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Abstract8

Marine invasion ecology and management has progressed significantly over the last 30 years9

although many knowledge gaps and challenges remain. The kelp Undaria pinnatifida, or10

‘Wakame’, has a global non-native range and is considered one of the world’s ‘worst’ invasive11

species. Since its first recorded introduction in 1971 numerous studies have been conducted on12

its ecology, invasive characteristics and impacts, yet a general consensus on the best approach13

to its management has not yet been reached. Here, we synthesise current understanding of14

this highly invasive species, and adopt Undaria as a case study to highlight challenges in wider15

marine invasion ecology and management. Invasive species such as Undaria are likely to con-16

tinue to spread and become conspicuous, prominent components of coastal marine communities.17

While in many cases marine invasive species have detectable deleterious impacts on recipient18

communities, in many others their influence is often limited and location specific. Although19

not yet conclusive, Undaria may cause some ecological impact, but it does not appear to drive20

ecosystem change in most invaded regions. Targeted management actions have also had min-21

imal success. Further research is needed before well considered, evidence based management22

decisions can be made. However, if Undaria was to become officially unmanaged in parts of its23

non-native range, the presence of a highly-productive, habitat former with commercial value24

and a broad ecological niche, could have significant economic and even environmental benefit.25

How science and policy reacts to the continued invasion of Undaria may influence how similar26

marine invasive species are handled in the future.27
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1. Introduction29

Globalisation is causing an ever-increasing number of species to be accidentally or inten-30

tionally introduced to areas outside of their native range (Perrings et al., 2010). Estimates31

include over 50,000 non-indigenous species (NIS) in the USA (Pimentel et al., 2005) and over32

11,000 in Europe (DAISIE, 2009). This prolific exchange of species, coupled with extinctions33

and reduced biodiversity driven by anthropogenic environmental change, may be causing a34

progression towards homogenisation of the world’s flora and fauna (McKinney and Lockwood,35

1999). Those NIS which establish, spread and proliferate without the direct aid of humans are36

known as ‘invasive species’ (Richardson et al., 2011). Invasive species are considered one of the37

major drivers of global biodiversity decline (along with changes in climate, land and seabed38

use, atmospheric CO2 and nitrogen deposition; Sala et al., 2000). Invasive species can also39

cause major economic loss to a variety of industries, including agriculture, forestry, aquacul-40

ture, construction, transport, utilities and tourism, as well as affecting human health (Williams41

et al., 2010). There is also significant costs associated with research, management and control.42

An estimate of total economic cost considering all of these aspects amounts to $120 billion and43

£1.7 billion per year in the USA and UK respectively (Pimentel et al., 2005; Williams et al.,44

2010).45

Due to the inherent connectivity within the marine environment, NIS are particularly preva-46

lent and difficult to manage (Eno et al., 1997; Ruiz et al., 1997). In six heavily used ports in the47

USA, Australia and New Zealand, a new NIS was estimated to establish every 85 weeks; with48

the fastest rate of introduction every 32 weeks in San Francisco Bay (Hewitt, 2003). Over 25049

marine NIS have been identified in Australia (Hewitt, 2003), 150 in New Zealand (Cranfield50

et al., 1998), 90 in the UK (Minchin et al., 2013) and over 200 in San Francisco Bay (USA)51

alone (Cohen and Carlton, 1998). The major vector of introduction is commercial shipping,52

followed by aquaculture, canals and aquarium trade (Molnar et al., 2008). Controls on intro-53

2



duction vectors are logistically the most efficient point to inhibit NIS establishment (Bax et al.,54

2001). However, due to the international, commercial and public nature of vectors, introduc-55

tions are unlikely to be completely contained (Hulme, 2006). Once introduced, rapid-response56

management may allow eradication at a relatively low control cost (Anderson, 2005; Beric and57

MacIsaac, 2015), but early recognition of a marine NIS before it establishes is also problematic.58

Many species have microscopic life stages and are found in inconspicuous and often inaccessible59

habitats. The incomplete taxonomy and historical records that are apparent for many marine60

families, means that once recognised newly identified species will often be cryptogenic. It can61

often take considerable time for accurate identification and status of a newly identified species62

to be determined, requiring a wide range of genetic, ecological and biochemical techniques,63

further delaying potential rapid-response management.64

Identifying specific characteristics that predispose a species to being invasive is challenging.65

Invasive species are generally considered to have high phenotypic or genetic plasticity and a66

broad ecological niche in order to survive introduction, establishment and spread in a non-67

native range (Newsome and Noble, 1986; Williamson and Fitter, 1996; Kolar and Lodge, 2001;68

Zenni et al., 2014). They are often described to have opportunistic life-histories, including69

high fecundity, growth rate and recruitment, however there are also successful invasive species70

with more competitive life-history traits (Duyck et al., 2007; Valentine et al., 2007). The71

probability of invasion increases with the number of individuals released or reproducing, the72

number of introduction events, and proximity to existing populations (Kolar and Lodge, 2001;73

Lockwood et al., 2005). Resource availability, such as light, food and physical space, is also a74

key factor which can influence the vulnerability of a recipient community to invasion (Levine75

and D’Antonio, 1999; Stachowicz et al., 2002).76

Quantifying the ecological impacts of an invasive species is also complex. Differences in77

recipient communities, resource availability, environmental abiotic factors and attributes of78

3



the invasive species itself, can all create site-specific impacts. Factors such as abundance and79

geographical range of the invasive species may influence impacts in all cases (Parker et al.,80

1999), while other factors such as morphological, behavioural or even chemical characteristics81

of the invasive species are more species specific (Thomsen et al., 2011).82

Invasive marine macroalgae (seaweeds) may function as ecosystem engineers that are able83

to modify the environment and alter recipient communities and, as such, have the potential to84

cause significant ecological and socio-economic impacts (Williams and Smith, 2007; Thomsen85

et al., 2009; Dijkstra et al., 2017). Overall there are thought to be approximately 350 different86

seaweed NIS accounting for around 20-30% of all marine NIS (Schaffelke and Hewitt, 2007;87

Thomsen et al., 2016). The cold-temperate kelp Undaria pinnatifida (Figure 1) is one of only88

two seaweeds (along with Caulerpa taxifolia) included in the Invasive Species Specialist Group89

list of the 100 most invasive species of the world (Lowe et al., 2000). Native to cold temperate90

areas of the North-west Pacific (the coastlines of Japan, Korea, Russia and China) the adventive91

kelp Undaria pinnatifida (Harvey) Suringar, 1873 (Phaecophycae, Laminariales), or ‘Wakame’92

has a worldwide non-native range (Figure 2). First identified as an invasive species on the93

Mediterranean coast of France in the 1970s (Perez et al., 1981), Undaria pinnatifida (hereafter94

referred to as Undaria) is now established on the coastlines of 13 countries across 4 continents95

(James et al., 2015). The design of efficient and effective NIS management requires a clear96

understanding of a species physiology, invasion dynamics and ecological impacts. Due to its97

global distribution and status as an invasive species for over 30 years, Undaria is a useful case98

study to highlight both successes and failures in our handling and understanding of marine99

NIS.100
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2. Undaria pinnatifida101

2.1. Biology, physiology and native ecology102

In its native North-east Asia, Undaria is a winter annual species that inhabits rocky sub-103

strates from the low intertidal to 18 m depth, and is widespread at depths of 1-3 m (Saito,104

1975; Koh and Shin, 1990; Skriptsova et al., 2004). It is also a major species for seaweed mar-105

iculture in China, Japan and Korea (Yamanaka and Akiyama, 1993), with total world yield106

in 2013 exceeding 2 million tonnes fresh weight (FAO FishStat). Sporophytes can grow up to107

