The University of Southampton
University of Southampton Institutional Repository

Catalysis for sustainable energy conversion and storage

Catalysis for sustainable energy conversion and storage
Catalysis for sustainable energy conversion and storage
Climate change, pollution, unprecedented population growth, geopolitical tensions and rapid technological development are intrinsically connected to the nature, level and availability of global energy, which shapes present and future aspects of human society. Particularly, in a society where global energetic demand is continuously rising and the awareness of the negative impact of fossil fuels on the environment is becoming widespread, the exploitation of renewable sources for the generation of sustainable energy is highly needed. In this regard one key requirement for an effective deployment and expansion of renewable energy in the global energy market is represented by its ability to conveniently convert and store the energy derived from intermittent sources, in order to guarantee a constant supply to the electric grid. The technologies for the energy conversion and storage present various degrees of maturity, each one having specific advantages and disadvantages depending on the type of application and energetic source.

This thesis aims to give a tiny contribution to the complex problem of energy conversion and storage, through the design, characterisation and testing of electrocatalytic materials for water electrolysis, photoelectrochemical water splitting and direct methanol fuel cell. It is expected that the first two processes will play an important role in the future as convenient technologies for the conversion of solar and wind power into chemical energy in the form of hydrogen. The third process is regarded as promising way to convert the renewable chemical energy in the form of methanol into electrical energy.

At the core of the research lies the design and development of electrocatalysts, which are directly responsible for lowering the reaction overpotentials and ultimately increasing the overall efficiency of the processes. As such, in this thesis three materials were synthesised using straightforward methodologies and evaluated as electrocatalysts for the alkaline hydrogen evolution, the photoelectrochemical oxygen evolution and the alkaline methanol oxidation. Their performances were directly linked to the morphological and structural properties which in turn significantly affected the nature of active sites. For the first work reported in Chapter 3, a material based on a mixed cobalt nickel sulphide nanoparticles supported onto Ni foam showed high activity toward the hydrogen evolution reaction, with a required small overpotentials of 163 mV at a current density of 10 mA/cm2 in 1.0 M KOH electrolyte. This value compares well with the best existing hydrogen evolution reaction electrocatalysts based on non-noble elements. Moreover the catalyst showed good durability which was tested under chronoamperometric conditions, maintaining an optimal performance for 72 hours. The origin of such high activity was attributed to the existence of an optimal nickel-cobalt sulphide ratio at the surface of the electrode, which was obtained by selecting the appropriate temperature and time of thermal annealing of the material. This optimal presence of the biphasic nickel-cobalt sulphide nanoparticles led to high electrochemically active surface area and small charge transfer resistance, as evidenced by the extensive characterisation analysis carried out on these materials. For the second work reported in Chapter 4, a WO3/Co3O4 photoanode was successfully synthesised via a facile sol-gel method and tested for the photoelectrochemical oxygen evolution. It was found that the degree of crystallinity of the cocatalyst influenced heavily the photoelectrochemical activity towards the oxygen evolution. In particular, a poorly crystalline structure of Co3O4 led to an improvement of up to 40% in photocurrent generation compared to the bare WO3. Interestingly, the highly crystalline Co3O4 significantly suppressed the photocurrent generation, as a result of the creation of an unfavourable band alignment, with a dramatic increase in the charge recombination at the interface. Finally, for the third and last work reported in Chapter 5, ultra-small Pt nanoparticles embedded on a 3D structure composed of CeO2, NiO and Ni foam was synthesised and tested as electrocatalyst for the alkaline methanol oxidation reaction. The generated catalyst showed extremely high activity for the alkaline methanol oxidation, with mass and geometric current density values of 1160 mA/mgPt and 202 mA/cm2, whose values are among the highest ever reported for Pt-based materials. It was demonstrated that the unique morphological architecture and existence of a synergistic effect between Pt and adjacent CeO2 nanoparticles contributed decisively to the observed high performance. Particularly the presence of defective and poorly crystalline CeO2 nanoparticles was beneficial to the efficient oxidative removal of the CO from the Pt active sites which resulted in a higher durability of the electrocatalyst. Moreover, the concomitant presence of the superficial Ni(OH)2 was thought to contribute to the supply of OH species to the Pt, which act as reactants for the CO removal. The most active electrocatalyst was subjected to stability test, retaining 40 % of the initial geometric current density after 6 hours, and quite surprisingly the activity could be totally restored through straightforward CV scans in 1.0 M NaOH electrolyte.
University of Southampton
Ansovini, Davide
7ef1b9c9-d3f5-4f85-ab97-99a4d1ed4330
Ansovini, Davide
7ef1b9c9-d3f5-4f85-ab97-99a4d1ed4330
Raja, Robert
74faf442-38a6-4ac1-84f9-b3c039cb392b

Ansovini, Davide (2016) Catalysis for sustainable energy conversion and storage. University of Southampton, Doctoral Thesis, 190pp.

