
A Multi-Soft-Body Dynamic Model for
Underwater Soft Robots

Federico Renda, Francesco Giorgio-Serchi, Frederic Boyer, Cecilia Laschi, Jorge
Dias and Lakmal Seneviratne.

Abstract We present a unified formulation for describing the dynamics of a new
class of aquatic multi-body soft robots. This formulation accounts for the continuum
hyperelastic nature of the vehicles and for the interaction with the dense fluid across
which they dwell. We start by introducing the highly unconventional design concept
of a soft underwater vehicle inspired by the octopus capable of swimming, manip-
ulating and crawling. The dynamics of the robot, which consists of a multi-limbed
continuum of elastomeric materials, is extremely complex to account for with con-
ventional modelling tools. Hence a Cosserat based formalism where a Reissner shell
model and a finite-strain beam formulation are joined is conceived which lends itself
to the description of the highly non linear dynamics of this new family of vehicles
in a dense fluid.

1 Introduction

Marine operations and the growing needs of the offshore industry require underwa-
ter robots to undertake increasingly daunting tasks in always more forbidding envi-
ronments. Certain scenarios, however, pose such challenges at sea that standard Re-
motely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs)
are likely to be unsuitable. An answer to this problem lies in the development of in-
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novative underwater robots which, endowed with augmented manoeuvrability and
flexibility, may provide an aid to the ever growing demands of the marine sector.

In recent times underwater robotics has largely benefited from the growing fas-
cination for bioinspired locomotion, because the design of underwater robots can
profit massively from the investigation of the swimming strategies, hydrodynamics
and physiology of such animals. Several examples exist of aquatic organisms which
have been taken as the source of inspiration for designing a trustworthy robotic
counterpart. The finned and caudal flapping of fish (e.g. [1]) has gathered the most
recognition in the scientific community, in part because of the sound understanding
of the underlying physics involved in their locomotion [2].

The design criteria for replicating the actuation mechanism which drives the
propulsion of fish has, in most cases, entailed the replacement of continuously de-
forming bodies by reducing the number of degrees-of-freedom (DOF) with a finite
sequence of rigid links and joints. However, lately the attempt has been made by
[3] to account for the compliant nature of these organisms by resorting to continu-
ous soft structures and actuators. This is one of the few examples where the design
principles of soft robotics [4] have been adapted to the aquatic context. In water
the hindrances due to the lack of rigid parts are compensated by the support of the
dense medium in which the vehicle is immersed, annihilating many of the limits
which soft robots are faced with on land. This has encouraged the authors to de-
velop a new breed of aquatic soft robots inspired by the quintessential soft-bodied
sea dweller, the octopus.

While the design of Soft Unmanned Underwater Vehicles (SUUVs), may result
fairly uncomplicated, their modeling and control is anything but straight forward.
Here we present the first example of a cable-actuated, multi-body, aquatic soft robot
and introduce a formulation which accounts for the continuum nature of the robotic
platform and allows to describe the dynamics of this vehicle while it travels in a
quiescent fluid.

1.1 An aquatic multi-body soft robot

The octopus sports a range of features which are very much sought for in underwater
robotics. These include essentially the capability to swim, crawl and manipulate
along with an overall remarkable structural compliance. These make the octopus
the perfect paradigm of aquatic vehicle. In the scenario of offshore intervention,
where complex environments and highly perturbed conditions are the norm, the
design criteria borrowed from the soft/bioinspired approach could represent a viable
solution to a broad range of tasks which current Unmanned Underwater Vehicles
(UUVs) are unfit for.

By taking inspiration from the octopus, the authors have developed a soft-bodied
vehicle capable of travelling in water and replicating some of the salient skills of
this aquatic organism [5]. The result of this effort is portrayed schematically in Fig.
1. This first prototype of aquatic multi-body soft robot entails a platform composed
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Fig. 1 A schematic of the
SUUV developed by the au-
thors. Numbers refer to: (1)
pulsed-jet thruster, (2) the
nozzle, (3) the cables which
drive the shell collapse, (4)
the continuum manipulators,
(5) the actutors of the manip-
ulators, (6) the actuator of the
shell and (7) the cable which
drives manipulator actuation.
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Fig. 2 The Soft Unmanned
Underwater Vehicle (SUUV)
PoseiDRONE upon assem-
blage completion (a) and
during testing at sea (b).

(a) (b)

for as much as 80% in volume of rubber-like materials and capable of manipulating
as well as travelling in the aquatic environment either via waterborne pulsed-jet
propulsion or legged locomotion.

