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REPRODUCTIVE SUCCESS IN ANTARCTIC MARINE INVERTEBRATES 
By Laura Joanne Grange 

 
The nearshore Antarctic marine environment is unique, characterised by low but constant 
temperatures that contrast with an intense peak in productivity. As a result of this 
stenothermal environment, energy input has a profound ecological effect. These conditions 
have developed over several millions of years and have resulted in an animal physiology that 
is highly stenothermal and sometimes closely coupled with the seasonal food supply, e.g. 
reproductive periodicity and food storage. Therefore, Antarctic marine animals are likely to 
be amongst the most vulnerable species worldwide to environmental modifications and can 
be regarded as highly sensitive barometers for change. Reproductive success is a vital 
characteristic in species survival and evaluation of change in reproductive condition with 
time key to identifying vulnerable taxa. Characterising reproductive success with time is a 
major requirement in predicting species response to change and the early stages of species 
loss. 
 

Some invertebrates are highly abundant in shallow water sites around the Antarctic 
and form conspicuous members of the Antarctic benthos. Three common echinoderms and 
one nemertean were sampled from sites adjacent to the British Antarctic Survey’s Rothera 
Research Station, Adelaide Island, on the West Antarctic Peninsula between 1997-2001. 
Reproductive patterns were determined by histological analyses of gonad tissue.  

 
This study provided further evidence for inter-annual variation in Antarctic 

gametogenic development, which appeared to be driven to some extent by trophic position 
and reliance on the seasonal phytoplankton bloom. The largest variation in reproductive 
condition was demonstrated for the detritivorous brittle star, Ophionotus victoriae. The 
seasonal tempos of this echinoderm have been attributed in part, to the seasonal 
sedimentation events common in the high Antarctic. The reproductive patterns in the 
scavenging starfish, Odontaster validus and the predatory nemertean, Parborlasia 
corrugatus showed less inter-annual variation. The de-coupling of these invertebrates from 
the intensely seasonal phytoplankton bloom appeared to partially account for the 
reproductive trends observed. The lack of inter-annual variation in the reproduction of the 
filter-feeding sea-cucumber, Heterocucumis steineni, was somewhat counterintuitive, 
although problems with sample processing probably accounted for the majority of this 
anomaly. 

 
Echinoderms were also collected during the Antarctic summer field seasons in 2003 

and 2004. A series of fertilisation success studies were undertaken comparing the adaptations 
in an Antarctic and an equivalent temperate starfish to achieve optimal numbers of fertilised 
eggs, and elemental analyses were used to estimate the nutritional and energetic condition of 
the bodily and reproductive tissues in two Antarctic echinoderms.     

 
Fertilisation studies indicated that Antarctic invertebrates require 1-2 orders of 

magnitude more sperm to ensure optimal fertilisation success. These sperm tended to be 
long-lived and capable of fertilising eggs 24+ hours after release. The study suggested that 
synchronous spawning, aggregations and specific pre-spawning behaviour are employed to 
help counter the deleterious effects of sperm limitation. The Antarctic eggs and sperm were 
also highly sensitive to even small modifications in temperature and salinity, affecting the 



number of eggs fertilised. Such stenothermy is of particular relevance if the 1-2ºC rise in 
global temperature, predicted over the next century, is realised. 

 
Biochemical composition of body components of two species of Antarctic 

echinoderm indicated a significant difference in the composition between the male and 
female gonad, particularly in the Antarctic brittle star Ophionotus victoriae. The ovaries 
contained a much larger proportion of lipid compared to the testes, and demonstrated a 
distinct seasonality in composition. Higher levels of lipid were observed in the ovary during 
the austral winter coincident with a period of reproductive investment and maturing oocytes 
in the gonad. O. victoriae exhibited lower amounts of lipid in the late austral spring 
suggesting the removal of mature oocytes from the ovary through spawning. The seasonality 
in composition and the high levels of lipid and protein measured in the ophiuroid gut tissue, 
suggested the gut might play a role in providing material and energy for metabolic function 
and possibly gametogenesis; higher lipid levels were apparent during the period of seasonal 
phytodetrital flux. The role of the pyloric ceaca in asteroids as a nutrient storage organ was 
also evident in the high levels of both protein and lipid observed in this bodily component in 
the star fish, Odontaster validus.   
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Figures 

 

Chapter 1. Introduction 

  

Fig. 1.1.1 Adapted from Clarke and Johnston (2003). Map of the Southern Ocean 

showing the mean position of the Polar Front (the Antarctic Convergence) and broad 

scale bathymetry around the Antarctic continent. Regions of East and West 

Antarctica and the Antarctic Peninsula are also indicated, including the South 

Orkney Islands. 

 

Chapter 2. Long-term Reproductive Cycles 

 

Fig. 2.2.1 The British Antarctic Survey Rothera Research Station and shallow water 

sampling sites. 

 

Fig. 2.2.2 The brittle star Ophionotus victoriae (A), the starfish Odontaster validus 

(B), the nemertean Parborlasia corrugatus (C) and the sea cucumber Heterocucumis 

steineni (D) respectively. 

 

Fig. 2.2.3 The location of the Rothera sediment trap off Trolval Island and the CTD 

sampling site in Ryder Bay. 

 

Fig. 2.2.4 Ophionotus victoriae. Disc diameter measurements showing the aboral and 

oral view (A), and male (B) and female (C) dissections identifying the gut and gonad 

tissue. 

 

Fig. 2.2.5 Odontaster validus. Variation in body size caused by internal water 

content (A), measurements of radial length (R) and body radius (r) using an aboral 

and oral view (B) and a dissected individual describing the position and appearance 

of the gonad and pyloric caeca (C).  

 



Fig. 2.2.6 Parborlasia corrugatus. Retracted length (mm) is measured and the 

everted proboscis labelled (A). A 5mm cross-section of the nemertean is labelled to 

identify regions of the gonad (B).   

 

Fig. 2.2.7 Heterocucumis steineni. Animal length (mm) is measured (A) and an 

individual dissected to illustrate the position of the gonad (B). The gut and cloaca are 

also labelled.   

 

Fig. 2.2.8 Ophionotus victoriae. Female (A) and male (B) histological sections 

identifying progressive stages in gametogenic development. PO = previtellogenic 

oocyte, VO = vitellogenic oocyte, N = nucleus, BP = by-products, SC = 

spermatocytes, SG = spermatogonia and SZ = spermatozoa. 

 

Fig. 2.2.9 Odontaster validus. Female (A) and male (B) histological sections 

identifying progressive stages in gametogenic development. PO = previtellogenic 

oocyte, VO = vitellogenic oocyte, SC = spermatocytes, SG = spermatogonia and SZ 

= spermatozoa. 

 

Fig. 2.2.10 Heterocucumis steineni. Female (A) and male (B) histological sections 

identifying progressive stages in gametogenic development. OG = oogonia, PO = 

previtellogenic oocyte, VO = vitellogenic oocyte, SG = spermatogonia and SZ = 

spermatozoa. 

 

Fig. 2.2.11 Parborlasia corrugatus. Female (A) and male (B) histological sections 

identifying progressive stages in gametogenic development. PO = previtellogenic 

oocyte, VO = vitellogenic oocyte, SC = spermatocytes, SG = spermatogonia and SZ 

= spermatozoa. 
 

Fig. 2.3.1 Rothera Time Series Water Sampling Programme (RaTS) environmental 

data (1997-2001). Julian Day scale beginning from 1 = 1 January 1997. Data 

provided by A. Clarke. 

 

Fig. 2.3.2 Ophionotus victoriae. Individual male (●) and female (○) disc diameter 

values for animals sampled on a monthly basis between September 1997 and 



December 2000. The larger range in disc diameter was recorded for female 

Ophionotus victoriae with a minimum disc diameter of 11.2mm and a maximum of 

38.1mm (mean = 27.0, SD = 3.67, n = 169). Male disc diameter ranged from 17.6mm 

to a maximum of 34.9mm (mean = 26.05, SD = 3.47, n = 208). 

 

Fig. 2.3.3 Ophionotus victoriae. Fecundity data for females sampled between 1997 

and 2000. Egg number per gonad (●), average egg number per individual (○) and 

average egg number per year (▲). 

 

Fig. 2.3.4 Ophionotus victoriae. Correlation between individual actual fecundity and 

individual disc diameter (+0.01mm). A linear regression was used and the variables 

were significantly correlated  (r2 = 0.725, P < 0.05). 

 

Fig. 2.3.5 Ophionotus victoriae. Annual fecundity data calculated per millimetre disc 

diameter for a standard female (27mm disc diameter). The overall mean fecundity 

(●) is plotted and the error bars represent + SD (N = 3). 

 

Fig. 2.3.6 Ophionotus victoriae. Individual male (●) and female (○) gonad index 

values for animals sampled on a monthly basis between September 1997 and 

December 2000. 

 

Fig. 2.3.7 Ophionotus victoriae. Mean oocyte feret diameter (○) sampled on a 

monthly basis between September 1997 and December 2000. The overall mean 

oocyte size is plotted and the error bars represent + SD. Average male maturity stage 

is plotted (●) and male maturity stage V is plotted as zero to convey the testes as 

being spent. 