1 - 1.7 cm per day, reach 1.3 - 2 m in length and have a maximum lifespan of around 6 - 8108

months (Castric-Fey et al., 1999; Choi et al., 2007; Dean and Hurd, 2007). They form large109

divided pinnate fronds and distinctive ruffled reproductive sporophylls (Figure 1). As with110

all kelps, Undaria has a heteromorphic life cycle, with large macroscopic diploid sporophytes111

that produce microscopic zoospores from reproductive sporophylls. The spores develop into112

microscopic dioecious haploid gametophytes, which, on maturation produce motile sperm that113

fertilise the sessile egg and a new sporophyte will start to grow in situ of the female gameto-114

phyte (Dayton, 1985). Sporophylls develop over several months and mature sequentially from115

the base upwards (Saito, 1975; Schaffelke et al., 2005). Zoospores are released over approx-116

imately 20 - 40 days at densities of 0.13 × 105 − 12 × 105 spores per cm2 of sporophyll per117

hour; amounting to 1 × 108 − 7 × 108 spores over the lifetime of a sporophyte (Saito, 1975;118

Schaffelke et al., 2005; Primo et al., 2010; Schiel and Thompson, 2012). Once released spores119

typically move at around 0.13 − 0.33 mm s−1 for 5 - 6 hours, but may remain motile for up to120

3 days. Fixing ability starts to be reduced within a few hours, although viability can last over121

10 days (Suto, 1952; Saito, 1975; Hay and Luckens, 1987; Forrest et al., 2000). Due to the low122

motility and vitality of the zoospores, settlement is strongly correlated to distance from mature123

sporophytes, and dispersal may be limited to as little as 0.2 - 10 meters from a spore release124

point (Suto, 1952; Forrest et al., 2000; Schiel and Thompson, 2012). Larger dispersal distances125
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are thought to be facilitated by the drifting of entire sporophytes, which may remain viable for126

much longer periods. Overall, it has been estimated that maximum spore-mediated dispersal127

rates for populations are in the order of 10 − 200 m yr−1, while sporophyte drift may allow128

maximum dispersal rates of 1 − 10 km yr−1 (Forrest et al., 2000; Sliwa et al., 2006; Russell129

et al., 2008).130

In most of its native range Undaria sporophyte recruitment occurs in winter, becomes re-131

productive in spring and goes through widespread senescence during summer, leaving only the132

microscopic gametophyte life stages which persist through autumn (Saito, 1975; Koh and Shin,133

1990). Temperature is the key environmental factor which determines this annual population134

dynamic (Figure 3; Saito, 1975). Undaria’s native range has average monthly sea surface tem-135

peratures from -0.6◦C to 16.8◦C in the coldest months, and 23◦C to 29.5◦C in the warmest136

months (Skriptsova et al., 2004; Dellatorre et al., 2014; Watanabe et al., 2014; James and137

Shears, 2016b). The ability to tolerate this large annual range is due to the survival of mi-138

croscopic gametophyte and sporophyte stages which can persist at temperatures between -1139

and 30◦C (Saito, 1975; Morita et al., 2003a). Sporophyte growth has a slightly more restricted140

temperature range of 0 - 27◦C; optimum growth rate is site-specific, however tends to fall within141

5 - 20◦C, and senescence may be induced by exposure to temperatures at or above 24◦C (Saito,142

1975; Morita et al., 2003b; Skriptsova et al., 2004; Henkel and Hofmann, 2008; Bollen et al.,143

2016; James and Shears, 2016a). The reproductive sporophylls can be present between 5 - 27◦C,144

and when mature, spore release and settlement occurs between approximately 11 - 25◦C (Saito,145

1975; Skriptsova et al., 2004; Thornber et al., 2004; James and Shears, 2016b). Although sporo-146

phytes may develop 15 - 20 days after spore settlement, under certain temperature, light or147

competitive regimes, gametophytes may grow vegetatively and remain viable for up to 2 years,148

thus creating an expanding seed-bank from previous generations in the understory (Pang and149

Wu, 1996; Thornber et al., 2004; Choi et al., 2005). The remaining life-stages are the most150

temperature specific and therefore drive the strict annual life-cycle in its native range (Figure151
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3). Gametophyte growth is optimum between 15-20◦C, while gametogensis and fertilisation is152

optimum between 10-15 ◦C (Saito, 1975; Morita et al., 2003a; Henkel and Hofmann, 2008).153

Although less defined than the influence of temperature, many abiotic factors can affect154

the growth and distribution of Undaria, including salinity, light, day length, nutrients and155

wave exposure. Undaria is predominantly found in fully saline conditions, with mean salinities156

below 27 psu generally limiting its range (Saito, 1975; Floc’h et al., 1991; Watanabe et al., 2014).157

However, laboratory based experiments have shown that zoospore attachment may occour at158

salinities as low as 19 psu, while gametophytes and sporophytes may survive at salinities as159

low as 6 psu (although below 16 psu sporophytes may start to become damaged) (Saito, 1975;160

Peteiro and Sanchez, 2012; Bollen et al., 2016). Undaria is viable over a wide range of light161

regimes; however, changes in irradiance and day-length will influence the rate of recruitment,162

growth and photosynthesis in both gametophyte and sporophyte stages (Pang and Luning, 2004;163

Choi et al., 2005; Baez et al., 2010; Morelissen et al., 2013). Although seasonal and site-specific,164

optimal growth occurs around 40−120 µmol m−2 s−1, light saturation point for photosynthesis165

(Ik) can be reached around 100 − 500 µmol m−2 s−1, while the light compensation point (Ic;166

when no net photosynthesis occurs), may be reached between 17− < 5 µmol m−2 s−1 (Saito,167

1975; Matsuyama, 1983; Campbell et al., 1999; Morelissen et al., 2013; Watanabe et al., 2014).168

Although requiring irradiance above approximately 3 µmol m−2 s−1 for growth and maturation169

(Saito, 1975), the gametophyte is able to survive in complete darkness, in a latent phase, for at170

least 7 months (Kim and Nam, 1997); while zoospore settlement may not be affected by light171

regime at all (Morelissen et al., 2013).172

When compared to perennial or summer annual Laminarians, Undaria has a comparatively173

low rate of nutrient uptake and nitrate storage, and therefore a close association between174

seawater and tissue nitrate (Dean and Hurd, 2007). This means that growth of sporophyte and175

gametophyte stages are positively related to nutrient concentration (Pang and Wu, 1996; Dean176
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and Hurd, 2007; Gao et al., 2013; Morelissen et al., 2013). Zoospore settlement, however, is not177

considered to be influenced by nutrient concentration and therefore any inhibition of recruitment178

by nutrient limitation would occour at the gametophyte or sporophyte stage (Morelissen et al.,179

2013). Increased water motion can enhance nutrient uptake in kelps (Gerard, 1982), which is180

highlighted by rope based mariculture of Undaria being more efficient in moderately exposed181

sites with water velocities of up to 15 − 30 cm s−1 when compared to sheltered sites of 5 −182

12 cm s−1 (Nanba et al., 2011; Peteiro and Freire, 2011; Peteiro et al., 2016). Within natural183

environments Undaria is found at highest abundance in moderately-sheltered to moderately-184

exposed open coasts or bays near the open sea (Saito, 1975; Floc’h et al., 1996; Russell et al.,185

2008). Due to the thin fragile nature of the sporophyte frond, Undaria is limited in highly186

exposed shores (Choi et al., 2007), although can still be found in low intertidal pools or lower187

subtidal areas, which have more shelter from wave action at exposed sites (Russell et al., 2008).188

