) considered earlier has the con-
centration matrix expansion rate Π∗′2 Π∗2 = O

(
n2α
)
with K/n2α → 0, and βIV

is consistent at rate O (nα) and asymptotically normal. Thus, consistency holds
when the instrument set does not expand too fast in relation to information
accumulated in the concentration matrix as K →∞. Again, a limit distribution
theory is possible.
In the general noncentral weak IV case where Π∗2 6= 0 and β 6= 0, the distrib-

ution of the predictor is the mean and variance matrix mixture of normals (30)
in which the conditional mean vector z′PWΠ

Π∗2β is random. This substantially
complicates the exact distribution theory and introduces a (random) conditional
bias effect into the predictor that may not be eliminated asymptotically and may
inflate variance. Although there may still be conditional variance reductions in
this case because the conditional variance in (30) has the same value z′PWΠz,
the overall effect of the random mean mixture on the properties of the restricted
predictor ỹP1,n+1 is mixed. Some simulation evidence is presented next to provide
further information on these properties.

Fig. 1: Exact densities of reduced form and partially restricted reduced form
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predictors in an unidentified structural model with m+ 1 = 2 endogenous
variables and K −m degrees of apparent overidentification in the equation.

3.2 Simulations

We first consider the unidentified case and produce numerical illustrations of
the density results (25) and (26) given in the theorem. The IV (restricted) pre-
dictor density is readily computed directly from the analytic expression (26).
The unrestricted predictor density is standard normal. Figures 1 and 2 show
these densities for various values of the degree of overidentification K −m and
for m = 1 and m = 3. As is clear in both figures, the densities of the IV predic-
tor are considerably more concentrated than that of the unrestricted predictor.
Moreover, the concentration increases as K −m increases. These numerical re-
sults confirm the analytic findings and show that the forecast variance reduction
is particularly dramatic when m = 1.
Figures 3 and 4 provide simulation-based kernel density estimates of the

unrestricted and partially restricted reduced form (PRRF) predictors in the
weak IV case. We report results for the two endogenous variable case (i.e.,m = 1
and there is a single right hand endogenous variable in the structural equation
(22)), sample size n = 100, and instrument numbers K = 3, 11 and 19. The K-
vector Π∗2 has its elements drawn (once and for all) from the normal distribution
N (0, IKm) , Π2 = n−1/2Π∗2, giving a conventional weak instrument matrix, and
the forecast period vector zn+1 = iK/

√
K. The structural coeffi cient has values

β = 0 in Figure 3, and β = 1 in Figure 4. These differences in the values of the
structural coeffi cient β turn out to be of substantial importance, as inspection
of Figures 3-4 confirm.
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Fig. 2: Exact densities of reduced form and partially restricted reduced form
predictors in an unidentified structural model with m+ 1 = 4 endogenous
variables and K −m degrees of apparent overidentification in the equation.

Fig. 3: Densities of the unrestricted and partially restricted reduced form
predictors in the noncentral weak IV case when β = 0. Simulations with
n = 100, m = 1, K = 3, 11, 19, zn+1 = iK/

√
K,and 50, 000 replications.
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Fig. 4: Densities of the centred and scaled unrestricted reduced form predictor
and the partially restricted reduced form predictor in the noncentral weak IV
case when β = 1. Simulations are based on n = 100, m = 1, K = 3, 11, 19,

zn+1 = iK/
√
K,and 50, 000 replications.

First, it is clear from Figure 3 that when β = 0, the predictor distributions
are all centred on the origin as, conditional on Π∗2, the mean forecast period
value is E (y1,n+1) = z′n+1π1 = z′n+1Π2β = 0. Second, the unrestricted predictor
ŷP1,n+1 =