Record type: Thesis (Doctoral)

Abstract

Climate change, pollution, unprecedented population growth, geopolitical tensions and rapid technological development are intrinsically connected to the nature, level and availability of global energy, which shapes present and future aspects of human society. Particularly, in a society where global energetic demand is continuously rising and the awareness of the negative impact of fossil fuels on the environment is becoming widespread, the exploitation of renewable sources for the generation of sustainable energy is highly needed. In this regard one key requirement for an effective deployment and expansion of renewable energy in the global energy market is represented by its ability to conveniently convert and store the energy derived from intermittent sources, in order to guarantee a constant supply to the electric grid. The technologies for the energy conversion and storage present various degrees of maturity, each one having specific advantages and disadvantages depending on the type of application and energetic source.

This thesis aims to give a tiny contribution to the complex problem of energy conversion and storage, through the design, characterisation and testing of electrocatalytic materials for water electrolysis, photoelectrochemical water splitting and direct methanol fuel cell. It is expected that the first two processes will play an important role in the future as convenient technologies for the conversion of solar and wind power into chemical energy in the form of hydrogen. The third process is regarded as promising way to convert the renewable chemical energy in the form of methanol into electrical energy.

At the core of the research lies the design and development of electrocatalysts, which are directly responsible for lowering the reaction overpotentials and ultimately increasing the overall efficiency of the processes. As such, in this thesis three materials were synthesised using straightforward methodologies and evaluated as electrocatalysts for the alkaline hydrogen evolution, the photoelectrochemical oxygen evolution and the alkaline methanol oxidation. Their performances were directly linked to the morphological and structural properties which in turn significantly affected the nature of active sites. For the first work reported in Chapter 3, a material based on a mixed cobalt nickel sulphide nanoparticles supported onto Ni foam showed high activity toward the hydrogen evolution reaction, with a required small overpotentials of 163 mV at a current density of 10 mA/cm2 in 1.0 M KOH electrolyte. This value compares well with the best existing hydrogen evolution reaction electrocatalysts based on non-noble elements. Moreover the catalyst showed good durability which was tested under chronoamperometric conditions, maintaining an optimal performance for 72 hours. The origin of such high activity was attributed to the existence of an optimal nickel-cobalt sulphide ratio at the surface of the electrode, which was obtained by selecting the appropriate temperature and time of thermal annealing of the material. This optimal presence of the biphasic nickel-cobalt sulphide nanoparticles led to high electrochemically active surface area and small charge transfer resistance, as evidenced by the extensive characterisation analysis carried out on these materials. For the second work reported in Chapter 4, a WO3/Co3O4 photoanode was successfully synthesised via a facile sol-gel method and tested for the photoelectrochemical oxygen evolution. It was found that the degree of crystallinity of the cocatalyst influenced heavily the photoelectrochemical activity towards the oxygen evolution. In particular, a poorly crystalline structure of Co3O4 led to an improvement of up to 40% in photocurrent generation compared to the bare WO3. Interestingly, the highly crystalline Co3O4 significantly suppressed the photocurrent generation, as a result of the creation of an unfavourable band alignment, with a dramatic increase in the charge recombination at the interface. Finally, for the third and last work reported in Chapter 5, ultra-small Pt nanoparticles embedded on a 3D structure composed of CeO2, NiO and Ni foam was synthesised and tested as electrocatalyst for the alkaline methanol oxidation reaction. The generated catalyst showed extremely high activity for the alkaline methanol oxidation, with mass and geometric current density values of 1160 mA/mgPt and 202 mA/cm2, whose values are among the highest ever reported for Pt-based materials. It was demonstrated that the unique morphological architecture and existence of a synergistic effect between Pt and adjacent CeO2 nanoparticles contributed decisively to the observed high performance. Particularly the presence of defective and poorly crystalline CeO2 nanoparticles was beneficial to the efficient oxidative removal of the CO from the Pt active sites which resulted in a higher durability of the electrocatalyst. Moreover, the concomitant presence of the superficial Ni(OH)2 was thought to contribute to the supply of OH species to the Pt, which act as reactants for the CO removal. The most active electrocatalyst was subjected to stability test, retaining 40 % of the initial geometric current density after 6 hours, and quite surprisingly the activity could be totally restored through straightforward CV scans in 1.0 M NaOH electrolyte.

Text
Thesis Davide Ansovini - Version of Record
Available under License University of Southampton Thesis Licence.
Download (33MB)

More information

Published date: September 2016

Identifiers

Local EPrints ID: 413468
URI: http://eprints.soton.ac.uk/id/eprint/413468
PURE UUID: 82b19bde-a60f-47f9-a314-b626445c6085
ORCID for Robert Raja: ORCID iD orcid.org/0000-0002-4161-7053

Catalogue record

Date deposited: 24 Aug 2017 16:30
Last modified: 16 Mar 2024 05:26

Export record

Contributors

Author: Davide Ansovini
Thesis advisor: Robert Raja ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×