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Abstract 16 

Over the last two decades, satellite-derived estimates of biophysical variables have been increasingly used 17 

in operational services, requiring quantification of their accuracy and uncertainty.  Evaluating satellite-18 

derived vegetation products is challenging due to their moderate spatial resolution, the heterogeneity of the 19 

terrestrial landscape, and difficulties in adequately characterising spatial and temporal vegetation 20 

dynamics.  In recent years, near-surface remote sensing has emerged as a potential source of data against 21 

which satellite-derived vegetation products can be evaluated.  Several studies have focussed on the 22 

evaluation of satellite-derived phenological transition dates, however in most cases the shape and 23 

magnitude of the underlying time-series are neglected.  In this paper, we investigated the relationship 24 

between the green chromatic coordinate (GCC) derived using near-surface remote sensing and a range of 25 
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vegetation products derived from the Medium Resolution Imaging Spectrometer (MERIS) throughout the 26 

growing season.  Moderate to strong relationships between the GCC and vegetation products derived from 27 

MERIS were observed at deciduous forest sites.  Weak relationships were observed over evergreen forest 28 

sites as a result of their subtle seasonality, which is likely masked by atmospheric, bidirectional reflectance 29 

distribution function (BRDF), and shadowing effects.  Temporal inconsistencies were attributed to the 30 

oblique viewing geometry of the digital cameras and differences in the incorporated spectral bands.  In 31 

addition, the commonly observed summer decline in GCC values was found to be primarily associated with 32 

seasonal variations in brown pigment concentration, and to a lesser extent illumination geometry.  At 33 

deciduous sites, increased sensitivity to initial increases in canopy greenness was demonstrated by the 34 

GCC, making it particularly well-suited to identifying the start of season when compared to satellite-derived 35 

vegetation products.  Nevertheless, in some cases, the relationship between the GCC and vegetation 36 

products derived from MERIS was found to saturate asymptotically.  This limits the potential of the approach 37 

for the evaluation of the underlying satellite-derived vegetation products, and for the continuous monitoring 38 

of vegetation during the growing season, particularly at medium to high biomass study sites. 39 
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1. Introduction 45 

Vegetation is a major component of the biosphere, and the amount and dynamics of vegetation influence 46 

a range of biogeochemical processes.  Systematic estimates of the biophysical variables that describe 47 

vegetation condition are therefore required by the numerical models that enhance our understanding of the 48 

environment and climate system (Myneni et al., 2002; Sellers et al., 1997).  Such understanding is 49 

fundamental to the development of successful environmental policy, and plays a critical role in informing 50 

effective climate change mitigation strategy.  Estimates of biophysical variables are also essential in the 51 

monitoring of forest resources, of which a net loss of 13 million ha per year is estimated to have occurred 52 

globally between 2000 and 2010 (FAO, 2010).  Similarly, these estimates are highly valuable in the 53 

management of agricultural practices, a particularly important consideration in the context of an increasing 54 

global population (Foley, et al., 2011; Godfray et al., 2010).   As a result, parameters such as the fraction 55 

of absorbed photosynthetically active radiation (FAPAR) and leaf area index (LAI) have been designated 56 

essential climate variables (ECVs) (GCOS, 2010). 57 

The consistent monitoring of vegetation at regional to global scales was first facilitated by the Advanced 58 

Very High Resolution Radiometer (AVHRR), which records coarse spectral resolution data at red and near-59 

infrared wavelengths.  Over the last two decades, instruments such as the Moderate Resolution Imaging 60 

Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS) and Vegetation (VGT) 61 

have provided improvements in radiometry, spectral and spatial resolution (Barnes et al., 1998; 62 

Maisongrande et al., 2004; Rast et al., 1999).  From these data, a range of satellite-derived vegetation 63 

products have emerged, providing users with spatially explicit estimates of various biophysical variables.  64 

Examples include the CYCLOPES and MOD15 products, which provide estimates of FAPAR and LAI 65 

derived from VGT and MODIS respectively (Baret et al., 2007; Myneni et al., 1999), in addition to the MERIS 66 

Global Vegetation Index (MGVI), which corresponds to FAPAR (Gobron et al., 1999), and the MERIS 67 

Terrestrial Chlorophyll Index (MTCI), a surrogate of canopy chlorophyll content (Dash and Curran, 2004).  68 

Over the coming years, the continuity of these products will be ensured by new instruments such as the 69 

Ocean and Land Colour Instrument (OLCI), Sea and Land Surface Temperature Radiometer (SLSTR), and 70 

Visible Infrared Radiometer Suite (VIIRS) (Donlon et al., 2012; Justice et al., 2013). 71 
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To be of real use in environmental decision making, it is vital to ensure that satellite-derived vegetation 72 

products are of high quality and consistency.  This is a particularly important consideration as we enter the 73 

era of operational use, in which an increasing number of products will be routinely made available through 74 

initiatives such as the European Commission’s Copernicus programme (EC, 2005).  Scientists, decision 75 

makers, and service providers will be provided with an unprecedented volume of data from which to choose, 76 

supporting activities such as agricultural monitoring and food security, forest management, numerical 77 

weather prediction, and climate modelling.  By quantifying the uncertainties associated with satellite-derived 78 

vegetation products, their performance can be better understood, enabling users to assess their fitness for 79 

purpose and select those data that are most appropriate for their needs (Baret et al., 2005; Justice et al., 80 