 

Fig. 2.3.8 Ophionotus victoriae. Pooled oocyte feret diameter histograms (+ SD), 

where N = number of females, n = number of eggs counted (1997-2000) and monthly 

box plots covering the oocyte feret diameter range (the left and right hand limits of 

the box represent the 25th and 75th percentiles; box whiskers represent the 10th and 

90th percentiles; the median (-) and mean (-) of each oocyte range is also shown). 

 



Fig. 2.3.9 Ophionotus victoriae. Monthly gut index values for October 1997 to 

December 2000. The overall mean gut index is plotted (●) and the error bars 

represent + SD (N = 10). 

 

Fig. 2.3.10 Odontaster validus. Individual male (●), female (○) and hermaphrodite 

(▲) wet weight values (+0.01g) sampled on a monthly basis between July 1997 and 

January 2001. Female wet weight ranged between 6.37g and 37.83g (mean = 15.64g, 

SD = 5.54, n = 182) and male wet weight ranged between 5.92g and 34.70g (mean = 

16.19g, SD = 5.41, n = 222). 

 

Fig. 2.3.11 Odontaster validus. Individual male (●), female (○) and hermaphrodite 

(▲) radial length values (R +0.01mm) sampled on a monthly basis between July 

1997 and January 2001. 

 

Fig. 2.3.12 Odontaster validus. Individual male (●), female (○) and hermaphrodite 

(▲) body radius values (r +0.01mm) sampled on a monthly basis between July 1997 

and January 2001. 

 

Fig. 2.3.13 Odontaster validus. Non-liner (cubic) regression between radial length 

(●) and body radius (○) (+0.01mm) with wet weight (+0.01g) (R = 0.589 and 0.619 

respectively, P < 0.0001) and linear regression between body radius and radial 

length. (R = 0.711, P < 0.0001). 

 

Fig. 2.3.14 Odontaster validus. Individual male (●), female (○) and hermaphrodite 

(▲) gonad index values sampled on a monthly basis between July 1997 and January 

2001. 

 

Fig. 2.3.15 Odontaster validus. Individual male (●), female (○) and hermaphrodite 

(▲) pyloric caeca index values sampled on a monthly basis between July 1997 and 

January 2001. 

 

Fig. 2.3.16 Odontaster validus. Mean oocyte feret diameter (○) sampled on a 

monthly basis between July 1997 and January 2001. The overall mean oocyte size is 



plotted and the error bars represent + SD. Average male maturity stage is plotted (●) 

and male maturity stage VI is plotted as zero to convey the testes as being spent. 

 

Fig. 2.3.17 Odontaster validus. Pooled oocyte feret diameter histograms (+ SD), 

where N = number of females, n = number of eggs counted (1997-2001) and monthly 

box plots covering the oocyte feret diameter range (the left and right hand limits of 

the box represent the 25th and 75th percentiles; box whiskers represent the 10th and 

90th percentiles; the median (-) and mean (-) of each oocyte range is also shown).  

 

Fig. 2.3.18 Parborlasia corrugatus. Individual male (●) and female (○) retracted 

length values (+0.01mm) sampled on a monthly basis between July 1997 and 

November 2000. Female size varied from 157 to 540mm retracted length (mean = 

310mm, SD = 66.46, n = 193) compared to 150 to 550mm recorded for males (mean 

= 308mm, SD = 70.22, n = 274).  

 

Fig. 2.3.19 Parborlasia corrugatus. Individual male (●) and female (○) wet weight 

values (+0.01g) sampled on a monthly basis between July 1997 and November 2000. 

 

Fig. 2.3.20 Parborlasia corrugatus. Mean oocyte feret diameter (○) sampled on a 

monthly basis between July 1997 and November 2000. The overall mean oocyte size 

is plotted and the error bars represent + SD. Only the negative tail of each error bar is 

plotted so overlap between data points is minimised. Average male maturity stage is 

plotted (●) and male maturity stage VI is plotted as zero to convey the testes as being 

spent. 

 

Fig. 2.3.21 Parborlasia corrugatus. Pooled oocyte feret diameter histograms (+ SD), 

where N = number of females, n = number of eggs counted (1997-2000) and monthly 

box plots covering the oocyte feret diameter range (the left and right hand limits of 

the box represent the 25th and 75th percentiles; box whiskers represent the 10th and 

90th percentiles; the median (-) and mean (-) of each oocyte range is also shown). 

 

Fig. 2.3.22 Heterocucumis steineni. Individual male (●) and female (○) length values 

(+0.01mm) sampled on a monthly basis between September 1997 and January 2001. 

Female length ranged between 45.0mm and 196.0mm (mean = 87.6mm, SD = 23.9, 



n = 194) and male length ranged between 43.2mm and 164.6mm (mean = 91.8, SD = 

22.8, n = 227). 

 

Fig. 2.3.23 Heterocucumis steineni. Individual male (●) and female (○) wet weight 

values (+0.01g) sampled on a monthly basis between July 1997 and January 2001. 

Female wet weight ranged from 18.9g to 171.9g (mean = 61.9g, SD = 24.2, n = 194) 

and males between 20.9g and 171.6g (mean = 67.4g, SD = 25.2, n = 227). 

 

Fig. 2.3.24 Heterocucumis steineni. Individual male (●) and female (○) gonad index 

values sampled on a monthly basis between July 1997 and January 2001. 

 

Fig. 2.3.25 Heterocucumis steineni. Mean oocyte feret diameter (○) sampled on a 

monthly basis between July 1997 and January 2001. The overall mean oocyte size is 

plotted and the error bars represent + SD. Average male maturity stage is plotted (●) 

and male maturity stage V is plotted as zero to convey the testes as being spent.  

 

Fig. 2.3.26 Heterocucumis steineni. Pooled oocyte feret diameter histograms (+ SD), 

where N = number of females, n = number of eggs counted (1997-2001) and monthly 

box plots covering the oocyte feret diameter range (the left and right hand limits of 

the box represent the 25th and 75th percentiles; box whiskers represent the 10th and 

90th percentiles; the median (-) and mean (-) of each oocyte range is also shown). 

 

Fig. 2.4.1 Larval abundance for asteroids (gastrulae/bipinnaria) during 2001-2002 

from shallow water sites adjacent to Rothera Research Station, Adelaide Island, West 

Antarctic Peninsula (D Bowden, pers. comm.).  

 

Fig. 2.4.2 Larval abundance for nemerteans (pilidia) during 2001-2002 from shallow 

water sites adjacent to Rothera Research Station, Adelaide Island, West Antarctic 

Peninsula (D Bowden, pers. comm.). 

 

Chapter 3. Fertilisation Kinetics 

 
Fig. 3.2.1 Marthasterias glacialis. Starfish sampling site at Knap Shoal (-), Plymouth 

Sound, UK (50°19.57S 4°09.55W). 



Fig. 3.2.2 Marthasterias glacialis. A collection of average sized individuals (A) and 

the NOC flow through seawater aquarium (B). 

 

Fig. 3.2.3 Odontaster validus. A photograph of a natural assemblage of O. validus 

(A) and the Bonner Laboratory Aquarium Facility (B) housed at the BAS Rothera 

Research Station. 

 
Fig. 3.2.4 A typical aquarium set-up, consisting of an electronic balance and 6 small 

aquaria used to house individual starfish. 

 
Fig. 3.2.5 Marthasterias glacialis and Odontaster validus. Typical signs of male and 

female spawning. (A = M. glacialis male, B = M. glacialis female, C = O. validus 

male and D = O.validus female). 

 
Fig. 3.2.6 A typical temperature trial experimental set-up, consisting of two 

aluminium thermogradient blocks and two Haake thermocirculators including a 

cooler unit. 

 
Fig. 3.2.7 An example of a 20ml Nitex mesh strainer used to separate sperm and 

eggs after specified contact times.  

 
Fig. 3.2.8 Fertilisation was scored by the absence (A) or presence of a fertilisation 

membrane (B), and normal cell cleavages (C and D). Polyspermy was also recorded 

and regarded as abnormal (E). 

 
Fig. 3.2.9 Laternula elliptica (A and B) and Parborlasia corrugatus (C and D). 

Individuals were weighed wet, measured and concentrated sperm was removed by 

strip spawning. L = length (+0.01mm), W = width (+0.01mm) and H = height 

(+0.01mm). 

 
Fig. 3.2.10 The Peltier Cold Stage (A) and a typical experimental set-up (B) used to 

quantify sperm swimming speed. 

 
Fig. 3.3.1 Marthasterias glacialis. The effect of sperm dilution on fertilisation 

success. This experiment was repeated on three separate occasions using one male 

and one female starfish. A different male-female paring was used during each trial. 



Data are presented as overall means + SD of three replicate egg counts. Data are 

based on normal, abnormal and unfertilised egg counts. Only the normal and 

abnormal fertilisation data are plotted. Temperature was maintained at 12˚C + 0.5˚C. 

 

Fig. 3.3.2 Odontaster validus. The effect of sperm dilution on fertilisation success. 

This experiment was repeated on three separate occasions using one male and one 

female starfish. A different male-female paring was used during each trial. Data are 

presented as overall means + SD of three replicate egg counts. Data are based on 

normal, abnormal and unfertilised egg counts. Only the normal and abnormal 

fertilisation data are plotted. Temperature was maintained at 0.5˚C + 0.5˚C. 

 
Fig. 3.3.3 Marthasterias glacialis. The effect of temperature on fertilisation success. 