√
nz′n+1π̂1 ∼d N (0, 1) since z′n+1zn+1 = 1, and it is apparent in

the figure that the finite sample density matches the standard normal density.
Third, the density of the PRRF predictor depends closely on the degree of
overidentification K − 1. Even for small degrees of overidentification like K −
1 = 2, the PRRF predictor has a more concentrated density. As K increases,
the density concentrates sharply, corroborating the analytic finding that the
variance tends to zero as K →∞.
Figure 4 gives the densities for the centred and scaled versions of the predic-

tors
√
n (ŷ1,n+1 − y1,n+1) and

√
n (ỹ1,n+1 − y1,n+1) when β = 1 and the remain-

ing parameters are as in Figure 3. Again, the distribution of the unrestricted
predictor matches the asymptotic N (0, 1). The densities of the PRRF predic-
tors show non-Gaussian features with peakedness, skewness, and location bias
for all K, reflecting the mean and variance mixed normal form of the analytic
distribution (30). In each case, the density is more concentrated than that of
the unrestricted predictor, which corroborates the limit theory. The location
bias is particularly noticeable for K = 3 and K = 11 and reflects the bias in the
IV estimate (30) that is present for fixed K as n → ∞. However, the density
for K = 19 in Figure 4 shows that for larger K, the bias is reduced and the
predictor distribution is better centered. This evidence matches the asymptotic
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theory that βIV is consistent in the many weak instrument case, provided K
does not increase too fast.8

4 Reflections on Exact Theory and Reduced Forms

At the time when Maasoumi’s (1978) paper appeared, finite sample theory (in-
cluding exact distribution theory) was the Rolls Royce of research areas in
econometrics, a position it had occupied for nearly a decade. The avalanche
of asymptotic theory that emerged in the 1980s appeared for a while to bury
much of this literature. But the relentless search for generality in econometric
methods never obscured the reality of the finite sample dependencies of econo-
metric estimation and inferential methods that were one of the highlights of
finite sample results. The recognition that asymptotics reproduce such depen-
dencies in models that are only partly identified brought a revival of interest in
exact distribution theory and analytic methods of approximation that capture
the central features of those parameter dependencies.
This recognition, in its turn, put a premium on the search for inferential

methods that assist in achieving some robustness to such dependencies. In
structural equation models, the use of reduced form methods for inference on
structural coeffi cients was noted by Chernozukov and Hansen (2008) who used
the identifiability relation π1 = Π2β to construct robust tests of hypotheses
on the structural coeffi cients β using unrestricted reduced form estimates of π1.
Similar testing methods may be employed with partially restricted reduced form
estimates and are currently under investigation.
The present paper uses this same correspondence but in a different manner

and with a different focus to seek improvements in forecasting. The results
reveal that such improvements are possible and can apply in the case where β is
unidentified, thereby showing that information about the structural form may be
useful even in the absence of effective instrumentation. These improvements are
partly induced by shrinkage, just as those originally implemented by Maasoumi
(1978) on system-wide reduced form estimates.

8For a detailed analysis of the bias properties of IV estimation, but not prediction, readers
are referred to Chao and Swanson (2007), who consider various cases that allow for different
expansion rates of K and n passing to infinity in IV estimation under weak instrumentation.
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5 Appendix

The following lemma gives a matrix space integral that is useful in multivariate
analysis. Part (a) is a minor extension of a standard result (Muirhead, 1982).
We need this lemma and the characteristic function given in Part (b) in our
main development.

Lemma A

(a) If the p×p matrix X is positive semi-definite and Vq,p is the Stiefel manifold
of q < p frames of p× 1 orthonormal vectors∫

Vq,p

etr {XH1H
′
1} (dH1) = 1F1

(q
2

;
p

2
;X
)
, (32)

where the p× q matrix H1 ∈ Vq,p with H ′1H1 = Ip, (dH1) is the (normal-
ized) Haar measure on Vq,p so that

∫
Vq,p

(dH1) = 1, and 1F1

(
q
2 ; p2 ;X

)
is

a matrix argument confluent hypergeometric function.

(b) The characteristic function cfζ (s) = E
(
eisζ

)
of the random vector ζ ∼

MN (0, z′ΥΥ′z) , where Υ = Ξ (Ξ′Ξ)
−1/2

, Ξ is K ×m with K > m and
distributed as matrix normal Ξ ∼ N (0, ImK), and z is a fixed K- vector
with z′z = 1, is given by

cfζ (s) = e−
s2

2 1F1

(
K −m

2
,
K

2
;
s2

2

)
= e−

s2

2

∞∑
j=0

(
K−m

2

)
j

j!
(
K2

2

)
j

(
s2

2

)j
.

