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NEOGENE PALEOMAGNETISM AND GEODYNAMICS OF THE
HIKURANGI MARGIN, EAST COAST, NEW ZEALAND
by Christopher James Rowan

Vertical-axis rotations are an important component of Neogene deformation
in the New Zealand plate boundary region, and potentially offer fundamental in-
sights into the rheology of continental crust. Extensive paleomagnetic sampling
along the Hikurangi margin, on the East Coast of the North Island, has provided
new insights into the patterns, rates and timings of tectonic rotation, and also
an improved understanding of the magnetic signature of New Zealand Cenozoic
mudstones. Rigorous field tests reveal numerous late remagnetizations, which have
often formed several million years after deposition and can be irregularly distrib-
uted within an outcrop. Scanning electron microscopy and rock magnetic analyses
indicate that the remanence carrier is predominantly the ferrimagnetic iron sul-
phide, greigite, which is present as a mixed population of single domain and super-
paramagnetic grains that are characteristic of arrested authigenic growth. Strong
viscous overprints are the result of later, usually recent, oxidation of these sul-
phides. The recognition of late-forming magnetizations leads to a completely new
view of the Neogene tectonic evolution of the Hikurangi margin, with no tectonic
rotations being evident prior to 8-10 Ma; coherent rotation of most of the Hiku-
rangi margin since that time refutes the existence of the independently rotating
‘domains’ that were inferred from earlier paleomagnetic data. This pattern is more
consistent with the short-term velocity field, and allows all Neogene rotation to be
more simply explained as a large-scale response to realignment of the subducting
Pacific plate. Tectonic rotations have been accommodated by a variety of struc-
tures since 10 Ma; in the Late Miocene and Pliocene, rates of tectonic rotation
were 34 times faster than presently observed and possibly involved a much larger
region, before initiation of the North Island Dextral Fault Belt and the Taupo
Volcanic Zone at 1-2 Ma instigated the current tectonic regime. Collision of the
Hikurangi Plateau in the Late Miocene is interpreted to have caused both the
initiation of tectonic rotation, and the widespread remagnetization of sediments,
making it a key event in the Neogene evolution of the plate boundary region.
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Chapter 1 Introduction

1.1 Rationale

New Zealand straddles a region of the convergent plate boundary between the
Pacific and Indo-Australian plates (referred to hereafter as the Australian plate),
across which there are significant changes in the nature of deformation (Fig. 1.1).
Trench-normal, westward subduction of the Pacific plate beneath oceanic crust
at the Tonga-Kermadec Trench slows and becomes increasingly oblique to the
south as it is subducted beneath the continental crust of the North Island of New
Zealand (Hikurangi margin). On the South Island, the plate boundary becomes a
zone of intra-continental, dextral transpression, formed by the Marlborough and
Alpine-Wairau fault zones. These changes are caused by rapid lateral variations in
the azimuth of the relative plate motion vector, and in the lithology and structure
of both plates.

The presence of a large range of deformation modes within a relatively small
region make New Zealand an ideal natural laboratory for investigating how large-
scale plate motions are accommodated by brittle deformation within the crust.
Plate tectonics strictly requires the lithosphere to behave rigidly, except within
narrow zones at the plate boundaries. However, whilst this is a reasonable approx-
imation for oceanic lithosphere, it has long been recognised that this is not the
case for continental lithosphere, where inter-plate motions are commonly broadly
distributed over a wide plate boundary zone (Molnar, 1988). A key question
is whether there is a practical length scale below which the continental crust is
effectively rigid, allowing a ‘microplate’ treatment, or whether deformation is dis-
tributed at all length scales, requiring a quasi-continuous flow model. In reality,
aspects of both models are observed, and to different degrees in different tectonic
situations (Thatcher, 1995). What causes and controls this spectrum of behaviour
depends to a large extent on what is controlling the deformation of the brittle
upper crust.

Paleomagnetic, structural and geodetic studies have revealed that vertical-axis
rotations of fault-bounded blocks are a common feature of deforming continental
crust, especially in areas of oblique convergence. Examples include the western
Transverse Ranges of California (Hornafius, 1985; Hornafius et al., 1986; Jackson
and Molnar, 1990; Sorlien et al., 1999), the Aegean arc (Kissel et al., 1986; Kissel
and Laj, 1988), Sakhalin off the northwest Pacific coast of Russia (Fournier et al.,
1994; Takeuchi et al., 1999; Weaver et al., 2003) and also the New Zealand plate
boundary region, where clockwise vertical-axis rotations of the Hikurangi margin
have been confirmed by numerous paleomagnetic studies (Walcott et al., 1981;
Walcott and Mumme, 1982; Mumme and Walcott, 1985; Wright and Walcott,
1986; Lamb, 1988; Mumme et al., 1989; Roberts, 1992, 1995a; Vickery and Lamb,

2



/7 Active volcanic arc ..** Inactive arc
Thinned continental crust

Figure 1.1: (a) Bathymetry of the southwest Pacific in the New Zealand region, from combined satellite gravity measurements and
bathymetric soundings (Sandwell and Smith, 1997). (b) Interpretive map of (a), illuminating bathymetric features discussed in the text. The
thickened oceanic crust of the Hikurangi Plateau can be clearly seen to the east of the North Island. To the north is a series of volcanic arcs,
separated by back-arc basins. AF = Alpine Fault, MFZ = Marlborough Fault Zone, HP = Hikurangi Plateau, RS = Rapuhia Scarp, ChR
= Chatham Rise, HT = Havre Trough, SFB = South Fiji Basin, NB = Norfolk Basin, NR = Norfolk Ridge, 3KR = 3 Kings Rise, CR =
Colville Ridge, KR = Kermadec Ridge.
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Chapter 1 Introduction

1995; Thornley, 1996; Little and Roberts, 1997). Apparent lateral variations in
the rates and timings of rotations within the Hikurangi forearc since the Early
Miocene have been interpreted in terms of fault-bounded ‘domains’ (Lamb, 1989;
Walcott, 1989)(Section 1.3). Geodetic studies of short-term deformation also indi-
cate contemporary clockwise rotation of the forearc (Walcott, 1984a; Beanland and
Haines, 1998; Beavan and Haines, 2001; Wallace et al., 2004), but suggest a much
more coherent rotation of the entire forearc (Section 1.4). These contrasting length
scales of deformation mean that it is unclear how geodetically and paleomagnet-
ically inferred rotations are related. Better knowledge of the rates, timings, and
magnitudes of rotation on the Hikurangi margin, and the mechanisms by which
large differential rotations have been accommodated, potentially offer significant
insights not only into the tectonic history of the New Zealand plate boundary

region, but also into the underlying mechanisms of continental deformation.

1.2 Geological development of the New Zealand
region

The basement terranes that make up New Zealand chiefly originated in a subduc-

tion setting as part of Gondwana in the Triassic to early Cretaceous. Along with

other continental blocks, such as the Lord Howe Rise, these terranes were rifted

from the eastern Australian margin by the opening of the Tasman Sea in the late

Cretaceous-early Cenozoic (84-52 Ma; Gaina et al., 1998).

A major plate reorganisation, possibly a consequence of the collision of India
with SE Asia (Hall, 2002), affected the whole SW Pacific region between 50 and
40 Ma, and initiated the development of the present-day Pacific-Australian plate
boundary. Convergent tectonics in the region to the north of New Zealand as early
as the mid-Eocene are indicated by a collisional event that culminated in ophiolite
obduction in New Caledonia from ~48 Ma (Aitchison et al., 1995). However, there
was an extensional regime in New Zealand itself, with the development of several
N- to NE-trending basins in the mid-late Eocene (King, 2000, and references
therein), linked to seafloor spreading in the Emerald Basin to the south (Suther-
land, 1995; Wood et al., 1996). The nature of the Paleogene plate boundary in
the intervening region is poorly constrained, possibly due to the Pacific-Australian
Euler pole being located in southern New Zealand at this time (Sutherland, 1995),
which would have resulted in low convergence rates, and possibly diffuse tectonism.

Increased convergence rates resulting from the subsequent SE migration of the
Euler pole from 30 Ma (Sutherland, 1995) led to the southward propagation of a
subduction boundary into the New Zealand region by late Oligocene-early Miocene

time. The initiation of subduction along the Hikurangi margin is marked by the

4



Chapter 1 Introduction

20-25 Ma obduction of the Northland and East Coast allochthons, with coeval
thrusting in the Wairarapa and Marlborough regions (Chanier and Férriere, 1989;
Lamb, 1989; Rait et al., 1991). Initiation of subduction also coincided with the
beginning of widespread volcanic activity on the Three Kings Ridge and Northland
arc, from ~22 Ma (Herzer, 1995).

The precise configuration of the Early Miocene plate boundary in northern New
Zealand remains controversial. A proposed reconstruction is shown in Figure 1.2a,
after Rait et al. (1991), with the nascent subduction margin trending NW-SE.
This orientation is supported by several lines of geological evidence, including the
southwestward transport directions of the Northland and East Coast allochthons
(Stoneley, 1968; Rait, 2000) and the trend of the Northland arc (Herzer, 1995).
However, in the Wairarapa region of the southern North Island, the Early Miocene
fold and thrust belt associated with initiation of subduction presently has a NE-
SW trend (Chanier and Férriere, 1989), indicating that this part of the Hikurangi
margin has rotated by >90° to its present orientation during the Neogene (Rait
et al., 1991) (Fig. 1.2b).

The region behind the currently active Kermadec-Tonga arc to the north of
New Zealand contains a number of relict Cenozoic arcs and ocean basins (Fig. 1.1).
Although early Miocene volcanic activity seems to have been concentrated on the
Three Kings Ridge and in Northland, microfossil studies of dredge samples have
established that the Kermadec and Colville ridges also date back to ~25 Ma (Bal-
lance et al., 1999). This suggests that all of the volcanic arcs north of New Zealand
may once have formed a single ridge, that has been subsequently dismembered by
a series of back-arc rifting events in the Neogene, in response to eastward roll-back
of the Pacific plate. At the southern end of the subduction zone, underthrusting of
buoyant continental crust has resulted in a long-term locking of the plate interface
(Section 2.1.2), that has effectively pinned the plate boundary. Clockwise rotation
of the Hikurangi margin can therefore be explained by a reorientation of the sub-
ducting Pacific plate, driven by the couple arising from this transition (Walcott,
1989) (Fig. 1.2c). Similar forces appear to be driving contemporary rotation of
the Hikurangi margin (Section 1.4), therefore this mechanism is geodynamically
plausible over longer timescales. However, a number of problems remain with this
model. First, the relatively simple scenario of sequential back-arc basin opening
driven by roll-back of the subducting plate is challenged by the Oligocene age as-
signed to the South Fiji Basin, based on the interpretation of magnetic anomalies
(Malahoff et al., 1982; Sdrolias et al., 2003). If correct, this would complicate the
history of subduction and back-arc basin formation to the north of New Zealand

and significantly reduce inferred Neogene roll-back of the Pacific plate. However,
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(a) Reconstruction of the Hikurangi margin at 20-23 Ma, according
to Rait et al. (1991). Realigning Early Miocene thrust belts (ECA = East Coast
Allochthon) indicates that the margin was oriented NW-SE. Back-arc basins to the
north of New Zealand (cf. Fig. 1.2) have been closed, allowing subduction of the
Pacific plate beneath Northland and the Three Kings Rise. However, the age of the
South Fiji Basin is currently disputed. (b) Present-day orientation of Early Miocene
thrust belts, depicting the inferred 90° clockwise rotation of the Hikurangi margin.
(c) Proposed driving mechanism for the tectonic rotation: the transition from sub-
duction, with roll-back and back-arc spreading, to intra-continental transpression
creates a couple that causes clockwise rotation of the subducting slab.
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recent seismic surveys on the Northland margin of the basin indicate that the base-
ment is continuous with a volcanic plateau that overlies the Northland Allochthon
(Herzer et al., 2000). This suggests Mid-Late Miocene spreading, which is easier
to reconcile with the inferred ages of adjacent basins: to the west, dredge samples
in the Norfolk Basin suggest Early Miocene spreading (Mortimer et al., 1998),
which may have continued into the Late Miocene (Sdrolias et al., 2004); to the
east, extension in the Havre Trough is thought to have initiated in the Pliocene
(Wright, 1993). Second, it is presently unclear how the proposed 90° rotation of
the Hikurangi margin has been accommodated within the New Zealand region.
Such large tectonic rotations would appear to require substantial shortening in
the southern part of the Hikurangi margin. In contrast, estimates of long-term
deformation from seismic reflection lines indicate <30 km of shortening across the
southern forearc since 5 Ma (Nicol and Beavan, 2003), and the low metamorphic
grade of rocks in the East Coast region is also inconsistent with intense tectonism
(Field et al., 1997). However, because the limits of the rotating forearc are poorly
defined by paleomagnetic data (Section 1.3), it is difficult to constrain which re-
gions are likely to have been deforming in response to tectonic rotation of the
forearc.

Since the beginning of subduction in the Early Miocene, the tectonic regime
appears to have been dominated by shortening (Field et al., 1997), although sig-
nificant dextral displacements have been proposed by some authors (Delteil et al.,
1996; Field et al., 1997). However, at least two tectonic reorganisations have taken
place since the Late Miocene. An abrupt southwestward shift in the position of the
Pacific-Austalian Euler rotation pole at 6.5-5 Ma (Cande et al., 1995; Sutherland,
1995; Walcott, 1998) increased convergence across the plate boundary in the New
Zealand region, and appears to have triggered a number of tectonic changes, in-
cluding development of the Marlborough Fault Zone (MFZ) (Little and Roberts,
1997), and uplift and subaerial exposure of the inner forearc of the Hikurangi
margin (Kelsey et al., 1995; Buret et al., 1997). Further changes occurred at 2-1
Ma, with the beginning of extension in the Taupo Volcanic Zone (TVZ) (Wilson
et al., 1995) and initiation of strike-slip displacement on the North Island Dextral
Fault Belt (NIDFB; see Section 1.4) (Beanland, 1995; Beanland et al., 1998). The
presently observed tectonic regime has therefore only persisted since the beginning
of the Quaternary, and prior to this different structures must have been involved
in accommodating motion across the plate boundary region. This ongoing tec-
tonic evolution must be taken into account when developing rotation models for

the Hikurangi margin.
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1.3 Paleomagnetic investigations of the
Hikurangi margin

Vertical-axis tectonic rotations on the Hikurangi margin are determined by mea-
suring the declination anomaly, which is the deviation of the paleomagnetic mean
declination for a sampling locality from that expected from large-scale motions
of the Australian and Pacific plates. The apparent polar wander path (APWP)
of the Pacific plate, determined both from standard paleomagnetic measurements
and also from marine magnetic anomaly skewness (Petronotis et al., 1994; John-
son and Gordon, 1996), indicate that it has remained relatively stationary, with
a small to negligible northward drift, during the Neogene. Motion of the Aus-
tralian plate about the SW Pacific Euler pole should therefore lead to clockwise
rotations of about 1°/Myr on the Australian plate. This is confirmed by measured
Australian APWPs (Idnurm, 1985; Musgrave, 1989).

Large rotations of the forearc of the Hikurangi margin have been confirmed
by numerous paleomagnetic studies (Walcott et al., 1981; Walcott and Mumme,
1982; Mumme and Walcott, 1985; Wright and Walcott, 1986; Mumme et al., 1989;
Roberts, 1992, 1995a; Vickery and Lamb, 1995; Thornley, 1996; Little and Roberts,
1997). These data have been further interpreted to indicate that the margin
is divided into a number of rotational domains, with separate tectonic histories
(Lamb, 1988, 1989; Walcott, 1989) (Figs. 1.3, 1.4).

The apparent lateral variations in the rates, timings and magnitudes of tec-
tonic rotation are not a feature of the short-term velocity field (Section 1.4), which
may indicate fundamental differences between long- and short-term deformation
patterns on the Hikurangi margin. Alternatively, they may reflect deformation in
an earlier tectonic regime prior to formation of the NIDFB and TVZ (Section 1.2).
To test these hypotheses, the boundaries of the domains must be rigorously delin-
eated, and the structures that have accommodated large differential rotations at
the boundaries between adjacent domains must be identified.

The extant paleomagnetic data presented in Figures 1.3 and 1.4 are discussed
in the following sections. The Cenozoic mudstones from which most of these data
have been extracted are weakly magnetized and are commonly affected by strong
present-day field overprints, which make it difficult to isolate primary remanence
components. These rocks have undergone multiple cycles of erosion, deposition
and uplift, causing the dissolution of ferrimagnetic Fe-Ti oxides such as mag-
netite; in most cases, the remanence carrier has not been conclusively identified
(Turner, 2001). These uncertainties could potentially impact the reliability of

paleomagnetic data from the Hikurangi margin.
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Figure 1.3: Rotational domains of the Hikurangi margin, according to Lamb (1988,
1989) and Walcott (1989). Representative declinations from previously published
studies, colour coded according to age, are also plotted, to illustrate the distribu-
tion of data used to delimit these domains. ECA = East Coast Allochthon, OT
= Otoko-Totangi Fault, RK = Rakauroa Fault, WK = Waerengaokuri Fault, MR
= Mangapoike River. Declination anomalies are from Walcott et al. (1981); Wal-
cott and Mumme (1982); Mumme and Walcott (1985); Wright and Walcott (1986);
Mumme et al. (1989); Roberts (1992, 1995a); Vickery and Lamb (1995); Thornley
(1996) and Little and Roberts (1997).
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1.3.1 Raukumara
Extensive sampling of Early Miocene (18-20 Ma) rocks (Walcott and Mumme,

1982; Mumme et al., 1989) on the northern Raukumara Peninsula indicate negli-
gible rotations with respect to the Australian plate during the Neogene (Figs. 1.3,
1.4a). This is in clear contrast to the large clockwise rotations reported from sites
further south on the Hikurangi margin. One potentially worrying feature of the
paleomagnetic data from many localities is their anomalously shallow inclinations
(as little as 25°, compared to expected inclinations of ~60°), although this has
been argued to result from sediment compaction (Mumme et al., 1989). However,
the presence of reversed polarity directions at several sites imparts confidence
that these data are not strongly contaminated by present-day field overprints.
The southern extent of this non-rotated region is not precisely defined; sampling
from over 20 localities in the southern Raukumara Peninsula failed to yield stable
magnetizations (Mumme et al., 1989), although unrotated declinations have been
reported from a Late Miocene coastal locality near Tolaga Bay (Thornley, 1996)
(Fig. 1.3).

1.3.2 Wairoa
A number of studies (Walcott and Mumme, 1982; Mumme and Walcott, 1985;

Wright and Walcott, 1986; Thornley, 1996) provide data with a broad tempo-
ral range from 24 to 2 Ma (Fig. 1.4b), much of which come from a 5000 m
mid Miocene-early Pliocene (16-4 Ma) section from the Mangapoike River (MR,
Fig. 1.3). These data consistently indicate large clockwise rotations with respect to
both the Australian plate and the Raukumara Peninsula to the north (Fig. 1.3),
and have been further interpreted as indicating a steadily accelerating rate of
tectonic rotation with respect to the Australian plate during the Neogene, from
3-4°/Myr in the Early Miocene to 7-8°/Myr from the Pliocene onward (Wright
and Walcott, 1986; Walcott, 1989) (Fig. 1.4b). However, there is significant scatter
in Early and Middle Miocene data, which results in the proposed best-fit curve
being poorly constrained beyond 12 Ma.

The substantial (~60°) discrepancy in net rotations between the Wairoa and
Raukumara regions implied by these data requires that a major structural bound-
ary exists between the two ‘domains’. Within the broad, geologically complex
area defined by the paleomagnetic results, there is a significant change in struc-
tural trends, from NW-SE to SW-NE; however, structures that have accomo-
dated large differential rotations have proven difficult to identify. Several studies
have proposed a corridor of dextral strike-slip between Gisborne and the Bay
of Plenty (Fig. 1.3), involving movement on the Otoko-Totangi, Rakauroa and

Waerengaokuri faults (e.g. Lamb, 1988). The history of displacement on these
11



Chapter 1 Introduction

faults remains ambiguous, however, and evidence for large dextral offsets is weak.
Thornley (1996) reported both anomalously large and small declinations from
samples collected around the Waerengaokuri Fault, which may indicate differen-
tial rotations across this structure. The data are of poor quality, however, with
strong overprints complicating interpretation, which makes their significance un-
certain, and for this reason they are not included on Figures 1.3 and 1.4. Cor-
relating the paleomagnetic results with structural geology is further complicated
by a large declination anomaly reported by Mumme and Walcott (1985) from a
locality situated between the Otoko-Totangi and Rakauroa faults (Fig. 1.3). The
large inferred tectonic rotation at this locality contradicts geological evidence that
suggests it is unrotated (i.e. in this region, Early Miocene structures associated
with emplacement of the ECA still trend NW-SE). Further data from this region

are clearly needed to further constrain the position of the rotation boundary.

1.3.3 Wairarapa

Paleomagnetic data from the North Island south of northern Hawke Bay are
sparse; only two stable primary magnetizations have been reported from this re-
gion (Figs. 1.3, 1.4c). A number of other sites have been sampled but have con-
sistently been found to be overprinted by a hard spurious magnetization (Walcott
and Mumme, 1982; Roberts, 1990).

The published results indicate 30° of clockwise rotation of Late Miocene (8 Ma)
sediments (Walcott et al., 1981), whereas Late Pliocene (2 Ma) rocks are unrotated
(Lamb, 1988). The former result is consistent with data from the Wairoa region;
the latter may imply structural decoupling between the Wairarapa and Wairoa
regions from the late Pliocene onward. This would require a further structural
boundary south of the Wairoa region, which is not obvious from current patterns of
deformation or surface geology. It could also be argued that extant paleomagnetic
data are insufficient to conclusively establish a distinct tectonic history for this

region.

1.3.4 Marlborough

Tectonic rotations on the northeastern South Island of New Zealand seem to be
principally associated with the transition from subduction to transpression in the
Marlborough region (Fig. 1.3). The whole of northeastern Marlborough has ro-
tated clockwise by up to 30-50° since ~4 Ma (Walcott et al., 1981; Roberts,
1992, 1995a) (Fig. 1.4d). Early-Middle Miocene coastal outcrops record addi-
tional rotations of ~50° (Mumme and Walcott, 1985; Vickery and Lamb, 1995)
(Figs. 1.3, 1.4). Middle-late Miocene depositional hiatuses divide these two phases
of rotation (Roberts, 1992).

12



Chapter 1 Introduction

The paleomagnetic data from northern Marlborough have been augmented by
structural data from basement rocks of the Torlesse Supergroup, which has near-
vertical bedding fabric that can be used as a marker for vertical-axis rotations
(Little and Roberts, 1997). A NW-trending kink in the structural trend of these
basement rocks defines a ‘migrating hinge’, through which the northern Marlbor-
ough region has been translated during the Pliocene by strike-slip motion on the
Marlborough Fault Zone (Little and Roberts, 1997). The much larger clockwise
rotations recorded by Paleogene to Middle Miocene sediments in coastal regions
(Vickery and Lamb, 1995) appear to be spatially restricted, and represent earlier
deformation associated with the initial propagation of the plate boundary through
New Zealand in the Early Miocene (Little and Roberts, 1997), or possibly oroclinal
bending associated with Early-Middle Miocene strike-slip on the Alpine-Wairau
Fault (Hall et al., 2004).

Major active faults cannot be traced across Cook Strait, and basement terranes
are offset by ~140 km across it, indicating that it is a major structural discon-
tinuity (Walcott, 1978; Carter et al., 1988). These observations suggest that the
inactive, rotated, termination of the Alpine-Wairau Fault may run through Cook
Strait (Walcott, 1978; Lewis et al., 1994); differential motion across this structure
may explain the later apparent initiation of rotations in this part of the margin,

compared to those documented on the North Island.

1.4 Active faulting and deformation in the plate

boundary region
Active faulting on the Hikurangi margin is principally divided between three re-

gions: the subduction thrust and outer forearc, the NIDFB, and the TVZ. The
obliquity of the plate motion vector to the margin increases between 40°S and
42°S: margin-normal convergence decreases from 34mm/yr to 22mm/yr, whilst the
margin-parallel component remains constant at ~31 mm/yr. However, it seems
unlikely that this variation is entirely responsible for the observed lateral changes
in the distribution of deformation, inferred from both geodetic data and estimates
of geological slip rate (Fig. 1.5).

Earthquake focal mechanisms at the subduction interface consistently have
slip vectors oriented normal to the trench, indicating that the plate interface ac-
commodates little trench-parallel motion (Webb and Anderson, 1998). This is a
common feature of oblique subduction zones, although in this case the ‘strain par-
titioning’ is not complete: on the southern Hikurangi margin, thrusts in the outer
forearc are slightly oblique to trench-normal, which may account for 5-6mm/yr

of margin-parallel motion, and offshore strike-slip faults have also been reported
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Figure 1.5: Distribution of active deformation in the New Zealand plate boundary
region, indicating areas that are presently accommodating significant horizontal
strain, and the major faults within them. The relative proportions of margin-normal
(red) and margin-parallel (blue) motion being accommodated on known faults in
these areas are given as a percentage of the Australian-Pacific convergence vector.

See Section 1.4 for references.
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east of the Raukumara Peninsula (Collot and Davy, 1998; Davey et al., 1997), al-
though their slip rates are poorly constrained. A southward increase in inter-plate
coupling (Reyners, 1998) means that at the southern Hikurangi margin a signif-
icant proportion of margin-normal motion is not accommodated at the trench,
and is transferred onto the Australian plate (Fig. 1.5). Although a comparison
of global positioning system (GPS) and geologically-derived strain rates indicates
that some of this shortening is elastic deformation caused by temporary locking
of the plate interface (Nicol and Beavan, 2003), uplift of the Coastal and Axial
ranges on the North Island demonstrates that at least some of this shortening is
being permanently accommodated in the forearc. Off the coast of the northern
South Island, the subduction interface appears to be permanently locked (Collot
et al., 1996; Barnes and Mercier de Lepinay, 1997) (Section 2.1.2), with >80% of
relative plate motion being permanently accommodated by the Marlborough Fault
zone (Beavan and Haines, 2001) (Fig. 1.5).

The amount of extension in the TVZ decreases southward, from 15mm/yr in
the Bay of Plenty region to 5mm/yr in the central North Island (Stern, 1987,
Acocella et al., 2003); this is probably also linked to increased coupling across the
plate boundary, because back-arc extension can only occur where the interface
is weak (Upton et al., 2003). Extension is oblique to the plate motion vector,
resulting in 2-3 mm/yr of dextral strike-slip being accommodated in this region
(Acocella et al., 2003) (Fig. 1.5).

The two strands of the NIDFB, the western Wellington-Mohaka fault system,
and the eastern Wairarapa Fault, both consist of linked dextral-reverse faults, as-
sociated with the Axial Ranges (Beanland, 1995). Near Wellington, 21 mm/yr of
margin-parallel motion is accommodated on these faults (Beanland, 1995); how-
ever, this decreases northward, with 5mm/yr of dextral strike-slip on the two main
strands in Hawkes Bay, and only 1.6 mm/yr in the Bay of Plenty region (Beanland,
1995) (Fig. 1.5).

It is clear from Figure 1.5 that the transition from subduction to transpression
along the Hikurangi margin is leading to significant changes in the distribution of
deformation. In the north, faulting is confined to two narrow regions associated
with the subduction interface and the TVZ; the intervening Raukumara Peninsula
is not undergoing significant basement deformation, with normal faulting in this
region being related to gravitational sliding of the sedimentary cover (Thornley,
1996). As inter-plate coupling increases to the south, deformation becomes more
distributed, with faulting across the entire region between the trench and the
NIDFB.

Whilst displacement on known faults can account for most of the margin-
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normal motion, there is a significant amount of margin-parallel motion that cannot
be accounted for. This strike-slip deficit increases to the north, as less margin-
parallel motion is accommodated on the NIDFB (Fig. 1.5). Derived velocity fields
indicate that this deficit is principally accounted for by bulk rotation of the margin
(Walcott, 1984a; Beanland, 1995; Beanland and Haines, 1998; Beavan and Haines,
2001; Wallace et al., 2004). The modelling of Wallace et al. (2004) suggests that
such rotation accounts for 65% of margin-parallel motion on the Raukumara Penin-
sula, resulting in a tectonic rotation rate of 3-4°/Myr. Although this is comparable
to rotation rates estimated from paleomagnetic data (Section 1.3), geodetically-
derived deformation fields indicate coherent rotation of the entire forearc region,
showing no significant smaller scale variation in rotation rates associated with the
proposed paleomagnetic ‘domains’. Neither do the active faulting patterns in Fig-
ure 1.5 appear consistent with large differential rotations between adjacent parts

of the Hikurangi margin.

1.5 Synthesis

In the decade since the majority of paleomagnetic data from the East Coast of the
North Island have been published, high-resolution surveys of seismicity, bathym-
etry and gravity along the Hikurangi margin have vastly improved knowledge of
its structure (Section 2.1), whereas new geodetic modelling, using GPS measure-
ments and more accurate fault slip rate data, have provided a much clearer pic-
ture of contemporary deformation patterns. None of these new data support the
proposed division of the deforming forearc into independent rotational domains
(Lamb, 1989; Walcott, 1989). When the domains were originally proposed, their
boundaries were correlated to postulated ‘tears’ in the subducting plate (Reyn-
ers, 1983; Smith et al., 1989). More detailed analysis of intra-plate seismicity
has shown that these tears do not exist (Ansell and Bannister, 1996); although
some lateral variations in the structure of the subducting plate are still apparent
(Section 2.1), they no longer seem to directly correlate to the paleomagnetically
inferred tectonic boundaries on the forearc, which also seem incompatible with the
coherent rotation of the margin observed in the short-term velocity field (Beanland
and Haines, 1998; Beavan and Haines, 2001; Wallace et al., 2004) (Section 1.4).
Differential rotations are clearly indicated by both paleomagnetic and struc-
tural data across Cook Strait. Changes in the structure of both plates near Gis-
borne (Section 2.1.2) are also associated with a change in intra-plate coupling that
could have potentially allowed differential rotation (Reyners, 1998), and correlate
with the paleomagnetically-defined boundary between the unrotated Raukumara

Peninsula and the rotated Wairoa domain. In this case, however, the sub-surface
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discontinuity inferred from geophysical data is not clearly expressed by surface
geology. Along the rest of the Hikurangi margin, there are no clearly defined
structural boundaries between Hawke Bay and Cook Strait, and the paucity of
paleomagnetic data from the southern part of the margin makes it difficult to
justify a division into distinct Wairoa and Wairarapa domains.

The poor coverage of the paleomagnetic data set makes meaningful comparison
of long-term and short-term deformation patterns extremely difficult. Although it
is clear that tectonic rotations have occurred, the rates, timings and distributions
of these rotations are poorly constrained along much of the Hikurangi margin,
particularly between Hawke Bay and Cook Strait. Therefore, although the domain
hypothesis is poorly supported by present data, it cannot be completely rejected.

Another implication of recent geophysical results is that the rotation of the
forearc region is dependent on the gradual southward increase in inter-plate cou-
pling observed along the plate interface (Reyners, 1998), which produces a margin-
normal shear gradient along the entire length of the margin. This increase is im-
plicitly related to the gradually increasing thickness of the subducting Hikurangi
Plateau (Davy and Wood, 1994). Numerical models of oblique subduction (Upton
et al., 2003) indicate that more abrupt changes in the strength of the subduction
thrust leads to a relatively confined zone of margin-normal dextral shear. Thus,
prior to collision of the Hikurangi Plateau, the kinematic response of the forearc

to rotation of the underlying Pacific plate was likely to have been different.

1.6 Aims and objectives of this study

The access provided by subaerial exposure of the Hikurangi forearc allows detailed
paleomagnetic study of deformation that enables us to address questions regarding
the timing, distribution and accommodation of vertical-axis rotations during the

Neogene. The principal aims of this study can be summarised as follows.

e To improve the spatial and temporal resolution of the paleomagnetic data
set for the Hikurangi margin through a field sampling campaign along the
east coast of the North Island.

e To integrate paleomagnetic data and structural data in order to accurately
constrain the rates and timing of vertical-axis rotations along the whole of
the Hikurangi margin. This will enable a rigorous test of the hypothesis that
the margin is divided into domains, which act as rigid blocks with discrete
tectonic histories. Precisely delineating the boundaries of any such regions

will also allow investigation of how differential rotations are accommodated.

e To properly integrate any tectonic rotations into reconstructions of the New
17
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Zealand plate boundary region during the Neogene.

e To investigate the magnetic signature of New Zealand Cenozoic marine mud-
stones in an attempt to characterise the principal magnetic carriers, and to
understand the origins of the strong viscous overprints that are common in

these rocks.

Some further geological background is presented in Chapter 2, followed by a
discussion of experimental methods in Chapter 3. Results of sampling undertaken
specifically to examine and resolve an apparent discrepancy between published
paleomagnetic and structural data are presented in Chapter 4, which highlights
potential reliability issues in the published paleomagnetic data set. In Chapter 5,
results are presented that first triggered the realisation that late authigenic growth
of iron sulphide minerals has a potentially serious impact on paleomagnetic results
from New Zealand. In Chapter 6, these results are expanded, and it is demon-
strated that remagnetization is a regional problem. These issues are addressed in
Chapter 7 to produce a coherent account of the Neogene tectonic development of
the Hikurangi margin. The overall conclusions of this study, and suggestions for

further work, are then presented in Chapter 8.
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2.1 Structure of the present Hikurangi margin
The Hikurangi margin encompasses the region of the Australian-Pacific plate

boundary between 38° and 42°S, where the Pacific Plate is being subducted be-
neath the continental crust of the North Island at the Hikurangi Trough (Fig. 1.1).
It marks the transition between fast (60 mm/yr), intra-oceanic subduction in the
Kermadec trench to the north, and a chiefly dextral transform boundary within
continental crust (the Alpine-Wairau Fault) to the south. Relative motions be-
tween the Australian and Pacific plates are described by a clockwise rotation of
1.07° /Myr about an Euler pole situated at 60.1°S, 181.7°E (DeMets et al., 1994).
The close proximity of this pole to the New Zealand section of the plate boundary
leads to measurable changes in the magnitude and obliquity of the convergence
vector along the margin, from 45 mm/yr at 266° off the Raukumara Peninsula
in the north to 37 mm/yr at 258° in Marlborough to the south (Fig. 1.1). The
arcuate form of the Hikurangi margin further magnifies the southward increase in

the obliquity of the convergence vector to the trench.

2.1.1 Subducting plate
Seismic and gravity surveys (Davy and Wood, 1994; Wood and Davy, 1994) have

shown that the Pacific crust currently being subducted at the Hikurangi margin
(the Hikurangi Plateau) is anomalously thick (10-15 km), and contains numer-
ous volcanic seamounts and intrusions. Geochemical analyses of basement rocks
support the hypothesis that the Hikurangi Plateau consists of thickened oceanic
crust, formed by a mantle plume on or near a mid-ocean ridge (Mortimer and
Parkinson, 1996). The additional buoyancy resulting from thicker oceanic crust
on the downgoing plate has led to uplift and subaerial exposure of the forearc on
the eastern North Island, and to abrupt shallowing of the subduction trench, from
6000 m depth to 2500-3500 m (Collot et al., 1996). Pacific crust 11-14 km thick
has been observed on the subducted slab at 15 to 30 km depth using teleseismic
ScSp conversions, indicating that subduction of the Hikurangi Plateau has been
occurring for at least 3 Ma (Bourne and Stuart, 2000). A low velocity zone at the
top of the subducting plate, which may correspond to thickened oceanic crust, has
been imaged by seismic tomography down to ~75 km depth (Reyners et al., 2004);
the whole of the shallow slab beneath the North Island may therefore be topped
by abnormally thick oceanic crust, representing at least 6-8 Myr of subduction.
These observations suggest that the excess buoyancy of the Hikurangi Plateau is
responsible for the shallow 12-15° initial dip of the subducted slab, as defined
by high-resolution surveys of plate seismicity (Smith et al., 1989, and references
therein). Futhermore, the slab has a conical profile, with radius of curvature in-
creasing from 240 km north of Hawke Bay to 280 km near Wellington (Ansell and
20
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Bannister, 1996), which correlates with a southward increase in the thickness of
the Hikurangi Plateau, from 10 to 15 km (Davy and Wood, 1994). The dip of
the slab increases abruptly to 50° at 60-80 km depth, about 200 km west of the
trench (Adams and Ware, 1977; Ansell and Bannister, 1996) which may the mark
the down-dip extent of the Hikurangi Plateau and the transition to normal oceanic
crust.

Seaward of the trench, the Hikurangi Plateau has been subdivided according
to variations in basement structure (Wood and Davy, 1994) (Fig. 2.1); these di-
visions include regions of more abundant volcanic seamounts (Northern Volcanic
Region) and of higher sediment accumulation (Central Basin, North Chatham
Basin). However, these divisions are not reflected in basment structure; the
southward increase in crustal thickness indicated by gravity surveys appears to
be relatively gradual, with no abrupt changes or obvious structural discontinuities
associated with, for example, the subsided Central Basin (Davy and Wood, 1994).
Although lateral segmentation of the downgoing slab has been suggested, based
on along-strike changes in the distribution of seismicity within the plate interface
zone (Reyners, 1983; Smith et al., 1989), compiled high-resolution data from all
recent studies reveal no compelling evidence for the sharp along-strike offsets in

seismicity that this interpretation requires (Ansell and Bannister, 1996).

Ausveizg A8

70 A777
—
decreased crustal
thickness
- F /
L change intrend ~ underplated sediments
? . of rrlargin
/ "'0
possible subduction of Plateau / S===m===== margin indented
beneath Chatham Rise 7 .ot . by tectonic erosion

%a

L

increasing crustal thickness

Figure 2.1: N-S cross section along the Hikurangi margin, illustrating lateral vari-
ations in the structure of the subducting and overiding plates. Vertical dimensions
have been exaggerated for clarity. Dotted lines on the Hikurangi Plateau mark the
structural divisions of Wood and Davy (1994) (NVR = Northern Volcanic Region,
CB = Central Basin, NCT = North Chatham Terrace, NCB = North Chatham
Basin). NIDFB = North Island Dextral Fault Belt, ECA = East Coast Allochthon,
TVZ = Taupo Volcanic Zone.
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2.1.2 Plate interface and forearc
The forearc of the Hikurangi margin (Fig. 2.1) can be subdivided into an offshore

imbricate wedge of deforming Cenozoic sediments, with an actively accreting Qua-
ternary wedge in the southeast; an outer arc high formed by the Coastal Ranges;
and a subaerially exposed inner forearc, containing Early Miocene to Pliocene
marine sediments (Cole and Lewis, 1981; Lewis and Pettinga, 1993). Uplifted
Cretaceous greywackes of the Axial Ranges act as a backstop to the deforming
zone. Back-arc extension in the Taupo Volcanic Zone is linked to offshore exten-
sion in the Havre Trough to the north of New Zealand (Fig. 1.1), and does not
extend south of the central North Island.

The margin can also be divided laterally, according to structural changes along
the subduction margin revealed by geophysical surveys (Collot and Davy, 1998).
These divisions can also be correlated to changes in structure of the overlying

plate, and the degree of coupling at the plate interface (Reyners, 1998).

Southern Kermadec margin
Subduction of the Hikurangi Plateau continues in an intra-oceanic setting to

the north of New Zealand, until the Kermadec Trench intersects with the NW-
trending, 1000 m-high Rapuhia scarp at 36°S (Fig. 1.1). There is an abrupt change
to normal-thickness Pacific crust north of this feature (Davy and Wood, 1994); the
resulting buoyancy contrast is inferred to have caused a tear fault in the subduct-
ing plate (Davey and Collot, 2000). Sediment transport from the New Zealand
landmass to the trench north of New Zealand is impeded by a volcanic ridge near
East Cape, resulting in limited active accretion at the inner trench (Collot and
Davy, 1998). Dextral strike-slip faults have been identified on the middle and
upper slope of the margin (Collot and Davy, 1998; Davey et al., 1997) (Fig. 1.5),
behind which is a forearc basin containing up to 10 km of mainly Cenozoic sedi-
ment fill (Davey et al., 1997). The basin is floored by Cretaceous oceanic crust,
which seismic surveys have shown to be obducted onto the Raukumara Peninsula
as part of the East Coast Allochthon (Davey et al., 1997) (Fig. 2.1). Back-arc rift-
ing, at rates of 15-20 mm/yr in the Havre Trough began at about 5 Ma (Wright,
1993); extension is slightly oblique to the plate motion vector (Delteil et al., 2002).