The plot represents the fertilisation success between a single male and female. Data 

are presented as overall means + SD of three replicate egg counts. Data are based on 

normal fertilisation and unfertilised egg counts, although the unfertilised egg counts 

are not plotted. No abnormal fertilisation was observed. 

 
Fig. 3.3.4 Odontaster validus. The effect of temperature on fertilisation success. This 

experiment was repeated on three separate occasions using one male and one female 

starfish. A different male-female paring was used during each trial. The first trial was 

only undertaken between –1ºC and 8ºC. Future trials were extended to 13ºC. Data are 

presented as overall means + SD of three replicate egg counts. Data are based on 

normal, abnormal and unfertilised egg counts, although the unfertilised egg counts 

are not plotted. 

 
Fig. 3.3.5 Marthasterias glacialis. The effect of salinity on fertilisation success. This 

experiment was repeated on two separate occasions using one male and one female 

starfish. A different male-female paring was used during each trial. Data are 

presented as overall means + SD of three replicate egg counts. Data are based on 

normal, abnormal and unfertilised egg counts, although the unfertilised egg counts 

are not plotted. No abnormal fertilisation was apparent in the first trial. Temperature 

was maintained at 12˚C + 0.5˚C. 

 
Fig. 3.3.6 Odontaster validus. The effect of salinity on fertilisation success. This 

experiment was repeated on three separate occasions using one male and one female 



starfish. A different male-female paring was used during each trial. Data are 

presented as overall means + SD of three replicate egg counts. Data are based on 

normal and unfertilised egg counts. No abnormal fertilisation was observed. 

Temperature was maintained at 0.5˚C + 0.5˚C. 

 

Fig. 3.3.7 Marthasterias glacialis. The effect of gamete age on fertilisation success. 

This experiment was repeated on three separate occasions using one male and one 

female starfish. A different male-female paring was used during each trial. Data are 

presented as overall means + SD of three replicate egg counts. Data are based on 

normal, abnormal and unfertilised egg counts, although the unfertilised egg counts 

are not plotted. No abnormal fertilisation was apparent in the first trial. Temperature 

was maintained at 12˚C + 0.5˚C. 

 
Fig. 3.3.8 Odontaster validus. The effect of gamete age on fertilisation success. This 

experiment was repeated on three separate occasions using one male and one female 

starfish. A different male-female paring was used during each trial. Data are 

presented as overall means + SD of three replicate egg counts. Data are based on 

normal, abnormal and unfertilised egg counts, although the unfertilised egg counts 

are not plotted. No abnormal development was apparent in the first two trials. 

Temperature maintained at 0.5˚C + 0.5˚C. 

 
Fig 3.3.9 Marthasterias glacialis. The effect of egg and sperm contact time on 

fertilisation success. This plot represents the fertilisation success between a single 

male and female. Data are presented as overall means of three replicate egg counts + 

SD. Data are based on normal fertilisation and unfertilised egg counts. No abnormal 

fertilisation was observed. Temperature was maintained at 12˚C + 0.5˚C. 

 
Fig. 3.3.10 Odontaster validus. The effect of egg and sperm contact time on 

fertilisation success. This experiment was repeated on two separate occasions using 

one male and one female starfish. A different male-female paring was used during 

each trial. Data are presented as overall means + SD of three replicate egg counts. 

Data are based on normal fertilisation and unfertilised egg counts, although the 

unfertilised egg counts are not plotted. No abnormal fertilisation was observed. 

Temperature was maintained at 0.5˚C + 0.5˚C. 

 



Fig. 3.3.11 Marthasterias glacialis. The effect of seawater viscosity on fertilisation 

success. This plot represents the fertilisation success between a single male and 

female. Data are presented as overall means + SD of three replicate egg counts. Data 

are based on normal, abnormal and unfertilised egg counts, although the unfertilised 

egg counts are not plotted. Temperature was maintained at 12˚C + 0.5˚C. 

 

Fig. 3.3.12 Odontaster validus. The effect of seawater viscosity on fertilisation 

success. Data are presented as overall means + SD from three replicate egg counts. 

Data are based on normal, abnormal and unfertilised egg counts, although the 

unfertilised egg counts are not plotted. Temperature was maintained at 0.5˚C + 

0.5˚C. 

 
Fig. 3.3.13 Laternula elliptica. The effect of seawater viscosity on fertilisation 

success. This plot represents the fertilisation success between a single male and 

female. Data are presented as overall means + SD of three replicate egg counts. Data 

are based on normal fertilisation and unfertilised egg counts, although the 

unfertilised egg counts are not plotted. No abnormal fertilisation was observed. 

Temperature was maintained at 0.5˚C + 0.5˚C. 

 
Fig. 3.3.14 Odontaster validus. The effect of egg jelly coat removal on fertilisation 

success. This plot represents the fertilisation success between a single male and 

female. Data are presented as overall means + SD of three replicate egg counts. Data 

are based on normal fertilisation and unfertilised egg counts, although the 

unfertilised egg counts are not plotted. No abnormal fertilisation was observed. 

Temperature was maintained at 0.5˚C + 0.5˚C. 

 
Fig.3.3.15 Odontaster validus. The relationship between female fecundity and 

animal size (Weight, R and r). Data are presented as egg counts per female (mean = 

4.48E+05 eggs, SD = 2.07E+05, n = 8). 

 
Fig. 3.3.16 Laternula elliptica and Parborlasia corrugatus. The effect of temperature 

and viscosity on sperm swimming speed. A single individual was used for each trial 

and the data are presented as overall means in swimming speed + SD of three 

replicate sperm. The experimental temperature was maintained at 0.5˚C + 0.5˚C 

when seawater viscosity was varied. 



Chapter 4. Tissue Composition and Condition 

 
Fig. 4.1.1 Ophionotus victoriae and Odontaster validus. The timing of the spawning 

period in two Antarctic echinoderms and the summer phytoplankton bloom. 

 

Fig. 4.2.1 Example trace of a standard carbon calibration curve. 

 

Fig. 4.2.2 Example chromatogram trace of a sample blank (empty tin capsule). 

 

Fig. 4.2.3 An example chromatogram trace of a standard sample run. 

 

Fig. 4.2.4 An example of a raw data plot to identify sample outliers. Plot shows the 

%dry mass of carbon in bodily tissue samples of Ophionotus victoriae. Samples were 

ran in duplicate and the range in %carbon between each replicate plotted to identify 

any outliers. A triplicate sample was ran where large differences were noted between 

replicate samples. 

 

Fig. 4.2.5 Histogram to show the range in %dry mass of carbon between duplicate 

samples of bodily tissues in Ophionotus victoriae. Sample outliers are identified by 

→ and indicate the lower frequency of samples, where the difference in %dry mass 

of carbon between replicates was large. These samples were processed in triplicate. 

 

Fig. 4.3.1 Odontaster validus. Biochemical and proximate composition of pyloric 

caeca and gonad tissue collected on a monthly basis between December 2003 and 

March 2004. Data are plotted as box plots. The boundary of the box closest to zero 

indicates the 25th percentile, the black and grey line within the box marks the median 

and mean respectively, and the boundary of the box farthest from zero indicates the 

75th percentile. Whiskers (error bars) above and below the box indicate the 90th and 

10th percentiles.  

 
Fig. 4.3.2 Odontaster validus. Biochemical and proximate composition of male 

pyloric caeca and gonad tissue collected on a monthly basis between December 2003 

and March 2004. Data are plotted as an overall mean + SD. 

 



Fig. 4.3.3 Odontaster validus. Biochemical and proximate composition of female 

pyloric caeca and gonad tissue collected on a monthly basis between December 2003 

and March 2004. Data are plotted as an overall mean + SD. 

 
Fig. 4.3.4 Ophionotus victoriae. Biochemical and proximate composition of bodily, 

gut and gonad tissues collected on a monthly basis between February 2003 and 

March 2004. Data are plotted as box plots. The boundary of the box closest to zero 

indicates the 25th percentile, the black and grey line within the box marks the median 

and mean respectively, and the boundary of the box farthest from zero indicates the 

75th percentile. Whiskers (error bars) above and below the box indicate the 90th and 

10th percentiles. 

 

Fig. 4.3.5 Ophionotus victoriae. Biochemical and proximate composition of male 

bodily, gut and gonad tissues collected on a monthly basis between February 2003 

and March 2004. Data are plotted as an overall mean + SD. 

 

Fig. 4.3.6 Ophionotus victoriae. Biochemical and proximate composition of female 

bodily, gut and gonad tissues collected on a monthly basis between February 2003 

and March 2004. Data are plotted as an overall mean + SD. 

 

Fig. 4.3.7 Odontaster validus. Mineral ash content (% dry mass) of echinoderm body 

tissues versus temperature to illustrate the variation in %ash calculated using 

different ashing temperatures. 

 

Appendix 

 

Fig. 1 Ophionotus victoriae. Individual oocyte feret diameter histograms, where 

month sampled and the number individual are indicated (e.g. Sep 01 = Individual 

number 1 sampled in September), and n = number of eggs counted (1997-2001). 

 

Fig. 2 Odontaster validus. Individual oocyte feret diameter histograms, where month 

sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 

sampled in September), and n = number of eggs counted (1997-2001). 