The robot essentially consist of a central elastic shell, referred to here as the Soft
Shell Mantle (SSM), which is designated to performing the pulsed-jet propulsion via
the recursive ingestion and expulsion of finite slugs of ambient water [6, 7]. From
this central unit, a number of manipulators, i.e. the Soft Robot Arms (SRAs), depart:
these are conical-shaped continuous structures composed of elastomeric materials
designated to performing basic manipulation [8] and legged-locomotion [9]. Actu-
ation is entirely dealt with via cable-transmission: inextensible cables run through
the arms and inside the central shell and, upon recoiling from the designated DC
motor, drive the twirling of the manipulator or the collapse of the shell.

Once assembled, the vehicles appears as in Fig. 2(a). This vehicle has been tested
both in controlled environments as well as in open water, see Fig. 2(b) and modeling
and control of this complex system has been attempted by separately accounting for
the various mechanical units [6, 10]. Here, for the first time, the authors attempt
to formulate a unified model which encompasses internal actuation and external
dynamics.
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2 Soft Robot Arm and Soft Shell Mantle Model

In the geometrical exact approach, the SRA is viewed as a Cosserat rod [11], i.e.
as a continuous assembly of rigid cross section, while the SSM is modelled as a
Cosserat axisymetric shell [12], i.e. as a continuous assembly of fibers along the
median surface. In this section, a brief description of the kinematics and dynamics
of a Cosserat rod/shell for underwater soft robotics is given, based on the authors
previous works [8], [13], which should be taken as the reference for a more detailed
derivation. Experimental validation of the model are also presented in [8] for the
SRA, while for the SSM steady state experiments have been presented in [14], dy-
namic experiments are under review and a coupled dynamic-potential flow solution
is given in [15]. In order to appreciate the symmetry between the two models, with a
slight abuse of notation, some times we will adopt the same symbols for the two for-
mulations, since they share the same geometrical and mechanical meaning in both
the cases.

2.1 Kinematics

The reference space is endowed with a base of orthogonal unit vectors (e1,e2,e3)
(Fig. 3). In the Cosserat theory, the configuration of a soft body at a certain time
is characterized by a position vector r and a material orientation matrix R, param-
eterized by the material abscissas, that are φ ∈ [0,2π[, the angle of revolution of
the axisymmetric surface, and X ∈ [0,Ls] the abscissa along the meridian for the
SSM; and X ∈ [0,Lb], the abscissa along the robot arm, for the SRA (the subscripts
s and b stand respectively for shell and beam). Thus, the configuration space is de-

fined as a curves gb(X) and a surface gs(X ,φ) ∈ SE(3), with gb =

(
Rb rb
0 1

)
and

gs =

(
Rs rs
0 1

)
.

In order to exploit the axisymmetry of the SSM, we introduce another orthogo-
nal basis attached to the material point (X ,φ): (er,eφ ,e3) (Fig. 3); defined by roto-

traslating (e1,e2,e3) of g1(X ,φ) equal to: g1 =

(
exp(ẽ3φ) rs

0 1

)
, where exp is the

exponential in SO(3). In this case rs(X) take the form: rs = (cos(φ)r,sin(φ)r,z)T

for which, r(X) and z(X) are two smooth functions which define the radius and
the altitude of the point X on the profile (Fig. 3). For the sake of convenience,
we introduce another orthogonal basis (er,e3,−eφ ) rotated from the former by

g2 =

(
exp(ẽrπ/2) 0

0 1

)
. Then, if we call θ(X) the angle between e3 and the shell

fiber located at any X along the φ -meridian, the so called director orthogonal frame

(x,y,z) is defined at each instant t, by g3(X) equal to: g3 =

(
exp(−ẽφ θ) 0

0 1

)
. Fi-

nally, putting them all together, the shell configuration space is gs = g1g2g3.
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Fig. 3 Sketch of the kinemat-
ics which show the geometri-
cal meaning of the elements
g, ξ and η . The reference
frames on the figure are those
used in the model.

Now, the tangent vector field along the curve gb(X) is defined by ξ̂ (X) =
g−1

b ∂gb/∂X = g−1
b g′b ∈ se(3) and the tangent plane on the surface gs(X ,φ) is defined

by the two vector fields: ξ̂1(X)= g−1
s ∂gs/∂X = g−1

s g′s and ξ̂2(X)= g−1
s ∂gs/∂ (r?φ)=

g−1
s gos (where ? denote variable in the reference configuration). In local frame

components we have: ξ = (kT ,gT )T , ξ1 = (kT
1 ,g

T
1 )

T = (0,0,µ,λ ,β ,0)T , ξ2 =

(kT
2 ,g

T
2 )

T = ( sin(θ)
r? , cos(θ)

r? ,0,0,0,− r
r? )

T ∈ R6. where g(X) represents the linear
strains, and k(X) the angular strain. The hat is the isomorphism between the twist
vector space R6 and the Lie algebra se(3).