Northern Hikurangi Margin - the Raukumara Peninsula
Between 37°40°S and 40°20’S, there is no actively accreting wedge. Instead, the

structural trench is indented by 10-25 km (Fig. 2.1), and the inner trench wall has
a much steeper slope than other parts of the margin (12° as opposed to 2.5°). In
this section of the plate boundary, the subducting Hikurangi Plateau has a rougher
topography due to a higher abundance of volcanic seamounts (the Northern Vol-

canic region of Wood and Davy, 1994) (Fig. 2.1). Slumping and gravitational
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collapse resulting from multiple collisions of these seamounts have led to the re-
moval of the lower margin by tectonic erosion (Collot et al., 1996).

Significant changes in the structure of the overlying plate also occur along this
section of the margin. In the northeast, 3D seismic models derived from inversion
of earthquake arrival times (Reyners et al., 1999) reveal a low velocity zone in
the lower crust, which thins abruptly north of Gisborne, and appear to represent
a thick (>20 km) accumulation of subducted sediment (Fig. 2.1). Sediment un-
derplating has previously been hypothesised to explain the uplift and extension
through gravitational collapse of the Raukumara Range in the last 6 Ma (Thorn-
ley, 1996; Walcott, 1987), and is supported by the observation that the low velocity
zone is most extensive beneath the most rapidly uplifting part of the range.

Large thicknesses of underplated sediments are often linked to tectonic erosion
at a subduction margin (von Heune and Scholl, 1991). However, south of Gisborne
there is a 50 km section of the indented (tectonically eroding) part of the margin
with no significant underplating, suggesting additional controls on the accumula-
tion of sediments beneath the forearc. The thickness of the over-riding Australian
crust also increases abruptly in the Gisborne region, from 17-19 km in the north
to 36-37 km in the south (Davey et al., 1997; Reyners et al., 1999). It is possible
that thinner crust on the over-riding plate in the northeast allows the sediment to
pond against stronger upper mantle (Reyners et al., 1999).

The increased subduction of sediments beneath Raukumara appears to have
reduced coupling at the plate interface. Earthquake waveform modelling indicates
1-2 km of subducted sediments along the shallow interplate thrust, made weak by
elevated pore fluid pressure (Eberhart-Phillips and Reyners, 1999). Velocity fields
derived from geodetic data (Walcott, 1984b; Beavan and Haines, 2001; Wallace
et al., 2004) and geological slip rates on major faults (Beanland and Haines, 1998)
also indicate a major discontinuity in velocities across the plate boundary off
Raukumara, supporting the idea that significant horizontal stresses are not being

transferred into the overlying plate.

Central Hikurangi margin - Hawke Bay and the Wairarapa
From 40°30’S to 42°S, the presence of a Plio-Pleistocene accretionary wedge, con-

sisting of an imbricate fold and thrust belt (Collot et al., 1996), indicates that
active accretion is occuring at the trench. Outbuilding of this wedge has acceler-
ated during the Quaternary (Barnes and Mercier de Lepinay, 1997). This section
of the Hikurangi margin is arcuate, with the structural trend changing from 15° in
the north to 50-70° in the south. Three NE-trending active fault scarps, the most
landward of which appears to have accommodated significant dextral strike-slip,

have been imaged by sidescan sonar on the upper margin behind the active wedge
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(Barnes et al., 1998) (Fig. 1.5).

The topography of the plate interface beneath the Wairarapa region has been
imaged in detail, using PS and SP converted arrivals to further constrain hypocen-
tres (Reading et al., 2001). The depth to the plate interface increases by 2-4 km in
the southern Wairarapa, but this change appears to be gradual rather than abrupt.
More of these converted phases originate beneath the northern Wairaraipa, where
the crust is thinner, suggesting that a small thickness (<2 km) of underplated
sediments may be present (Fig. 2.1.)

Geodetic measurements indicate that up to 50% of contemporary inter-plate
convergence is being accommodated on the Australian plate (Nicol and Beavan,
2003), and clustering of thrust earthquakes near the plate interface at depths of 20—
25 km indicate the down-dip edge of a locked region (Ansell and Bannister, 1996;
Reyners et al., 1997; Reyners, 1998). Much lower convergence rates within the
Australian plate are indicated by the geologically derived velocity field (Beanland
and Haines, 1998), suggesting that much of the short-term deformation is related

to the accumulation of elastic strain and that this locking is not permanent.

Southern Hikurangi margin - Marlborough
Beneath the Marlborough region, strong coupling across the subduction interface

is indicated by the absence of low angle thrust earthquakes at the interface itself,
and by focal mechanisms of upper plate earthquakes being dominated by sub-
horizontal compression (Reyners et al., 1997). Marlborough marks the transition
on the Pacific plate from thickened oceanic crust to the 23-26 km thick continental
crust of Chatham Rise (Fig. 2.1). Partial subduction of the Hikurangi Plateau
beneath Chatham Rise is indicated by seismic sections across this boundary (Wood
and Davy, 1994), which is probably a result of its collision with the Gondwana
margin at ~105 Ma (Sutherland and Hollis, 2001).

Subduction of continental material to depths of at least 50 km is indicated
by the presence of a low velocity slab in 3D seismic velocity models (Eberhart-
Phillips and Reyners, 1997). However, velocity fields derived from GPS measure-
ments (Beavan and Haines, 2001) and estimates of Quaternary fault slip rates
(Holt and Haines, 1995) indicate that >80% of relative plate motion is currently
being accommodated in the Marlborough Fault Zone. 3-4 km of turbidites have
been deposited without the development of a significant accretionary wedge in the
subduction trench off the Marlborough coast (Collot et al., 1996), and Quater-
nary slip rates at the subduction thrust are estimated at <1 mm/yr (Barnes and
Mercier de Lepinay, 1997). These observations suggest that the underthursting
of buoyant continental crust has permanently locked the interface in this region

(Collot et al., 1996).

24



Chapter 2 Geological background

2.2 The New Zealand geological timescale
The unique faunal succession resulting from the relative biogeographical isolation

of New Zealand makes it difficult to directly correlate its sedimentary sequences
to the global geochronological timescale, which has led to the development of a
local timescale. Neogene strata in New Zealand are principally dated using mi-
crofossils such as foraminifera; biostratigraphic datums can then be calibrated to
the international timescale via the geomagnetic polarity timescale (GPTS), using
paleomagnetic data (e.g. Lienert et al., 1972; Kennett and Watkins, 1974; Wright
and Vella, 1988; Roberts et al., 1994) or by radiometric dating of tephra hori-
zons. The latest New Zealand geological timescale, calibrated to the international
timescale and the GPTS (Cooper, 2004), is shown in Figure 2.2.
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Figure 2.2: Comparison of the New Zealand and international geochronological
timescales for the Neogene, from Cooper (2004). The GPTS (Cande and Kent,
1995)is also plotted for reference (C = chron).

This figure illustrates that whilst in many cases the series and stages of the

New Zealand geological timescale roughly correspond to the periods and epochs
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of the international timescale (e.g. there is a fairly good correspondence between
the Taranaki and Southland stages, and the Late and Middle Miocene periods,
respectively), the correlation is not exact (e.g. the Early Miocene includes both
the Altonian and Otaian stages of the Pareora series, and also the upper part of the
Waitakian stage in the older Landon series). Most of the ages and timings cited in
this thesis are given in reference to the international timescale; however, it should
be borne in mind that these age determinations are based on conversions from
the New Zealand timescale (e.g. rocks referred to as being ‘early Late Miocene’
in age were originally assigned to the Tongaporutuan stage). In some cases this
conversion has been done by the authors of the source material: many of the
sedimentary sequences analysed in this thesis were assigned ages using the recently
published 1:250000 QMAP sheets for the Wairarapa (Lee and Begg, 2002) and
the Raukumara Peninsula (Mazengarb and Speden, 2000), which provide dates
correlated to the international timescale. Other sources (e.g. the Southern Hawke
Bay map of Kingma (1962) and papers published in regional journals such as
the New Zealand Journal of Geology and Geophysics), which give ages in terms
of the New Zealand timescale, have been similarly converted to the international

timescale according to the calibration shown in Figure 2.2.
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Paleomagnetic theory and experimental methods

In addition to the explicit citations in this chapter, the textbooks of Butler (1992) and Tauxe
(1998), and additionally the on-line guide of Moskowitz (1991), provide useful general references.
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3.1 Principles of paleomagnetism

3.1.1 The Earth’s magnetic field

To first order, the contemporary geomagnetic field can be approximated as a
dipole inclined 11° away from Earth’s axis of rotation, although there is also a
significant (~10%) non-dipole (quadrupole, octopole and other higher-order terms)
contribution to the field. The magnetic field strength at the Earth’s surface is 30—
60 uT.

Figure 3.1: A normal polarity, geocentric axial dipole (GAD) field; small arrows
depict the field direction at various points on the Earth’s surface.

The ultimate source of the Earth’s magnetic field is thought to be a ‘self-
sustaining dynamo’ associated with convection of a conductive iron-nickel alloy in
the liquid outer core. This convection is vigorous, allowing the geomagnetic field
to vary in direction and strength over geologically rapid timescales. Fluctuations
in the strength of the dipole and non-dipole fields over periods of 102-10* years
lead to secular variation; the dipole field also switches polarity, sometimes several
times per Myr. Studies of paleosecular variation indicate that, if time-averaged
over a few thousand years, both normal and reversed polarity field configurations
approximate to a simple dipole aligned with the axis of rotation (referred to as a
geocentric axial dipole (GAD) field; Fig. 3.1). For a normal polarity GAD field,
the horizontal component (or declination D) and vertical component (inclination

I) of the magnetic field vector at any point on the Earth’s surface will be:
D=0, and [=tan"'(2tan)),  where A = latitude.

Paleomagnetism is concerned with studying the history of the ancient geomag-
netic field recorded by permanently magnetized rocks. The origins and measure-

ment of these remanent magnetizations are described below.
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3.1.2 Types of magnetic behaviour

When a magnetic field H is applied to a material it induces a magnetization
M = yH, where x is the bulk magnetic susceptibility. The total measurable
magnetic flux, from the combination of the applied field and the induced magne-
tization, is the magnetic induction B = po(H + M).

Magnetism is a property arising from the orbital and spin motions of electrons;
all matter is therefore magnetic, in the sense that it responds to the application
of a magnetic field. However, the strength of this response varies greatly between

different materials. There are three fundamental types of magnetic behaviour.

Diamagnetism An orbiting electron is effectively a small current loop, meaning
that an external magnetic field will perturb the orbit, producing a small induced
magnetization with strength inversely proportional to the applied field (Fig. 3.2a).
Diamagnetism is a property of all materials, but it is a weak effect: for a purely

diamagnetic material,  is typically <-10~7 SI.

Paramagnetism In atoms with unfilled orbitals, the spin of unpaired electrons
imparts a net magnetic moment, which will align with an applied field to produce
a positive induced magnetization. At low fields, M is proportional to H, but it can
reach a ‘saturation magnetization’ M, at very high fields, as the atomic moments
become fully aligned with the external field (Fig. 3.2b). Thermal lattice vibrations

can destroy this alignment, hence xy « 1/T.

(a) Diamagnetism (b) Paramagnetism (c) Ferromagnetism
H

remanent ,7f . _
magnetization ~ reversible behaviour
at H=0 £ onlyatlowH

/

/

H ‘ H
Figure 3.2: Magnetization M against applied field H for (a) diamagnetic, (b)
paramagnetic, and (c) ferromagnetic materials.

‘Ferromagnetism’ The arrangement of atoms in some materials causes elec-
tron orbitals containing unpaired spins to overlap. Strong exchange forces between
these interacting spins cause them to align with each other in order to minimize
exchange energy. These interactions cause strong induced magnetizations in the

presence of magnetic fields, which also lead to magnetic hysteresis: the alignment
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of atomic moments is preserved even in the absence of an applied field, produc-
ing a remanent magnetization (Fig. 3.2c). Materials exhibiting these properties
are referred to as ‘ferromagnetic’ (sensu lato), and have the potential to record
information regarding the direction and intensity of the ancient geomagnetic field.

The way in which interacting spins align is determined by crystal structure.
In ferromagnetic (sensu stricto) materials, the spins are parallel (Fig. 3.3a). In
antiferromagnetic materials, the spins are anti-parallel (Fig. 3.3b); in such mate-
rials there will be no net magnetic moment unless the alignment is not perfect
(canted antiferromagnetism; Fig. 3.3¢) or the magnitudes of the opposing spins

are unequal (ferrimagnetism; Fig. 3.3d).

(a) Ferromagnetism (b) Antiferromagnetism
parallel alignment: anti-parallel alignment:
large net moment no net moment

(c) Canted anti- (d) Ferrimagnetism

ferromagnetism

misaligned anti-parallel
moments

anti-parallel alignment
of unequal moments

Figure 3.3: Forms of exchange coupling in ferromagnetic (s.l.) materials.

Ferromagnetic (s.l.) behaviour is also temperature dependent. Increased ther-
mal energy increases inter-atomic spacing and reduces the overlap between electron
orbits; above a characteristic Curie temperature (referred to as the Néel temper-
ature for antiferromagnetic materials), inter-atomic spacing increases to the point
that interactions are no longer possible, and the material becomes paramagnetic.
Geologically common ferromagnetic (s.l.) minerals, mostly ferrimagnetic iron ox-
ides and sulphides, are listed in Table 3.1.

3.1.3 Preservation of remanent magnetization
In order for ferromagnetic minerals to be useful in paleomagnetic studies, their

magnetizations must be able to align with the geomagnetic field, and then preserve
this remanence for millions of years without further realignment. The main factors
influencing the fidelity of a ferromagnetic grain as a paleomagnetic recorder are
its magnetic anisotropy and domain structure, which are controlled by grain size

and shape as well as mineral structure.
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Table 3.1: Geologically common ferromagnetic minerals, and their magnetic properties.
Modified from Moskowitz (1991) and Tauxe (1998).

Mineral Composition  Spin alignment Curie/Néel Temp. Coercivity

Magnetite  Fe3Oy Ferrimagnetic 580°C 10’s of mT

Ulvospinel  FesTiO4 Antiferromagnetic -153°C

Hematite aFey O3 Canted 675°C highly variable, can
antiferromagnetic be 10’s of T

Ilmenite FeTiOq Antiferromagnetic -233°C

Maghemite ~FeqO3 Ferrimagnetic 590-675°C

Greigite FesS,y Ferrimagnetic >330°C 60— >100 mT

Pyrrhotite  Fe;Sg Ferrimagnetic 320°C highly variable, can

be 100’s of mT

Goethite aFeOOH Antiferromagnetic, but 120°C 10s of T
small net moment

Magnetic anisotropy
The magnetic energy of a ferromagnetic grain is minimised by aligning its mag-

netic moment in the direction of the ambient magnetic field; in the absence of other
controls on the orientation of their magnetization, ferromagnetic grains would al-
ways align with the geomagnetic field and no older remanence would be preserved.
However, the energy required to magnetize a grain is usually not constant in all
orientations; there are ‘easy’ directions of magnetization in which the associated

energy is lower. There are three principal sources of magnetic anisotropy.

e Magnetocrystalline anisotropy. The exchange energy between coupled spins

is minimized when spins are aligned along particular crystallographic axes.

e Shape anisotropy. If atomic magnetic moments are modelled as pairs of mag-
netic charges, a magnetized grain will have a surface distribution of these
charges (Fig. 3.4a), which not only produces an external (dipole) field but
also an internal demagnetizing field Hp which opposes the overall magneti-
zation (Fig. 3.4b). Because the strength of this field depends on the surface
charge distribution, an elongated grain has a smaller Hp along its long axis,
resulting in an easy axis of magnetization, because a smaller percentage of

the surface is covered by magnetic charges (Fig. 3.4c, d).

e Magnetostrictive anisotropy. Spin realignment exerts stresses on the mag-
netic crystal, changing its shape. Conversely, therefore, applied stresses,
which further alter the shape of the crystal, can affect the spin alignment
and give rise to magnetostrictive anisotropy.
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Figure 3.4: (a) Surface magnetic charge distribution for a uniformly mag-
netized spherical grain, and (b) the resultant internal demagnetizing field.
(¢, d) Charge distribution in an elongated grain with (c) a moment aligned
along the long axis of the grain, and (d) a moment oriented perpendicular
to the long axis. After Butler (1992).

The existence of magnetic anisotropy in ferromagnetic grains means that energy
is required to shift the direction of their magnetic moment m from one ‘easy’
direction to another. Only a magnetic field greater than the switching or coercive
field, h., can generate enough magnetostatic energy to overcome this anisotropy
energy, forcing m through the intervening ‘hard’ directions. If A, is large, details of
an ancient magnetizing field can potentially be recorded for long periods of time.

Even at a constant temperature, however, thermal energy can eventually move
m across these energy barriers into a new orientation, a phenomenon referred to as
magnetic viscosity. From an initial magnetization My, the remanent magnetization

of a population of ferromagnetic grains will decay exponentially:
M(t) = Mye (),

where ¢ is the elapsed time and 7 is the characteristic relaxation time (the time
for the remanence to decay to My/e). Technically, this equation is only valid for
single domain grains (see Section 3.1.3) and only holds as a first approximation
for multidomain systems. The probability that m will spontaneously change ori-
entation is dependent on the ratio of magnetic anisotropy and thermal energies,

hence:

_ 1 vhem
T= Ce( 2T )7

where C' = frequency factor (=10® s71), v = grain volume, k& = Boltzmann con-
stant, and 7" = temperature. Relaxation time is therefore proportional to grain
volume and the coercive field, and inversely proportional to temperature. The
exponential relationship means that a small increase in grain size will increase 7
by many orders of magnitude, from seconds to >1 Ga; above a particular ‘blocking
volume’, 7 becomes large enough that a remanent magnetization can be preserved

over millions, or even billions of years.
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In reality, thermal relaxation in a magnetized rock occurs in the presence of
the geomagnetic field, which will cause particles with low h. to align with the
present day field direction. This viscous remanent magnetization (VRM) must be

removed before any ancient components of magnetization can be measured.

Magnetic domains
Increasing grain size also increases the magnetostatic energy associated with the

surface distribution of magnetic charges (Fig. 3.4). Above a certain size, it be-
comes energetically favourable for the grain to split into a number of uniformly
magnetized domains, oriented along different easy directions of magnetization,
which reduces the overall magnetization. The number of domains that form is
determined by the balance between the resulting reduction in magnetostatic en-
ergy, and the energy required to form domain walls, the regions between adjacent
domains across which spins must rotate from one easy direction to another. Three

main types of domain structure are recognised:

e Single domain (SD). Below a critical grain size, the energy required to create
a domain wall exceeds the reduction in magnetostatic energy achieved in
forming one. An SD grain therefore has a uniform magnetization that can
only be changed by rotation of its magnetic moment; when SD grains are
relatively large and thermally stable, it is energetically difficult to change
the direction of magnetization, resulting in high coercivities and magnetic
stability (Fig. 3.5). Coercivity is reduced at smaller grain sizes, due to the
randomising effect of thermal energy; eventually h. is reduced to the point
that the remanent magnetization rapidly decays to zero in the absence of an
applied field (7 <100 s); these superparamagnetic (SP) grains are not stable

enough to record paleomagnetic information (Fig. 3.5).

e Multi-domain (MD). The division of larger ferromagnetic grains into domains
with differently aligned magnetizations leads to a low overall remanence.
Additionally, rather than causing the realignment of magnetic moments,
applying a field to a MD grain promotes preferential growth of domains
with a magnetization parallel to the field. The movement of domain walls
is a low energy process that can be accomplished in relatively low fields;
thus MD grains also have low coercivities (Fig. 3.5), and are unstable over

geological timescales.

e Pseudo-single domain (PSD). The transition from SD-like to MD-like behav-
iour is not abrupt (Fig. 3.5). For reasons that are still not fully understood,

small MD particles, containing just a few domains, can still have SD-like
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properties (large remanent magnetizations and, more crucially, high coerciv-

ities) and are capable of preserving a stable paleomagnetic signal.

The size of ferromagnetic grains is therefore of crucial importance in determining
their magnetic stability; grains useful for paleomagnetic purposes are in the stable
SD (1 >107-10° years) to PSD size range (Fig. 3.5).

KaRONTS
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most likely to be stable
over geological timescales

v
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Figure 3.5: Variation in domain state and coercivity with increasing grain size.
Stable SD grains, and PSD grains just above the critical SD grain size are the most
likely to be stable over geological timescales. From Moskowitz (1991).

3.1.4 Remanence acquisition in sedimentary rocks

Depositional and post-depositional remanent magnetization (DRM /pDRM)
Remanent magnetization in sediments is in many cases caused by ferromagnetic

grains aligning with the ambient geomagnetic field during deposition and lithi-
fication. Alignment can occur in the water column, where viscous forces that
resist grain reorientation are low, and may be preserved upon settling to form
a depositional remanent magnetization (DRM). However, processes operating af-
ter deposition, particularly bioturbation, are probably more important, realigning
grains with the ambient field below the sediment-water interface to form a post-
depositional remanent magnetization (pDRM).

A stable magnetization is therefore probably not locked into sediments before
dewatering, compaction and lithification restrict the motion of ferromagnetic par-
ticles and prevent further realignment. The time interval before this lock-in occurs
is dependent on grain size, and may be of the order of 102-10% years after depo-
sition for smaller grains. As discussed in the previous section, the average grain
size will also determine the stability of remanence. The SD-PSD size range varies

for different ferromagnetic minerals, and is poorly characterised for iron sulphides
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like greigite. However, for magnetite (a common carrier of DRM and pDRM)
the SD-PSD transition occurs at ~80 nm diameter; fine-grained siltstones and
mudstones are therefore more likely to preserve a stable detrital remanence than

coarse-grained sediments.

Chemical remanent magnetization (CRM)
An alternative source of remanent magnetization in sedimentary rocks is the au-

thigenic growth of ferromagnetic minerals following deposition. Although initially
small in size, and SP, with continued growth the mineral grains will pass through
the critical blocking volume and become thermally stable. The ambient geomag-
netic field at the time of this transition will then be preserved as a chemical
remanent magnetization (CRM).

Examples of CRM acquisition include post-depositional hematite growth in
red beds, and the growth of the iron sulphide greigite during reductive diagenesis
of rapidly deposited marine sediments. An important consideration to bear in
mind when dealing with CRMs is that they do not necessarily record a primary
paleomagnetic signal. Although mineral growth during early diagenesis can lead
to remanence acquisition over timescales similar to the lock-in of a pDRM, growth

could potentially have occurred at any time after deposition.

3.2 Paleomagnetic measurements

3.2.1 Paleomagnetic sampling
The ultimate aim of most paleomagnetic sampling is to measure the direction

of the ancient geomagnetic field. Because analysis of these directions assumes
a GAD field, an important first step is to ensure that sampling covers a time
interval >10%-105 years, so that secular variation is properly averaged out (Sec-
tion 3.1.1). In sedimentary sequences, the stratigraphic thickness represented by
this time interval depends on the average deposition rate, but is typically 10-20
m in most Neogene sedimentary environments in New Zealand; a sequence of >10
m was sampled at most localities in this study (Table 7.1). Another important
criterion is that the sampled sediments have clearly discernible bedding, with a
constant orientation consistent with local geological structures, so that measured
paleomagnetic directions can be properly corrected for bedding tilt.

Sampling was undertaken using a portable petrol-powered drill, with a water-
cooled diamond bit. At a typical locality, 4-6 cores were drilled at approximately
10 distinct stratigraphic levels within the section; weathered and fractured mater-
ial was cleared from the surface of the outcrop prior to drilling. Before extraction,
all cores were oriented and marked in situ, according to the scheme described in

Figure 3.6. Following extraction, cores were wrapped in newspaper and immedi-
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Figure 3.6: (a) Relation of the paleomagnetic core orientation to the sample coor-
dinate system. The dip and dip azimuth of the core are measured to allow correction
into geographic coordinates. (b) Relation of ‘laboratory arrow’, marked on the core
prior to extraction, to the sample coordinate system.

ately transferred to a mu-metal shield for transportation back to the laboratory,
to prevent the acquisition of viscous overprints (e.g. Walcott and Mumme, 1982).
On average, 2-3 samples (21 mm length) were cut from each core; these were also

kept in a low-field environment prior to, and during, paleomagnetic measurements.

3.2.2 Measurement of remanent magnetization
All measurements of remanent magnetization were made using a 2G-Enterprises

3-axis SQUID cryogenic magnetometer at the National Oceanography Centre,
Southampton (NOCS). The superconducting quantum interference device (SQUID)
is an extremely sensitive flux-to-voltage converter, which can theoretically detect
single flux quantum changes in the intensity of the ambient magnetic field. In
order to minimise sources of measurement noise, the magnetometer is situated in
a magnetically shielded room, which reduces the intensity of the ambient magnetic
field to <300 nT. Superconducting shields placed around the SQUID sensors fur-
ther reduce the field to ~1-2 nT in the measurement region of the magnetometer.
This low-field environment gives the magnetometer a sensitivity of better than

1076 Am~!.

3.2.3 Stepwise demagnetization
The NRM of a sedimentary rock can be the vector sum of a number of differ-

ent components: a DRM or pDRM from or near the time of deposition, one or
more CRMs caused by mineral growth after deposition, and a VRM carrying a

present day field overprint. In order to extract useful paleomagnetic information,
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these different components must be isolated. This is usually achieved through
the use of stepwise demagnetization, which relies on the principle that different
magnetic components are carried by distinct populations of grains, with differ-
ent mineralogies and grain sizes, and therefore different stabilities of remanence.
Stepwise demagnetization progressively removes low stability components of NRM,
and isolates the more stable components that are more likely to record an ancient
magnetization. The most stable of these ancient components is referred to as the
characteristic remanent magnetization (ChRM). The two techniques used in this

study were thermal and alternating field (AF) demagnetization.

Thermal demagnetization The characteristic relaxation time 7 is inversely
proportional to temperature. Therefore, grains that are stable at room tempera-
ture (7 >10? years) will become unstable when heated to their unblocking temper-
ature Ty, which is higher for larger, more stable grains. Thermal demagnetization
involves heating a sample to temperature 7' then cooling back to room temper-
ature in zero magnetic field. All grains with blocking temperature T, < T have
their directions randomized, erasing the NRM carried by these grains and allowing
more stable components to be isolated.

In this study, measurements of NRM were made after heating samples to
T = 80°, 120°, 160°, 200°, 240°, 280°, 320°, 360°, 380° and 400°C; samples were
held at T for 40 minutes before cooling. Low-field bulk magnetic susceptibility
was measured after each heating step; elevated temperatures often caused thermal
alteration and the growth of new magnetic minerals, indicated by a substantial

increase in susceptibility above 360°C.

Alternating field demagnetization In AF demagnetization, the sample is
exposed to a sinusoidal magnetic field, which is smoothly reduced to zero from
a specified peak value. This process effectively randomises the magnetization of
grains with coercivities below the peak AF intensity, allowing the remanence of
higher coercivity grains to be isolated. This study utilised the in-line AF demagne-
tizer on the 2G-Enterprises cryogenic magnetometer, which at each measurement
step sequentially applied an AF along three mutually perpendicular sample axes.

Measurements of NRM were made at 5 mT steps up to 60 mT.

The relative effectiveness of thermal and AF techniques can differ, depending on
the mineralogy of the remanence-carrying grains, and the distribution of coerciv-
ities and unblocking temperatures for the different components. For example, AF
treatment would be ineffective at removing a CRM carried by hematite, which

always has high coercivities, whereas thermal demagnetization would effectively
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demagnetize all hematite grains above the Néel temperature of 680°C. For each
locality in this study, pilot AF and thermal demagnetizations of single samples
from each sampling level were undertaken to assess the relative effectiveness of
each technique. Although in previous studies of weakly magnetized New Zealand
Cenozoic mudstones, AF demagnetization has frequently proven ineffective (e.g.
Turner et al., 1989; Pillans et al., 1994; Roberts et al., 1994; Turner, 2001), at
a number of the sampled localities in this study the AF technique proved to be
more or equally effective than thermal demagnetization. AF demagnetization can
be performed more quickly than thermal demagnetization. Additionally, unlike
thermally demagnetised samples, where high temperatures often alter the mag-
netic mineralogy, AF demagnetized samples can be used for further rock magnetic

analyses (see sections 3.3, 3.4).

3.2.4 Display of stepwise demagnetization data

There are two principal methods of displaying stepwise demagnetization data.

e Vector component diagrams (Zijderveld, 1967; Dunlop, 1979). The carte-
sian components of the 3D magnetization vector (r = M cosIcos D, y =
M cosIsinD, and z = MsinI) are projected onto orthogonal horizontal
and vertical planes. This technique allows the direction and intensity of the

vector to be fully represented on a two-dimensional plot.

e Equal area stereographic plots. The direction of the normalised magnetic

vector is plotted onto a lower hemisphere projection of the unit sphere, where:

x=coslsinD (/1/(1+ |sinl|); y=coslcosD /1/(1+ |sinl|).

Upward and downward pointing vectors are represented by open and closed
symbols, respectively. In this projection, the scatter of different data sets
can be easily compared because regions of equal area on the unit sphere

appear as equal areas on the projection.

Before interpretation, raw paleomagnetic measurements in sample coordinates
(Fig. 3.6) must be transformed into a more useful coordinate system. Correction
into geographic coordinates (known as a field correction) restores the original ori-
entation of the specimen prior to sampling, which is useful for identifying present
day field overprints. A further tilt correction can be made by restoring the beds
sampled to the paleo-horizontal. This is usually the most appropriate system for
analysing ancient components of remanence.

The most useful method for the display of demagnetization data depends upon
the relative stability of the different remanence components within the sample.
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Figure 3.7: Methods of displaying demagnetization data. Stepwise demagnetiza-
tion data are plotted on a vector component diagram (closed symbols = horizontal
plane, open symbols = vertical plane) and an equal area stereographic projection,
for: (a) two remanence components with discrete coercivity /unblocking temperature
spectra, and (b) two components with overlapping spectra.

When separate components have discrete coercivity or unblocking temperature
distributions (Fig. 3.7a), they will be progressively removed over a distinct range
of demagnetization steps, and the demagnetization path will consist of a series of
linear segments that are best displayed on a vector component diagram. However,
when there is significant overlap between the two components, as indicated in
Figure 3.7b, a fraction of both remanences will be removed concurrently at many
demagnetization steps, and neither component may be isolated. However, all of
the measured directions will fall within the plane defined by the two remanence
vectors, and demagnetization data will plot along a great circle on a stereographic
projection. This makes stereographic projections particularly useful for analysing
demagnetization great circles (page 42). In practice, both methods of data display
are routinely used.

39



Chapter 3 Theory and methods

3.2.5 Principal component analysis
Vector component plots of stepwise demagnetization data allow the various re-

manence components that make up the NRM to be separately identified. The
directions of these different components are then calculated using principal com-
ponent analysis (Kirschvink, 1980). This method analyses the variance of equally

weighted data points about their ‘centre of mass’ U = (7, 7, Z), where:

) ) hE)

Where the highest stability component decays to the origin, an anchored fit can be
obtained by setting the origin of the vector component plot as the centre of mass
(i.e. (%, g, z) =0). The principal axes of maximum, minimum and intermediate

variance for the data set parallel the eigenvectors of the orientation tensor T:

S (x; —T)? Yo —7)(yi —7) X —T)(z —
T=| Y(x; —7)(y; — Sy —7)° Sy —9)(z — %)
(@i —7)(z—2) L9 (x—2) X(n—2)°
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The eigenvectors are the axes of the coordinate system in which the non-diagonal

terms of T are zero, i.e.:
TV =171V,

where V is the matrix of eigenvectors Vi, Vo and V3 and 7 is the diagonal matrix

of eigenvalues 7, 7 and 73. This equation is satisfied where:
det|T —7|=0

V1 represents the direction of maximum variance and is therefore equivalent to a
line of best fit through the data. A large 7 compared to the other two eigenvalues
indicates a linear distribution for the selected data points. This linearity can be

assessed by calculating the maximum angular deviation (MAD):

MAD = tan™! (W) .

A good line fit is indicated by a MAD <10-15°. This method is only valid where
linear components of the demagnetization path can be isolated (e.g. Fig. 3.7a). In
the case of overlapping remanence components forming a demagnetization great
circle (Fig. 3.7b), V3 defines the pole to this plane.
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3.2.6 Calculation of mean directions

Fisher statistics
The ChRM directions isolated from a sampling locality can be used to calculate a

paleomagnetic mean direction by converting them to unit vectors, summing them
and scaling them by the resultant vector of the data set. However, statistical
treatment is required to estimate how close this calculated direction is likely to
be to the true mean direction. Paleomagnetists generally make use of the Fisher
distribution, which is the Gaussian normal distribution mapped onto the surface
of a unit sphere (Fisher, 1953). The probability of a measured direction falling

within angle « of the true mean direction is given by the density function:

P(a) i

= I ouh e /{6 (kcosa) .

The precision parameter x is a measure of the scatter of the paleomagnetic data,

and can be approximated for N data points as

N -1

k=
r N_R'

which tends to infinity when scatter is low and the resultant R becomes similar in

magnitude to N. A confidence angle a(;_p) is given by:

N-R((1\®D
Q(1-p) = cOS™ (1 - e ((p) — 1)) .

The 95% confidence limit g5, within which there is a 95% probability that the

true mean occurs, is most commonly used. Where £ > 25, ags can be further

approximated as:

140
Qg5 R ——.
95 N

In addition to measurement error, the scatter in paleomagnetic data can also
be caused by other factors such as secular variation and the incomplete removal of
secondary components. Some of these contributions can potentially lead to a non-
symmetric data distribution that is not adequately represented by Fisher (1953)
statistics. The use of bootstrap statistics (Tauxe, 1998) is one suggested approach
for dealing with non-symmetric data whilst retaining the ability to calculate con-
fidence intervals. Unfortunately, the paleomagnetic data sets from most localities
in this study, as is the case in most paleomagnetic studies, are generally too small

to properly represent the underlying data distribution. The data in this study are
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therefore assumed to be normally distributed about the true mean direction.

Demagnetization great circles
At many localities in this study even stepwise demagnetization could not isolate

a ChRM; strong viscous overprints had unblocking temperature and coercivity
spectra that overlapped the ChRM to the extent that a stable endpoint could
not be isolated. However, in such cases the stepwise demagnetization data trace
out the great circle arc of the plane defined by the two remanence components
(Fig. 3.7), and therefore still contains information about the higher stability com-
ponent. Using the method developed by McFadden and McElhinny (1988), a
probability distribution can be calculated for a set of great circle arcs, assuming
that if endpoints had been reached they would have a Fisherian distribution about
the true mean direction. This allows the great circle data to be combined with

stable endpoints to produce a better constrained mean direction.

Determining tectonic rotations
As already discussed in Section 1.3, the declination anomaly for a particular lo-

cality is determined by comparing the mean paleomagnetic direction with the
expected APWP. A further complication arises when calculating confidence limits
for a declination anomaly. Because it is an angular confidence limit with two de-
grees of freedom, the ags value is not directly equivalent to this confidence limit.
Demarest (1983) demonstrated that the actual declination error is 80% of the aygs
value. Uncertainties in the tectonic rotations reported in this study have had this

correction applied.

3.2.7 Paleomagnetic field tests

Establishing the age of remanence acquisition in sedimentary rocks is particularly
important where the presence of a CRM, which could potentially have formed
at any point after deposition, is suspected. Paleomagnetic field tests can provide
useful constrains in such cases. The principal tests used in this study were the fold
test and, to a lesser extent, the reversals test; the lack of appropriate sampling
localities meant that other commonly used field tests, such as the conglomerate

test and the baked contact test, were not used.

Fold test
To apply the fold test it is necessary to isolate stable ChRMs from two or more lo-

calities with different bedding attitudes sampled across a fold, or within strata that
have all been folded in a single tectonic episode. The timing of remanence acquisi-
tion can then be assessed by comparing the scatter of measured ChRM directions
from these localities in geographic and tilt-corrected coordinates. When the di-

rections are less scattered in tilt-corrected coordinates, the magnetization is likely
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to have formed prior to folding; conversely, better clustering of directions before
a tilt correction is applied indicates remanence acquisition after tilting (Fig. 3.8).
In some cases, the least scatter is observed after a partial tilt correction, implying

that remanence acquisition was contemporaneous with folding of the beds.

(a)

Ny \ Y

¢ UNFOLDING ¢

Figure 3.8: Illustration of the fold test. The stereoplots indicate directions of mag-
netization distributed across a fold in two beds, (a) before, and (b) after, correction
for bedding tilt. In the lower bed, the measured directions are more clustered after
tilt correction, indicating a pre-folding remanence acquisition. In contrast, in the
upper bed better clustering of directions is observed before tilt correction, indicating
a post-folding remagnetization.

Statistical tests must be applied in order to rigorously compare the scatter of
data in different coordinate systems. In the fold test of Tauxe and Watson (1994),
as used in this study, the eigenvalues of the data set (Section 3.2.5) are calculated
at various degrees of unfolding; the principal eigenvector 77 reaches a maximum
value at the point where the scatter in the data is minimised. Bootstrap statistics
can then be used to calculate confidence intervals. The advantages of this method
over earlier fold tests (e.g. McElhinny, 1964; McFadden, 1990) include the ability
to deal with mixed polarity data, and also to rigorously constrain syn-folding

magnetizations.

Reversals test
If a sequence with a primary NRM is sampled over a large enough stratigraphic

thickness, the time interval covered may be long enough to recover ChRM direc-
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tions from both normal and reversed polarity field configurations. Assuming a
GAD field, in such cases the normal and reversed polarity mean directions should
be antipodal. This forms the basis of the reversals test.

Although the presence of directions of both polarities is suggestive of a pri-
mary remanence, and is probably sufficient to demonstrate that a data set has not
been unduly affected by strong systematic overprints, in order to formally pass a
reversals test it is necessary to establish that when one of the mean directions is
flipped, it is indistinguishable from the other (McFadden and McElhinny, 1990;
Tauxe, 1998). To rigourously establish this, McFadden and McElhinny (1990) pro-
posed a method of calculating a critical angle 7. between the two mean directions,
above which the hypothesis of a common mean would be rejected. The value of
Y. is dependent on the number of ChRMs contributing to the mean directions,
and their k values, and will be larger when these parameters are larger for either
direction, making it easier to pass the reversals test. A small critical angle there-
fore indicates a more robust reversals test, making a positive result more reliable

(McFadden and McElhinny, 1990).

3.3 Rock magnetic measurements
3.3.1 Hysteresis properties

Ferromagnetic grains retain a remanent magnetization even when the magnetizing
field is reduced to zero; this remanence can only be driven back to zero by a field
in the opposite direction. A hysteresis loop (Fig. 3.9a) is generated by applying
a varying magnetic field to a sample. The shape of this loop is dependent on the
properties of the magnetic grains. Four parameters are particularly important for

extracting information about the magnetic assemblage (Fig. 3.9a, b).

e Saturation magnetization (My). The maximum magnetization the sample

can acquire in an applied magnetic field.

e Saturation remanent magnetization (M,). The remanence when the applied

field has been reduced to zero from saturation.

e Coercive force (B.). The value of the reverse field at which the magnetization

of the sample becomes zero.

e Coercivity of remanence (B,.). The reverse field which, when applied and
then removed, reduces the saturation remanence to zero. It is always larger

than the coercive force.