 



Fig. 3 Parborlasia corrugatus. Individual oocyte feret diameter histograms, where 

month sampled and the number individual are indicated (e.g. Sep 01 = Individual 

number 1 sampled in September), and n = number of eggs counted (1997-2001). 

 

Fig. 4 Heterocucumis steineni. Individual oocyte feret diameter histograms, where 

month sampled and the number individual are indicated (e.g. Sep 01 = Individual 

number 1 sampled in September), and n = number of eggs counted (1997-2001). 



Tables 

 

Chapter 2. Long-term Reproductive Cycles 

 

Table. 2.1.1 Modified from Galley (2004). Reproductive periodicity and egg size in 

Antarctic shallow-water invertebrates. Length of oogenesis is referred to as Cycle; 

modes of development are listed as either AL = abbreviated lecithotrophy; B = 

brooding; L = lecithotrophic; P = planktotrophic. Periodicities are listed as either: A 

= aseasonal; S = seasonal. 

 

Table. 2.2.1 The monthly sampling regime for each invertebrate collected. 

 

Table. 2.3.1 Ophionotus victoriae. Sex ratio of males and females collected between 

1997 and the end of 2000 using a Chi Square statistical test. 

 

Table. 2.3.2 Ophionotus victoriae. Comparisons in actual fecundity and overall 

gonad index between individual years (1997-2001). The variation in fecundity and 

gonad index of individual ophiuroids was tested between years. A 2-sample T-test or 

a non-parametric Mann Whitney test was used depending on if the data were 

normally distributed (Appendix Table. 2). A significant difference was indicated by a 

P < 0.05. A test for equal variance was also undertaken taken when a 2-sample T-test 

was employed and the results included in the assumptions of the test (Appendix 

Table. 3).  

 

Table. 2.3.3 Ophionotus victoriae. Reproductive output is presented as the number 

of spawned eggs in individual years (1997 to 2001), calculated from the percentage 

decrease in female gonad index each year and average egg number produced each 

year by gravid females (egg counts were averaged from 3 females, and the number of 

eggs quantified from three ovaries in each female). 

 

Table. 2.3.4 Correlations between reproductive (average gonad index and average 

oocyte size) and environmental variables (chlorophyll, phaeophytin and temperature) 

between 1997 and the end of 2000. All data were ranked prior to analysis and tested 



using Pearson’s Product Moment Correlation. A P < 0.05 indicated that variables 

were significantly correlated. 

 

Table. 2.3.5 Odontaster validus. Sex ratio of males and females collected between 

1997 and the beginning of  2001 using a Chi Square statistical test 

 

Table. 2.3.6 Odontaster validus. Comparisons in wet weight (+0.01g), radial length 

(R +0.01mm) and body radius (r +0.01mm) between individual years (1997-2001). 

The variation in wet weight, radial length and body radius of individual starfish was 

tested between years. A 2-sample T-test or a non-parametric Mann Whitney test was 

used depending on if the data were normally distributed (Appendix Table. 2). A 

significant difference was indicated by a P < 0.05. A test for equal variance was also 

undertaken taken when a 2-sample T-test was employed and the results included in 

the assumptions of the test (Appendix Table. 4). 

 

Table. 2.3.7 Odontaster validus. Correlations between animal wet weight (+0.01g), 

radial length (R +0.01mm) and body radius (r +0.01mm) collected between 1997 and 

early 2001. All data were ranked and tested using Pearson’s Product Moment 

Correlation. A P < 0.05 indicated that variables were significantly correlated. 

 

Table 2.3.8 Odontaster validus. Comparisons in wet weight (+0.01g), radial length 

(R +0.01mm) and body radius (r +0.01mm) over the entire study period (1997-2001). 

The wet weight, radial length and body radius of individual starfish were compared. 

A One-way ANOVA or Kruskal-Wallis non-parametric analysis was used depending 

on if the data were normally distributed and a significant difference was indicated by 

a P < 0.05.  

 

Table. 2.3.9 Odontaster validus. Reproductive condition is presented as the 

percentage decrease in the male and female gonad index between years (1997-2001), 

calculated from the average gonad index before (fecund) and after spawning (spent). 

 

Table. 2.3.10 Odontaster validus. Comparisons in overall gonad index between 

individual years. The variation in gonad index of individual starfish was tested 

between years (1997-2001). A Mann Whitney non-parametric analysis was 



employed and a P < 0.05 indicated a significant difference in overall gonad index 

between years. 

 

Table. 2.3.11 Odontaster validus. Comparisons in overall pyloric caeca index 

between individual years. The variation in pyloric caeca index of individual starfish 

was tested between years (1997-2001). A Mann Whitney non-parametric analysis 

was employed and a P < 0.05 indicated a significant difference in overall pyloric 

caeca index between years. 

 

Table. 2.3.12 Parborlasia corrugatus. Sex ratio of males and females collected 

between 1997 and the end of 2000 using a Chi Square statistical test. 

 

Table. 2.3.13 Parborlasia corrugatus. Comparisons in retracted length (+0.01mm) 

between individual years. The variation in retracted length of individual nemerteans 

was tested between years (1997-2000). A Mann Whitney non-parametric analysis 

was employed and a P < 0.05 indicated a significant difference in retracted length 

between years. 

 

Table. 2.3.14 Heterocucumis steineni. Sex ratio of males and females collected 

between 1997 and early 2001 using a Chi Square statistical test. 

 

Table. 2.3.15 Heterocucumis steineni. Comparisons in wet weight (+0.01g) and 

length (+0.01mm) between individual years. The variation in wet weight and length 

of individual holothurians was tested between years (1997-2001). A Mann Whitney 

non-parametric analysis was employed and a P < 0.05 indicated a significant 

difference in length between years. 

 

Table. 2.3.16 Heterocucumis steineni. Correlations between animal wet weight 

(+0.01g), length (+0.01mm) and gonad index collected between 1997 and early 

2001. All data were ranked and tested using Pearson’s Product Moment Correlation. 

A P < 0.05 indicated that variables were significantly correlated. 

 

Table 2.3.17 Heterocucumis steineni. Comparisons in wet weight (+0.01g) and 

length (R +0.01mm) over the entire study period (1997-2001). The wet weight and 



length of individual holothurians were compared. A Kruskal-Wallis non-parametric 

analysis was used and a significant difference was indicated by a P < 0.05. 

 

Table. 2.3.18 Heterocucumis steineni. Reproductive condition is presented as the 

percentage decrease in the male and female gonad index between years (1997-2001), 

calculated from the average gonad index before (fecund) and after spawning (spent). 

 

Table. 2.3.19 Heterocucumis steineni. Comparisons in overall gonad index between 

individual years. The variation in gonad index of individual holothurians was tested 

between years (1997-2001). A 2-sample T-test was employed and a P < 0.05 

indicated a significant difference in overall gonad index between years. A test for 

equal variance was also undertaken and the results included in the assumptions of the 

test (Appendix Table. 5). The 2-sample T-test was repeated (1997-1999, 1997-2000 

and 1998-2000) assuming equal and unequal variance (*) when the test for equal 

variance returned p values both greater than and less than P = 0.05. 

 

 

Chapter 3. Fertilisation Kinetics 

 

Table. 3.1.1 Factors influencing fertilisation success (adapted from Levitan, 1995 

and Powell, 2001). 

 

Table. 3.1.2 Fertilisation studies using a number of temperate and tropical marine 

invertebrates. 

 

Table. 3.1.3 Echinoid fertilisation studies. 

 

Table. 3.1.4 Gamete-specific adaptations to maximise fertilisation success.   

 

Table. 3.2.1 Separate experimental trials were designed using increasing 

concentrations of three chemical agents used to artificially alter seawater viscosity.  

Viscosity was calculated using a Falling Ball Viscometer and quantified by the 

passage of a weighted ball along the viscometer’s length. Viscosity A = seawater 



viscosity maintained at 12ºC + 0.5ºC, B = seawater viscosity maintained at 0.5ºC + 

0.5ºC. 

 

Table. 3.2.2 Dry sperm concentrations (ml-1) from individual males in 2003, using 

the haemocytometer counting cell, and in 2004 using the Coulter Multisizer II. Data 

are presented as overall means and +SD from 3 replicate counts.      

 

Table. 3.3.1 Odontaster validus. Test for equal variance in fertilisation success 

between normal seawater and PVP-seawater conditions 

 

Table. 3.3.2 Laternula elliptica. Test for equal variance in fertilisation success 

between normal seawater conditions and enhanced seawater viscosities using PVP, 

glycerol and methylcellulose. 

 

Table. 3.3.3 Odontaster validus. Test for equal variance in fertilisation success 

between normal egg conditions and the removal of the jelly coat.  

 
Table. 3.3.4 Odontaster validus. Correlations between female fecundity and female 

wet weight (+0.01g) and size (R and r +0.01mm) using Pearsons Product Moment 

Correlation. All variables were normally distributed. 

 

Table. 3.3.5 Marthasterias glacialis. Male (mean = 1.80E+10 sperm, SD = 

1.86E+10, n = 18) and female (mean = 1.59E+06 eggs, SD = 1.40E+06, n = 15) 

gamete release (into 1L seawater) over an hour. Data are presented as overall means. 

Male and female wet weight (+0.01g) and size (R and r +0.01mm) are also 

presented. 

