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Abstract

In the next-to-minimal supersymmetric Standard Model (NMSSM), it is possible for either one
of the additional singlet-like scalar and pseudoscalar Higgs bosons to be almost degenerate in
mass with the ∼ 125 GeV SM-like Higgs state. In the real NMSSM (rNMSSM), when the mass
difference between two scalar states is comparable to their individual total decay widths, the
quantum mechanical interference, due to the relevant diagonal as well as off-diagonal terms in
the propagator matrix, between them can become sizable. This possibility invalidates usage
of the narrow width approximation (NWA) to compute the cross section for the production of
a di-photon pair with a given invariant mass via resonant Higgs boson(s) in the gluon fusion
process at the Large Hadron Collider (LHC). When, motivated by the baryon asymmetry of the
universe, CP-violating (CPV) phases are explicitly invoked in the Higgs sector of the NMSSM,
all the interaction eigenstates mix to give five CP-indefinite physical Higgs bosons. In this
scenario, the interference effects due the off-diagonal terms in the Higgs mass matrix that mix
the pseudoscalar-like state with the SM-like one can also become significant, when these two
are sufficiently mass-degenerate. We perform a detailed analysis, in both the real and complex
NMSSM, of these interference effects, when the full propagator matrix is taken into account, in
the production of a photon pair with an invariant mass near 125 GeV through gluon fusion. We
find that these effects can account for up to ∼ 40% of the total cross section for certain model
parameter configurations. We also investigate how such mutually interfering states contributing
to the ∼ 125 GeV signal observed at the LHC can be distinguished from a single resonance.
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1 Introduction

The discovery of a Higgs boson [1, 2] at the LHC provides convincing evidence of spontaneous
Electro-Weak (EW) Symmetry Breaking (SB) through the Higgs mechanism. It is also intriguing
that the subsequent measurements of its properties have shown their remarkable agreement with
the expectations from the Standard Model (SM) of particle physics. These measurements include
the signal rates and coupling strengths in the various Higgs boson production and decay channels
that have so far been analysed, as well as its spin and parity. However, the shortcomings of the
standard Higgs mechanism, including primarily the stability of the mass of the Higgs boson against
large quantum corrections, need to be addressed properly in order to completely understand the
dynamics of EWSB. Putting this together with other unresolved issues in the SM, such as its
inability to explain the mass of neutrinos, the nature of Dark Matter (DM) and the large baryon
asymmetry of the universe, compel us to believe that the elementary particle spectrum could be
richer than the minimal one embedded in the SM.

Supersymmetry (SUSY), proposed originally as a remedy to some of the above problems faced
by the SM, presents an appealing explanation for the stability of the Higgs mass, while provid-
ing also a natural candidate for DM. However, its minimal manifestation, known as the minimal
supersymmetric Standard Model (MSSM), is becoming increasingly constrained by the LHC mea-
surements of the Higgs boson properties, besides becoming more and more fine-tuned in explaining
null searches for its own direct signatures (i.e., of sparticle states). The MSSM is also troubled by
issues arising purely from naturalness considerations, like the presence of a quadratic Lagrangian
term with a new mass parameter, µ, which is phenomenologically required to lie at the EW scale
but has no theoretical ground to do so [3, 4]. The NMSSM was proposed to take care of this
so-called µ-problem through the introduction of a new singlet scalar superfield [5]. The presence of
this superfield leads to two additional neutral Higgs mass eigenstates in the NMSSM (see, e.g., [6, 7]
for reviews) compared to the MSSM. When all the parameters in the Higgs and sfermion sectors
are assumed to be real and hence CP-conserving (CPC), one of these two additional states is a
scalar and the other a pseudoscalar. With five neutral Higgs bosons in total, the real NMSSM
(rNMSSM) provides some unique possibilities for collider phenomenology.

In multi-Higgs models like the MSSM and NMSSM, the observed signature near 125 GeV can
in principle be explained in terms of a single Higgs resonance or, alternatively, two or more Higgs
resonances that cannot be individually resolved by the experiment as yet. In the MSSM, the
possibility of the two scalars both lying near 125 GeV is ruled out by the fact that such a mass
for one of the scalars generally necessitates the other scalar to be essentially decoupled, and hence
much heavier or lighter (see, e.g., [8]). In the rNMSSM, in contrast, it is still a plausible scenario,
as discussed in [9, 10]. The alternative possibility of a pair of ∼ 125 GeV scalar and pseudoscalar
has also been studied in [11].

In the NMSSM, to address the baryonic asymmetry of the universe, CP-violation can be invoked
directly and explicitly in the Higgs sector at the tree level, unlike in the MSSM, where it is only
radiatively induced into the Higgs sector beyond the Born approximation. This is done by taking
the Higgs sector trilinear couplings to be complex parameters, hence we refer to this version of the
model as the complex NMSSM (cNMSSM) here. For non-zero CPV phases of these parameters,
instead of the distinct CP-even and CP-odd Higgs bosons, the model contains five CP-indefinite
neutral states. This CP-mixing in the Higgs sector can get additional contributions from the
complex Higgs-sfermion-sfermion couplings as well as the phases in the the neutralino-chargino
sector, as in the CPV MSSM. Consequently, depending on the sizes of these phases, the mass
spectrum and production/decay rates of the Higgs states can get considerably modified compared
to the CPC case [12], similarly to the MSSM [13, 14, 15]. The phenomenology of a single CPV
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Higgs boson near 125 GeV in the cNMSSM has been studied for a variety of possible underlying
scenarios in [12, 16, 17]. The specific case of two mass-degenerate Higgs resonances near 125 GeV
within the cNMSSM has also been considered in [18], where it was shown that these can give a
better fit to the LHC Run-I data, performed using the program HiggsSignals [19], compared to a
single resonance.

In all the above-mentioned analyses of two ∼ 125 GeV Higgs bosons in the NMSSM, it was
assumed that each of them is produced on-shell and decays subsequently into any of the observed
final states. However, for very strong mass degeneracy, it is possible that the two Higgs states
produced in gluon fusion oscillate into each other before they decay. This could be perceived as being
facilitated through quantum corrections of the propagator with two different mass eigenstates at the
two ends. Such effects, coming into play beyond a Breit-Wigner (BW) resonance, in general contexts
as well as in specific scenarios like the CPC MSSM, have been considered in some studies [20]. The
specific case of the CPV MSSM with one-loop effects in the full propagator was treated in [14].

