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1 Introduction

One of the simplest extensions of the Standard Model (SM) is to introduce an additional

gauged U(1)′, which could emerge as a remnant of larger gauge group embeddings of the

SM gauge group, with rank larger than 4. Such larger gauge groups include the left-

right symmetric model, Pati-Salam, SO(10), E6. An extra gauged U(1)′ is common in

string inspired models, where it is difficult to break the rank of the gauge group, or from

alternative dynamical schemes such as composite models. For a review of Z ′ models and

an extensive list of references see e.g. [1].

Most of the existing Z ′ models have universal couplings to the three families of quarks

and leptons. The reason for this is both theoretical and phenomenological. Firstly many

theoretical models naturally predict universal Z ′ couplings. Secondly, from a phenomeno-

logical point of view, having universal couplings avoids dangerous favour changing neutral

currents (FCNCs) mediated by tree-level Z ′ exchange. The most sensitive processes involve

the first two families, such as K0 − K̄0 mixing, µ − e conversion in muonic atoms, and so

on, leading to stingent bounds on the Z ′ mass and couplings [1].

Recently, the phenomenological motivation for considering non-universal Z ′ models

has increased due to mounting evidence for semi-leptonic B decays which violate µ − e

universality at rates which exceed those predicted by the SM [2–4]. In particular, the LHCb

Collaboration and other experiments have reported a number of anomalies in B → K(∗)l+l−

decays such as the RK [5] and RK∗ [6] ratios of µ+µ− to e+e− final states, which are

observed to be about 70% of their expected values with a 4σ deviation from the SM, and

the P ′
5 angular variable, not to mention the B → φµ+µ− mass distribution in mµ+µ− .

– 1 –
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Following the recent measurement of RK∗ [6], a number of phenomenological analyses

of these data, see e.g. [7–10], favour a operator of the left-handed (L) form [11], in the

conventions of [12],

VtbV
∗
ts

αem

4πv2
(

CSM
bLµL

+ CBSM
bLµL

)

b̄Lγ
µsL µ̄LγµµL (1.1)

where the SM operator arises from penguin diagrams and has a coefficient of CSM
bLµL

=

8.64, while the beyond the SM (BSM) operator has a coefficient of CBSM
bLµL

≈ −1.3. The

analogous right-handed (R) operators must be significantly smaller [12]. The SM constants

Vts = 0.040± 0.001 (predominantly real) and the Higgs vacuum expectation value (VEV)

v = 174GeV, set the scale of eq. (1.1),

VtbV
∗
ts

αem

4πv2
≈ 1

(36 TeV)2
. (1.2)

This suggests a new physics operator of the form,

GBSM
bLµL

b̄Lγ
µsL µ̄LγµµL ≈ − 1

(33 TeV)2
b̄Lγ

µsL µ̄LγµµL. (1.3)

In a flavourful Z ′ model, the new physics operator in eq. (1.3) will arise from tree-level

Z ′ exchange, where the Z ′ must dominantly couple to µLµL over µRµR, eLeL, eReR, and

must also have the quark flavour changing coupling bLsL which must dominate over bRsR.

The coefficient of the tree-level Z ′ exchange operator will be typically of the form,

GBSM
bLµL

= gZ
′

bL
gZ

′

µL

(

g′2

MZ′
2

)

≈ − 1

(33 TeV)2
(1.4)

where the Feynman rule for the Z ′b̄Lγ
µsL coupling is −iγµgZ

′

bL
g′ and the Z ′µ̄Lγ

µµL coupling

is −iγµgZ
′

µL
g′, where g′ is the Z ′ gauge coupling and M ′

Z is the mass of the Z ′. The required

value of M ′
Z will typically be much smaller than 33 TeV due to the model dependent

coupling factors gZ
′

bL
and gZ

′

µL
which are anticipated to be quite small in realistic models.

This means that the Z ′ in these models may be within reach of the LHC.

Motivated by the above considerations, there has been a large and growing body of

literature which is concerned with flavour dependent Z ′ models (see e.g. [13–28]). Recent

works on flavoured Z ′ approaches following the RK∗ measurement include those in [29–37].

One of the key challenges faced by these models is the requirement that they be anomaly

free. This has motivated the phenomenological analysis of Z ′ models based on gauged

Lµ − Lτ , possibly combined with vector-like quarks [38]. Without a Z ′, vector-like quarks

directly mixing with ordinary quarks via the Higgs Yukawa couplings can lead to FC-

NCs [39, 40]. However, vector-like quarks with a gauged U(1)′ typically forbids the Higgs

coupling of vector-like quarks to ordinary quarks, but allows new possibilities [38]. For

example, a simple idea is to have a dark U(1)X under which the SM quarks and leptons

are neutral, but which is felt by vector-like fermions with the SM quantum numbers of the

doublets QL and LL, leading to a dark matter candidate and flavour-changing Z ′ operators

after the vector-like fermion mass terms mix with SM fermions [41, 42]. However adding

– 2 –
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such matter spoils the prospects for gauge coupling unification unless the vector-like matter

comes in complete representations of SU(5). The first example of mixing with vector-like

fermions which preserves gauge unification and leads to flavour-changing Z ′ interactions

was proposed some time ago by Langacker and London [43].

In this paper, motivated by the RK and RK∗ anomalies, we show how any flavour

conserving Z ′ model can be made flavour violating and non-universal by the mass mixing

of quarks and leptons with a fourth family of vector-like fermions with non-universal Z ′

couplings. Unlike the original vector-like fermion models [39, 40], having non-universal

U(1)′ charges of the fourth vector-like family forbids mixing via the usual Higgs Yukawa

couplings. Instead, new singlet scalars with appropriate U(1)′ charges are added to generate

mass mixing of quarks and leptons with the vector-like family. Since we include a complete

vector-like family, the mixing will include the doublets QL and LL, leading to the left-

handed new physics operators required for RK and RK∗ . Since we consider a complete

fourth vector-like family, unification is maintained. We develop a quite general formalism,

which can be applied to any Z ′ model in the literature, including B − L models, E6

models, composite models, and so on. To illustrate the mechanism we consider two concrete

examples, namely a fermiophobic model, and an SO(10) Grand Unified Theory (GUT), and

show how they can account for the anomalous B decay ratios RK and RK∗ .

