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Abstract. The increase in quantity of spatial proteomics data requires a
range of analytical techniques to effectively analyse the data. We provide
a method of integrating spatial proteomics data together with protein-
protein interaction (PPI) networks to enable the extraction of more in-
formation. A strong relationship between spatial proteomics and PPI
network data was demonstrated. Then a method of converting the PPI
network into vectors using spatial proteomics data was explained which
allows the integration of the two datasets. The resulting vectors were
tested using machine learning techniques and reasonable predictive ac-
curacy was found.
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1 Introduction

Proteins can only perform their function in direct physical contact with other
proteins or parts of the cell, therefore knowing the location of a protein (known
as spatial proteomics) can aid in understanding its function. It has also been
shown that there is a direct connection between diseases and subcellular protein
localisation [1], consequently understanding certain diseases and cellular function
depends on a reliable and accurate knowledge of protein localisation.

Protein-protein interactions (PPIs) have been studied for many years due,
in part, to their importance in understanding cellular function. Interactions be-
tween pairs or groups of proteins, or proteins and other parts of the cell, have
significant consequences for cell functionality including links to disease [2]. PPI
networks chart these known or predicted interactions.

There is considerable interest in combining multiple sources of high through-
put biological measurements. Examples include the integration of spatial and
temporal patterns of gene expression [3], combining sequence and secondary
structure of proteins [4], and the integrated analysis of the transcriptome and
proteome [5].

Spatial proteomics and PPI networks should have significant similarities. A
pair of proteins can only physically interact if they are in the same spatial lo-
cation at the same time, hence we would expect that there would be a link
between proteins that interact and those that share a spatial location. In princi-
ple, accurate PPI networks might be able to predict which proteins co-localise.



2 Steven Squires, Rob Ewing, Adam Prügel-Bennett, Mahesan Niranjan

Conversely, spatial proteomics cannot on its own specify whether an interaction
exists, but if two proteins are in the same compartment it may be more likely
due to the increased likelihood that they share a function. In addition, proteins
that never exist in the same spatial location cannot directly interact.

There has been work conducted which uses the PPI networks to make pre-
dictions on protein localisation. In particular, a recently published paper used
PPI networks together with sequence predictors to classify proteins into spatial
locations [6]. In contrast, we use the spatial proteomics profiles themselves and
integrate them together with the PPI network data. In doing so we propose to
aid the development of analytical tools for the analysis of proteomics data.

Our contributions are, first, to demonstrate the strong relationship between
spatial proteomics and PPI network data. We then provide a mechanism to
integrate the two datasets along with some useful visualisation techniques. We
demonstrate that prediction of spatial localization from fractionation profiles
can potentially be enhanced by the inclusion of information taken from PPI
interactions and that interactions themselves are somewhat predictable from
spatial profiles.

This paper is structured as follows: in Section 2 we discuss the spatial pro-
teomics and PPI datasets along with the methods we use; in Section 3 we demon-
strate the strong correlation between PPI and spatial proteomics data, the vi-
sualisation benefits of our technique, and the predictive power of the datasets.
Finally, in Section 4 we provide a brief discussion of our results.

2 Methods

2.1 Spatial Proteomics and PPI Network Datasets

Spatial proteomics data is obtained from experiments which separate the con-
tents of the cell into fractions and measure the relative abundance of each protein
within each fraction. Proteins with a similar profile of fractional abundances
are believed to occupy the same spatial location [7]. These proteins are then
mapped to organelles by using marker proteins with similar profiles whose loca-
tion is known [8, 9]. The marker proteins tend to be extracted from literature and
need to be highly reliable as they set the mapping from profiles to locations. In
this study we used two sets of data obtained from Arabidopsis thaliana [10] and
Drosophila melanogaster [11]. Spatial proteomics data is generally of a fairly low
dimensionality (usually under 10 fractions) and the datasets contain 689 and 888
proteins for Arabidopsis and Drosophila respectively. We consider two marker
sets for each organism, the same as the authors use [10, 11]. The first, which we
call the original marker set, are those proteins with known location extracted
from literature. There are 27 for Arabidopsis and 55 for Drosophila. The authors
then use the spatial proteomics datasets to assign previously unknown proteins
to an organelle. We use the same assigned proteins which are named as extended
marker sets in this paper.
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Two PPI datasets were used: STRING [12] and BIOGRID [13]. These datasets
have different methodologies to extract PPIs and present the results differently
but results we have gained from both, where comparable, are consistent.

2.2 Combining Spatial Proteomics and PPI Network Data

Spatial proteomics data is produced in a format suitable for applying standard
machine learning classification techniques as there is a matrix withm dimensions,
n datapoints and each datapoint is within a class. In contrast the PPI data is
presented as pairs of known interactions and needs to be converted into a form
suitable for applying machine learning methods.