The purpose of the present work is to explore this possibility of quantum mechanical interference
between two Higgs states near 125 GeV in the NMSSM, both real and complex. We shall demon-
strate here that the inclusion of such effects enhances the span of the model solutions mimicking the
LHC observation. We shall then investigate possible ways to identify signatures of such a coupled
system of Higgs bosons through a shape study of the profile of the resonance in the invariant mass
distribution of the di-photon decay products. The analysis is carried out by first performing nu-
merical scans of the model parameter space to identify specific Benchmark Points (BPs) where two
of the Higgs bosons are degenerate with mass around 125 GeV, within the uncertainty allowed by
present LHC measurements. For these BPs, we then calculate the cross section for the production
of a di-photon pair with invariant mass near 125 GeV via Higgs resonance(s) in the gluon fusion
process at the LHC, using a Monte Carlo integration code developed in-house. This cross section is
calculated assuming three different approaches: the full Higgs propagator matrix in the amplitude;
only diagonal terms in the propagator matrix; for the two Higgs bosons individually without any
mutual interference. A comparison of these three cross sections shows significant effects of inter-
ference, with the full propagator case deviating by up to about 38% compared to the sum of the
two individual Higgs boson contributions, along with a hint of a distorsion in the line-shape of the
differential distribution.

The article is organised as follows. In the next section we will briefly revisit the Higgs sector of
the NMSSM. In section 3 we will derive the analytical expression for the cross section that includes
the full Higgs propagator matrix. In section 4 we will provide details of our methodology for the
numerical analysis. In section 5 we will discuss the results of our analysis and in section 6 we will
present our conclusions.

2 The NMSSM Higgs sector

The NMSSM is defined by the superpotential

WNMSSM = hu Q̂ · Ĥu Û
c
R + hd Ĥd · Q̂ D̂c

R + he Ĥd · L̂ ÊcR + λŜĤu · Ĥd +
κ

3
Ŝ3 , (1)

where yu, yd and ye are the quark and lepton Yukawa coupling constants, Q̂ and L̂ are the left-
handed quark and lepton doublet superfields, Û , D̂ and Ê are the right-handed up-type, down-
type and electron-type singlet superfields, respectively, and the charge conjugation is denoted by
the superscript c. Furthermore, Ĥu and Ĥd in the above superpotential are SU(2)L Higgs doublet
superfields with opposite hypercharge, Y = ±1, as in the MSSM, and Ŝ is a Higgs singlet superfield.
Here, λ and κ are dimensionless trilinear coupling constants.
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The fourth term on the right hand side of Eq. (1) replaces the Higgs-higgsino mass term, µĤuĤd,
present in the MSSM superpotential. The Higgs singlet superfield acquires a non-zero vacuum
expectation value (VEV), vs, after EWSB. This vs is naturally of the order of the SUSY-breaking

scale MSUSY (herein operationally defined as M2
SUSY =

m2
t̃1

+m2
t̃2

2 , where mt̃1
and mt̃2

are the physical
masses of the two stops), thus solving the µ-problem of the MSSM by generating an effective µ-term,

µeff ≡ λ
〈
Ŝ
〉

= λvs . (2)

The absence of a µĤuĤd term, however, results in a U(1)PQ symmetry, which is explicitly broken
here by the last term in Eq. (1), thus introducing instead a discrete Z3 symmetry and making the
NMSSM superpotential scale-invariant as well.

The Higgs potential, derived from the above superpotential, is given as

V0 = |λ
(
H+
u H

−
d −H

0
uH

0
d

)
+ κS2|2 +

(
m2
Hu + |µ+ λS|2

)(
|H0

u|
2

+ |H+
u |

2
)

+
(
m2
Hd

+ |µ+ λS|2
)(
|H0

d |
2

+ |H−d |
2
)

+
g2

4

(
|H0

u|
2

+ |H+
u |

2 − |H0
d |

2 − |H−d |
2
)2

+
g2

2

2
|H+

u H
0∗
d +H0

uH
−∗
d |

2
+m2

S |S|
2 +

[
λAλ

(
H+
u H

−
d −H

0
uH

0
d

)
S +

1

3
κAκS

3 + h.c.

]
, (3)

where g1 and g2 are the U(1)Y and SU(2)L gauge coupling constants, respectively, and g2 =
g21+g22

2 .
Here, Aλ and Aκ are soft SUSY-breaking Higgs trilinear couplings, while mHd , mHu and mS denote
the soft Higgs masses. The fields Hd, Hu and S are expanded about their respective VEVs, vd, vu
and vs, as

H0
d =

(
1√
2
(vd +HdR + iHdI)

H−d

)
, H0

u = eiφu

(
H+
d

1√
2
(vu +HuR + iHuI)

)
, S0 =

eiφs√
2

(vs+SR+iSI).

(4)
For correct EWSB, the V0, rewritten in terms of these expanded fields, should have a minimum at
non-vanishing vd, vu and vs, implying

〈
δV0

δθ

〉
= 0 for θ = HdR, HuR, SR, HdI , HuI , SI , (5)

which leads to six ‘tadpole conditions’ (see, e.g., [17]).
Taking the second derivative of V0 at the vacuum yields the tree-level 6× 6 neutral Higgs mass

matrix-squared, M2
0, in the basis HT = (HdR, HuR, SR, HdI , HuI , SI). It can be expressed in the

general form

M2
0 =




M2
S M2

SP

(
M2

SP

)T M2
P


 , (6)

where the 3×3 blockM2
S corresponds to the CP-even interaction states (HdR, HuR, SR), the 3×3

block M2
P to the CP-odd states (HdI , HuI , SI) while M2

SP is responsible for mixing between the
CP-even and -odd states.

In the rNMSSM, where all the Higgs sector trilinear coupling parameters are real, M2
SP is

a null matrix. One can therefore simply rotate only the submatrix M2
P to isolate the massless

Nambu-Goldstone boson field, G, which can then be dropped to yield a 5 × 5 mass matrix M′2
0 .
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This mass matrix receives higher order corrections, ∆M2, from various sectors of the model, and
thus gets modified as

M2
H =M′2

0 + ∆M2 . (7)

The most dominant of these corrections can be found in [6, 21]. Some further two-loop corrections
have been calculated in [22] and [23]. After the inclusion of these corrections, the submatricesM2

S

and M′2
P are separately diagonalised to obtain the three CP-even mass eigenstates, H1,2,3 (with

mH1 < mH2 < mH3), and the two CP-odd physical Higgs bosons, A1,2 (with mA1 < mA2).
On the other hand, one can also invoke CP-violation explicitly by assuming λ ≡ |λ|eiφλ , κ ≡

|κ|eiφκ , Aλ ≡ |Aλ|eiφAλ and Aκ ≡ |Aκ|eiφAκ . This leads to non-zero entries in theM2
SP submatrix,

implying that the CP-even and CP-odd interaction eigenstates also mix mutually. In this cNMSSM,
the G state is first separated out through a rotation of the entire M2

0 by RG,

(HdR, HuR, SR, HI , SI , G)T = RG (HdR, HuR, SR, HdI , HuI , SI)
T , (8)

and dropped before calculating the higher order corrections to the resulting M′2
0 . The complete

expressions for the tree-level M′2
0 and the dominant one-loop contributions to ∆M2 from the

(s)quark and gauge sectors in the cNMSSM were studied in [24, 25, 26] in the renormalisation
group equations-improved effective potential approach. The corrections from the gaugino sector
were included in [17] and, more inclusively, in [27]. In the Feynman diagrammatic approach, the
complete one-loop Higgs mass matrix was derived in [16] and the O(αtαs) contributions to it were
calculated recently in [28].