The layout of the remainder of the paper is as follows. In section 2 we consider the

general class of models consisting of the usual three chiral families of left-handed quarks

and leptons with one (or two) Higgs doublet(s) H(u,d), plus a fourth vector-like family

of fermions, which has non-universal charges under a gauged U(1)′. We write down the

Lagrangian for such a general class of models in the charge basis and the heavy mass basis,

after diagonalisation of the heavy masses. In section 3, to illustrate the mechanism and

how it may be applied in practice, we consider two concrete examples of well known Z ′

models which can be made flavourful via mixing with a non-universal fourth vector-like

family, namely a namely a fermiophobic model, and an SO(10) GUT model, and show how

they can account for the anomalous B decay ratios RK and RK∗ . Section 4 concludes

the paper.

2 A class of Z′ models with a vector-like family

In this section we analyse the general class of models defined in table 1 consisting of the

usual three chiral families of left-handed quarks and leptons ψi (i = 1, 2, 3) and one (or

two) Higgs doublet(s) H(u,d), plus a fourth vector-like family of fermions ψ4, ψ̃4. The

gauged U(1)′ charges qψi
are universal up to the fourth family (i.e. qψ1

= qψ2
= qψ3

6= qψ4
),

although in general they need not be. The three chiral families must be anomaly free,

since the vector-like family is anomaly free. The U(1)′ is broken by the VEVs of new Higgs

singlets φψ with charges |qφψ
| = |qψi

− qψ4
| to yield a massive Z ′.

The layout of this rather lengthy section is as follows. In the first subsection we present

the Lagrangian of the general class of models in the charge basis. In the second subsection

we show how the heavy masses may be diagonalised. In the third subsection we present

the Lagrangian of the general class of models in the heavy mass basis.

– 3 –
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Field
Representation/charge

SU(3)c SU(2)L U(1)Y U(1)′

QLi 3 2 1/6 qQi

uRi 3 1 2/3 qui

dRi 3 1 −1/3 qdi
LLi 1 2 −1/2 qLi

eRi 1 1 −1 qei
νRi 1 1 0 qνi

Hu 1 2 −1/2 qHu

Hd 1 2 1/2 qHd

QL4,Q̃R4 3 2 1/6 qQ4

uR4,ũL4 3 1 2/3 qu4

dR4,d̃L4 3 1 −1/3 qd4
LL4,L̃R4 1 2 −1/2 qL4

eR4,ẽL4 1 1 −1 qe4

νR4,ν̃L4 1 1 0 qν4

φQ,u,d,L,e 1 1 0 qφQ,u,d,L,e

Table 1. The most general model we consider consists of the usual three chiral families of left-

handed quarks and leptons ψi (i = 1, 2, 3) and one (or two) Higgs doublet(s) H(u,d), plus a fourth

vector-like family of fermions ψ4, ψ̃4. There may be other exotics in addition to those shown in

order to cancel anomalies, or the three chiral families may cancel anomalies by themselves without

extra exotics. In any case, the vector-like fermion family are always anomaly free by themselves.

The U(1)′ is broken by the VEVs of new Higgs singlets φψ with charges |qφψ
| = |qψi

− qψ4
| to yield

a massive Z ′.

2.1 The Lagrangian in the charge basis

In this subsection we present the Lagrangian of the general class of models in the charge

basis. Including the fourth family, along with the usual three chiral families, the gauge

part of the Lagrangian involving fermions is given by,

Lgauge = iQLα

(

∂µ − ig3G
A
µ

λA

2
− ig2W

a
µ

σa

2
− 1

6
ig1Bµ − qQαig

′B′
µ

)

γµQLα

+iuRα

(

∂µ − ig3G
A
µ

λA

2
− 2

3
ig1Bµ − quαig

′B′
µ

)

γµuRα

+idRα

(

∂µ − ig3G
A
µ

λA

2
+

1

3
ig1Bµ − qdαig

′B′
µ

)

γµdRα

+iLLα

(

∂µ − ig2W
a
µ

σa

2
+

1

2
ig1Bµ − qLαig

′B′
µ

)

γµLLα

+ieRα

(

∂µ + ig1Bµ − qeαig
′B′

µ

)

γµeRα

+iνRα

(

∂µ − qναig
′B′

µ

)

γµνRα (2.1)

– 4 –
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where α = 1, . . . , 4 labels the four families of the same chirality, GA
µ are SU(3)c gauge fields

(the octet of gluons A = 1, . . . , 8), W a
µ are SU(2)L gauge fields (a = 1, . . . , 3), Bµ are the

U(1)Y gauge fields and B′
µ are the U(1)′ gauge fields, with the three usual gauge couplings

gi, as well as the U(1)′ gauge coupling g′. We denote the Pauli matrices as σa and the

Gell-Mann matrices as λA.

In addition there is a similar gauge Lagrangian involving the fourth family of the

opposite chirality ψ̃4, obtained by the replacements, QLα → Q̃R4, uRα → ũL4, dRα → d̃L4,

LLα → L̃R4, eRα → ẽL4, νRα → ν̃R4.

The right-handed neutrinos are special, since the Standard Model gauge group allows

large Majorana masses, although these may be forbidden by U(1)′. Henceforth, for sim-

plicity, we shall ignore the right-handed neutrinos, and the associated vector-like fourth

family, which is equivalent to ignoring neutrino mass.

We assume that the U(1)′ charges allow for Yukawa couplings of the first three chiral

families ψi, but not the fourth vector-like family,

LY uk = yuijHuQLiuRj + ydijHdQLidRj + yeijHdLLieRj +H.c. (2.2)

where i, j = 1, . . . , 3.

We assume that the U(1)′ charges allow for the fourth opposite chirality family ψ̃4 to

have interactions with the first three chiral families ψi via singlet fields φ which carry U(1)′

charge, in addition to explicit masses between opposite chirality fourth family fields ψ̃4 and

ψ4 of the same charges,

Lmass = xQi φQQLiQ̃R4 + xui φuũL4uRi + xdi φdd̃L4dRi + xLi φLLLiL̃R4 + xeiφeẽL4eRi

+MQ
4 QL4Q̃R4 +Mu

4 ũL4uR4 +Md
4 d̃L4dR4 +ML

4 LL4L̃R4 +M e
4 ẽL4eR4 +H.c. (2.3)

After the singlet fields φ develop vacuum expectation values (VEVs), we may define new

mass parameters MQ
i = xQi 〈φQ〉, and similarly for the other mass parameters, to give,

Lmass = MQ
α QLαQ̃R4 +Mu

α ũL4uRα +Md
αd̃L4dRα +ML

αLLαL̃R4 +M e
αẽL4eRα +H.c. (2.4)

where α = 1, . . . , 4.