We create a simple fixed dimensional representation to capture information
held in interaction networks and apply standard machine learning techniques.
We do not consider more sophisticated techniques such as graph kernels [14]
in this work because the amount of experimental data relating to subcellular
measurements is small. Consider three organelles α, β and γ and a protein of
interest, A. The PPI data for A is transformed into a three-dimensional vector
by calculating the number of interactions between protein A and the marker
proteins within α, β and γ respectively. Protein A is then represented as a vector
with each dimension associated with an organelle. We normalise the vector by
dividing by the number of proteins within each organelle and then dividing each
protein individually by the sum of the vectors across each organelle. We then
scale up each protein components so the sum across the PPI vector equals one.

3 Results

3.1 Correlation between Spatial Proteomics and PPI Network Data

For the integration of spatial proteomics and PPI network data to be a valuable
analytical technique it should first be demonstrated that they are structurally
similar. A key structural similarity is the relationship between the spatial lo-
cation and the chance of an interaction occurring. In the STRING database
approximately 10% and 7% of proteins have links for Drosophila and Arabidop-
sis respectively; proteins located in the same organelle should, in general, have
a higher likelihood of interacting. The ratio of interactions to potential inter-
actions was measured for each protein in the extended marker set. Figure 1(a)
shows the fraction of interactions occurring within the same organelle against the
fraction to proteins in other organelles. The dots are the proteins for Drosophila
and crosses for Arabidopsis, the stars are the averages for each organelle and
the black line is the average expected if there was no correlation between the
datasets. Any protein above the line has a higher fraction of links to proteins
within its organelle than to proteins in other organelles. A majority of proteins
have significantly more links within the organelles than between them.

The probability of these results occurring by chance from an uncorrelated
PPI network (P-values) was calculated using the hypergeometric distribution.
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Within an individual organelle, the probability of the number of interactions
observed occurring by chance ranges from P = 10−12 to P = 10−404. We can
reasonably conclude that the marker proteins in the two datasets are correlated.
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Fig. 1. a) The fraction of interactions for each extended marker protein within the
organelle is plotted against the fraction of interactions to proteins in different organelles.
The black line is the expectation if there is no correlation and the stars show the
averages for the organelles. The vast majority of proteins lie above the line. b) The
clustering algorithm iteratively removes links, preferentially removing PPI links which
connect clusters together rather than those links that are within a cluster. The fall in
number of links between proteins within the same organelle (solid line) is slower than
those links between proteins in different organelles (dotted line) or a randomised PPI
network (dashed line).

If similar clusters of proteins are formed in the PPI networks as in the or-
ganelle groupings in spatial proteomics data it would provide further evidence
of the correlation between the data types. A clustering algorithm was developed
based upon previous work [15, 6] which removes links sequentially based on the
structure of the PPI network. The first links to be removed are those considered
to be joining separate clusters together. If the structures of the datasets are
similar we would expect the number of links between proteins in different or-
ganelles to fall off much faster than between proteins within the same organelle.
The normalised K value [15] gives a measure of how well connected a group of
proteins are, if it falls fast then these proteins are unlikely to be in a cluster to-
gether. The average number of links between proteins within the same organelle,
Kin, and the equivalent number of links between proteins in different organelles,
Kout, were calculated and normalised. In Figure 1(b) we show that the fall in
Kout (dotted line) is far faster than for Kin (solid line) or for a randomised PPI
network (dashed line) demonstrating that the clusters formed in the PPI data
are similar to those in spatial proteomics data.
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3.2 Visualisation of the Datasets

Visualisation of the spatial proteomics and PPI network data is important for
both gaining a qualitative understanding of the quality of the data and for
observation of potential patterns.

For spatial proteomics data the ability to classify the proteins depends on
differences in the profiles for proteins in different organelles [8]. Part of our con-
tribution is to add the PPI vectors to create vectors with additional dimensions
which add extra information to the spatial proteomics data. The average vectors
for the original marker proteins for each organelle together with the additional
PPI dimensions are in Figure 2(a). The average profile for the PPI dimensions
shows peaks at the dimension associated with each organelle (noted by their
first letter on the plots). Any protein not showing a significant peak in a PPI
dimension while being well classified by the spatial proteomics profile may be of
particular biological interest. The organelles shown are the endoplasmic retic-
ulum (ER), mitochondrion (Mito), plasma membrane (PM), Golgi apparatus
(Gol) and the vacuole (Vac).
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Fig. 2. a) The average profiles for the original marker proteins for Arabidopsis (top) and
Drosophila (bottom) are shown. The first eight (for Arabidopsis) and six (Drosophila)
fractions are from the spatial proteomics data with the remaining created from the PPI
data with labels associated with the first letter of the relevant organelle. b) The original
marker protein profiles for Drosophila were projected onto their principal components
and PPI network links added. Proteins that have strong connections outside of their
organelle can be investigated.

Visualisation of the PPI network data is difficult as the number of links are
large. Here, an example of what the network looks like for the small number
of original marker proteins for Drosophila is shown in Figure 2(b). The spatial
proteomics profiles were projected onto their principal components and known
interactions from the STRING database are shown. It may be useful to inspect
the links between individual proteins and the markers in this manner to gain
insight into how each protein is linked. While there are many links between
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proteins in different organelles there are significantly more to proteins within the
same organelle. It should also be noted that with only 55 proteins the network
plots are already difficult to inspect in this format.