The physical Higgs mass eigenstates of the cNMSSM are then obtained from the interaction
states through another rotation by RH ,

(H1, H2, H3, H4, H5)T = RH (HdR, HuR, SR, HI , SI)
T , (9)

resulting in the diagonalised squared mass matrix,

diag
(
m2
H1
,m2

H2
,m2

H3
,m2

H4
,m2

H5

)
= RH

[
RGM2

H

(
RG
)T ] (RH

)T
. (10)

Here H1, H2, H3, H4 and H5 are the five neutral CP-indefinite Higgs bosons, ordered in terms of
increasing mass.

Note here that only the physical phase combination φλ−φκ+φu−2φs appears in the cNMSSM
Higgs sector at the tree-level, as the other possible phase combinations involving φAλ and φAκ are
determined by it, upto a twofold ambiguity, through the tadpole conditions. Beyond this level, the
CPV phases of the gaugino mass parameters, M1,2,3, and of the soft trilinear couplings, Af̃ , of the
Higgs boson to the sfermions also get radiatively induced into this sector.

3 Di-photon production via gluon fusion

We now turn our attention to the process under scrutiny, i.e., di-photon production from gluon
fusion via Higgs states at the LHC. The squared amplitude for the gg → H → γγ process, with H
collectively denoting the five neutral CP-indefinite Higgs bosons, can be written as [29]

| M |2 =
∑

λ,σ=±
MPλM∗Pλ |DH(ŝ)|2MDσM∗Dσ , (11)

where λ, σ = ±1 are the gluon and photon helicities, respectively, and DH(ŝ) is the Higgs boson
propagator, with ŝ being the squared center-of-mass (CM) energy of the incoming gluons. The
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amplitude for the production part is given as

MPλ =
∑

i=1−5

MPiλ =
∑

i=1−5

αsm
2
Hi

4πv

{
Sgi (mHi) + iλP gi (mHi)

}
, (12)

where the scalar and pseudoscalar form-factors are [30]

Sgi (mHi) = 2
∑

q

gSHiqqτq{1 + (1− τq)f(τq)} −
∑

q̃

m2
Zτq̃
m2
q̃

gHiq̃q̃{1− τq̃f(τq̃)}, (13)

P gi (mHi) = 2
∑

q

gPHiqqτqf(τq) , (14)

with τx = 4m2
x/m

2
Hi

(x = q, q̃) and the loop function being

f(τ) = arcsin2(1/
√
τ), τ ≥ 1,

f(τ) = −1

4

{
ln

(
1 +
√

1− τ
1−
√

1− τ

)
− iπ

}2

, τ < 1.
(15)

Note that gS,PHiqq and gSHiq̃q̃ in Eq. (13) are the couplings of Hi to quarks q and squarks q̃, respectively,

which depend on the elements of the Higgs mixing matrix, RH , noted in Eq. (10) above. The exact
forms of these couplings can be found in [26].

The amplitude for the decay part is similarly given as

MDσ =
∑

i=1−5

MDiσ =
∑

i=1−5

αemm
2
Hi

4πv

{
Sγi (mHi) + iσP γi (mH)i)

}
, (16)

with the form-factors being

Sγi (mHi) = 2
∑

f

Ncfe
2
qg
S
Hiqqτq{1 + (1− τq)f(τq)} −

∑

f̃

Ncfe
2
q̃

M2
Z

M2
q̃

gHiq̃q̃τq̃{1− τq̃f(τq̃)}

− gHiWW {2 + 3τW + 3τW (2− τW )f(τW )} −
M2
Z

2M2
H±

gHiH+H−τH±{1− τH±f(τH±)}

+ 2
∑

χ̃±j=1,2

MW

Mχ̃±j

gS
Hiχ̃

+
j χ̃
−
j
τχ̃±j
{1 + (1− τχ̃±j )f(τχ̃±j

)} , (17)

P γi (mHi) = 2
∑

f

Ncfe
2
qg
P
Hiqqτqf(τq) + 2

∑

χ̃±j=1,2

MW

Mχ̃±j

gP
Hiχ̃

+
j χ̃
−
j
τχ̃±j

f(τχ̃±j
) , (18)

where Ncf = 3, 1 is the colour factor for (s)quarks and charged (s)leptons, respectively, with ef
being the corresponding electric charge. Finally, the full propagator in Eq. (11) is a 5× 5 matrix,1

given as

DH(ŝ) = ŝ




m11 iImΠ̂12(ŝ) iImΠ̂13(ŝ) iImΠ̂14(ŝ) iImΠ̂15(ŝ)

iImΠ̂21(ŝ) m22 iImΠ̂23(ŝ) iImΠ̂24(ŝ) iImΠ̂25(ŝ)

iImΠ̂31(ŝ) iImΠ̂32(ŝ) m33 iImΠ̂34(ŝ) iImΠ̂35(ŝ)

iImΠ̂41(ŝ) iImΠ̂42(ŝ) iImΠ̂43(ŝ) m44 iImΠ̂45(ŝ)

iImΠ̂51(ŝ) iImΠ̂52(ŝ) iImΠ̂53(ŝ) iImΠ̂54(ŝ) m55




−1

, (19)

1Assuming negligible off-resonance self-energy transitions of any of the five Higgs bosons to the would-be Goldstone
boson, G.
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where mii ≡ ŝ−m2
Hi

+iImΠ̂ii(ŝ), with ImΠ̂ij(ŝ) being the absorptive parts of the Higgs self-energies,
for i, j = 1 − 5. The diagonal absorptive parts are equivalent to the widths of the corresponding
Higgs states. The explicit expressions for ImΠ̂ij(ŝ) are given in the Appendix. Note here that in
our numerical analysis we will only focus on H1 and H2 having masses very close to 125 GeV. This
implies that essentially the propagator matrix elements with i, j = 1 − 2 are the only ones that
contribute to the production of the di-photon pair with invariant mass near 125 GeV, assuming
that the remaining three Higgs bosons are relatively heavy. Moreover, in the case of the rNMSSM,
since the CP-even-odd mixing terms in the Higgs mass matrix vanish, it is sufficient for our purpose
to consider only the 3 × 3 propagator matrix corresponding to the CP-even states instead of the
complete one above.