2.2 Diagonalising the heavy masses

In this subsection we show how the heavy masses may be diagonalised, denoting the fields

in this basis by primes. The idea is that, after diagonalisation, only the fourth family is

massive (before electroweak symmetry breaking),

Lmass = M̃Q
4 Q′

L4Q̃R4 + M̃u
4 ũL4u

′
R4 + M̃d

4 d̃L4d
′
R4 + M̃L

4 L
′
L4L̃R4 + M̃ e

4 ẽL4e
′
R4 +H.c. (2.5)

and the first three primed masses of each fermion type are zero. The original charge basis

and the heavy mass basis are related by unitary mixing matrices,

Q′
L = VQL

QL, u′R = VuR
uR, d′R = VdRdR, L′

L = VLL
LL, e′R = VeReR. (2.6)

– 5 –
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The unitary mixing matrix which relates the column vector Q′
L of mass eigenstates (where

the first three components are massless and the fourth component has a mass M̃Q
4 ) to the

original fields QL may be written as,

VQL
= V QL

34 V QL

24 V QL

14 , (2.7)

where

V QL

34 =













1 0 0 0

0 1 0 0

0 0 cQL

34 sQL

34 e−iδ
QL
34

0 0 −sQL

34 eiδ
QL
34 cQL

34













, (2.8)

V QL

24 =













1 0 0 0

0 cQL

24 0 sQL

24 e−iδ
QL
24

0 0 1 0

0 −sQL

24 eiδ
QL
24 0 cQL

24













, (2.9)

V QL

14 =













cQL

14 0 0 sQL

14 e−iδ
QL
14

0 1 0 0

0 0 1 0

−sQL

14 eiδ
QL
14 0 0 cQL

14













. (2.10)

Ignoring phases, the tangent of the mixing angles t = tan θ are given by,

tQL

14 =
MQ

1

MQ
4

, tQL

24 =
MQ

2

M ′Q
4

, tQL

34 =
MQ

1

M ′′Q
4

, (2.11)

where

M ′Q
4 =

√

MQ
1

2
+MQ

4

2
, M ′′Q

4 =

√

MQ
2

2
+M ′Q

4

2
, M̃Q

4 =

√

MQ
3

2
+M ′′Q

4

2
. (2.12)

Similar equations may be readily obtained in each of the other sectors uR, dR, LL, eR, with

the trivial replacements, QL → uR, dR, LL, eR.

2.3 The Lagrangian in the heavy mass basis

In this subsection we present the Lagrangian of the general class of models in the heavy

mass basis, denoted by primes, in which only the fourth family is heavy (compared to

the weak scale). In this basis the model involves the three massless chiral families ψ′
i,

where i = 1, . . . , 3 which are massless before electroweak symmetry breaking, plus a heavy

fourth family ψ′
4, which have the same chirality as the first three families, with which they

mix. In this basis, only the fourth family ψ′
4 have explicit vector-like Dirac mass terms

involving the opposite chirality heavy heavy fourth vector-like family ψ̃4. The diagonal

heavy mass (primed) basis is therefore the correct basis to work in if one wishes to study

the interactions of the heavy vector-like fourth family states, ψ′
4, ψ̃4, or to integrate them

out to leave the three massless (before electroweak symmetry breaking) families ψ′
i.

– 6 –
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2.3.1 Yukawa couplings and CKM

In the original basis, the Yukawa couplings in eq. (2.2) may be written in terms of the three

chiral families ψi plus the same chirality fourth family ψ4 in a 4× 4 matrix notation as,

LY uk = HuQLỹ
uuR +HdQLỹ

ddR +HdLLỹ
eeR +H.c. (2.13)

where ỹu, ỹd, ỹe are 4× 4 matrices consisting of the original 3× 3 matrices, yu, yd, ye, but

augmented by a fourth row and column consisting of all zeroes, since we have assumed

that the fourth family ψ4 does not couple to the Higgs doublets due to its non-universal

U(1)′ charges.

In the primed basis in eq. (2.6), where only the fourth components of the fermions are

very heavy, the Yukawa couplings become,

LY uk = HuQ′
Lỹ

′uu′R +HdQ′
Lỹ

′dd′R +HdL′
Lỹ

′ee′R +H.c. (2.14)

where

ỹ′u = VQL
ỹuV †

uR
, ỹ′d = VQL

ỹdV †
dR
, ỹ′e = VLL

ỹeV †
eR

(2.15)

This shows that the fourth family states ψ′
4 with heavy vector-like masses in eq. (2.5) couple

to the Higgs by virtue of their mixing with the first three chiral families.

The coupling of the heavy mass eigenstate ψ′
4 to the Higgs doublets is given by the

fourth rows and columns of the primed Yukawa matrices in eq. (2.15),

LY uk
heavy = ỹ′ui4HuQ′

Liu
′
R4 + ỹ′di4HdQ′

Lid
′
R4 + ỹ′ei4HdL′

Lie
′
R4

+ỹ′u4iHuQ′
L4u

′
Ri + ỹ′d4iHdQ′

L4d
′
Ri + ỹ′e4iHdL′

L4e
′
Ri

+ỹ′u44HuQ′
L4u

′
R4 + ỹ′d44HdQ′

L4d
′
R4 + ỹ′e44HdL′

L4e
′
R4 +H.c. (2.16)

where

ỹ′ui4 = (VQL
ỹuV †

uR
)i4, ỹ′di4 = (VQL

ỹdV †
dR
)i4, ỹ′ei4 = (VLL

ỹeV †
eR
)i4

ỹ′u4i = (VQL
ỹuV †

uR
)4i, ỹ′d4i = (VQL

ỹdV †
dR
)4i, ỹ′e4i = (VLL

ỹeV †
eR
)4i

ỹ′u44 = (VQL
ỹuV †

uR
)44, ỹ′d44 = (VQL

ỹdV †
dR
)44, ỹ′e44 = (VLL

ỹeV †
eR
)44 (2.17)

which shows that there will be some Yukawa induced mass mixing between heavy fourth

family fermions and light fermions. This Lagrangian also generates Feynman rules for Higgs

bosons which couple the heavy fourth family to the three light chiral families. However the

fourth family is too heavy to be produced in Higgs decays. There will be a contribution

to the Standard Model Higgs production cross-section through gluon-gluon fusion triangle

diagrams involving the fourth heavy family ψ′
4. This is unlike the case of a sequential

fourth family, which is excluded by Higgs production being too large, due to the large

Yukawa couplings of the fourth family to the Higgs boson. By contrast, in the case of

the vector-like fourth family here, the Yukawa couplings to Higgs doublets in eq. (2.17)

involving the fourth family will be smaller. This can be readily understood from eq. (2.17),

since ỹu, ỹd, ỹe have zeroes in the fourth row and column, and so the couplings like ỹ′u44, ỹ
′d
44

will involve usual Yukawa couplings and will be mixing suppressed.