 

Table. 3.3.6 Marthasterias glacialis. Correlations between the number of sperm and 

male wet weight (+0.01g) and size (R and r +0.01mm) using Pearsons Product 

Moment Correlation. Male wet weight and egg number were the only variables to be 

normally distributed (Appendix Table. 8). Therefore all data were ranked prior to 

analysis and tested non-parametrically. Parametric testing on the non-ranked data 

produced the same statistical conclusions. 

 



Table. 3.3.7 Odontaster validus. Male (mean = 1.41E+10, SD = 1.61E+10, n = 8) 

and female (mean = 8.40E+4 eggs, SD = 8.78E+4, n = 9) gamete release over an 

hour. Data are presented as overall means. Male and female wet weight (+0.01g) and 

size (R and r +0.01mm) are also presented. 

 

Table. 3.3.8 Odontaster validus. The correlation between number of sperm and male 

wet weight (+0.01g) and size (R and r +0.01mm) using Pearsons Product Moment 

Correlation. All male variables were normally distributed. All female variables were 

normally distributed except egg number. Therefore, the female wet weight, size and 

egg number were ranked prior to analysis and tested non-parametrically. Parametric 

testing on the non-ranked data produced the same statistical conclusions. 

 

Table. 3.3.9 Odontaster validus. A Mann Whitney statistical test was used to 

compare the size (R and r +0.01mm) and wet weight (+0.01g) of competent and non-

responsive starfish. The majority of the size variables were not normally distributed, 

except radial length in the competent and non-responsive individuals (Appendix 

Table. 9). Therefore, the data were tested non-parametrically. 

 

Table. 3.3.10 Odontaster validus. A Mann Whitney statistical test was used to 

compare the size (R and r +0.01mm) and wet weight (+0.01g) of competent males 

and females with the total number of starfish injected.  The size and weight variables 

of the competent males and females and the total number of starfish injected were 

normally and not normally distributed (Appendix Table. 10).  

 

Table. 3.3.11 Odontaster validus. Test for equal variance in radial length (R 

+0.01mm) between competent males and injected starfish and competent females and 

injected starfish. 

 

Table. 3.3.12 Laternula elliptica and Parborlasia corrugatus. Wet weight (+0.01g) 

and size (+0.01mm) of bivalves (n = 9) and nemerteans (n = 2) strip spawned to 

investigate sperm swimming speed. 

 

 



Chapter 4. Tissue Composition and Condition    

 
Table. 4.2.1 Individuals were collected over monthly intervals from shallow water 

sites adjacent to Rothera Research Station. 10-15 starfish and brittlestars were 

sampled over a 4 and 10 month period respectively. 

 

Table. 4.2.2 The biochemical composition of the standard Acetanilide and the error 

boundaries accepted for each constituent after calibration. 

 
Table. 4.3.1 Odontaster validus. Table of values for residual water and non-protein 

nitrogen (NPN) used to estimate proximate composition from elemental analysis 

based on stoichiometry (Gnaiger and Bitterlich, 1984). The values of residual water 

and NPN show the values that optimised the results and returned data within the 

boundary limits of the macro (original default =  residual water 6, NPN 5). All 

tissues had a default value of 0.15 for the mass fraction of N in the NPN. The mean 

%ash and mean %C in ash are also included. The last column details the number of 

individuals that were removed from further analysis after returning consistently 

negative lipid or carbohydrate values. 

 

Table. 4.3.2 Ophionotus victoriae. Table of values for residual water and non-protein 

nitrogen (NPN) used to estimate proximate composition from elemental analysis 

based on stoichiometry (Gnaiger and Bitterlich, 1984). The values of residual water 

and NPN show the values that optimised the results and returned data within the 

boundary limits of the macro (original default =  residual water 6, NPN 5). All 

tissues had a default value of 0.15 for the mass fraction of N in the NPN. The mean 

%ash and mean %C in ash are also included. The last column details the number of 

individuals that were removed from further analysis after returning consistently 

negative lipid or carbohydrate values. 

 

Table. 4.3.3 Odontaster validus. Descriptive statistics (mean + SD, range, N) 

describing the composition of the gonad and pyloric caeca tissues in males and 

females.  

 



Table. 4.3.4 Odontaser validus and Ophionotus victoriae. One Way ANOVA and 

Kruskal-Wallis test statistics testing for differences between sexes and sampling 

month in the composition of bodily, digestive and reproductive tissues (normal and 

non-normal data). A significant difference was recorded at a significance level P < 

0.05.  

 
Table. 4.3.5 Odontaster validus and Ophionotus victoriae. The results of one-way 

ANOVA and the Tukey Test for pairwise multiple comparisons testing for 

differences between month sampled in bodily, digestive and reproductive tissues. A 

significant difference was recorded at a significance level P < 0.05. Differences 

identified by the Tukey Test are described numerically, (1-10 for February 2003-

March 2004 in O. victoriae and 1-5 for December 16th 2003-March 2004 for 

Odontaster validus) displaying the month tested against the most dissimilar months 

in brackets. If a general overall difference was recorded the Tukey comparison was 

recorded as ‘none’. 

 

Table. 4.3.6 Odontaster validus. Test for equal variance in energy content of the 

pyloric caeca between males and females. P < 0.05 indicates unequal variance. 

 
Table. 4.3.7 Ophionotus victoriae. Descriptive statistics (mean + SD, range, N) 

describing the composition of the bodily, gut and gonad tissues in males and females. 

 
Table. 4.3.8 Odontaster validus. Test for equal variance in %nitrogen content 

between female gonad and pyloric caeca tissue. P < 0.05 indicates unequal variance. 

 

Table 4.3.9 Ophionotus victoriae. Comparisons between the %carbon content in the 

gut and gonad tissues in males and females. A Mann-Whitney non parametric 

analysis was employed and P  < 0.05 indicated a significant difference in tissue 

biochemical composition. 

 

Table. 4.3.10 Ophionotus victoriae. Comparisons between the %carbohydrate 

content in the gut and gonad tissues. Comparisons in these tissues in males and 

females are also recorded. A Mann-Whitney non parametric analysis was employed 

and P < 0.05 indicated a significant difference in tissue biochemical composition 

 



Table. 4.3.11 Test for equal variance in %protein content between the gut of 

Ophionotus victoriae and the pyloric caeca of Odontaster validus. P < 0.05 indicates 

unequal variance. 

 

Table. 4.3.12 Test for equal variance in %lipid content between the gut of 

Ophionotus victoriae and the pyloric caeca of Odontaster validus. P < 0.05 indicates 

unequal variance 

 
Table. 4.3.13 Biochemical and proximate composition of the gonad and pyloric 

caeca tissue of Odontaster validus. Mean and standard deviation are given for sample 

sizes > 1. The raw carbon and nitrogen data were used to determine the amounts of 

protein, lipid, carbohydrate and energy using the Gnaiger and Bitterlich (1984) 

algorithm. An average %ash content was calculated from 15 random pyloric caeca 

and gonad samples. Values of C in ash are not included as the default value 0.01 was 

used for all samples.   

 
Table. 4.3.14 Biochemical and proximate composition of the bodily tissues of 

Ophionotus victoriae. Mean and standard deviation are given for sample sizes > 1. 

The raw carbon and nitrogen data were used to determine the amounts of protein, 

lipid, carbohydrate and energy using the Gnaiger and Bitterlich (1984) algorithm. 

The ash content was calculated for each individual sample and a mean and the 

standard deviation reported. Values of C in ash were calculated by running each ash 

sample through the autoanalyser. Any zero or negative values were recorded as the 

default value 0.01.    

 

Table. 4.3.15 Biochemical and proximate composition of the gut of Ophionotus 

victoriae. Mean and standard deviation are given for sample sizes > 1. The raw 

carbon and nitrogen data were used to determine the amounts of protein, lipid, 

carbohydrate and energy using the Gnaiger and Bitterlich (1984) algorithm. An 

average %ash content was calculated from 30 random gut samples. Values of C in 

ash are not included as the default value 0.01 was used for all samples.   

 

Table. 4.3.16 Biochemical and proximate composition of the gonad of Ophionotus 

victoriae. Mean and standard deviation are given for sample sizes > 1. The raw 



carbon and nitrogen data were used to determine the amounts of protein, lipid, 

carbohydrate and energy using the Gnaiger and Bitterlich (1984) algorithm. An 

average %ash content was calculated from 30 random gonad samples. Values of C in 

ash are not included as the default value 0.01 was used for all samples.   

 

Appendix 

 
Table. 1 The division of histological samples between different workers. Laura 

Grange (LG) completed histology for all four species and repeated image analysis for 

all of the samples described. This required new photographs to be prepared and 

calibrated for each species and 100 oocytes per female to be re-measured. New 

photographs could not be prepared and analysed for Heterocucumis steineni 

collected between April 1998-December 1999 owing to the original slides being 

missing. Therefore, the original blocks were re-cut and new slides prepared for 

analysis by LG. The original histology completed by LG was not repeated and all 

repeated image analysis was carried out by the original methods employed by LG. 

Several months contained additional individuals not processed by the original 

workers and this was especially common in H. steineni collected between 1998-

1999. LG processed these individuals through histology and image analysis.   

 

Table. 2 Ophionotus victoriae, Odontaster validus, Parborlasia corrugatus and 

Heterocucumis steineni. Anderson-Darling Normality test on reproductive data. 

Normally distributed data are given by P-values >0.05. 