The time evolution of the configuration curve gb and surface gs is represented by
the twist vector field η(X) ∈ R6 defined respectively by η̂b = g−1

b ∂gb/∂ t = g−1
b ġb

and η̂s = g−1
s ∂gs/∂ t = g−1

s ġs. As before, in the local components we have: ηb =
(wT

b ,v
T
b )

T , ηs = (wT
s ,v

T
s )

T = (0,0,Ω ,Vx,Vy,0)T ∈ R6, where v(X) and w(X) are
respectively the linear and angular velocity of a material element at a given instant.

In accordance with this kinematics, the state vector of the SRA and of the SSM
are represented by the terns (gb,ξ ,ηb) and (gs,ξ1,ηs). From the development above,
we can derived the kinematic equations (1) and (2), while in the next sections the
compatibility equations and the dynamic equations will be derived (the tilde is the
isomorphism between a vector of R3 and the corresponding skew-symmetric matrix
∈ so(3)).

ṙb = RbvbaaaaaaṘb = Rbw̃b. (1)

θ̇ = Ω

ṙ = cos(θ)Vx− sin(θ)Vy
ż = sin(θ)Vx + cos(θ)Vy

(2)

2.2 Strain Measures

There are different ways to measure the strain of a continuous media, we choose the
most common used in the specialized literature for the beam and shell separately.
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For the SRA, the strains are defined as the difference between the deformed con-
figuration ξ and the reference configuration ξ ?. In particular, the components of
k−k? measure the torsion and the bending state in the two directions. Similarly, the
components of g−g? represent the longitudinal strain (extension, compression) and
the two shear strains.

For the SSM, in accordance with [12] as described in [13], the strain ten-
sor field which describes the membrane strain state in the mid-surface is e(X) =
1/2(h−h?) where h(X) is the first fundamental form of the Reissner shell equal to
h = diag(λ 2 +β 2,r2/r?2). Thus we have e = (1/2)∗diag(λ 2 +β 2−1,r2/r?2−1),
in which we have defined h?11 = 1. For what concerns the shear strain state, we
have s(X) = β − β ?. Finally, the flexural strain state is parametrized by the ten-
sor field d(X) = k − k?, where k(X) is the second fundamental form equal to
k = diag(−µλ ,−r sin(θ)/r?2). Thus we have d = diag(µ? − µλ ,sin(θ ?)/r? −
r sin(θ)/r?2). Furthermore, it is natural to consider that there is no transverse shear-
ing in the reference resting configuration, i.e. β ? = 0.

2.3 Compatibility Equations

We have seen above that g′b = gbξ̂ and g′s = gsξ̂1. By taking the derivative of
these equations with respect to time and recalling that ġ = gη̂ , we obtain the fol-
lowing compatibility equations between velocity and deformation variables: ξ̇ =
η ′b + adξ (ηb) and ξ̇1 = η ′s + adξ1

(ηs), where ad is the adjoint map. In local compo-
nents, we obtain:

ġ = v′b +k×vb−wb×g
k̇= w′b +k×wb

(3)

µ̇ = Ω ′

λ̇ =V ′x +βΩ −µVy

β̇ =V ′y −λΩ +µVx

(4)

2.4 Dynamics

The p.d.e.’s describing the evolution of a Reinsner rod and shell (not necessar-
ily axisymmetric) have been derived respectively in [11] and [12]. With respect
to the local reference frame, these p.d.e’s can be written, in a geometric nota-
tion, as: Mbη̇b = F ′

bi + ad∗
ξ
(Fbi)+Fbe− ad∗ηb

(Mbηb) and Msη̇s = 1/ j( jF 1
si)
′+

ad∗
ξα
(F α

si ) + Fse − ad∗ηs(Msηs), where j =
√

det(h) = r/r?
√

λ 2 +β 2, Fbi(X)

and F α
si (X) are the wrenches of internal forces in the surface directions given

by gα (α running over {1,2}), Fbe(X) and Fse(X) are the external wrench of
distributed applied forces, Mb(X) and Ms(X) are the screw inertia matrix and
ad∗ = −adT is the co-adjoint map. For the repeated α the Einstein convention has
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to be used as in the rest of the paper. Let us specify the angular and linear com-
ponents of the internal and external wrenches respectively ( for the axisymmet-
ric case see [16]): Fbi = (MT

b ,N
T
b )