– 7 –
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To calculate the CKM matrix, it would not be appropriate to diagonalise the primed

Yukawa matrices in eq. (2.15) since this would re-mix the heavy vector-like masses through-

out all the four families, and undo the heavy mass diagonalisation. The correct proceedure

is to integrate out the heavy vector-like family ψ′
4, then calculate the CKM matrix in the

low energy effective theory below the heavy vector mass scale. In the limit of large vector-

like masses, ignoring the very small Higgs induced mixing between the heavy fourth family

and the light three families, one may decouple the heavy states ψ′
4, by simply removing the

fourth rows and colums of the primed Yukawa matrices in eq. (2.15), to leave the upper

3× 3 blocks, which describe the three massless families, in the low energy effective theory

involving the massless fermions ψ′
i,

LY uk
light = y′uijHuQ′

Liu
′
Rj + y′dijHdQ′

Lid
′
Rj + y′eijHdL′

Lie
′
Rj +H.c. (2.18)

where

y′uij = (VQL
ỹuV †

uR
)ij , y′dij = (VQL

ỹdV †
dR
)ij , y′eij = (VLL

ỹeV †
eR
)ij (2.19)

and i, j = 1, . . . , 3. The physical three family quark and lepton masses in the low energy

effective theory should be calculated using the 3× 3 Yukawa matrices in eq. (2.19).

The CKM matrix for the quarks may be constructed in the usual way, by diagonaling

the Yukawa matrices, y′u, y′d,

V ′
uLy

′uV ′†
uR = diag(yu, yc, yt), V ′

dLy
′dV ′†

dR = diag(yd, ys, yb) (2.20)

to yield the unitary 3× 3 CKM matrix,

VCKM = V ′
uLV

′†
dL. (2.21)

Note that there is no violation of unitarity of the CKM matrix due to the vector-like fourth

family. Also there will be no tree-level Higgs mediated flavour changing neutral currents

between the three light families (the usual GIM mechanism in the Higgs sector).

We emphasise that to calculate the CKM matrix and Yukawa eigenvalues one must

diagonalise the Yukawa matrices y′u, y′d in eq. (2.19), which emerge after the fourth vector-

like family has been correctly decoupled from the low energy effective theory. It is incorrect

to calculate the CKM matrix from the original Yukawa matrices yu, yd in eq. (2.2), which

do not take into account mixing with the fourth family.

2.3.2 Gauge couplings

Standard Model gauge couplings. In the diagonal heavy mass (primed) basis, given

by the unitary transformations in eq. (2.6), the gauge Lagrangian in eq. (2.1) is invariant

apart from the U(1)′ gauge part. This is because under the Standard Model gauge group

all four families have the same charges, and so the unitary transformations cancel, as in the

usual GIM mechanism. Thus the part of the Lagrangian involving gluons and electroweak
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gauge bosons remains flavour diagonal in the primed basis,

Lgauge
SM = iQ

′
Lα

(

∂µ − ig3G
A
µ

λA

2
− ig2W

a
µ

σa

2
− 1

6
ig1Bµ

)

γµQ′
Lα

+iu′Rα

(

∂µ − ig3G
A
µ

λA

2
− 2

3
ig1Bµ

)

γµu′Rα

+id
′
Rα

(

∂µ − ig3G
A
µ

λA

2
+

1

3
ig1Bµ

)

γµd′Rα

+iL
′
Lα

(

∂µ − ig2W
a
µ

σa

2
+

1

2
ig1Bµ

)

γµL′
Lα

+ie′Rα (∂µ + ig1Bµ) γ
µe′Rα (2.22)

where α = 1, . . . , 4 labels the four families of the same chirality.

The W± gauge boson couplings are thus the same as in the Standard Model,

Lint
W =

g2√
2
u′LαW

+
µ γµd′Lα +

g2√
2
e′LαW

+
µ γµν ′Lα +H.c. (2.23)

where α = 1, . . . , 4 labels the four families of the same chirality. In addition there are

the fourth family couplings involving the opposite chirality states ψ̃′
4. For the quarks, for

example, these couplings may be divided into the light three families, and those involving

the fourth family couplings,

Lint
W =

g2√
2
u′LiW

+
µ γµd′Li +

g2√
2
u′L4W

+
µ γµd′L4 +

g2√
2
ũ
′
R4W

+
µ γµd̃′R4 +H.c. (2.24)

and similarly for the leptons. The above couplings allow a fourth family fermion to decay

into W plus a light fermion, after including a small Higgs induced mass insertion between

a fourth fermion and a light fermion, as shown in eq. (2.16).

In the low energy effective theory, after the heavy fourth family decouples, and elec-

troweak symmetry is broken, and the light effective Yukawa matrices are diagonalised as

in eq. (2.20), the W couplings become,

Lint
W =

g2√
2

(

uL cL tL

)

VCKMW+
µ γµ







dL
sL
bL






+H.c. (2.25)

where the CKM matrix is calculated as in eq. (2.21).

After electroweak symmetry breaking, the Z gauge boson couples in a flavour diagonal

way to all the four families, both the light families ψ′
i and the heavy family ψ′

4, as in the

usual GIM mechanism. This leads to the usual Z interaction Lagrangian

Lint
Z =

e

2sW cW
ψ
′
αZµγ

µ(Cψ
V − Cψ

Aγ5)ψ
′
α (2.26)

where

Cψ
A = t3, Cψ

V = t3 − 2s2WQ (2.27)

where ψ′
α = u′α, d

′
α, e

′
α, ν

′
α, where α = 1, . . . , 4 labels the four families of the same chirality,

and t3 are eigenvalues of σ3/2, while Q are the electric charges of the fermions. We
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emphasise that this is flavour diagonal, i.e. Z boson exchange does not change the flavour

α of a fermion ψ′
α in the primed basis. In particular the heavy fourth family fermions ψ′

4

thus couple to Z bosons with exactly the same Feynman rules as the three light family

fermions ψ′
i.