 

Table. 3 Ophionotus victoriae. Test for equal variance in actual fecundity between 

individual years (1997 to 2001). Years with equal variance were indicated by an F-

test and a Levene’s test when P > 0.05.  

 

Table. 4 Odontaster validus. Test for equal variance in radial length (R +0.01mm) 

between individual years (1997 to 2001). Years with equal variance were indicated 

by an F-test and a Levene’s test when P > 0.05.    

 



Table. 5 Heterocucumis steineni. Test for equal variance in overall gonad index 

between individual years (1997-2001). Years with equal variance were indicated by 

an F-test and a Levene’s test when P > 0.05.    

 

Table. 6 Odontaster validus, Marthasterias glacialis and Laternula elliptica. 

Anderson-Darling Normality test on fertilisation success variables. 

 

Table. 7 Odontaster validus. Anderson-Darling Normality test on female wet weight 

(+0.01g), size (R and r +0.01mm) and fecundity (egg number). Normally distributed 

data were indicated by P > 0.05. 

 

Table. 8 Marthasterias glacialis. Anderson-Darling Normality test on male and 

female wet weight (+0.01g), size (R and r +0.01mm) and on sperm and egg numbers 

released during gamete release experiments. 

 

Table. 9 Odontaster validus. Anderson-Darling Normality test on the wet weight 

(+0.01mm) and size (R and r +0.01mm) of both competent and non-responsive 

starfish. 

 

Table. 10 Odontaster validus. Anderson-Darling Normality test on the wet weight 

(+0.01mm) and size (R and r +0.01mm) of competent males and females, and the 

total number of starfish injected. 

 

Table. 11 Odontaster validus and Ophionotus victoriae. The Anderson-Darling 

Normality test statistics and recorded p-values for the biochemical and proximate 

composition of bodily, digestive and gonad tissue in two shallow-water Antarctic 

echinoderms. Normally distributed data are indicated by P > 0.05. 
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Antarctica is regarded as the largest wilderness on Earth and its discovery has been 

described many times (Jones, 1982; Fogg & Smith 1990; Fogg, 1992; Yelverton 

2000). Very little was known about Antarctica until approximately 1780, when it was 

referred to as ‘Terra Australis Nondum Cognita’ (The Unknown Southern Land) and 

was imagined to be a large landmass that covered the southern hemisphere 

(Headland, 1999). This period of the unknown was brought to a conclusion by the 

voyages of James Cook and Yves-Joseph de Kerguelen-Trémarec. Cook’s 

circumpolar navigation of the continent in 1772-1775 proved that this was not a rich, 

temperate habitable land, as was widely thought of by Man. On the contrary he 

experienced extreme cold, strong winds and huge expanses of ice and fog that 

hindered his progress further south. 

 

These are characteristics we recognise in the Antarctic today and Antarctica is still 

the focus of much debate. We now have a bright outlook on Antarctic science and 

acknowledge its exceptional value to many other areas of research. Data from the 

pole is crucial in our deliberations about the global earth system. The continent is 

proving key to our understanding and monitoring of global warming and predicted 

climate change, and therefore inevitably the Antarctic story still has much to tell. 
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1.1  The Antarctic Ecosystem 
 
Southern Ocean: The ocean around Antarctica has played a pivotal role in the 

development of knowledge concerning the continent’s climate system. The Southern 

Ocean has the highest southerly marine latitude and is extreme, comprising the water 

surrounding the Antarctic continent, including the southernmost parts of the Pacific, 

the Atlantic and the Indian Oceans (Zwally et al., 1983). The Weddell, 

Bellingshausen, Admundsen, and Ross Seas lie adjacent to the continent. The 

Southern Ocean is unique among the world’s oceans because the configuration of 

land and water in the Southern Hemisphere permits a circumpolar oceanic flow 

(Deacon, 1982). At the northern limit of circumpolar waters the Antarctic surface 

water sinks beneath less dense southward flowing sub-Antarctic water forming the 

phenomenon of the circumpolar front (El-Sayed, 1985). The polar-frontal zone is 

characterised by large gradients in temperature, salinity and density associated with 

the Antarctic Circumpolar Current and several mid-ocean ridge systems. Its position 

is not fixed; it fluctuates with changing temperature, pack-ice and currents, moving 

between 54ºS and 62ºS (El-Sayed, 1985). The Southern Ocean overlies areas of deep 

ocean, where the sea-bed forming the continental shelf is limited meeting the shelf 

break at ~1000m (Peck, in press). The latter is mainly a result of ice activity and its 

gouging of the sea floor, and the depression of the continent under the huge Antarctic 

ice sheet. The biological processes commonly associated with the continental shelf 

(patterns of resource supply, disturbance e.t.c) occur to a depth of 400-500m in the 

Antarctic, and this depth is also comparable to the deepest continental shelves 

elsewhere. Despite vast expanses of the shelf being covered in ice, the average width 

of the shelf is 125km, more than double the width of other continental shelves, and 

on this premise 5% of the world’s continental shelf is in Antarctica (Peck, in press). 

This area of the global ocean is also instrumental in the conveyor belt of deep ocean 

water that regulates many aspects of global climate. In Antarctica cold, saline water 

is produced in the high Antarctic in the vicinity of ice shelves as ice consolidates and 

the residual salt is leached into the surrounding seawater. This high-density water 

sinks near the coast and after mixing with meltwater from the base of the ice shelves 

forms Antarctic Bottom Water. The largest volume is produced at the margins of the 

Filchner-Ronne ice shelf in the Weddell Sea. Once formed Antarctic Bottom Water 
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migrates equatorwards along the continental shelf into the Southern Ocean, now 

having access to the seaways of the north (Deacon, 1982; Orsi et al., 1999). This 

system also serves the deep-ocean currents of the global Thermohaline Circulation 

(Brix and Gerdes, 2003; Jacobs, 2004). 

  

The Marine Ecosystem: The physical conditions in Antarctica show extreme 

stability (Tressler and Ommundsen, 1962; Littlepage, 1965). Surface water 

temperatures range from 3.5ºC at the Antarctic Polar Front, to –1.8ºC near the 

continents edge. At the highest latitude Antarctic sites, such as McMurdo Sound (77º 

51’S, 166º 40’E), sea temperatures may only vary by 0.1ºC around a mean of –1.8ºC 

(Littlepage, 1965, Clarke et al., 1988; Clarke and Leakey, 1996), although recent 

studies suggest even here temperatures may vary as much a 1ºC annually (Hunt et 

al., 2003). The Southern Ocean typically contains significant concentrations of 

seasonally available dissolved nutrients (Priddle et al., 1986; 1994). The marine 

environment is characterised by a background of cold but constant temperatures 

contrasted against an intense seasonal productivity. The study of seasonal biological 

responses in polar-regions therefore affords a natural opportunity to distinguish 

between the different effects of food availability and temperature (Clarke, 1988). 

This seasonality has a large influence controlling the tempos and timing of many 

biological processes. 

 

Despite the harsh environment, marine productivity is high, especially within coastal 

regions, e.g. the Antarctic Peninsula (El-Sayed, 1984, 1985; Clarke et al., 1988; 

Holm-Hansen et al., 1989; Tréguer and Jacques, 1992; Clarke and Leakey, 1996), 

exhibiting comparable values with the upwelling systems of Peru, southeast Arabia, 

Somalia and southwest Africa (El-Sayed, 1988), the main difference being the 

shortness of the growth period (~8-10 weeks) (Whitaker, 1982; Clarke and Leakey, 

1996). However, the spatial distribution of productivity in Antarctic waters is patchy 

and can vary by 1-2 orders of magnitude, where more conservative levels are 

associated with the sea floor and benthic microalgae (Dayton et al., 1986; Gilbert, 

1991a; Brockington, 2001), the open ocean water column and phytoplankton (Priddle 

et al., 1994) and with melting sea ice and ice algae (Bunt, 1964b; Sullivan et al., 

1988). The productivity levels below and within the sea ice zone have also been 

studied in some detail. These blooms tend to be composed of microalgae that are 
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shade adapted owing to the shadowing effect of ice (Bunt, 1964a). Fritsen et al., 

(1994) and Kattner et al., (2004) also commented on the high productivity found in 

surface ice and the gap layers in sea ice, which are ubiquitous in the Antarctic pack-

ice zone. The productive communities of the ice are also important as they provide a 

vital ‘seed-stock’ to developing planktonic communities and as ice is ephemeral, it 

releases ice-associated material into the water column, which is seasonally influential 

(Garrison, 1991; Savidge et al., 1996; Lizotte, 2001; Garrison et al., 2003). 

Productivity levels can also vary over long temporal scales. Current evidence 

suggests that unique circumpolar oceanographic and atmospheric processes operating 

on a sub-decadal time scale may be important in forcing this variability (Murphy et 

al., 1995). 