T , F 1
si = (M1T

s ,N1T
s )T = (0,0,MX ,NX ,H,0)T ,

F 2
si = (M2T

s ,N2T
s )T = (Mφx ,Mφy ,0,0,0,−Nφ )

T ∈ R6, and Fbe = (mT
b n

T
b )

T , Fse =

(mT
s ,n

T
s )

T = (0,0, l, fx, fy,0)T ∈ R6, where N(X) and M(X) are the internal force
and torque vectors, respectively, while n(X) and m(X) are the external force
and torque for unit of X . The screw inertia matrices are equal to: Mb = ρb ∗
diag(Ib,Jb,Jb,A,A,A) and Ms = ρs ∗ diag(Js, Is,Js,2hs,2hs,2hs) ∈ R6×R6. In the
equations above ρb and ρs are the body densities, A(X) is the section area equal to
A = πh2

b, where hb(X) is the cross section radius, hs is the half of the shell thick-
ness and J(X), I(X) are the second moment of inertia of the micro-solid equal to
Jb = πh4

b/4, Js = h2
s/3, Ib = πh4

b/2, Is ∼ 0. In components, the dynamic equations
are:

ρbAv̇b = N′b +k×Nb +nb−wb×ρbAvb
ρbJbẇb =M′b +k×Mb +g×Nb +mb−wb×ρbJbwb

(5)

ρsJsΩ̇ = 1/ j( jMX )
′+λH−βNX − cos(θ)

r? Mφx +
sin(θ)

r? Mφy + l
2ρshsV̇x = 1/ j( jNX )

′−µH− cos(θ)
r? Nφ + fx +2ρshsΩVy

2ρshsV̇y = 1/ j( jH)′+µNX + sin(θ)
r? Nφ + fy−2ρshsΩVx

(6)

where Jb is equal to diag(Ib,Jb,Jb).

2.5 Constitutive Equations

A linear visco-elastic constitutive equation, based on the KelvinVoigt model, is cho-
sen. In [8] and [13] we have found respectively:

Fbi = Σ(ξ −ξ
?)+ϒ (ξ̇ ), (7)

NX = 2Ehs
1−ν2 [λ (e11 +νe22)− Jsµ (d11 +νd22)]

aaaa+ 6υhs
1−ν2

[
λ (ė11 +ν ė22)− Jsµ

(
ḋ11 +ν ḋ22

)]
Nφ = 2Ehs

1−ν2

[
r
r? (e22 +νe11)− Js

sin(θ)
r? (d22 +νd11)

]
aaaa+ 6υhs

1−ν2

[
r
r? (ė22 +ν ė11)− Js

sin(θ)
r?
(
ḋ22 +ν ḋ11

)]
H = 2hsβ

[
G+ E

1−ν2 (e11 +νe22)
]
+2hsβ̇

[
υ + 3υ

1−ν2 (ė11 +ν ė22)
]

MX =− 2EhsJs
1−ν2 λ (d11 +νd22)− 6υhsJs

1−ν2 λ
(
ḋ11 +ν ḋ22

)
Mφx =−

2EhsJs
1−ν2

r
r? (d22 +νd11)− 6υhsJs

1−ν2
r
r?
(
ḋ22 +ν ḋ11

)
Mφy = 0

(8)

where Σ(X) andϒ (X)∈R6⊗R6 are the screw stiffness matrix and the screw viscos-
ity matrix, equal to Σ = diag(GIb,EJb,EJB,EA,GA,GA),ϒ =υ ∗diag(Ib,3Jb,3Jb,3A,A,A),
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where E is the Young modulus, G is the shear modulus (equal to G = E/2(1+ν)
for an isotropic material with Poisson ratio ν) and υ is the shear viscosity modulus.

2.6 External Loads

The external loads taken into account are the ones exerted by the fluid (i.e. drag,
added mass, buoyancy and thrust) in addition to the gravity load. Mathematically
we have:

nb = grb +bb +db +ab (9)

ns = ds +as + ts (10)

where grb(X) is the gravity, bb(X) is the buoyancy, ts(X) is the thrust load, d(X) is
the drag and a(X) is the added mass.