(33)

Proof of Lemma A

Part (a) Muirhead (1982, p.288 exercise 7.8) gives (32) for positive definite X.
We show the result also holds when X is positive semi-definite. Set H =
[H1, H2] ∈ O (p) , where H2 is an orthogonal complement to H1. Write
HH ′ = H1H

′
1 +H2H

′
2, so that etr {XH1H

′
1} = etr {XH1H

′
1 + 0H2H

′
2} =

etr {XHYH ′} with

H1H
′
1 = [H1, H2]

[
Iq 0
0 0

] [
H ′1
H ′2

]
, and Y =

[
Iq 0
0 0

]
.

From Constantine (1963), James (1964) we have the zonal polynomial
formula

Cϕ (Iq) = c (ϕ)Zϕ (Iq) /1.3....(2q − 1) = c (ϕ) 22j
(q

2

)
ϕ

j!

(2j)!
, (34)

where c (ϕ) is a degree representation of the symmetric group (see for-
mulae (23) - (25) of James (1961) and Muirhead (1982, p. 272) ), ϕ =
(j1, ..., jq) is a partition of the integer j into not more than q parts, and
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(a)ϕ =

q∏
i=1

(
a− 1

2 (i− 1)
)
ji
is a generalized hypergeometric coeffi cient or

forward factorial. Then, by standard multivariate methods (Muirhead,
1982, theorem 7.3.3. and lemma 7.5.7), utilizing (34), and noting that
Cϕ (Iq) = 0 if ϕ is a partition into more than q parts (Muirhead, 1982, p.
272), we obtain∫

Vq,p

etr {XH1H
′
1} (dH1) =

∫
O(p)

etr {XHYH ′} (dH)

= 0F
(p)
0 (X,Y ) =

∞∑
j=0

∑
ϕ

Cϕ (X)Cϕ (Iq)

j!Cϕ (Ip)

=

∞∑
j=0

∑
ϕ

Cϕ (X)
[
22jj!

(
q
2

)
ϕ
/ (2j)!

]
j!
[
22jj!

(
p
2

)
ϕ
/ (2j)!

]
=

∞∑
j=0

∑
ϕ

(
q
2

)
ϕ
Cϕ (X)

j!
(
p
2

)
ϕ

= 1F1

(q
2

;
p

2
;X
)
,

as required for (32) and this derivation holds for X positive semi-definite.
The final line above uses the series representation of the matrix argument
confluent hypergeometric function.

Part (b) If Ξ ∼ N (0, IKm) then the K ×m matrix Υ = Ξ (Ξ′Ξ)
−1/2 ∈ Vm,K

(K ≥ m) is easily seen to be uniformly distributed on the Stiefel manifold
Vm,K . Thus, we need to find the characteristic function of the random
vector ζ ∼ MN (0, z′ΥΥ′z) where Υ is uniform on Vm,K and z is a fixed
K- vector with z′z = 1. First observe that if K = m then Υ = Im and
ζ ∼ N (0, 1) so that in this case cfζ (s) = E

(
eisζ

)
= e−

s2

2 . In the general
case with K > m we need to resolve the following integral

cfζ (s) = E
(
E
(
eisζ |Υm

))
= E

(
e−

s2

2 z
′ΥΥ′z

)
=

∫
VK,m

etr

{
−s

2

2
ΥΥ′zz′

}
(dΥ) ,

where (dΥ) is the normalized invariant measure on the Stiefel manifold
Vm,K . Construct the orthonormal matrixH = [z, z⊥] ∈ O (K) , where z⊥ is
an orthogonal complement matrix for the vector z. Note that the measure
(dΥ) is invariant under the transformation Υ 7−→ H ′Υ = U ∈ Vm,K .
Then, defining the K- dimensional coordinate vector e1 = (1, 0, ...0)