 

Food is only available during a limited period of the austral summer, with blooms 

being initiated as early as November, peaking in January and collapsing no later than 

March, leaving the remainder of the year essentially devoid of autotrophic 

production (Whitaker, 1982; Clarke, 1988). This poses heavy constraints on 

consumers and their ability to feed, reproduce and survive extended episodes of 

starvation. Light levels increase during the austral summer encouraging the onset of 

phytoplankton blooms. The levels of light received at the ocean surface are regulated 

over spatial, including depth, and temporal scales (El-Sayed, 1984). Irradiance levels 

are important as they govern the maximum amount of energy available for 

photosynthesis (Whitaker, 1982) and secondly regulate ambient temperature. Broad 

scale disparity is caused by latitudinal differences in the amount of daily solar 

radiation reaching the sea surface, as well as variability in the sea ice extent and its 

effect on the levels of sunlight reflected. Wind-induced mixing events may also carry 

pockets of water, laden with photosynthetic cells, to depths in the water column with 

sub-optimal light levels. However in contrast, water column stability can maintain 

phytoplankton at the sea surface where maximum irradiance is focussed (Pingree, 

1978; Whitaker, 1982, Priddle et al., 1986). The vertical stability generated by 

meltwater during the retreat of the ice zone has been suggested to cause ice-edge 

blooms (Smith and Nelson, 1986; Smith et al., 1987; Brierely and Thomas, 2002). 

Turbidity levels and cloud cover can also obscure photosynthetic cells by absorbing 

and/or reflecting light (Clarke and Leakey, 1996). Finally, sea ice plays a very 

important role in determining the dynamics of the marine ecosystem and, owing to 
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the complex nature of this system, most environmental parameters exhibit large 

intra-annual as well as large inter-annual variation and are closely inter-linked 

(Clarke et al., 1988; Clarke and Leakey, 1996).  

 

Other subsidiary processes regulate phytoplankton growth in the Southern Ocean, 

which include low temperature effects arresting cell growth rates (Eppley, 1972), 

nutrient levels and the availability of trace elements such as iron (Smith and 

Dierssen, 1996), although most data suggest that production is not nutrient limited in 

the Southern Ocean (Knox 1970; Dell, 1972; El-Sayed, 1984, 1985; Clarke et al., 

1988). Even when productivity levels are at their maximum, the availability of 

nutrients remains well above limiting values (Hayes et al., 1984). Recent findings 

demonstrate that iron supply controls phytoplankton growth and community 

composition during summer in polar Southern Ocean waters (Boyd et al., 2000; 

Coale et al., 2004). Grazing is probably the most equivocal control ranging between 

rates that vary from a few percent of daily phytoplankton production to more than a 

significant proportion of the available biomass. Grazing may also influence the size 

structure of phytoplankton in the Southern Ocean (Smith and Dierssen, 1996). 

 

The Antarctic Benthos: The huge expanses of ice common across Antarctica’s 

perimeter appear impressive and inhospitable, however in truth there is a wealth of 

life that exists beneath on the sea floor (Dearborn, 1965; Clarke and Johnston, 2003). 

Studies have also yielded evidence for the existence of benthic assemblages beneath 

the Antarctic ice shelves (reviewed by Dayton, 1990) and the fast ice (Littlepage and 

Pearse, 1962; Dearborn, 1963, 1967b). Benthic communities contain the true 

indigenous fauna of the Antarctic (Picken, 1985), and show a high incidence of 

endemism having evolved over millions of years. De Broyer and Jazdzewski (1996) 

reported an 80% level of endemism at the species level and 17% at the genus level 

for Antarctic amphipods. Even higher levels have been observed in the pycnogonids 

~90% (Arntz et al., 1997).  

 

A consensus of modern opinion suggests the limit of the Antarctic benthos to extend 

to South Georgia, and the sub-Antarctic islands of Heard, Macquarie and Kerguelen 

(Dell, 1972). White (1984) delimited the Antarctic benthos to the area south of the 

Antarctic Convergence/Polar Front. However, although a clear physical boundary to 
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the pelagic, it is less absolute when it comes to the benthos, which connects to the 

northern seaways of the Pacific, Atlantic and Indian Oceans in the vicinity of the 

front. Therefore, areas of the Pacific, Indian and Atlantic Ocean floors are inevitably 

under Antarctic influence at the outer edge of the Antarctic continental shelf (Knox, 

1970). Seawater temperatures below 30m in the Antarctic are comparable in 

temperature to the deep ocean sector of the world’s oceans, and therefore 

temperature is an unlikely limiting factor in determining the northern extent of the 

benthos. Picken (1985) described the potential for sediment characteristics to 

determine benthic faunal composition and distribution. Much of these sediments are 

terrigenous in origin and are deposited as ice moves northwards and melts. 

Therefore, the northern limit of the pack ice may be a more realistic limit of the 

benthos. The basic biogeographic subdivisions of the Southern Ocean benthic fauna 

are South Georgia, the Antarctic Peninsula (including the South Orkney Islands) and 

high Antarctic, comprising the fauna on the continental shelf at high latitudes. 

However, noteworthy differences between East and West Antarctica are apparent 

(Clarke and Johnston, 2003). The intermediate latitudes of the Antarctic Peninsula 

and the South Orkney Islands are sometimes referred to as the maritime Antarctic 

(Fig. 1.1.1). 

 

South 
Orkney 
Islands 

East 
Antarctica

 Fig. 1.1.1 Adapted from Clarke and
Johnston (2003). Map of the
Southern Ocean showing the mean
position of the Polar Front (the
Antarctic Convergence) and broad
scale bathymetry around the
Antarctic continent. Regions of East
and West Antarctica and the
Antarctic Peninsula are also
indicated, including the South
Orkney Islands. 

Antarctic  
Peninsula 

West 
Antarctica 

 

Ice: Ice has a very important impact on the marine benthos (Dayton et al., 1969), 

affecting daily light levels, salinity, temperature, sedimentation events and ocean 
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currents. The influence of ice is variable. The impact of sea ice and small growlers 

are restricted to shallower water. However, large icebergs can influence the seabed 

<600m (Gutt and Starmans, 2001). Scouring on the continent transports huge 

quantities of land-based material from the continent onto the seabed as icebergs 

break-up, melt and deposit their load. These deposits tend to be poorly sorted and 

devoid of any river borne material. Small amounts of biological material, including 

diatomaceous elements and sponge spicules, and volcanic debris can also be present. 

The abrading of the coast can occur from the activity of fast ice, pack ice, brash ice, 

icebergs and bergy bits. Anchor ice, submerged ice attached or anchored to the 

bottom, is also important (Gutt, 2001). The literature suggests that approximately 5% 

of the Antarctic shelf is affected by grounded icebergs (Gutt, 2000), although locally 

this figure may be higher and depends on how the continental shelf is described. 

Some of the larger mobile icebergs are very effective at removing and displacing 

benthic flora and fauna as they plough large furrows along the seabed. These tabular 

ice masses often have 80% of their overall volume submerged and the results of Gutt 

and Starmans (2001) showed that iceberg scouring is among the five most significant 

disturbances that a large ecosystem on earth can experience. However, moderate ice 

scouring has also been suggested an agent for the considerable diversity we observe 

in the benthos and can be explained by the ‘intermediate-disturbance hypothesis’ 

(Huston, 1979; Barnes et al., 1996). The benthos can also be invaded by the presence 

of anchor ice, which forms as 2-5mm thick platelets directly on the ocean floor, and 

has the capacity to encase and trap benthic inhabitants, eventually removing them 

from the substratum (Picken, 1985). Dayton et al., (1970) and Dayton (1989) 

quantified the degree of disturbance caused by anchor ice in McMurdo Sound, 

reporting effects down to 33m depth, and suggested that this physical stress resulted 

in a vertical zonation of the benthos, (Gruzov and Pushkin, 1970; Shabica, 1972; 

Dayton, 1989). A piece of ice 2m2 can carry 25kg of sediment, including animals 

such as the asteroid Odontaster validus, the nemertean Parborlasia corrugatus, the 

echinoid Sterechinus neumayeri, as well as isopods, fish and macroalgae. Anchor ice 

is therefore a factor, which can delimit the upper limit of the unique and generally 

rich benthic assemblage (Gutt, 2001). 

 

Temperature: Temperatures in the Antarctic benthos are low and restricted over a 

narrow range around zero. The largest range in temperature is observed in surface 
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waters and the shallow sub-littoral zone (4ºC to -1.9ºC), and is more marked at lower 

latitudes. Deeper zones are more conservative in temperature experiencing a range 

between –1.8ºC and 0.4ºC. Salinity and oxygen levels tend to be stable, however 

regions of ice formation and melting are exceptions to this general rule (Barry, 

1988).  

 

Seasonality: An intense seasonal signature in primary production contrasts the near- 

constant physical setting. The availability of food to benthic communities largely 

relies on the passage of pelagic primary production to the sea floor (Dell, 1972; Karl 

et al., 1991; Brockington, 2001), which can be highly variable. A single summer 

sedimentation event is common at high latitudes and is typical of polar ecosystems, 

compared to the bimodal episodes commonly observed in boreal waters (Caron et al., 

2004). Annual vertical flux rates in the shallow-water nearshore Antarctic tend to 

vary between 2 and 50gCm-2dy-1 during the winter and summer respectively (Cripps 

and Clarke, 1998). The transition of material between the pelagic to the benthic 

system is often recognised as the beginning of the benthic food web and a seasonal 

metabolic response by the sediment community follows (Karl et al., 1991; Graf, 

1992). A proportion of the primary production is either recycled or remains 

suspended in the euphotic zone and is available to zooplankton grazers rather than 

being exported to the benthic community. However, any remaining cells that settle to 

the sea floor are then available firstly to the benthic suspension feeders, and then the 

remaining benthos (Gilbert, 1991a; Graf, 1992; Nedwell et al., 1993). A close 

coupling between benthic secondary production and vertical flux events has also 

been commented on in the seasonal environment of the deep sea (Tyler, 1988). There 

appears to be relationship between the processes in the water column and the 

biological processes on the seabed (Billett et al., 1983; Deuser, 1986).  