As discussed on page 33, grain size is an important factor in determining the
domain state, and hence the magnetic properties, of ferromagnetic minerals. Day
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Figure 3.9: (a) Typical hysteresis loop, acquired by measuring the magnetization
M in a varying magnetic field B, illustrating commonly measured parameters that
can be used to characterise its shape. (b) Back-field remanence curve, acquired by
measuring the remanence following removal of the applied magnetic field B, used to
measure the coercivity of remanence B,,. (c) Day plot of the ratios B.,/B.) against
M, /M, indicating the experimentally determined regions for single domain (SD),
pseudo single domain (PSD) and multidomain (MD) magnetite (Day et al., 1977).
Circles indicate typical measured values for magnetite of varying grain size.

et al. (1977) showed that the hysteresis properties of magnetite of known grain
sizes follow a predictable trend on a plot of the ratios B../B. against M, /Mj;
small SD grains have high values of M, /M, and low values of B../B., and larger
MD grains have low values of M, /M and high values of B.,./B.. This ‘Day plot’
can therefore provide useful information on the grain size of magnetic particles,
although, as discussed in Chapter 6, hysteresis parameters become more difficult
to interpret in samples with non-uniform grain size distributions.

In this study, measurement of the bulk magnetic hysteresis properties of ~1
cm?® sub-samples was undertaken using a Princeton Measurements Corporation
Micromag 3900 vibrating sample magnetometer (VSM) at NOCS. Values of M,
M., and B, were obtained from hysteresis loops (0.5 T saturating field); B, was

determined from back-field remanence curves.
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3.3.2 First order reversal curve (FORC) diagrams
The fine control of the applied magnetic field provided by the VSM allows rapid

and reliable measurement of first-order reversal curves (FORCs), which are a class
of partial hysteresis loop measured by cycling between a positive saturation field
and a reversal field B, (Pike et al., 1999; Roberts et al., 2000). The magnetization
M(B,, By) is measured for a series of field values B, between B, and positive
saturation (Fig. 3.10a). Measuring a series of FORCs, with a range of different B,
values, provides a more complete sampling of the magnetic response of the sample
than a single hysteresis loop. This is particularly useful for geological samples,
which often contain mixtures of magnetic phases, both in terms of grain size or
mineralogy, meaning that bulk hysteresis parameters often cannot be interpreted
unambigously.
The FORC distribution is given by:

82M (B,, By)
0B.0B,

P (Ba’ Bb)

which is well defined for B, > B,. A FORC diagram is a contour plot of the FORC
distribution in the transformed co-ordinate system B, = (B, + By) /2, B. =
(By — B,) /2. This transformation allows a more intuitive interpretation of the
FORC distribution, based on the Néel (1954) interpretation of Preisach (1934)
diagrams: the distribution along the B, axis represents the coercivity distribution
of magnetic grains in the sample, whereas the spread of contours along the B, axis

indicates the strength of magnetic interactions between them (Fig. 3.10b).
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Figure 3.10: (a) Measurement of a first-order reversal curve (FORC). The magne-
tization M (B, Bp) is measured at a series of field values B, between a reversal field
B, and positive saturation. (b) Example of a FORC diagram, showing the FORC
distribution obtained for a series of FORCs, which can be interpreted in terms of
coercivity distribution and particle interaction field distribution.

In this study, samples were analysed by measuring 140 FORCs, with a field
spacing of 1.85 mT, an averaging time of 250 ms, and a 0.5 T saturating field.
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The FORC distributions were calculated using a smoothing factor (SF) of 5, as
detailed in Pike et al. (1999) and Roberts et al. (2000).

3.4 Scanning electron microscopy

3.4.1 Basic principles

Electrons have a much smaller wavelength than visible light photons. The scan-
ning electron microscope (SEM) takes advantage of this fact to acquire very high-
resolution (of the order of nanometres) images of the morphology and topography
of a specimen. The basic configuration of an SEM is shown in Figure 3.11. The
electron gun produces a narrow beam of electrons, which is directed by electro-
magnets to scan over the specimen in a raster pattern. Because the magnets
directing the beam are not involved in image formation, increased magnifications
are simply achieved by scanning the electron beam over a smaller area. This al-

lows the specimen to be imaged with a high depth of field, at a wide range of

electron
' -

focusging
electrgmagnets

electron
beam

specimen /
]

magnifications.

> detector

Figure 3.11: Schematic diagram illustrating the major components of a scanning
electron microscope (SEM).

Within the small area being scanned at any given moment, some electrons

in the beam are elastically reflected from the specimen with no loss of energy
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(back-scattered electrons). Others are absorbed, producing low energy secondary
electrons (so-called because they are a result of the transfer of energy from the
electron beam to the specimen) and X-rays. These scattered electrons are collected
by a positively charged detector grid, which converts the variations in the strength
of scattering as the beam moves across the specimen into an electric signal, which
can then be used to form an image. Secondary electrons are commonly used
for imaging; because of their low energy, only electrons produced in the upper
5-50 nm of the sample are able to escape to the detector, meaning that they
are derived from a smaller sampling volume than the higher energy back-scattered
electrons. However, because the probability of back-scattering is a weak function of
atomic number, areas with different chemical compositions can be more effectively
distinguished if the sample is imaged using back-scattered electrons, at the cost of
reduced topological contrast.

The energy and wavelength of the X-ray photons is dependent on the elemental
composition of the samples. The energy dispersive X-ray spectrometer (EDS) is
used to produce a histogram of the X-ray photon energies received by the detector
when the beam is focussed on a particular spot on the surface of the sample (e.g.
Fig. 3.12). Individual ‘peaks’ correlate to orbital energy levels within particular
elements. The relative heights of these peaks, when compared to appropriate
elemental standards, can be used to calculate the elemental composition of the
region being excited by the electron beam.

Two systems were used in this study: a LEO 1450VP SEM, operated at 10-20
keV with an acceleration voltage of 17-20 pA, coupled with a Princeton Gamma
Tech (IMIX-PTS) EDS system, at NOCS; and a JEOL JSM-6360LV SEM, op-
erated at 15 keV with an 18 pA acceleration voltage, coupled with an Oxford
Instruments Ltd INCA-300 EDS, at the Institute of Earth Sciences, Academia

Sinica, Taipei, Taiwan.

3.4.2 Identification of magnetic iron sulphide minerals
The EDS system is particularly effective for examining the microstructure and

growth patterns of authigenic iron sulphides, which have a high atomic mass and
are therefore easily identified from their high electron backscatter. Different iron
sulphide minerals have distinctive iron to sulphur ratios (Fe/S = 0.5 for pyrite
(FeSs), = 0.75 for greigite (Fe3Sy4), and = 0.88 for monoclinic pyrrhotite (Fe;Sg)),
which can be measured using the EDS system with a pyrite calibration standard.
Numerous studies have demonstrated that, with careful analysis, these different
sedimentary iron sulphides can be clearly distinguished (e.g. Jiang et al., 2001;
Weaver et al., 2002; Roberts and Weaver, 2005; Sagnotti et al., 2005).

Observations in this study focussed on iron sulphide aggregates, with an av-
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Figure 3.12: Example of energy dispersive X-ray spectra for regions of an iron
sulphide aggregate within a silica matrix. Fe/S ratios intermediate between greigite
and pyrite have resulted from: (a) a greigite/pyrite mixture, and (b) oxidised pyrite
(indicated by the large O peak in the absence of an accompanying major Si peak).

erage grain size that was often small with respect to the diameter of the electron
beam (~1 pm). In such cases, observed elemental ratios reflect an average of
several grains and the matrix between them. This makes the interpretation of
Fe/S ratios more difficult, because intermediate ratios (0.5 < Fe/S < 0.75) are
often observed. These values could indicate a mixture of greigite and pyrite grains
within the area stimulated by the electron beam; however, oxidation of pyrite
grains also leads to Fe/S > 0.5. Inferring the composition of the matrix minerals,
by comparitive analyses at the edge and centre of the sulphide aggregates, was of-
ten useful in distinguishing between these two possibilities, which required careful
analysis. For example, Figure. 3.12 shows two EDS analyses of sulphide grains
within a silicate matrix (indicated by the Si peak). In Figure 3.12a, the oxygen
peak is relatively small, and is therefore likely to be mainly bound into silicate,
with the intermediate Fe/S ratio resulting from a mixture of greigite and pyrite.
In contrast, Figure 3.12b has a larger oxygen peak, some of which is likely to be
in the form of iron oxides because the Si peak remains small. The intermediate

ratio is therefore probably due to the presence of oxidised pyrite.
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Relocation of the tectonic boundary between the Raukumara
and Wairoa domains (East Coast, North Island, New
Zealand): Implications for the rotation history of the

Hikurangi margin

This chapter appeared in New Zealand Journal of Geology and Geophysics, Volume
48, Rowan, C. J. A. P. Roberts, and G. J. Rait, Relocation of the tectonic boundary
between the Raukumara and Wairoa domains (East Coast, North Island, New Zealand):
Implications for the rotation history of the Hikurangi margin, pages 185-196. Copyright
(2005), with permission of the Royal Society of New Zealand.
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Abstract Paleomagnetic studies of Neogene marine sediments have doc-
umented large clockwise rotations of the Hikurangi margin (East Coast, North
Island) during the Neogene, with the exception of the Raukumara Peninsula,
which is unrotated with respect to the Australian plate. Immediately south of the
Raukumara Peninsula, the Wairoa region has been rotated clockwise by 50-60°;
the boundary between these domains is associated with a change in regional struc-
tural trends. However, a declination of 70 £ 14° reported from Otaian (19-22 Ma)
sediments in the Rakauroa area is located to the north of this change. Characteri-
sation of how differential rotations have been accommodated along the Hikurangi
margin has been frustrated by this apparent mismatch between paleomagnetic
and structural data. Paleomagnetic analysis of two new Rakauroa localities has
yielded declinations of 16 4+ 5° and 19 4+ 7°, consistent with expected values for
the Australian plate. This region is therefore not part of the Wairoa domain. A
strong viscous magnetic overprint was observed in many samples, the incomplete
removal of which resulted in the misidentification of a large declination anomaly in
the previous study. The paleomagnetically defined boundary between the Rauku-
mara and Wairoa domains now coincides with the area where regional structural
trends alter. Reassignment of the Rakauroa area to the Raukumara domain also
results in a revised rotation history for the Wairoa domain, suggesting rotation
rates of 4-6°/Myr since the Late Miocene (5-10 Ma), and potentially no earlier
rotation. No reliable record of Early and Middle Miocene vertical-axis rotation
on the Hikurangi margin now exists north of Marlborough; further studies are

required to properly constrain the rotation history for this time interval.

4.1 Introduction
At the Hikurangi margin on the east coast of the North Island of New Zealand,

westward-directed subduction of the Pacific plate occurs at a rate of ~40 mm/yr
(DeMets et al., 1994) (Fig. 4.1a). Subduction of the anomalously thick (12-15 km)
oceanic crust of the Hikurangi Plateau (Davy and Wood, 1994) has led to the sub-
aerial exposure of forearc basins throughout eastern New Zealand. Paleomagnetic
studies of tectonically uplifted Neogene marine sediments along the entire Hiku-
rangi margin (Walcott et al., 1981; Walcott and Mumme, 1982; Mumme and Wal-
cott, 1985; Wright and Walcott, 1986; Mumme et al., 1989; Roberts, 1992, 1995a;
Vickery and Lamb, 1995; Thornley, 1996; Little and Roberts, 1997) have docu-
mented clockwise vertical-axis rotations of up to 90° at a number of sites. These
data support plate tectonic reconstructions of the New Zealand region, which sug-
gest substantial clockwise rotations of the Pacific-Australian plate boundary as a

whole since its propagation into the New Zealand region at 23-20 Ma (Rait et al.,

o1



Chapter 4 Boundary between Raukumara and Wairoa domains

1991; King, 2000). The couple resulting from roll-back of the subducted Pacific
plate in the north and ‘pinning’ of the boundary due to underthrusting of buoyant
continental crust (the Chatham Rise) in the south has led to a change in the orien-
tation of the subducted plate (Walcott, 1989). However, paleomagnetic data from
the Raukumara Peninsula, the northernmost onshore part of the margin, show no
rotation with respect to the Australian plate since the Early Miocene (Walcott
and Mumme, 1982; Mumme et al., 1989; Thornley, 1996). This, combined with
evidence of different rates of rotation in areas farther to the south, has resulted
in the hypothesis that the margin is divided into discrete domains with indepen-
dent tectonic histories (Lamb, 1988; Walcott, 1989). This interpretation requires
crustal-scale basement structures that accommodate differential rotations between
adjacent domains. The paleomagnetic data suggest that the boundary between the
unrotated ‘Raukumara domain’ and the northernmost rotated block (the ‘Wairoa
domain’) is located at about the latitude of Gisborne (38.5°S; Fig. 4.1b), an infer-
ence consistent with regional structural patterns.

The initiation of subduction in the early Miocene coincided with the southwest-
ward obduction of a late Early Cretaceous—Paleogene passive margin sequence
onto the Raukumara Peninsula (Stoneley, 1968; Rait et al., 1991), forming the
East Coast Allochthon (ECA), and onto Northland (Ballance and Spérli, 1979;
Sporli, 1982; Rait, 2000), forming the Northland Allochthon. At that stage, the
margin was therefore oriented NW-SE, a determination supported by the parallel
NW-SE trend of the Early Miocene Northland volcanic arc (Herzer, 1995). On
the Raukumara Peninsula, the faults and folds associated with the emplacement
of the ECA still have this trend, which implies that substantial vertical-axis ro-
tations have not occurred in this region during the Neogene, consistent with the
aforementioned paleomagnetic studies. In contrast, the rotated ‘Wairoa domain’
to the southwest of Gisborne is dominated by structures that have the SW-NE
orientation of the present day margin.

The structural change between the Raukumara and Wairoa domains coincides
with major changes in both the topography of the subduction margin (Collot
et al., 1996) and the crustal structure of the overlying plate (Reyners et al., 1999);
however, basement structures that have accommodated large differential rotations
have proved difficult to identify. Attempts to use paleomagnetic methods to fur-
ther constrain the location of the rotation boundary in the critical region between
Gisborne and Opotiki have been frustrated by the paucity of stably magnetized
rocks (Mumme et al., 1989; Thornley, 1996). However, Mumme and Walcott
(1985) reported a mean declination of 70 + 14° from Early Miocene (Otaian;
Colin Mazengarb, IGNS, Lower Hutt, pers. comm., 2002) rocks in the Rakauroa
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Figure 4.1: (a) Tectonic setting of the New Zealand region, showing the boundary
between the Pacific and Australian plates. Local plate motion vectors are from
DeMets et al. (1994). (b) Detail of northeastern North Island, including the locations
of sites from which paleomagnetic data have been reported. The boundaries of the
Wairoa domain are inferred from sites where large declination anomalies have been
measured. The RK1 locality of Mumme and Walcott (1985) (large diamond) is the
northernmost of these. (c) Tectonic map of the study area, showing the principal
structures and the location of the localities sampled by Mumme and Walcott (1985),
that were resampled in this study. Adapted from Mazengarb and Speden (2000).
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area (referred to in later literature as the ‘RK1’ locality; Fig. 4.1b). The implied
clockwise rotation of ~50° relative to the Australian plate makes this the north-
ernmost locality reported to belong to the rotated Wairoa domain, and provides an
important constraint on the location of any structural boundary. Its age confers
additional significance: most rotated sites on the east coast of the North Island are
dated as Middle-Late Miocene, making RK1 a primary support for the hypothesis
that the rate of rotation of the Hikurangi margin with respect to the Australian
plate has steadily increased over time, from 2-3°/Myr in the early Miocene to
7-8°/Myr from the Pliocene onward (Wright and Walcott, 1986; Walcott, 1989).

The large clockwise rotations reported from Rakauroa become somewhat prob-
lematic when the regional geology is considered. The RK1 declination anomaly is
based on data compiled from three sampling localities, distributed across a syn-
cline located just to the south of the frontal thrust of the ECA (RK1-3, Fig. 4.1c).
This fold has a NW-SE trend, as do other nearby folds (Mazengarb and Speden,
2000), and is clearly associated with emplacement of the allochthon. Thus, from
a geological perspective, one would expect this area to be unrotated with respect
to the Australian plate.

Good paleomagnetic data are needed from the Rakauroa area to properly con-
strain the Neogene tectonic evolution of the Hikurangi margin. We present the
results from new sampling, undertaken as close as possible to the original three
localities described by Mumme and Walcott (1985), in an effort to reconcile the
paleomagnetic data with the regional geology. The data published by Mumme
and Walcott (1985) are also reassessed in the light of more recent insights into the

magnetization of New Zealand Cenozoic sediments.

4.2 Geological background

The area investigated in this study is bounded by the Otoko-Totangi and Rakauroa
Faults, to the north and south, respectively (Fig. 4.1¢). Thickness variations in
Early Cretaceous and Paleogene sediments revealed by seismic data (Field et al.,
1997) demonstrate that both faults predate the current tectonic regime. The Ota-
ian units sampled were deposited in a flexural basin associated with obduction
of the ECA, and were folded soon after deposition; Altonian strata were uncon-
formably deposited on the anticline directly northwest of the Rakauroa Fault. The
trend of the folds suggests southwestward-directed shortening, supporting the in-
ference that they formed contemporaneously with emplacement of the allochthon.

The folds have subsequently been disrupted by probable post-Early Miocene
dextral strike-slip on the reactivated Otoko-Totangi Fault, but the overall struc-

tural grain is still oriented NW-SE, which precludes any significant vertical-axis

o4



Chapter 4 Boundary between Raukumara and Wairoa domains

rotations in the Neogene. Evidence for any recent tectonism is equivocal, although
observations of tilted Pleistocene beds along strike from the Otoko-Totangi Fault
are reported by Field et al. (1997).

4.3 Sampling and methods

Paleomagnetic sampling was carried out by drilling 25 mm diameter cores from
three localities with good exposure and clear, measurable bedding structures, as
close as possible to the original RK sites studied by Mumme and Walcott (1985).

OR - Oliver Road (NZMS 260 grid reference: X17/118988) A roadcut/
verge outcrop of moderately weathered, shallowly dipping grey and brown sandy
mudstones and siltstones was sampled, on the highest point on Oliver Road before
it descends to Matawai Station. This is a direct resampling of the RK1 locality
described by Mumme and Walcott (1985). Seventy cores were collected across a

total stratigraphic thickness of 27.1 m.

MS - Matawai Station (Grid reference: X17/128009) A fairly continuous
exposure of light blue-grey calcareous mudstones with massive sandstone interbeds
was sampled in the bed of the Waikohu River, 100-200 m west and upstream of
where it is bridged by Oliver Road north of Matawai Station. The RK2 locality
described by Mumme and Walcott (1985) is just downstream from this bridge;
it was not directly resampled due to a lack of clear bedding structures. A total

stratigraphic thickness of 58.5 m was sampled (63 cores).

AB - Anzac Bridge (Grid reference: X17/096972) Outcrops of fractured,
massive blue-grey mudstones with rare massive sandstone beds were sampled from
the banks of the Waihuka River, where a tributary joins it 200 m east and down-
stream of where it is crossed by State Highway 2 (Anzac Bridge), 2-3 km southeast
of the Oliver Road turn-off. The RK3 locality described by Mumme and Walcott
(1985) was identified just downstream from the bridge, but was not resampled
due to a lack of clearly identifiable bedding structures. It is possible that Mumme
and Walcott (1985) measured joint surfaces rather than bedding, since their re-
ported variable bedding measurements are not consistent with the clear regional

structural trend. A total stratigraphic thickness of 52.6 m was sampled (41 cores).

Weathered surficial material was removed from each outcrop before sampling.
Cores were stored and transported to the laboratory in a mu-metal shield and
were cut into samples of 21 mm length. Stepwise demagnetization of the samples

was undertaken using a 2G-Enterprises cryogenic magnetometer at the National
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Oceanography Centre, Southampton (NOCS). The instrument is situated in a
magnetically shielded room, which reduces the level of the ambient magnetic field
to <300 nT, which is further reduced to ~1-2 nT in the measurement region of
the magnetometer. This enables measurement of the magnetic moment with a
sensitivity of better than 107!2 Am?.

Thermal demagnetization has frequently proven to be more effective than al-
ternating field (AF) demagnetization at isolating primary remanence directions in
weakly magnetized New Zealand Cenozoic sediments (Pillans et al., 1994; Turner,
2001). A pilot study involving detailed stepwise AF (5 mT steps to 60 mT)
and thermal (steps of 20°, 80°, 120°, 160°, 200°, 240°, 280°, 320°, 360°, 380°
and 400°C) demagnetizations of individual samples from each stratigraphic level
confirmed that thermal methods yielded more stable demagnetization paths; all
subsequent samples were therefore thermally treated. Low-field bulk magnetic
susceptibility was measured after each heating step to monitor for thermal alter-
ation effects. Vector-component diagrams were used to identify samples where
characteristic remanent magnetization (ChRM) directions could be isolated and
analysed using principal component analysis (Kirschvink, 1980). Fisher (1953)
statistics were used to calculate mean paleomagnetic directions; declination errors
were calculated according to Demarest (1983). The stepwise demagnetization data
for many samples follow great circle paths, which can be combined with ChRM
directions using the method of McFadden and McElhinny (1988). Great circle
analysis has been utilised for magnetostratigraphic studies of New Zealand Ceno-
zoic mudstones (Pillans et al., 1994; Roberts et al., 1994), but not for tectonic
studies, where a precise direction, rather than simply a polarity determination,
is required. However, this technique is certainly adequate to fulfil the minimum
requirement of this study: that is, to distinguish between substantial clockwise
rotations (a declination of 70°) and no net rotation with respect to the Australian

plate (a declination of 20°).

4.4 Results

4.4.1 Stepwise demagnetization
The NRM intensities of all samples from the three study sites are weak, ranging

from 1x 107 to 8 x 1072 Am~!. In a large proportion of the samples, the low tem-
perature remanence component has an orientation close to that of the present-day
field in geographic coordinates (Declination (D) = 20.5°, Inclination (I) = -63.7°)
and is therefore interpreted as a viscous overprint. This component unblocked at
temperatures of 200-240°C. No meaningful data were collected above tempera-

tures of 360-380°C, due either to the magnetic intensity falling below the noise
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level of the magnetometer, or to thermal alteration (indicated by large increases in
low-field bulk magnetic susceptibility) producing new magnetic minerals that ob-
scured the primary paleomagnetic signal. There was therefore only a small range
over which ancient higher temperature components could potentially be observed.
Samples from Anzac Bridge do not exhibit systematic behaviour within this range,
which indicates that any primary magnetization has been completely obscured by
overprinting (NRMs from this locality are particularly strongly clustered around
the present-day field direction); data from this locality are therefore excluded from
further analysis.

In 21% of the samples from Matawai Station, a stable component (defined by
three or more collinear points, with maximum angular deviation (MAD) values of
<15°) with reversed polarity is observed at temperatures of 200-380°C (Figs. 4.2a,
4.3a). A component with a similar trend can also be isolated from 11% of the
Oliver Road samples, but in most cases only where there is no obvious viscous
overprint (Figs. 4.2b, 4.3b). This component can generally be anchored to the
origin of the vector-component plot (Fig. 4.2), but in some samples it misses
the origin (Fig. 4.3), which may indicate the presence of a further component with
unblocking temperatures >400°C. Samples exhibiting both types of behaviour can
be identified from the same stratigraphic level at both localities.

In a further 50% of the samples, the blocking temperature (T}) spectra of
the viscous and intermediate components overlap to the extent that the latter
cannot be isolated. Nevertheless, there is a consistent trend toward a reversed
polarity direction along a great circle demagnetization path (Fig. 4.4). Despite
the possible presence of a higher T}, component in some samples, the reversed
polarity, intermediate T, component is interpreted here as a primary ChRM. Its
presence is discernible in all samples with stable demagnetization behaviour; the
combined data from the two sites also pass a fold test (Fig. 4.5), implying that
the magnetization predates the Early Miocene tilting of the sampled units. The
magnetic behaviour of these samples is therefore comparable to that of Pliocene
sediments from the Wanganui Basin described by Turner (2001), where an inter-
mediate T} (150-250°C) component was found to carry the primary remanence. A
higher T}, (>250°C) component, carried by a distinct higher coercivity population
of magnetic grains, was considered to be diagenetic in origin, probably related to

weathering.
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Figure 4.2: Vector-component plots of thermal demagnetization data showing an-
chored best-fit ChRM determination (blue = declination, red = inclination), from:
(a) Matawai Station, following removal of a secondary overprint that unblocks at
200°C, and (b) Oliver Road, where no overprint is observed. Labelled points in-
dicate the demagnetization step in °C. Solid symbols denote projections onto the
horizontal plane (declinations); open symbols denote projections onto the vertical

plane (inclinations).

(a) MS68A (b) OR02A
1.0 1.0
NI \ M‘\‘\‘\\(\ N,’,V
g g
= s —
= NRM = > NRM=
= 6.1 x10*Am” = 2.2 x107Am
0 " 200 'O 400 . | 0 " 200 400 |
Temperature (°C) Temperature (°C)
v
/
D;z( 360
| | 'E, N | — i 'E, N
240
e
20
2/0 % D=217.1° /
e 1=322° T 74
20 MAD =7.1°
D =198.9°
| =46.0°
MAD = 9.2° 1

Figure 4.3: Vector-component plots of thermal demagnetization data from: (a)
Matawai Station, and (b) Oliver Road, that exhibit an unanchored ChRM fit due
to the presence of a higher T} diagenetic component, that is interpreted to result
from weathering. The trends of these intermediate components are similar to those
of samples without higher T}, components (Fig. 4.2). Symbols are as in Figure 4.2
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Figure 4.4: Vector-component and equal area stereographic plots of thermal de-
magnetization data from: (a) Matawai Station, and (b) Oliver Road, demonstrat-
ing removal of secondary overprints along a great circle path. Symbols for vector-
component plots are as in Figure 4.2. Solid (open) circles on the stereoplots represent
projections onto the lower (upper) hemisphere.
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Figure 4.5: Combined ChRM data for both Matawai Station and Oliver Road,
in: (a) geographic, and (b) tilt-corrected, coordinates. (c) Fold test of Tauxe and
Watson (1994). The 95% confidence interval of the maximum value of the principal
eigenvector 71 (shaded) encompasses 100% unfolding, consistent with remanence
acquisition prior to tilting of the beds.

60



Chapter 4 Boundary between Raukumara and Wairoa domains

4.4.2 Paleomagnetic directions
Combination of the isolated ChRM directions from each site, after correction for

bedding tilt, yielded a mean direction of D = 197.8°, [ = 48.8°, ags = 9.4° for
Matawai Station (Fig. 4.6a), and D = 212.4°, T = 51.1°, a5 = 14.9° for Oliver
Road (Fig. 4.6b). These directions are indistinguishable at the 95% confidence
level (Fig. 4.7a); however, the small number of samples may not adequately average

out secular variation and random measurement errors (Van der Voo, 1993).

(a) Matawai StationN (b) Oliver Road \

D =197.8°, 1 = 48.8°, D=212.4°1=51.1°
Og =9.4°,n=15k=17.6 Og=14.9.n=9,k=12.8

Figure 4.6: Equal area stereographic plot of ChRM directions (solid circles) ob-
tained for: (a) Matawai Station, and (a) Oliver Road, with calculated mean direc-
tions (solid squares) and ags confidence ellipses.

To further constrain the mean direction, the stable endpoints were combined
with great circle arcs, according to the method of McFadden and McElhinny
(1988). Although the T, spectrum of the high temperature component does not
overlap with the ChRM below 400°C (Fig. 4.3), the demagnetization paths of
samples in which this third component is present will not directly converge on the
ChRM directions (because they do not decay to the origin, unanchored ChRMs will
plot away from their own demagnetization paths on a stereographic projection).
Therefore, only great circles from sites where the ChRM could be consistently
anchored to the origin, which were defined by four or more points and which had
MAD values <15°, were included in the analysis. Addition of the great circle
data gave a mean direction of D = 198.9°, I = 43.3°, ag5; = 8.1° for Matawai
Station, and D = 195.5°, I = 47.5°, ag; = 5.8° for Oliver Road. The resulting
mean directions from the two sites are better constrained individually, and are still
indistinguishable at the 95% confidence level (Fig. 4.7b).

As discussed above, great circle analysis has not been commonly used in tec-
tonic studies of New Zealand Cenozoic sediments. However, use of the great circle
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Figure 4.7: Comparison of palaeomagnetic directions determined for Matawai
Station and Oliver Road using: (a) ChRM data alone, and (b) ChRM data combined
with demagnetization great circles using the method of McFadden and McElhinny
(1988).

data in the present study does not result in directions that lie outside the 95%
confidence limits of the means calculated from stable endpoint data alone; in the
case of Matawai Station, there is no appreciable change in the directions derived
from the combined and endpoint-only datasets (Fig. 4.7). This confers confidence

in the reliability of the results presented here.

4.5 Discussion
The Oliver Road and Matawai Station localities record declinations that are de-

flected clockwise with respect to the expected axial dipole field direction by 16 + 5°
and 19 £ 7°, respectively. According to the apparent polar wander path of Idnurm
(1985), Neogene motions of the Australian plate have led to clockwise rotations
of ~1°/Myr. Thus the Otaian (19-22 Ma) declination anomalies reported here do
not require the Rakauroa area to have undergone any vertical axis rotations, being
fully explained by large-scale plate motions (Fig. 4.8). The new data also compare
well with declinations reported from farther north on the Raukumara Peninsula
(Walcott and Mumme, 1982; Mumme et al., 1989). Both localities record incli-
nations of ~50°, which is less than the 60° inclination expected for Otaian rocks;
however, shallow inclinations are quite common in the East Coast region, and
possibly result from the effects of sediment compaction (Mumme et al., 1989).
Our new data indicate that the Rakauroa area should be regarded as part of the
unrotated Raukumara domain, in agreement with the regional structural trends

discussed above. However, they conflict with the large rotations reported from the
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Figure 4.8: Declinations for the new Rakauroa data (open symbols), plotted with
previously reported data from the Raukumara domain (closed symbols) (Walcott
and Mumme, 1982; Mumme et al., 1989). Declination errors were calculated ac-
cording to Demarest (1983).

same sites by Mumme and Walcott (1985). Data published in their appendix show
that 50% of samples were AF demagnetized at only 10-20 mT, the level at which
stable behaviour had been observed in pilot samples demagnetized to 30 mT. This
blanket demagnetization approach is no longer considered adequate (Opdyke and
Channell, 1996), especially in the presence of the strong magnetic overprints com-
mon in New Zealand Cenozoic mudstones; several studies have demonstrated that
detailed stepwise thermal demagnetization of all samples is required to properly
isolate primary components in such rocks (Turner et al., 1989; Turner and Kamp,
1990; Roberts, 1992; Pillans et al., 1994; Roberts et al., 1994; Roberts, 1995a;
Turner, 2001).

The limited AF demagnetization data obtained in this study indicate that
the viscous overprint observed in the Rakauroa localities has a high coercivity,
typically >20 mT (Fig. 4.9a), which would have been incompletely removed in
the fields used by Mumme and Walcott (1985). Vector-component plots indicate
that many of their samples, particularly those that were demagnetized at lower
peak fields, have yet to demonstrably converge onto a stable endpoint (Fig. 4.9b),
and thus may not accurately represent the ChRM. The overprint appears to be
weakest at the RK2 locality, where a normal polarity ChRM could be isolated
in six samples (Fig. 4.10), giving a mean direction of D = 21.4°, T = -64.9°,
ags = 15.2°. Whilst there are too few samples for this to be a statistically rigorous

result, it is antipodal to the reversed polarity direction from the nearby Matawai
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Station locality. It therefore appears that the large declination anomaly reported
by Mumme and Walcott (1985) from the Rakauroa localities is due to the inclusion

of data from incompletely demagnetized samples.
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Figure 4.9: Vector-component plots of: (a) AF demagnetization data from
Matawai Station. A viscous overprint is removed above 35 mT. (b) AF demag-
netization data reported by Mumme and Walcott (1985). At the maximum demag-
netization step of 20 mT, a stable endpoint has yet to be reached. Labelled points
indicate the demagnetization step in mT; other symbols are as in Figure 4.2.

Demonstrating that the Rakauroa area is unrotated with respect to the Aus-
tralian plate removes a major obstacle to the reconciliation of existing paleomag-
netic data with regional geology. Both are now consistent with the boundary
between the Wairoa and Raukumara domains being associated with a 20 km wide
zone between the Rakauroa and Waerengaokuri Faults (Fig. 4.11). Structures that
have accommodated the differential rotations between these two domains are still
not immediately obvious within this corridor. However, now that a clear struc-
tural difference has been demonstrated between unrotated and rotated parts of
the margin, further structural work should enable the filling in of gaps left by
paleomagnetic measurements.

Reassignment of the Rakauroa locality to the Raukumara domain also has
a bearing on the assumed rotation history of the Wairoa domain. Previously
reported paleomagnetic data (Fig. 4.12a) indicate clockwise rotations of 40-60°
with respect to the Australian plate since 10 Ma. The data for the Early and
Middle Miocene are less coherent; the line of best fit used by Wright and Walcott
(1986) and Walcott (1989) is significantly constrained by the RK1 declination
anomaly reported by Mumme and Walcott (1985), which requires further clockwise
rotation, albeit at a reduced rate, during the Early and Middle Miocene. With
the removal of the RK1 constraint, this interpretation needs to be reassessed.
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Figure 4.10: (a) Vector-component plot of data from the RK2 locality of Mumme
and Walcott (1985), showing a normal polarity ChRM direction. (b) Equal area
stereographic plot of ChRM directions (open circles) and mean direction (open
square) for RK2. The mean direction is antipodal to the mean direction for Matawai
Station (closed square). Ellipses indicate ags confidence intervals.
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Figure 4.11: New paleomagnetic constraints on the rotation boundary between
the Raukumara and Wairoa domains. Reassignment of the RK1 locality to the
Raukumara domain, and the removal of potentially unreliable data (see discussion
and Table 1 for details), has shifted the inferred boundary south, to a zone between
the Rakauroa and Waerengaokuri Faults
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Figure 4.12: (a) Previously published paleomagnetic declinations for the Wairoa
domain (Walcott et al., 1981; Walcott and Mumme, 1982; Mumme and Walcott,
1985; Wright and Walcott, 1986; Thornley, 1996) plotted versus age. Some sites
have been re-dated by Mazengarb (pers. comm., 2002). The best-fit interpretation
of Wright and Walcott (1986) and Walcott (1989) (solid line) is significantly con-
strained by the RK1 declination. (b) Same as (a), but including only localities with
demonstrably reliable paleomagnetic data (see text for details). Exclusion of the
RK1 declination anomaly (open square with dashed error bars) allows an interpre-
tation requiring no rotation with respect to the Australian plate prior to 5-10 Ma
(solid line).
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Much of the published paleomagnetic data for the Wairoa domain predates
widespread recognition of the need for detailed stepwise demagnetization to en-
sure the reliable isolation of primary remanence directions; samples were commonly
only subjected to blanket AF or thermal demagnetizations at low fields or temper-
atures. We have shown that these techniques do not adequately isolate a ChRM
in the presence of a strong secondary overprint. This raises the possibility that
other published declination anomalies may be unreliable due to the incomplete
removal of such overprints. In Fig. 4.12b, we exclude localities where these uncer-
tainties exist (refer to Table 4.1 for details). It is unlikely that all of the excluded
data are unreliable, because strong overprints are not ubiquitous: samples from
the HR1 locality (Walcott and Mumme, 1982; resampled by Mumme and Wal-
cott, 1985) are not appreciably overprinted, which allows reasonable confidence in
the published declination anomaly - the position of this locality (Fig. 4.11) also
means that reliable paleomagnetic data are still consistent with the boundary be-
tween the Raukumara and Wairoa domains being placed between the Rakauroa
and Waerengaokuri faults. However, the limited availability of complete demag-
netization data precludes detailed assessment of many localities. The majority
of the data remaining are from Wright and Walcott (1986), who employed more
rigorous stepwise thermal demagnetizations that allowed them to remove a strong
viscous overprint. Antipodal normal and reversed polarity ChRM directions were
also identified at each of their localities, which provide a robust reversals test.

Geodetic measurements show that the Hikurangi margin is currently rotat-
ing at a rate of 2-4°/Myr with respect to the Australian plate (Wallace et al.,
2004). The velocity field derived from known Quaternary fault slip rates provides
a minimum estimate of 3-4°/Myr (Beanland and Haines, 1998). The reduced pa-
leomagnetic dataset (Fig. 4.12b) suggests that the Wairoa domain has rotated at
rates of 4-5°/Myr with respect to the Pacific plate (3-4°/Myr with respect to the
Australian plate) since the Late Miocene (5-10 Ma), which is within the range
of geodynamic estimates. Sparse reliable data for the Middle and Early Miocene
make any interpretation of the rotation history during this earlier time interval
tentative; it is possible that rotations have occurred at a similar rate throughout
the Neogene. However, a marginally better fit to the data requires no rotation of
the margin with respect to the Australian plate before 10 Ma (Fig. 4.12b). Whilst
this interpretation is constrained purely by data that are demonstrably reliable,
with the exclusion of the erroneous RK1 declination anomaly, it is a reasonable fit
for the whole data set (Fig. 4.12). Nevertheless, reliable paleomagnetic data from
Early and Middle Miocene strata are needed to confirm any interpretation.

It is illuminating to compare this potential rotation history for the Wairoa
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Table 4.1: Reported declinations from the Wairoa region of the Hikurangi margin.

Locality Source Age(Ma)  Declination(®) Retained Rationale

RK1 MW 20.5+1.5! 70+11 No Blanket demagnetization,
incompletely removing a
strong overprint (see text)

HR1 WM/MW  13.2+2.2! 4518 Yes Blanket demagnetiza-
tion but data indicate
negligible overprint

WK1 WM 12+£2 70430 No Blanket demagnetization;
data unavailable

MK1 WM 17£11 6310 No 7
MK2 WM 17+3! 45+16 No ?
MK3 WM 15+3 95427 No 7
MK4 WM 4+1 22+12 No 7
MK5 WM 541 41410 No 7
MK6 WM 6+1 29+11 No 7
MK7 WWwW 10+1 47+5 Yes Stepwise demagnetiza-
tion, reversals test
MKS8 WwW 9+1 40+3 Yes ”
MK9 WWwW 8+1 4145 Yes ”
MK10 WWwW 6+1 26+11 Yes ”
WH1 WWwW 2.3+0.1 17+5 Yes ”

Those data proven to be reliable and included on Fig. 4.12b are highlighted in bold. WM =
Walcott and Mumme (1982); MW = Mumme and Walcott (1985); WW = Wright and Walcott
(1986). !Site redated by Mazengarb (pers. comm. 2002). The unpublished data of Thornley
(1996) are also considered to be unreliable, and have been excluded from Fig. 4.12b.
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domain with data from the southern Hikurangi margin. Based on the data of
Roberts (1992, 1995a), Little and Roberts (1997) described clockwise vertical axis
rotations of 30-50° since the early Pliocene (~4 Ma) in northeastern Marlborough,
hinged about a northwest-trending kink in the structural trend of basement rocks.
A second crustal scale boundary farther to the east appears to have accommodated
another 50° of Early-Middle Miocene clockwise rotation (using data from Vickery
and Lamb (1995)). The most recent of these two phases of rotation has a clear
correlative in the revised rotation history of the Wairoa domain proposed here. In
both cases, the beginning of large-scale rotations may have been associated with
an abrupt shift in the position of the Pacific-Australian Euler rotation pole at
5-6.5 Ma (Cande et al., 1995; Sutherland, 1995; Walcott, 1998), which increased
convergence across the plate boundary in the New Zealand region. This event
coincided with a number of tectonic events, including a southward shift in the
locus of strike-slip displacement on the Marlborough fault system (King, 2000)
and a period of rapid uplift in the Wairoa region (Buret et al., 1997). In the Early
and Middle Miocene, rotations with respect to the Australian plate may have
been much more spatially restricted, possibly being absent in the Wairoa region,
and confined to a much smaller area near the coast in northeast Marlborough.
However, this interpretation remains speculative until additional early Neogene
paleomagnetic data are obtained from the Wairoa region. The rotation history of

the intervening Wairarapa region is also currently unconstrained.

