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Abstract 

This paper extends the vector wave equation of aeroacoustics to consider the effect of uniform flow. Analytical time-
domain and frequency-domain acoustic velocity integral formulations for the monopole source are deduced. Test cases for 
sound radiated from stationary and rotating sources in uniform flow are carried out to validate the developed acoustic velocity 
formulations.  
 
© 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of organizing committee of the 24th 
International Congress of Theoretical and Applied Mechanics 

Keywords: aeroacoustics; acoustic analogy; wave equation;acoustic velocity; uniform flow  

1. Introduction 

The scalar wave equation of aeroacoustics, i.e., Ffowcs Williams and Hawkings (FW-H) equation [1], and its 
integral formulations [2, 3] are usually used to compute the acoustic pressure radiated from flow and its 
interaction with solid surfaces. Recently, a vector wave equation of aeroacoustics and the corresponding acoustic 
velocity formulations have been deduced [4-6], which showed advantages in visualizing the acoustic energy flow 
path from sources [7] and around scattering surfaces [8]. The preceding investigations assumed sound 
propagation in quiescent medium, however, acoustic radiation and scattering phenomena widely exist in moving 
medium. For sound radiated from sources in uniform mean flow, the convective FW-H equation and the 
corresponding acoustic pressure formulations have been deduced [9-12], but acoustic power cannot be computed 
directly from these formulations because the acoustic velocity is not given. For sound scattered by rigid surfaces 
in uniform mean flow, the acoustic velocity boundary condition 0nu  rather than the acoustic pressure gradient 
boundary condition 0p n  should be employed on the rigid scattering surface. Owing to the above 
requirements, an acoustic velocity formulation taking into account of the convective effect is meaningful to 
analyze the acoustic power output and the acoustic scattering in uniform flow.  
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This paper presents a convective vector wave equation, which is an extension of the convective FW-H 
equation [9-11] and the vector wave equation of aeroacoustics [3], and the time-domain and frequency-domain 
acoustic velocity formulations for the monopole source in uniform flow are derived and validated.  

2. Convective Vector Wave Equation and Its Integral Solutions 

2.1. Convective vector wave equation  

It is assumed that a data surface is defined by ( , ) 0f tx , which can be either an impermeable solid surface 
or a permeable surface inside the flow region. In order to consider the effect of uniform flow on sound generation 
and propagation, we make the following decomposition of the local flow velocity u = U u , where U  is the 
velocity of the uniform flow and u  is the perturbed component of the local flow velocity. Note that, in this 
situation, u  is the acoustic velocity outside the nonlinear flow region. 

By substituting the above decomposition of the flow velocity into the generalized continuity and momentum 
equations derived by Ffowcs Williams and Hawkings [1] and performing mathematical manipulations, we can 
obtain another type of generalized continuity and momentum equations which account for the uniform flow as 
follows [9-11]: 
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where superscript M denotes source terms in uniform flow. p  is the static pressure;  is the density; ij  is the 
viscous stress tensor; 0 , 0p  and 0c  are, respectively, the density, pressure, and sound speed of the unperturbed 
fluid. iu  is the component of flow velocity in the ith direction; nu  and nv  are the normal components of the flow 
and data surface velocities, respectively. iU  is the component of the uniform flow velocity in the ith direction; 

n i iU U n . (.)  and (.)H  are the Dirac delta and Heaviside functions, respectively; ij  is the Kronecker delta 
function. The convective FW-H equation and the corresponding time-domain [9-11] and frequency-domain [12] 
acoustic pressure formulations for sources in uniform flow can be deduced from Eqs. (1) and (2).  

In a quiescent medium, the acoustic velocity formulations can be directly deduced from the acoustic pressure 
formulations by employing the linearized momentum equation [4, 5]. However, it is difficult to derive the 
analytical acoustic velocity formulations for sources in uniform flow by following this method because there is a 
convective term in the following linearized momentum equation: 

 0 ( ) p
t
u U u  (6) 

The vector wave equation of aeroacoustics [6], which was recently deduced from the generalized continuity and 
momentum equations, provides an alternative method to deduce the acoustic velocity formulation. 
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In this paper, we extend the vector wave equation to consider the effect of uniform flow. The classic and 
convective FW-H equations are derived by employing the perturbation of the density as the variable of the wave 
operator. Here, the vector u  is employed as the variable of the wave operator to deduce the convective vector 
wave equation. A spatial derivative ix  of Eq. (1) is performed to obtain the following equation 
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Performing the material derivative D Dt  of Eq. (2) and multiplying by a constant 2
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Subtracting Eq. (7) from Eq. (8) gives the following equation 
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Eq. (9) can also be equivalently expressed in the following vector form 
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Note that the left hand side (LHS) of Eq. (11) is not a wave operator because the second term is not the Laplace 
operator. Applying the following identity to the vector ( )H f u  
 2( [ ( ) ]) ( ( ) ) ( [ ( ) ])H f H f H fu u u  (12) 
can turn the LHS of Eq. (11) into a convective wave operator with an additional source term 