After the diagonalisation of the light fermion mass matrices, the Z boson couplings

remain flavour diagonal, due to the unitary transformations cancelling, and are identical

to those in the Standard Model, namely those in eq. (2.26), with the fields ψ′
α replaced

by their three family mass eigenstates. The small Higgs induced mass mixing between

ψ′
4 and ψ′

i will also not lead to any Z induced flavour changing since any mixing effect

will be unitary and will cancel in eq. (2.26). We emphasise that such a Z exchange GIM

mechanism is a consequence of the fact that all four families have the same electroweak

charges.

Z
′ gauge couplings. The above GIM mechanism in the electroweak sector is in marked

contast to the physics of Z ′ gauge bosons, where the U(1)′ charges depend on the family

index α. This leads to flavour changing due to Z ′ gauge boson exchange, as we discuss.

After U(1)′ breaking, we have a massive Z ′ gauge boson with diagonal gauge couplings to

the four families of quarks and leptons, in the original basis,

Lgauge
Z′ =g′Z ′

µ

(

QLDQγ
µQL + uRDuγ

µuR + dRDdγ
µdR + LLDLγ

µLL + eRDeγ
µeR

)

(2.28)

where

DQ =diag(qQ1, qQ2, qQ3, qQ4), Du = diag(qu1, qu2, qu3, qu4), Dd = diag(qd1, qd2, qd3, qd4),

DL =diag(qL1, qL2, qL3, qL4), De = diag(qe1, qe2, qe3, qe4). (2.29)

In the diagonal heavy mass (primed) basis, given by the unitary transformations in eq. (2.6),

the Z ′ couplings to the four families of quarks and leptons in eq. (2.28) becomes,

Lgauge
Z′ = g′Z ′

µ

(

Q
′
LD

′
Qγ

µQ′
L + u′RD

′
uγ

µu′R + d
′
RD

′
dγ

µd′R + L
′
LD

′
Lγ

µL′
L + e′RD

′
eγ

µe′R

)

(2.30)

where

D′
Q = VQL

DQV
†
QL

, D′
u = VuR

DuV
†
uR

, D′
d = VdRDdV

†
dR
,

D′
L = VLL

DLV
†
LL

, D′
e = VeRDeV

†
eR
. (2.31)

Although the 4×4 matrices DQ, etc., are diagonal in flavour space, the 4×4 matrices D′
Q,

etc., are not generally diagonal in flavour space, since the U(1)′ charges may be different

for the four flavours. This is the case even if the U(1)′ charges are universal for the first

three families, but differ only for the fourth family. Recall that in the primed basis the

fourth family is very heavy while the first three are light. Then eq. (2.30) shows that, in

general, Z ′ exchange can couple two light families of different flavour, or a heavy fourth

family fermion to a light fermion of the first three families. For example, a Z ′ exchange

diagram will allow the decay of a heavy fourth family fermion to three light fermions of

different flavours. This decay mechanism will compete with the decay of a heavy fourth
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family fermion into a W plus a light fermion, which is suppressed by the small Higgs

induced mass insertion arising from eq. (2.16).

In the low energy effective theory, after decoupling the fourth heavy family, eq. (2.30)

gives the Z ′ couplings to the three massless families of quarks and leptons,

Lgauge
Z′ =g′Z ′

µ

(

Q
′
LD̃

′
Qγ

µQ′
L + u′RD̃

′
uγ

µu′R + d
′
RD̃

′
dγ

µd′R + L
′
LD̃

′
Lγ

µL′
L + e′RD̃

′
eγ

µe′R

)

(2.32)

where the 3× 3 matrices D̃′ are given by,

(D̃′
Q)ij = (VQL

DQV
†
QL

)ij , (D̃′
u)ij = (VuR

DuV
†
uR

)ij , (D̃′
d)ij = (VdRDdV

†
dR
)ij ,

(D̃′
L)ij = (VLL

DLV
†
LL

)ij , (D̃′
e)ij = (VeRDeV

†
eR
)ij , (2.33)

where i, j = 1, . . . , 3. We emphasise that these matrices are not diagonal, leading to flavour

changing neutral currents, mediated by tree-level Z ′ exchange. In the parametrisation in

eq. (2.7), ignoring phases, each of the symmetric 3×3 matrices D̃′ schematically looks like,

D̃′ =

(

q1c
2
14 + q4s

2
14 s14s24c14(q4 − q1) (s14s34c14c24)(q4 − q1)

. q1s
2
14s

2
24 + q2c

2
24 + q4s

2
24c

2
14 q1s

2
14s24s34c24 − q2s24s34c24 + q4s24s34c24c

2
14

. . q1s
2
14s

2
34c

2
24 + q2s

2
24s

2
34 + q3c

2
34 + q4s

2
34c

2
14c

2
24

)

(2.34)

with different angles and charges for each matrix in eq. (2.33). When q1 = q2 = q3 = q4
these matrices are proportional to the unit matrix and there is no flavour changing due to

Z ′ exchange. Also when si4 = sin θi4 = 0, these matrices are flavour diagonal.

After diagonalisation of the light quark Yukawa matrices, as in eq. (2.20), the Z ′

couplings to the physical quark mass eigenstates u, c, t, d, s, b are given from eq. (2.32) by,

Lq
Z′ = g′Z ′

µ

(

uL cL tL

)

V ′
uLD̃

′
QV

′†
uLγ

µ







uL
cL
tL







+g′Z ′
µ

(

dL sL bL

)

V ′
dLD̃

′
QV

′†
dLγ

µ







dL
sL
bL







+g′Z ′
µ

(

uR cR tR

)

V ′
uRD̃

′
uV

′†
uRγ

µ







uR
cR
tR







+g′Z ′
µ

(

dR sR bR

)

V ′
dRD̃

′
dV

′†
dRγ

µ







dR
sR
bR






(2.35)

Similarly the charged lepton couplings to Z ′ will be given by analogous results,

Le
Z′ = g′Z ′

µ

(

eL µL τL

)

V ′
eLD̃

′
LV

′†
eLγ

µ







eL
µL

τL







+g′Z ′
µ

(

eR µR τR

)

V ′
eRD̃

′
eV

′†
eRγ

µ







eR
µR

τR






(2.36)
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Finally, ignoring neutrino mass, the Z ′ couplings to left-handed neutrinos are given by,

Lν
Z′ = g′Z ′

µ

(

νeL νµL ντL

)

V ′
eLD̃

′
LV

′†
eLγ

µ







νeL
νµL
ντL






(2.37)

These results show that, if the D̃′ term is proportional to the unit matrix, then this will

not lead to flavour violation. However any non-universal part of D̃′ will lead to flavour

changing in the physical mass basis of the light fermions. We shall see explicit examples of

the application of this formalism in the next section.