4.6 Conclusions
Early Miocene rocks from the Rakauroa area have not been rotated with respect

to the Australian plate during the Neogene, and are therefore part of the Rauku-
mara domain, in agreement with observed structural trends. The large declination
anomaly previously reported from this area resulted from the use of low-field, blan-
ket AF demagnetization that failed to remove a strong secondary overprint. Our
reconciliation of paleomagnetic data with regional geology will aid attempts to lo-
cate and characterise the nature of the tectonic boundary between the unrotated
Raukumara and rotated Wairoa domains.

Reassignment of the Rakauroa locality to the Raukumara domain also requires
a reappraisal of the rotation history of the Wairoa domain. A reduced paleomag-
netic dataset, excluding data from early studies that utilised potentially unreliable
blanket demagnetization techniques, suggests that clockwise vertical axis rotations
of 4-6°/Myr have occurred since the Late Miocene (5-10 Ma), with possibly no
rotations other than those expected from large-scale plate motions before this.

This interpretation remains reasonable even when potentially unreliable Wairoa
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domain data are reintroduced to the dataset. On the Hikurangi margin, the only
reliable data that indicate vertical axis rotations with respect to the Australian
plate in the Early and Middle Miocene are now restricted to a small coastal area in
northeastern Marlborough (Vickery and Lamb, 1995; Little and Roberts, 1997). It
is possible that rotations during this period were local to the intersection between
the Hikurangi subduction interface and the Alpine-Wairau Fault.

The difficulties with secondary overprints encountered in this study re-emphasise
the need for caution when interpreting paleomagnetic data from New Zealand
Cenozoic mudstones. A stable reversed polarity ChRM was isolated in only 16%
of samples; the combination of a weak NRM, strong viscous overprints, and the
effects of thermal alteration resulted in a ChRM that was at best observable over a
100°C temperature range. Detailed stepwise demagnetization of samples is there-

fore essential if reliable results are to be obtained.
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Tectonic and geochronological implications of variably timed
magnetizations carried by authigenic greigite in marine

sediments from New Zealand

This chapter appeared in Geology Volume 33, Rowan, C. J., and A. P. Roberts, Tectonic
and geochronological implications of variably timed magnetizations carried by authigenic
greigite in marine sediments from New Zealand, pages 553-556. Copyright (2005), with

permission of the Geological Society of America.
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Abstract Detailed scanning electron microscope observations, coupled
with elemental microanalysis, confirm the presence of a chemical remanent mag-
netization carried by authigenic greigite (FesS,) in uplifted Neogene marine sedi-
ments from the Hikurangi margin of New Zealand. Normal polarity samples from
the studied section have declinations that are deflected ~60° clockwise of reversed
polarity samples, indicating the presence of two distinct magnetizations separated
by several million years of tectonic rotation about a vertical axis. However, al-
though multiple generations of iron sulphide growth are observed petrographically,
we see no clear differences in the relative timing of greigite formation between
samples carrying these two magnetizations. Not only can the diagenetic growth
of greigite in fine-grained marine sediments occur long after deposition, obscuring
tectonic and magnetostratigraphic information, but such remagnetizations are also
difficult to distinguish from a more primary signal in the absence of constraints
from field tests. Our observations emphasize that considerable care is necessary

when interpreting paleomagnetic data from greigite bearing sediments.

5.1 Introduction

The ferrimagnetic iron sulphide greigite (Fe3S,) is being increasingly reported as
a carrier of remanent magnetizations in marine sediments (Roberts and Weaver,
2005, and references therein). Greigite is an authigenic mineral that forms as
a metastable precursor to framboidal pyrite (Wilkin and Barnes, 1997). Pyri-
tization occurs in anoxic sedimentary environments in the presence of dissolved
iron, and sulphide (HsS, HS™) released by sulphate reduction during the microbial
degradation of organic matter (Berner, 1984). When reactive iron is abundant and
dissolved sulphide concentrations are low, pyritization can be arrested and greigite
can be preserved (Kao et al., 2004), creating a chemical remanent magnetization
(CRM). In many environments, anoxic conditions can exist only a few millimetres
below the sediment-water interface, allowing greigite to form soon after deposition
and to preserve a syn-depositional paleomagnetic signal. However, this is not nec-
essarily the case; recent studies have identified inconsistent polarity records (e.g.
Florindo and Sagnotti, 1995; Roberts and Weaver, 2005; Sagnotti et al., 2005)
and even contradictory polarities within the same horizon (e.g. Jiang et al., 2001)
which demonstrate late diagenetic growth of greigite.

We identify here two distinct CRMs carried by greigite, in tectonically uplifted
Neogene marine sediments from the Hikurangi margin, North Island, New Zealand.
Parts of this region have experienced up to 90° of tectonic rotation about a ver-
tical axis during the Neogene (Rait et al., 1991). Paleomagnetic data have been

extensively used to constrain the location, rates, and timings of these rotations
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(Walcott, 1989), and are crucial in linking past deformation to the contemporary
vertical-axis rotations revealed by geodetic studies (Beavan and Haines, 2001). In
addition, thick successions in this region, dated by magnetostratigraphy, provide
standard mid-latitude sections for foraminiferal biostratigraphy. To assure the re-
liability of such studies, the identification of late-forming CRMs in these sediments
is essential. At the locality studied here, paleomagnetic analysis reveals a patchy
development of the later CRM, with a much earlier remanence still preserved in
parts of the outcrop. This provides an excellent opportunity to examine the pet-
rographic differences resulting from differently timed magnetizations. We have
undertaken detailed scanning electron microscope (SEM) observations, coupled
with elemental microanalysis, to examine iron sulphide growth textures and to
establish whether early- and late-forming CRMs involving greigite can be reliably
distinguished.

5.2 Sampling and methods

Standard paleomagnetic cores (25 mm diameter) were taken from the base of cliffs
on Waihau Beach, 35 km northeast of Gisborne (178.2°E, 38.3°S), as part of a
larger sampling program to investigate the tectonic evolution of the Hikurangi
margin. Samples ~1 km north of this locality were previously reported to have
a reversed polarity magnetization with a small declination anomaly, indicating
that this part of the margin has not experienced vertical-axis rotations (Thornley,
1996). Our sampling was along strike (beds measured at 194/23 W) and was
thus at approximately the same stratigraphic level. The lithology consisted of
massive, grey mudstone with interbedded tuffaceous layers of variable thickness
(up to 30 cm). The rocks are early Late Miocene (8.8-11.0 Ma) in age (Mazengarb
and Speden, 2000).

Forty-two cores were collected over a total stratigraphic thickness of 7.8 m,
including from two tuff beds (Fig. 5.1a); weathered surficial material was removed
from the outcrop prior to sampling. Cores were stored and transported to the
laboratory in a mu-metal shield. Stepwise demagnetization of the samples was
undertaken with a 2G-Enterprises cryogenic magnetometer, situated in a magnet-
ically shielded room at the National Oceanography Centre, Southampton. Samples
were demagnetized using both thermal (20-60° steps to 400°C) and alternating
field (5-10 mT steps to 60 mT) techniques. Where thermal demagnetization was
used, low-field bulk magnetic susceptibility was measured after each heating step
to monitor thermal alteration. Vector-component diagrams were used to identify
samples where characteristic remanent magnetization (ChRM) directions could be

isolated and analysed using principal component analysis (Kirschvink, 1980).
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Figure 5.1: (a) Stratigraphic column of the sampled Waihau Beach locality,
showing the distribution of reversed and normal polarity remanent magnetizations
through the section. (b-e) Representative vector demagnetization plots and an-
chored best-fit ChRM determinations (blue = declination, red = inclination) show-
ing (¢, d) normal polarity and large clockwise declination rotations, and (b, e)
reversed polarity and small rotations. Solid symbols denote declinations; open sym-
bols denote inclinations. (f) Equal area stereographic plot of ChRM directions in
tilt-corrected coordinates, showing the non-antipodal distribution of normal and re-
versed polarity directions. The mean direction of Thornley (1996) is plotted for
comparison (small dashed error ellipse).
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Resin-impregnated polished sections were prepared for SEM analysis from pa-
leomagnetic samples that had not been thermally demagnetized. Sedimentary mi-
crotextures were examined with a JEOL JSM-6360LV SEM, operated at 15 keV
with an 18 pA acceleration voltage, at the Institute of Earth Sciences, Academia
Sinica, Taipei, Taiwan. Mineral phases were identified with an Oxford Instruments
Ltd INCA-300 energy dispersive spectrometer (EDS), with a pyrite (FeSs) cali-
bration standard. The high atomic mass of iron sulphides allows them to be easily
identified by their high electron backscatter. It is possible to distinguish between
greigite and pyrite from examination of the iron to sulphur ratio: Fe/S = 0.5 for
pure pyrite, whereas for greigite, Fe/S = 0.75. Several studies have demonstrated
that, with careful analysis, different sedimentary iron sulphides can be clearly
distinguished (e.g. Jiang et al., 2001; Roberts and Weaver, 2005; Sagnotti et al.,
2005). In this study, the grain size of the iron sulphides being analyzed was often
small with respect to the diameter of the electron beam (~1 um), so elemental
ratios reflected an average of several grains and the matrix between them. Careful
examination was required to establish whether intermediate ratios (0.5 <Fe/S <
0.75) were due to a mixture of pyrite and greigite, rather than pyrite oxidation
(which also leads to Fe/S > 0.5). Oxidation was inferred in analyses where large

oxygen peaks occurred in the absence of silicate minerals.

5.3 Results

The natural remanent magnetization (NRM) of the samples ranged from 1 x 10~
to 2 x 1072 Am™!, although only the tuff samples had values exceeding 5 x 1073
Am~!. ChRMs were isolated from both thermally and alternating field demagne-
tized samples, with the samples exhibiting unblocking temperatures of 280-380°C
and median destructive fields of 50-60 mT; thermal treatment generally yielded
better-defined demagnetization trajectories. Both normal (Figs. 5.1c, d) and re-
versed (Figs. 5.1b, e) polarity directions were isolated; in all but one instance,
polarities are consistent within a sampling level (Fig. 5.1a). In tilt-corrected
co-ordinates, the normal polarity samples give a mean direction of declination
(D) = 85.6°, inclination (I) = -49.5°, ags = 4.5°; the reversed polarity samples
give a mean direction of D = 206.8°, I = 63.1°, a5 = 7.0° (Fig. 5.1f). These di-
rections are clearly not antipodal to one another, and the shallow dip of the beds
means that they cannot be made so by unfolding (in geographic coordinates, the
mean directions are D = 66.8°, I =-70.2° and D = 163.9°, I = 59.3°, respectively);
nor do the normal polarity directions result from a present day overprint (D = 21°,
[ =-64°).

In the absence of local tectonic rotation, the expected declination for localities
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of 10 Ma age on the Australian plate is ~10°. The reversed polarity direction has
a declination of 27 + 7°, which is close to that previously reported from nearby
sediments (Thornley, 1996) (Fig. 5.1f) and suggests minimal vertical-axis rotation.
However, the large declination anomaly exhibited by the normal polarity samples
indicates substantial tectonic rotation. This discrepancy can be explained if the
normal polarity samples carry a magnetization that was acquired much earlier
than that in the reversed polarity samples, with a significant period of rotation in
the interim.

Normal and reversed polarity samples were studied with the SEM; represen-
tative back-scattered electron images are shown in Figures 5.2 and 5.3. Iron sul-
phides appear to be more abundant in the normal polarity samples but are present
throughout all the samples studied, generally occurring in large aggregates repre-
senting several generations of iron sulphide growth, interpreted to represent pro-
gressively remineralised fragments of organic matter. In the normal polarity sam-
ples, which document a large vertical-axis rotation, the first sulphide generation
(marked P) consists of either euhedral pyrite crystals (Figs. 5.2a, d) or framboidal
pyrite that often has euhedral overgrowths (Fig. 5.2¢). Both forms can be observed
in close proximity to each other (Fig. 5.2b), but their temporal relationship to each
other is unclear. This first generation of iron sulphides is then surrounded by later
growth of both greigite and at least one space-filling pyrite generation (P2); two
phases of growth (P2 and P3) may be indicated by different grain sizes in the case
of Fig. 5.2e. Whereas in some cases greigite appears to post-date formation of P2
(Figs. 5.2a, e), in others the P2 phase has grown around the greigite (Fig. 5.2¢).
This suggests that the greigite and P2 formed penecontemporaneously; the greig-
ite possibly formed as a precursor to P2, but in some places has been preserved,
presumably due to incomplete pyritization.

In the reversed polarity samples, which indicate minimal rotation, the first iron
sulphide phase consists exclusively of framboidal pyrite, commonly with euhedral
overgrowths (Figs. 5.3b, ¢, d). Greigite neoformation is observed at the edges
of these framboids (Figs. 5.3b, e) and in isolated patches (Figs. 5.3¢c, d, e); in
all cases this growth appears to have preceded a later space-filling generation of
pyrite (P2). In contrast to the paleomagnetic data, SEM observations indicate
no clear differences in the mode of occurrence of remanence-bearing greigite in
the differently magnetized samples; in all cases it appears to have grown at an
intermediate or late stage within authigenic iron sulphide aggregates that have

undergone multiple generations of growth.
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Figure 5.2: Back-scattered electron images illustrating microtextures of several
generations of authigenic greigite (G) and pyrite (P), from a sample with a normal
polarity, highly rotated, characteristic remanent magnetization direction. (a) Small
iron sulfide aggregate consisting of an early growth of euhedral pyrite P, followed
by framboidal and space-filling pyrite P2 and neoformed greigite. (b) Euhedral
pyrite filling microfossils close to a polyframboidal aggregate. (c) Close-up view of
the aggregate in (c). Neoformation of greigite is associated with the space-filling
P2 phase. (d) Limited iron sulphide growth within a microfossil that has been
partially infilled with carbonate cement. P2 pyrite and greigite have formed after
euhedral pyrite (P). (e) Close-up view of a polyframboidal aggregate; different grain
sizes possibly indicate two space-filling pyrite phases, tentatively labeled P2 and P3.
Greigite neoformation is associated with these later phases.

5.4 Discussion and conclusions
Elemental analysis confirms the presence of authigenic greigite at the studied lo-

cality, in association with larger aggregations of authigenic iron sulphides. The
demagnetization behaviour of all samples is also consistent with the properties
of greigite (Roberts, 1995b; Sagnotti and Winkler, 1999), particularly the ~300—
350°C unblocking temperature, and higher coercivites than would be expected for
magnetite. Additionally, the normal polarity samples, which contain a greater
abundance of iron sulphides, have higher NRM intensities (Figs. 5.2b-e). Com-
bined, these observations establish that greigite is the carrier of both the normal
and reversed polarity magnetizations. No sample appears to contain both compo-
nents; the formation of the later CRM appears to have destroyed or completely

obscured the earlier remanence.
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Figure 5.3: Back-scattered electron images from a reversed polarity sample with a
small declination anomaly. (a) Polyframboidal aggregate. (b) Close-up view of area
indicated in (a), showing greigite neoformation on the surface of an early framboid
with euhedral overgrowth P, surrounded by space-filling pyrite (P2). (c) Close-
up view of area indicated in (a). Greigite growth has occurred in a patch between
recrystallized framboids (P), and on the edge of a silicate grain, before growth of P2.
(d) Close-up view of a polyframboidal aggregate. The first generation of framboidal
pyrite (P) shows euhedral overgrowth. Isolated patches of greigite are surrounded
by growth of pyrite P2. (e) Close-up view of a polyframboidal aggregate; greigite
has formed on the edge of early framboids, and in isolated patches, before growth
of the space-filling pyrite phase (P2).

The magnetic properties and demagnetization behaviour described above are
also consistent with those reported from Cenozoic marine mudstones elsewhere in
New Zealand (Turner, 2001, and references therein). These sediments have been
through multiple episodes of uplift, erosion, redeposition and reductive diagenesis,
which have led to the dissolution of detrital magnetic minerals such as magnetite
and growth of abundant pyrite. Greigite has previously been documented in simi-
lar sediments in New Zealand by Roberts and Turner (1993), who concluded that
it formed near the time of deposition rather than during later diagenesis. Our
results indicate that this is not always the case. The presence of a remanent mag-
netization carried by a potentially late-forming authigenic mineral phase clearly
has implications for the reliability of paleomagnetic studies in this region, and also
in other regions with similar lithologies. For example, abundant greigite has been

reported from Italian Neogene sequences (e.g. Sagnotti and Winkler, 1999), which
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also provide important mid-latitude biostratigraphic zonations.

The locality reported here is important because a late remagnetization has
only patchily overprinted an earlier CRM. In contrast to a similar case recently
reported by Sagnotti et al. (2005), in which the early magnetization was carried
by magnetite, here both early and late magnetizations are carried by greigite. The
shallow tilt of the beds sampled means that the 60° difference in declination can
only be due to several million years of vertical-axis rotation occurring between the
times of acquisition of the two magnetizations. Worryingly, samples showing both
types of paleomagnetic behaviour exhibit several generations of sulphide growth,
with greigite forming at an intermediate to late stage. Thus, the relative timing
of formation of the remanence-bearing phases appears to be similar, although
the absolute timing clearly differs. It may therefore be difficult to discriminate
between late and early magnetizations at sites where greigite is the dominant
magnetic mineral. The section sampled by Thornley (1996), nearby on the same
beach, records only the later magnetization reported here; as a result this area was
mistakenly considered to be unaffected by Neogene tectonic rotations. Tectonic
information has been lost in this case, and magnetostratigraphic data from these
sediments would also be unreliable. Our results suggest that this is unlikely to be
obvious from SEM observations.

If greigite is a common magnetic carrier in New Zealand Cenozoic mudstones,
late-forming CRMs may potentially impact much of the data pertaining to the
Neogene rotation of the Hikurangi margin, as well as Cenozoic magnetostratigra-
phy. Any such studies should routinely incorporate petrographic observations to
establish whether iron sulphides are present; in such cases, both in this region and
in other regions where greigite is the dominant magnetic mineral, an early date
for remanence acquisition should not be assumed in the absence of firm evidence,

such as fold tests, reversals tests, or other field tests.
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Magnetite dissolution, diachronous greigite formation, and
secondary magnetizations from pyrite oxidation: Unravelling
complex magnetizations in Neogene marine sediments from

New Zealand

This chapter appeared in Farth and Planetary Science Letters Volume 241, Rowan, C. J.
and A. P. Roberts, Magnetite dissolution, diachronous greigite formation, and secondary
magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene
marine sediments from New Zealand, pages 119-137. Copyright (2006), with permission

of Elsevier.

80



Chapter 6 Magnetic signature of New Zealand Neogene marine sediments

Abstract Detailed rock magnetic and electron microscope analyses indi-
cate that the magnetic signature of Neogene marine sediments from the east coast
of New Zealand is dominated by the authigenic iron sulphide greigite. The greigite
is present as a mixed population of stable single domain and superparamagnetic
grains, which is consistent with authigenic growth from solution. This growth can
result from pyritization reactions soon after deposition, which also leads to disso-
lution of most detrital magnetite; however, where constrained by field tests, our
data suggest that remanence acquisition can occur >1 Myr after deposition, and
can vary in timing at the outcrop scale. Strong viscous overprints result from
oxidation of the iron sulphides, probably during percolation of oxic ground water.
This process can sometimes destroy any ancient remanent magnetization. This
complex magnetic behaviour, particularly the presence of late-forming magneti-
zations carried by greigite, means that the remanence in New Zealand Cenozoic
sediments, and in similar sediments elsewhere, cannot be assumed to be primary
without confirmation by field tests. The reversals test should be employed with
caution in such sediments, as patchy remagnetizations can lead to false polarity

stratigraphies.

6.1 Introduction
Thick sequences of tectonically uplifted, fine-grained Cenozoic marine sediments

from the Hikurangi margin, on the east coast of New Zealand (Fig. 6.1a), pro-
vide standard mid-latitude sections for foraminiferal biostratigraphy. Since the
1970s, paleomagnetic data have been used to tie these sequences to the geomag-
netic polarity timescale (Lienert et al., 1972; Kennett and Watkins, 1974; Roberts
et al., 1994), enabling precise correlation of Neogene paleoclimatic variations in
the southwest Pacific with changes in the Mediterranean and elsewhere (Roberts
et al., 1994). Paleomagnetic data have also revealed substantial tectonic rotations
of the Hikurangi margin during the Neogene (Walcott et al., 1981; Mumme and
Walcott, 1985; Wright and Walcott, 1986; Lamb, 1989; Mumme et al., 1989; Wal-
cott, 1989; Roberts, 1992; Little and Roberts, 1997), and are crucial in linking past
deformation to contemporary vertical axis rotations revealed by geodetic measure-
ments (Beavan and Haines, 2001; Wallace et al., 2004). However, despite over 30
years of paleomagnetic research, longstanding questions concerning the origin of
the magnetic signal in these sediments remain unanswered. Magnetic extractions
often fail to clearly identify any remanence bearing phases that could be the carrier
of their weak (typically 107°~107% Am™!) natural remanent magnetization (NRM)
(Turner, 2001). Alternating field (AF) demagnetization is often unsuccessful in

isolating a stable characteristic remanent magnetization (ChRM), and the results
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of thermal demagnetization indicate low unblocking temperatures (250-350°C)
that are consistent with a wide range of possible magnetic minerals. Establish-
ing the origin of a strong, widespread, present-day field overprint has also proven
problematic.

Neogene sedimentary sequences from the Hikurangi margin were principally
deposited in marginal basin settings since the initiation of subduction at 23-20
Ma (Rait et al., 1991; King, 2000), and ongoing shortening along the subduc-
tion system has led to their uplift above sea level. The sediments were chiefly
sourced from uplifted Triassic-Cretaceous basement rocks of the Torlesse Super-
group, which have been through repeated cycles of uplift, erosion and redeposition
(Mackinnon, 1983); exposure to anoxic diagenetic conditions during such cycles
makes these rocks a poor source of detrital magnetic iron oxides such as mag-
netite (Smale, 1990; Roberts and Turner, 1993). Since the mid-Miocene, increasing
amounts of detrital iron oxides have been supplied to marginal basins by volcanic
activity on the Coromandel Penisula, and, since 2 Ma, from the Taupo Volcanic
Zone (Carter et al., 2003). Evidence of recent volcanic activity is apparent in the
magnetic signature of Holocene sediments from the continental slope east of the
North Island (Figs. 6.1a, 6.2), where peaks in NRM intensity at the top of core
MD972121 (Fig. 6.2a) correlate to ash layers rich in detrital magnetic minerals
(Carter et al., 2002). However, below 4.7 m depth no such peaks occur, and from
4.2 to 4.7 m there is also a substantial, permanent drop in the background NRM
intensity (Fig. 6.2a), accompanied by a significant decrease in its median destruc-
tive field (MDF') below 3 m (Fig. 6.2b). Following the onset of anoxic conditions,
iron-bearing minerals such as magnetite will react with H,S, produced by bac-
terial reduction of sulphate during the decomposition of organic matter, forming
pyrite (FeSy) (Berner, 1984) (Fig. 6.2c). Within about 12,000 years of deposition
most detrital magnetic minerals in core MD972121, even in the magnetite-rich ash
layers, have been dissolved, particularly magnetically stable single domain (SD)
grains. All that remains is a sparse population of multi-domain grains (with low
MDFs) that are unlikely to record a stable remanent magnetization. As reported
by Karlin and Levi (1983, 1985) and Karlin (1990), this type of signature is com-
mon in organic-rich, terrigenous sediments from continental margins.

The effects of pyritization are not only evident in modern sediments. Pyrite
is abundant in the uplifted Neogene sequences of New Zealand, and magnetic ex-
tractions have yielded abundant paramagnetic ilmenite, which is more resistant
to dissolution than ferrimagnetic iron oxides (Canfield et al., 1992), but only mi-
nor amounts of titanomagnetite (Roberts and Turner, 1993; Wilson and Roberts,
1999; Turner, 2001) (occasional exceptions exist, e.g. Little and Roberts (1997)

82



/ Pacific

Ocean

MD972121
o

Quaternary  [Z] Pre-Neogene
Pliocene _—— Fold axis
Late Miocene ~~ Fault
Mid Miocene O Sampling

(d) (c) M Early Miocene Locality

Figure 6.1: Distribution of sampling localities. (a) Tectonic setting of the New
Zealand region. Inset: boundary between the Australian and Pacific plates. TVZ
= Taupo Volcanic Zone, CP = Coromandel Peninsula. Main figure: shaded regions
delineate Neogene marginal basins. WU = Waihau Beach, CS = Camp Stream.
The location of piston core MD972121 (Carter et al., 2002) is also shown. (b)
Gently folded Late Miocene sequences on the Mahia Peninsula. TC = Te Waipera
Cemetary, PP = Putiki Point, NR = Nukutaurua Road. (c¢) Early Miocene-Pliocene
sequences in the vicinity of the Wairoa Syncline. MS = Matawai Station, OR =
Oliver Road, AB = Anzac Bridge, BG = Burgess Road, WH = Waterfall Hill.
(d) Late Miocene—Pliocene (not subdivided on map) Awatere Group sediments,
bounded by faults of the Marlborough fault system. WV = Waihopai Valley, WB =
White Bluffs, SV = Sea View, RB = Richmond Brook, UB = Upton Brook, BR =
Blind River, NC = Needles Creek. Figures (b) and (c) are adapted from the QM AP
data set (Mazengarb and Speden, 2000), and (d) is modified from Roberts (1992).
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Figure 6.2: Down-core profiles of (a) NRM intensity, and (b) median destructive
field (MDF) for piston core MD972121 (Carter et al., 2002). In the upper 4.7 m
of the core, NRM peaks and corresponding MDF minima correlate with dated ash
layers rich in coarse magnetic minerals. Below 4.7 m, NRM and MDF both decrease
significantly, indicating dissolution of detrital magnetic minerals; susceptibility pro-
files for the entire 35 m core (not shown) indicate that this reduction is permanent.
(c) Pyritization reactions, after Berner (1984).

reported magnetite in sediments that were probably partially sourced from Cre-
taceous volcanics). Typical depositional environments in marginal basins of the
Hikurangi margin have apparently been consistently inimical to the preservation
of detrital magnetite since the Early Miocene, and it is therefore unlikely to be a
significant contributor to the remanence of most of these sediments.

Pyritization proceeds via a series of precursors that include the ferrimagnetic
iron sulphide greigite (Fe3S;) (Berner, 1984; Wilkin and Barnes, 1997). Although
it is generally regarded as metastable, instances of greigite carrying a stable ChRM
are increasingly being recognized in the geological record (Roberts and Weaver,
2005). It has been shown that where reactive iron is abundant and organic car-
bon is relatively restricted, any dissolved sulphide reacts rapidly with available
dissolved iron, which can lead to incomplete pyritization and the preservation of
greigite (Kao et al., 2004). Such conditions are particularly likely to arise where
the sedimentation rate, and therefore the dilution of organic matter by terrigenous
material, is high.

In New Zealand, greigite has previously been reported in a small part of a late
Miocene section in Marlborough (Roberts and Turner, 1993) (UB, Fig. 6.1d), and,
more recently, in early late Miocene rocks from the northern Hikurangi margin
(WU, Fig. 6.1a; see Chapter 5). Greigite has also been inferred to be present in

Pleistocene sediments from the Wanganui Basin, western North Island (Roberts
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and Pillans, 1993). Although definitive identifications of greigite have only been
made in these few instances, the demagnetization behaviour of samples from the
localities in question is consistent with that of paleomagnetic samples from similar
sediments throughout New Zealand (Turner, 2001), which raises the possibility
that authigenic greigite is a common remanence carrier in these rocks. The steady
state diagenetic model of Berner (1984) confines pyritization reactions to the top of
the sediment column, in which case any remanence carried by greigite will record
the geomagnetic field close to the time of deposition. However, increasing reports of
later-forming greigite (Florindo and Sagnotti, 1995; Jiang et al., 2001; Roberts and
Weaver, 2005; Sagnotti et al., 2005), including one instance within New Zealand
itself (Chapter 5), make it clear that external forcing events can potentially change
pore water chemistry and trigger greigite formation at any time after deposition,
not just during initial reductive diagenesis. In New Zealand, paleomagnetic data
from Cenozoic sediments are rarely constrained by rigorous field tests; if greigite
is a common remanence carrier, the possibility of late-forming magnetizations
becomes an issue of real concern.

In this study, we discuss paleomagnetic results from samples collected along
the length of the Hikurangi margin. The complex behaviour observed, particularly
the abundance of late forming magnetizations, is consistent with the presence of
an authigenic mineral; we present rock magnetic and scanning electron microscope
(SEM) observations that confirm in all cases that this mineral is greigite. Later
oxidation of iron sulphides can also be implicated in the formation of strong vis-
cous overprints. We then address the implications of these results, not only for
paleomagnetic studies in New Zealand but also in similar tectonically active mar-
ginal basins around the Pacific, the Mediterranean, and other areas that are host

to rapidly deposited terrigenous sediments and reducing diagenetic environments.

6.2 Sampling and methods

The majority of the results presented here come from a comprehensive paleo-
magnetic sampling program undertaken in 2002/03 in order to study the tectonic
evolution of the Hikurangi margin. Paleomagnetic analysis of samples from over
40 localities was performed using a 2G-Enterprises cryogenic magnetometer, sit-
uated in a magnetically shielded laboratory at the National Oceanography Cen-
tre, Southampton (NOCS). Samples were stepwise demagnetized using both ther-
mal (40° steps from 80°C to 400°C) and AF (5 mT steps to 60 mT) techniques.
These measurements reveal a wide range of paleomagnetic behaviours, including
strong present-day field overprints (Chapter 4) and differently timed magnetiza-
tions separated by several Myr (Chapter 5). We have focused on a subset of
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these localities, chosen to reflect this variety, for further investigations of magnetic
mineralogy (Fig. 6.1; Table 6.1). Samples from earlier studies in the Marlborough
region (Fig. 6.1d) (Roberts, 1992; Roberts et al., 1994) are also included. Three
types of analysis were performed: (a) measurement of the bulk magnetic hysteresis
properties of ~1 cm?® sub-samples, using a Princeton Measurements Corporation
Micromag 3900 vibrating sample magnetometer (VSM) at NOCS. Values of sat-
uration magnetization M, saturation remanent magnetization M,., and coercive
force B, were obtained from hysteresis loops (0.5 T saturating field); the coercivity
of remanence B, was determined from back-field remanence curves. (b) Measure-
ment of first-order reversal curves (FORCs), which are a class of partial hysteresis
loop measured by cycling between a positive saturation field and a reversal field B,
(Pike et al., 1999; Roberts et al., 2000), using the same VSM. A series of FORCs
with different B, values provides a more complete sampling of the magnetic re-
sponse of the sample than a single hysteresis loop; this information is commonly
represented on a FORC diagram, which can be thought of as a contour plot of the
coercivity distribution of magnetic particles and their interaction field strengths
(Pike et al., 1999; Roberts et al., 2000). We measured 140 FORCs for each sam-
ple, with a field spacing of 1.85 mT and an averaging time of 250 ms, in a 0.5
T saturating field. FORC distributions were calculated using a smoothing factor
(SF) of 5. (c) SEM observations of resin-impregnated polished sections, combined
with elemental analysis of mineral phases using an X-ray energy dispersive spec-
trometer (EDS). Principal observations were made at NOCS using a LEO 1450VP
SEM, operated at 10-20 keV with an acceleration voltage of 17-20 pA, and a
Princeton Gamma Tech (IMIX-PTS) EDS system. Some supplementary analyses
were made with a JEOL JSM-6360LV SEM, operated at 15 keV with an 18 pA
acceleration voltage, and an Oxford Instruments Ltd INCA-300 EDS, at the In-
stitute of Earth Sciences, Academia Sinica, Taipei, Taiwan. Observations focused
on iron sulphides, which are easily identified by their high electron backscatter.
Careful analysis of EDS measurements, calibrated with a pyrite standard, allows
different phases such as greigite and pyrite to be distinguished by their distinctive
iron to sulphur ratios (Fe/S = 0.75 and = 0.5, respectively) (Jiang et al., 2001;
Roberts and Weaver, 2005; Sagnotti et al., 2005; see also Chapter 5).

6.3 Paleomagnetic data
The diverse paleomagnetic behaviour of the studied sediments reflects the wide

range of processes that have contributed to their complex magnetization. Results
from the localities described below are representative examples of these various

processes.
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6.3.1 Differentially timed synfolding magnetizations, Mahia

Peninsula
Three localities were sampled within a thick sequence of fine-grained mudstones,

interbedded with tuffs and reworked tuffaceous beds, on the north coast of Mahia
Peninsula (Fig. 6.1b). The rocks are all of late Miocene (6.5-11.0 Ma) age (Mazen-
garb and Speden, 2000) and are distributed across a syncline formed during early
Pliocene folding (Buret et al., 1997).

Near Te Waipera Cemetery (locality TC), we sampled a 24.0 m sequence con-
sisting of massive, dark grey, fine-grained mudstones, overlain by interbedded mud-
stones and tuffaceous beds, with one primary tuff (Fig. 6.3a). The bedding attitude
is 203/10 NW (Fig. 6.1b). NRMs are strong, with intensities >5 x10™* Am~! in
89% of samples (Table 6.1), and a minimally overprinted, normal polarity ChRM
was almost universally recovered (Fig. 6.3b, ¢). Thermal and AF demagnetiza-
tions were both effective, although AF treated samples from the lower part of
the section often developed a strong gyroremanent magnetization (GRM) above
40 mT (Fig. 6.3c). After correction for bedding tilt, 48 samples yielded a mean
paleomagnetic direction of declination (D) = 57.5°, inclination (I) = 53.8°, and
ags = 2.8° (Fig. 6.3d).

At Putiki Point (locality PP), the 16.5 m sequence sampled consists of shal-
lowly dipping (bedding attitude 239/11 NW) white, ash-rich mudstones, with
minor reworked tuff beds (Fig. 6.3e). In comparison to TC, samples had weaker
NRMs, with 76% of samples having intensities <5 x10™* Am~! (Table 6.1), and
AF demagnetization was generally ineffective. A reversed polarity ChRM was iso-
lated from 24 samples, producing a mean direction in tilt-corrected coordinates of
D =237.8°, 1 = 64.5°, and ags = 5.0° (Fig. 6.3h). The ChRM was overprinted to
various degrees by a normal polarity component (Fig. 6.3f, g), which was so strong
at three sampling levels that a stable endpoint could not be isolated (marked by
crosses in Fig. 6.3¢).

At the end of Nukutaurua Road (locality NR), we sampled an 81.5 m sequence
of more steeply dipping (bedding attitude 240/48 NW) pale grey mudstones, regu-
larly interbedded with white reworked tuffs (Fig. 6.31). NRMs were generally weak
(81% of samples <5x10™* Am™!) and noisy demagnetization paths were common;
at three horizons, the remanence was so unstable that reliable directions could not
be isolated (Fig. 6.31). Both normal and reversed polarity ChRMs were identified
in this section (Fig. 6.3j, k). After tilt correction, a mean direction of D = 99.7°,
I =-62.8°, and ag; = 4.7° was determined from 16 normal polarity samples; the
mean reversed polarity direction was D = 256.9°, I = 65.9°, and ags = 5.0° from
24 samples (Fig. 6.31).
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Table 6.1: Magnetic properties of samples analysed in this study.

NRM Hysteresis ratios
Locality n (ngfiniz—l) o BASE? ! n  M,./M; B, /B.
Mabhia Peninsula (Fig. 6.1b)
TC 54 2.7-34 89% 15 0.12-0.52 1.35-3.90
PP 42 0.5-12 24% 4 0.20-0.24 3.23-3.72
NR 83 0.2-64 19% 21 0.03-0.20 3.13-17.47
Rakauroa (Fig. 6.1c)
MS 60 0.1-2.2 0% 2 0.12-0.13 2.93-3.21
OR 81 0.5-7.6 9% 2 0.17-0.18 2.70-2.85
AB 42 0.5-1.8 0% 2 0.12-0.14 3.64-3.84
Coast North of Gisborne (Fig. 6.1a)
WU 60 0.2-15 ™% 8 0.13-0.19 3.38-3.87
Wairoa Syncline (Fig. 6.1c)

WH 16 2.2-53 6% 2 0.13-0.14 3.67-3.99
BG 11 3.4-7.8 44% 2 0.11-0.13 4.96-5.61
Marlborough (Fig. 6.1a, d)

SV 12 16-41 100% 3 0.28-0.41 1.64-2.59
UB 19 1.3-93 55% 6 0.14-0.59 1.27-3.46
WB 14 0.3-22 ™% 3 0.23-0.49 1.38-2.56
BR 9 1.5-4.1 0% 2 0.14-0.16 3.51-3.75
CS 12 1.0-44 58% 2 0.36-0.45 1.46-1.75
RB 12 1.1-27 5% 3 0.22-0.44 1.35-2.34
WV 12 1.1-16 42% 2 0.14-0.15 3.19-3.20
NC 10 1.9-26 70% 3 0.14-0.33 1.78-3.60

Locality names are abbreviated as in Fig. 6.1. n = number of samples analysed;
NRM = natural remanent magnetization; M, = saturation remanent mag-
netization; M, = saturation magnetization; B.. = coercivity of remanence;
B, = coercive force.
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Figure 6.3: Demagnetization data from Mahia Peninsula. (a) Sequence sampled at
TC. Arrows mark sampling horizons in mudstones (black/dark grey) and tuffaceous beds
(light grey, stipple for primary tuff), with normal polarity (solid circle) or unstable mag-
netizations (cross) indicated. (b) Vector component plot of AF demagnetization data
for sample TC28B. Solid symbols denote declinations, open symbols inclinations, dashed
lines best-fit directions from principal component analysis. (c¢) AF demagnetization data
for sample TC33A, with GRM acquisition above 40 mT. (d) Equal area stereographic
projection of normal polarity ChRM directions (open circles) from TC, with calculated
mean direction and ags error ellipse (bold). (e) Sequence sampled at PP. All sampling
horizons had reversed polarity magnetizations (open circles), with unstable ChRMs at
three levels (crosses). (f) Thermal demagnetization data for sample PP17A. (g) Ther-
mal demagnetization data for sample PP30A, with a strong normal polarity overprint
and reversed ChRM. (h) Stereoplot of reversed polarity ChRMs (closed circles) from
PP, with mean direction. (i) Sequence sampled at locality NR, showing normal and
reversed polarity, and unstably magnetized horizons. Partially open/closed circles mark
horizons with samples of both polarities. (j) AF demagnetization data for reversed po-
larity sample NR13B. (k) AF demagnetization data for normal polarity sample NR21B.
(1) Stereoplot of normal and reversed polarity ChRMs from NR, with mean directions.

89



Chapter 6 Magnetic signature of New Zealand Neogene marine sediments

In tilt-corrected coordinates, the normal and reversed polarity mean directions
from NR fail the reversals test (critical angle at 95% confidence level = 7.0°%
observed angle between means = 10.3°) (McFadden and McElhinny, 1990). The
reversed polarity direction is close to that isolated at PP, although it fails the
test for a common mean (critical angle = 6.2°; observed angle = 8.1°) (Fig. 6.4a),
but the normal polarity direction has a significantly higher declination than the
mean direction from TC. Reversing the tilt correction restores the mean direc-
tions from the moderately tilted NR locality closer to those from the other two
localities (Fig. 6.4a), but less tilting is required to reconcile the reversed polarity
data. This suggests that the two polarities represent differently timed, synfolding
magnetizations. The presence of sister samples with different polarities in several
horizons in the middle of the NR section (Fig. 6.31) suggests that the polarity
sequence is not primary, which supports the hypothesis of differential timing. Ap-
plying the fold test of Tauxe and Watson (1994) separately to the normal and
reversed polarity directions (Fig. 6.4b, ¢) produces a clear difference at the 95%
confidence level: the reversed polarity directions are in best agreement at 79% un-
folding, while the normal polarity directions cluster at 44% unfolding. The normal
polarity magnetization was therefore acquired demonstrably later, although both
polarities are clearly associated with the same folding episode; there is no trace of
a syn-depositional remanence at any of the Mahia localities. Paleomagnetic mean
directions after partial unfolding combine to give a declination of 49 4+ 5° for the
Mabhia Peninsula localities; large-scale motion of the Australian plate accounts for
~1°/Myr of clockwise rotation (Idnurm, 1985), leaving a declination anomaly of
44 + 5° since folding at 4-6 Ma.