( [ ( ) ])H f u  on the right hand side (RHS). An equivalent expression of the generalized momentum 
equation (2) is as follows 
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We can obtain the following expression from Eq. (13) by employing the identity ( ) 0  where  is an 
arbitrary scalar 
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The expression of M

ijX  has a subtle difference from the expression of M
ijT  given in Eq. (10), there is an additional 

source term due to the interaction with mean flow. Substituting Eqs. (13) and (14) into Eq. (11) gives 
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Eq. (16) is the convective vector wave equation of aeroacoustics, where MQ , ML  and MT  are given earlier in 
Eqs. (4), (5) and (10), respectively. This wave equation is also an exact rearrangement of the generalized 
continuity and momentum equations.  

The LHS of Eq. (16) is the convective wave operator to describe the effect of uniform flow on sound 
propagation, and the RHS of Eq. (16) contains the monopole, dipole and quadrupole sources but the expression 
of the quadrupole source is slightly different from those given in the convective FW-H equation.  

Moreover, by employing the assumption of a small perturbation 0  and ignoring the second-order 
small quantity u , the convective vector wave equation (16) can be written as 
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Three-dimensional free space Green’s function in time domain for the convective wave equation is expressed 
as follows [13] 
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where 21 (1 )M , ˆr i iM M r , î ir r r , 0i iM U c ; r x y  is the geometric distance between the 
source and the receiver; R  is the distance of sound wave actually travelled from the source to the observer, 
which is different from the geometric distance r  due to the effect of uniform flow. This Green’s function is only 
suitable for subsonic uniform flow because the factor  must be a real number [14]. Using the Fourier 
transformation, we can obtain the corresponding frequency-domain Green’s function as follows:  
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where k is the wavenumber and  is the angular frequency of the sound received by the observer. 

2.2. Acoustic velocity integral formulations for the monopole source 

Starting from Eq. (17) and employing the convective Green’s function (18), we can obtain the acoustic 
velocity formulation for the monopole source in uniform flow as follows: 
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where subscript i represents the component in the ith direction. By following the derivation of the acoustic 
pressure formulation 1 of Farassat [2] and the acoustic velocity formulation V1 of Ghorbaniasl [4], we can obtain 
the following equation 
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Furthermore, we can deduce the following time-domain acoustic velocity formulations by using the feature of 
Dirac delta function to eliminate the temporal integral:  
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where ret  means all the quantities are calculated at the retarded time 0=t R c , ˆ=R i iM M R . Eq. (26) is the 
extension of the time-domain acoustic velocity formulation V1 of Ghorbansial for the monopole source [4]. 
Finally, we obtain the following time-domain acoustic velocity formulation by transferring the derivative with 
respect to the observer time t into that with respect to the source time  
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where the dot over quantities represents the derivative with respect to the source time. Eq (27) is the extension of 
the formulation V1A of Ghorbaniasl for the monopole source.  

If the monopole source rotates with a constant angular speed or is in other periodic motions, performing the 
Fourier transform on Eq. (23) and employing the frequency-domain Green function given in Eq. (21), give the 
following frequency-domain acoustic velocity integral formulation: 

 
*

i i
* *2

0
0

ˆ ˆi
4 ( , ) e e d d

M M
kRi i

f
Ti

kQ R Q R
S

R R
u x  (28) 

where variable with a tilde ~ denotes the frequency-domain complex quantity. Eq. (28) is the extension of the 
frequency-domain acoustic velocity formulation FV1A of Mao [5].  

Especially, when the source is stationary, we can obtain the following simplified time-domain formulation: 
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The corresponding frequency-domain formulation can also be deduced as follows: 
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A numerical validation of the developed acoustic velocity formulations will be carried out in Section 3.  