When the splitting between the Higgs boson masses is much larger than the sizes of the absorp-
tive parts in Eq. (19), the NWA can be applied to the ith Higgs boson propagator as

|Dii(ŝ)|2 =

∣∣∣∣∣
1

ŝ−m2
Hi

+ imHiΓHi

∣∣∣∣∣

2

→ π

mHiΓHi
δ(ŝ−m2

Hi) , (20)

so that the partonic cross section becomes

σ̂(gg → H → γγ) =
1

1024πŝ

∑

i=1−5

(∑

λ=±
|MPiλ|

2 × π

mHiΓHi
δ(ŝ−m2

Hi)×
∑

σ=±
|MDiσ|

2

)
. (21)

The total cross-section for the process pp→ H → γγ is then written as

σγγpp =

∫ 1

0
dx2

∫ 1

0
dx1 σ̂(gg → H → γγ) g(x1)g(x2)

=

∫ 1

0
dx2

∫ 1

0
dx1

g(x1)g(x2)

1024πŝ

∑

i=1−5

(∑

λ=±
|MPiλ|

2 π

mHiΓHi
δ(ŝ−m2

Hi)
∑

σ=±
|MDiσ|

2

)
,(22)

where g(x1) and g(x2) are the parton distribution functions (PDFs) of the two gluons. By substi-
tuting x2 in the above equation as

ŝ = x1x2s =⇒ x1x2 =
ŝ

s
≡ τ =⇒ x2 =

τ

x1
=⇒ dx2 =

dτ

x1
, (23)

where s is the total CM energy of the pp system, and performing the integration over dτ , one gets

σγγpp =

∫ 1

m2
Hi
s

dx1
1

1024sm3
Hi

ΓHi

∑

i=1−5

(∑

λ=±
|MPiλ|

2
∑

σ=±
|MDiσ|

2

) g(x1)g

(
m2
Hi

s x1

)

x1
. (24)

In contrast, when two (or more) Higgs bosons of the model are almost degenerate in mass near
a given ŝ, the sizes of the corresponding absorptive parts can become comparable to their mass
difference. As a result, the ith Higgs state can undergo resonant transition to the jth state through
quantum corrections, as shown in Fig. 1. In such a scenario, the NWA is no longer valid, and the
total cross section is given as

σγγpp =

∫ 1

0
dτ

∫ 1

τ

dx1

x1

g(x1)g(τ/x1)

1024πŝ3

∑

i,j=1−5

{∑

λ=±
|MPiλ|

2 |Dij(ŝ)|2
∑

σ=±

∣∣MDjσ

∣∣2
}
, (25)
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Hi Hj
q, q̃ f, f̃ , W±, H±

γ

γ

g

g

All

Figure 1: Illustration of the effect of mixing in the propagator induced by quantum corrections.

where |Dij(ŝ)|2 is given by Eq. (19). From the above equation, one obtains the differential cross
section (recall that τ = ŝ

s) as

dσγγpp

d
√
ŝ

=

∫ 1

τ

2
√
ŝ

s

dx1

x1

g(x1)g(ŝ/sx1)

1024πŝ3

∑

i,j=1−5

{∑

λ=±
|MPiλ|

2 |Dij(ŝ)|2
∑

σ=±

∣∣MDjσ

∣∣2
}
. (26)

4 Numerical analysis

We first performed numerical scanning of the parameter space of the NMSSM, requiring H1 and H2

to lie within the 123 GeV− 127 GeV range.2 Our first scan corresponded to the rNMSSM, wherein
sufficient mass degeneracy near 125 GeV between the two lightest scalars can generally be obtained
for large values of the couplings λ and κ and a relatively small tanβ, which results in maximal
mixing between the doublet- and singlet-like states, as noted in some earlier studies [9]. In the
rNMSSM, while it is also possible for A1 to lie near 125 GeV [11], it does not mix with the SM-like
H1 when the coupling parameters are all real. Therefore, the corresponding off-diagonal absorptive
parts in the propagator matrix given in Eq. (19) are zero. When the complex phases are turned on
though, all the Higgs states become CP-indefinite, and any of the off-diagonal terms in the full 5×5
propagator matrix can be non-zero and contribute to the interference effects. Therefore, either one
of the scalar-singlet-like and pseudoscalar-singlet-like states can have strong mass-degeneracy with
the ∼ 125 GeV SM-like state and interfere with it.

As stated earlier, at the tree level, only the phase combination φλ − φκ + φu − 2φs appears in
the Higgs sector of the cNMSSM. Furthermore, several studies [16, 25, 26] have shown that, out of
all the individual phases, including those appearing beyond the Born approximation, the phase φκ
is virtually unconstrained by the measurements of the fermion Electric Dipole Moments (EDMs).
Therefore, after setting all the other phases to 0◦, we performed two separate parameter space scans
of the cNMSSM also, with the value of φκ fixed to 3◦ in one and to 10◦ in the other. In Tab. 1 we
list the scanned ranges of the free parameters (input at the EW scale), which assume the following
universality conditions:

M0 ≡MQ1,2,3 = MU1,2,3 = MD1,2,3 = ML1,2,3 = ME1,2,3 ;

M1/2 ≡ 2M1 = M2 =
1

3
M3 ; A0 ≡ At̃ = Ab̃ = Aτ̃ ,

where MQ1,2,3 , MU1,2,3 , MD1,2,3 , ML1,2,3 and ME1,2,3 are the soft masses of the sfermions, M1,2,3

those of the gauginos and At̃,b̃,τ̃ the soft trilinear couplings. These ranges are consistent across the

2The extended range of Higgs boson masses around the actual measured experimental value of ∼ 125 GeV is to
allow for upto ±2 GeV uncertainty from unknown higher order corrections in their model prediction.
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Parameter Scanned range

M0 (GeV) 800 – 2000
M1/2 (GeV) 100 – 500

A0 (GeV) −3000 – 0
tanβ 2 – 8
λ 0.58 – 0.7
κ 0.3 – 0.6

µeff (GeV) 100 – 200
Aλ (GeV) 200 – 1000
Aκ (GeV) −300 – 0

Table 1: NMSSM parameters and their scanned ranges.

three scans and correspond to the parameter space region that was noted to yield maximally mass-
degenerate H1 and H2 in a previous study [18], where more details about the scanning methodology
can also be found. It was additionally pointed out in that study that for larger values of φκ it gets
increasingly difficult to obtain both H1 and H2 near 125 GeV in the cNMSSM.