2000; Morisette et al., 2002; 2006).  The importance of product evaluation is increasingly well recognised, 81 

and in recent years initiatives such as the Quality Assurance Framework for Earth Observation (QA4EO) 82 

have been established with the endorsement of the Committee on Earth Observation Satellites (CEOS), 83 

providing a formal structure for these activities (QA4EO, 2010). 84 

Despite its importance, the evaluation of operational satellite-derived vegetation products is particularly 85 

challenging as a result of their moderate spatial resolution, which typically ranges from 300 m to 1 km.  The 86 

in-situ observations that act as reference data are point-based, making direct comparison possible only in 87 

areas of high homogeneity (Fernandes et al., 2014; Morisette et al., 2002).  Because such homogeneity is 88 

uncommon in the terrestrial landscape, particularly at the spatial resolutions of instruments such as MODIS 89 

and MERIS, logistically challenging field campaigns are required to adequately characterise spatial 90 

variability over a study site.  Unfortunately, these activities are constrained by financial resources, reducing 91 

their frequency to, at best, a handful of dates per year, thus limiting the extent to which seasonal vegetation 92 

dynamics can be characterised. 93 

1.1. The role of near-surface remote sensing 94 

In recent years, near-surface remote sensing has emerged as a potential source of data against which 95 

satellite-derived vegetation products can be evaluated, providing potentially valuable information about their 96 

performance.  Digital cameras provide an inexpensive means by which the greenness of a vegetation 97 

canopy can be characterised at a high temporal resolution (Keenan et al., 2014; Richardson et al., 2007; 98 
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2009; Sonnentag et al., 2012).  By making use of the red, green and blue bands of the image, vegetation 99 

indices such as the Excess Green Index (EGI) and Green Chromatic Coordinate (GCC) can be calculated, 100 

providing a measure of canopy greenness.  Importantly, because the field-of-view (FOV) of a digital camera 101 

can incorporate an entire canopy, near-surface remote sensing can provide a greater degree of spatial 102 

integration than traditional in-situ techniques, better reflecting the moderate spatial resolution of the 103 

satellite-derived vegetation products themselves (Hufkens et al., 2012; Keenan et al., 2014; Richardson et 104 

al., 2007; 2009). 105 

The phenological research community have adopted near-surface remote sensing as an alternative to 106 

traditional in-situ observations of events such as bud-burst and leaf opening, which are limited in terms of 107 

their spatial extent and species diversity.  By analysing time-series of near-surface remote sensing data, 108 

phenological transition dates can be determined (Ide and Oguma, 2010; Richardson et al., 2007; 2009; 109 

Sonnentag at al., 2012).  Recently, near-surface remote sensing has been used in the continuous 110 

monitoring of vegetation condition, and has formed the basis of models of plant function (Hufkens et al., 111 

2016; Migliavacca et al., 2011; Toomey et al., 2015).  The Phenological Camera (PhenoCam) network is 112 

the largest near-surface remote sensing initiative, and is comprised of 340 sites, each equipped with a 113 

digital camera that is mounted above or within a vegetation canopy (Richardson et al., 2007; 2009).  Of 114 

these 340 sites, 230 adhere to a common protocol, whilst 200 record data at both visible and near-infrared 115 

wavelengths.  Although the majority of PhenoCam sites are located in North America, similar initiatives 116 

have more recently been established in other parts of the world (Morra di Cella, 2009; Wingate et al., 2015). 117 

Making use of near-surface remote sensing data provided by initiatives such as the PhenoCam network, 118 

several studies have focussed on the evaluation of satellite-derived phenological transition dates (Baumann 119 

et al., 2017; Coops et al., 2012; Hufkens et al., 2012; Keenan et al., 2014; Klosterman et al., 2014; Nijland 120 

et al., 2016).  In these studies, it is only the timing of phenological transition dates that is considered in most 121 

cases, whilst the shape and magnitude of the underlying time-series are largely neglected.  By focusing on 122 

phenological transition dates, rates of change, which can be affected by a range of meteorological and 123 

biogeochemical factors, are overlooked.  Accurately capturing and representing these dynamics is vital for 124 

the continuous monitoring of vegetation condition, and for the modelling of plant function.  Recently, several 125 
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authors have observed features in near-surface remote sensing data that appear unrelated to vegetation 126 

dynamics, including a spring peak and summer decline (Keenan et al., 2014; Toomey et al., 2015; Yang et 127 

al., 2014).  Although previous work has attributed the spring peak to the non-linear relationship between 128 

leaf chlorophyll concentration and the GCC (Wingate et al., 2015), the factors responsible for the summer 129 

decline remain unclear.  If the entire time-series is to be successfully made use of, an increased 130 

understanding of these discrepancies is required. 131 

In this paper, we examine the relationship between continuous measures of canopy greenness derived 132 

from PhenoCam data and a range of vegetation products derived from MERIS, an instrument with similar 133 

characteristics to OLCI on-board the European Space Agency’s (ESA’s) recently launched Sentinel-3 134 

mission (Donlon et al., 2012; ESA, 2012).  In doing so, we hope to answer the following questions: 135 

 How do continuous measures of canopy greenness derived using near-surface remote sensing relate 136 

to satellite-derived vegetation products, and what factors are responsible for observed discrepancies? 137 

 Can near-surface remote sensing be used as a means to operationally and systematically evaluate 138 

these satellite-derived vegetation products?  139 
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2. Materials and methods 140 

2.1. Study sites 141 

14 study sites were selected based on the availability of at least 1 year of near-surface remote sensing data 142 

within the time period that MERIS was operational (17/05/2002 to 08/04/2012).  Only Type 1 PhenoCam 143 

sites were considered, as at these sites a standard installation protocol is adhered to, using a single digital 144 

camera model (NetCam SC IR, StarDot Technologies).  The study sites meeting these criteria were 145 

dominated by deciduous forest, but also incorporated evergreen forest and grassland vegetation.  All study 146 

sites were located within the United States, lying at a low or moderate elevation (Table 1).  With the 147 

exception of Vaira Ranch and Wind River, which experience a mediterranean climate, all study sites were 148 

characterised by a temperate climate. 149 

Table 1: Selected study sites and their characteristics. 150 

Study site Latitude Longitude Elevation (m) Dominant land cover 

Arbutus Lake 43.9821 -74.2332 535 Deciduous forest 
Bartlett Experimental Forest (IR) 44.0646 -71.2881 268 Deciduous forest 
Cary Institute of Ecosystem Studies 41.7839 -73.7341 127 Deciduous forest 
Coweeta Hydrologic Laboratory 35.0596 -83.4280 680 Deciduous forest 
Harvard Forest 42.5378 -72.1715 340 Deciduous forest 
Harvard Forest Hemlock 42.5394 -72.1780 355 Deciduous forest 
Little Prospect Hill 42.5420 -72.1850 380 Deciduous forest 
Howland Experimental Forest 45.2041 -68.7403 80 Evergreen forest 
Hubbard Brook Experimental Forest 43.9439 -71.7019 253 Deciduous forest 
Morgan Monroe State Forest 39.3231 -86.4131 275 Deciduous forest 
Proctor Maple Research Center 44.5250 -72.8660 403 Deciduous forest 
University of Michigan Biological Station 45.5598 -84.7138 230 Deciduous forest 
Vaira Ranch 38.4133 -120.9506 129 Grassland 
Wind River Experimental Forest 45.8213 -121.9521 371 Evergreen forest 