′
,

using Part (a), and transforming the arguments of the 1F1 function using
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the Kummer relation (Lebedev, 1972), we have

cfζ (s) =

∫
Vm,K

etr

{
−s

2

2
ΥΥ′zz′

}
(dΥ) =

∫
Vm,K

etr

{
−s

2

2
U ′H ′zz′HU

}
(dU)

=

∫
Vm,K

etr

{
−s

2

2
U ′e1e

′
1U

}
(dU) = 1F1

(
m

2
,
K

2
;−s

2

2
e1e
′
1

)
= e−

s2

2 1F1

(
K −m

2
,
K

2
;
s2

2
e1e
′
1

)
= e−

s2

2 1F1

(
K −m

2
,
K

2
;
s2

2

)
= e−

s2

2

∞∑
j=0

(
K−m

2

)
j

j!
(
K2

2

)
j

(
s2

2

)j
,

giving the result as stated. The penultimate line above follows because the
matrix argument 1F1 function reduces to the scalar argument 1F1 function

1F1

(
K −m

2
,
K

2
;
s2

2
e1e
′
1

)
=1 F1

(
K −m

2
,
K2

2
;
s2

2

)
,

since unity is the single non-zero eigenvalue of e1e
′
1 and so zonal polyno-

mials of s
2

2 e1e
′
1 reduce to powers of

s2

2 , giving Cϕ
(
s2

2 e1e
′
1

)
=
(
s2

2

)j
(c.f.,

Muirhead, 1982, corollary 7.2.4).

Proof of the Theorem

We seek to find the distribution of the predictor ỹP1,n+1 = z′n+1 (
√
nπ̃1) =

z′n+1

(√
nΠ̂2βIV

)
. Suppose K > m. Under Gaussianity and after stan-

dardizing transformations, we have

√
nπ̃1 =

√
n (Z ′Z)

−1
Z ′Y2 × (V ′2CC

′V2)
−1
V ′2CC

′v1

= C ′V2 × (V ′2CC
′V2)

−1
V ′2CC

′v1

=
[
(C ′V2) (V ′2CC

′V2)
−1/2

]
(V ′2CC

′V2)
−1/2

(V ′2CC
′v1)

using C ′ = (Z ′Z)
−1/2

Z ′ and
√
n (Z ′Z)

−1/2
= IK . Define Ξ = C ′V2 ∼d

N (0, IKm) , and it follows that Υ = Ξ (Ξ′Ξ)
−1/2 is uniformly distrib-

uted on the Stiefel manifold Vm,K . The vector (V ′2CC
′V2)

−1/2
V ′2CC

′v1 ∼d
N (0, Im) and is independent of Ξ and, hence, Υ. It follows that

√
nπ̃1 ∼d MN

(
0, C ′V2 [V ′2CC

′V2]
−1
V ′2C

)
= MN (0,ΥΥ′) ,

so that the exact distribution of
√
nπ̃1 is mixed normal with mixing vari-

ance matrix ΥΥ′ = Ξ (Ξ′Ξ)
−1

Ξ′ which projects onto R (Ξ) . Then, setting
zn+1 = z, we have ỹP1,n+1 = z′n+1 (

√
nπ̃1) ∼d MN (0, z′ΥΥ′z) =: ζ. The re-

quired expression for the density is obtained by integrating out the mixed
normal distribution with respect to Υ over the manifold Vm,K .
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It is simplest to proceed by working with the characteristic function
as follows. The forecast density of ỹP1,n+1 is, by inversion, fỹP1,n+1

(y) =
1

2π

∫∞
−∞ e−isycfζ (s) ds. Since ζ ∼d MN (0, z′ΥΥ′z) , its characteristic func-

tion is obtained directly from Lemma A as

cfζ (s) = e−
s2

2 1F1

(
K −m

2
,
K

2
;
s2

2

)
= e−

s2

2

∞∑
j=0

(
K−m

2

)
j

j!
(
K
2

)
j

(
s2

2

)j
. (35)