An exhaustive derivation and interpretation of the fluid force model for the SSM
is today under review, based on the usual model of net external forces exerted on
a rigid rocket, uniformly ”rubbed on” the mantle. Here only the final equation are
reported, since it does not affect the scope of the present work. For the SRA, the
fluid force models have been originally derived in [17] and then introduced in a soft
robotics content in [8].

Gravity and buoyancy are simply the product between the mass per unit of X
of the robot arm ρb and of the water ρw respectively, and the gravity acceleration
gr =−9.81: grb+bb = (ρb−ρw)ART

b G, where G is the gravity acceleration vector,
equal to G = (0,0,gr)T .

The drag load vector is proportional to the square of the velocity vector and
is directed in the opposite direction. The amplitude of the drag load is also de-
termined by the geometry of section X and by hydrodynamics phenomena ex-
pressed by empirical coefficients. For the SRA and the SSM respectively we have:
db = −ρwv

T
b vbD

vb

|vb|
and ds = RT

s (0,0,−
ρwCdAre f V |V |

2Am
)T , where D(X) ∈ R3⊗R3 is

equal to D = hb ∗diag( 1
2 πCx,Cy,Cz) for circular cross sections of radius hb, Cx, Cy,

Cz being the empirical hydrodynamic coefficients; Are f is the reference area equal to
π(max(r(X)))2, Am is the total surface of the SSM and Cd is the net drag coefficient.
V is the swimming velocity calculated at every time step as the average of the scalar
field ż(X), i.e. V = (1/Am)

∫ Ls
o
∫ 2π

0 ż(−z?
′
)dXr?dφ .

The added mass load vector is proportional to the acceleration vector and is di-
rected in the opposite direction. The amplitude is also determined by the geometry
of section X and by hydrodynamics phenomena expressed in part by correction
coefficients. For the SRA and the SSM respectively we have: ab = − d(ρwFvb)

dt =
−ρwFv̇b−wb× ρwFvb and as = −Bsρs2hsv̇s = −Bsρs2hs(V̇x,V̇y,0)T , where Bs is
the net added mass coefficient and F(X) ∈ R3⊗R3 is a tensor which incorporates
the geometric and hydrodynamics factors, equal to F = diag(0,ABb,ABb), Bb being
the hydrodynamic correction coefficients.
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The thrust load is: ts = RT
s (0,0,−

ρwU̇ |U̇ |
AnAm

)T where An is the the nozzle area equal
to An = πh2

n for the outflow and equal to An = 3πh2
n for the inflow (where three inlets

and one outlet have been used with radius hn) and U is the mantle inner volume.

2.7 Internal Actuation

In order to actuate the SRA and the SSM, we impose an internal distributed wrench
(Fa(X , t)) which represents the input of the model. It can be thought to be the action
of the muscle fiber of the body for living organism or the result of embedded cable-
driven actuation as in [8]. The final dynamics equations are as follows: Mbη̇ =
F ′

bi + ad∗
ξ
(Fbi)+Fba +Fbe− ad∗η(Mbη) and MSη̇ = 1/ j( jF 1

si)
′+ ad∗

ξα
(F α

si )+

Fsa +Fse− ad∗η(Msη).

3 Multi-Soft-Body Dynamic Model

In order to model and control the behavior of a SUUV like the one in Fig. 1, a
method to connect together SRAs and SSMs is needed. In this section, the link
between the soft bodies in a star configuration (i.e. a tree structure with a mobile
base) is shown, then the updating of the external loads of the soft bodies, due to the
net motion, is discussed and finally the overall dynamics of the system is modeled.

3.1 Star System Kinematics

In order to link the soft bodies in a star configuration, one can pair a Gathering Rigid
Body (GRB) with the already introduced frame (e1,e2,e3). Let us call (E1,E2,E3)
the Euclidean fixed frame, hence the GRB configuration space is defined as a point

gr ∈ SE(3), mapping (E1,E2,E3) in (e1,e2,e3) (Fig. 4), with gr =

(
Rr rr
0 1

)
.

The time evolution of gr is represented by the twist vector ηr ∈ R6 defined by
η̂r = g−1

r ġr. In accordance to this kinematics, the state vector of the GRB is given
by the pair (gr,ηr) which gives immediately the kinematics equation:

ġr = grη̂r (11)

At this point, the configuration of every point of the SUUV is given by g =
grg(s,b) as illustred in Fig. 4. It is worth to notice here that the number, geometry
and relative position of the soft bodies can be chosen arbitrary in this scheme. As
a matter of fact, in this example, we impose a rigid translation between a SSM and
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Fig. 4 illustrative scheme of
the SUUV kinematics, where
(E1,E2,E3) is the Euclidean
fixed frame, (e1,e2,e3) repre-
sent the rigid body and is the
soft bodies reference frame
and (x,y,z) is the local frame
for the µsolids.

a SRA of Lr (i.e. the length of the GRB), by adding −Lr to the third element of rb
(Fig. 4).