 151 

2.2. Near-surface remote sensing data 152 

At each study site, near-surface remote sensing data were obtained from the PhenoCam network.  Images 153 

acquired between the start of PhenoCam operations and the end of the MERIS archive were selected.  At 154 

the investigated study sites, images are acquired during daylight hours every 30 minutes.  To minimise 155 

shadowing and bidirectional reflectance distribution function (BRDF) effects caused by variations in 156 

illumination geometry, only near-noon images acquired between the hours of 11:00 and 13:00 local time 157 

were considered, providing, on average, 6 images per day (Migliavacca et al., 2011; Richardson et al., 158 

2009).  Because the FOV of the digital camera often contained non-canopy features, analysis was restricted 159 
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to manually defined regions of interest (ROIs) incorporating only the vegetation canopy of interest (Figure 160 

1).  To minimise the effects of atmospheric aerosols and low-lying cloud, ROIs were restricted to the 161 

foreground of the image (Richardson, 2009).  For each ROI, the GCC was then calculated as 162 

𝐺𝐶𝐶 =
𝐷𝑁𝑔𝑟𝑒𝑒𝑛

𝐷𝑁𝑟𝑒𝑑 + 𝐷𝑁𝑔𝑟𝑒𝑒𝑛 + 𝐷𝑁𝑏𝑙𝑢𝑒

 (1) 

 163 

where 𝐷𝑁𝑔𝑟𝑒𝑒𝑛, 𝐷𝑁𝑟𝑒𝑑  and 𝐷𝑁𝑏𝑙𝑢𝑒 are mean digital number (DN) values in the green, red and blue bands of 164 

the image.  The GCC is widely used as a measure of canopy greenness, and when compared to alternatives 165 

such as the EGI, it is thought to be more effective at supressing the effects of variations in scene illumination 166 

(Richardson et al., 2007; Sonnentag et al. 2012).  As very few sites were acquiring near-infrared data before 167 

the end of the MERIS archive, near-infrared capabilities were not investigated in this study. 168 

 169 
 170 

Figure 1: Example of an ROI incorporating only the vegetation canopy of interest at Coweeta Hydrologic Laboratory 171 
(red). 172 

 173 

Because of the comparatively short atmospheric path associated with near-surface remote sensing data, 174 

they are typically subject to minimal atmospheric effects when compared with satellite remote sensing data.  175 

Nevertheless, noise may be introduced by external conditions such as rain, fog, and condensation, in 176 

addition to variations in scene illumination.  To supress such noise, the moving window approach described 177 

by Sonnentag et al. (2012) was adopted, in which the 90th percentile of all GCC values acquired within a 3 178 

day window was assigned to the central day.  To eliminate residual noise, a simple outlier removal 179 
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procedure was adopted, in which GCC values lying further than 2 standard deviations from the mean of the 180 

time-series were excluded from further analysis. 181 

2.3. Satellite remote sensing data 182 

MERIS level 2 full-resolution full-swath (MER_FRS_2P) data were obtained for a 3 x 3 window (900 m x 183 

900 m) centred on the location of each study site.  Over land surfaces, MER_FRS_2P data incorporate two 184 

operational vegetation products: the MGVI and MTCI, in addition to bottom-of-atmosphere (BOA) 185 

reflectance values in 13 spectral bands.  These BOA reflectance values are the result of a partial 186 

atmospheric correction for gaseous absorption and Rayleigh scattering (Santer et al., 2010).  The 3 x 3 187 

window was selected to minimise uncertainties associated with positional errors and the instrument’s point 188 

spread function.  For each acquisition, the mean value of each measurement data set (MDS) within the 189 

window was calculated, except where cloud or relevant product confidence flags were present.  These 190 

initial data processing steps were carried out remotely using ESA’s Grid Processing on Demand (G-POD) 191 

environment.  By making use of computing resources close to the MERIS archive itself, we could overcome 192 

the challenges associated with processing such a large number of acquisitions. 193 

Further data processing was carried out locally using a series of Interactive Data Language (IDL) routines.  194 

As a result of known deficiencies in the MERIS cloud-screening algorithm (Gomez-Chova et al., 2007; ESA, 195 

2006), an additional means of quality control was adopted.  Because large variations within the 3 x 3 window 196 

were only likely under conditions such as partial cloud cover, the coefficient of variation was calculated, and 197 

only acquisitions with a coefficient of varation of < 0.50 were retained for further analysis.  Such an approach 198 

has been previously applied to MERIS data acquired over the marine environment using an arbitrarily 199 

determined coefficient of variation of between 0.15 and 0.25 (Barker et al., 2008; Sá et al., 2015; Mélin et 200 

al., 2011).  As a greater degree of heterogeneity is likely to be experienced over the terrestrial environment, 201 

we selected an increased coefficient of variation for the purposes of this study. 202 

Two operational vegetation products were examined: the MGVI and the MTCI.  In addition to these 203 

products, two alternative vegetation indices were calculated.  The Normalised Difference Vegetation Index 204 

(NDVI), which demonstrates strong relationships with FAPAR and LAI, was selected as a result of its 205 

widespread use (Carlson and Ripley, 1997; Myneni and Williams, 1994; Rouse et al., 1973), whilst the 206 
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MERIS GCC (hereafter referred to as the MGCC) was selected to provide a more direct spectral comparison 207 

to the GCC derived using near-surface remote sensing data.  The NDVI was calculated as 208 

𝑁𝐷𝑉𝐼 =
𝑅𝑏𝑎𝑛𝑑 13 − 𝑅𝑏𝑎𝑛𝑑 8

𝑅𝑏𝑎𝑛𝑑 13 + 𝑅𝑏𝑎𝑛𝑑 8

 (2) 

 209 

where 𝑅𝑏𝑎𝑛𝑑 13 and 𝑅𝑏𝑎𝑛𝑑 8 are reflectance values in MERIS bands 13 and 8, centered at 865 nm and 681.25 210 

nm respectively, whilst the MGCC was calculated as 211 

𝑀𝐺𝐶𝐶 =
𝑅𝑏𝑎𝑛𝑑 5

𝑅𝑏𝑎𝑛𝑑 2 + 𝑅𝑏𝑎𝑛𝑑 5 + 𝑅𝑏𝑎𝑛𝑑 8

 (3) 