For each parameter space input point generated by the scanning algorithm, the masses as well
as branching ratios (BRs) of the Higgs bosons were calculated with the public code NMSSMCALC
v2.00 [30]. The Supersymmetric Les Houches Accord [31] output file produced by NMSSMCALC
for a scanned point was then passed to HiggsBounds v4.3.1 [32] to check for the consistency of
each Higgs boson with the direct Higgs search results from LEP, Tevatron and LHC. We further
made sure that a point only got through the scan if it satisfied the limits from measurements of
the EDMs, computed intrinsically by NMSSMCALC. Finally, the CMS and ATLAS collaborations
have performed measurements of the total width of the hobs by analysing its off-shell production
and subsequent decays in the ZZ and W+W− channels [33, 34]. The most recent observed 95%
confidence level upper limit for the two channels combined is 13 MeV. Therefore, we also require
each of the H1 and H2 in a given scan to observe this constraint, unless stated otherwise for
exceptional scenarios, which may well be plausible, as such a limit presumes an underlying BW
resonance for the signal [35, 36], which is not the case here.

Next, from the points collected in each scan, we selected BPs satisfying certain specific criteria,
which will be explained later. In order to perform the numerical calculation of the cross sections
for these BPs, we implemented the expressions given in Eqs. (25) and (26) in a locally developed
fortran program. This code is linked to the LAPACK package [37] for propagator matrix inversion,
as well as to the and uses a locally modified version of the VEGAS routine [38] to perform the
2-dimensional numerical integration. As a test of the reliability of our results, for a given model
point, we calculated the cross section in the NWA for each of the two Higgs bosons with our
code and compared it with the gluon fusion cross section computed using the publicly available
SusHi v1.6.0 [39] multiplied by its di-photon BRs obtained from NMSSMCALC. We found that
the two results agreed within 5% or better in all cases. The various Higgs boson couplings for a
given parameter space point, needed for the calculation of the absorptive parts of the propagator
matrix as well as of the production and decay form-factors in our code, were also obtained from
NMSSMCALC.

Note that our program calculates the total cross section only at the leading order (LO), since
implementing the higher order corrections as included in SusHi is a highly involved task beyond the
scope of this work, which is aimed at comparing the effects of including the full propagator against
the simplest approach of two separate BWs on the total cross section. Since these corrections
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apply only to the production process, they should in fact have exactly the same impact in both
approaches, hence including their effect would simply be tantamount to rescale the cross section
by the corresponding k-factor obtained from a dedicated tool (like SusHi). We therefore used only
the LO cross section given by SusHi for our comparison also.

Finally, we used the CT10 [40] PDF set for gluons in our cross section calculation, with renor-
malisation/factorisation scale set to the hobs mass, i.e., 125 GeV. We have, however, verified that
the gross features of our analysis are independent of the choice of the PDF set as well as of the
fixed numerical inputs for the SM and NMSSM parameters, for which the default NMSSMCALC
values were retained.

5 Results and discussion

In Fig. 2 we show those points obtained from the three scans for which ∆m ≡ mH2 − mH1 is
smaller than one (or both) of the widths, ΓH1 and ΓH2 , of the two lightest Higgs bosons. The
top panel corresponds to the rNMSSM while the bottom panels to the cNMSSM with φκ = 3◦

(left) and φκ = 10◦ (right). We note in the figure that, given the parameter space in Tab. 1,
for the vast majority of points, ΓH1 and ΓH2 tend to lie within 3–4 MeV of each other in the
rNMSSM. For φκ = 3◦, the size of splitting between ΓH1 and ΓH2 can range from very small to
fairly large across the points collected. However, for φκ = 10◦, no points appear along the diagonal
for ΓH1/H2

> 6 MeV in the bottom right frame, as the splitting between these two widths starts
growing beyond this value.

From each of these scans we selected a few BPs to study the cross section for the production of
a di-photon pair with an invariant mass, Mγγ , near 125 GeV via resonant Higgs boson(s) in gluon
fusion at the LHC with

√
s = 14 TeV. More specifically, we studied the distributions, with respect

to the partonic CM energy
√
ŝ (which is the same as Mγγ at LO), of the differential cross section,

calculated such that:
Case 1: the m11 and m22 terms in the propagator matrix, Eq. (19), each contribute alternatively
to two amplitudes, which are squared and then summed, implying two independent Higgs boson
resonances;
Case 2: both m11 and m22 contribute to the amplitude which is then squared, thus allowing for
interference between H1 and H2 but without any mixing effects;
Case 3: besides m11 and m22, the off-diagonal terms iImΠ̂12 and iImΠ̂21 also contribute to the
amplitude before squaring, leading to additional interference effects arising from the mixing of the
two Higgs states.

The distributions obtained for the Cases 1, 2 and 3 (colour-coded in red, green and blue,
respectively) are plotted in Fig. 3 for each of the three selected BPs corresponding to the rNMSSM,
with the integrated cross section for each curve also given in the legend. For these distributions, a
Mγγ bin width of 2 MeV has been used. As noted above, ΓH1 ∼ ΓH2 for most of the points in the
rNMSSM. Therefore, in order to illustrate the dependence of the interference effects on the mass
difference and relative widths of the two Higgs bosons, we selected BP1 such that ∆m ∼ ΓH1/H2

,
BP2 such that ∆m < ΓH1/H2

and BP3 with ∆m � ΓH1/H2
. One sees, going from the top panel

to the bottom right one in the figure, that these effects are always positive and grow larger as ∆m
decreases compared to ΓH1/H2

, as expected. Also, the interference effects due to the mixing terms
in the propagators matrix (Case 3) are notably larger than those due only to the diagonal terms
(Case 2) for each of the three BPs. The deviation in the total cross section with the full propagator
matrix compared to the Case 1 for BP3 at an inclusive level is about 38%, clearly indicating that
the interference effects can be quite sizable. We point out here that although the BP3 represents
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Figure 2: Points obtained from the parameter scans of the rNMSSM (top) and of the cNMSSM
with φκ = 3◦ (bottom left) and with φκ = 10◦ (bottom right). For all the points shown, ∆m (colour
map) is always smaller than ΓH1 (x-axis) and/or ΓH2 (y-axis).

maximal enhancement of these effects among all the points collected in our scans, it is possible
that they can be even slightly larger for certain other parameter combinations in the vicinity of
this BP.3

The values of the input parameters for all the selected BPs can be found in Tab. 2, and the
masses and widths of H1 and H2 as well as the total cross sections corresponding to the three Cases
for each of the BPs are given in Tab. 3.