3.2 External Loads Update

In order to take into account the overall motion, at each time step, the state vector
of the GRB (gr,ηr) is exploited to calculate the actual value of the external loads
of the soft bodies (10), (9). In our case, we have rotated the gravity vector G of RT

r
obtaining the following new equation: grb+bb = (ρb−ρw)ART

b RT
r G Then, we have

updated the swimming velocity V and the linear velocity vb, by adding respectively
the scalar Vr = (0,0,0,0,0,1)ηr (i. e. the linear velocity of the GRB in the swim-
ming direction e3) and the vector v̄r = diag(0,0,0,1,1,1)Adg−1

b
ηr (i. e. the linear

velocity of the GRB transported in the local reference frame (x,y,z)), where Ad is
the Adjoint map. The new drag load equations for the SRA and for the SSM become:

db =−ρw(vb + v̄r)
T (vb + v̄r)D

vb + v̄r

|vb + v̄r|
and ds = RT

s (0,0,−
ρwCdAre f (V+Vr)|V+Vr |

2Am
)T

3.3 Star System Dynamics

At this point, to obtain the dynamics of the SUUV, we only miss the one of the
Gathering Rigid Body that collect the soft appendices. In a geometric notation, it
can be written as:

Mrη̇r = Fr− ad∗ηr(Mrηr) (12)
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The soft bodies of the SUUV collected together by the GRB, are frozen in their cur-
rent shape. By taking advantage of that, the above unknown parameters (Mr,Fr)

can be calculated as follow ([18]): Mr =
∫ 2π

0
∫ Ls

0 Ad∗gsMsAdg−1
s
(−z?

′
)dXr?dφ +∫ Lb

0 Ad∗gb
MbAdg−1

b
dX+Mri =M ′

s +M ′
b+Mri and Fr =

∫ 2π

0
∫ Ls

0 Ad∗gsFse(−z′)dXrdφ +∫ Lb
0 Ad∗gb

Fbe
√
gTgdX +Fre = F ′

se +F ′
be +Fre, where Mri and Fre are respec-

tively the intrinsic inertia and external load directly belonging to the GRB, and
Ad∗g = (Adg)

−T is the coAdjoint map. It is worth to notice that the internal reaction
and actuation of the soft bodies does not take part of these integrals, since a frozen
shape have to be considered. Furthermore, as a first approximation, the inertia loads
due to the ralitive acceleration of the soft bodies has not been taken into account. The
contribute of the added mass loads of the soft bodies in F ′

se and F ′
be will appear as

an additional mass as follow: M ′
sa =Bsρs2h

∫ 2π

0
∫ Ls

0 Ad∗gs diag(0,0,0,1,1,1)Adg−1
s
(−z?

′
)dXr?dφ

and M ′
ba = BbρwA

∫ Lb
0 Ad∗gb

diag(0,0,0,0,1,1)Adg−1
b

dX .
Going forward into details, in our case, the intrinsic inertia of the GRB is equal

to Mri = ρrUr

(
diag(Jr,Jr, Ir) ũ

ũT diag(1,1,1)

)
, where u= (0,0,−3Lr/4)T is the po-

sition vector of the center of mass of the GRB whit respect to the reference frame
(e1,e2,e3); Jr, Ir are the second moment of inertia equal to Jr = 3(h2

r/4+ L2
r )/5,

Ir = 3h2
r/10 (a conic shape have been chosen with base radius hr), ρr is the density

and Ur is the volume of the rigid body equal to Ur = πh2
r Lr/3. On the other side,

the external loads on the GRB that have been considered are the gravity and buoy-
ancy of the rigid body as well as the gravity and buoyancy of the SSM, since the
letter have not been taken into account for the axisymmetric model. Thus we have:
Fre = [(1−ρw/ρr)Mri +(1−ρw/ρs)M ′

s ]Adg−1
r
(0,0,0,GT )T .