6.3.2 Early forming magnetization, Rakauroa region
As reported in Chapter 4, resampling of three Early Miocene localities in the

Rakauroa region (Fig. 6.1c) established that a previously reported large declina-
tion anomaly (Mumme and Walcott, 1985) was the result of incomplete removal of
a large viscous overprint. At Oliver Road (OR) and Matawai Station (MS), more
rigorous analysis yielded tectonically unrotated, reversed polarity declinations (Ta-
ble 6.2), which are shown by field tests to predate early folding. At Anzac Bridge
(AB), the remaining site, no stable ChRM could be isolated beneath the over-
print. The OR and MS localities represent a clear instance of an early-forming
remanence that preserves a retrievable ChRM despite strong overprinting. NRM

intensities were <5x10™* Am~! for almost all samples at these localities.
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Figure 6.4: (a) Calculated mean directions and ags error ellipses in both geo-
graphic and tilt-corrected coordinates for the TC, PP, and NR localities, Mahia
Peninsula. Dashed arrows demonstrate how the directions from the different locali-
ties are brought into better agreement by reversing the tilt correction. (b) Bootstrap
fold test of Tauxe and Watson (1994), applied to normal polarity ChRMs from TC
and NR. Variation of the principal eigenvector 71 with various degrees of unfolding
is depicted with dashed lines for different para-data sets; the distribution of maxima
for these data sets is shown by the histogram. The 95% confidence interval (grey
shading) puts the maximum at 34-54% unfolding, indicating a synfolding magneti-
zation. (c) Fold test applied to reversed polarity ChRMs from PP and NR. The 95%
confidence interval for the maximum value of 71 is at 65-92% unfolding, indicating
a synfolding magnetization acquired earlier than the normal polarity remanence.
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Table 6.2: Summary of paleomagnetic results from localities included in

this study.
Locality D (°) I(°) ags (°)  k Reference
Mabhia Peninsula (Fig. 6.1b)
TC! 57.5 538 28 541 this study
NR! 99.7 -62.8 4.7 63.3 this study
256.9 65.9 5.0 36.4
PP! 237.8 64.5 5.0 36.2 this study
Rakauroa (Fig. 6.1c)
MS 198.9 43.3 8.1 12.6 Chapter 4
OR 195.5 47.5 5.8 16.3 Chapter 4
AB PDF Chapter 4
Coast North of Gisborne (Fig. 6.1a)
WU 85.6 -49.5 4.5 55.5 Chapter 5
206.8 63.1 7.0 18.7
Wairoa Syncline (Fig. 6.1c)
WH PDF this study
BG PDF this study
Marlborough (Fig. 6.1a, d)
SV 223.5 58.7 3.1 67.1 Roberts (1992)
UB 201.3 59.0 1.8 48.2 Roberts (1992)
WB 204.2 67.0 3.6 58.1 Roberts (1992)
BR 212.6 59.5 2.0 37.5 Roberts (1992)
CS 174.8 59.3 2.8 50.8 Roberts (1992)
RB 211.6 61.8 39 565  Roberts (1992)
WV 199.6 60.6 24 84.6 Roberts (1992)
NC 2154 59.8 3.5 61.1 Roberts (1992)

Mean directions are given in tilt-corrected coordinates. 'Localities
with synfolding magnetizations; these directions are therefore not
indicative of tectonic rotations.
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6.3.3 Early and late magnetizations, Waihau Beach
Two distinct magnetizations with opposite polarity, both with weak NRM in-

tensities (7% of samples having intensities >5x10~* Am™!), and with a 60° dif-
ference in declinations, were reported from a section of massive, grey mudstone,
with interbedded tuffaceous layers, at Waihau Beach (WU) (Fig. 6.1a; Table 6.2).
The large discrepancy in declinations can only be accounted for if several Myr of
vertical-axis rotation has occurred between the acquisition of these two magne-
tizations (Chapter 5). The later-forming, reversed polarity remanence has only
patchily grown within the section, which results in an apparent reversal sequence.
SEM observations confirm that both polarities are chemical remanent magnetiza-
tions (CRMs) carried by greigite (Chapter 5).

6.3.4 Strong present-day field overprint, Wairoa Syncline

Two localities were sampled across the Wairoa Syncline (Fig. 6.1c): a roadside
outcrop of interbedded silty mudstones and sandstones, with a steep northwest
dip, near Waterfall Hill (WH); and a section of massive, sandy mudstone with
occasional sandstone beds exposed on the northern bank of the Hangaroa River
near Burgess Road (BG). NRM intensities of samples from BG were higher than
at WH (with 44% and 6% of samples >5x10"%* Am™!, respectively). However,
demagnetization data indicate that both localities are dominated by a low tem-
perature, low coercivity remanence component, which aligns with the present-day
field direction (D = 20°, I = -64°) before tilt correction, indicating that it is a
viscous overprint (Fig. 6.5). The low MDF and unblocking temperatures indicate
that, in contrast to the nearby Rakauroa localities, no older paleomagnetic signal
has been preserved, which is a common phenomenon in this region (Mumme et al.,
1989).

6.3.5 Marlborough

Extensive paleomagnetic sampling of fine-grained Late Miocene to Pliocene sedi-
ments has been undertaken in the Marlborough region, at the southern end of the
Hikurangi margin (Fig. 6.1a, d), for tectonic (Roberts, 1992; Little and Roberts,
1997) and stratigraphic (Turner et al., 1989; Roberts et al., 1994) studies. Vertical
axis rotations inferred from paleomagnetic data correlate well with deviations in
the strike of a vertical structural fabric in the underlying Late Jurassic to Early
Cretaceous Torlesse basement rocks (Little and Roberts, 1997), which suggests
relatively early remanence acquisition dates.

Previously unanalysed paleomagnetic samples from the collection of Roberts
(1992) provide a larger data set for interpreting the magnetic properties of Neo-

gene sediments from New Zealand. Samples were stepwise AF demagnetized before
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Figure 6.5: Vector component plot of (a) AF demagnetization data for sample
WHI16A, and (b) thermal demagnetization data for sample BGO1B (symbols as in
Fig. 3). Data are plotted before correction for bedding tilt, and show only a low
coercivity, low temperature component aligned with the present day field (dashed
lines) which is interpreted as a viscous overprint.

preparation for VSM and SEM analyses. NRM intensities were generally higher
than those observed in localities from the northern Hikurangi margin, with an
average of 51% of samples having intensities >5x10"* Am~! (Table 6.1). Al-
though AF demagnetization was found to be generally ineffective in the original
studies (Turner et al., 1989), directions comparable to previously published ther-
mal demagnetization data (Table 6.2) were obtained from Upton Brook (UB), Sea
View (SV), White Bluffs (WB), and Waihopai Valley (WV). At other localities,
particularly Richmond Brook (RB), Needles Creek (NC) and Camp Stream (CS),
lengthy storage (15 years) in an unshielded environment appears to have led to

the development of strong secondary overprints.

6.4 Rock magnetic and SEM observations

Greigite has already been clearly identified as a remanence carrier in samples
from Upton Brook (UB) and Waihau Beach (WU), by X-ray diffraction (XRD)
on magnetic separates (Roberts and Turner, 1993) and SEM analyses of polished
sections (Chapter 5), respectively; this provides a useful starting point for our rock
magnetic measurements. The FORC distribution for sample UB192A (Fig. 6.6a),
which is from close to the stratigraphic interval where greigite was reported by
Roberts and Turner (1993) indicates a large population of strongly interacting SD
grains with a peak coercivity of ~60 mT, which is typical of greigite (Roberts
et al., 2000). In contrast, the distribution for sample WU21A lies closer to the ori-
gin of the FORC diagram, with a slight peak at ~20 mT (Fig. 6.6b, d). Such low
coercivities have not previously been considered indicative of sedimentary greig-
ite, which is generally associated with high coercivities of the type indicated in
Fig. 6.6a (Roberts, 1995b). A large peak at the origin of the FORC distribution in
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both samples, most easily seen in profiles along the B, axis (Fig. 6.6¢, d), indicates
a significant reversible component of magnetization due to paramagnetic and su-
perparamagnetic (SP) particles (Pike, 2003). Pike et al. (2001) demonstrated that
thermal relaxation in a population of single domain (SD) grains will progressively
shift a FORC distribution to lower B,; in the extreme case of a sample dominated
by SP particles, the FORC distribution will be centred on the origin of the FORC
diagram (Pike et al., 2001). It therefore appears that in addition to stable SD
greigite, sample WU21A contains a substantial SP population, which causes the
FORC distribution to shift to lower coercivities and also contributes to a large
reversible ridge (Fig. 6.6d).

Large SP populations will also alter bulk hysteresis parameters, decreasing
M,/ M, and markedly increasing B,/ B, (Tauxe et al., 1996; Dunlop, 2002), which
is consistent with the position of sample WU21A on a Day et al. (1977) plot
(Fig. 6.6e). A similar range of magnetic properties is exhibited by all samples
in this study, which also have FORC distributions with a measurable reversible
ridge at the origin consistent with the presence of a sizeable SP (or paramagnetic)
contribution. On a Day plot, the samples follow a trend that resembles theoretical
SD-SP mixing curves for (titano)magnetite (Dunlop, 2002) (Fig. 6.6e). Although
strict numerical comparison with the results of Dunlop (2002) cannot be made, the
magnetic behaviour of SD-SP greigite mixtures broadly resembles that expected
for (titano)magnetite mixtures. Changes in magnetic properties amongst these
samples therefore appear to be linked to a change in the relative proportions of
thermally stable SD and unstable SP grains. This relationship is made clear by
data from TC (Fig. 6.7), which establish an explicit linkage between demagneti-
zation behaviour, hysteresis properties, and the FORC distribution. As shown in
Fig. 6.7a, stably magnetized samples that acquire GRMs at high AFs (TC08B;
see also Fig. 6.3c) have low B../B. (<1.5) and M,/M; ~ 0.5, approaching SD-
like values, whilst their FORC distributions also indicate a large population of
magnetostatically interacting stable SD grains (GRM acquisition by SD greig-
ite during AF demagnetization is a well-established phenomenon (e.g. Snowball,
1997)). Samples that still have a stable ChRM, but which do not acquire a GRM
(TC28A; see also Fig. 6.3b) have elevated B,,./B. (=~ 3.5) and a FORC distribu-
tion similar to that seen for sample WU21A, with a large reversible ridge, thermal
relaxation of the SD assemblage, and reduced magnetostatic interactions. Finally,
samples from an unstably magnetized horizon (Fig. 6.3a), with no clear ChRM
and B./B. >7 (TC23A), have a FORC distribution almost exclusively consist-
ing of thermally relaxed SP particles. Increasing B../B. also corresponds with

wasp-waisted hysteresis loops (Fig. 6.7b), a further indication of an increasingly
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Figure 6.6: (a, b) FORC distributions for samples UB192A and WU21A, which are
both known to contain greigite, interpreted as (a) a population of SD greigite with strong
magnetostatic interactions, and (b) a smaller population of SD greigite, with minimal
interactions and a coercivity distribution shifted toward the origin by thermal relaxation.
(c, d) Profiles through the FORC distribution at B, = 0 for both samples, illustrating
the large reversible ridges at B, = 0. (e) Hysteresis parameters for all samples in this
study, plotted according to Day et al. (1977). Compared to the SD-like values of sample
UB192A, the large SP population of sample WU21A has reduced M, /M, and increased
B,/ Bg¢; many other samples from the Hikurangi margin also plot in the same region.
Theoretical curves for mixtures of SD and SP (titano)magnetite (Dunlop, 2002) have
been plotted for 5 nm and 10 nm SP grains (% refers to % SP grains), although the
assumption of a constant SP grain size is probably not valid in this case.
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dominant SP contribution (Tauxe et al., 1996). Normalised FORC profiles for rep-
resentative samples from each of these groups (Fig. 6.7c) clearly show that as the
relative height of the stable SD peak decreases, thermal relaxation effects become
more dominant, shifting the higher coercivity distribution from a clear peak cen-
tred at ~60 mT to a flatter profile with lower B, values. All of these observations
are consistent with the increase in SP content indicated by comparison to theo-
retical SD—-SP mixing curves (Fig. 6.7a), as is the increased relative magnitude
of the reversible ridge (RR) in the profiles of Fig. 6.7c. A variable paramagnetic
contribution due to lithological changes in the TC section (Fig. 6.3a) cannot be
ruled out as the cause of variations in the magnitude of RR. Nevertheless, the
increasing ratio between the two peaks of the FORC distribution (RR/SD, see
inset in Fig. 6.7a) seems to provide a qualitative measure of the increasing SP
component.

Further support for a common magnetic mineralogy in these samples comes
from SEM observations (Fig. 6.8): abundant iron sulphides are seen in all sam-
ples, commonly forming aggregates with at least two distinct growth phases. The
first generation consists of framboidal pyrite (P), often with euhedral overgrowths
resulting from progressive recrystallization in evolving pore waters during early di-
agenesis (Raiswell, 1982). Later generations of space-filling pyrite (P2) and greig-
ite (G) have then grown around these framboids. The greigite invariably has a
finer grain size than P2, and appears to have formed by neoformation on the
surfaces of the earlier framboids (Fig. 6.8b, c, e, i), and also as isolated patches
between silicate grains (Fig. 6.8¢c, 1) or within the space filling matrix (Fig. 6.8e,
k). These growth relationships suggest that the greigite either formed earlier than,
or penecontemporaneously with, P2.

At OR, which is one of the localities where early remanence acquisition is veri-
fied by a fold test (Chapter 4), early framboidal pyrite P is partially or completely
surrounded by amorphous silica cement (Figs. 6.8e, f), which appears to have
limited the growth of later generations of iron sulphides. Where P2 and G have
developed, the growth relationships appear to be similar to that described above;
however, an earlier generation of greigite is also present as framboids rimmed by
neoformed pyrite (Fig. 6.8f).

Greigite neoformation between the cleavages of detrital sheet silicates (Fig. 6.8h)
is also common in many samples. This has implications for the timing of rema-
nence acquisition because, compared to magnetite, iron-bearing phyllosilicates are
relatively unreactive to sulphide, requiring thousands of years for partial disso-
lution to occur (Canfield et al., 1992; Jiang et al., 2001; Roberts and Weaver,
2005).
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Figure 6.7: (a) Day plot illustrating the relationship between varying hysteresis
ratios and the FORC distributions of selected samples from locality TC. SD-SP mix-
ing curves (Dunlop, 2002) are again plotted for reference. Decreasing M, /M, and
increasing B,/ B, consistent with an increase in SP content, accompany the lower
coercivity distribution and increased thermal relaxation of the stable SD population
on the FORC distribution. The relative magnitude of the reversible ridge at B, = 0
also increases, as shown by the inset plot of RR/SD, the ratio of the heights of the
reversible ridge and the SD peak. (b) Hysteresis loops for selected samples from (a),
with the paramagnetic slope corrected. Samples with higher B.,/B. (TC23A, 28A)
are more wasp-waisted than samples with more SD-like values (TC08B, 32A), which
is diagnostic of a larger SP contribution (Tauxe et al., 1996). (c) Profiles along the
B, axis of FORC distributions from (a), normalised to the peak of the reversible
ridge at B. = 0. As the SD peak gets proportionally smaller, it also shifts toward
the origin, due to thermal relaxation of the proportionally larger SP population.
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In many samples, EDS analyses of the iron sulphides reveal elevated Fe:S ratios
and measurable oxygen peaks in the absence of silicate and carbonate minerals,
suggesting that they are oxidised to some degree. At sites where there is no trace of
an ancient paleomagnetic signal, this oxidation has extensively degraded later iron
sulphides, replacing them with amorphous iron oxide (Fig. 6.8n, o). The FORC
distributions for such samples are dominated by a large reversible component of

magnetization (Fig. 6.8m).

6.5 Discussion
Paleomagnetic data demonstrate that the magnetizations of Neogene sediments

from New Zealand are often complex. The late-forming (>1 Myr after deposition)
CRMs on Mahia Peninsula and Waihau Beach require involvement of an authi-
genic phase, such as greigite, but our SEM observations also link greigite with
early-forming remanences in the Rakauroa and Marlborough region. The samples
share certain aspects of their demagnetization behaviour, particularly magnetic
unblocking above 250°C, the onset of thermal alteration at ~350°C, and a general
unresponsiveness to AF treatment, with many other New Zealand Cenozoic mud-

stones, which suggests that fine-grained greigite may be common in these rocks.

Figure 6.8 (preceding page): Representative FORC distributions and back-
scattered electron microscope images illustrating microtextures of authigenic greigite
(G) and pyrite (P, P2). (a-c) Sample TCO8AB, which (a) is dominated by thermally
stable SD greigite, with strong magnetostatic interactions. A low RR/SD value in-
dicates a small SP contribution (low reversible component of magnetization). (b)
Typical iron sulphide aggregate, with neoformed greigite (G) on the surface of re-
crystallized early pyrite framboids (P), and a later space-filling pyrite generation
(P2). (c) Higher magnification view of another aggregate with similar textural rela-
tionships. (d-f) Sample OR28A, showing (d) thermal relaxation of SD greigite due
to a large SP population, indicated by elevated RR/SD. (e) Iron sulphide growth
within a calcareous microfossil. Amorphous silica cement has grown around early
pyrite (P), restricting growth of later iron sulphides (G, P2). (f) An early greigite
framboid (G) rimmed by pyrite (P) and surrounded by silica cement. (g-i) Sam-
ple UB152A, which (g) contains thermally stable SD greigite. (h) Neoformation of
greigite (G) between the cleavages of a detrital sheet silicate. (i) Aggregate con-
sisting almost entirely of recrystallized pyrite framboids (P), with limited greigite
neoformation (G) on their surfaces. (j-1) Sample NCO6A, with (j) slight thermal
relaxation of the SD population. (k) Iron sulphide aggregate volumetrically dom-
inated by later iron sulphide generations (G, P2). (1) Greigite (G) neoformed on
the surfaces of detrital silicate grains, and surrounded by space-filling pyrite (P2).
(m-o0) Sample BG30A, which (m) is dominated by a large reversible component of
magnetization, with negligible stable SD greigite. (n) Oxidised iron sulphide aggre-
gate. (o) Close-up of the aggregate in (n) where later iron sulphide generations have
been replaced by amorphous iron oxide. Early pyrite framboids (P) have also been
partially affected.
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Our observations contrast with previous studies, which have generally failed
to definitively identify the dominant magnetic carrier (Roberts and Turner, 1993;
Wilson and Roberts, 1999; Turner, 2001). Because the remanence is generally car-
ried by small amounts of greigite, obtaining sufficiently clean magnetic extracts to
enable detection by XRD would be difficult. The FORC profile of sample UB192A
(Fig. 6.6¢), where greigite was detected by XRD (Roberts and Turner, 1993), has
an absolute magnetic moment that is an order of magnitude higher than that of
most other samples, exemplified by sample WU21A (Fig. 6.6¢c, d); clear identi-
fication of greigite is therefore much simpler for samples like UB192A. However,
such high concentrations of thermally stable greigite appear to be relatively rare in
New Zealand sediments. Greigite is also typically a fine-grained component in the
space-filling matrix of iron sulphide aggregates (Fig. 6.8), which might not survive
the extraction process intact, leaving the more robust and/or volumetrically more
significant pyrite framboids. This may explain the presence of pyrite in magnetic
extracts, just as observations of greigite within chlorite cleavages (Fig. 6.8h) might
explain the common occurence of chlorite in extracts in which greigite has been
identified (Roberts and Turner, 1993).

The magnetic properties of these sediments are dominantly controlled by vari-
able mixtures of SP and stable SD material, with a large SP component being
common. The lack of any other identified magnetic minerals strongly suggests
that greigite is also responsible for the SP signal. Greigite formation involves in
situ nucleation and growth of ferrimagnetic grains; any individual grain must
therefore initially be small and magnetically SP, before growing through the sta-
ble SD blocking volume and becoming capable of preserving a thermally stable
ChRM. During the early stages of growth, most particles will be SP, with only a
small number of larger grains having SD magnetic properties (Fig. 6.9a). With
unlimited growth, all particles will eventually become SD; however, even when
the average grain size moves past the SD threshold volume, significant amounts
of SP material can remain in the rock (Fig. 6.9b). The magnetic signature of
these samples is therefore consistent with populations of authigenic greigite, with
variable grain size distributions ranging across the critical boundary for SP/SD
behaviour. Differing proportions of SP and SD grains (Fig. 6.6e) appear to have
resulted from greigite growth being arrested at slightly different times. A plot of
the ratio RR/SD against B,,./B, for all studied samples (Fig. 6.9d) indicates that
in the majority of cases, growth appears to have been arrested at a relatively early
stage, resulting in the preservation of large amounts of SP greigite, FORC distri-
butions centred near the origin, and elevated B../B, ratios. The relatively small

amounts of stable SD greigite lead to weak NRMs. In some horizons at TC, and
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Figure 6.9: (a-c) Illustration of the progressive authigenic growth of greigite. (a)
Just after initiation of growth all grains are small, and most will therefore be SP. (b)
As the average grain size increases with further growth, a larger amount of greigite
attains the blocking volume for stable SD behaviour, and can potentially retain a
ChRM. A large SP population remains, however. (c) After the average grain size
has moved past the blocking volume, SD grains begin to dominate the mixture.
These distributions are linked to the relevant region of (d), a plot of B.,/B. against
RR/SD, which is a qualitative measure of the relative proportions of SP and SD
material in a sample. FORC profiles of samples at each stage of growth are inset for
further clarification. Data from Mahia Peninsula (closed circles = normal polarity
samples, open circles = reversed polarity, small circles unstably magnetized)
and Marlborough (squares) have been separated from data for other localities from
the east coast of the North Island (diamonds). Greigite in most samples is still
dominantly SP, apparently due to the early arrest of authigenic growth.

at many of the Marlborough localities, growth of greigite has progressed further,
such that SD particles begin to dominate (Figs. 6.6a, 6.8a, 6.8g, 6.9c). At the
other extreme, samples from unstably magnetized horizons at TC and NR have
high RR/SD ratios and large reversible components on their FORC distributions
(e.g. NRO8A, Fig. 6.9d), which is consistent with the presence of a large popu-
lation of SP grains, and may therefore represent greigite populations ‘frozen’ in
the early stages of growth (Fig. 6.9a). The ability of rock magnetic measurements
to constrain the varying proportions of SD and SP greigite in these rocks is of
great potential importance; more detailed SEM analysis of grain size distributions
may allow the threshold size for stable SD behaviour of greigite, which is currently
poorly constrained, to be determined.

The factors governing the arrest of pyritization and consequent preservation
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of greigite in these sediments are still not fully understood. There are clearly
some lithological controls on this process, however. On the Mahia Peninsula, the
older, reversed polarity, CRM is generally found in beds rich in volcanic material,
whereas the later, normal polarity magnetization is associated with mudstone
units (e.g. Fig. 6.3i). Futhermore, localities with abundant stable SD greigite tend
to consist of very fine-grained mudstones, rather than the coarser siltstones and
mudstones that dominate elsewhere in the Neogene sedimentary basins of New
Zealand. These observations suggest that authigenic growth is being limited by
underlying chemical controls. Geochemical analyses of fine-grained sediments from
Taiwan that are magnetically dominated by stable SD greigite suggest that greigite
preservation is favoured by a combination of limited organic carbon, which limits
microbial production of dissolved sulphide, and high concentrations of reactive iron
(Kao et al., 2004). In later diagenetic sulphidization events, sulphate limitation,
resulting from closure of the system to seawater due to burial, may also be a
factor. Geochemical analyses of New Zealand sediments are required to identify
the mechanisms controlling greigite growth and grain size.

SEM analyses have also cast light on the source of the strong viscous over-
prints that are common in New Zealand Cenozoic sediments. In previous studies,
unanchored demagnetization paths have indicated the presence of a high temper-
ature magnetic component, that is thought to be carried by iron oxides such as
hematite (Turner, 2001). Our observations of iron oxides replacing authigenic iron
sulphides (Fig. 6.8n, o) demonstrate that these oxides, although not necessarily
hematite, also have an authigenic origin, and that they are most likely a product
of pyrite oxidation in percolating oxic ground water. Greigite, as the finest-grained
iron sulphide phase, will also be highly reactive; the oxidation process will there-
fore involve replacement of SP and SD greigite, as well as paramagnetic pyrite,
by SP iron oxides. As discussed above, authigenic growth produces large popu-
lations of SP grains, and magnetic viscosity associated with high concentrations
of SP hematite is a well-documented phenomenon (Creer, 1961). Samples from
the Rakauroa localities, and from WH and BG (Fig. 6.1c), where a strong viscous
overprint is observed, have reduced M, /M;, which is consistent with the presence
of additional SP hematite (Fig. 6.6e). Furthermore, at localities AB, WH and BG,
where there is no identifiable ChRM beneath the overprint, samples have FORC
distributions with a negligible SD component (Fig. 6.8m) and progressively in-
creased B,/ B, indicative of increasing SP grain size (Fig. 6.6e); these changes are
consistent with continued growth of SP iron oxides at the expense of SD greigite.
Unfortunately, however, these variations are within the range observed at localities

lacking a significant viscous component (Fig. 6.6e); strongly overprinted samples
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therefore cannot be identified by rock magnetic measurements alone.

Perhaps the most significant results of our study relate to the timing of greig-
ite formation. In two instances we have clearly shown that remanence acquisition
post-dates deposition by >1 Myr; caution is therefore required when using pale-
omagnetic data for tectonic studies of the Hikurangi margin. For example, when
properly corrected, synfolding magnetizations from the Mahia Peninsula indicate
44 + 5° of tectonic rotation since 4-6 Ma, which requires a much higher rate of
rotation than has been previously inferred (Wright and Walcott, 1986; Walcott,
1989). Late-forming greigite may be common, and if it is not identified both the
rate and magnitude of tectonic rotations will be underestimated; this was the case
at WU, where an earlier study found only the late-forming magnetization and
incorrectly assumed that it was primary (Chapter 5; Thornley, 1996).

However, even at localities where greigite appears to have formed relatively
early, multiple generations of iron sulphide growth, with later generations often
being volumetrically dominant (e.g. Fig. 6.8b, k), as well as sulphidisation of phyl-
losilicates (e.g. Fig. 6.8h) both appear to require sulphide growth over a significant
period of time following deposition, potentially tens of thousands of years in the
latter case (Canfield et al., 1992). Such a delay is well within the constraints
provided by field tests, which often still allow a considerable period of time for
remanence acquisition. The magnetizations at Rakauroa are only constrained to
within 1-2 Myr of deposition by a fold test (Chapter 4), although greigite asso-
ciated with the first generation of framboids at OR (Fig. 6.8f) does suggest early
growth. Protection of this early greigite generation by the surrounding amor-
phous silica cement might have contributed to the preservation of a pre-folding
remanence. In Marlborough, paleomagnetically determined crustal rotations are
systematically lower than the rotations seen in the underlying Torlesse basement
fabric (Little and Roberts, 1997), although both estimates are generally within
error of each other. This discrepancy might also be due to delayed remanence ac-
quisition in the Neogene sediments, but other explanations are also possible (e.g.
rotations occurring prior to deposition of the sedimentary cover). Nonetheless,
our observations suggest that in New Zealand Cenozoic marine sediments a truly
syn-depositional paleomagnetic signal is rarely preserved intact. At best, greigite
that formed during later phases of sulphide growth is restricted, and is volumet-
rically dominated by earlier greigite, as has been documented in greigite-bearing
sediments in Italy (Roberts et al., 2005).

Delays in remanence acquisition of even a few thousand years have potentially
serious consequences for studies of short-period geomagnetic field behaviour. Even

more troubling are the implications for magnetostratigraphy of results from the
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WU and NR localities, where two differently timed magnetizations are patchily
distributed at outcrop scale, producing a spurious apparent reversal sequence. The
fact that similar patchy remagnetizations, involving late greigite growth and giv-
ing rise to false ‘reversal’ sequences, have been observed elsewhere (Sagnotti et al.,
2005) suggests that this is not an isolated phenomenon. Furthermore, discrim-
inating between earlier and later forming magnetizations appears to be difficult
in the absence of paleomagnetic constraints: at WU, neither SEM observations
(Chapter 5) nor rock magnetic measurements (Fig. 6.6) provide any clear means
of discriminating between horizons with early and late forming greigite. Stably
magnetized samples of both polarities at NR also cannot be distinguished by their
magnetic properties (Fig. 6.9d). Unlike at WU, the fact that the two polarities
formed at different times only became evident following the addition of paleomag-
netic data from nearby localities; if samples from this locality were analyzed in
isolation, the difference in mean directions is small enough that they might easily
be thought to record a primary sequence of reversals.

It is possible that other techniques, particularly geochemical analysis (e.g. laser
ablation §%'S analysis on polished sections), might allow early and late forming
greigite to be distinguished in these sediments. Currently, however, in the absence
of diagnostic indicators from rock magnetic and SEM analyses, the use of pale-
omagnetic field tests to constrain the age of remanence acquisition of greigite is
essential. Furthermore, the reversals test should be used with extreme care: the ex-
istence of apparent reversal stratigraphies resulting from patchy, differently timed
remagnetizations involving greigite indicate that a positive reversals test is not
necessarily diagnostic of an early magnetization.

Late remagnetizations involving greigite are not confined to New Zealand. In-
consistent geomagnetic polarities associated with later-forming greigite have been
reported from Plio-Pleistocene sequences in Taiwan (Horng et al., 1998; Jiang
et al., 2001) and the New Jersey margin (Oda and Torii, 2004), Miocene glacioma-
rine sediments from Antarctica (Sagnotti et al., 2005), and fine-grained Neogene
sediments on the Italian peninsula (Florindo and Sagnotti, 1995), where ferri-
magnetic iron sulphides are widespread (Sagnotti and Winkler, 1999), and where
paleomagnetic data from greigite-bearing sediments have also been used to infer
tectonic rotations (Speranza et al., 1997). It is becoming apparent that conditions
amenable to greigite preservation are common in rapidly deposited continental
margin deposits, which are often targeted for high-resolution studies of geomag-
netic field behaviour. If greigite is present in these sequences, the possibility that
the paleomagnetic record has been compromised by delayed remanence acquisition

must be seriously considered.
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6.6 Conclusions
Paleomagnetic measurements, combined with detailed rock magnetic and SEM

analyses, demonstrate that the authigenic iron sulphide, greigite, which forms dur-
ing reductive diagenesis, is a common remanence carrier in New Zealand Cenozoic
mudstones. Although greigite can form during early diagenesis, in at least two
instances authigenic growth has occurred >1 Myr after deposition. The resulting
late remagnetizations can be irregularly distributed within an outcrop, and cannot
be readily distinguished from earlier magnetizations by either SEM observations
or by rock magnetic measurements. Remanent magnetizations are further affected
by pyrite and greigite oxidation in oxic ground waters, forming fine-grained iron
oxides that carry a dominant viscous overprint. Progressive oxidation of the iron
sulphides eventually destroys any older paleomagnetic signal.

Late remagnetizations may seriously impact upon the reliability of magne-
tostratigraphic and tectonic studies, not only in the New Zealand region but also
in similar sequences worldwide. In the light of our observations, a priori assump-
tion of early remanence acquisition in sediments where greigite is present is ex-
tremely risky in the absence of confirmation from paleomagnetic field tests. Even
an apparent reversal sequence can result from patchily distributed, diachronous

magnetizations; the most reliable constraints come from structural field tests.
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Abstract Large, clockwise, vertical axis tectonic rotations of the Hiku-
rangi margin, East Coast, New Zealand, have been inferred over both geological
and contemporary timescales, from paleomagnetic and geodetic data, respectively.
Previous interpretations of paleomagnetic data have laterally divided the margin
into independently rotating domains, which is not a feature of the short-term ve-
locity field; the domain concept is also difficult to reconcile with the large-scale
boundary forces driving the rotation. New paleomagnetic results, rigorously con-
strained by field tests, demonstrate that late diagenetic growth of the iron sulphide
greigite has occurred at up to 65% of sampling localities. When these remag-
netizations are accounted for, similar rates, magnitudes, and timing of tectonic
rotations are observed for the central and southern Hikurangi margin, which is
consistent with all Neogene rotation being driven by realignment of the subduct-
ing Pacific plate. Rotations initiated at 8-10 Ma, possibly due to collision of the
Hikurangi Plateau, and proceeded at rates of 7-14°/Myr during the Late Miocene
and Pliocene before decelerating to the presently observed rates of 3-4°/Myr at
1-2 Ma. This deceleration is linked to initiation of strike slip on the North Island
Dextral Fault Belt, when these originally reverse faults rotated into an orientation
favourable for accommodating oblique motion. Deformation patterns in the Late
Miocene and Pliocene were dominated by shortening in the southern Hikurangi
margin and by extension in the north, which drove more rapid tectonic rotations
about a pole ~200 km closer to the plate boundary than the present rotation pole.
Overall, the recognition of widespread remagnetizations, the lack of evidence for
independently rotating domains, and the observation of tectonic rotation rates
substantially higher than previously reported, which have been accommodated by
a variety of structures since the Late Miocene, combine to provide a completely

new view of the Neogene tectonic evolution of the Hikurangi margin.

7.1 Introduction
The Hikurangi margin structurally links the subduction zone to the north of

New Zealand, with associated slab roll-back and back-arc spreading, to a zone of
intra-continental transpression on the South Island of New Zealand, where under-
thrusting of buoyant continental crust (the Chatham Rise) impedes subduction
and transfers inter-plate motion to the Marlborough and Alpine-Wairau faults
(Fig. 7.1a). This transition is made less abrupt by subduction of anomalously
thick oceanic crust of the Hikurangi Plateau (Davy and Wood, 1994; Wood and
Davy, 1994) beneath the east coast of the North Island.

Vertical-axis tectonic rotations are an important feature of crustal deformation

in this region, on both decadal and geological timescales. The short-term veloc-
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Figure 7.1:
region (bathymetry from Smith and Sandwell (1997)).

(a) Contemporary geodynamics of the New Zealand plate boundary
Subduction of thickened

oceanic crust (the Hikurangi Plateau) beneath the Hikurangi margin links subduc-
tion and back-arc spreading north of New Zealand with intra-continental transpres-
sion on the Alpine and Marlborough fault systems; the Hikurangi margin rotates
clockwise in response to this transition. The rotating forearc is divided into a num-
ber of separate blocks to account for slip on faults of the North Island Dextral Fault
Belt (NIDFB), following Wallace et al. (2004). SEB = South Fiji Basin; HT = Havre
Trough; TVZ = Taupo Volcanic Zone; MFZ = Marlborough Fault Zone. (b) Sum-
mary of published paleomagnetic data from the Hikurangi margin, showing division
into ‘domains’ based on inferred differences in the rates and magnitudes of tectonic
rotations (cf. Walcott, 1989). (c) Early Miocene reconstruction, following Rait et al.
(1991). Realignment of thrusts associated with the initiation of subduction forms a
NW-SE trending margin that has subsequently rotated up to 90° clockwise.
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ity field, derived from a combination of geodetic data and Quaternary fault slip
rates (e.g. Beanland et al., 1998; Beavan and Haines, 2001; Wallace et al., 2004),
indicates that the entire forearc region is actively rotating clockwise at rates of
~3-4° /Myr with respect to the Australian plate (Fig. 7.1a). Paleomagnetic stud-
ies of tectonically uplifted marine sediments on the east coast of New Zealand
(Walcott et al., 1981; Walcott and Mumme, 1982; Mumme and Walcott, 1985;
Wright and Walcott, 1986; Mumme et al., 1989; Roberts, 1992, 1995a; Vickery
and Lamb, 1995; Thornley, 1996; Little and Roberts, 1997) also routinely report
large clockwise declination anomalies (Fig. 7.1b), indicating that tectonic rotations
are also a long-term feature of deformation on the Hikurangi margin.

A striking feature of the paleomagnetic data is the apparent lateral variation
in the rate and timing of rotations on the Hikurangi margin during the Neogene
(Fig. 7.1b). Declination anomalies of 30-40° in Late Miocene (6-11 Ma) sediments
from the central part of the Hikurangi margin (Wright and Walcott, 1986) are
consistent with the present rate of rotation (Chapter 4). However, Early Miocene
sediments from the northeast North Island (Raukumara Peninsula) indicate no
tectonic rotation with respect to the Australian plate (Walcott and Mumme, 1982;
Mumme et al., 1989; Thornley, 1996), and sparse data from the southern North
Island have been interpreted to indicate Late Miocene rotations that had ceased by
2 Ma (Walcott et al., 1981; Lamb, 1988). Additionally, in the Marlborough region
(northeast South Island), two distinct periods of rotation, in the Early Miocene
and from the early Pliocene (c. 4 Ma) onward, have been observed (Walcott et al.,
1981; Lamb, 1988; Roberts, 1992, 1995a; Vickery and Lamb, 1995; Little and
Roberts, 1997; Hall et al., 2004). These observations led to the proposal that
the margin is divided into discrete, fault-bounded ‘domains’, with independent
tectonic histories (Lamb, 1988; Walcott, 1989) (Fig. 7.1b).

Wallace et al. (2004) modelled contemporary deformation using a number of
rotating blocks, bounded by major faults of the North Island Dextral Fault Belt
(NIDFB) (Beanland, 1995); however, these blocks do not correlate to the pale-
omagnetically defined domains (Fig. 7.1a, b). Furthermore, the domain concept
greatly complicates attempts to relate long-term tectonic rotations to present geo-
dynamics (e.g. Walcott, 1989). Along the present Hikurangi margin, the thickness
of the subducting Hikurangi Plateau increases to the south (Davy and Wood,
1994) (Fig. 7.1a), gradually increasing coupling across the plate interface (Reyn-
ers, 1998), and creating a smooth margin-normal shear gradient that is most eas-
ily accommodated by bulk clockwise rotation of the entire margin. Whilst this
mechanism can account for the similar rates and poles of rotation of the blocks
modelled by Wallace et al. (2004) (Fig. 7.1a), it is difficult to reconcile with the
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domain model, which requires much smaller scale variation of the forces driving
rotation to allow large differential rotations between adjacent crustal blocks. A
possible source of this variation, postulated ‘tears’ in the subducting plate (Reyn-
ers, 1983; Smith et al., 1989) that were thought to correlate to the boundaries of
the paleomagnetic domains, have since been ruled out by high-resolution surveys
of seismicity along the plate boundary (Ansell and Bannister, 1996). Within the
forearc itself, structures that could have accommodated large differential rotations
between adjacent blocks are also not apparent from surface geology.

Key features of the current tectonic regime, including the NIDFB and the
Taupo Volcanic Zone (TVZ), appear to have developed since 1-2 Ma (Beanland,
1995; Wilson et al., 1995; Beanland et al., 1998); prior to this, different structures
must have been involved in accommodating inter-plate motion. The apparent
mismatch between paleomagnetically and geodetically determined rotations may
therefore be a consequence of the ongoing evolution of structures in the New
Zealand plate boundary zone. Some support for this hypothesis comes from ex-
amination of early Miocene thrust sheets from Northland (Northland Allochthon)
(Ballance and Spérli, 1979; Sporli, 1982; Rait, 2000), the northern Raukumara
Peninsula (East Coast Allochthon) (Stoneley, 1968; Rait et al., 1991), and the
southern Wairarapa (Chanier and Férriere, 1989) (Fig. 7.1c). In their present
orientation, the Wairarapa thrust sheets record a northwest-southeast shorten-
ing direction; this contrasts with thrusts in Northland and Raukumara, which
were emplaced from the northeast. Tectonic reconstructions (King, 2000; Rait
et al., 1991) suggest that upon initiation of subduction at 23-20 Ma, all thrusts,
and the margin itself, were oriented northwest-southeast, in alignment with the
Early Miocene Northland volcanic arc (Herzer, 1995) (Fig. 7.1c). Alignment of
the Raukumara thrusts with those in Northland suggests that, in agreement with
paleomagnetic data, the northern part of the margin has experienced negligible ro-
tation since the Early Miocene, and that the rotation of this region observed in the
present velocity field must have begun recently. However, these reconstructions
also suggest that in the same period the southern part of the margin has rotated
up to 90° (Fig. 7.1c), which is greater than the maximum rotations recorded by
previously published paleomagnetic data from the North Island.