Periods of low water motion are needed for high natural recruitment, with spore adhesion189

optimal at water velocities of 3 cm s−1 (Arakawa and Morinaga, 1994). Under certain conditions190

spores may completely fail to adhere at flows ≥ 14 cm s−1 (Saito, 1975), however in some cases191

no inhibition of adhesion rate may occur until flow rates reach over 16 cm s−1, and spores may192

still adhere, albeit at a greatly reduced rate, at flows over 25 cm s−1 (Arakawa and Morinaga,193

1994; Pang and Shan, 2008).194

Overall Undaria has a high growth rate, large reproductive output, high phenotypic plastic-195

ity and a relatively wide physiological niche. These factors are often considered characteristic196

of successful invasive species (Newsome and Noble, 1986; Williamson and Fitter, 1996). On197

the other hand, Undaria exhibits low natural dispersal ability, and its ecophysiological niche is198

not as broad as some other highly invasive marine macroalgae (Nyberg and Wallentinus, 2005).199

As such, it could be thought of as a low risk for widespread colonisation, however its invasion200

history demonstrates it to be a very successful invader.201
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2.2. Invasive characteristics202

The primary vectors of introduction and long distance dispersion of Undaria were via fouling203

on the hulls of commercial vessels (Hay, 1990; Forrest et al., 2000; Silva et al., 2002), and204

accidental import with shellfish (Perez et al., 1981; Floc’h et al., 1991). Undaria was also205

intentionally introduced for cultivation into Brittany (France) in 1981 (Perez et al., 1981).206

As with most marine NIS, the initial introductions of Undaria therefore all occurred onto207

artificial substrates within anthropogenic habitats such as harbours, marinas, canals or modified208

embayments (e.g. Hay and Luckens, 1987; Floc’h et al., 1991; Fletcher and Farrell, 1999; Silva209

et al., 2002; Cremades et al., 2006; Zabin et al., 2009). Once established, widespread range210

expansion has been facilitated by human mediated transport to other anthropogenic habitats,211

largely from fouling on commercial and recreational vessels (Hay, 1990; Fletcher and Farrell,212

1999; Russell et al., 2008; Zabin et al., 2009; Dellatorre et al., 2014; Minchin and Nunn, 2014;213

Kaplains et al., 2016). Once established in these anthropogenic or modified environments,214

Undaria can spread into natural habitats. Due to its requirement for attachment on hard215

substrates, it is predominantly found invading rocky reefs, however it can also be found more216

rarely to invade seagrass beds and mixed sediment communities (Floc’h et al., 1996; Farrell and217

Fletcher, 2006; Russell et al., 2008; James et al., 2014). In many parts of its non-native range218

Undaria populations have expanded, and under certain conditions can make up a significant219

proportion of canopy forming seaweeds. Undaria’s dominance is normally seasonal, spatially220

variable and mostly occurs on artificial substrates in anthropogenic habitats (Castric-Fey et al.,221

1993; Fletcher and Farrell, 1999; Curiel et al., 2001; Heiser et al., 2014; James and Shears,222

2016a). It can, however, also be found as one of the dominant canopy forming seaweeds in223

natural habitats under certain competitive or environmental settings (Valentine and Johnson,224

2003; Casas et al., 2004; Raffo et al., 2009; Thompson and Schiel, 2012; Heiser et al., 2014).225

Due to the low natural dispersion rates of Undaria, local spread of populations tends to226
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occur in a step-wise manner (Fletcher and Farrell, 1999). The rate of localised natural spread227

is therefore far lower than human mediated spread, with some populations having minimal228

range expansion for many years following their initial introduction. For example, in the UK it229

took over 7 years for Undaria to colonise a shoreline 200 m away from an established marina230

population (Farrell and Fletcher, 2006); in the USA many marina populations remain localised231

following introductions over 10 years ago (Kaplains et al., 2016); while in France it took 10232

years for Undaria to be found outside of the enclosed lagoon to which it was first introduced233

(Floc’h et al., 1991). In New Zealand, population expansion seems to be dependent on the234

area in which it is found. In Timaru Harbour Undaria has extended less than 1 km from the235

harbour in over 20 years (Russell et al., 2008), in Marlborough Sound the range of Undaria has236

expanded by hundreds of meters a year (Forrest et al., 2000), in Moeraki Harbour expansion237

was around 1 km per year, while at Otago Harbour Undaria spread around 2 km per year along238

adjacent exposed coastlines outside the harbour (Russell et al., 2008). Considerably faster rates239

of spread have also been recorded in areas of Argentina and Australia. Within the San Jose240

Gulf (Argentina), only 4 years after its introduction, Undaria had spread across approximately241

100 km of coastline (Dellatorre et al., 2014), and in certain parts of Tasmania local spread has242

been estimated to reach up to 10 km per year (Hewitt et al., 2005). Although the rate of range243

expansion is variable and site-specific, Undaria seems able to spread and proliferate without244

the direct aid of humans in all of its non-native range.245

As previously discussed, temperature is the key environmental factor which determines the246

population dynamics of Undaria (Saito, 1975). Many parts of Undaria’s non-native range247

have smaller annual temperature variation than the majority of its native range, meaning248

thermal cues for its annual life history are lost and some macroscopic sprophytes can be present249

throughout the year (James et al., 2015, and references therein). Using both in-situ and250

satellite based temperature measures, it was estimated that where maximum summer sea-251

surface temperatures are less than or equal to 19.4◦C Undaria sporophytes would be predicted252
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to be present year round, whereas where temperature maxima is greater than or equal to 20.6◦C253

an annual phenology could be expected (James et al., 2015).254

Due to Undaria sporophytes living approximately 6 - 8 months, a recruitment period of255

four or more months, or multiple recruitment pulses per year could result in the year round256

presence of sporophytes (James et al., 2015). In Santa Barbara (California, USA) where average257

sea surface temperatures range from approximately 12◦C to 19◦C, the presence and growth of258

sporophytes occurs year round. There are two recruitment pulses, with a smaller autumn pulse259

at temperatures from 17◦C to 21◦C, and a larger winter recruitment when temperatures are260

12◦C to 17◦C (Thornber et al., 2004). In this location, recruitment seems to be triggered by261

a fall in temperature below 15◦C, with recruitment occurring around 8 weeks later (Thornber262

et al., 2004). A similar bi-annual recruitment has been recorded in New Zealand, with pulses263

in the autumn and spring (Hay and Villouta, 1993; Thompson and Schiel, 2012). In some264

areas, such as Brittany (France) and Patagonia (Argentina), sea surface temperatures reach265

over 15◦C for only 3 - 4 months of the year. In these locations, although there are still seasonal266

pulses, some recruitment occurs year round (Castric-Fey et al., 1999; Casas et al., 2008; Martin267

and Bastida, 2008). The ability for Undaria to become one of the dominant canopy forming268

seaweeds and have a year round occurrence in parts of its non-native range, suggests that it269

could have significant ecological impacts on the recipient communities to which it invades.270

2.3. Ecological impacts271

Surveys examining the distribution of Undaria within mixed seaweed assemblages have272

identified that it occurs more commonly, or is found in higher abundance, where there is a273

lower density of native canopy species (e.g. Castric-Fey et al., 1993; Cremades et al., 2006;274

Russell et al., 2008; Heiser et al., 2014; De Leij et al., 2017, Table 1). Due to the lack of275

pre-invasion data, it could be argued that Undaria may have been the cause of this reduced276

native canopy. However, results indicate that Undaria is occupying substrates, depth ranges277
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or anthropogenically stressed habitats where native canopy forming seaweeds are limited (e.g.278