The required density follows by inversion. The series may be integrated
term by term because the confluent hypergeometric series 1F1 series is an
entire function and uniformly convergent (e.g. Lebedev, 1972, p. 261).
Proceeding, we obtain

fỹP1,n+1
(y) =

1

2π

∫ ∞
−∞

e−isye−
s2

2

∞∑
j=0

(
K−m

2

)
j

j!
(
K
2

)
j

(
s2

2

)j
ds

=
1

2π

∞∑
j=0

(
K−m

2

)
j

(
1
2

)j
j!
(
K
2

)
j

∫ ∞
−∞

e−isye−
s2

2 s2jds

=
1

2π

∞∑
j=0

(
K−m

2

)
j

(
1
2

)j
j!
(
K
2

)
j

e−
y2

2

∫ ∞
−∞

e−
(iy)2

2 e−isye−
s2

2 s2jds

=
1√
2π

∞∑
j=0

(
K−m

2

)
j

(
1
2

)j
j!
(
K
2

)
j

e−
y2

2

∫ ∞
−∞

e−
(s+iy)2

2 s2j

√
2π

ds

=
e−

y2

2

√
2π
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j=0

(
K−m

2

)
j

(
1
2

)j
j!
(
K
2

)
j

2jΓ
(
j + 1

2

)
Γ
(

1
2

) 1F1

(
−j; 1

2
;
y2

2

)

=
e−

y2

2

√
2π
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j=0

(
K−m

2

)
j

(
1
2

)
j

j!
(
K
2

)
j

1F1

(
−j; 1

2
;
y2

2

)
, (36)

where the fourth line is obtained by the recentering∫ ∞
−∞

e−isye−
s2

2 s2jds = e−
y2

2

∫ ∞
−∞

e−
(iy)2

2 e−isye−
s2

2 s2jds = e−
y2

2

∫ ∞
−∞

e−
(s+iy)2

2 s2jds,

and the penultimate line by the even moment formula for the normal
distribution. In particular, if X ∼d N

(
µ, σ2

)
we have

E
(
X2j

)
= σ2j2j

Γ
(
j + 1

2

)
√
π

1F1

(
−j, 1

2
,− µ2

2σ2

)
,

and, setting µ = iy and σ = 1, we have∫ ∞
−∞

e−
(s+iy)2

2 s2j

√
2π

ds =
2jΓ

(
j + 1

2

)
√
π

1F1

(
−j, 1

2
,
y2

2

)
= 2j

(
1

2

)
j

1F1

(
−j, 1

2
,
y2

2

)
.
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The K = m case is obtained from (36) by noting that the series truncates

at the first term giving fỹP1,n+1
(y) = e−

y2

2 /
√

2π. In fact, when K = m, the

exact densities of the two predictors are the same and so ỹP1,n+1 = ŷP1,n+1,
thereby giving (25) as a special case of (26).

Proof of the Corollary

To calculate moments, we first employ the characteristic function of the nor-
malized predictor ζ = ỹP1,n+1 = z′n+1 (

√
nπ̃2) ∼d MN (0, z′ΥΥ′z) , given

earlier in (35), viz.,

cfζ (s) = e−
s2

2 1F1

(
K −m

2
,
K

2
;
s2

2

)
= e−

s2

2

∞∑
j=0

(
K−m

2

)
j

j!
(
K
2

)
j

(
s2

2

)j
.

(37)

The function cfζ (s) is analytic because both e−
s2

2 and 1F1

(
K−m

2 , K2 ; s
2

2

)
are entire functions. So, all moments of ζ exist and are finite. The series
representation of (35) produces the Taylor expansion of cfζ (s) , viz.,

cfζ (s) = e−
s2

2

(
1 +

K−m
2
K
2

s2

2
+

(
K−m

2

) (
K−m+2

2

)
2
(
K
2

) (
K
2

) (
s2

2

)2

+O
(
s6
))

= 1 +
s2

2

(
K −m
K

− 1

)
+O

(
s4
)
,

so that cf ′′ζ (0) = −mK .Hence E
(
ỹPn+1

)2
= m

K . Since ỹ
P
1,n+1 = z′n+1 (

√
nπ̃1) =

√
nỹ1,n+1, it follows that E (ỹ1,n+1 − y1,n+1)

2
= 1+ m

nK , giving the forecast
mean square error in the general case.
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