The enhancement in the interference effects for a larger difference between ∆m and ΓH1 ∼ ΓH2

is further confirmed by the distributions shown in the top panels of Fig. 4 for BP4 and BP5, in the
cNMSSM with φκ = 3◦. For both these BPs, the interference is again positive, as in the rNMSSM.
It is however also possible for the overall interference to be negative in this scenario, as illustrated
by the distribution for BP6 in the bottom left panel of the figure. In fact, this point represents
maximal splitting between ΓH1 and ΓH2 obtained for this scenario, while ∆m is almost equal to
the average of these two. Notice that, while the interference is still positive for Case 2, turning on

3The total integrated cross section for these BPs as well as for the subsequent ones generally lies in the 15–20 fb
range, which is a few factors smaller than the one predicted for the SM Higgs boson [41] or the fiducial one measured
by the ATLAS and CMS collaborations for hobs at

√
s = 13 TeV [42, 43]. However, we point out again that our

calculation corresponds only to the LO in QCD and the inclusion of higher order corrections should enhance the total
cross section consistently for all the three Cases. Here our focus is only on the relative sizes of the cross section for
the three Cases rather than on its absolute values obtained.
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Figure 3: Distribution of the differential cross section as a function of the di-photon invariant mass
(assumed equal to

√
ŝ) for the three benchmark points in the rNMSSM. The red, green and blue

curves correspond to the Cases 1, 2 and 3, respectively, discussed in the text.

BP φκ M0 M1/2 A0 tanβ λ κ Aλ Aκ µeff

1
0◦

1380.9 458.51 −2946.2 4.39 0.6970 0.4594 423.23 −5.271 113.60
2 1598.3 471.51 −2875.0 4.34 0.6907 0.4823 402.53 −17.117 110.86
3 1498.2 379.87 −2822.4 3.91 0.6969 0.4538 385.05 −16.566 117.92

4

3◦

1366.6 426.35 −2694.3 3.92 0.6878 0.4657 361.11 −13.780 112.79
5 1476.6 363.81 −2969.1 4.67 0.6725 0.4304 485.87 −35.335 120.41
6 1400.3 263.79 −2852.2 4.03 0.6967 0.3310 537.25 −4.376 145.93
7 1411.7 290.97 −2501.7 4.83 0.6545 0.3085 655.95 −18.486 146.65

8

10◦

1270.6 176.67 −2218.0 3.96 0.6781 0.4501 538.70 −263.98 168.65
9 1491.9 167.11 −2728.0 5.22 0.6920 0.4599 797.56 −291.36 175.84
10 1378.0 173.35 −2291.7 3.99 0.6877 0.4483 564.66 −266.73 172.87
11 1416.6 170.40 −2741.2 4.45 0.6684 0.3853 687.11 −221.00 177.72
12 1429.0 168.46 −2821.6 4.71 0.6562 0.4303 689.40 −276.65 173.02

Table 2: Values of the input parameters for all the selected BPs. All dimensionful parameters are
in units of GeV.

the mixing terms in the propagator matrix contributes negatively and brings the total cross section
down again, although both these mutually opposite effects are hardly at the percent level for this
particular parameter space point.

For BPs 4–6 above, the H1 and H2 are scalar-like, which is the case for almost all the points
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Figure 4: As in Fig. 3, for the BPs corresponding to the cNMSSM with φκ = 3◦.

BP mH1 mH2 ∆mH ΓH1 ΓH2 σγγpp (fb)
(GeV) (GeV) (MeV) (MeV) (MeV) Case 1 Case 2 Case 3

1 125.3688 125.3782 9.4 10.7 9.7 16.79 17.47 19.93
2 124.9498 124.9562 6.4 10.1 9.1 17.86 19.18 23.08
3 126.1641 126.1667 2.6 10.1 9.3 17.70 19.45 24.44

4 125.3960 125.4052 9.2 9.6 9.5 16.04 16.69 18.72
5 124.6742 124.6757 1.5 9.1 8.4 18.97 19.84 23.76
6 125.9018 125.9095 7.7 11.84 3.83 8.09 8.25 7.95
7 123.4402 123.4410 0.8 2.8 2.3 40.44 41.11 41.58

8 124.9873 124.9968 9.5 10.3 3.0 15.65 16.13 16.30
9 124.9669 124.9742 7.3 10.6 3.0 15.07 15.51 15.77
10 125.1874 125.1924 5.0 10.3 2.9 15.52 16.52 16.87
11 125.1826 125.1828 2.0 10.1 2.6 16.71 17.14 17.41
12 124.7542 124.7604 6.2 10.3 2.7 15.99 15.71 16.34

Table 3: The masses and total widths of H1 and H2 in the selected BPs. Also listed for each BP
is the cross section for the pp→ H → γγ process calculated in the three different ways considered.

obtained in the scan for this scenario. We note here that the singlet-like Higgs boson near
125 GeV is classified as scalar (pseudoscalar)-like if its coupling to the gauge bosons are signifi-
cantly larger(smaller) than those of the singlet-like H3, which itself also lies fairly close in mass.4

4Evidently, both H1 and H2 cannot be singlet-like, since in that case both of them will have highly reduced
couplings to the SM particles and resultantly the di-photon production cross section will be extremely suppressed.
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Figure 5: As in Fig. 3, for the BPs corresponding to the cNMSSM with φκ = 10◦.

While one of the main reasons for considering the cNMSSM was to explore the possibility of inter-
ference of a ∼ 125 GeV pseudoscalar-like Higgs boson with the SM-like one, only a handful of such
points were found by our scan, wherein the widths of the H1 and H2 are always relatively small.
BP7 in the figure illustrates the scenario with a pseudoscalar-like H2, with its total width, as well
as that of the SM-like H1, being smaller than 3 MeV. Still, since ∆m is only 0.8 MeV, as noted in
Tab. 3, the interference affects are appreciable, reaching about 3% for Case 3. Moreover, the total
cross section for each Case for this point is considerably higher than that seen for the other BPs
so far. This can be ascribed to the fact that the H1 is much more SM-like here compared to the
points where the scalar-like H2 gets closer in mass to the H1 owing to large singlet-doublet mixing.