Castric-Fey et al., 1993; Cremades et al., 2006; Russell et al., 2008; James and Shears, 2016b,279

Table 1). This is supported by an investigation where data on native kelp abundance was280

available before the Undaria invasion. This before-after control-impact (BACI) study showed281

that the introduction of Undaria led to no significant change in the abundance of native kelp282

species over three years (Forrest and Taylor, 2002).283

In its native Japan and Korea, Undaria can act as a pioneer species, and is part of a284

natural successive colonisation process (Agatsuma et al., 1997; Kim et al., 2016). Where it285

has invaded, this pioneer-like trait is indicated by ecosystem stress or disturbance being key286

to Undaria’s recruitment into mixed canopy assemblages (Table 1). In some cases stress from287

eutrophic conditions have been shown to promote Undaria recruitment (Curiel et al., 2001;288

Carnell and Keough, 2014), while canopy disturbance is often a critical factor (Floc’h et al.,289

1996; Edgar et al., 2004; Valentine and Johnson, 2004; Martin and Bastida, 2008; Thompson290

and Schiel, 2012; South and Thomsen, 2016; De Leij et al., 2017). Experimental clearance of291

native kelp species within intertidal and subtidal environments in Australia and New Zealand292

caused Undaria to recruit into manipulated patches, while the following year Undaria declined293

and the native seaweeds started to recover (Valentine and Johnson, 2003; Thompson and Schiel,294

2012).295

Comparative studies have shown that Undaria harbours a distinct and reduced epifaunal296

and epifloral community when directly compared to native kelp species (Raffo et al., 2009;297

Arnold et al., 2016). However, as evidence suggests that Undaria is not able to displace native298

kelps, this does not indicate ecological impact in itself. Community wide impact studies suggest299

that the influence of Undraia is context specific (Table 1). In anthropogenic habitats Undaria300

may cause a decline in density and diversity of native understory and canopy flora and fauna301

(Curiel et al., 2001; Farrell and Fletcher, 2006). On natural rocky substrates in Patagonia,302
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there is some evidence that Undaria can cause a reduction in diversity and richness of native303

macroalgae (Casas et al., 2004) and reduce fish abundance (Irigoyen et al., 2010), although this304

may be highly site-specific. Intertidal studies in New Zealand and Australia have described305

Undaria’s impacts on native biodiversity as transient (Table 1). For example, a two and half306

year study within intertidal reef habitats in New Zealand repeatedly removed Undaria from307

experimental patches. Measurement of various faunal and floral community indicators showed308

no long term effect of the presence of Undaria when compared to control sites (South et al.,309

2015). A similar result was found in a three year BACI study of an Undaria invasion into310

a sheltered embayment of New Zealand, with no evidence of significant ecological impacts on311

either macroalgae or sessile invertebrates (Forrest and Taylor, 2002).312

The distribution, ecological impact and invasion dynamics of Undaria seem to indicate313

that it is predominantly acting as a passenger of ecosystem change - filling an empty niche314

or benefiting from resource availability which is temporarily released by ecosystem stress and315

having a limited impact on recipient communities (Didham et al., 2005; MacDougall and Turk-316

ington, 2005; Bauer, 2012). There is, however, some evidence that Undaria may be driving317

ecosystem change in certain environments. In a study by Carnell and Keough (2014), Undaria318

required native canopy disturbance to recruit and grow in high abundance, however under nu-319

trient enhancement, the presence of Undaria seemed to limit the recovery of native canopies. In320

other examples, the native canopy has not inhibited Undaria recruitment (Farrell and Fletcher,321

2006; Morelissen et al., 2016), and removal or die back of Undaria has led to recovery of native322

macroalgae (Curiel et al., 2001; Casas et al., 2004).323

One way in which Undaria may be able to drive ecosystem change in the long term is due324

to its year round presence in some of its non-native range (Hay and Villouta, 1993; Fletcher325

and Farrell, 1999; Casas et al., 2008; James and Shears, 2016b). Many larger native canopy326

forming seaweeds are perennial, living up to 10 years, with seasonal growth, reproductive and327
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senescence stages. If Undaria is able to recruit in multiple pulses throughout the year onto328

available substrate left open by the natural die back of native species it may be able to slowly329

monopolize space, increasing in density and excluding native seaweeds. Due to the long life330

time of some native species, significant increases in the density and distribution of Undaria331

may not be seen for many decades in the absence of wider ecosystem disturbance. Long term332

monitoring and manipulations of Undaria invaded communities would be needed in order to333

demonstrate the potential of this interaction.334

It has been suggested that Undaria could have facilitative impacts within certain invaded335

communities, by proving trophic or habitat subsidy (Suarez-Jimenez et al., 2017; Jimenez et al.,336

2015; Irigoyen et al., 2011; Cecere et al., 2000). For example, in a low complexity limestone337

plateau, benthic macrofaunal richness and diversity was higher where Undaria was present338

(Irigoyen et al., 2011). Similarly, within a highly polluted and low diversity enclosed basin of339

the Ionian Sea the presence of Undaria was observed to have a positive ecological function,340

by increasing benthic primary production and providing food and biogenic habitat for other341

organisms (Cecere et al., 2000). Further research is needed to better elucidate the net impact342

(i.e. negative and facilitative) of Undaria across a range of invaded ecosystems. To date, the343

majority of studies have been carried out in the southwest Pacific, yet current evidence suggests344

that Undaria impacts are context specific. A key knowledge gap relates to the impacts of345

Undaria in other invaded regions, such as the northwest Atlantic and northeast Pacific. Future346

research should also include an emphasis on manipulative and BACI studies, as well as long347

term monitoring activities and comparative work across large spatial scales, in order to causally348

determine the effects of Undaria within invaded ecosystems.349

2.4. Management350

Management frameworks designed to control the abundance and spread of Undaria could351

only be found for two of the countries to which it has been introduced (Table 2). These352
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are largely generic, with measures applicable to wider NIS introductions. For example, the353

key measures recommended for managing Undaria in New Zealand include: surveillance and354

response to new infestations in high-value areas, vector monitoring and control, prohibition355

of intentional release, controls on ballast water discharge, improved research, education and356

public awareness (Sinner et al., 2000). Although not necessarily a requirement, none of these357

measures will reduce localised natural spread or abundance of Undaria.358

Eradication using heat treatment has been successful where an isolated population occurred359

on a wrecked trawler in the Chatham islands, New Zealand (Wotton et al., 2004). Removal of360

all sporophytes over a 15 month period led to the long term eradication of Undaria from the site361

and inhibited its spread to natural substrates. Even at this small scale, eradication cost around362

$0.4 million (NZD). Eradication from longer established populations in natural environments363

has not yet been successful. A management trial in Tasmania, removed Undaria monthly364

from a 800 m2 area of rocky reef. Although there was a significant reduction in sporophyte365

abundance, eradication was not achieved, with sporophytes present at each subsequent visit366

(Hewitt et al., 2005). Experimental manipulations carried out in New Zealand and Italy,367

whereby small (0.5 m2) areas of Undaria dominated rocky substrate were scraped clean, also368

saw fresh recruitment within one year (Curiel et al., 2001; Thompson and Schiel, 2012).369

As previously discussed, many studies have shown that Undaria requires a level of ecosystem370

stress or disturbance to recruit and spread in mixed seaweed canopies. Reducing, mitigating,371

or preventing anthropogenic disturbance to native canopies has therefore been suggested as372

a management option to prevent the spread, and limit the abundance of Undaria (Valentine373

and Johnson, 2003). However, where Undaria has already established at high densities, or if374

it is acting as a ‘back-seat driver’ - suppressing native species once recruited (Bauer, 2012),375

maintaining native canopies alone is unlikely to be effective (Valentine and Johnson, 2003).376