3 Examples of flavourful Z′ models

The results in the previous section are of quite general applicability. However, to illustrate

the mechanism and show how the formalism may be applied in practice, it is instructive to

consider two concrete examples of well known Z ′ models which can be made flavourful via

mixing with a non-universal fourth vector-like family and show how they can provide an

explanation of RK and RK∗ . Clearly the same method could be applied to any Z ′ model

including B − L models, E6 models, composite models, and so on.

3.1 Fermiophobic model

The first example we consider is one in which the quarks and leptons start out not coupling

to the Z ′ at all, as in fermiophobic models. We show that such fermiophobic Z ′ models

may be converted to flavourful Z ′ models via mixing with a fourth vector-like family with

Z ′ couplings. We then show how such a model is capable of accounting for RK and RK∗ .

The starting point is a class of fermiophobic models, where none of the three chiral

families of quarks and leptons (nor the Higgs doublets) carry the U(1)′ charges, together

with a fourth vector-like family which carry U(1)′ charges, i.e. q1 = q2 = q3 = 0 but q4 6= 0.

The charges in table 1 are therefore given by the diagonal matrices in eq. (2.29):

DQ = diag(0, 0, 0, qQ4), Du = diag(0, 0, 0, qu4), Dd = diag(0, 0, 0, qd4),

DL = diag(0, 0, 0, qL4), De = diag(0, 0, 0, qe4). (3.1)

In addition we assume Higgs singlets φψ with charges |qφψ
| = |qψ4

| whose VEVs yield

a massive Z ′, and whose couplings permit mixing of the fourth vector-like family with

the three families of the same chirality. The mixing of quarks and leptons with the fourth

vector-like family induces flavour violating Z ′ couplings to the three light families of quarks

and leptons, as in eq. (2.32), which depend on 3× 3 matrices D̃′ in eq. (2.34) of the form,

D̃′
Q = qQ4







(sQ14)
2 sQ14s

Q
24c

Q
14 sQ14s

Q
34c

Q
14c

Q
24

. (sQ24)
2(cQ14)

2 sQ24s
Q
34c

Q
24(c

Q
14)

2

. . (sQ34)
2(cQ14)

2(cQ24)
2






, (3.2)

and similar matrices with Q → L, and so on. The couplings of the quark and lepton

mass eigenstates to the Z ′ are given by inserting eq. (3.2), and similar equations in each of
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the sectors QL, uR, dR, LL, eR, into eqs. (2.35), (2.36), (2.37). This shows that the Z ′ will

couple in a flavour violating way to the three light families, even though they carry no U(1)′

charges, because of their mixing with the fourth family which do carry U(1)′ charges. The

mixing is controlled by three mixing angles θi4 in each of the sectors QL, uR, dR, LL, eR,

which involves 15 parameters.

Assuming that only θQL

34 and θLL

34 are non-zero, with all other mixing angles being zero,

the mixing matrices in eq. (3.2) become,

D̃′
Q = qQ4







0 0 0

0 0 0

0 0 (sQ34)
2






, D̃′

L = qL4







0 0 0

0 0 0

0 0 (sL34)
2






(3.3)

so that the Z ′ couplings from eq. (2.32) become,

Lgauge
Z′ = g′Z ′

λ

(

qQ4(s
Q
34)

2Q
′
L3γ

λQ′
L3 + qL4(s

L
34)

2L
′
L3γ

λL′
L3

)

(3.4)

where the Z ′ couples to the third family left-handed quark and lepton doublets Q′
L3 =

(t′L, b
′
L) and L′

L3 = (ν ′τL, τ
′
L), where the primes indicate that these are the states before the

Yukawa matrices are diagonalised. In particular this will lead the couplings,

Lgauge
Z′ = g′Z ′

λ

(

qQ4(s
Q
34)

2b
′
Lγ

λb′L + qL4(s
L
34)

2τ ′Lγ
λτ ′L + . . .

)

,

≈ g′Z ′
λ

(

qQ4(s
Q
34)

2(V ′†
dL)32bLγ

λsL + qL4(s
L
34)

2|(V ′†
eL)32|2µLγ

λµL + . . .
)

, (3.5)

where we have used eq. (2.20) to expand the primed fields in terms of mass eigenstates,

b′L = (V ′†
dL)31dL + (V ′†

dL)32sL + (V ′†
dL)33bL,

τ ′L = (V ′†
eL)31eL + (V ′†

eL)32µL + (V ′†
eL)33τL, (3.6)

and assumed from the hierarchy of the CKM matrix that,

|(V ′†
dL)31|2 ≪ |(V ′†

dL)32|2 ≪ (V ′†
dL)

2
33 ≈ 1,

|(V ′†
eL)31|2 ≪ |(V ′†

eL)32|2 ≪ (V ′†
eL)

2
33 ≈ 1. (3.7)

From eq. (3.5), Z ′ exchange generates the effective operator, as in eq. (1.3),

GBSM
bLµL

b̄Lγ
λsL µ̄LγλµL , (3.8)

where we identify,

GBSM
bLµL

= qQ4qL4(s
Q
34)

2(sL34)
2(V ′†

dL)32|(V
′†
eL)32|2

(

g′2

M ′
Z
2

)

. (3.9)

This operator dominates over the analogous operator with µL replaced by eL, according

to eq. (3.7). To explain the RK and RK∗ anomalies we require GBSM
bLµL

to have the correct

sign and magnitude, as discussed in eqs. (1.3), (1.4). Motivated by the CKM matrix, we

may assume (V ′†
dL)32 and (V ′†

eL)32 are both of order Vts ≈ 0.04. Then eq. (1.4) requires,

GBSM
bLµL

= qQ4qL4(s
Q
34)

2(sL34)
2(6× 10−5)

(

g′2

MZ′
2

)

≈ − 1

(33 TeV)2
(3.10)
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This suggests that in this model MZ′ . (
√
10−5) × 33TeV . 100GeV. Such a light Z ′ is

not excluded since it does not couple to first generation quarks and leptons, so would not

be produced at LEP, and its Drell-Yan production at the LHC would only proceed via s̄s

annihilation through a coupling which is amplitude suppressed by (V ′†
dL)

2
32 ∼ V 2

ts ∼ 10−3.