In Fig. 5 we display the distributions for the five BPs selected in the cNMSSM with φκ = 10◦.
As noted from the corresponding scatter plot above, this value of φκ allows for a much larger

Moreover, H3 in such a scenario ought to have SM-like couplings and would therefore be ruled out by the collider
limits tested against using HiggsBounds.
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splitting between ΓH1 and ΓH2 , compared particularly to the rNMSSM. This makes it possible
to test the impact of interference when ∆m, instead of being smaller than both the widths, lies
somewhere in between them. Thus, for each of these points ΓH1 < 3 MeV and ΓH2 > 10 MeV,
with ∆m varying from about 9.5 MeV for BP8 to 2 MeV for BP11. While the behaviour of the
interference is similar to what has been observed earlier, i.e., it grows larger as the gap between
∆m and ΓH2 increases, its overall size remains comparatively small, reaching about 9% for BP10,
for which ∆m is only slightly larger than ΓH1 . However, when ∆m is lowered below ΓH1 also, as in
BP11, the interference effects get reduced instead of continuing to grow. BP12 is another example
of mutually opposite contributions to the interference effects from the diagonal and off-diagonal
elements of the Higgs propagator matrix. In contrast to BP6, here the negative interference comes
from the diagonal elements in the propagator matrix, while the mixing effects contribute positively
to again raise the cross section slightly for Case 3. From both BP6 and BP12, it appears that the
relative sign of interference due to the diagonal and off-diagonal elements can get reversed when
∆m lies within a specific small interval around half way between ΓH1 and ΓH2 , although evidently
this is not always the case.

A closer look at the curves for BP6 and BP10 above reveals very small kinks near mH1 in
addition to tall peaks near mH2 . These kinks result from the large splitting between the ΓH1 and
ΓH2 , coupled with the fact that ∆m, while still being sufficiently smaller than the ΓH2 to cause
notable interference effects, is larger than the bin size of 2 MeV adopted for plotting the distribution.
Thus, for these points not only does the values of the inclusive (i.e., integrated) cross section change
between the respective Cases 1 and 3, but also the shape of the distribution for the exclusive (i.e.,
differential) one. However, a bin width of 2 MeV is about three orders of magnitude smaller than
the current experimentalMγγ resolution of around 1 GeV [44]. Evidently, any differences between
their shapes corresponding to each of the three Cases for a given BP, which could prove crucial
for mutually distinguishing them and hence unraveling the interference effects, would not appear
had a realistic bin width of 1 GeV been used. It is nevertheless interesting to study whether these
differences persist to some extent once the differential distributions are convolved with a Gaussian
distribution emulating detector effects. We performed the convolution using the ListConvolve

function [45] in Mathematica by supplying the differential distribution data for a point as a list, as
well as specifying the mean and width of the Gaussian.

In the top frames of Fig. 6 we display the result of the convolution of the distributions corre-
sponding to Cases 1 and 3 for BP10 with a Gaussian of width (resolution) 1 GeV, which is also
used as the size of the Mγγ bins for first reproducing these distributions with our Monte Carlo
integrator. We use two prospective integrated luminosities at the LHC: 300 fb−1 (left), which is
expected by the end of the machine runs in standard configuration; and 1000 fb−1 (right), foreseen
for the High-Luminosity (HL) LHC option [46].5 It is worth appreciating in the figures that, while
the kinks have expectedly disappeared and the distributions are smoother, there exists some scope
at the LHC to see a difference at the differential level between the simplistic scenario generally
assumed (Case 1) and the one rigorously predicted (Case 3), the more so the higher the luminosity.
This difference is even more pronounced in the bottom panels of the figure, which correspond to
the convolution with a Gaussian of resolution 300 MeV (clearly an unrealistic value at present, yet
potentially within the reach of a detector upgrade). In fact, the histograms referring to these two
predictions could eventually be statistically separable.

The difficulty to separate the Cases 1 and 3 for BP10 (as it would be for all other BPs) with
present machine and detector conditions at the LHC is ultimately related to the enforcement of

5The higher luminosity only serves to reduce the sizes of the error bars in the figure, which refer only to the
statistical error in fact, as we are not able to account for the systematic one.
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Figure 6: Convolution of the distributions 1 and 3 for BP10 with Gaussians of width 1 GeV (top)
and 300 MeV (bottom). An integrated luminosity of 300 fb−1 is assumed in the left panels and of
1000 fb−1 in the right panels.

the ΓH1/H2
< 13 MeV constraint from off-shell Higgs measurements in our selection of the BPs.

We therefore consider a Test Point (TP) 1, where this constraint is dismissed and only the milder
Γhobs < 41 MeV constraint, as obtained from a global fit to the on-shell Higgs boson signal stength
measurements [47], is imposed. This is all the more important in light of the fact that some critiques
have been drawn about the model-independence of such a measurement, see, e.g., [48] and [49],
or its stability against theoretical uncertainties [50].6 The top right frame of Fig. 7 shows the
convoluted distributions 1 and 3 for TP1 with a Gaussian of 1 GeV width, illustrating again the
fact that also in this case there exists some scope in separating the Cases 1 and 3, even for current
di-photon mass resolutions, so long that sufficient luminosity is accrued. The bottom frames of the
figure illustrate that this scope gets further enriched if the mass resolution is improved to 300 MeV.

In fact, one could ignore constraints on the total width altogether in order to estimate the min-
imal mass splitting that could be potentially detectable. While this exercise may appear academic
(i.e., to dismiss a crucial experimental constraint), it is worth noting that the current procedures
adopted to extract the Higgs boson properties inevitably work with the underlying assumption that
only one resonance is produced around 125 GeV. This implies that the allowed intrinsic widths of
a pairs of degenerate Higgs states need not relate directly to the currently fitted value.

In Figs. 8 and 9 we thus display the distributions of Cases 1 and 3 for two more TPs, 2 and 3,
respectively, convolved, again, with Gaussians of 1 GeV and 300 MeV widths for two prospective
integrated luminosities. In both these TPs, the H1 is very wide, O(100) MeV, while ΓH2 is a few

6Recall also that the mentioned experimental measurement of the (off-shell) SM-like Higgs width suffers from a
small signal yield and large backgrounds.
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Figure 7: Top: The differential distributions for TP1 without convolution (left) and after convo-
lution with a Gaussian of width 1 GeV for an integrated luminosity of 300 fb−1 (right). Bottom:
TP1 distributions after convolution with a Gaussian of width 300 MeV for an integrated luminosity
of 300 fb−1 (left) and 1000 fb−1 (right).