3. Numerical Validation and Discussion 

3.1. Method of numerical validation 

In this section, numerical test cases are performed to validate the developed acoustic velocity formulations 
accounting for the effect of uniform flow. To the best knowledge of the authors, no benchmarking test case has 
been published for the acoustic velocity related to the sources in uniform flow. Therefore, we employ the 
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following linearized momentum equation expressed in frequency domain to validate the acoustic velocity 
formulations 

 
0

i pu U u  (31) 

The terms on the LHS of Eq. (31) are calculated with the acoustic velocity formulations developed in this paper, 
while the term on the RHS of the Eq. (31) is calculated with the acoustic pressure formulations proposed in 
references [9, 10, 12]. A first-order discretization scheme is used to numerically compute the spatial derivatives 
related to the acoustic pressure and the acoustic velocity in Eq. (31), thus we have  
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where l  represents the distance of two stationary observers, and 610l m  is used in this paper. 
We make the following definitions in all the numerical test cases presented in this Section. The density and 

sound speed of the ambient flow are -3
0 1.2kg m  and -1

0 340m sc . The pulsating frequency of the acoustic 
source is 0 100Hzf . The Mach number of uniform flow is selected as (0.3,0.4,0.5)M  to ensure that the 
uniform flow is subsonic.  

For the sound radiated from a stationary source in uniform flow, the source is located at the coordinate origin. 
36 observers are uniformly located on a circle in a plane at z=10m with a radius of 1m. The computational results 
will output the directivity pattern to validate the developed acoustic velocity formulations. For the sound radiated 
from a rotating source in uniform flow. The source rotates around the z axis in the plane of z=0 with the radius of 
rotation of 0.8m, and the frequency of source rotation is 50Hz. Only one observer is located on 
(1.0m,1.0m,10.0m) , and the computational results will output the spectra to validate the developed acoustic 
velocity formulations. 

3.2. Case 1: stationary monopole point source in stationary medium 

The strength of the monopole point source is -1

0

0.01kg s
f

QdS . Eq. (30) and the frequency-domain 
acoustic pressure formulation are used, respectively, to compute the terms on the LHS and RHS of Eq. (32), 
which are compared in Fig. 1 for their real (Re) parts, imaginary (Im) parts and moduli (Abs) for all components 
in the three coordinate directions. The computational results obtained from the two methods are consistent with 
each other, validating the developed acoustic velocity formulation for the stationary monopole source in uniform 
flow. 

 (a)  (b)  (c) 

Fig. 1 Validation of acoustic velocity formulation for stationary monopole source via Eq. (32): (a) component in x direction; (b) component in 
y direction; (c) component in z direction. 
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3.3. Case 2: rotating monopole point source in stationary medium 

The strength of a rotating monopole source is the same as that in the case of the stationary monopole source. 
Eq. (28) and the frequency-domain acoustic pressure formulation F1A are employed to compute the terms on the 
LHS and RHS of Eq. (32), respectively.  

Fig. 2 displays the spectra obtained from the above-mentioned two methods, and a good agreement between 
these two results validates the frequency-domain acoustic velocity formulations for the rotating monopole source 
in uniform flow. 

(a) (b) (c)

 (d)  (e)  (f) 

Fig. 2 Validation of acoustic velocity formulation for rotating monopole source via Eq. (32): (a) real part in x direction; (b) Real part in y 
direction; (c) real part in z direction; (d) imaginary part in x direction; (e) imaginary part in y direction; (f) imaginary part in z direction; 

Moreover, we compute the acoustic velocity components with the time-domain and frequency-domain 
formulations, respectively. In solving the time-domain formulation Eq.(26), the number of samples in one 
revolution for the rotating source is 360; the source-time dominant algorithm [15, 16] is used to solve the 
retarded-time equation. The instantaneous acoustic velocity signals received by the stationary observer are 
linearly interpolated and then transferred into the frequency-domain signals by performing the fast Fourier 
transform, where the temporal derivative outside the integral is performed in frequency domain after the Fourier 
transform. 

(a) (b) (c) 

Fig. 3 Acoustic velocity components computed from the time-domain formulation (Eq. (26)) and frequency-domain formulation (Eq. (28)): 
(a) component in x direction; (b) component in y direction; (c) component in z direction 
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Fig. 3 compares the components of the acoustic velocity calculated with the time-domain and frequency-
domain acoustic velocity formulations. The results obtained from these two methods achieve a good agreement, 
further validating that the proposed time-domain and frequency-domain acoustic velocity formulations accurately 
predict the acoustic velocity components of the noise radiated from the rotating monopole source in uniform flow. 

4. Conclusion 

In this paper, a convective vector wave equation is developed by starting from the generalized continuity and 
momentum equations. The analytical time-domain and frequency-domain acoustic velocity integral formulations 
for the monopole source in uniform flow are deduced and validated as well. By employing the developed 
acoustic velocity formulations, future research plans to analyze the effect of uniform flow on the acoustic power 
output from sources as well as sound scattered by solid surfaces.  
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