 212 

where 𝑅𝑏𝑎𝑛𝑑 2 and 𝑅𝑏𝑎𝑛𝑑 5 are reflectance values in MERIS bands 2 and 5, centered at 442.5 nm and 560 213 

nm respectively.  Once calculated, the outlier removal procedure described in Section 2.2 was again 214 

adopted to eliminate residual noise. 215 

2.4. Analysis of paired data 216 

MERIS acquisitions were paired to the GCC value representing the 3 day time period within which they fell.  217 

To enable the agreement of the two data sets to be assessed, time-series of the GCC and each satellite-218 

derived vegetation product were plotted for each study site.  As the data from most study sites demonstrated 219 

a strong two-phase seasonal pattern, measures of linear correlation were ill-suited to characterising these 220 

relationships.  We therefore adopted the non-parametric Spearman’s rank correlation coefficient, providing 221 

a means to quantify the strength of monotonic relationships between the two variables.  To investigate 222 

seasonal variations in these relationships, analysis was also carried out on spring, summer, autumn and 223 

winter subsets, which were defined according to meteorological definitions for the northern hemisphere. 224 

2.5. Land cover data 225 

To support interpretation of the results, high spatial resolution (30 m) land cover data were obtained from 226 

the 2011 National Land Cover Database (NLCD 2011), which consists of 20 land cover classes covering 8 227 

broad categories (Homer et al., 2015) (Table 2).  To enable the effects of land cover heterogeneity and the 228 
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influence of different land cover mixtures to be assessed, the percentage of each land cover class was 229 

calculated for a 31 x 31 (930 m x 930 m) window centred on the location of each study site. 230 

Table 2: Classification system adopted by the NLCD 2011 (Homer et al., 2015). 231 

Category Classes 

Water Open water 
Perennial ice/snow 

  
Developed Developed (open space) 

Developed (low intensity) 
Developed (medium intensity) 
Developed (high intensity) 

  
Barren Barren land (rock/sand/clay) 
  
Forest Deciduous forest 

Evergreen forest 
Mixed forest 

  
Shrubland Dwarf scrub 

Shrub/scrub 
  
Herbaceous Grassland/herbaceous 

Sedge/herbaceous 
Lichens 
Moss 

  
Planted/cultivated Pasture/hay 

Cultivated crops 
  
Wetlands Woody wetlands 

Emergent herbaceous wetlands 

 232 

2.6 Radiative transfer modelling 233 

To explore factors that could be responsible for the previously observed summer decline, several 234 

experiments were carried out using the Leaf Optical Properties Spectra (PROSPECT) and Scattering by 235 

Arbitrarily Inclined Leaved (SAIL) radiative transfer models (Jacquemoud and Baret 1990; Jacquemoud et 236 

al., 2009; Verhoef, 1984).  Coupled, these models provide a physically-based means of investigating how 237 

the combined interaction of various biophysical and non-canopy variables might influence the GCC, and 238 

are particularly useful given the absence of appropriate and contemporaneous ancillary data.  To this end, 239 

we extended the analysis of Wingate et al. (2015), who simulated GCC values over the course of a year, 240 

making use of input parameters that reflect empirical observations at the oak-dominated Alice Holt 241 

Research Forest in Southern England (Appendix A).  The site is representative of temperate deciduous 242 

forest, having similar characteristics to many of the deciduous forest sites investigated in this study.  To 243 
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investigate whether variations in illumination geometry could contribute to the summer decline, we 244 

simulated the GCC using both a fixed solar zenith angle (SZA) of 30°, and a varying SZA calculated at noon 245 

for each day of year (DOY) (Figure 2).  We also carried out simulations using an alternative parameterisation 246 

of brown pigment concentration (Figure 3), as although Wingate et al. (2015) note that the GCC is sensitive 247 

to this variable, their parameterisation poorly reflects seasonal variations typically observed in oak, with 248 

increases beginning to occur only at DOY 275.  In contrast, previous research has demonstrated that 249 

increases in the concentration of brown pigments such as tannins instead begin to occur as early as DOY 250 

150 (Feeny and Bostock, 1968). 251 

 252 
Figure 2: Noon SZA at Alice Holt Research Forest for each DOY simulated. 253 

 254 

 255 
Figure 3: Alternative brown pigment concentration parameterisation adopted to better reflect seasonal variations 256 

typically observed in oak, after Feeny and Bostock (1968). 257 
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3. Results 258 

3.1. Seasonal patterns in the GCC and vegetation products derived from MERIS 259 

Clear seasonal patterns were observed in the GCC at the majority of study sites investigated.  They were 260 

best resolved at deciduous forest sites, in which the start of the growing season occurred between April 261 

and May and the end of the growing season occurred between October and November, depending on the 262 

study site.  These seasonal patterns were broadly consistent with those observed in the vegetation products 263 

derived from MERIS, with the exception of the MGCC, which was subject to a substantial degree of noise 264 

(Figure 4).  At evergreen forest sites such as Howland Experimental Forest, and Wind River, the GCC was 265 

subject to a greater degree of noise (Figure 5).  Despite this, seasonal patterns were more clearly resolved 266 

by GCC than by the vegetation products derived from MERIS.  Similar results were also observed at Vaira 267 

Ranch, a grassland site. 268 

Although similar temporal patterns were observed between vegetation products derived from MERIS and 269 

GCC, they were subject to substantial differences in timing.  At the start of the growing season, increases 270 

in the GCC occurred by up to 1 month prior to those in the vegetation products derived from MERIS.  271 

Conversely, at the end of the growing season, decreases in the vegetation products derived from MERIS 272 

occurred by up to 1 month earlier to those in the GCC.  Thus, the length of the growing season observed 273 

in the vegetation products derived from MERIS was substantially shorter than in the GCC.  These 274 

differences in timing were most pronounced in the case of the MGVI and MTCI (Figure 4).  Additionally, at 275 

the majority of deciduous forest sites, an asymmetric pattern was observed, in which peak GCC values 276 

occurred in late spring, before an intermediate state of more gradual decline throughout the summer (Figure 277 