The management options available to directly target the local spread and abundance of377
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Undaria are unclear. Where Undaria can be found in multiple locations and at high abundance378

within natural environments it seems unlikely that eradication would be feasible. This is379

generally accepted by environmental managers, with widespread eradication of Undaria not380

currently being considered in any country to which it has been introduced (Table 2). Due381

to the importance of artificial or anthropogenic environments in the establishment of Undaria382

and its relatively low natural dispersal rates, control of new or isolated populations should383

be plausible. Monitoring of harbors, marinas, ports, high-value natural areas and natural384

boundaries, with rapid response eradication to any new sightings could greatly reduce wide-385

scale spread of Undaria and therefore the ecological impacts it may have on natural habitats386

(Forrest et al., 2009). In New Zealand, Undaria is currently absent from the west coast of387

the South Island, and large areas of the North Island’s west coast. In April 2010 a mature388

sporophyte was found within Sunday Cove, Fiordland World Heritage Area, on the west coast389

of the South Island (ES, 2016). Since that time, dive based surveys and removal of Undaria390

have been carried out every 4-5 weeks at a cost over $1 million (NZD). Six years after the391

commencement of the program occasional young individuals are still found, however it is still392

the aim of managers to entirely eradicate Undaria from the area (ES, 2016).393

In many regions where Undaria is now accepted (i.e. eradication is no longer being consid-394

ered), commercial farming and wild harvest is being developed. Mariculture expanded across395

Brittany, after Undaria’s initial introduction in 1981, with 9 sites established into the early396

1990s (Castric-Fey et al., 1993). Cultivation and mariculture has also been carried out on397

the Galician coast of Spain since the late 1990s, and is continuing to develop along the North398

coast (Perez-Cirera et al., 1997; Peteiro et al., 2016). In 2010 The Ministry for Primary In-399

dustries (New Zealand) introduced a revised policy for the commercial use of Undaria which400

approved its wild harvest from artificial substrates or when cast ashore in selected areas. It401

also approved mariculture in three heavily infested areas, but prohibited harvest from natural402

substrates unless part of a designated control program (MAF, 2010). The rationale behind403
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the prohibition of harvest from natural substrates was that “it could disturb or remove native404

canopy species leading to a proliferation of Undaria”, while “harvesting when taken as part405

of a control programme is allowed as any risks associated with harvest will be outweighed by406

reduced Undaria in localised areas” (MAF, 2010). It may be possible that one of the remaining407

options to reduce the abundance and local spread of Undaria where eradication is no longer408

feasible, would be through the legalisation of commercial wild harvest from natural substrates.409

Strict biosecurity would have to be implemented to avoid its spread, and harvesting practises410

would need to minimise damage to native canopies - such as through a licensing system for411

hand harvesting only in specific areas. Timings of harvest would also have to be carefully con-412

sidered, as removal or thinning of the Undaria canopy can result in a strong positive response413

of conspecific recruitment, and increased growth rate of the remaining stock (Thompson and414

Schiel, 2012; Gao et al., 2014). However, removal before maturation could greatly reduce spore415

and seed-bank densities, and would perhaps limit the abundance and spread of Undaria over416

time.417

Decisions taken by environmental managers on whether to manage Undaria within a given418

jurisdiction should be made on a case-by-case basis. Where Undaria has recently arrived, or419

has a restricted range, it is likely that there will be a better chance of successful control or420

eradication. However, due to the widespread global distribution of Undaria, re-introduction is421

probable without the implementation of thorough biosecurity. The native community into which422

Undaria is introduced may also strongly influence the decisions of environmental managers.423

The invasion of Undaria is likely to have greater ecological impact in areas where there are no424

functionally similar native species. Whereas, in communities which are dominated by native425

canopy-forming macroalgae, Undaria may have limited impact on the community as a whole,426

and act as a passenger of ecosystem change. Economics and the maintenance of ecosystem427

services will also be factors that influence the decisions made by environmental managers.428

Although not covered as part of this review Undaria can act as fouling pest to industries429
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such as aquaculture, shipping and recreational boating (Hay, 1990; Zabin et al., 2009; Minchin430

and Nunn, 2014; James and Shears, 2016a). The overall economic impacts of this interaction431

are poorly understood, but as has been noted above, Undaria could also have economic benefit432

through the development of an Undaria mariculture industry. Careful consideration and further433

research is needed on a site-specific basis. Clearly, the risks, costs, impacts and benefits of all434

options, including potential management or eradication and possible acceptance, should be435

considered when developing management plans for Undaria.436

3. Lessons learnt for wider marine invasion ecology437

3.1. Predicting invaders and reacting to NIS438

Although our understanding of marine NIS has greatly increased, Undaria is a useful case439

study to demonstrate that current capacity to predict the invasion dynamics of many marine440

NIS, and their interactions and impacts within native communities, remains limited. Once441

introduced, most NIS would not be expected to establish or become invasive (Lodge, 1993;442

Williamson and Fitter, 1996). Where invasion does occur, the time from initial introduction443

to when a species becomes invasive is highly variable. In some cases this “lag-time” may last444

decades, with little-to-no proliferation of NIS populations for a considerable time after introduc-445

tion (Crooks, 2005). This is highlighted by the invasion history of Undaria, which has exhibited446

a wide range of expansion rates following introduction into different regions. Predicting which447

NIS are likely to become invasive can therefore be challenging. Species traits are often used448

to predict which NIS may become invasive (Newsome and Noble, 1986; Williamson and Fitter,449

1996), although this approach has limitations (Kolar and Lodge, 2001; Nyberg and Wallentinus,450

2005; Duyck et al., 2007).451

Undaria was considered to be an acceptable species for intentional introduction into France452

for mariculture purposes in 1981 (Perez et al., 1981). A better understanding of a species ecology453
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and physiology is required before intentional introductions are conducted. However, when454

adventive species arrive unexpectedly, the necessity for rapid response management negates455

this consideration. A failure to react to new introductions could have major consequences. As456

marine invasive species can cause significant damage to the environment and economy, and457

due to the complex nature of species invasions, a precautionary principle should be adopted to458

minimise the rate of any new introductions (Grosholz, 2002; Bax et al., 2003; Molnar et al.,459

2008).460

3.2. Ecological impacts461

For some marine invasive species, deleterious ecological impacts can be substantial and462

easy to detect. Introduced voracious predators such as the northern Pacific seastar, Asterias463

amurensis, in Tasmania (Ross et al., 2003), the Lionfish, Pterois volitans, in the tropical Atlantic464

(Green et al., 2012) and the North American mud crab Rhithropanopeus harrisii in the Baltic465

Sea (Jormalainen et al., 2016), prey on wide range of native species and proliferate in the466

absence of native predators. In these examples clear community-wide impacts can be identified.467

Similarly, when invasive species greatly alter nutrient pathways, trophic interactions or habitat468

structure, impacts at the community and ecosystem level are easily detectable (Crooks, 2002;469

Simberloff, 2011). For example, colonial ascidians of the genus Didemnum have overgrown large470

areas of hard substrates, particularly in the Netherlands and USA. These ‘mats’ can greatly471

alter the physical habitat, cause mortality through smothering of sessile flora and fauna and472

have major deleterious impact on wider ecosystem functioning with socioeconomic consequences473