TP mH1 mH2 ∆mH ΓH1 ΓH2 σγγpp (fb)
(GeV) (GeV) (MeV) (MeV) (MeV) Case 1 Case 2 Case 3

1 124.7928 124.8158 2.3 10.8 38.3 1.54 1.59 1.65
2 123.8696 124.1991 329.5 400.2 73.5 0.118 0.128 0.153

3 123.4590 123.7876 328.6 704.9 39.2 0.362 0.485 0.527

Table 4: Higgs boson masses and widths as well as the pp→ H → γγ cross sections corresponding
to the three Cases for the three selected TPs.

10s of MeVs, as seen in Tab. 4.7 But since ΓH1 − ∆m is only about 70 MeV for TP2, while it is
larger than half of ΓH1 for TP3, the interference effects are highly enhanced for the latter (about
46%) compared to the former (∼ 30%). These figures more effectively bring home the point that
a very large ΓH1 (as noticeable in the top-left frames) does not impact significantly the quality of
the fit to what, in the end, looks like a single object shape (as visible in the other three frames).
Though, clearly, the difference between the Cases 1 and 3 is much more pronounced here than for
TP1 (and all the BPs). This difference may well be established experimentally within the next few
years, more likely so the wider (one of) the Higgs states.

7The input parameters for the three TPs are provided in Tab. 5.
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Figure 8: As in Fig. 7, for the TP2.

TP3 (ϕκ = 10°)

Bin size: 50 MeV

Case 1: 0.362 fb

Case 2: 0.485 fb

Case 3: 0.527 fb
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Figure 9: As in Fig. 7, for the TP3.
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TP φκ M0 M1/2 A0 tanβ λ κ Aλ Aκ µeff

1
3◦

1438.0 255.53 −2859.2 4.80 0.6935 0.3287 653.21 −6.399 145.77
2 1405.7 154.63 −2706.5 5.63 0.6861 0.4602 546.59 1.555 108.58

3 10◦ 1895.2 115.14 −835.20 1.76 0.6524 0.5752 74.865 −120.70 105.95

Table 5: Values of the input parameters for the three TPs considered. All dimensionful parameters
are in units of GeV.

6 Conclusions

In summary, we have scrutinised in detail the proton-proton to di-photon process, through which
a 125 GeV resonance consistent with the SM Higgs boson has been discovered at the LHC. Indeed,
this is the signature for which the Higgs mass resolution is highest amongst all those accessible
at the CERN collider. Measurements of its cross section, at both the inclusive and exclusive
level, however, do not exclude the possibility of non-SM explanations. Amongst these, particularly
intriguing are those invoking two Higgs bosons produced via gluon fusion, with such a small mass
difference that they cannot be resolved by the experimental apparata. This scenario can emerge
only in non-minimal realisations of SUSY, such as the NMSSM, wherein (unlike the MSSM) two
coexisting Higgs bosons can contribute to the 125 GeV signal (in γγ as well as other final states).
In this case, an accurate treatment is required of the propagation of the two states, which not
only goes beyond the NWA but also allows for full interference between these. Hence, we have
studied the quantitative impact of interference between two Higgs states near 125 GeV, with and
without mixing effects, relative to the simplistic approach where the two resonant objects are
treated independently of each other. For a full treatment, including the possibility of complex
couplings as well, we have considered both real and complex NMSSM.

Our analysis involved scanning of the parameter space of the model for finding possible solutions
consistent not only with the LHC exclusion limits on the additional Higgs bosons but also with the
constraints from EDM measurements. These scans further collected only model solutions yielding
two Higgs bosons with masses lying within the uncertainty of the measurements of the 125 GeV
resonance. This was followed by a dedicated computation, performed with the help of a locally
developed Monte Carlo program, producing both integrated and differential cross sections for the
full process pp(gg) → H1, H2 → γγ. We have found that the aforementioned interference effects
can be sizable, with some of the selected BPs providing a difference of around 40% in inclusive rates
between the standard approach consisting in treating the two resonances as separate BW functions
and the full propagator one including all non-trivial quantum effects.

We then considered the possibility of a shape analysis of the emerging profile, which could
reveal the presence of multiple resonances, assuming realistic, current and prospective, di-photon
mass resolutions of the LHC detectors. This revealed some potential to see the difference between
the generally exploited simplistic case of assuming two separate resonances and the one where the
two nearly mass-degenerate states interfere due to the inclusion of the complete propagator matrix
in the amplitude calculation. These differences are more visible with a smaller di-photon mass
resolution and a larger data sample. Finally, in attempting to distinguish the two approaches, we
have also noted a tension in the underlying dynamics. Any distorsion effect of a single BW shape
can only be exploited when the mass difference is sufficiently larger than the assumed width of
the bins (which should naturally be consistent with the available experimental mass resolution) in
the distribution of the differential cross section. However, a larger mass difference leads to smaller
interference effects.
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A Appendix

The absorptive part of the Higgs propagator matrix can be written as

ImΠ̂ij(s) = ImΠ̂
ff
ij (s) + ImΠ̂

V V
ij (s) + ImΠ̂

HV
ij (s) + ImΠ̂

HH
ij (s) + ImΠ̂

f̃ f̃
ij (s) . (A.1)

We reproduce here the expressions for the individual contributions from [14], where those to vector
bosons as well as associated Higgs and vector boson pairs were derived using the Pinch Tech-
nique [51, 52], which ensures their linear dependence on s. These two contributions are given
as

ImΠ̂
V V
ij (s) =

g2gHiV V gHjV V δV βV

128πm2
W
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2s− 3m2

V
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)
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Him

2
Hj

}
Θ
(
s− 4m2

V

)
, (A.2)

with βV =
√

1− 4κV and δW = 2, δZ = 1, and

ImΠ̂
HV
ij (s) =
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The contribution from loops of Higgs boson pairs reads

ImΠ̂
HH
ij (s) =

v2

16π

∑

k≥l=1−5

Sij;kl
1 + δkl

gHiHkHlgHjHkHl λ
1/2
(

1, κHk , κHl

)
Θ
(
s− (mHk +mHHl

)2
)
,

(A.4)
where the symmetry factor Sij;kl is equal to 2 for i = j and k 6= l, or i 6= j and k = l, to 4 for i = j
and k = l, and to 1 otherwise.

Finally, the loops of fermions (omitting the QCD K-factors) and sfermions give

ImΠ̂
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where gf =
gmf
2mW

, ∆ff ′ = δff ′ (f, f ′ = t, b, c, s, τ, µ), 4
1+δff ′

(f, f ′ = χ̃0
1,2,3,4,5), 1 (f, f ′ = χ̃+

1,2),

λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx) and κx = m2
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