4).  This pattern was observed on an annual basis, but was not evident in the vegetation products derived 278 

from MERIS, in which peak values occurred later in the growing season. 279 
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280 

281 

282 

 283 
Figure 4: Seasonal patterns in the GCC and MGCC (a), MGVI (b), MTCI (c), and NDVI (d) at Harvard Forest, a 284 

deciduous forest site. 285 

 286 

3.2. Relationships between the GCC and vegetation products derived from MERIS 287 

A substantial degree of variability was observed in the strength of the relationships between the GCC and 288 

each vegetation product derived from MERIS (Table 3).  Moderate relationships were demonstrated by the 289 

MGVI, MTCI, and NDVI.  In contrast, comparatively weak relationships were demonstrated by the MGCC.  290 

The relationships between the GCC and vegetation products derived from MERIS were also subject to a 291 

substantial degree of variability between study sites (Table 3).  Moderate to strong relationships were 292 

demonstrated at study sites dominated by deciduous forest, with the exception of Hubbard Brook 293 

Experimental Forest, at which weaker relationships were demonstrated.  At some study sites in which 294 
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several juxtaposing land cover types dominated, such as Cary Institute of Ecosystem Studies, weaker 295 

relationships were too observed.  However, this was not the case at others, such as Harvard Forest, 296 

Harvard Forest Hemlock, and Little Prospect Hill.  Particularly weak relationships were demonstrated at 297 

study sites dominated by evergreen forest, such as Howland Experimental Forest and Wind River.  Similarly 298 

weak relationships were observed at Vaira Ranch, a grassland site.  In terms of seasonal differences, 299 

significant relationships between the GCC and vegetation products derived from MERIS were observed at 300 

10 study sites during spring and 13 study sites during autumn.  In contrast, significant relationships were 301 

observed at only 1 study site during the summer and 2 study sites during the winter (Appendix B). 302 

303 

304 

305 

 306 
Figure 5: Seasonal patterns in the GCC and MGCC (a), MGVI (b), MTCI (c), and NDVI (d) at Wind River, an 307 

evergreen forest site. 308 
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Table 3: Spearman’s rank correlation coefficient (𝑟𝑠) values associated with each satellite-derived vegetation product 309 
at each study site.  Values marked with * indicate that the relationship with the GCC was statistically significant (𝑝 < 310 

0.01).  For clarity, only land cover classes accounting for > 1 % are shown. 311 

Study site Land cover classes (%) MGCC MGVI MTCI NDVI 

Arbutus Lake 

Deciduous forest (79.9) 
Open water (7.8) 
Evergreen forest (6.3) 
Mixed forest (4.1) 
Developed open (1.9) 

0.59* 0.70* 0.55* 0.72* 

Bartlett Experimental Forest (IR) 

Deciduous forest (59.0) 
Mixed forest (36.4) 
Shrub/scrub (2.0) 
Developed open (1.7) 

0.33* 0.78* 0.58* 0.41* 

Cary Institute of Ecosystem Studies 

Deciduous forest (44.3) 
Pasture/hay (16.4) 
Evergreen forest (14.8) 
Developed open (9.5) 
Shrub/scrub (4.7) 
Developed low (3.6) 
Mixed forest (3.6) 
Woody wetlands (2.7) 

0.35* 0.53* 0.58* 0.44* 

Coweeta Hydrologic Laboratory 

Deciduous forest (80.6) 
Developed open (12.5) 
Pasture/hay (2.7) 
Evergreen forest (1.7) 
Shrub/scrub (1.7) 

0.39* 0.75* 0.80* 0.76* 

Harvard Forest 

Deciduous forest (46.2) 
Evergreen forest (18.7) 
Woody wetlands (14.9) 
Mixed forest (14.2) 
Developed open (4.4) 
Shrub/scrub (1.7) 

0.58* 0.78* 0.64* 0.77* 

Harvard Forest Hemlock 

Deciduous forest (45.5) 
Evergreen forest (26.5) 
Woody wetlands (24.9) 
Mixed forest (2.6) 

0.55* 0.76* 0.63* 0.73* 

Little Prospect Hill 

Deciduous forest (43.8) 
Mixed forest (25.2) 
Evergreen forest (18.1) 
Developed open (7.5) 
Woody wetlands (5.4) 

0.65* 0.86* 0.76* 0.85* 

Howland Experimental Forest 
Evergreen forest (90.8) 
Woody wetlands (5.1) 
Mixed forest (4.0) 

0.42* 0.54* 0.35* 0.50* 

Hubbard Brook Experimental Forest 

Deciduous forest (54.8) 
Mixed forest (31.7) 
Evergreen forest (6.7) 
Developed open (3.3) 
Cultivated crops (2.0) 

0.40* 0.57* 0.48* 0.35* 

Morgan Monroe State Forest 
Deciduous forest (92.4) 
Shrub/scrub (7.6)  

0.53* 0.70* 0.71* 0.59* 

Proctor Maple Research Center 
Deciduous forest (95.8) 
Evergreen forest (1.8) 
Woody wetlands (2.4)  

0.67* 0.73* 0.62* 0.79* 

University of Michigan Biological Station 

Deciduous forest (85.38) 
Mixed forest (5.2) 
Grassland/herbaceous (4.3) 
Developed open (2.0) 
Evergreen forest (1.4)  

0.40* 0.70* 0.81* 0.78* 

Vaira Ranch 

Grassland/herbaceous (79.0) 
Deciduous forest (11.7) 
Developed open (6.7) 
Shrub/scrub (2.6) 

-0.56* -0.71* 0.48* -0.71* 

Wind River Experimental Forest 

Evergreen forest (89.2) 
Woody wetlands (6.0) 
Developed low (3.1) 
Shrub/scrub (1.4) 

0.26* 0.50* -0.08 0.41* 

 312 
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3.3. Characteristics of the GCC 313 

Although the range of the vegetation products derived from MERIS was relatively consistent between study 314 

sites, a greater degree of variability was observed in the range of GCC values.  Additionally, the 315 

relationships between the GCC and vegetation products derived from MERIS demonstrated distinct non-316 

linearity at some study sites, taking an exponential form (Figure 6).  The GCC was observed to saturate 317 

asymptotically at medium to high MGCC, MGVI, MTCI, and NDVI values, whilst demonstrating increased 318 

sensitivity to low levels of canopy greenness when compared to these satellite-derived vegetation products.  319 