(Bullard et al., 2007; Gittenberger, 2007). The invasion of Undaria highlights that in many474

other cases ecological impacts are far harder to quantify, and may vary considerably between475

locations and recipient communities. For these species, justifying costly eradication attempts476

may be challenging. However, as marine invasive species spread to new regions, decisions will477

have to be made on potential rapid response management before site-specific impact studies478
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can be carried out.479

Invasive species, including Undaria, can also have facilitative impacts on the recipient com-480

munity (Rodriguez, 2006; Irigoyen et al., 2011; Dijkstra et al., 2017). The invasion of bivalve481

molluscs onto soft sediments, such as Musculista senhousia and Crassostrea gigas, is a useful482

example of facilitation by a marine invasive on multiple levels. They provide complex habi-483

tats which can greatly increase infaunal and epifaunal abundance, increase organic content in484

sediment to the benefit of associated organisms, and can act as a trophic subsidy to preda-485

tory invertebrate and vertebrate species (Crooks and Khim, 1999; Escapa et al., 2004; Padilla,486

2010). In order to understand the overall ecological impact a marine invasive species has on the487

recipient community, both deleterious and facilitative effects must be considered. Intrinsically488

the facilitation of one species is likely to occur at the expense of others, due to changes in com-489

petition or predation. In fact for both Musculista senhousia and Crassostrea gigas, where high490

densities are found, a reduction in the abundance of functionally similar native species is often491

recorded (Creese et al., 1997; Crooks and Khim, 1999; Padilla, 2010). In many cases, unequivo-492

cal evidence of significant ecological impact of an invasive species on recipient communities will493

be difficult to attain. Prioritisation of management actions will be influenced by the perceived494

impacts of marine invasive species, in terms of their threat to conservation and the maintenance495

of ecosystem services across different regions, as well as their direct socieoeconomic impacts.496

3.3. Management497

Managing marine NIS is expensive and time consuming, while eradication may be impossible498

once a species is established and widespread (Hulme, 2006). There are examples of successful499

rapid response eradication of invasive species in the marine environment. The seaweed Caulerpa500

taxifolia was first identified in the USA in 2000 (Jousson et al., 2000). A rapid response only501

17 days after its first discovery allowed the successful implementation of a 5 year eradication502

program using containment and chemical treatment, at a cost of around $7.5 million (USD)503
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(Anderson, 2005). However, as shown by Undaria, once a marine NIS is established, prolif-504

eration and spread may be inevitable due to the natural or engineered connectivity of many505

water-bodies. As population size increases the costs of control also increase, while attempting506

eradication of established populations would require significant resources and effort, and may507

ultimately be unsuccessful (Hobbs and Humphries, 1995). A pertinent example of a marine508

invasive species where targeted management was deemed to be inappropriate is the macroalgae509

Sargassum muticum or ‘Japanese wireweed’ in Europe. After its introduction into the UK in510

1973, Sargassum spread across much of Europe’s northeast Atlantic and Mediterranean coast-511

lines. A variety of impact studies have been carried out in different parts of its non-native512

range with varying results. Some studies found it to alter the recipient community to which513

it was introduced (Viejo, 1997; Staehr et al., 2000; Harries et al., 2007), however other long-514

term studies recorded limited effects from the invasive species (Sanchez and Fernandez, 2005;515

Olabarria et al., 2009). Although attempts at management were made (Critchley et al., 1986),516

due to its widespread distribution, uncertainties in the level of its ecological impact, as well517

as the costs and difficulties in its control, Sargassum now has no targeted management across518

most of Europe.519

As with many other invasive species Undaria has a largely opportunistic life-strategy, taking520

advantage of resource availability in order to establish and spread (Gurevitch and Padilla,521

2004). These species are sometimes considered “passengers” - promoted and maintained due to522

the presence of ecosystem stress or disturbance but not in themselves the cause of ecosystem523

change. (MacDougall and Turkington, 2005). A potential management option for these species524

is not to directly target the species itself, but instead to manage the causes of ecosystem525

stress or disturbance, with the ultimate aim of restoring, maintaining or even promoting the526

diversity, integrity and biotic resistance of recipient communities to invaders. Managing long527

term global-scale stressors such as climate change will be challenging but crucial given the known528

interactions between climate and the spread of NIS (Occhipinti-Ambrogi, 2007). On a local-to-529
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regional scale, however, managing stressors such as coastal inputs of sediments and nutrients530

and physical disturbances from resource extraction, fishing activities and coastal development531

may allow some biotic resistance to be maintained. While designing and prioritising targeted532

management options for invasive species is of significant importance, especially for those that533

are considered of high risk or highly damaging, it is also clear that attention should be given534

to preserving the integrity, diversity and resistance of native communities through maintaining535

good overall environmental status. This has been shown for Undaria, as its abundance and536

spread is limited by the presence of diverse, native macroalgae canopies (e.g. Castric-Fey et al.,537

1993; Valentine and Johnson, 2003, 2004; Russell et al., 2008; De Leij et al., 2017).538

As marine NIS continue to spread and extend their non-native ranges, decisions will be539

made on the necessity and feasibility of managing new incursions. Although a precautionary540

principle should be applied, it is unrealistic to assume that management and control of all541

species can be achieved due to the widespread establishment of many marine invasive species.542

Difficult choices will have to be made regarding which species should be targeted, with some543

potentially becoming an accepted part of the local biota. These decisions must be made on a544

case-by-case basis using the best information available, and will depend on a variety of factors545

including the likely effectiveness, practicality, risk and cost of management options, as well as546

negative and positive ecological and socioeconomic impacts of a given species.547

3.4. Accepting NIS548

Many NIS have been established in their non-native range for a considerable time, and549

are now considered part of the natural biota in different regions across the world with major550

economic benefit and even cultural importance (Ewel et al., 1999; Davis et al., 2011). These551

species frequently occur in high abundance and over a wide distribution, and could therefore be552

classed as invasive. Due to the historic nature of species introductions, the widespread accep-553

tance of certain NIS or invasive species is particularly common in the terrestrial environment.554
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The vast majority of the world’s agricultural and horticultural species are NIS where they are555

grown. Many freshwater fish species have also been historically introduced for farming and556

sports fishing purposes and are treated essentially as part of the natural biota in many regions557

(Copp et al., 2005; Gozlan, 2008; Eustice, 2014).558

In the marine environment there is a tendency for all NIS to be classed as damaging invasives,559

however many species have been established outside their native range for many decades, with560

little-to-no reported impacts. Although further intentional spread may be restricted, few have561

targeted management plans aiming to reduce their abundance, and are in practise, treated562

the same as native species. An example of a marine species where perceptions are changing563

is the Pacific Oyster, Crassostrea gigas. The oyster has been intentionally introduced from564

Asia for farming across the world since the late 1800s. Although initially believed unable to565

reproduce in the lower sea temperatures around the cold-temperate Pacific and Atlantic coasts,566

wild populations have established in most introduced regions. In some cases, this species is567

considered as a damaging invasive, with management being developed, or enforced to reduce its568

spread (NSW, 1994; Guy and Roberts, 2010). However, in many parts of the USA and France,569

where introductions occurred in the 1920s and 1960s respectively, they are now being seen as570

part of the natural biota, and are targeted by both wild capture fisheries and aquaculture using571

seeded bottom culture techniques (Feldman et al., 2000; Cognie et al., 2006; Buestel et al.,572