Some of the difficulty in reconciling paleomagnetic data from the Hikurangi
margin with both geodetic and other geological data may be due to the question-
able reliability of some of the published paleomagnetic results. Widespread use of
blanket demagnetization techniques in early studies often failed to completely re-
move the strong present day field (PDF) overprints that are common in this region

(Chapter 4); detailed stepwise demagnetization is necessary to assess whether such
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overprints have been successfully removed. Even more significantly, recent obser-
vations indicate that the magnetization of New Zealand Neogene marine sediments
is commonly carried by the authigenic iron sulphide, greigite (Chapters 5 and 6;
see also Roberts and Turner, 1993). Numerous studies of fine-grained sediments
have shown that where greigite is present, remanence acquisition can occur during
late diagenesis, potentially several Myr after deposition (e.g. Florindo and Sag-
notti, 1995; Horng et al., 1998; Roberts and Weaver, 2005; Sagnotti et al., 2005; see
also Chapters 5 and 6). Good constraints on the timing of remanence acquisition
from paleomagnetic field tests are usually lacking in the published data from the
Hikurangi margin. Late remagnetizations may therefore have gone unrecognized,
leading to a loss of information regarding tectonic rotations, and compromising
attempts to reconstruct the deformation history of the plate boundary region.

In this study, we present a major new paleomagnetic data set from the East
Coast of the North Island, New Zealand, which demonstrates that remagnetiza-
tions are widespread along the Hikurangi margin. At sites where the timing of
remanence acquisition can be properly constrained by structural field tests, the
magnetization often post-dates deposition by several Myr. We show that once
these remagnetizations are accounted for, a significantly different history of tec-
tonic rotations in the New Zealand plate boundary zone emerges, which can be

more easily reconciled with active deformation.
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7.2 Sample collection and analysis
Standard (25 mm diameter) paleomagnetic cores were collected from 38 localities

in various Neogene sedimentary basins distributed along the Hikurangi margin
(Fig. 7.2a; Table 7.1). The approximate stratigraphic intervals sampled at these
localities are shown on generalized stratigraphic columns in Figure 7.3. Fine-
grained sediments exposed in sequences with unambiguous bedding orientation
were targeted in all cases. Continuous exposures of >10 m of section were pre-
ferred, in order to ensure that the effects of secular variation were properly aver-
aged. To minimize viscous magnetic overprints, weathered surficial material was
removed from the outcrop prior to sampling, and, upon retrieval, cores were imme-
diately placed in a mu-metal shield. Cores were cut into samples of 21 mm length;
paleomagnetic measurements were then made using a 2G-Enterprises cryogenic
magnetometer (sensitivity of ~107'2 Am?), situated in a magnetically shielded
laboratory at the National Oceanography Centre, Southampton (NOCS). Both
thermal (40° steps from 80°C to 400°C) and alternating field (AF) (5 mT steps
to 60 mT) demagnetization techniques were used; the low-field bulk magnetic sus-
ceptibility was measured for thermally demagnetized samples after each heating
step to monitor for thermal alteration.

Characteristic remanent magnetization (ChRM) directions were calculated us-
ing principal component analysis of stepwise demagnetization data (Kirschvink,
1980). Mean directions and confidence limits for stably magnetized localities were
calculated according to Fisher (1953). If great circle demagnetization paths were
observed at localities where strong overprints were prevalent, they were used to
augment ChRM data (McFadden and McElhinny, 1988) in order to better con-
strain the mean direction. Where localities of similar age were distributed across
well-defined structures, fold tests were applied to ChRM data in an attempt to

constrain the timing of remanence acquisition.
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Figure 7.2: Distribution of sampling localities on the Hikurangi margin. Densely
sampled areas in (b) the Wairoa Syncline and environs, (¢) Southern Hawke Bay,
and (d) the coastal region between Gisborne and Tolaga Bay (pre-Neogene outcrop
in this area is the result of smectite diapirism), are enlarged to show more detail.
Full locality names are given in Table 1; (b) and (d) are adapted from the QMAP
dataset (Mazengarb and Speden, 2000); (c) is modified from Kingma (1962).
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Table 7.1: Location and geological details of sampling localities in this study.

Locality Reiile(ilce (?/Igae) Principal Lithology g:sg?ig Ssaer?gif Behaviour
Rakauroa (Fig. 7.2b)
MB Mokonui Bridge X17/074860 16.84+0.8 Dark, calcareous mud/siltstones 027/18 SE 33 m S
MS Matawai Station* X17/128009 20.4+1.4 Blue-grey mudstones, sandstones 088/54 S 47 m SO
OR Oliver Road? X17/118988  20.4+1.4 Grey and brown sandy mud/siltstones 067/12 SE 27 m SO
MR Makaretu Road X17/118917 17.5+1.5 Fine blue-grey sandstones 086/30 S 11 m U
FR Falkner Road X17/191864 16.84+0.8 Sand-rich siltstones 105/29 S 3m PDF
AF Atea Ford X17/063871  16.84+0.8 Sand-rich mudstones, sandstones 017/12 E 41 m PDF
TK Te Koawa X17/196994 17.5+1.5 Light grey calcareous mudstones 309/56 NE 46 m PDF
AB Anzac Bridge! X17/096972 20.4+1.6 Massive blue-grey mudstones 298/57 NE 53 m PDF
MF Maharahara Farm X17/223976  20.4+1.6 Mudstones and fine sandstones 090/32 S 22 m PDF
Wairoa Syncline (Fig. 7.2b)

MK Mangapoike River X19/071449 61 Massive, light grey mudstones 187/30 W 16 m S
NP Ngatara-Poha X18/160749  9.9+1.1 Sand-rich mudstones, sandstones 186/23 W 82 m* S
TF Te Korau Farm X18/205761  13.1+2.1 Dark, sandy mud/siltstones 199/20 W 13 m S
NG Nyatimita X18/063762  13.5+2.5 Mud/siltstones and sandstones 084/43 S 21 m SO
CH Cheviot Hills X18/204688 14.2+1 Mudstones and sand-rich mudstones 072/56 S 17 m SO
PC Paparatu Cottage X18/175529  15.64+0.5 Mud/siltstones and fine sandstones 183/21 W 19 m SO
GI Glen Innes X18/116668  7.6+1.1 Sand-rich siltstones, sandstones 085/44 S 19 m PDF
BG Burgess Road? X18/088752  9.9+1.1 Sand-rich mudstones 064/42 SE 14 m PDF
SN Strathblane Farm X18/111696  14.2+1 Brown mud/siltstones and sandstones 146/27 SW 25 m PDF
TR Taeumata Road X17/053807  15.6+0.5 Massive grey mud/siltstones 348/19 E 47 m PDF
WH Waterfall Hill? X18/204706 21.4+1.2 Mudstones and massive sandstones 238/63 NW 28 m PDF
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TH Turihaua Point
WU Waihau Beach?
MP Makarori Point
TP Tatapouri Point
SB Sponge Bay

TC Te Waipera Cemetary?
PP Putiki Point?
NR Nukutaurua Road?

BH Blackhead

WT Whangaehu Tuff
TI Titoki Road

PN Paoanui Point

WB Whangaehu Beach
KR Kahuranaki Road
WM Waimarama Beach

BP Brancepeth
FP Flat Point
OK Okau

Y18/608739
717/719916
Y18/541693
Y18/574705
Y18/498658

Y19/362233
Y19/379226
Y19/402222

V23359074
V24186826
V23,/281249
V23420182
V24185829
V22/380435
W22/519461

T26,/485148
T27/587925
U26/840361

Coast North of Gisborne (Fig. 7.2d)
8.842.3
9.9£1.1 Massive grey mudstones and tuffs

14.6+1.4 Turbidites with blue-grey pelagic interbeds

14.6+1.4 Turbidites with blue-grey pelagic interbeds

14.6+1.4 Turbidites with blue-grey pelagic interbeds
Mabhia Peninsula (Fig. 7.2a)

Massive, dark grey mudstones

7.6+1.1 Dark mudstones and tuff beds
7.6+1.1 White, ash-rich mudstones
8.8+2.3 Pale grey mudstones and reworked tuffs

Southern Hawke Bay (Fig. 7.2c)

8.842.3 Massive light grey mud/siltstones

8.84+2.3 Tuff bed within sand-rich siltstones
14.2+1 Brown and grey mud/siltstones
12.1+1.1 Dark, blue-grey mudstones
12.1+1.1 Black and grey mudstones
13.5+2.5 Mudstones, fine siltstones, sandstones
22.143.1 Light blue grey mudstones, welded tuffs

South Wairarapa (Fig. 7.2d)

8.84+2.3 Light grey calcareous mudstones
19.6+2.1 Blue-grey mudstones, glauconitic sands
21.9+1.6 Fine-grained turbidites

038/19 SE
194/23 W
307/14 NE
273/32 N
353/47 E

203/10 NW
239/11 NW
240/48 NW

067/23 SE
051/38 SE
201/30 W
033/61 SE
054/73 SE
196/65 W
285/46 N

229/18 NW
223/41 NW
207/50 W

14 m
7 m
10 m
19 m
43 m

24 m
17 m
82 m

13 m
10 m
23 m
47 m
44 m
32 m
13 m

35 m
14 m
22 m

»n 2 2 »n

SO

SO

SO

SO

PDF
PDF

PDF

SO
SO

Grid references are from NZMS 260 sheets. Bedding measurements are given as strike and dip with dip direction. Demagnetization
behaviour is classified as follows: S = stable ChRM with negligible overprint, SO = ChRM strongly overprinted by present day field, but
still recoverable, PDF = no ChRM evident beneath present day field component, U = magnetization difficult to interpret. !=3 Data from
these localities are presented fully in 'Chapter 4, 2Chapter 6, 2Chapter 5. 4 Sampling at NP was in two 6-7 m sections separated by an

interval with no exposure.
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Figure 7.3: Generalized stratigraphy of the East Coast region, with the strati-
graphic ranges of the sampling sites within simplified lithological columns. Adapted
from Field et al. (1997) with additional information from Neef (1992), Davies et al.
(2000), Mazengarb and Speden (2000) and Francis et al. (2004).

7.3 Results

7.3.1 Demagnetization behaviour
Rock magnetic and scanning electron microscope observations of the studied sed-

iments, which have been discussed in Chapters 5 and 6, indicate that they com-
monly contain variable mixtures of single domain and superparamagnetic greigite,
which grew authigenically within the sediments at various stages of diagenesis.
Thermal demagnetization behaviour, including unblocking at 250-350°C and the
onset of thermal alteration (indicated by large increases in low-field bulk magnetic
susceptibility) above 350°C, is also consistent with the presence of greigite in many
of our samples (cf. Roberts, 1995b).

The natural remanent magnetization (NRM) of all samples was weak (typically
<107* Am™!). In geographic coordinates, a PDF overprint (Declination (D) = 20°,
Inclination (I) =-64°) was also commonly observed. This overprint can be linked to
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pyrite oxidation that is probably associated with modern groundwater percolation
(Chapter 6), and its variable strength exerts a major control on demagnetization

behaviour, which fell into three main classes (Fig. 7.4; Table 7.1).

Class S At 12 of the 38 studied localities (33%), the viscous overprint is weak
and is removed at low temperatures (<150°C) and AFs (<20 mT), allowing a
stable ChRM to be easily isolated (Fig. 7.4a, b). At many of these localities, both

AF and thermal demagnetization appear to be equally effective.

Class SO At 11 further localities (29%), the viscous overprint is much stronger,
and AF demagnetization was generally ineffective, as has often been the case for
similar Cenozoic sediments from New Zealand (Turner et al., 1989; Pillans et al.,
1994; Roberts et al., 1994; Turner, 2001). Thermal demagnetization data often
follow great circle paths toward the ChRM (Fig. 7.4c, d), although in many cases
a stable endpoint is not reached (e.g. Fig. 7.4d).

Class PDF At 13 localities (34%), no ChRM appears to be present; progressive
removal of the PDF overprint reveals no stable component at higher temperatures
or at higher applied fields (Fig. 7.4e, f). Iron sulphide oxidation, which is inferred
to be responsible for the overprint (Chapter 6), has evidently also destroyed any

ancient magnetization.

Demagnetization data for two remaining localities (4%; class U = uncertain
in Table 7.1) proved difficult to interpret, having no obvious PDF overprint and

anomalous ChRM directions with shallow inclinations.

7.3.2 Mean paleomagnetic directions
Mean paleomagnetic directions for type S and SO localities are listed in both geo-

graphic and tilt-corrected coordinates in Table 7.2; ChRM data for these localities,
along with representative great circle demagnetization paths where appropriate,
are plotted in Figure 7.5. The reliability of the mean directions calculated for
some type SO localities may be questionable due to the small amount of data
available, which makes it difficult to assess whether the strong PDF overprint has

been completely removed (e.g. FP, PC; see also discussion in Chapter 4).
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Figure 7.4: Vector component plots of representative AF and thermal demagne-
tization behaviour. Solid symbols denote declinations, open symbols denote incli-
nations, dashed lines indicate best-fit directions from principal component analysis.
Demagnetization behaviour is subdivided according to the variable strength of the
PDF overprint. Class S samples (a, b) have a stable ChRM with a weak viscous
overprint. Class SO samples (¢, d) have a much stronger PDF overprint that over-
laps the ChRM, resulting in great circle demagnetization paths (see inset equal area
stereoplots) and sometimes preventing the isolation of a stable end point (e.g. d).
Class PDF samples (e, f) are also strongly overprinted, but there is no sign of an
underlying ChRM. Data are plotted in tilt-corrected coordinates for (a—d), and in
geographic coordinates for (e—f).
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Table 7.2: Paleomagnetic mean directions and constraints on timing of remanence acquisition.

Mean directions

Timing of remanence acquisition

Localit Geographic  Tilt-corrected . s Age Corrected
Behavior) | DEy 1) D) 1ey 0%k Constraint Untilting B0 nation
Central Hikurangi margin (Rakauroa)

MB (S) 38 379 -524 | 14.2 -52.3 | 6.3 145 no constraint
MS (SO)  27(12) | 298.0 72.0 | 198.9 433 | 81 126 before Barly Miocene folding  100% 19.0-21.7 189 £ 6.5°
OR (SO)  39G9 | 206.1 56.2 | 195.5 475 | 5.8 16.3 19.0-21.7 15.5 £ 4.7°
Central Hikurangi margin (Wairoa Syncline)
MK (S) 26 21.8 -63.8 | 64.5 -49.3 | 3.2 79.6 no constraint
NP (S) 15 16.5 -745| 640 -60.2 | 7.3 284 no constraint
TF (S) 22 15.3 -65.5 53.5 -59.7 3.5 80.0 before Pliocene folding 100% 5.0-15.2  53.5 + 2.4°
NG (SO) 31 2979 476 | 241.5 53.1 5.1 264 5.0-16.0 61.5 £+ 4.1°
CH (SO) 20 3134 27.8 | 2583 652 | 5.6 35.3 | prob. before Pliocene folding 100% 5.0-15.2 783 £ 4.5°
PC (SO) 13 58.7 -76.6 | 79.1 -57.1 | 7.7 315 no constraint
Central Hikurangi margin (coast)
TC (S) 48 443 -58.6 | 57.5 -53.8 | 2.8 54.1
. . 44%
NR(5) 16 6.5 -54.5 | 99.7 -628 | 47 633 gilgggngafzﬁdlﬁlocenef 10-60 491 4 5.4°
24 182.6 44.6 | 256.9 65.9 5.0 364 g 79%
PP (SO) 24 216.1 623 | 237.8 645 | 5.0 36.2
WU (S) 19 66.8 -70.2 | 85.6 -49.5 | 4.5 555 | early (large declination) 100% ? -11.0  85.6 £ 3.6°
24 163.9 59.3 | 206.8 63.1 7.0 18.7 | late (small declination) 100% 0.8-7 26.8 £ 5.4°
MP (S) 44 772 -56.0 | 96.5 -65.1 | 3.7 35.3 | between Miocer.lefPliocene 0% 36.88 512 4990
TP (S) 37 498 -59.2 | 115.8 -66.1 | 3.9 37.3 | deformation episodes
SB (SO) 22 56.9 -11.7 | 39.3 -514 | 6.7 22.1 | prob. before Late Miocene— 100% 3.6-16.0 39.3 £ 5.3°
Pliocene diapirism
TH (S) 23 734 -449 | 534 -53.2 | 55 30.7 no constraint
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Mean directions

Timing of remanence acquisition

Locality Geographic  Tilt-corrected . s Age Corrected
(Behaviour) pDE) 1°) DE) 1) Y K Constraint Untilting 1)) declination
Southern Hikurangi margin (S Hawke Bay)

BH (SO) 24012 | 264.6 59.9 | 224.5 588 | 6.6 21.1 during Late
WT (SO) 5 792 -50.1| 283 526 | 58 176 | \fiocene Pliocene folding 56% 3.6-8.8  60.2+2.3
TI (S) 37 312 -64.4 | 71.3 -478 | 3.0 64.6
Southern Hikurangi Margin (Wairarapa)
BP (SO) 3303 | 210.6 57.8 | 240.3 588 | 45 328 no constraint
FP (SO)  13(M | 2146 44.2 | 250.8 362 | 6.9 36.8 no constraint
OK (S) 37 339.7 -585 | 75.9 -57.4 | 43 31.2 | prob. before Early Miocene  100%  16.0-23.9 75.9 + 3.4°

folding

n = number of samples; superscript number = number of great circle arcs used to constrain the mean direction according to
McFadden and McElhinny (1988). Errors on corrected declinations are calculated according to Demarest (1983).
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Chapter 7 Neogene rotations of the Hikurangi margin

Paleomagnetic declinations (from tilt-corrected mean directions, with errors
calculated according to Demarest (1983)) are plotted against depositional age for
all localities in Figure 7.6. There is a large amount of scatter in these data,
both temporally and spatially: tectonic rotations that differ by as much as 80° are
recorded at localities of comparable age and position along the Hikurangi margin.
Additionally, rotations of >90° are recorded by Late Miocene sediments, which
would require tectonic rotation at substantially higher rates than are presently
observed in the short-term velocity field (e.g. Wallace et al., 2004). However, as
stated above, the assumption that the ChRM dates from the time of deposition
is invalid for at least some, and possibly many, of these localities, due to the
widespread occurrence of authigenic greigite in the studied sediments. In several
cases greigite has formed during late diagenesis, 1 Myr or more after deposition
(Chapters 5, 6). Taking the declination-age plot in Figure 7.6 at face value could
therefore be highly misleading; rigorous constraints on the timing of magnetization
are required to develop a more accurate picture of the rotation history of the

Hikurangi margin.

7.3.3 Constraints on the timing of remanence acquisition
Attempts to establish the age of the ChRM using paleomagnetic field tests, pri-

marily the fold test of Tauxe and Watson (1994), was in many cases frustrated
by the prevalence of strong PDF overprints, which led to the loss of useful data
at critical sites. However, careful analysis enables constraints to be placed on the
timing of remanence acquisition at 16 of the 23 stably magnetized localities, al-
though in some cases the age constraints remain broad (Table 7.2). Constraints on
individual localities are discussed in more detail in the following sections, which are
subdivided according to their position on the Hikurangi margin; the ‘central’ and
‘southern’ regions are roughly equivalent to the Wairoa and Wairarapa domains
of Walcott (1989) (Fig. 7.1b).

Central Margin
Rakauroa region A reversed polarity magnetization in Early Miocene (Otaian)

sediments at Oliver Road (OR) and Matawai Station (MS) (Fig. 7.2b) has been
shown by a fold test to pre-date Early Miocene (Altonian) folding (Chapter 4). The
small declinations observed (<20°; Fig. 7.5) are consistent with expected values
for the Australian plate (Idnurm, 1985) (Fig. 7.6), indicating negligible tectonic
rotations in this area during the Neogene. This contrasts with the large declination
anomaly reported from this region by Mumme and Walcott (1985), which resulted
from incomplete removal of a PDF overprint (Chapter 4). Although many more
localities were sampled in this area, most were compromised by strong PDF over-
prints (Table 7.1). A stable ChRM was isolated from Early Miocene sediments
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Chapter 7 Neogene rotations of the Hikurangi margin

at Mokonui Bridge (MB) (Figs. 7.2b, 7.5), but the timing of the magnetization

cannot be constrained in this case.

Wairoa Syncline Many localities distributed across the Wairoa Syncline, to
the south of Rakauroa (Fig. 7.2b), were also affected by strong PDF overprints,
which often obscured the primary magnetic signal (Table 7.1). Of the six locali-
ties from which a stable ChRM was retrieved, no constraints could be placed on
the timing of magnetization at Ngatara-Poha (NP), Paparatu Cottage (PC) and
Mangapoike River (MK); mean directions from these localities are plausible both
before and after tilt correction (Table 7.2). Only Te Korau Farm (TF) and Nga-
timita (NG) could be subjected to a fold test; the results indicate that remanence
acquisition occurred before folding of the Wairoa Syncline (Fig. 7.7a, b). These
localities yielded tilt-corrected declinations of 54 + 2° and 62 + 4°, respectively
(Fig. 7.5). South of the Waerengaokuri Fault, a large, reversed polarity declination
of 78 4+ 5° at Cheviot Hills (CH) also appears to record a pre-folding magneti-
zation: in geographic coordinates the mean direction is unrealistic, with a large
declination requiring 140° of tectonic rotation, and a shallow inclination (Fig. 7.7a,
Table 7.2). Unfortunately, at all of these localities a large time window exists be-
tween deposition in the Middle Miocene and folding from the Pliocene onward
(Field et al., 1997), meaning that constraints on the age of their magnetizations
remain broad. Declinations at TF and NG are 20° smaller than at CH (Table 7.2),
which may indicate late and early-forming magnetizations, respectively; this dis-
crepancy could also be due to differential rotations across the Waerengaokuri Fault,
but there is no indication that this structure has substantially altered the trend

of the earlier-forming Wairoa Syncline, as would be expected if this was the case

(Fig. 7.2b).

Coast Coastal sampling between Mahia Peninsula and Tolaga Bay (Fig. 7.2a, d)
proved particularly successful, with most localities having easily removable PDF
overprints and stable paleomagnetic directions (Tables 7.1, 7.2). However, remag-
netizations are common. Fold tests indicate that the normal and reversed polarity

magnetizations recorded in a Late Miocene sequence on Mahia Peninsula (local-

Figure 7.5 (preceding page): Equal area stereographic plots of individual ChRM
directions, and mean directions with 95% confidence limits, for all localities in this
study where a stable magnetization was isolated. n = number of samples used in
calculation; the bracketed number, if present, records the number of great circle de-
magnetization paths that were used to constrain the mean direction (representative
great circles are plotted for localities where they were used).
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Figure 7.6: Tilt-corrected declinations plotted against depositional age at all local-
ities where a stable ChRM was isolated. Localities have been subdivided according
to their position on the margin; the northern, central and southern Hikurangi mar-
gin are roughly equivalent to the Raukumara, Wairoa and Wairarapa domains of
Walcott (1989).

ities TC, PP, NR; Figs. 7.2a, 7.5) were acquired during folding at 4-6 Ma, with
the reversed polarity magnetization being acquired demonstrably earlier than the
normal polarity magnetization (at 79% and 44% unfolding, respectively; Chap-
ter 6). When properly corrected by partial unfolding, ChRMs from these localities
combine to give a mean declination of 49 + 5° at 4-6 Ma.

Further to the north, two differently timed magnetizations with opposite polar-
ity have also been recorded in Late Miocene sediments near Tolaga Bay (locality
WU, Fig. 7.2a). In this case, however, there is a 60° difference in declination
between the mean directions of the reversed and normal polarity magnetizations
(Fig. 7.5), which requires several Myr of tectonic rotation between their respective
acquisition times (Chapter 5). The normal polarity magnetization must therefore
date from close to the time of deposition and the reversed polarity magnetization
was acquired much later, but before the last polarity reversal at 0.78 Ma.

Four other coastal localities were also sampled from Middle-Late Miocene rocks
near Gisborne (Fig. 7.2d), in an area that has undergone at least two separate
periods of deformation since the Late Miocene. At Tatapouri Point (TP) and
Makarori Point (MP), Middle Miocene sediments of the Tuaheni Point Formation
(Fig. 7.3) (Neef, 1992) have been folded into a syncline, which has then been
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Figure 7.7: Constraints on the timing of remanence acquisition at localities from
(a, b) the Wairoa Syncline, (c, d) the coast north of Gisborne, and (e-g) southern
Hawke Bay. Stereoplots depict mean directions in tilt-corrected and geographic
coordinates. Fold tests follow the method of Tauxe and Watson (1994); variation
of the principal eigenvector 71 with various degrees of unfolding is depicted with
dashed lines for different para-data sets, the distribution of maxima for these data
sets is shown by the histogram, and the grey shading represents the 95% confidence

interval.
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disrupted by emplacement of a smectite diapir, causing a 20-25° clockwise rotation
of the fold axis at MP with respect to TP (Fig. 7.2d). In contrast, tilt-corrected
paleomagnetic data indicate large (~100°) clockwise declination anomalies at both
sites (Fig. 7.5), but the apparent rotation is larger at TP than at MP. With no
tilt correction applied, however, the declination at MP is 27° more rotated than
at TP (Table 7.2, Fig. 7.7c); this is much more consistent with the structural
evidence, and suggests that remanence acquisition at these sites occurred after
folding of the syncline, but before emplacement of the diapir. When the data
from MP are corrected for a 25° local rotation, a fold test confirms a post-folding
remanence (Fig. 7.7d) with a mean declinaton of 51 £ 2° (Table 7.2). The first
generation of folding also affects Late Miocene sediments (Fig. 7.2d), and diapir
emplacement occurred in the Late Miocene and Pliocene (Neef, 1992; Field et al.,
1997). Remanence acquisition therefore appears to have occurred at the end of
the Miocene.

At Sponge Bay (SB), sediments of equivalent age to those sampled at localities
MP and TP are steeply tilted as a result of Late Miocene—Pliocene diapir em-
placement (Fig. 7.2d). This deformation post-dates the folding at the other two
localities, and therefore a fold test cannot be used to constrain the magnetization
age. However, a pre-folding remanence appears likely because the mean direc-
tion at SB has an unrealistically shallow inclination in geographic coordinates
(Fig. 7.7c). The tilt-corrected declination of 39.3 + 5.3° indicates slightly less
rotation than the corrected declination from the MP and TP localities, which sug-
gests, but does not conclusively demonstrate, a late, pre-folding, remagnetization.
In contrast, shallow tilting of Late Miocene sediments at Turihaua Point (TH;
Fig. 7.2d) cannot be dated with any confidence, so no constraints on remanence
acquisition are possible for this locality. A moderate to large tectonic rotation is

indicated in both geographic and tilt-corrected co-ordinates (Table 7.2).

Southern Margin
Southern Hawke Bay Five coastal localities sampled between Cape Kidnap-

pers and Cape Turnagain proved to be strongly affected by a PDF overprint
(Fig. 7.2a, ¢; Table 7.1). Even at the two localities where a stable remanence
was isolated, from early Late Miocene sediments at Blackhead Beach (BH) and
around a tuff horizon of similar age on Whangaehu Beach (WT), few samples
yielded reliable ChRMs after demagnetization (Fig. 7.5). A fold test indicates a
late syn-folding magnetization, but the paucity of data, and the similar bedding
tilt at these two localities (Table 7.1) produces a partial tilt correction with a
broad 95% confidence interval of 2-62% (Fig. 7.7f).

Much better data were obtained from Titoki Road (TI) (Fig. 7.2a, ¢; Ta-

127



Chapter 7 Neogene rotations of the Hikurangi margin

ble 7.2). Although these sediments are Middle Miocene rather than Late Miocene
in age, all Miocene strata in this area were folded by the same deformation episode,
from the Late Miocene-Pliocene onward (Kelsey et al., 1995; Field et al., 1997)
(Fig. 7.2c). To test for the presence of a syn-folding magnetization at TI, a fold
test was performed on the combined ChRM data from TI1, BH and WT. This in-
dicates a syn-folding magnetization acquired at 48-63% tilt correction (Fig. 7.7g),
which is within the 95% confidence interval of the fold test for BH and WT alone
(Fig. 7.7f), but is much better constrained due to the inclusion of additional data
from TI. These results suggest a similarly timed syn-folding magnetization at all
three localities. Applying a partial tilt correction of 56% to the ChRM data from
TI, BH, and WT produces a corrected declination of 60 + 2° for an assumed
magnetization age of 4-9 Ma (Table 7.2).

Wairarapa Three localities were sampled in the Wairarapa region (Fig. 7.2a),
two of which were affected by a strong PDF overprint. Few samples from Flat
Point (FP), and none from Brancepeth (BP), reached a stable end point on de-
magnetization. The calculation of paleomagnetic mean directions for these two
localities therefore relies heavily upon demagnetization great circle data (Fig. 7.5),
making these directions potentially unreliable. Furthermore, no ChRM data are
available for fold tests to constrain the timing of remanence acquisition. In con-
trast, at Okau (OK) the PDF overprint was easily removed, allowing a ChRM
to be isolated in most samples (Fig. 7.5). The calculated mean direction has an
anticlockwise declination anomaly in geographic coordinates (Fig. 7.7e; Table 7.2),
which indicates that the magnetization pre-dates Early Miocene (Altonian) folding
associated with movement on the nearby Adams-Tinui Fault (Field et al., 1997).
In tilt-corrected coordinates, the paleomagnetic declination is 76 + 3° (Fig. 7.5;
Table 7.2), which is similar to those obtained from the potentially less reliable FP
and BP localities (Fig. 7.5).

7.3.4 Inferred tectonic rotations
In order to properly reconstruct Neogene deformation of the Hikurangi margin,

the paleomagnetic data set has been reduced to those localities where the tim-
ing of remanence acquisition can be properly constrained, with appropriately
corrected declinations for localities with verified syn-folding magnetizations (Ta-
ble 7.2; Fig. 7.8a). This reduced data set provides a number of new insights into
the pattern of tectonic rotations on the East Coast of New Zealand.

Our data confirm that part of the northern Hikurangi margin has not tecton-
ically rotated over geological timescales. Although substantial tectonic rotations

are observed as far north as Tolaga Bay (locality WU) on the coast (Fig. 7.2a),
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localities further inland (OR and MS; Fig. 7.2b) show no measurable tectonic ro-
tation with respect to the Australian plate during the Miocene (Fig. 7.8a). A
similar, small, tilt-corrected declination at locality MB just south of the Rakauroa
Fault (Fig. 7.2b) is also consistent with negligible tectonic rotation if it acquired its
magnetization close to the time of deposition (Fig. 7.8b); however, in the absence
of constraints from field tests, the possibility of a late remagnetization cannot be
excluded in this case. The spatial distribution of these localities indicates that
the boundary between the unrotated and rotated parts of the Hikurangi margin
runs ENE, between the Rakauroa and Waerengaokuri faults, before intersecting
the coast between Tolaga Bay and Tokomaru Bay (Fig. 7.9a).

For the central Hikurangi margin (the ‘Wairoa’ domain of Walcott, 1989), the
best-constrained data come from the coastal region. Rotations of 50-60° recorded
by Late Miocene—Pliocene remagnetizations of sediments from Mahia Peninsula
(TC, PP and NR) and at localities TP and MP, and the 90° declination of the
early-forming remanence at WU, cannot be accounted for by long-term rotation of
the Hikurangi margin at the presently observed rate of 2.8-3.8°/Myr (Fig. 7.8a).
Data from further inland are more difficult to interpret due to large uncertainties
in the timing of remanence acquisition; however, the 50-60° of rotation recorded
at localities TF and NG appears to be carried by late-forming magnetizations,
which formed closer to Pliocene folding than to Middle Miocene deposition (page
122). If this is the case, then assuming that the presently observed deformation
pattern has persisted for the Quaternary, a best fit for all of the new data from
the central Hikurangi margin requires higher rotation rates of 7-14°/Myr relative
to the Australian plate before 1-2 Ma (shaded region on Fig. 7.8a). Futher south
along the margin, the declination of 60 £+ 2° for a Late Miocene-Pliocene syn-

folding magnetization from southern Hawke Bay (localities WT, BH, and TI),

Figure 7.8 (preceding page): (a) Plots of corrected declinations versus magneti-
zation age for localities where the timing of remanence acquisition can be constrained
by field tests. Dotted lines indicate predicted declinations from extrapolation of tec-
tonic rotation at present day rates (hatched area) (Wallace et al., 2004), and from
higher rates before 1-2 Ma (these rates exclude the 1°/Myr clockwise rotation due to
drift of the Australian plate (Idnurm, 1985), which is also plotted). The shaded area
represents a best-fit rotation history based on these data. (b) Tilt-corrected decli-
nations plotted against depositional age for localities where the timing of remanence
acquisition could not be constrained by field tests. Data for some localities fall below
the best-fit rotation history from (a), suggesting that they have been remagnetized.
(¢) Previously published paleomagnetic data from the Hikurangi margin (Walcott
et al., 1981; Walcott and Mumme, 1982; Mumme and Walcott, 1985; Wright and
Walcott, 1986; Lamb, 1988; Roberts, 1992; Vickery and Lamb, 1995), plotted against
the best-fit rotation history from (a).

130



Chapter 7 Neogene rotations of the Hikurangi margin

an area previously considered to be part of the ‘Wairarapa’ domain (Fig. 7.1b),
is also consistent with higher rates of tectonic rotation during the Late Miocene
and Pliocene (Fig. 7.8a). Rather than being divided into discrete regions with
separate tectonic histories, a large part of the Hikurangi margin appears to have
been rotating coherently since the Late Miocene.

There are scant reliable data in our reduced data set regarding Middle and
Early Miocene rotation of the central and southern margin, but there is some
evidence of substantially reduced tectonic rotation rates before 8-10 Ma. On
the southern Hikurangi margin, the apparently Early Miocene magnetization at
locality OK records only 10-15° of additional rotation relative to the Australian
plate compared to the Late Miocene-Pliocene magnetization in southern Hawke
Bay (Fig. 7.8a). On the central Hikurangi margin, similar declinations of 80-90°
are recorded both by the early-forming, Late Miocene magnetization at locality
WU and the Middle Miocene sediments at locality CH. Although a Late Miocene
remagnetization at CH cannot be ruled out, the large tectonic rotations observed
at these localities approach the maximum suggested by tectonic reconstructions;
this supports the inference that tectonic rotations of the Hikurangi margin have

mostly occurred from the Late Miocene onward.

7.4 Discussion
7.4.1 Comparison with published paleomagnetic data

Difficulties in obtaining good paleomagnetic data from New Zealand Cenozoic sed-
iments, due to their weak magnetization and strong PDF overprints, have been
well-documented in previous studies (e.g. Walcott and Mumme, 1982; Mumme
et al., 1989; Turner et al., 1989; Pillans et al., 1994; Roberts et al., 1994; Turner,
2001; see also Chapter 4). The results presented in this study re-emphasise these
problems. At 39% of the localities sampled, any ancient remanence has been
completely destroyed by inferred iron sulphide oxidation. At localities where an
ancient ChRM is still preserved, the strength of the PDF overprint makes it dif-
ficult to retrieve; stable ChRMs without strong PDFs were routinely isolated at
only 33% of all localities. However, another potential difficulty with the pale-
omagnetic data from the Hikurangi margin, which has not been appreciated in
previous tectonic studies, is the presence of late-forming magnetizations in these
sediments, which have arisen as a consequence of the widespread growth of authi-
genic greigite during late diagenesis (Chapters 5, 6). Our results make the scale
of this problem clear: at least 9, and possibly 12, of the 16 localities where the
timing of remanence acquisition can be constrained have been remagnetized, often

several Myr after deposition. At localities where the timing of remanence acqui-
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sition could not be established, comparison of tilt-corrected declinations to the
best fit rotation history provided by well-constrained data suggests that a further
3 localities (BP, NP, TH) do not record a depositional signal (Fig. 8b). If this
is the case, then at least 15 out of the 23 stably magnetized localities reported
in this study (656%) appear to carry late-forming magnetizations. The widespread
distribution of remagnetized sediments on the Hikurangi margin indicates that the
broad scatter of declinations seen in Figure 7.6 occurs because, in many cases, the
age of the magnetization does not correlate to the age of the sediments.

The presence of such widespread remagnetizations in the East Coast region
raises questions about previous paleomagnetic results from this area (Fig. 7.8¢c),
which usually lack constraints from structural field tests. Earlier studies have
suggested accelerating tectonic rotation of the central Hikurangi margin since the
Early Miocene (Wright and Walcott, 1986), although a reinterpretation, excluding
data that may have been compromised by the incomplete removal of PDF over-
prints (Chapter 4), indicates a constant rate of rotation, consistent with active
deformation, since the Late Miocene (Fig. 7.8c). More importantly, earlier stud-
ies have suggested that rotation of the southern Hikurangi margin had ceased by
2 Ma (Lamb, 1988), which is a key observation behind the proposed division of
the margin into independently rotating ‘domains’ (Lamb, 1988; Walcott, 1989).
However, the declination anomalies reported by these earlier studies are generally
significantly smaller than our own results from the same areas on the North Island
(Fig. 7.8a, c¢). Given that no constraints on the timing of remanence acquisition
exist for these older data, it is likely that the apparent conflict is principally a
result of unrecognised late-forming magnetizations at many of these previously re-
ported localities. This potentially invalidates interpretations of past deformation
in these areas, which have assumed a close to depositional paleomagnetic signal.
In contrast, previously published paleomagnetic data from Pliocene sediments in
the Marlborough region (Roberts, 1992, 1995a) are more consistent with the rota-
tion history of the Hikurangi margin inferred from this study (Fig. 7.8¢). Inferred
paleomagnetic rotations in Marlborough also correlate well with deviations in the
strike of a vertical structural fabric in the Torlesse basement rocks (Little and
Roberts, 1997), which suggests that late remagnetizations may be less common in
these younger sediments, even though greigite is still a common remanence carrier

in this region (Roberts and Turner, 1993; see also Chapter 6).

7.4.2 Comparison of long-term rotation patterns with
active deformation
With our improved data set, it is possible for the first time to rigorously compare
long-term patterns of tectonic rotation with those inferred from the present-day
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velocity field. Present day rotation of the Australian-Pacific plate boundary in the
New Zealand region is driven by a couple arising from the transition from subduc-
tion to intra-continental transpression (Fig. 7.1a). Vertical axis rotations on the
Australian plate therefore arise as a passive response to the reorientation of the
subducting Pacific plate (Walcott, 1989); the dominant role of large-scale bound-
ary forces is reflected by the similar rates of rotation along the whole Hikurangi
forearc observed in the short-term velocity field (Wallace et al., 2004) (Fig. 7.1a).
Similar forces, acting over geological timescales, would also account for the Neo-
gene tectonic rotations recorded by paleomagnetic studies. Whilst the large dif-
ferential rotations between adjacent regions suggested by previous interpretations
of paleomagnetic data (Lamb, 1988; Walcott, 1989) (Fig. 7.1b) have been difficult
to reconcile with this hypothesis, the more rigorously constrained paleomagnetic
data presented here indicate similar rates and magnitudes of tectonic rotation
along the whole Hikurangi margin south of Tolaga Bay since the Late Miocene.
Although data from the southern North Island remain limited, coherent rotation
of the entire East Coast region appears to be a feature of both long- and short-
term deformation on the Hikurangi margin, which strongly suggests that they are
the result of the same driving forces.

However, despite the apparent coherence of tectonic rotations during the Neo-
gene, it is clear that the response of the Australian plate to these driving forces has
not remained constant over time. This ongoing tectonic evolution is reflected by
apparent changes in the extent and movement of the rotating block, revealed by
features of the long-term deformation pattern that still conflict with the short-term
velocity field. These features include the negligible Neogene tectonic rotations on
the northern Raukumara Peninsula (Fig. 7.9a), which is presently rotating at the
same rate as the rest of the Hikurangi margin (Wallace et al., 2004) (Fig. 7.1a),
and the more rapid Late Miocene—Pliocene rotation of the central and southern
Hikurangi margin, possibly at rates almost three times those presently observed.
To properly understand these changes we must identify how tectonic rotation of
the Hikurangi margin has been structurally accommodated on the boundaries of

the rotating forearc.