3.2 SO(10) model

The next example we consider is an SO(10) model which breaks at the GUT scale,

SO(10) → SU(5)×U(1)χ (3.11)

under which the three chiral 16 representations decompose as,

16i → (10, 1)i + (5,−3)i + (1, 5)i (3.12)

where U(1)χ charges should all be multipled by a normalisation factor of 1
2
√
10
. The U(1)χ

survives to low energy and is broken at the few TeV scale to provide an observable Z ′.

We assume that the low energy fourth vector-like family arises from incomplete surviving

parts of the decompositions,

45 → (24, 0) + (10,−4) + (10, 4) + (1, 0)

10 → (5,−2) + (5, 2). (3.13)

The fourth vector-like family with masses near the few TeV scale consists of the following

surviving parts of these multiplets,

(10,−4) + (10, 4) + (5,−2) + (5, 2), (3.14)

where we assume that the other (24, 0) and (1, 0) parts get large GUT scale masses. The

three chiral families and the fourth vector-like family are odd under a matter parity. The

Higgs doublets emerge from a different 10H with even matter parity, allowing Higgs Yukawa

couplings. In addition we will need the Higgs 16H and 16H with even matter parity to

mix the fourth vector-like family with the three chiral families. We do not address any

doublet-triplet or other splitting problems here.

Then SU(5) subsequently breaks to the Standard Model gauge group at the GUT scale,

10 → Q, uc, ec, 5 → L, dc (3.15)

We emphasise that the single vector-like family in eq. (3.14), includes quark and lepton

doublets necessary to account for RK and RK∗ .1 In terms of the fields QL, uR, dR, LL, eR,

the charges under U(1)′ = U(1)χ in table 1 are therefore given by the diagonal matrices:

DQ = diag (1, 1, 1,−4) , Du = diag (−1,−1,−1, 4) , Dd = diag (3, 3, 3,−2) ,

DL = diag (−3,−3,−3, 2) , De = diag (−1,−1,−1, 4) , (3.16)

up to a normalisation factor of 1
2
√
10

multiplying each matrix.

1This may be compared the SO(10) model in [44, 45] where there are three low energy (5,−2) + (5, 2)

representations mixing with the three chiral families leading to flavour changing Z′ interactions. However

such a model is unable to account for RK and RK∗ , in the absence of vector-like quark doublets.
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In addition we assume Higgs singlets whose VEVs yield a massive Z ′, and whose

couplings permit mixing of the fourth vector-like family with the three families of the

same chirality. The mixing of quarks and leptons with the fourth vector-like family in-

duces flavour violating Z ′ couplings to the three light families of quarks and leptons, as in

eq. (2.32), which depend on 3× 3 matrices D̃′ from eq. (2.34) of the form,

D̃′
L = − 3

2
√
10







1 0 0

0 1 0

0 0 1






+

5

2
√
10







(sL14)
2 sL14s

L
24c

L
14 sL14s

L
34c

L
14c

L
24

. (sL24)
2(cL14)

2 sL24s
L
34c

L
24(c

L
14)

2

. . (sL34)
2(cL14)

2(cL24)
2







D̃′
Q =

1

2
√
10







1 0 0

0 1 0

0 0 1






− 5

2
√
10







(sQ14)
2 sQ14s

Q
24c

Q
14 sQ14s

Q
34c

Q
14c

Q
24

. (sQ24)
2(cQ14)

2 sQ24s
Q
34c

Q
24(c

Q
14)

2

. . (sQ34)
2(cQ14)

2(cQ24)
2






(3.17)

Eq. (3.17) consists of a universal matrix, proportional to the unit matrix, plus a non-

universal matrix of the same form as eq. (3.2), but of opposite sign to that which appeared

in the fermiophobic model. Similar matrices may be written down for each of the sectors

QL, uR, dR, LL, eR. The couplings of the quark and lepton mass eigenstates to the Z ′ are

given by inserting eq. (3.17), and similar equations in each of the sectors QL, uR, dR, LL, eR,

into eqs. (2.35), (2.36).

Assuming that only θQL

34 and θLL

14 are non-zero, with all other mixing angles being zero,

the mixing matrices in eq. (3.17) simplify,

D̃′
L = − 3

2
√
10







1 0 0

0 1 0

0 0 1






+

5

2
√
10







(sL14)
2 0 0

0 0 0

0 0 0







D̃′
Q =

1

2
√
10







1 0 0

0 1 0

0 0 1






− 5

2
√
10







0 0 0

0 0 0

0 0 (sQ34)
2






(3.18)

The other matrices are universal, since we assume their mixing angles are zero,

D̃′
e = D̃′

u = − 1

2
√
10







1 0 0

0 1 0

0 0 1






, D̃′

d =
3

2
√
10







1 0 0

0 1 0

0 0 1






(3.19)

The universal (unit matrix) parts of eq. (3.18) and (3.19) when inserted into

– 15 –



J
H
E
P
0
8
(
2
0
1
7
)
0
1
9

eqs. (2.35), (2.36), (2.37), lead to the universal Z ′ couplings for the quarks,

Lq,univ
Z′ =

1

2
√
10

g′Z ′
µ

(

uL cL tL

)

γµ







uL
cL
tL







+
1

2
√
10

g′Z ′
µ

(

dL sL bL

)

γµ







dL
sL
bL







− 1

2
√
10

g′Z ′
µ

(

uR cR tR

)

γµ







uR
cR
tR







+
3

2
√
10

g′Z ′
µ

(

dR sR bR

)

γµ







dR
sR
bR






(3.20)

Similarly the charged lepton couplings to Z ′ will be given by analogous results,

Le,univ
Z′ = − 3

2
√
10

g′Z ′
µ

(

eL µL τL

)