2009).573

Although somewhat contentious, in certain cases invasive species could be considered to have574

benefits to nature conservation (Schlaepfer et al., 2011, 2012; Vitule et al., 2012). This may575

occur if the invasive species (1) has considerable facilitative and minimal deleterious impacts on576

native species; (2) acts as a catalyst for restoration of native habitats; (3) functionally replaces a577

limited or extinct native species; (4) facilitates a species of high conservation value; or (5) acts as578

a biocontrol agent (Schlaepfer et al., 2011). These benefits are again more commonly identified579
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in the terrestrial environment due to the historical and often intentional nature of introductions580

(e.g. Morrison et al., 1998; Lugo, 2004). Crassostrea gigas may be another pertinent example581

relating to the marine environment. In many parts of Europe and America native oysters have582

been over harvested and are considered endangered. It has been suggested that the spread583

of the invasive Pacific Oyster may have conservation benefit, functionally replacing the native584

species, providing habitat, a trophic subsidy and increased biofiltration; while also providing585

an exploitable resource, reducing further harvesting pressure on the native homolog (Shpigel586

and Blaylock, 1991; Paalvast et al., 2012).587

As previously stated, some marine invasive species, such as voracious predators, or those588

with perennial life-cycles and more competitive life-history traits, can have major detrimental589

ecological impact. Many of these species also have minimal facilitative impacts and may lack590

any societal benefits. These species are unlikely to be accepted and may require prolonged591

management or control. Undaria, however, is a large primary producer, which may provide a592

trophic and habitat subsidy to native communities within some systems. Although more site-593

specific research is needed, in many cases it has also been recorded as having minimal deleterious594

impact on native species. There is also commercial potential, with both wild harvest and595

rope based mariculture conducted in parts of Undaria’s non-native range (Castric-Fey et al.,596

1993; Perez-Cirera et al., 1997; MAF, 2010; Peteiro et al., 2016). In areas where likelihood597

of controlling Undaria is low due to widespread established populations, and context specific598

studies show limited ecological impact, it may be that Undaria becomes one of few marine599

invasive species accepted as part of the local biota, with the potential for further development600

as a commercial resource.601
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4. Conclusions602

There are many challenges facing the future of marine invasion ecology. Total prevention of603

introductions of new NIS is highly unlikely, while management or eradication is extremely costly604

and often infeasible. Invasive species are likely to continue their spread and become conspicu-605

ous and prominent components of coastal marine communities. In many cases marine invasive606

species have clearly detectable deleterious impacts on recipient communities, however, in many607

others their influence is often limited and site-specific. Undaria has now been established for608

over 40 years in some of its non-native range. In these areas, rapid response or eradication is no609

longer an option and the need for any targeted management should be considered. Although610

not yet conclusive, Undaria seems to have minimal ecological impacts in most invaded locations611

and does not appear to be a ‘driver’ of ecosystem change in most contexts. If this is shown612

to be the case, it may be more beneficial to target management effort towards the causes of613

ecosystem stress that reduce native biotic resistance and allow Undaria to proliferate, rather614

than attempting to exclude the species itself. Further research is needed before well considered,615

evidence-based management decisions can be made on a case-by-case basis. However, if Un-616

daria was to become officially ‘unmanaged’ in parts of its non-native range and accepted as a617

component of the native flora, the presence of a habitat forming, primary producer with a broad618

ecological niche and potential commercial value, may deliver significant economic and even en-619

vironmental benefit. How science and policy reacts to the continued spread and proliferation620

of Undaria may influence how similar marine invasive species are handled in the future.621
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Figure legends1143

Figure 1: Different developmental stages of Undaria pinnatifida sporophytes (A-D). Un-1144

daria pinnatifida can be found growing in the subtidal and intertidal, as well as on natural and1145

artificial substrates (E-G).1146

Figure 2: Approximate distribution of Undaria pinnatifida. Global map: Green = native1147

range, red = non-native range. Regional maps: Each point represents a distinct location but1148

does not indicate precise position or entire extent. See Table S1 for more information and1149

references.1150

Figure 3: Thermal tolerances of the different life-stages of Undaria pinnatifida. Lighter1151

colours = life-stage possible but may be limited. See in text for references1152
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Table 1: Summary of studies on Undaria pinnatifida for which inference could be made to its competitive ability with functionally
similar species and its impact on recipient communities. Substrate: RR = Rocky reef, RP = Rock plateau, Art = Artificial (SW
= Sea wall, M = Marina pontoon or buoys). Method: Obs = Observational survey, Rem = Manipulative removal experiment,
CI = Control-impact, BACI = Before-after control-impact. Competitive ability: red = competitively superior to functional
similar native species, orange = competitively equal or unaffected, green = competitively inferior or opportunistic. Impact on
community: red = detrimental, orange = no significant change, green = facilitative.

Reference Location Substrate
Description of re-
sponse variable

Duration
(months)

Method Summary
Compet-
itve
ability

Impact
on
com-
munity

Carnell and
Keough
(2014)

SW Pacific
(Victoria,
Australia)

RR
Kelp density and
biomass

6 Rem
Recruitment of Undaria where native kelp removed
and nutrients added. Presence of Undaria reduced
the recovery of native kelp.

Casas et al.
(2004)

SW Atlantic
(Patagonia,
Argentina)

RR
Macroalgal com-
munity

8 Rem
Higher abundance, richness and diversity of native al-
gal species after removal of Undaria, compared to un-
manipulated control sites.

Castric-
Fey et al.
(1993)

NE Atlantic
(Brittany,
France)

RR
Kelp density and
biomass

<1 Obs
Higher abundance of Undaria where native kelps are
limited due to depth or substrate.

Cremades
et al.
(2006)

NE Atlantic
(Galicia,
Spain)

RR
Macroalgal com-
munity

5 Obs
Higher abundance of Undaria where native canopy is
limited due to depth, substrate or anthropogenic stres-
sors.

Curiel et al.
(2001)

N Mediter-
ranean
(Veneto,
Italy)

Art(SW)
Macroalgal density
and biomass

26
Rem,
Obs

Decline in native macroalgal density when Undaria
was present in high densities. Presence of Undaria
caused decline in understory algae.

De Leij
et al.
(2017)

NE Atlantic
(Devon, UK)

RR
Kelp density and
biomass

4
Rem,
Obs

Undaria density and biomass limited in the presence
of native canopy-dominant kelps. Removal of native
kelp increased recruitment of Undaria.

Edgar et al.
(2004)

SW Pacific
(Tasmania,
Australia)

RR
Macrofaunal and
macroalgal com-
munity

12 Rem

Native canopy removal led to significant recruitment of
Undaria compared to unmanipulated control patches,
however, recovery to near control levels at end of study.
No significant difference on associated fauna and flora.

Farrell and
Fletcher
(2006)

NE Atlantic
(Devon, UK)

Art(M)

Kelp density.
Coarse understory
flora and fauna
metrics.

48
Rem,
Obs

Removal of native kelp had no significant effect on Un-
daria recruitment. Over time abundance of Undaria
increased in both removal and control areas, coupled
with native kelp reduction. Differences in associated
flora and fauna due to presence of Undaria.

Floc’h
et al.
(1996)

NE Atlantic
(Brittany,
France)

RR,
Art(Rope)

Undaria abun-
dance

12
Rem,
Obs

Laying of Undaria sporophylls led to recruitment into
exposed areas where canopy removed, but not where
canopy was intact. No Undaria present at any site one
year after manipulation.

Forrest
and Taylor
(2002)

SW Pacific
(Canter-
bury, New
Zealand)

RR
Macroalgal and
macofaunal com-
munity

30
CI,
BACI

No evidence for displacement of native canopy by Un-
daria. No significant contrasts indicating displace-
ment of macrofauna or algal species, or changes in
species assemblage due to the presence of Undaria.