7.4.3 Structural accommodation of large rotations

Northern limit of rotation - the Raukumara Peninsula
On the Raukumara Peninsula, extensive paleomagnetic sampling confines the

northern limit of Neogene tectonic rotation to a 10-km-wide zone, between the
Rakauroa and Waerengaokuri faults, inland, and to a 25 km stretch between To-
laga Bay and Tokomaru Bay on the coast (Fig. 7.9a). The inferred ENE-WSW

trend of this rotation boundary contrasts with previous studies, which have pro-
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posed a NW-SE-trending boundary running between the Bay of Plenty and Gis-
borne, with relative rotations being accommodated by dextral strike-slip along the
Otoko-Totangi, Rakauroa and Waerengaokuri faults (e.g. Lamb, 1988). The pale-
omagnetic data also indicate that in this region the boundary between the non-
rotating ‘Raukumara domain’ and the rotating Hikurangi forearc has remained
relatively stable; approximately 80° of differential rotation has occurred across

this narrow hinge zone in the last 10 Ma.
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Figure 7.9: (a) Paleomagnetically-defined limits of the rotating and non-rotating
parts of the Hikurangi margin on Raukumara Peninsula. Localities with well-
constrained magnetizations have been plotted with white arrows depicting their
inferred clockwise rotations. The small declination anomaly at MB, and the unro-
tated, reversed polarity magnetization at locality MA1 reported by Mumme et al.
(1989), are not used to constrain the rotation boundary because the ages of rema-
nence acquisition are unconstrained. Inferred senses and directions of horizontal
strain have been plotted for active faults (marked in bold). The thick dashed line
marks the approximate location of an abrupt change in the thickness of the Aus-
tralian plate. Early Miocene thrust sheets are defined by the East Coast Allochton
(ECA). (b) Schematic representation of a ‘cigarette lighter’ model, in which differ-
ential rotations are being accommodated by a combination of extension near the
coast, and compression and dextral strike-slip inland.

The hinge area is structurally complex, and it has proven difficult to establish
the sense and timing of movement on the numerous Neogene faults due to uplift
and erosion of the sedimentary cover. However, there is a clear change in tectonic
style across the paleomagnetically-defined rotation boundary. In the northeast,

most faults with large (>100 m) displacements are north- to northeast-trending
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normal faults (Thornley, 1996) (Fig. 7.9a); the western limit of this faulting is the
east-dipping Whakau Fault, which marks the contact between the Neogene cover
sequence and the ECA (Fig. 7.9a). To the south, NE-SW-trending structures
such as the Wairoa Syncline begin to dominate (Mazengarb and Speden, 2000)
(Fig. 7.2b), indicating margin-perpendicular shortening. Inland between Tolaga
Bay and Gisborne, however, structures indicating approximately N-S shortening
(e.g. the Waerengaokuri Fault, and the southward plunge of the Wairoa Syncline)
and dextral strike-slip (e.g. the Otoko-Totangi Fault) are superimposed on this
general pattern (Fig. 7.9a). A combination of extension toward the coast and
shortening inland, which may also have contributed to uplift of the Raukumara
Range, therefore appear to have accommodated differential rotations in this re-
gion, hinged about a zone near the intersection of the Waerengaokuri and Arakihi
faults (Fig. 7.9a). This mechanism mimics the opening of a cigarette lighter, as
schematically illustrated in Figure 7.9b.

Uncertainty regarding the exact trend and position of the rotation boundary
shown in Figure 7.9a make it unclear as to whether the mechanism outlined above
is solely responsible for accommodating ~80° of differential tectonic rotation be-
tween the Raukumara Peninsula and the rest of the Hikurangi margin since 10 Ma;
paleomagnetic data indicate, however, that the northern limit of tectonic rotation
has been confined to this region for most of the Neogene. This rotation boundary
also coincides with significant along-strike changes in the structure of the plate
boundary. There is an abrupt reduction in crustal thickness on the Australian
plate, from 36-37 km to 17-19 km, north of Tolaga Bay (Davey et al., 1997; Reyn-
ers et al., 1999), which has reduced the down-dip extent of the seismogenic zone
(Reyners, 1998; Reyners and McGinty, 1999). This, combined with the presence of
sediments with high pore fluid pressure at the plate interface (Collot et al., 1996;
Reyners et al., 1999), produces a sharp decrease in inter-plate coupling between
Gisborne and Tolaga Bay (Reyners, 1998), which might play an important role
in allowing large differential rotations between the northern Raukumara Penin-
sula and the rest of the Hikurangi margin. The possible involvement of basement
structures, indicated by the abrupt change in crustal thickness on the Australian
plate, could have maintained this discontinuity over geological timescales; this is
consistent with the fixed geographical position of the hinge zone suggested by pa-
leomagnetic data. The clear change in coupling presently observed in this region,
and the Late Quaternary scarps on several of the faults highlighted in Figure 7.9a
(Thornley, 1996), suggest that the hinge could still be active today despite contem-
porary rotation of the Raukumara Peninsula indicated by the short-term velocity

field (Wallace et al., 2004). Comparison of geodetic data over different timescales
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indicates significant temporal variations in strain rates and directions of principal
horizontal stresses on the Raukumara Peninsula in the last century (Arnadéttir
et al., 1999), so it is possible that present day rotations in this region are not

representative of long-term deformation.

Western North Island
The geological youth of the TVZ and the NIDFB (Beanland, 1995; Wilson et al.,

1995; Beanland et al., 1998) means these features were not involved in accommo-
dating tectonic rotations of the Hikurangi margin in the Late Miocene-Pliocene.
We have examined Neogene deformation patterns in an attempt to identify other
structures on the western edge of the rotating forearc that may have been involved
in accommodating vertical-axis rotations.

From 10 to 5 Ma, the apparent initiation of vertical-axis rotations on the
Hikurangi margin coincided with a period of renewed tectonic activity in Taranaki
Basin, off the west coast of the North Island (Fig. 7.10a). Cretaceous normal faults
in the southern basin were reactivated as reverse faults (the Southern Inversion
Zone, Fig. 7.10a) (King and Thrasher, 1992), with up to 3 km of exhumation
indicated by offset porosity-depth trends (Armstrong et al., 1998) and thermal
modelling (Funnell et al., 1996). This contrasts with extensional faulting in the
Northern Graben (Fig. 7.10a), which increased to the north in a manner similar to
present extension in the TVZ (King and Thrasher, 1992). This pattern resembles
the rotation hinge on the Raukumara Peninsula (Fig. 7.9): shortening in the south,
coupled with extension in the north, could have accommodated clockwise tectonic
rotation of the Australian plate to the east. However, this implies that during
the Late Miocene a much larger region than is presently observed, encompassing
the west coast of the North Island and possibly parts of the South Island north
of the Alpine-Wairau Fault, was affected by tectonic rotations (Fig. 7.10a). Our
paleomagnetic data indicate that the Hikurangi margin has rotated ~90° since
the early Late Miocene, of which 50-60° has occurred since 56 Ma (Fig. 7.8a);
therefore, if western regions were part of the rotating forearc in the Late Miocene,
they would have experienced ~30° of tectonic rotation. Unfortunately, relevant
paleomagnetic data are scarce, making it difficult to test this hypothesis. Mumme
and Walcott (1985) reported a range of contradictory small to moderate (-10-
40°) declinations from Oligocene—Early Miocene sediments on the western North
Island, and a large (80°) declination from Oligocene sediments from east of Nel-
son on the South Island; however, the use of blanket demagnetization techniques,
and the lack of any constraint on the timing of remanence acquisition, mean that
the reliability of these data is questionable, and further paleomagnetic sampling

is required to verify Late Miocene rotations in these areas. Such rotation could,

136



Chapter 7

Neogene rotations of the Hikurangi margin

Inferred extension/
shortening at:

/(1)’
(1) 10-5 Ma
(2)5-2 Ma

4P (3)2-0Ma

Taranaki
Basin

/
/
/

Inversion I’
Zone,- 3

o
<30

(a) faults “
(active/inactive PRl -
normal ¥ P S N -
thrust 4, o / (2) 8
sls 2 /’ ,2;:

. . o
rotating region cm
recent rotations Northem/ / E'
// possible extent Graben / E":
/in Late Miocene ) S

=

(b) (1)10-5Ma
Reactivated faults

in Taranaki Basin

(2) 5-2 Ma
Spreading in TVZ,
possible shortening
in Wanganui Basin

(3) 2-0 Ma
Spreading in TVZ,
strike-slip on NIDFB

rotation pole
shitedW QO
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however, explain the long wavelength curvature of Mesozoic basement terranes
through the western North Island, including the Maitai Terrane/Junction Mag-
netic Anomaly (Sutherland, 1999a) (Fig. 7.10a), the origin and timing of which
remains controversial (e.g. Bradshaw et al., 1996; Sutherland, 1999b).

By 5 Ma, shortening had ceased in the Southern Inversion Zone (King and
Thrasher, 1992; Armstrong et al., 1998), and the principal focus of tectonic ac-
tivity on the North Island appears to have shifted eastward. In the south, faults
west of the Mohaka Fault (Fig. 7.10a) appear to have accommodated negligible
shortening since 5 Ma (Nicol and Beavan, 2003). In contrast, the large negative
gravity anomaly associated with the Plio-Pleistocene Wanganui Basin (Fig. 7.10a)
indicates lithospheric downwarping, caused by large shear stresses being trans-
ferred across a strongly coupled plate boundary (Davey and Stern, 1990; Stern
et al., 1993). To the north of New Zealand, extension in the Havre Trough from
~5 Ma (Wright, 1993) may also have led to some associated extension in the west-
ern part of the TVZ (Stern, 1987) (Fig. 7.10a), although structural patterns in
this region are ambiguous (King, 2000); there was also further Pliocene extension
in the Northern Graben of the Taranaki Basin (King, 2000). Small (<15°) tec-
tonic rotations inferred from the thick Plio-Pliestocene sequences in the Wanganui
Basin (Beanland, 1995; Wilson and McGuire, 1995) suggest that at this stage the
western boundary of the rotating forearc had also migrated eastward, to a position
similar to that presently observed (Fig. 7.10a). However, rotation of the Hikurangi
margin to the east appears to have been accommodated by a similar mechanism
to that seen in the Late Miocene, with shortening across a strongly coupled plate
interface in the south, and extension in the north (Fig. 7.10).

The small strike-slip offsets (<10 km) on the faults of the NIDFB, compared
to their large Quaternary slip rates (5-10 mm/yr) (Beanland, 1995; Van Dissen
and Berryman, 1996), indicate that they first began to accommodate significant
margin-parallel convergence at 1-2 Ma (Beanland, 1995; Beanland et al., 1998),
signalling a tectonic reorganization at the end of the Pliocene. Beanland (1995)
proposed that the NIDFB is comprised of reactivated Late Miocene reverse faults;
clockwise rotation of the Hikurangi margin since 10 Ma has not only increased the
obliquity of the margin with respect to the Pacific-Australian convergence vector,
but it would also have rotated thrust faults that were originally perpendicular
to the convergence direction into a favourable orientation to take up strike-slip
displacement. At the same time, extension began in the TVZ (Wilson et al., 1995);
the beginning of the Quaternary therefore marks the beginning of the present
tectonic regime.

Accommodation of differential rotations at the western edge of the Hikurangi
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forearc since the Late Miocene has therefore involved a number of different struc-
tures and tectonic styles. These observations are summarized by the block model
in Fig. 7.10b, which also demonstrates a further consequence of the deformation
patterns in the Late Miocene and Pliocene: the dominance of shortening rather
than strike-slip in the southern forearc places the pole of rotation for the Hiku-
rangi margin much closer to the plate boundary, up to 200 km east of the poles
for contemporary rotations inferred by Wallace et al. (2004) (Fig. ref6Figla). By
allowing higher angular velocities from smaller displacements, this configuration
could account for the higher rates of tectonic rotation (~10°/Myr) during the Late
Miocene and Pliocene, compared to the present day.

The causes of the other principal change since the Late Miocene, the apparent
eastward migration of the rotation boundary, remain unclear. There is a poten-
tial link to a similar migration of back-arc spreading and volcanism north of New
Zealand, in response to the roll-back of the Pacific plate. This hypothesis is sup-
ported by the observation that the largest shift in the location of the western
rotation boundary in the Early Pliocene coincides with the initiation of back-arc
spreading in the Havre Trough (Wright, 1993). However, the timing of spreading
in the back-arc basins to the west of this newest rift is still disputed. The adjacent
South Fiji Basin (Fig. 7.1a) is often assigned an Oligocene age based on interpre-
tation of seafloor magnetic anomalies (e.g. Malahoff et al., 1982; Sdrolias et al.,
2003), although Mid—Late Miocene spreading in the South Fiji Basin has also been
suggested, based on geophysical surveys of the Northland margin (Herzer et al.,
2000). Further west still, spreading in the Norfolk Basin may also have contin-
ued into the Late Miocene (Sdrolias et al., 2004). However, linking extension in
the Taranaki Basin to back-arc spreading to the north of New Zealand remains

speculative.

Southern limit of rotation - Cook Strait
Paleomagnetic studies have established that there were no tectonic rotations in

the Marlborough region during the Late Miocene (Roberts, 1992). At this time,
therefore, the southern limit of the rotating Hikurangi margin was located be-
tween the northern South Island and the southern North Island. The most likely
position for this rotation boundary is in Cook Strait, which appears to represent
a major structural discontinuity (Walcott, 1978) (Fig. 7.11a). The faults of the
NIDFB cannot be linked across Cook Strait to those in the Marlborough Fault
Zone (Carter et al., 1988), and Mesozoic basement terranes (e.g. the Esk Head
subterrane, Fig. 7.11a) are offset by 140 km across what is interpreted to be the
eastern termination of the Wairau Fault, which is bent clockwise through Cook
Strait (Walcott, 1978; Lewis et al., 1994). This dextral offset probably occurred in
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the early Neogene, before the eastern Wairau Fault was isolated by development
of the Southern Inversion Zone on the western North Island at 10 Ma (Fig. 7.10a),
became inactive, and began to rotate with the rest of the Hikurangi margin to
the north (Fig. 7.11b). It is unclear whether structures are preserved in Cook
Strait that might have accommodated this rotation; extension associated with the
Late Miocene Wairau Basin (Lewis et al., 1994) was probably important, but the
deformation style associated with most Late Miocene-Pliocene faulting is poorly

constrained (Barnes and Audru, 1999).
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Figure 7.11: (a) Deformation patterns in the Marlborough region, showing major
strike-slip faults (WF = Wairau Fault; AF = Awatare Fault; CF = Clarence Fault;
HF = Hope Fault) and the probable distribution of Neogene tectonic rotations, the
boundary of which is associated with the boundary between the Hikurangi Plateau
and continental crust of the Chatham Rise. The inactive eastern termination of the
Wairau Fault curves through Cook Strait. WB = Wairau Basin. Figure adapted
from Barnes and Audru (1999) according to Little and Roberts (1997). (b) Simpli-
fied model of Neogene rotations in this area.

Increased convergence in the plate boundary region, arising from a shift in the
Pacific-Australian Euler pole at 5-6 Ma (Sutherland, 1995; Walcott, 1998), could
not be accommodated by the rotated Wairau Fault. Instead, the plate boundary
propagated southeast into the Pacific plate, with dextral strike-slip initiating on
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the Marlborough faults in the early Pliocene. This tectonic reorganization also
appears to have shifted the border of the rotating Hikurangi margin southwestward
into northern Marlborough, with vertical-axis rotations of 5-7°/Myr since ~4 Ma
indicated by paleomagnetic data (Roberts, 1992, 1995a) (Fig. 7.8¢c). Little and
Roberts (1997) demonstrated that this rotation is also recorded by a regional kink
in the underlying Torlesse basement fabric, and proposed that Pliocene rotations
can be modelled by northeastward translation of the northern Marlborough region
through a ‘migrating hinge’ (Fig. 7.11b), which is located inland of the boundary
between the Hikurangi Plateau and continental crust of Chatham Rise (Fig. 7.11a).
A ~7 km vertical offset in the seismicity associated with the subducting plate
indicates an abrupt increase in crustal thickness, and hence inter-plate coupling,
across this boundary (Eberhart-Phillips and Reyners, 1997; Reyners, 1998), to
the extent that the plate interface off the coast of Marlborough appears to be
permanently locked (Collot et al., 1996; Barnes and Mercier de Lepinay, 1997).
The intersection of Chatham Rise with the Hikurangi margin therefore marks the
southern limit of subduction, and the pivot point of the rotating Pacific plate;
tectonic rotations in the forearc cannot occur further south. The southwestward
migration of the rotation boundary since the Late Miocene is a consequence of
the southward propagation of the subduction zone, probably in response to the
transfer of intra-plate slip onto the Marlborough faults since 5 Ma (Little and
Roberts, 1997).

7.4.4 Revised Neogene reconstructions for the Hikurangi
margin
In Figure 7.12 we have integrated the evidence discussed in the previous section
with our paleomagnetically-derived rotation history. These reconstructions focus
on defining the borders of the rotating region, effectively treating it as a rigid
block. As discussed in section 7.4.2, our paleomagnetic results indicate coherent,
long-term deformation of the margin at length scales much greater than the sep-
aration between major faults; this approach is therefore justified, although some
local refinements to this model may be required to properly account for internal

deformation within the forearc, and for localized rotations (e.g. Roberts, 1995a).

Early-Middle Miocene: 23-10 Ma
Although limited paleomagnetic data exist for the Early and Middle Miocene, there

is no indication of widespread tectonic rotations on the North Island in this time
period, despite subduction of the Pacific plate since 23-20 Ma (King, 2000; Rait
et al., 1991). Active rotation of the margin appears to be dependent on the gradual

southward increase in coupling at the plate interface (Reyners, 1998), caused by
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Miocene (10-5 Ma) reconstruction. Subduction of the Hikurangi Plateau results
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southern forearc, driving tectonic rotation of most of the North Island about a cen-
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the increasing crustal thickness and buoyancy of the subducting Hikurangi Plateau
(Davy and Wood, 1994) (Fig. 7.1a). This inference is supported by numerical
models of oblique subduction, which indicate that more abrupt changes in the
strength of the subduction thrust would result in discrete zones of margin-normal
dextral shear rather than tectonic rotation (Upton et al., 2003).

The down-dip extent of the Hikurangi Plateau is still poorly resolved. Thick-
ened oceanic crust has been inferred on the subducted slab at depths of 15 to
30 km using ScSp conversions (Bourne and Stuart, 2000), and down to depths
of 75 km by recent tomographic studies (Reyners et al., 2004). This represents
at least 6-8 Myr of subduction, and suggests that subduction of the Hikurangi
Plateau commenced in the early Late Miocene. We therefore propose that the
Early and Middle Miocene represented a period when normal oceanic crust was
being subducted beneath the Hikurangi margin (Fig. 7.12a). In this scenario, the
only change in intra-plate coupling would have occurred at the transition to con-
tinental crust at the edge of Chatham Rise, where subduction was impeded and
the plate boundary changed into a dextral transform fault (the Alpine-Wairau
Fault). Such a sharp transition would be unlikely to generate large-scale vertical-
axis rotations on the Australian plate. Clockwise rotations of 100-140° recorded
by Paleogene to Middle Miocene sediments from the Marlborough coast (Vickery
and Lamb, 1995) appear to be spatially restricted, and have been linked to the
initial development of the plate boundary region (Little and Roberts, 1997), or
to oroclinal bending (Fig. 7.12a) associated with early Neogene strike-slip on the
Alpine-Wairau Fault (Hall et al., 2004).

Late Miocene: 10-5 Ma
The initiation of widespread tectonic rotations along the Hikurangi margin in the

early Late Miocene followed collision of the Hikurangi Plateau (Fig. 7.12b). Sub-
duction of thickened oceanic crust increased intra-plate coupling along the south-
ern Hikurangi margin, which appears to have triggered shortening over a large
area of the southern North Island in the Late Miocene (King, 2000) as convergent
motion was transferred onto the Australian plate. The western limit of this region
was in the Taranaki Basin (the Southern Inversion Zone of King and Thrasher
(1992); see page 136). However, reverse faulting also occurred on faults further
east in the forearc region, including those that presently comprise the NIDFB
(Beanland, 1995), which at that stage were oriented perpendicular to the plate
convergence vector (Fig. 7.12b). With increasing clockwise rotation in the next
5 Ma, the Hikurangi margin became more oblique to the plate convergence vec-
tor and margin-parallel motion was transferred into the forearc, which may also

have led to Miocene dextral strike-slip faulting (Field et al., 1997, and references
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therein). It is interesting to note that this period of regional tectonism appears
to be linked to the widespread late remagnetizations of sediments along the Hiku-
rangi margin, many of which formed in the Late Miocene (Table 7.2; Figs. 7.8a,
b). Anomalous magnetizations carried by iron sulphides have been linked to mi-
gration of gas hydrates (Housen and Musgrave, 1996), or to hydrocarbon seepage
(Reynolds et al., 1994), both of which are potential consequences of the conver-
gence and uplift resulting from collision of the Hikurangi Plateau.

As discussed on page 136, during the Late Miocene the boundary of the ro-
tating Hikurangi margin may have extended as far west as the Taranaki Basin,
where extension in the Northern Graben, combined with shortening further south,
could have accommodated coherent clockwise rotation of most of the North Island.
At this stage, large velocity gradients within the forearc meant that the pole of
rotation was probably located in the central North Island (Fig. 7.12b), leading to
rapid tectonic rotations at ~10°/Myr. The northern limit of this rotation is poorly
constrained west of the Raukumara Range, with any Late Miocene structures be-
ing obscured by Quaternary volcanism and tectonism in the TVZ. At the southern
end of the margin, widening of the active plate boundary region to include struc-
tures in the Taranaki Basin isolated the eastern end of the Alpine-Wairau Fault,

causing it to become inactive and to rotate clockwise with the rest of the forearc
(Fig. 7.11).

Pliocene: 5-2 Ma

A southwestward jump in the location of the Pacific-Australian Euler rotation
pole occurred at 5-6 Ma (Cande et al., 1995; Sutherland, 1995; Walcott, 1998),
reorienting the plate motion vector toward a more E-W direction and increasing
convergence across the plate interface (Fig. 7.12c). Transfer of transpressional
plate motion away from the now misaligned Alpine Fault, and initiation of strike-
slip on the Marlborough faults, appears to be a direct response to this change.
The Hikurangi margin migrated southward to link with the relocated transform
boundary, causing the north-eastern South Island to begin rotating with the rest
of the margin to the north.

Back-arc rifting in the Havre Trough, in response to continued roll-back of
the Pacific plate, also began at ~5 Ma (Wright, 1993), reducing the width of
the forearc region to the north of New Zealand. This appears to have forced a
similar response on the North Island, where the western boundary of rotation
also moved east (Fig. 7.12¢), and margin-perpendicular strain was accumulated
by long-wavelength plate bending and subsidence in the Wanganui Basin (Stern
et al., 1993). The overall pattern of shortening across the southern Hikurangi

margin and extension in the north maintained high velocity gradients and drove
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rapid tectonic rotations at similar rates to those seen in the Late Miocene, although
in a more restricted region. The northern boundary of rotation remained confined
to the southern Raukumara Peninsula, with rotations being accommodated by
NW-SE extension on the coast, and by compression on inland structures such as
the Waerengaokuri Fault (Fig. 7.9).

Quaternary: 2-0 Ma
Further clockwise rotation of the Hikurangi margin in the Pliocene continued to

increase its obliquity with respect to the plate motion vector. By the end of the
Pliocene, rotations of up to 70° had realigned Late Miocene reverse faults so that
they were now in a favourable orientation to be reactivated as strike-slip faults,
forming the NIDFB (Beanland, 1995) (Fig. 7.12d). The change to a strike-slip
regime reflects a much larger margin-parallel component of motion in the southern
forearc compared to the Late Miocene and Pliocene, when margin-perpendicular
shortening was dominant (Figs. 7.12b, ¢). This change would have reduced the
lateral velocity gradient along the margin, slowing rotations to their present rate
of 3-4°/Myr as the rotation pole migrated westward to its present position off
the Taranaki Coast (Fig. 7.12d). Propagation of spreading in the Havre Trough
southward into the TVZ at the beginning of the Quaternary may also have been
a response to this tectonic adjustment.

The increased obliquity of plate convergence in the Quaternary would also
have led to strain partitioning at the weakly coupled plate boundary east of the
Raukumara Peninsula, and the transfer of margin-parallel motion into the forearc.
This additional component of motion might account for the contemporary rotation
of the entire Raukumara Peninsula reported by Wallace et al. (2004) (Fig. 12d).
However, as discussed on page 136, it is also possible that the present velocity field

is not representative of deformation over longer timescales.

7.5 Conclusions
New paleomagnetic results from New Zealand, when properly constrained by field

tests, have provided important new insights into the patterns of clockwise tectonic
rotation on the Hikurangi margin during the Neogene. Our data indicate that
large-scale plate boundary forces drive coherent, long-term rotational deformation
of the margin at length scales much greater than the separation between major
faults, in agreement with the short-term velocity field. There is no evidence for
independently rotating ‘domains’; previously reported lateral variations in the rate
and magnitude of tectonic rotations are probably an effect of unrecognized late
remagnetizations involving the iron sulphide greigite, which have affected up to

65% of the stably magnetized localities reported here.

145



Chapter 7 Neogene rotations of the Hikurangi margin

Clockwise rotations of up to 90° have occurred since 8-10 Ma, possibly follow-
ing collision of the Hikurangi Plateau with the subduction zone. In the north and
south, the margin has pivoted about two relatively fixed hinges, on the Rauku-
mara Peninsula and in Cook Strait, respectively, where major lateral changes in
basement structure along the plate boundary zone have maintained long-term dis-
continuities in intra-plate coupling. In contrast, the western limits of rotation may
have shifted over time, with deformation on the Australian plate being confined to
a much narrower zone, closer to the plate boundary, since 5 Ma. Rates of rotation
also appear to have been much higher before 1-2 Ma, with rates of 7-14°/Myr
required to account for rotations of 50-60° since 5-6 Ma. Deformation patterns
in the Late Miocene and Pliocene were dominated by shortening in the southern
Hikurangi margin and by extension in the north, which created steep velocity gra-
dients in the forearc and drove rapid tectonic rotations. Initiation of strike-slip on
the NIDFB, as convergence became more oblique in the Quaternary, has reduced
these gradients, resulting in slower rotation about a more distant pole.

The difficulties in obtaining reliable paleomagnetic data, due to widespread late
remagnetizations and strong PDF overprints, mean that rotation of the Hikurangi
margin before the Late Miocene remains relatively unconstrained. Further work

is also needed to test for hypothesised Late Miocene rotation of the western North
Island.
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8.1 Summary and conclusions
The research presented in this thesis has focussed on interpreting a substantial

new paleomagnetic data set from New Zealand, which has produced a new picture
of deformation patterns since the initiation of subduction in the Early Miocene,
and has provided new insights into how vertical-axis rotations are accommodated
within continental crust. A key component in producing a coherent tectonic inter-
pretation has been the improved understanding of the complex magnetic signature
of New Zealand Cenozoic marine mudstones, which has emphasised the paleomag-
netic importance of iron sulphides such as greigite. In addition to the discussion
and conclusions at the end of Chapters 4 to 7, the principal conclusions of this

research, and the wider implications stemming from them, are summarised below.

8.1.1 The ubiquity of greigite and the consequences of late

remagnetizations
The rock magnetic and SEM analyses presented in Chapters 5 and 6 demonstrate

that authigenic greigite is an important remanence carrier in New Zealand Neo-
gene marine mudstones. In some respects this is not a surprising discovery: stably
magnetized greigite is being increasingly recognized in the geological record, par-
ticularly in rapidly deposited marine sediments (Roberts and Weaver, 2005, and
references therein) that are similar to those deposited along the Hikurangi margin
since the Early Miocene. It is not even the first time that late growth of greigite,
possibly millions of years after deposition of the host sediments, has been docu-
mented to have caused inconsistent and contradictory magnetic polarity records
within marine sequences (e.g. Florindo and Sagnotti, 1995; Jiang et al., 2001;
Roberts and Weaver, 2005; Sagnotti et al., 2005). What is unique about the New
Zealand paleomagnetic data set, however, is the sheer abundance of remagnetized
sediments, revealed by the rigorous application of field tests undertaken in Chap-
ter 7. This abundance, coupled with the existence of late remagnetizations, which
can vary significantly in timing even at the outcrop scale, obviously presents seri-
ous problems for magnetostratigraphic and tectonic studies in New Zealand. It is
not yet clear whether the scale of remagnetization seen on the Hikurangi margin
is the result of late diagenetic processes that are likely to have affected rapidly
deposited marine sequences elsewhere, or whether it is a unique consequence of
New Zealand tectonic history (see page 150); ascertaining this will require a much
better understanding of the mechanisms that cause the late diagenetic growth of
greigite, and more detailed study of greigite-bearing sediments in other areas (e.g.
Taiwan and Italy). Regardless, in any sediments where greigite is present, the

assumption of a primary remanence should be made with extreme caution, prefer-
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ably following confirmation from paleomagnetic field tests. However, although
these observations may lead to some degree of pessimism, the recognition that
many sequences on the Hikurangi margin were remagnetized was the key insight
in this research, without which a consistent tectonic interpretation would probably

have been beyond reach.

8.1.2 The non-existence of paleomagnetic ‘domains’
Prior to this study, recent work on the tectonics of the North Island of New Zealand

has focussed mainly on characterising Quaternary deformation, particularly the
short-term deformation field constructed from GPS and other geodetic data (e.g.
Beanland and Haines, 1998; Wallace et al., 2004). Although these studies have
provided valuable insights, applying this understanding to reported tectonic rota-
tions earlier in the Neogene has been frustrated by the obvious conflict between
the ‘domain’ hypothesis and the more coherent rotation seen in the short-term
velocity field. This contradiction can now be addressed. The new paleomagnetic
data presented in Chapter 7 indicate coherent rotation of the entire Hikurangi
margin, with the exception of the northern Raukumara Peninsula, since the Late
Miocene. Detailed geophysical investigations of the present structure of the Hiku-
rangi margin (Chapter 2) also support this interpretation: major changes in base-
ment structure occur at either end of the rotating margin, but there is no evidence
for any further lateral subdivision that might allow differential rotation between
adjacent parts of the margin. The independently rotating ‘domains’ proposed by
Lamb (1989) and Walcott (1989) therefore appear to have been an artefact of
the limited distribution of paleomagnetic data, particularly in the southern Hiku-
rangi margin, and the unrecognized effects of late-forming magnetizations and
incompletely removed present-day field overprints (e.g. Chapter 4). Instead, the
large-scale boundary forces responsible for contemporary rotation appear to have

also driven large-scale, coherent rotations over geological timescales.

8.1.3 The evolving tectonic regime
Key elements of the present tectonic regime, such as the NIDFB and TVZ, were

not active before 2 Ma. Prior to this, therefore, different structures must have
been involved in accommodating rotation of the Hikurangi margin. The well-
constrained history of Neogene tectonic rotation described in Chapter 7 indicates
that despite the apparent spatial coherence of tectonic rotations during the Neo-
gene, there is a clear temporal variation in the rate and extent of these rotations,

with three main periods apparent.
e Early and Middle Miocene (20-10 Ma): subduction with no rotation.

e Late Miocene and Pliocene (10-2 Ma): rapid (7-14°/Myr) rotation.
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e Quaternary (2-0 Ma): continued rotation, but at a reduced rate (3-4°/Myr).

The lateral extent of the rotating region has also changed over time, extending into
the Marlborough region since 5 Ma, and possibly onto the Raukumara Peninsula
in the last few 100,000 years. Many of these changes can be correlated to the
development of new structures in the New Zealand plate boundary zone during the
Neogene. The initiation of widespread tectonic rotations at ~10 Ma coincides with
a period of extensive Late Miocene shortening on the southern Hikurangi margin,
which stretched as far west as the Taranaki Basin. Rotations in Marlborough from
the Pliocene onward appear to have been related to the initiation of strike-slip on
the MFZ, caused by the southward propagation of the subduction zone. Finally,
reduced rates of rotation at the end of the Pliocene are linked to the activation
of strike-slip on the NIDFB, in response to the increasing obliquity of the margin
with respect to the plate motion vector. Other aspects of the reconstructions
presented in Chapter 7, such as proposed Late Miocene rotations west of the
Axial Ranges, need to be verified by future work. Overall, the research presented
in this thesis represents significant progress in documenting the evolving response
of the Australian plate to large-scale plate boundary forces, and in describing how

the 80-90° Neogene rotation of the Hikurangi margin has been accommodated.

8.1.4 Collision of the Hikurangi Plateau: a key tectonic

event?
The gradual southward increase in intra-plate coupling along the Hikurangi mar-

gin, resulting from subduction of the Hikurangi Plateau, is a key control on con-
temporary rotation of the forearc; large-scale, regional rotation would not occur
if normal oceanic crust was being subducted. The lack of tectonic rotation in
the Early and Middle Miocene indicated by paleomagnetic data therefore suggest
that subduction of the Hikurangi Plateau did not begin until 8-10 Ma. This
interpretation is supported by recent tomographic constraints on the down-dip
extent of thickened oceanic crust on the Pacific plate which suggest up to 8 Myr
of subduction (Reyners et al., 2004).

In addition to causing the initiation of tectonic rotations, the collision of the
Hikurangi Plateau with the subduction zone would have led to increased intra-plate
coupling, causing the increased transfer of horizontal strain into the over-riding
Australian plate, and uplift of the Hikurangi margin. One potential consequence
of this increased tectonism and basement faulting is the migration of methane
derived from gas hydrates, hydrocarbons, and other fluids through the Neogene
basins on the East Coast of New Zealand. By altering the redox conditions within

the sediment pore fluid, such migration events could potentially trigger the late
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diagenetic growth of greigite (e.g. Roberts and Weaver, 2005); the large number
of remagnetized localities where the age of remanence acquisition is constrained
to 510 Ma (Figure 7.8; Table 7.2), may therefore also be a consequence of Late

Miocene collision of the Hikurangi Plateau

8.1.5 Length scales of deformation
The results presented in Chapter 7 indicate that deformation is occurring over

two distinct length scales in this region. Coherent rotation of the entire forearc
is occurring over length scales of hundreds of kilometres, in response to rotation
of the underlying Pacific plate. However, it is also clear that simply treating
the forearc as a large rotating ‘microplate’ does not provide a full description of
the kinematics in the plate boundary zone; distributed deformation is occurring
within the forearc region (Section 1.5), principally on large basement faults with a
separation of ~50 km (e.g. Figs. 7.10, 7.11). Paleomagnetic and geodetic data both
indicate no significant differential rotations between the blocks defined by these
faults, but the substantial slip rates on some of them will result in substantial
changes in the shape of the rotating forearc region over geological timescales.
These observations suggest that although large regions of continental crust can
show ‘plate-like’ behaviour, in that they move coherently in response to boundary
forces, the boundaries of such ‘plates’ can be fairly dynamic, quickly changing
in shape in response to internal deformation, and also in extent in response to
boundary forces (e.g. page 139). This is probably a consequence of the weakness

of continental crust with respect to oceanic crust.

8.2 Further work

The research presented in this thesis opens two potentially important avenues for
further research, one specific to New Zealand, and the other more general. Within
New Zealand, paleomagnetic sampling of Miocene sediments on the west coast of
the North Island, and the Nelson region on the South Island, is needed to test the
more speculative aspects of the reconstructions presented in Chapter 7, particu-
larly the proposed more spatially extensive Late Miocene rotations. Furthermore,
the possibility that much previously published paleomagnetic data may be conta-
minated by both unrecognised late-forming magnetizations, and also incompletely
removed present-day field overprint, means that it would be profitable to revisit
some of these localities, testing new samples against published data to assess their
reliability. By taking advantage of more sensitive magnetometers and stepwise
demagnetization techniques, and using field tests to rigorously constrain the age
of remanence acquisition, useful tectonic information may be recoverable at many

of these localities. As discussed in Chapter 6, patchily distributed remagnetiza-
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tions are of particular concern in sequences where magnetostratigraphy has been
used to correlate New Zealand foraminiferal biozones to the geomagnetic polar-
ity timescale (e.g. Lienert et al., 1972; Kennett and Watkins, 1974; Wright and
Vella, 1988; Roberts et al., 1994), and reappraisal of these sequences should be a
particular priority.

Similar studies of greigite bearing sequences worldwide is also necessary, not
only to assess the potential scale of the problems caused by late remagnetizations,
but also to assess the geochemical factors that may influence the timing of greigite
formation. In some reported occurrences of greigite, it has grown millions of years
after deposition; in others, growth has occurred close to the time of deposition,
enough to record and preserve a detailed record of a geomagnetic reversal (Roberts
et al., 2005). Previous studies have suggested that the preservation of greigite is
dependent on the relative concentrations of reactive iron and organic carbon (Kao
et al., 2004); similar underlying geochemical controls may also determine the sus-
ceptibility of these sediments to remagnetization. Further geochemical analyses
of patchily remagnetized sediments might shed some light on the processes that
have promoted the late growth of greigite. For example, late reductive diagenesis,
linked to e.g. gas hydrate migration, might produce sulphides with distinctive 534S
signatures, which would allow early- and late-forming magnetizations to be distin-
guished. In addition, the timing of, and controls on, early greigite growth could
be examined by combined rock magnetic, electron microscope and geochemical
analyses of sediment cores from areas of rapid marine sedimentation. Fundamen-
tal studies of this type provide the background necessary for detailed tectonic (and

other) interpretations of paleomagnetic data.
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Appendix A

Summary of localities

AB - Anzac Bridge

Details of sampling

Date sampled

16" February 2002

Locality description

Outcrop on the banks of the Waihuka River, located where a tributary
joins it 200 m east and downstream of a bridge across State Highway
2 (Anzac Bridge), 2-3 km southeast of the Oliver Road turn-off.

Grid reference X17/063871

Lithology Massive, fractured, blue-grey mudstones with rare massive sandstone
beds.

Assigned age Otaian

Bedding attitude

298/57 NE (3 measurements)

Sampling

41 cores from 9 sampling levels, yielding 61 samples.

Stratigraphic thickness | 53 metres

Demagnetization data

Samples demagnetized AF 9 samples, thermal 33 samples.

Demagnetization behaviour | Strong PDF with no evidence of higher stability components

Range of NRMs

0.52-1.8x107* Am™!

Isolated components

None.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M | 0.12-0.14

Range of B../B. | 3.64-3.84

FORC behaviour | RR/SD 2.8-3.0; small SD peak at ~20-30 mT.
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Appendix A Summary of localities

AF - Atea Ford

Details of sampling
Dates sampled 237424t February 2002

Locality description Roadside outcrop, close to most easterly of two fords crossing

Wharekopae Road west of Rere.
Grid reference X17/063871

Lithology Massive sandstones with thinly interbedded mudstones, which are

often calcareous and occasionally sandy.

Assigned age Altonian - stratigraphically below Rere sandstone.
Bedding attitude 017/12 E (2 measurements)
Sampling 37 cores from 10 sampling levels, yielding 35 samples.

Stratigraphic thickness | 41 metres

Demagnetization data

Samples demagnetized AF 9 samples, thermal 26 samples.

Demagnetization behaviour | Variable - some indications of a reversed polarity, rotated ChRM
in the lower part of the section, no systematic trends in the mid-
dle and strong PDF overprint at the top. Thermal demagneti-
zation slightly more effective than AF.

Range of NRMs 0.52-15x107% Am~!

Isolated components None.
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BH - Blackhead

Details of sampling

Dates sampled

19t* March 2003

Locality description

Cliff exposure ~500 m south of car park on Blackhead Beach, with
additional outcrop exposed on a wave-cut platform beneath the cliffs

at low tide.

Grid reference

V23/359074

Lithology

Massive, light grey mudstones and siltstones. Decimetre-scale bed-
ding can be seen in the cliff exposure; on the wave-cut platform out-
crop is more massive, with discontinuous calcareous concretions fol-

lowing the trend of bedding.