These saturation effects were most pronounced at Morgan Monroe State Forest and Little Prospect Hill. 320 

321 

 322 
Figure 6: Relationships between the GCC and MGCC (a), MGVI (b), MTCI (c), and NDVI (d) at Morgan Monroe State 323 
Forest, where 𝑟𝑠 is the Spearman’s rank correlation coefficient, 𝑝 is the two-tailed 𝑝-value and 𝑛 is the number of data 324 

points. 325 

 326 

3.4. Factors responsible for the summer decline 327 
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The GCC values simulated using input parameters reflecting empirical observations at Alice Holt Research 328 

Forest appear broadly consistent with those observed at other deciduous forest sites, taking on a similar 329 

range and seasonal pattern (Figure 7).  These simulated values are characterised by an evident spring 330 

peak, although a clear summer decline is not observed when a fixed SZA is adopted (Figure 7).  A distinct 331 

decline is observed throughout the summer months when a varying SZA is adopted as in Wingate et al. 332 

(2015), although this decline is of a relatively small magnitude compared to that observed at other 333 

deciduous forest sites investigated in this study (Figure 7).  When run with our alternative parameterisation 334 

of brown pigment concentration, the magnitude of the decline in simulated GCC values is greatly increased, 335 

better reflecting observations over these deciduous forest sites (Figure 8). 336 

 337 
Figure 7: GCC values simulated using a fixed SZA of 30°, in addition to varying SZA as in Wingate et al. (2015). 338 

 339 

 340 
Figure 8: GCC values simulated using the brown pigment concentation parameterisation based on that of Wingate et 341 

al. (2015), in addition to those simulated using our alternative parameterisation (Figure 3).342 
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4. Discussion 343 

4.1. Differences in seasonal patterns observed in the GCC and satellite-derived vegetation products 344 

The temporal inconsistencies observed between the GCC and vegetation products derived from MERIS at 345 

the start of the growing season are consistent with the results of previous studies.  Similar results have 346 

been reported when the GCC has been compared with estimates of gross primary productivity (GPP) 347 

derived from eddy covariance data, in addition to a range of biophysical variables observed at both the leaf 348 

and canopy scale (Keenan et al., 2014; Toomey et al., 2015; Yang et al., 2014).  It is suggested by Keenan 349 

et al. (2014) that due to the oblique angle at which the digital cameras are mounted, the effective LAI 350 

incorporated within their FOV is greater than that observed from a near-nadir viewing geometry, from which 351 

only the tops of trees are visible.  Changes in canopy greenness are therefore accentuated at the start of 352 

the growing season, leading to a more rapid increase in the GCC.  In addition to differences in viewing 353 

geometry, temporal inconsistencies are also to be expected because of differences in the incorporated 354 

spectral bands, which provide sensitivity to different biophysical variables.  These biophysical variables 355 

have independent but related seasonal trajectories (Yang et al., 2014). 356 

The spring peak and summer decline observed at deciduous forest sites (Figure 4) have both been noted 357 

in previous work (Keenan et al., 2014; Toomey et al., 2015; Yang et al., 2014), and a number of explanations 358 

have been proposed in the literature.  For example, using a series of radiative transfer model experiments, 359 

Wingate et al. (2015) attribute the spring peak to the non-linear relationship between leaf chlorophyll 360 

concentration and the GCC.  In early spring, increases in leaf chlorophyll concentration are initially met with 361 

increases in the GCC.  Peak GCC values are reached at a leaf chlorophyll concentration of approximately 362 

30 µg cm-2 during late spring, and with further increases in leaf chlorophyll concentration, a reduction in the 363 

GCC is observed.  We suggest the reason for this reduction is the broadening of the chlorophyll absorption 364 

feature, which acts to reduce reflectance at green wavelengths (Gates et al., 1965; Lichtenthaler et al., 365 

1998; Richardson et al., 2002).  In terms of the summer decline, several authors have pointed to the role 366 

of leaf ageing and associated changes in pigmentation (Keenan et al., 2014; Sonnentag et al., 2012).  367 

Despite this, previous work has demonstrated that at deciduous forest sites, leaf chlorophyll concentration 368 

remains relatively constant throughout the growing season, and pronounced asymmetry is rarely observed 369 
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(Gond et al., 1999; Demarez et al., 1999; Koike et al., 1990; Yang et al., 2014).  The results of our radiative 370 

transfer modelling suggest that seasonal variations in brown pigment concentration are the major 371 

contributor to the summer decline, whilst other factors, such as seasonal variations in illumination geometry, 372 

also play a minor role. 373 

4.2. Differences in relationships between the GCC and satellite-derived vegetation products 374 

The moderate to strong relationships demonstrated between the GCC and MGVI, MTCI, and NDVI at 375 

deciduous forest sites reflect the results of previous studies.  For example, moderate to strong relationships 376 

between the GCC and estimates of GPP derived from eddy covariance data (r2 = 0.50 to 0.82) are 377 

presented by Toomey et al. (2015).  At evergreen forest sites, weaker relationships are demonstrated as a 378 

result of the comparatively subtle seasonality of these species, which was poorly resolved by vegetation 379 

products derived from MERIS.  It is likely that this relatively weak signal is masked by atmospheric, BRDF, 380 

and shadowing effects in the satellite-derived vegetation products, leading to substantial variability within 381 

the growing season that is unrelated to vegetation dynamics.  Because these effects are less pronounced 382 

in the near-surface remote sensing data, this weak signal can be more easily resolved by the GCC.  This 383 

result indicates that if MERIS and future OLCI data are to prove useful in monitoring evergreen forest sites, 384 

more rigorous atmospheric and BRDF correction schemes will be required.  The weak relationships 385 

demonstrated at Vaira Ranch differ from those presented in previous studies, in which clear seasonal 386 

patterns are observed (Liu et al., 2017).  In previous work over grassland sites, strong relationships between 387 

the GCC and vegetation indices derived from in-situ spectroradiometric observations have been reported 388 