Heiser
et al.
(2014)

NE Atlantic
(Devon, UK)

RR,
Art(M,
SW)

Kelp density 2 Obs
Highest abundance of Undaria in marinas and at sites
where native canopy forming kelps were low in abun-
dance.

Irigoyen
et al.
(2010)

SW Atlantic
(Patagonia,
Argentina)

RR,RP Fish abundance 5 CI
Undaria reduced abundance of fish in low-relief reefs
by obstructing access to shelters when it became dis-
lodged and settles on the reef.
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Reference Location Substrate
Description of re-
sponse variable

Duration
(months)

Method Summary
Compet-
itive
ability

Impact
on
com-
munity

Irigoyen
et al.
(2011)

SW Atlantic
(Patagonia,
Argentina)

RP
Macrofaunal diver-
sity

8 Rem
Presence of Undaria associated with increased macro-
faunal richness, diversity and abundance, when com-
pared to Undaria excluded areas.

James and
Shears
(2016b)

SW Pacific
(Waikato,
New
Zealand)

RR,
Art(Rope)

Undaria abun-
dance. Coarse
metric of native
algal community.

30 Obs
Undaria found in high abundance on ropes in mussel
farms. In adjacent reef habitats Undaria found pre-
dominantly in areas lacking a native canopy.

Martin and
Bastida
(2008)

SW Atlantic
(Patagonia,
Argentina)

RR,
RP

Kelp density 13
Rem,
Obs

Undaria abundance limited in the presence of native
kelp. Removal of native kelp increased recruitment of
Undaria.

Morelissen
et al.
(2016)

SW Pacific
(Welling-
ton, New
Zealand)

RR
Undaria abun-
dance

12 Rem

Removal of native canopy did not effect Undaria re-
cruitment compared to intact, or partially disturbed
canopies. Species composition of algal community de-
veloping after disturbance also had no relationship
with Undaria recruitment.

Raffo et al.
(2009)

SW Atlantic
(Patagonia,
Argentina)

RR
Kelp density and
biomass

<1
CI,
Obs

Presence of Undaria had no effect on native Macro-
cystis density or growth. Presence of Macrocystis had
no effect on Undaria density or growth.

Russell
et al.
(2008)

SW Pacific
(Otago, New
Zealand)

RR
Macroalgal com-
munity

2 Obs
Undaria predominantly found where native kelps are
limited (due to depth or substrate), as well as within
inherently patchy habitats in areas lacking canopy.

South et al.
(2015)

SW Pacific
(Otago, New
Zealand)

RR,
RP

Macroalgal and
macofaunal com-
munity

30 Rem
No significant effects of Undaria removal on diversity
and abundance of native algae and invertebrates.

South and
Thomsen
(2016)

SW Pacific
(Canter-
bury, New
Zealand)

RR
Macroalgal and
macofaunal com-
munity

6
Rem,
CI

Removal of native canopy increased recruitment of Un-
daria. Negative correlation between native canopy
cover and Undaria. Undaria exclusion had little effect
on recipient community, with a transient reduction in
only one ephemeral native alga.

Thompson
and Schiel
(2012)

SW Pacific
(Canter-
bury, New
Zealand)

RR,
RP

Macroalgal density 12 Rem

Removal of native canopies significantly increased re-
cruitment of Undaria. In all areas native canopy
started to recover within 1 year. The smaller the dis-
turbance area, the faster native canopy recovery oc-
curred.

Valentine
and John-
son (2003)

SW Pacific
(Tasmania,
Australia)

RR

Macroalgal com-
munity. Coarse
macrofauna den-
sity metric.

24 Rem

Removal of native algal canopy promoted Undaria re-
cruitment. Following initial recruitment of Undaria,
abundance declined over time associated with a sub-
stantial recovery of native canopy forming species.

Valentine
and John-
son (2004)

SW Pacific
(Tasmania,
Australia)

RR
Macroalgal density.
Coarse macrofauna
density metric.

22 CI
Natural dieback of native canopy led to high recruit-
ment of Undaria, compared to little or no recruitment
of Undaria in areas with intact canopies.

Valentine
and John-
son (2005)

SW Pacific
(Tasmania,
Australia)

RR

Undaria density.
Coarse metric
of native algal
community.

30 Rem

Removal of Undaria had limited effects on native algae
after one year. The following year, there was no evi-
dence that any algal group responded to the removal
of the Undaria canopy.
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Table 2: Status and management of Undaria pinnatifida within its non-native range

Country
First
recorded

Population status
Dedicated
manage-
ment plan

Summary of known management
Management
aim

References

France 1971
Common in natural and anthro-
pogenic habitats across current
range. Active mariculture.

None found

Mariculture limited to areas with already devel-
oped infrastructure and high Undaria abundance.
Mariculture under strict control to prevent poten-
tial ecological impacts and further spread.

Inhibit
range
expansion

Antoine
et al. (2012);
Castric-Fey
et al. (1993)

New
Zealand

1987
Common in natural and anthro-
pogenic habitats across current
range. Active mariculture.

Sinner et al.
(2000)

Surveillance and response to new infestations in
high-value areas, vector monitoring and control,
prohibition of intentional release, controls on bal-
last water discharge, improved research, education
and public awareness.

Inhibit
range
expansion

Russell et al.
(2008); James
et al. (2014)

Spain 1988
Common in natural and anthro-
pogenic habitats across current
range. Active mariculture.

None found
Undaria not included as an invasive or potentially
invasive species within invasive alien species legis-
lation.

Unmanaged
Baez et al.
(2010); BOE
(2013)

Australia 1988
Common in natural and anthro-
pogenic habitats across current
range

NSPMMPI
(2015)

Reduce spread to high value areas, possible com-
mercial harvest with tight biosecurity, modify dry-
dock timing to minimise sporophyte development,
maintain integrity of native canopy algae, ballast
water management, monitoring.

Inhibit
range
expansion

Valentine
and Johnson
(2004); Primo
et al. (2010)

Italy 1992
Largely confined to heavily modi-
fied environments and on artificial
substrates.

None found None found None found
Cecere et al.
(2000); Curiel
et al. (2001)

UK &
ROI

1994

Confined to anthropogenic habi-
tats in many locations. Common
in natural habitats in parts of the
south English and Welsh coast.

None found None found None found

Heiser et al.
(2014);
Minchin and
Nunn (2014);
Wood et al.
(2015)

Portugal 1999
Found at only one marina and one
natural reef site.

None found None found None found
Veiga et al.
(2014)

Belgium 1999
Uncertain. Likely to be predom-
inantly in ports across current
range.

None found None found None found
Leliaert et al.
(2000); VLIZ
(2011)

Holland 1999

Predominantly in anthropogenic
habitats in the Wadden Sea. In
natural and anthropogenic habi-
tats in Oosterschelde.

None found
Recommendations for a national coordinated man-
agement plan.

Inhibit
range
expansion

Gittenberger
and Stegenga
(2013); Ver-
brugge et al.
(2015)

USA 2000
Largely confined to anthropogenic
habitats (Only two records on nat-
ural reef in 2001)

None found
Academic and citizen science led research and re-
moval from marinas in California.

Inhibit
range
expansion

Kaplains et al.
(2016)

Argentina 2000
Common in natural and anthro-
pogenic habitats across current
range

None found
Manual removal of macroscopic sporophytes and a
regular monitoring program to track and eventu-
ally prevent its dispersal within one province.

Inhibit
range
expansion

Dellatorre
et al. (2014)

Mexico 2003
Isolated island population on nat-
ural reef

None found None found None found
Aguilar-Rosas
et al. (2004)
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