3.4 SUUV Dynamic Model

The final system of equations is composed by the second order partial differen-
tial equations of the soft bodies and the ordinary differential equations of the star
system. The system of p.d.e.’s is composed by the kinematics equation (2), (1),
the compatibility equations (4), (3) and the dynamic equations (6), (5) respectively
complemented with the internal stresses (8), (7) and the external loads (10), (9).
The system of o.d.e.’s for the star system is composed by the kinematic equation
(11) and the dynamic equation (12). Finally, in the state form ẋ = f (x,x′,x′′, t), the
SUUV model is:
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θ̇ = Ω

ṙ = cos(θ)Vx− sin(θ)Vy
ż = sin(θ)Vx + cos(θ)Vy
ṙb = Rbvb
Ṙb = Rbw̃b
ġr = grη̂r
µ̇ = Ω ′

λ̇ =V ′x +βΩ −µVy

β̇ =V ′y −λΩ +µVx

k̇= w′b +k×wb
ġ = v′b +k×vb−wb×g
Ω̇ = [( jMX )

′/ j+λH−βNX − cos(θ)Mφ/r?]/(ρJs)
V̇x = [( jNX )

′/ j−µH− cos(θ)Nφ/r?+2ρshsΩVy + fx]/[2hsρs(1+Bs)]
V̇y = [( jH)′/ j+µNX + sin(θ)Nφ/r?−2ρshsΩVx + fy]/[2hsρs(1+Bs)]
v̇b = (N′b +k×Nb +nb−wb×ρbAvb)/(ρbA)
ẇb = (J−1

b /ρb)(M
′
b +k×Mb +g×Nb +mb−wb×ρbJbwb)

η̇r = M−1
r [Fr− ad∗ηr(Mrηr)]

(13)

The final system is infinite dimensional since all its components are some func-
tions of the profile abscissa X . As a result, in order to be solved numerically, it
has to be first space-discretised on a grid of nodes before being time integrated us-
ing explicit or implicit time integrators starting from the initial state. In this grid,
all the space derivatives appearing in the p.d.e.’s system can be approximated by
finite difference schemes, with the following boundary conditions: η(0) = 0 and
Fbi(Lb) = F 1

si(Ls) = 0. These operations have been implemented in Matlab c©.

4 Results

Although the final goal of this work is to model and control SUUVs like the one in
Fig. 1, whereby experimental comparison are needed (as has been done separately
for the SRA [8] and for the SSM [14]), in this section an illustrative example, based
on simulation, of the setting developed above is presented, in order to demonstrate
the feasibility of the proposed mathematical framework to achieve the objective.
Further simulation analysis and experimental comparisons with the real prototype,
are planned for the extension of the present paper. Finally, an energetic analysis
disclosed by the current formulation is conducted and used to describe the results.

4.1 Simulation

One SRA and one SSM have been used, the former has a conical shape with a
radius linearly decreasing from max(hb(X)) = 15 to min(hb(X)) = 6 mm, the latter
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is a semi-sphere of radius 31 mm glued with a cylinder of length 86 mm, both with
an half thikness of hs = 1 mm. The GRB has a conical shape too, with a base radius
equal to hr = max(hb(X)) = 15 mm and an height of Lr = 112 mm. The density of
these bodies has been chosen equal to the one of the water (1022 [kg/m3]), which
makes the structure neutral underwater. The geometrical and mechanical parameters
are summarized in Table 1.

Table 1 Geometrical and mechanical parameters of the SUUV.

E [kPa] υ [Pa∗ s] ν [−] ρ [kg/m3] L [mm] h [mm] hn [mm]

SSM 40 500 0 1022 130 1 10
SRA 110 300 0 1022 420 [6,15] -
GRB - - - 1022 112 15 -

In order to reproduce the jet propulsion of the mantle, the SSM is actuated
through a triangular wave force function fs(X , t), perpendicular to the axis of
symmetry (thus along er), with period T and amplitude ranging in the interval
[Fmin,Fmax]. This pressure has been applied to a central strip of the mantle of height
80 mm. to reproduce the bending/steering capability of the robot arm, the SRA is ac-
tuated through a linear torque function fb(X , t) with extremes [Mmin,Mmax], directed
toward the local axis z for a certain interval ∆ t1 and toward the direction y for an-
other interval ∆ t3, preceded and followed by a rest period of respectively ∆ t2 and
∆ t4. In other words, the internal distributed wrench Fsa(X , t) takes the form: Fsa =
Ad∗

g−1
3
(0,0,0, fs,0,0)T , and the internal distributed wrench Fba(X , t) takes differ-

ent forms for each interval ∆ t1, ∆ t2, ∆ t3, ∆ t4, respectively: Fba = (0,0, fb,0,0,0)T ,
Fba = (0,0,0,0,0,0)T , Fba = (0, fb,0,0,0,0)T , Fba = (0,0,0,0,0,0)T . The load-
ing and dynamic parameters are summarized in Table 2, while a few snapshots of
the resulting swimming dynamics is depicted in Figure 5.