(r2 = 0.69 to 0.82), as have strong relationships between the GCC and estimates of GPP derived from eddy 389 

covariance data (r2 = 0.55 to 0.92) (Migliavacca et al., 2011; Toomey et al., 2015).  This result should 390 

therefore be treated with caution, particularly in light of the fact that only a single grassland site was 391 

investigated. 392 

When comparing phenological transition dates derived from PhenoCam data and vegetation products 393 

derived from MODIS, Klosterman et al. (2014) report a strong relationship between fractional forest cover 394 

and bias in the end of spring date (r2 = 0.73).  Nevertheless, significant relationships (p < 0.05) were not 395 

reported for any other investigated phenological transition dates.  Similarly, in this study, observed patterns 396 
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between land cover heterogeneity and the strength of the relationships between the GCC and vegetation 397 

products derived from MERIS were varied.  Weak relationships were demonstrated at some study sites 398 

dominated by several juxtaposing land cover types such as Cary Institute of Ecosystem Studies, although 399 

this was not universally the case.  Others were characterised by strong relationships, reflecting the mixed 400 

nature of the findings of Klosterman et al. (2014).  The observed seasonal differences in the strength and 401 

significance of these relationships are to be expected, as the degree of variation that can be explained by 402 

the GCC is substantially reduced in the summer and winter, during which the condition of vegetation 403 

remains relatively static. 404 

An unexpected result of this study was the fact that weak relationships were demonstrated between the 405 

GCC and MGCC, as the MGCC was calculated to provide a more direct spectral comparison to the near-406 

surface remote sensing data itself.  Nevertheless, similar results were obtained by Klosterman et al. (2011), 407 

who report that when calculated from MODIS data, the GCC is subject to a substantial degree of noise, 408 

poorly representing seasonal patterns when compared to other vegetation products such as the Enhanced 409 

Vegetation Index (EVI) and NDVI.  The noise observed in the MGCC is likely due to the fact that unlike the 410 

other vegetation products derived from MERIS, it incorporates a band at blue wavelengths (band 2, 411 

centered at 442.5 nm).  In the optical domain, it is these shorter wavelengths that are most strongly 412 

influenced by atmospheric effects, a fact reflected by the greater degree of variation observed at all study 413 

sites in band 2 when compared to band 13 (centered at 865 nm) (Figure 9).  Because the MERIS L2 FRS 414 

data are subject only to partial atmospheric correction, residual contamination of the blue band is more 415 

likely. 416 
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 417 
Figure 9: Coefficient of variation associated with reflectance values in MERIS bands 2 and 13 (centered at 442.5 nm 418 

and 865 nm respectively) at each study site during the summer. 419 

 420 

4.3. Potential of near-surface remote sensing for evaluating satellite-derived vegetation products 421 

As discussed in Section 1.3, near-surface remote sensing has been adopted by the phenological research 422 

community as an alternative to in-situ observations of events such as bud-burst and leaf opening.  It is a 423 

particularly promising technique for the evaluation of satellite-derived phenological transition dates, 424 

enabling the phenological characteristics of an entire canopy to be characterised as opposed to those of a 425 

single plant (Hufkens et al., 2012; Keenan et al., 2014; Klosterman et al., 2014).  Additionally, as the same 426 

algorithms used to derive phenological transition dates from satellite-derived vegetation products can be 427 

applied to near-surface remote sensing data, their results can be more easily compared.  Consistent with 428 

the results of previous studies, clear seasonal patterns in the GCC were observed at deciduous forest sites 429 

from which it would be straightforward to derive phenological transition dates.  In light of the noise observed 430 

at evergreen forest and grassland sites, another foreseeable application of near-surface remote sensing 431 

data is the evaluation of cloud-screening algorithms.  By analysing the DN values of an ROI covering the 432 

sky, it might be possible to automatically determine the presence or absence of cloud cover.  This could 433 

provide particularly useful information in the case of instruments such as MERIS and OLCI, whose cloud-434 

screening algorithms are constrained by the absence of bands at shortwave- and thermal-infrared 435 

wavelengths. 436 
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Despite the advantages of the technique, the results of this study reveal several issues associated with 437 

near-surface remote sensing that limit its potential for the evaluation of the underlying satellite-derived 438 

vegetation products.  Our analysis indicates that the relationship between the GCC and vegetation products 439 

derived from MERIS is in some cases distinctly non-linear, saturating asymptotically at medium to high 440 

MGCC, MGVI, MTCI, and NDVI values.  This is an important consideration for those attempting to model 441 

variables related to plant function such as GPP, particularly in the case of study sites characterised by 442 

medium to high biomass.  Keenan et al. (2014) note a similar non-linear relationship between the GCC and 443 

in-situ observations of LAI, suggesting that increases in the GCC occur as a result of green leaves filling 444 

gaps within the canopy.  Above an LAI of approximately 2.5, few gaps remain in the canopy, and because 445 

additional leaves overlap one another, the greenness of the canopy, as observed by the digital camera, 446 

does not increase (Keenan et al., 2014).  We note that the majority of satellite-derived vegetation products 447 

remain sensitive to increases in LAI, as a result of a) their near-nadir viewing geometry, and b) the fact that 448 

they incorporate bands at near-infrared wavelengths, where the reflectance of leaves is governed more 449 

strongly by structural characteristics as opposed to pigmentation.  As such, the exploitation of near-infrared 450 

capabilities, as demonstrated by Petach et al. (2014) and now available at 200 PhenoCam sites, would 451 

likely enable the issue of asymptotic saturation to be at least partially overcome in future investigations. 452 

 453 
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5. Conclusions 454 

Although near-surface remote sensing has been used to evaluate satellite-derived phenological transition 455 

dates, few studies have considered shape and magnitude of the underlying time-series.  In this study, for 456 

the first time, we investigated the relationship between continuous measures of canopy greenness derived 457 

using near-surface remote sensing and satellite-derived vegetation products.  Temporal inconsistencies 458 

were observed between the GCC and vegetation products derived from MERIS, reflecting the results of 459 

previous work.  Although temporal inconsistencies have previously been attributed to the oblique viewing 460 

geometry of the digital cameras, they are also to be expected due to differences in the incorporated spectral 461 

bands, which provide sensitivity to different biophysical variables.  As in other studies, a spring peak and 462 

summer decline were observed in the GCC at deciduous forest sites.  Whilst the spring peak has previously 463 

been attributed to the non-linear relationship between the leaf chlorophyll concentration and the GCC, the 464 

results of our radiative transfer modelling suggest that seasonal variations in brown pigment concentration, 465 

and to a lesser extent illumination geometry, contribute to the summer decline. 466 