Assigned age

Tongaporutuan

Bedding attitude

067/23 SE (3 measurements)

Sampling

39 cores from 9 sampling levels, yielding 64 samples.

Stratigraphic thickness

13 metres

Demagnetization data

Samples demagnetized

AF 15 samples, thermal 21 samples.

Demagnetization behaviour | Strong PDF overprint that can occasionally be removed to re-

veal a reversed polarity ChRM, which typically unblocks by 30
mT/300°C. NRMs are weak and demagnetization paths are often

noisy.

Range of NRMs

0.1-9.8x107* Am~!

Isolated components

11 anchored ChRMs, 1 unanchored ChRM, 17 demagnetization

great circles.
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BP - Brancepeth

Details of sampling

Date sampled 12" March 2003

Locality description Extensive roadcut exposure on Masterton-Stronvar Road, just east

of junction with Ngaumu Road.

Grid reference T26/485148

Lithology Light grey, calcareous mudstone, with at least one tuff member.
Assigned age Tongaporutuan - unit defined as Bells Creek Mudstone.
Bedding attitude 229/18 NW (1 measurement)

Sampling 45 cores from 9 sampling levels, yielding 66 samples.

Stratigraphic thickness | 35 metres

Demagnetization data

Samples demagnetized AF 8 samples, thermal 40 samples.

Demagnetization behaviour | A strong PDF overprint with an underlying reversed polarity
ChRM, but no stable endpoints were isolated before the onset of

thermal alteration.

Range of NRMs 0.64-4.5x107* Am~!

Isolated components 33 demagnetization great circles.

Rock magnetic measurements

Samples analysed | 3

Range of M,./M; | 0.11-0.20

Range of B../B. | 2.99-4.98

FORC behaviour | Large RR with poorly defined, ridge-like SD distribution with minor peaks
at 2040 mT.
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BR - Burgess Road

Details of sampling
Dates sampled 2274 April 2002

Locality description Contiunous exposure on northern bank of Hangaroa River, on Pehiri

Tuhunga Road just east of the Burgess Road turn-off.

Grid reference X18/088752

Lithology Sand-rich grey mudstones.

Assigned age Early Tongaporutuan; stratigraphically below Maketu Sandstone.
Bedding attitude 064/42 SE (3 measurements)

Sampling 35 cores from 8 sampling levels, yielding 57 samples.

Stratigraphic thickness | 14 metres

Demagnetization data

Samples demagnetized AF 8 samples, thermal 8 samples.

Demagnetization behaviour | PDF overprint with no discernable higher stablity components.
Range of NRMs 3.4-7.8x107% Am~!

Isolated components None.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M, | 0.11-0.13

Range of B../B. | 4.96-5.61

FORC behaviour | RR/SD 6.3-10.0; large RR with minimal SD distribution.
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CH - Cheviot Hills

Details of sampling
Dates sampled 20" April 2002

Locality description Fairly continuous outcrop on southern verge of SH36, about 1 km

west of turn-off onto Pehiri Tahunga Road.

Grid reference X18/204688

Lithology Decimetre scale interbedded mudstones and sand-rich mudstones.
Assigned age Lillburnian

Bedding attitude 072/56 S (4 measurements)

Sampling 27 cores from 8 sampling levels, yielding 33 samples.

Stratigraphic thickness | 17 metres

Demagnetization data

Samples demagnetized AF 20 samples, thermal 13 samples.

Demagnetization behaviour | Strong PDF obscuring a highly rotated, reversed polarity ChRM.
AF and thermal treatments were equally effective.

Range of NRMs 0.73-4.7x107% Am~!

Isolated components 15 anchored ChRMs, 5 unanchored ChRMs, 8 demagnetization

great circles.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M | 0.08-0.10
Range of B.,./B. | 4.96-5.41
FORC behaviour | FORCs not run.
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FP - Flat Point

Details of sampling

Dates sampled

10t* March 2003

Locality description

Outcrop on beach accessed from car park at Flat Point (sampling

just to east of river providing access).

Grid reference

T27/587925

Lithology

Blue-grey mudstones with decimetre scale sandstone interbeds, grad-
ing into paler, more calcareous mudstone with glauconitic sandstone

horizons and less well-defined bedding.

Assigned age

Upper Waitakian to Otaian.

Bedding attitude

223/41 NW (3 measurements)

Sampling

29 cores from 8 sampling levels, yielding 40 samples.

Stratigraphic thickness

14 metres

Demagnetization data

Samples demagnetized

AF 19 samples, thermal 7 samples.

Demagnetization behaviour | Data are quite poor, with noisy demagnetization paths; AF de-

magnetization appears to be slightly more effective. Most sam-
ples appear to have a strong PDF overprint with an underlying
reversed polarity ChRM; however, some samples may exhibit

signs of a higher stability normal component instead.

Range of NRMs

0.5-15x10~% Am~!

Isolated components

8 anchored ChRMs, 9 unanchored ChRMs, 7 demagnetization

great circles.

177




Appendix A

Summary of localities

FR - Falkner Road

Details of sampling

Dates sampled

315t January 2003

Locality description

Limited exposure on the eastern bank of the Wharekopae River, at
north end of Falkner Road just before Warwick Hills Farm. Some

small scale folding evident.

Grid reference

X17/191864

Lithology

Sand-rich, dark grey siltstones.

Assigned age

Upper Altonian; appears stratigraphically equivalent to the Rere

Sandstone.

Bedding attitude

105/29 S (1 measurement)

Sampling

21 cores from 5 sampling levels, yielding 22 samples.

Stratigraphic thickness

3 metres

Demagnetization data

Samples demagnetized

AF 5 samples, thermal 5 samples.

Demagnetization behaviour | Some PDF overprints but no indication of an underlying ChRM.

Range of NRMs

3.1-6.9x107* Am~!

Isolated components

None.
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GI - Glen Innes

Details of sampling

Dates sampled 19" February 2003

Locality description Exposure in Hangaroa River, where it runs south and parallel to
SH36, heading south toward Tiniroto. Sampled section just before

turn-off to Glen Innes farm.

Grid reference X18/116668

Lithology Light grey sand-rich siltstones and sandstones.

Assigned age Upper Tongaporutuan - stratigraphically above Makaretu Sandstone.
Bedding attitude 085/44 S (2 measurements)

Sampling 48 cores from 10 sampling levels, yielding 56 samples.

Stratigraphic thickness | 19 metres

Demagnetization data

Samples demagnetized AF 20 samples, thermal 10 samples.

Demagnetization behaviour | PDF overprints with no indication of higher stability compo-
nents.

Range of NRMs 9.3-21x107* Am~!

Isolated components None.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M | 0.11-0.13

Range of B../B. | 4.23-4.58

FORC behaviour | Large RR with negligible SD distribution.
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KR - Kahuranaki Road

Details of sampling

Dates sampled

8th April 2002

Locality description

Steep bluffs, with storm gullies providing good exposure, on west side
of Kahuranaki Road north of Elsthorpe, opposite a vineyard. Some

small-scale (1020 cm offset) normal faulting is visible.

Grid reference

V22/380435

Lithology

Mudstones and fine siltstones; some minor clay-rich intervals and

sandstone lenses.

Assigned age

Southland (Clifdenian—Waiauan)

Bedding attitude

196/65 W (3 measurements)

Sampling

34 cores from 9 sampling levels, yielding 49 samples.

Stratigraphic thickness

32 metres

Demagnetization data

Samples demagnetized

AF 16 samples, thermal 16 samples.

Demagnetization behaviour | Anomalous stable magnetizations which do not align with PDF

direction in geographic coordinates, and have anomalous, low

inclination directions following tilt correction.

Range of NRMs

1.1-3.8x107* Am~!

Isolated components

None that are meaningful.

N, V

Figure A.1: Vector component plots of demagnetization data for representative
sample KRO1B, in: (a) geographic co-ordinates, where the ChRM has an unrealis-
tically large normal polarity declination, and (b) tilt-corrected coordinates, where
the inclination is anomalously shallow.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M, | 0.09-0.11

Range of B.,/B. | 4.23-4.55

FORC behaviour | FORCs not run.
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MB - Mokonui Bridge

Details of sampling

Date sampled 30" January 2003

Locality description Extensive, smoothly weathering, exposure of shallowly dipping beds
in the Wharekopae River, just upstream of a bridge on Mokonui
Farm. Sampling was undertaken after a period of little rainfall which

substantially increased accessible exposure.

Grid reference X17/074860

Lithology Dark calcareous mud and siltstones.

Assigned age Altonian (probably early); stratigraphically just below Rere Sand-
stone.

Bedding attitude 027/18 SE (4 measurements)

Sampling 43 cores from 9 sampling levels, yielding 59 samples.

Stratigraphic thickness | 33 metres

Demagnetization data

Samples demagnetized AF 8 samples, thermal 35 samples.

Demagnetization behaviour | Thermal demagnetization is more effective, yielding unrotated
normal polarity ChRMs (both anchored and unanchored) which
are not completely unblocked before the onset of thermal alter-
ation. Some AF demagnetized samples yielded moderate coer-

civity components with comparable directions.

Range of NRMs 1.3-4.1x107* Am™!

Isolated components 23 anchored ChRMs, 15 unanchored ChRMs.
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MF - Maharahara Farm

Details of sampling

Dates sampled 9th—10t" March 2002

Locality description Steep bluff exposure on southern bank of Waikohu River, visible from
Whakarau Road just east of Mahaki Settlement Road turn-off.

Grid reference X17/223976

Lithology Often finely-interbedded mudstones and fine sandstones.

Assigned age Otaian

Bedding attitude 090/32 S (3 measurements)

Sampling 28 cores from 8 sampling levels, yielding 26 samples.

Stratigraphic thickness | 22 metres

Demagnetization data

Samples demagnetized AF 7 samples, thermal 7 samples.

Demagnetization behaviour | No real consistency - some possible indications of a relatively
unrotated, reversed polarity component in a few samples but
most are quasi-stable at best.

Range of NRMs 1.2-5.5x107% Am~!

Isolated components None.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M | 0.08-0.17

Range of B.,./B. | 3.38-5.85

FORC behaviour | Large RR with virtually no SD distribution.
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MK - Mangapoike River

Details of sampling

Dates sampled 12" February 2003

Locality description Cliff exposure on road running parallel to and above Mangapoike
River.

Grid reference X19/071449

Lithology Massive white and light grey mudstones.

Assigned age Kapitean (below Opoitian unconformity).

Bedding attitude 187/30 W (3 measurements)

Sampling 26 cores from 6 sampling levels, yielding 32 samples.

Stratigraphic thickness | 16 metres

Demagnetization data

Samples demagnetized AF 6 samples, thermal 20 samples.

Demagnetization behaviour | Good behaviour for both thermal and AF treatment. A minor
PDF overprint is easily removed, revealing a stable, normal po-
larity ChRM.

Range of NRMs 2.4-3.7x107* Am~!

Isolated components 23 anchored ChRMs, 3 unanchored ChRMs.

Rock magnetic measurements

Samples analysed | 1

Range of M,./M | 0.01

Range of B../B. | 4.17

FORC behaviour | Large RR with a minor SD distribution peaking at 20-30 mT.
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MP - Makarori Point

Details of sampling

Dates sampled

25th—26t" April 2002

Locality description

Cliff exposure around point at north end of Wainui Beach, just north
of Gisborne. The ocean is rapidly eroding the shoreline, resulting in
fresh exposure. Minor normal faulting and folding is visible along the

entire length of the outcrop.

Grid reference

Y18/541693

Lithology

Decimetre scale interbedded mudstones and silt /sandstones, with the

latter showing some signs of soft sediment deformation.

Assigned age

Clifdenian—Lillburnian (Tuaheni Point Formation of Neef (1992)).

Bedding attitude

307/14 NE (4 measurements)

Sampling

35 cores from 9 sampling levels, yielding 50 samples.

Stratigraphic thickness | 10 metres

Demagnetization data

Samples demagnetized AF 34 samples, thermal 16 samples.

Demagnetization behaviour | Data are quite noisy but indicate a minimal PDF overprint, over-

lying a stable normal polarity ChRM, with consistently large
rotations indicated. AF and thermal treatments are equally ef-

fective.

Range of NRMs

0.85-5.7x10~% Am~—!

Isolated components 36 anchored ChRMs, 8 unanchored ChRMs.
Rock magnetic measurements

Samples analysed | 6

Range of M,./M, | 0.08-0.25

Range of B../B. | 4.48-6.24

FORC behaviour | Large RR with minor, ridge-like SD distribution.
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MR - Makaretu Road

Details of sampling

Dates sampled 29" January 2003

Locality description A roadcut/verge outcrop at Wharekopae turn-off on Makaretu Road,
southward off State Highway 2 just past Otoko.

Grid reference X17/118917

Lithology Massive m-scale beds of fine, light blue-grey sandstone, some of which

have been pervasively weathered

Assigned age Altonian, probably upper as the sampled unit appears to be strati-
graphically equivalent to the Rere Sandstone.

Bedding attitude 086/30 S (3 measurements)

Sampling 32 cores from 7 sampling levels, yielding 40 samples.

Stratigraphic thickness | 11 metres

Demagnetization data

Samples demagnetized AF 7 samples, thermal 20 samples.

Demagnetization behaviour | Samples have strong NRMs and apparently stable magnetiza-
tions, with anomalous directions (shallow inclinations after tilt-
correction, do not align with PDF in geographic coordinates)
which cluster into two distinct groups (one highly rotated, one

less s0). Both of these components are thermally stable but have

low MDF's.
Range of NRMs 17-160x10~% Am~!
Isolated components 17 anchored ChRMs, 10 unanchored ChRMs.
N, v N, V
| o | BN %\: | i BN
J;LL“\DDW/D/‘_‘

Figure A.2: Vector component plots of demagnetization data for representative
sample MR10B, in: (a) geographic co-ordinates, and (b) tilt-corrected coordinates.
In both cases the inclination is unrealistically shallow and the declination unrealis-
tically large.

Rock magnetic measurements

Samples analysed | 4

Range of M,./M; | 0.06-0.09

Range of B../B. | 4.52-4.99

FORC behaviour | Large RR with negligible SD distribution.
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MS - Matawai Station

Details of sampling
Dates sampled 14" February 2002, 2526t January 2003
Locality description A fairly continuous exposure in the bed of the Waikohu River, 100-

200 m west and upstream of where it is bridged by Oliver Road north
of Matawai Station. Outcrop is fractured, with associated shearing

and offsets of up to 10 cm.

Grid reference X17/128009

Lithology Light blue-grey calcareous mudstones, with massive sandstone in-
terbeds.

Assigned age Otaian

Bedding attitude 088/54 S (6 measurements)

Sampling 71 cores from 14 sampling levels, yielding 70 samples.

Stratigraphic thickness | 47 metres

Demagnetization data

Samples demagnetized AF 8 samples, thermal 62 samples.

Demagnetization behaviour | All samples are strongly affected by a PDF overprint. AF demag-
netization was ineffective. Thermal demagnetization isolated a
stable ChRM in 21% of samples at temperatures of 200-380°C,
but in most cases incomplete removal of the overprint resulted

in demagnetization great circles.

Range of NRMs 0.13-2.2x107% Am~!

Isolated components 8 anchored ChRMSs, 5 unanchored ChRMs, 36 demagnetization

great circles.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M; | 0.12-0.13

Range of B../B. | 2.93-3.21

FORC behaviour | RR/SD 2.6-3.0 (small SD peak at ~20 mT).
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NG - Ngatimita

Details of sampling

Dates sampled 2374 April 2002, 14" February 2003

Locality description Moderately weathered roadside outcrop of steeply dipping beds on
Pehiri-Tahunga Road, just east of the turn-off to Ngatimita Farm.

Grid reference X18/063762

Lithology Decimetre scale interbedded mudstones and mud-rich sandstones,

with rarer coarse sandstone beds.

Assigned age Southland (Clifdenian-Waiauan)
Bedding attitude 084/43 S (6 measurements)
Sampling 71 cores from 14 sampling levels, yielding 87 samples.

Stratigraphic thickness | 21 metres

Demagnetization data

Samples demagnetized AF 56 samples, thermal 9 samples.

Demagnetization behaviour | Strong PDF overprint obscures a rotated, reversed polarity
ChRM, which is successfully isolated in some samples. Ther-
mal and AF demagnetization appear to be equally effective in
removing the overprint.

Range of NRMs 0.54-3.1x107% Am~!

Isolated components 30 anchored ChRMs, 1 unanchored ChrM, 23 demagnetization

great circles.

Rock magnetic measurements

Samples analysed | 3

Range of M,./My | 0.06-0.12

Range of B../B. | 5.14-6.39

FORC behaviour | Large RR and ridge-like, low coercivity SD distribution, with an additional
minor peak at 30-50 mT.
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NP - Ngatara-Poha

Details of sampling

Dates sampled 24" April 2002

Locality description Two separate roadside outcrops with shallowly-dipping beds, about
200 m apart, on Pehiri-Tahunga road between Ngatara and Poha
Farms.

Grid reference X18/160749

Lithology Interbedded sand-rich mudstones and sandstones.

Assigned age Early Tongaporutuan, possibly late Waiauan - stratigraphically just
beneath the Maketu Sandstone.

Bedding attitude 186/23 W (3 measurements)

Sampling 28 cores from 6 sampling levels, yielding 33 samples.

Stratigraphic thickness | 82 metres

Demagnetization data

Samples demagnetized AF 9 samples, thermal 14 samples.

Demagnetization behaviour | Normal polarity ChRM indicating moderate to large clockwise
rotations. No real overprint. AF demagnetization was slightly
more effective than thermal treatment.

Range of NRMs 4.1-12x107* Am~!

Isolated components 14 anchored ChRMs, 1 unanchored ChRM, 7 demagnetization

great circles.
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NR - Nukutaurua Road

Details of sampling

Dates sampled 18" April 2002

Locality description Extensive shoreline exposure of steeply dipping beds on the beach at
the end of Nukutaurua Road, accessed from Mahia East Coast Road
just before it turns south away from the northern coast. The beach

borders Maori land and as of 2003 may no longer be accessible.

Grid reference Y19/402222

Lithology Pale grey mudstones, regularly interbedded with white reworked tuff.
Assigned age Tongaporutuan

Bedding attitude 240/48 NW (3 measurements)

Sampling 42 cores from 11 sampling levels, yielding 83 samples.

Stratigraphic thickness | 82 metres

Demagnetization data

Samples demagnetized AF 61 samples, thermal 22 samples.

Demagnetization behaviour | Generally weak NRMs and noisy demagnetization paths, with
an unstable primary remanence at a number of horizons. Both
normal and reversed polarity ChRMs were identified in other

parts of the section, sometimes within sister samples from the

same core.
Range of NRMs 0.16-6.4x10~% Am~!
Isolated components 25 anchored ChRMs, 23 unanchored ChRMs.

Rock magnetic measurements

Samples analysed | 21

Range of M,./M, | 0.03-0.20

Range of B.,./B. | 3.13-17.47

FORC behaviour | RR/SD 3.0-90. Large RRs with minor, low coercivity SD distributions.
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OK - Okau

Details of sampling

Dates sampled

9th March 2003

Locality description

Steeply dipping beds prominently exposed on the beach where thr
road running north from Whakataki and Castlepoint rejoins the

shore.

Grid reference

U26,/840361

Lithology

Calcareous fine sandstones and siltstones interbedded between more

massive graded sandstones (turbidite sequence).

Assigned age

Late Waitakian—early Otaian (Whakataki Formation).

Bedding attitude

207/50 W (4 measurements)

Sampling

38 cores from 9 sampling levels, yielding 50 samples.

Stratigraphic thickness | 22 metres

Demagnetization data

Samples demagnetized AF 8 samples, thermal 36 samples.

Demagnetization behaviour | Minimal overprint - normal polarity ChRM, which can some-

times be anchored to the centre of the demagnetization plot but
in many samples it misses the origin by a large amount, indicat-
ing a higher stability component. AF treatment often leads to

noisy demagnetization paths.

Range of NRMs

0.91-3.3x10~% Am~!

Isolated components 12 anchored ChRMs, 25 unanchored ChRMs.
Rock magnetic measurements

Samples analysed | 2

Range of M,./M, | 0.13-0.14

Range of B../B. | 3.65-3.83

FORC behaviour | Ridge-like SD distribution extending to 50-60 mT.
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OR - Oliver Road

Details of sampling

Dates sampled 15" February 2002, 27" January 2003

Locality description A roadcut/verge outcrop on the highest point on Oliver Road before
it descends to Matawai Station.

Grid reference X17/118988

Lithology Moderately weathered, shallowly dipping grey and brown sandy mud-
stones and siltstones

Assigned age Otaian

Bedding attitude 067/12 SE (3 measurements)

Sampling 70 cores from 16 sampling levels, yielding 81 samples.

Stratigraphic thickness | 27 metres

Demagnetization data

Samples demagnetized AF 9 samples, thermal 72 samples.

Demagnetization behaviour | Most samples are strongly affected by a PDF overprint, and AF
demagnetization is ineffective. Thermal demagnetization mostly
results in demagnetization great circles. Stable ChRMs are only
isolated where no obvious overprint is observed; this component
had mostly unblocked by 400°C.

Range of NRMs 0.47-7.7x10~% Am~!

Isolated components 6 anchored ChRMs, 3 unanchored ChRMs, 41 demagnetization

great circles.

Rock magnetic measurements

Samples analysed | 2

Range of M, /M, | 0.17-0.18

Range of B.,./B. | 2.70-2.85

FORC behaviour | RR/SD 2.7-3.2 (small SD peak at ~20 mT).
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PC - Paparatu Cottage

Details of sampling

Dates sampled 10" February 2003

Locality description Stream bed and bank exposure in the Mangapoike River, behind the
managers cottage for Paparatu Station, on Waingake-Mangapoike
Road.

Grid reference X18/175529

Lithology Mudstones and siltstones with rare fine sandstone members.

Assigned age Clifdenian; part of Tunanui Formation?

Bedding attitude 183/21 W (44 measurements)

Sampling 33 cores from 8 sampling levels, yielding 33 samples.

Stratigraphic thickness | 19 metres

Demagnetization data

Samples demagnetized AF 14 samples, thermal 15 samples.

Demagnetization behaviour | Very strong PDF overprint, which in a few samples is removed

enough to allow a highly rotated, normal polarity ChRM to be

isolated.
Range of NRMs 0.56-2.1x10~%* Am~!
Isolated components 5 anchored ChRMs, 1 unanchored ChRM, 7 demagnetization

great circles.

Rock magnetic measurements

Samples analysed | 2

Range of M,./My | 0.09-0.12

Range of B../B. | 3.90-4.98

FORC behaviour | Ridge-like SD distribution extending to 4060 mT.
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PN - Paoanui Point

Details of sampling
Dates sampled 20" March 2003

Locality description Wave-cut platform exposed at Paoanui Point, ~2 km north along the

beach from Pourerere carpark.
Grid reference V23/420182

Lithology Dark blue-grey mudstone with massive, discontinuous sandstone in-

terbeds, particularly toward the top of the section.

Assigned age Waiauan
Bedding attitude 033/61 SE (3 measurements)
Sampling 37 cores from 9 sampling levels, yielding 53 samples.

Stratigraphic thickness | 47 metres

Demagnetization data

Samples demagnetized AF 25 samples, thermal 8 samples.

Demagnetization behaviour | Strong PDF overprint with no discernable higher stability com-

ponents.
Range of NRMs 2.3-3.9x107* Am~!
Isolated components None.
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PP - Putiki Point

Details of sampling

Dates sampled 1516t April 2002

Locality description Low cliff exposure of shallowly dipping beds on the beach beneath
Mahia East Coast Road, just before it crosses Whangawehi Stream.

Grid reference Y19/379226

Lithology White, ash-rich mudstones, with minor reworked tuff beds.

Assigned age Tongaporutuan (probably late).

Bedding attitude 239/11 NW (3 measurements)

Sampling 35 cores from 9 sampling levels, yielding 57 samples.

Stratigraphic thickness | 17 metres

Demagnetization data

Samples demagnetized AF 8 samples, thermal 34 samples.

Demagnetization behaviour | Strong PDF overprint which is generally not effectively removed
by AF demagnetization. Thermal treatment allows a reversed
polarity ChRM to be isolated.

Range of NRMs 0.63-8.3x107* Am~!

Isolated components 22 anchored ChRMs, 14 unanchored ChRMs, 3 demagnetization

great circles.

Rock magnetic measurements

Samples analysed | 4

Range of M,./M | 0.20-0.24

Range of B../B. | 3.23-3.72

FORC behaviour | RR/SD 3.9-4.8; ridge-like SD distribution with peak at 20-30 mT.
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SB - Sponge Bay

Details of sampling

Dates sampled 3744t February 2003

Locality description Beach exposure on the eastern side of a cove accessed from car park

at the end of Sponge Bay Road.

Grid reference Y18/498658

Lithology Fine dark blue-grey mudstones with interbedded coarse turbidites.
Assigned age Clifdenian-Lillburnian (Tuaheni Point Formation of Neef (1992)).
Bedding attitude 353/47 E (7 measurements)

Sampling 42 cores from 12 sampling levels, yielding 43 samples.

Stratigraphic thickness | 43 metres

Demagnetization data

Samples demagnetized AF 18 samples, thermal 18 samples.

Demagnetization behaviour | Data are quite noisy, but appear to indicate a minimally

overprinted, normal polarity ChRM with moderate declination

anomaly.
Range of NRMs 0.36-2.7x107* Am~!
Isolated components 18 anchored ChRMs, 3 unanchored ChRMs.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M | 0.10-0.11

Range of B../B. | 4.18-5.57

FORC behaviour | Ridge-like SD distribution with minor peak at 30-40 mT.
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SN - Strathblane Farm

Details of sampling

Dates sampled 11*" February 2003

Locality description Weathered roadside outcrop on Bushy Knoll Road ~1 km southwest
of Hangaroa, on a rise overlooking Strathblane Farm.

Grid reference X18/111696

Lithology Brown mudstones and siltstones with interbedded sandstones.

Assigned age Lillburnian

Bedding attitude 146/27 SW (3 measurements)

Sampling 31 cores from 8 sampling levels, yielding 35 samples.

Stratigraphic thickness | 25 metres

Demagnetization data

Samples demagnetized AF 23 samples, thermal 8 samples.

Demagnetization behaviour | Strong PDF overprint; some inconclusive indications of an un-
derlying normal polarity component but, if present, it cannot be

reliably isolated.

Range of NRMs 1.84.6x107* Am~!

Isolated components None.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M, | 0.06-0.09

Range of B../B. | 4.05-5.53

FORC behaviour | Large RR with minor, ridge-like SD distribution to 30-40 mT.
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Summary of localities

TC - Te Waipera Cemetary

Details of sampling

Dates sampled

ond_grd April 2002

Locality description

Shoreside end of a promontory close to a settlement and small
cemetary at Te Waipera, about 1 km east along the coast road from
Mabhia.

Grid reference

Y19/362233

Lithology

Massive, dark grey, fine-grained mudstones, overlain by interbedded

mudstones and reworked tuffaceous beds, with one primary tuff.

Assigned age

Tongaporutuan (probably late)

Bedding attitude

203/10 NW (3 measurements)

Sampling

34 cores from 9 sampling levels, yielding 54 samples.

Stratigraphic thickness | 24 metres

Demagnetization data

Samples demagnetized AF 37 samples, thermal 17 samples.

Demagnetization behaviour | Strong NRMs with a minimally overprinted, normal polarity

ChRM that is recoverable from most samples. Thermal and AF
treatments are both effective, but strong GRMs above 40 mT
were observed for AF treated samples from the lower part of the

section.

Range of NRMs

2.7-34x10~* Am™!

Isolated components 32 anchored ChRMs, 16 unanchored ChRMs.
Rock magnetic measurements

Samples analysed | 15

Range of M,./M, | 0.12-0.52

Range of B../B. | 1.35-3.90

FORC behaviour

RR/SD 0.7-11; SD distribution ranging between strong peaks at ~60 mT,
ridge-like distributions peaking at ~20 mT, and a negligible SD compo-

nents of magnetization.
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TF - Te Korau Farm

Details of sampling
Dates sampled 13" February 2003

Locality description Fairly weathered stream bed/bank exposure east of bridge on Stafford

Road, just north of Te Korau Farm.

Grid reference X18/205761

Lithology Dark, fairly sandy calcareous mudstone with thin sandstone in-
terbeds.

Assigned age Llilburnian-Waiauan

Bedding attitude 199/20 W (3 measurements)

Sampling 28 cores from 7 sampling levels, yielding 27 samples.

Stratigraphic thickness | 13 metres

Demagnetization data

Samples demagnetized AF 6 samples, thermal 15 samples.

Demagnetization behaviour | A minimally overprinted, normal polarity ChRM is recoverable

from most samples. Thermal treatment was superior to AF de-

magnetization.
Range of NRMs 3.4-9.5x10"* Am~!
Isolated components 21 anchored ChRMs.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M; | 0.21-0.44

Range of B../B. | 1.41-3.37

FORC behaviour | Significant SD distributions with strong-moderate peaks at 50-60 mT.
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TH - Turihaua Point

Details of sampling

Dates sampled 7t February 2003

Locality description Shoreline exposure on a wave cut platform on the beach running
alongside SH35, ~1 km north of Turihaua Point.

Grid reference Y18/608739

Lithology Massive, dark grey mudstones with rare massive sandstone interbeds.

Assigned age Tongaporutuan

Bedding attitude 038/19 SE (3 measurements)

Sampling 37 cores from 8 sampling levels, yielding 54 samples.

Stratigraphic thickness | 14 metres

Demagnetization data

Samples demagnetized AF 28 samples, thermal 8 samples.

Demagnetization behaviour | Erratic demagnetization behaviour was observed at some sam-
pling levels, but most samples exhibit a moderately overprinted
normal polarity ChRM with clockwise declination anomalies. AF
and thermal treatments both appear to be effective, although
thermally demagnetized samples occasionally have noisy demag-

netization paths.

Range of NRMs 1.3-33x107% Am~!

Isolated components 19 anchored ChRMs, 4 unanchored ChRMs, 2 demagnetization

great circles.
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TI - Titoki Road

Details of sampling

Dates sampled

18t* March 2003

Locality description

Extensive stream bank exposure visible to the south from the road
to Blackhead and Paoanui Point, just before the junction with Titoki
Road.

Grid reference

V23281249

Lithology

Dark brown and grey mudstones and siltstones with rare massive

sandstone beds. Weathered ash fragments are present in some beds.

Assigned age

Lillburnian (probably part of Makara Formation).

Bedding attitude

201/30 W (5 measurements)

Sampling

44 cores from 9 sampling levels, yielding 63 samples.

Stratigraphic thickness | 23 metres

Demagnetization data

Samples demagnetized AF 38 samples, thermal 9 samples.

Demagnetization behaviour | Normal polarity ChRM with a small PDF overprint. AF treat-

ment is generally superior to thermal; however, some AF treated
samples acquire large GRMs above 20-30 mT, which could have

been the result of a temporary fault with the demagnetizing coils.

Range of NRMs

2.8-9.6x107* Am~!

Isolated components 18 anchored ChRMs, 20 unanchored ChRMs.
Rock magnetic measurements

Samples analysed | 2

Range of M,./M | 0.15-0.16

Range of B../B. | 3.31-3.37

FORC behaviour | Large RR and moderate SD distribution at 20-30 mT.
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TK - Te Koawa

Details of sampling

Dates sampled 20" and 2274-237¢ March 2002

Locality description Outcrop in stream bed and banks, south/downstream of where it
fords Whakarau Road, east of Te Koawa.

Grid reference X17/196994

Lithology Decimetre-scale beds of light grey, calcareous mudstone.

Assigned age Altonian

Bedding attitude 309/56 NE (7 measurements)

Sampling 31 cores from 10 sampling levels, yielding 35 samples.

Stratigraphic thickness | 46 metres

Demagnetization data

Samples demagnetized AF 10 samples, thermal 10 samples.

Demagnetization behaviour | Thermal treatment appears to be more effective than AF, but
neither technique removed much of what appears to be a strong
PDF overprint. Some possible indications of a relatively unro-

tated, reversed polarity component in a few samples but nothing

conclusive.
Range of NRMs 0.652.0x10"% Am~!
Isolated components None.
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TP - Tatapouri Point

Details of sampling

Dates sampled 5t —6th February 2003

Locality description Cliff and beach exposure about 1 km east along coast from Makarori,

just west of Tatapouri Point.

Grid reference Y18/574705

Lithology Fine dark blue-grey mudstones with interbedded coarse turbidites.
Assigned age Clifdenian—Llilburnian (Tuaheni Point Formation of Neef (1992)).
Bedding attitude 273/32 N (4 measurements)

Sampling 41 cores from 10 sampling levels, yielding 46 samples.

Stratigraphic thickness | 19 metres

Demagnetization data

Samples demagnetized AF 17 samples, thermal 22 samples.

Demagnetization behaviour | AF and thermal treatments were both effective, but thermally
demagnetized samples can have noisy demagnetization paths. A
minimally overprinted, normal polarity ChRM indicates large

clockwise rotations.

Range of NRMs 0.69-5.0x10~% Am~!

Isolated components 27 anchored ChRMs 10 unanchored ChRMs.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M | 0.07-0.16

Range of B../B. | 3.16-4.99

FORC behaviour | Large RRs; one sample has a moderate SD peak at 30-40 mT, the other

a more ridge-like SD distribution at lower coercivities.
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TR - Taumata Road

Details of sampling
Dates sampled 12t-13t* March 2002

Locality description Cliff and bank exposure in a stream running parallel to Taumata

Road, between two bridges southwest of Wharekopae Field Station.

Grid reference X17/053807

Lithology Fairly massive grey mud and siltstones.

Assigned age Clifdenian

Bedding attitude 348/19 E (4 measurements)

Sampling 55 cores from 15 sampling levels, yielding 70 samples.

Stratigraphic thickness | 47 metres

Demagnetization data

Samples demagnetized AF 13 samples, thermal 15 samples.

Demagnetization behaviour | No clear primary component underneath a strong PDF overprint.
Range of NRMs 1.3-2.6x107* Am~!

Isolated components None.
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WB - Whangaehu Beach

Details of sampling

Dates sampled 6th—7th March 2002

Locality description Exposure of near vertical beds below cliffs ~100 m south of car park
at Whangaehu Beach.

Grid reference V24/185829

Lithology Thinly interbedded grey and black (organic rich) mudstones.

Assigned age Lliburnian-Waiauan; part of Whangaehu Mudstone.

Bedding attitude 054/73 SE (4 measurements)

Sampling 36 cores from 9 sampling levels, yielding 53 samples.

Stratigraphic thickness | 44 metres

Demagnetization data

Samples demagnetized AF 46 samples, thermal 8 samples.

Demagnetization behaviour | Consistently strong overprint that is being removed toward re-
versed polarity primary direction , but no stable endpoints can
be isolated. In geographic co-ordinates the overprint has a nor-
mal polarity with a westerly declination, so it may not be a PDF.
AF and thermal treatments are equally effective.

Range of NRMs 0.51-4.3x107% Am~!

Isolated components None.
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WH - Waterfall Hill

Details of sampling

Dates sampled

18th-19t" February 2002

Locality description

Roadside outcrop on Pehiri-Tahunga Road about 2 km north of the
SH 36 turnoff.

Grid reference

X18,/204706

Lithology

Massive, metre-scale sandstone beds with thinner interbedded mud-

stones.

Assigned age

Late Waitakian—Altonian (probably early, as the late Altonian is gen-

erally missing in this region).

Bedding attitude

238/63 NW (2 measurements)

Sampling

27 cores from 8 sampling levels, yielding 37 samples.

Stratigraphic thickness

28 metres

Demagnetization data

Samples demagnetized

AF 8 samples, thermal 8 samples.

Demagnetization behaviour | No clear primary component underneath a strong PDF overprint.

Range of NRMs

2.2-53x10"% Am~!

Isolated components

None.

Rock magnetic measurements

Samples analysed | 2

Range of M,./M; | 0.13-0.14

Range of B../B. | 3.67-3.99

FORC behaviour | Large RR with a ridge-like, low coercivity SD distribution.
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WM - Waimarama Beach

Details of sampling

Dates sampled

17th—18t" March 2003

Locality description

Beach outcrop just south of the car park at the southern end of the
beach access road. There is an extensive outcrop of fault melange
50-100 m south along the beach, and small-scale faulting and folding
is also observable within the outcrop.

Grid reference

W22/519461

Lithology

Massive, fractured, light blue-grey mudstone interbedded with thick

welded tuffs, with internal lamination.

Assigned age

Waitakian—Altonian

Bedding attitude

W22/519461 (5 measurements)

Sampling

38 cores from 8 sampling levels, yielding 61 samples.

Stratigraphic thickness

13 metres

Demagnetization data

Samples demagnetized

AF 9 samples, thermal 8 samples.

Demagnetization behaviour | Strong PDF overprint, with no clear systematic behaviour at

higher temperatures or fields; some samples look like they might
have a normal polarity primary direction, whilst others possibly

have a reversed polarity.

Range of NRMs

1.7-6.5x10~% Am~!

Isolated components

None.
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WT - Whangaehu Tuff

Details of sampling
Dates sampled 14" April 2002

Locality description Sequence exposed in cliffs just around a spit ~200 m south from

Whangaehu Beach car park - not accessible at high tide.

Grid reference V24/186826

Lithology Massive, light grey, sandy siltstones containing a single tuff bed.
Assigned age Tongaporutuan

Bedding attitude 051/38 SE (2 measurements)

Sampling 28 cores from 7 sampling levels, yielding 49 samples.

Stratigraphic thickness | 10 metres

Demagnetization data

Samples demagnetized AF 7 samples, thermal 14 samples.

Demagnetization behaviour | Strong PDFs, with no higher-stability components discernable
except from tuffaceous samples, from which a normal polarity
ChRM could be isolated.

Range of NRMs 0.96-4.3x10~* Am~!

Isolated components 4 anchored ChRMs, 1 unanchored ChRM.
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WU - Waihau Beach

Details of sampling

Dates sampled 27th_98t" March 2002

Locality description Shallowly dipping exposure at the base of the cliffs, about 1.5 km
south of car park on Waihau Beach.

Grid reference Z17/719916

Lithology Massive steel-grey mudstones with interbedded, discontinuous tuff

horizons up to 30 cm thick.

Assigned age Early Tongaporutuan
Bedding attitude 194/23 W (4 measurements)
Sampling 41 cores from 11 sampling levels, yielding 85 samples.

Stratigraphic thickness | 7 metres

Demagnetization data

Samples demagnetized AF 26 samples, thermal 34 samples.

Demagnetization behaviour | ChRMs isolated by both thermal (unblocking temperatures of
280-380°C) and AF (MDF's of 50-60 mT) demagnetization; ther-
mal treatment is generally better. Normal and reversed polarity
directions were both isolated, and polarities are generally con-
sistent within a sampling level.

Range of NRMs 0.15-7.1x107% Am~!

Isolated components 33 anchored ChRMs, 11 unanchored ChRMs, 2 demagnetization

great circles.

Rock magnetic measurements

Samples analysed | 8

Range of M,./M, | 0.11-15

Range of B../B. | 3.38-3.87

FORC behaviour | RR/SD 3.8-5.0; a large reversible component of magnetization with a mi-
nor, ridge-like SD distribution peaking at 20-40 mT.
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Demagnetization and rock magnetic data

The CD inside the back cover of this thesis contains the following data:

e Demagnetization data for all of the samples analysed, in the folder 'Demag’.
Sub-folders contain individual files for thermally and AF demagnetized sam-
ples, in the form of raw .DAT files, and .txt files with geographic and tilt

corrections applied.

e Core orientation measurements from all localities, in the file ‘cores.text’.
Orientations have been corrected for the local magnetic field declination of

20.5° at the time of sampling.

e Averaged bedding measurements from all localities, in the file ‘tilt.txt’, again

corrected for the local magnetic field declination.

e Rock magnetic data in the folder 'Rockmag’. Raw data for all measured
hysteresis loops, back-field remanence curves, and FORC series are stored in

separate sub-folders.

Please note that these data are provided for reference purposes only, and the

permission of the author should be sought before they are put to any other use.
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