Table 2 Loading and dynamic parameters of the SUUV.

[Fmin,Fmax]
[Pa]

T [s] [Mmin,Mmax]
[N]

(∆ t1,∆ t2,∆ t3,∆ t4)
[s]

B [−] Cd
[−]

C(x,y,z) [−]

SSM [0,5] 0.66 - - 1.1 1.7 -
SRA - - [0,0.05] (1.5,3,1.5,3) 1.5 - (0.01,1.5,1.5)

Although a simple actuation pattern has been applied, a complex swimming
dynamics came out from the fluid-structure interaction, with unexpected turning
around the symmetry axis of the shell mantle (e3) due to a torsional torque occurred
during the switching from one bending to the other. This represents a further moti-
vation toward the development of a proper model of the SUUVs dynamics, in order
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Fig. 5 Few snapshots of the
simulation results at t = 0,
t = 1.5, t = 4, t = 5.5, t = 7.5
and t = 9 s of the swimming
dynamics. The complete
video is presented in the
media file attached to this
paper.

to be able to understand, design and control these promising devices for underwater
exploration.

4.2 Energetic Analysis

Any kind of locomotion is the result of the dynamic interaction between the body
deformation and the environment [19]. The quality of this interaction can be mea-
sured by calculating how the internal actuation power is translated into the kinetic
power of the star system. In the present work, the internal actuation power have been
approximate with the positive part of the stress power, reflecting that the elastic en-
ergy is mainly due to this action and that it can be only increased by the internal
actuation here. With this quantitative index, one can play with the geometrical, me-
chanical and actuation parameters during the design phase in order to find the best
solution for a given application. This is probably one of the killer application of the
model.

To do so, we resort to the following efficiency index computed at each time step
throughout the simulation E(t): E = Wo

Wi
, where Wo(t) and Wi(t) respectively repre-

sent the output kinetic power of the star system and the input actuation power. Cal-

culating them we obtain: Wo = ηT
r Mrη̇r and Wi =Wis +Wib =

Ls∫
0

2π∫
0
{ 2Ehs

1−ν2 [E11Ė11 +

E22Ė22+Js(D11Ḋ11+D22Ḋ22)]+2hsGββ̇}(−z′)dXrdφ +
Lb∫
0
(ξ−ξ ?)T Σξ̇

√
gTgdX ,

where Wis(t) and Wib(t) are respectively the actuation contribution of the SSM
and of the SRA (equal to the positive part of the internal elastic energy and to
zero in the other case) and we have defined E11 = e11 + νe22, E22 = e22 + νe11,
D11 = d11 +νd22 and D22 = d22 +νd11. In Fig. 6, the actuation and kinetic power
corresponding to the simulation of Fig. 5 are shown. The mean value of the index E
is around 3%.
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Fig. 6 Kinematic (blu) and
actuation (red) power (note
the different scales). The four
phases of the simulation of
Figure 5 are highlighted.

In Figure 6 can be recognized the different phases of the motion of Fig. 5. In the
first part (∆ t1), the input power is composed by the cyclic contraction of the SSM
and by the bending of the SRA. In the second phase (∆ t2), the output kinetic power
benefits from the released elastic energy of the SRA and from the positive asset of
the new configuration, giving a larger gap with respect to the actuation power. In the
third part (∆ t3), the actuation power increase due to the new bending and in the last
phase (∆ t4) the SUUV start to turn around it self due to the hydrodynamic coupling
of the bent SRA which is not as efficient as the forward pushing of the second phase,
giving a smaller gap between the kinetic and actuation power.

5 Conclusion

A unified model which account for the continuum nature of a multi-soft-body robot
has been presented which allows to describe the dynamics of an underwater vehicle
while it travels in a quiescent fluid. The potentialities of the model have been demon-
strated through an illustrative example, which shows complex and unexpected dy-
namics of the robot despite of a regular actuation input, underlining how much the
behavior of this new kind of systems can be rich and challenging to control. Fur-
thermore, an energetic analysis which takes into account the internal actuation and
the mechanical properties of the vehicle is proposed. The work presented here rep-
resents a first step toward the development of a mathematical tool for the design and
control of intelligent SUUVs.
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