γµ







eL
µL

τL







− 1

2
√
10

g′Z ′
µ

(

eR µR τR

)

γµ







eR
µR

τR






(3.21)

Finally, ignoring neutrino mass, the Z ′ couplings to left-handed neutrinos are given by,

Lν
Z′ = − 3

2
√
10

g′Z ′
µ

(

νeL νµL ντL

)

γµ







νeL
νµL
ντL






(3.22)

There will be also be additional quark and lepton couplings from the non-universal

parts of eq. (3.18), which, when inserted into eq. (2.32), leads to,

Lnonuniv
Z′ =

5

2
√
10

g′Z ′
λ

(

(sL14)
2ē′Lγ

λe′L − (sQ34)
2b̄′Lγ

λb′L + . . .
)

, (3.23)

≈ 5

2
√
10

g′Z ′
λ

(

(sL14)
2ēLγ

λeL − (sQ34)
2b̄Lγ

λbL − (sQ34)
2(V ′†

dL)32b̄Lγ
λsL + . . .

)

,

where we have used eq. (2.20) to expand the primed fields in terms of mass eigenstates,

b′L = (V ′†
dL)31dL + (V ′†

dL)32sL + (V ′†
dL)33bL

e′L = (V ′†
eL)11eL + (V ′†

eL)12µL + (V ′†
eL)13τL (3.24)

and assumed from the hierarchy of the CKM matrix that

|(V ′†
dL)31|2 ≪ |(V ′†

dL)32|2 ≪ (V ′†
dL)

2
33 ≈ 1,

|(V ′†
eL)13|2 ≪ |(V ′†

eL)12|2 ≪ (V ′†
eL)

2
11 ≈ 1. (3.25)
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Combining the universal Z ′ couplings in eq. (3.21) with the non-universal couplings in

eq. (3.23), leads to Z ′ mediated operators relevant for rare B decays,

GBSM
bLµL

b̄Lγ
λsL

[

µ̄LγλµL +

(

1− 5

3
(sL14)

2

)

ēLγλeL +
1

3
µ̄RγλµR +

1

3
ēRγλeR + · · ·

]

(3.26)

where

GBSM
bLµL

=
3

8
(sQ34)

2(V ′†
dL)32

(

g′2

M ′
Z
2

)

. (3.27)

If (sL14)
2 ≈ 3/5 then the ēLeL couplings will be suppressed. Also note that the ēReR and

µ̄RµR couplings are 1/3 times those of µ̄LµL, as predicted by SO(10). Since the µ̄LµL

term dominates, then the model can explain the RK and RK∗ anomalies, if GBSM
bLµL

has the

correct sign and magnitude, as in eqs. (1.3), (1.4). Assuming that g′ ≈ 0.46 [46], eq. (3.27)

and eq. (1.3) then imply,

M ′
Z ≈ (sQ34) (V

′†
dL)

1/2
32 (9 TeV) (3.28)

Since the Z ′ in this model has flavour diagonal couplings to muons similar to the usual

U(1)χ model, the usual LHC limits apply, so we must have MZ′ & 3TeV [47], which

implies (sQ34) (V
′†
dL)

1/2
32 & 1/3. Actually (sQ34) (V

′†
dL)

1/2
32 & 1/3 is quite a stringent limit, for

example the usual CKM inspired expectation (V ′†
dL)

1/2
32 ∼ λ ∼ 0.22 is already not viable,

in agreement with the general results in [48]. However large mixings such as, for example,

(sQ34) ∼ 1/
√
2 and (V ′†

dL)
1/2
32 ∼ 0.5, would imply M ′

Z ∼ 3.2TeV, just above the current limit.

Note that the couplings of the Z ′ to electrons will be suppressed in this model relative to

muons, which is the main LHC prediction of the model. Therefore the model predicts an

imminent LHC discovery of a Z ′ in the muon channel, with a suppressed coupling in the

electron channel. In addition, the model predicts µ̄LeL and ēLµL lepton flavour violating

final states, with an amplitude suppressed by (V ′†
eL)21, which is typically of order of a third

of the Cabibbo angle in unified models.

4 Conclusion

In this paper we have shown how any flavour conserving Z ′ model can be made flavour

violating and non-universal by introducing mass mixing of quarks and leptons with a fourth

family of vector-like fermions with non-universal Z ′ couplings. We have developed a general

formalism to achieve this for any Z ′ model, including B−L models, E6 models, composite

models, and so on. All that is required is to specify the charges for the model in table 1.

These charges may be conveniently summarised in terms of the charge matrices defined

in eq. (2.29). Once these charge matrices are written down for a particular model, the

Lagrangian is completely specified using the general results given in the paper.

To illustrate the proceedure, we have considered two concrete examples, namely a

fermiophobic model, and an SO(10) GUT model, and shown how they can account for the

anomalous B decay ratios RK and RK∗ . In both examples, we have simply written down

the charge matrices for the models, then applied the general results of the paper to calculate

the Feynman rules for the Z ′ couplings to physical quark and lepton mass eigenstates, and
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isolated the flavour diagonal and off-diagonal parts resonsible for flavour violation and

non-universality. The SM gauge couplings do not violate flavour in this models, since the

three chiral quark and lepton families mix with the vector-like family with the same SM

quantum numbers, only differing due to the non-universality of the U(1)′ charges.

The experimental predictions of such models are very rich and varied, and deserve

a dedicated phenomenological study, beyond the scope of the present paper. Generally

speaking, the phenomenological predictions may be divided into low energy flavour chang-

ing and rare processes, and high energy collider signatures. The low energy flavour changing

will encompass lepton flavour violation, including τ decays [49], while the LHC predictions

include a Z ′ as well as a complete fourth vector-like family, with interesting flavour depen-

dent signatures. The Z ′ may be light and weakly coupled, for example around 100GeV in

the fermiophobic model, or heavier with non-universal couplings to electrons and muons,

for example just above the current LHC limit of 3TeV in the SO(10) model.

In conclusion, we have proposed a new class of flavourful Z ′ models which may be

obtained as a bolt-on or upgrade to any existing anomaly free Z ′ model, by adding a

vector-like fourth family, with non-universal U(1)′ charges, together with scalar singlets

which allow mass mixing to take place between the three chiral families and the vector-

like family. We have shown that the resulting low energy Z ′ couplings will always violate

flavour and may account for the anomalous B decay ratios RK and RK∗ .
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