While the PPI networks may be difficult to visualise, the PPI vectors are
somewhat easier when two components of the vector are compared. In Fig-
ure 3(a) the PM component was plotted against the Mito component for all
the Drosophila expanded marker proteins. The PPI vectors were also used to
create a Gaussian probabilistic model, with means (shown as stars) and covari-
ances extracted from the vectors. Contours of equal probability are then plotted
which aids with understanding the separation and structure of the data. For
example, the Mito vectors are much tighter bound than the PM vectors which
visually represents that the Mito proteins are more closely connected to other
Mito proteins than to proteins in other organelles than the PM proteins are.
The structure of the plot is exactly as would be expected with the PM and Mito
proteins tending to reside high up the PM and Mito axes respectively and the
ER proteins following a fairly isotropic distribution near the origin.
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Fig. 3. a) The PPI vectors for the PM and Mito components for Drosophila marker
proteins are plotted. The PM proteins tend to cluster high up the PM axis and the Mito
proteins along the Mito axis. The ER proteins are based near the origin. The contours
of equal probability are centred on the average of each organelle. b) The application
of a Fisher Linear Discriminant to the combined spatial proteomics and PPI vectors
for Arabidopsis allows for effective partition of the extended marker proteins into their
respective organelles.

We also show the effect of projection using Fisher discriminant directions
for the combined vector for Arabidopsis in Figure 3(b). Most of the extended
marker proteins are well separated into their organelles, the combined vector is
able to effectively partition the proteins into different compartments.
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3.3 Predictive Power

We have demonstrated the similarity of the two datasets and some visualisation
techniques. Now we will show that there is considerable predictive power in the
method of combining datasets

First we show the PPI networks can predict spatial location. As we have
converted the PPI network into a vector we can apply standard machine learning
techniques. The protein extended marker data was partitioned randomly into two
and a support vector machine [16] (SVM) was trained on half of the proteins
with the PPI vector as input and the organelles as output classes. The trained
SVM was then tested on the remainder of the randomised data. The process,
with different random partitions, was then repeated two hundred times. The
classification accuracies, sensitivities (true positive rate) and specificities (true
negative rates) are shown as boxplots in Figure 4(a). Generally, the SVM trained
on the PPI data was able to predict the location of the proteins approximately
70% of the time. The most notable exception was the vacuole where very poor
predictions are made. There are only small numbers of vacuole proteins in the
extended marker set which is likely to be the reason for the poor predictive
ability.
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Fig. 4. a) The fraction of extended marker proteins predicted correctly from two hun-
dred runs of an SVM classifier based on the PPI vectors as input and the organelle
markers as output classes. The classifier is able to correctly predict the organelle around
70% of the time. b) The spatial proteomics data can make weak predictions on the ex-
istence of PPI links. The notched plots show the accuracy, specificity and sensitivity for
Drosophila (top) and Arabidopsis (bottom) while the square plots are the results for a
randomised PPI network. There is a clear (but faint) signal from the spatial proteomics
data.

The inverse problem is more challenging. To attempt to use the spatial pro-
teomics data to estimate whether a PPI exists between two proteins, first each
pair of proteins were merged together to create a combined vector by multi-
plying each component of each vector by all the components of the other. The
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six dimensional Drosophila vector, for example, was transformed to a 36 dimen-
sional combined vector. A two-class SVM for interactions and non-interactions
was then trained. The new dataset is the combination of all the protein pairs so
contains 393,828 protein pairs for Drosophila and 237,016 for Arabidopsis. The
data was split into training sets of protein pairs and, as the data is highly skewed
towards non-interactions, the sampling was biased to force the training set to
contain 50% interactions. The process was repeated twenty times. The accuracy,
sensitivity and specificity of the predictions are shown in the notched plots of
Figure 4(b). The equivalent SVM was applied to a randomised PPI network and
shows what would be expected if there was no signal available (the non-notched
plots). While the signal from the real data is small, it is consistently larger than
the results from the randomised PPI network and can make some predictions
about the PPI network.

4 Discussion

In this paper, we show how sub-cellular proteomics measurements can be com-
bined with information contained in protein-protein interaction networks. Our
work shows that there is significant correlation between spatial protein expres-
sion in cells and protein interaction information. Using a simple representation
of interaction data in a fixed dimensional space, we show that predictions can
be made in both directions between spatial proteomics and PPI networks.

There are many potential benefits from using the combined datasets. Differ-
ences in classification between the datasets may be of particular interest as it
may imply interesting cases such as proteins that exist in multiple compartments
or false data that should be re-evaluated. Confidence in conclusions can also be
increased if the same conclusion is drawn using two separate datasets. Inspec-
tion of the data using some of the visualisation techniques discussed may also
be useful for increasing understanding of data quality and building intuition.
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