Moderate to strong relationships between the GCC and vegetation products derived from MERIS were 467 

demonstrated at deciduous forest sites.  Weak relationships were demonstrated at evergreen forest sites 468 

as a result of their comparatively subtle seasonality, which is likely masked by atmospheric, BRDF, and 469 

shadowing effects in the vegetation products derived from MERIS.  At these sites, seasonal patterns were 470 

better resolved by the GCC, highlighting the need for more rigorous atmospheric and BRDF correction 471 

schemes. 472 

As a result of its increased sensitivity to initial increases in canopy greenness when compared to the 473 

vegetation products derived from MERIS, the GCC is particularly well-suited to identifying the start of 474 

season, making near-surface remote sensing a valuable source of data for evaluating satellite-derived 475 

phenological transition dates.  Nevertheless, the results of this study reveal that in some cases, the 476 

relationship between the GCC and vegetation products derived from MERIS saturates asymptotically at 477 

medium to high MGCC, MGVI, MTCI, and NDVI values.  At present, this limits the potential of the approach 478 

for the evaluation of the underlying satellite-derived vegetation products, and for the continuous monitoring 479 

of vegetation during the growing season, particularly at medium to high biomass study sites.  Nevertheless, 480 
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if coupled with near-infrared capabilities, we suggest that near-surface remote sensing has the potential to 481 

serve as a useful tool for the operational and systematic evaluation of satellite-derived vegetation products.  482 
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Appendix A 679 

 680 

 681 

 682 

 683 

684 

 685 

Figure A.1: Varying PROSPECT and SAIL parameters used to simulate GCC values over the course of the spring 686 
and summer at Alice Holt Research Forest, after Wingate et al. (2015).  Brown pigment concentration values were 687 

rescaled to the range 0 to 1.  688 
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Table A.1: Constant PROSPECT and SAIL parameters used to simulate GCC values over the course of the spring 689 
and summer at Alice Holt Research Forest, after Wingate et al. (2015). 690 

Parameter Value 

Hot spot parameter 0.05 
Average leaf angle (°) 30 
Observer zenith angle (°) 80 
Relative azimuth angle (°) 0 
Diffuse to direct radiation (%) 25 
Soil coefficient 0.2 
Water thickness (cm) 0.04 
Dry matter (g cm-2) 0.008 

 691 

Table A.2: Details of the wavelengths averaged to approximate the red, green and blue bands of a digital camera 692 
from PROSPECT and SAIL output spectra. 693 

 Wavelength (nm) 
Band Minimum Centre Maximum 

Blue 400 450 500 
Green 500 550 600 
Red 600 650 700 

694 
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Appendix B 695 

 696 

Table B.1: Spearman’s rank correlation coefficient (𝑟𝑠) values associated with each satellite-derived vegetation product at each study site, by season.  Values 697 
marked with * indicate that the relationship with the GCC was statistically significant (𝑝 < 0.01). 698 

  Spearman’s rank correlation coefficient 

  Spring  Summer  Autumn  Winter 

Site MGCC MGVI MTCI NDVI  MGCC MGVI MTCI NDVI  MGCC MGVI MTCI NDVI  MGCC MGVI MTCI NDVI 

Arbutus Lake 0.66* 0.44 -0.47 0.56  0.07 0.48 0.61 0.25  0.49 0.59* 0.63* 0.69*  0.37 0.01 -0.12 -0.11 
Bartlett Experimental Forest (IR) 0.29 0.50* -0.04 0.28  -0.21 0.22 0.07 -0.07  0.25 0.87* 0.66* 0.26  0.22 0.14 0.01 0.07 
Cary Institute of Ecosystem Studies 0.47* 0.81* 0.70* 0.67*  0.22 0.01 0.06 0.06  0.25 0.51 0.57* 0.24  -0.12 -0.17 0.46 0.09 
Coweeta Hydrologic Laboratory 0.33 0.77* 0.73* 0.81*  -0.11 0.28 0.27 0.29  0.25 0.68* 0.91* 0.77*  0.23 0.42 -0.03 0.18 
Harvard Forest 0.62* 0.61* 0.23 0.58*  -0.01 0.00 -0.32 0.09  0.49* 0.71* 0.80* 0.74*  0.16 -0.30 -0.06 -0.33 
Harvard Forest Hemlock 0.44 0.33 0.23 0.27  -0.11 0.07 -0.23 0.08  0.30 0.65* 0.66* 0.68*  0.11 -0.15 0.03 -0.12 
Little Prospect Hill 0.47 0.64* 0.03 0.61  0.19 0.24 -0.04 0.25  0.52* 0.80* 0.87* 0.83*  -0.23 0.16 0.10 0.20 
Howland Experimental Forest 0.67* 0.33 -0.38 0.26  0.14 0.05 -0.34 0.07  0.16 0.59* 0.35 0.55*  0.51* 0.18 -0.16 0.25 
Hubbard Brook Experimental Forest 0.33 0.49 -0.16 0.06  0.14 -0.11 -0.05 0.24  0.43 0.34 0.22 0.19  0.13 -0.25 -0.09 -0.08 
Morgan Monroe State Forest 0.42* 0.76* 0.49* 0.48*  -0.04 0.15 0.11 -0.16  0.44* 0.72* 0.88* 0.52*  0.29 0.00 0.63* -0.03 
Proctor Maple Research Center 0.63* 0.87* 0.41 0.84*  -0.20 -0.14 -0.35 -0.08  0.57* 0.73* 0.79* 0.83*  -0.05 0.22 -0.25 0.30 
University of Michigan Biological Station 0.66 0.90* -0.24 0.90*  0.01 0.04 0.45 0.22  0.64 0.85* 0.81* 0.93*  - - - - 
Vaira Ranch 0.04 0.38 0.04 0.23  -0.39* -0.57* 0.23* -0.60*  -0.65* -0.84* 0.71* -0.86*  0.43 -0.49 -0.07 -0.34 
Wind River Experimental Forest -0.01 0.00 -0.09 -0.13  -0.21 -0.05 -0.23 -0.04  0.04 0.48* 0.12 0.50  -0.12 0.11 -0.17 0.07 

 699 