 

In the nearshore, shallow environment the residence time of particulate matter in the 

water column is relatively short so that much material arrives at the seabed unaltered 

(Cripps and Clarke, 1998).  Mincks et al., (2004) referred to the seasonal deposition 

of phytodetritus on the shelf of the West Antarctic Peninsula after the ice retreat, as a 

major food source for the shelf benthos and suggested that benthic detritivores could 

benefit from such a reserve all year round. The biochemical composition of the 

vertical flux depends upon its source and the various biogeochemical processes 
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operating in the water column, including the effects of predation (Höglander et al., 

2004). Differences in species composition between the water column and sediment 

traps indicate large differences between species variability in settling (Cripps and 

Clarke, 1998; Höglander et al., 2004).  

 

Many studies have reviewed the frequency, content and impact of these 

sedimentation events. These occurrences have been associated with water mass 

exchange, the deposition of biological material after the break up of ice cover and/or 

bloom collapse and the release of fecal matter from zooplankton feeding on the 

derivatives of phytoplankton and ice algae (Palmisano et al., 1985; Bathmann et al., 

1991). Sedimentation is thought to be the predominant loss of the spring bloom 

(Höglander et al., 2004), after a period of increased storm activity and light 

deprivation (v. Bodungen et al., 1986), and the transition of living cells to sinking, 

resting spores, which are then available to seed the next year’s growth. Therefore, 

phytoplankton seeding patterns can have considerable effects on the transfer of 

biomass from pelagic to benthic subsystems (Bunt, 1964a) and the absolute biomass 

available to pelagic and benthic heterotrophs. The vertical flux can also show inter-

annual variability associated with the differences in the intensity of annual 

autotrophic production (Cripps and Clarke, 1998). However, infaunal grazing and 

incidences of high bacterial turnover can sometimes mask the magnitude and 

importance of a post-summer sedimentation event (Gilbert, 1991b).  

 

To conclude there is extreme seasonality in the Antarctic sediments, that is not 

temperature limited, but regulated by the seasonal availability of organic material. 

Inshore levels of benthic activity are comparable to those measured in temperate and 

tropical sediments (Nedwell et al., 1993). The degree of coupling between the 

pelagic and benthic ecosystems may therefore be important depending on the 

oceanographic characteristics of a location and the feeding strategies of its 

inhabitants (Graf, 1992; Gutt et al., 1998). This was emphasised by Dayton, (1990) 

who suggested that benthic communities are in fact organised around the nature, 

abundance and regularity of organic inputs, as well as the way in which they utilise 

these resources and the frequency with which they are disturbed.  

 

 9



Introduction  Chapter 1 

The benthos is also a source of primary production, possessing large communities of 

microlagae, whose activity is seasonal depending on the levels of light that permeate 

to the seabed (Nedwell, 1989; Gilbert, 1991a, 1991b). Therefore, ice cover and the 

intensity and persistence of surface bloom events affect the waxing and waning of 

benthic blooms. These events are common in the austral spring after the ice retreats 

and before the summer bloom becomes properly established. As the pelagic bloom 

collapses and light levels increase in the water column, a second bloom can be 

observed in the benthos. Brêthes et al., (1994) observed the reliance of the limpet 

Nacella concinna on the standing stock of microphytobenthos, compared to a low 

requirement for ice algae and/or phytoplankton standing stock. Similarly, Laternula 

elliptica was observed to benefit from benthic primary production and the advection 

of allochtonous food particles from the seabed by wind action (Ahn, 1997). 

Therefore, benthic production can also play an important part in the seasonal 

production cycle, especially in the seeding of the surface bloom through 

resuspension and the provision of food for filter feeders (Dayton and Oliver, 1977; 

Barry and Dayton, 1988; Dunbar et al., 1989; Priddle et al., 1995), other epifauna 

and infauna during the winter (Davenport, 1988; Gilbert, 1991a, 1991b).  

 

1.2 Benthic Flora and Fauna 

Origins: Antarctica formed at the centre of an ancient supercontinent called 

Gondwana, comprising Africa, South America, India, Australia and New Zealand. 

Scientists have now reconstructed a realistic chain of events documenting the 

passage on Gondwana through geological time. The final break in Gondwana 

occurred 25-35 million years ago between South America and Antarctica, at which 

point Antarctica reached its final polar position with widespread consequences 

(Livermore et al., in press). This led to the opening of the Drake Passage and the 

surrounding of the continent in its entirety by water. The subsequent development of 

the Antarctic Circumpolar Current completed the climatic isolation of the continent 

and at this time the region began to correspondingly cool. Low temperatures 

encouraged the expansion of mountain glaciation to lower altitudes eventually 

producing the continental ice sheet, ice shelves and the full scale East Antarctic ice 

cap we recognise today. This occurrence also led to the inception of the Polar Front, 

an important (but not absolute) boundary to the physical passage of water from the 
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Antarctic into the three connecting ocean basins to the north and the migration of 

species and genetic material between hemispheres. The progressive isolation of the 

continent had important implications for Antarctic flora and fauna. In some instances 

extinction was inevitable as ice sheets ploughed across the continent. However, many 

marine species were able to adapt and accommodate change and soon became 

established, which resulted in the current high incidence of endemism (Arntz et al., 

1994; Clarke and Johnston, 2003). White (1984) and Picken (1980) developed the 

concept that high levels of endemism resulted from the isolation of the Antarctic 

fauna after the circumpolar current system became properly established, and formed 

a hydrological barrier to easy dispersal.  

 

Hypotheses discussing the origins of Antarctica’s biology have been diverse 

suggesting colonization from the deep-sea and/or South America along the Scotia 

arc, and evolution in situ from a relict fauna to be likely (Lipps and Hickman, 1982). 

Clarke and Crame (1989) reviewed the origins of the Southern Ocean marine fauna 

and commented on the continuity with which shallow water habitats have been 

present over geological time. Geophysical evidence suggests that shallow waters 

have been accessible since the late Mesozoic possibly even longer, and on occasions 

were considerably more extensive than present. Fossil evidence dating from the 

Cretaceous/Tertiary suggests the existence of a diverse shallow water marine fauna 

with affinities with both the Tethys and Pacific basins, with the notable absence of 

two main groups: the decapods and teleost fish. Explanations for the absence of some 

groups are not yet forthcoming and it is unlikely that low temperatures have had any 

real part to play, as the teleost fish and decapods are well represented in the Arctic 

fauna. The exclusion of groups by geographical constraints is by no means an 

exhaustive explanation either, as all fauna would have been subject to the same 

barriers. Possibly habitat reduction from past intermittent ice events holds the key, 

encouraging the diversification of some groups into vacant ecological niches. 

Therefore, the apparent absence of some species and the success of others is more 

likely the effect of historical contingency (Clarke & Crame, 1992).  

 

The extant fauna, is in many cases, highly diverse, reminiscent of numbers and 

diversities noted in any lower latitude location. However, the poor representation of 

some groups has given support to the theory of a latitudinal cline in species richness 
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(Clarke and Johnson, 2003). The reason for a cline in some species is not yet clear. It 

is unlikely that low temperature or the age of the Antarctic has played a pivotal role 

as many high diversity groups exist at the same temperature and unlike the lower 

diversity Arctic, Antarctica has evolved over longer time scales. However, this cline 

does appear striking in some animals, for example in molluscs. The occurrence of 

small size, poor calcification and the incidence of low ornamentation has been 

widely documented in cold water molluscs (Nicol, 1967). Clarke (1983) has 

suggested that this may reflect a high metabolic penalty of precipitating calcium 

carbonate from solution in seawater at low temperature and may explain the low 

numbers observed. However, other taxa with calcareous skeletons are diverse, such 

as echinoderms, brachiopods and pycnogonids, suggesting this explanation to not be 

exhaustive. Clarke and Crame (1989) suggested that reduction in temperature during 

the Cenozoic was an unlikely evolutionary barrier for most fauna. Such a barrier is 

now believed to have evolved in situ, and to have been present since at least the Late 

Cretaceous and possibly before. Therefore, the biological signatures we see today in 

the Antarctic are more likely to be a response to the intense seasonality, which 

characterises the continent, and not the low temperatures per se (Clarke, 1990). 

Several modern day groups comprise a large number of closely related species, 

which are almost certainly the product of adaptive radiations in situ over long time 

periods e.g. pycnogonids, gastropods, echinoderms, ascidians and notothenioid fish 

(Dell, 1972). The isolation of the Southern Ocean and the limited means for dispersal 

across the Polar Front lend more weight to the argument for the existence of a long 

established fauna with Cretaceous ancestry, and has eradicated the perception of the 

Antarctic marine habitat as an evolutionary backwater.   

 

1.3 Antarctic Reproduction 

During the 19th century Antarctic and Arctic taxa were thought to be very similar. 

This led to the idea of a global bi-polar fauna connected through the deep-sea via 

tropical submergence or reflecting the cold climates of the past (reviewed by 

Hedgpeth, 1957). Early expeditions also discovered brooding taxa in the sub-arctic 

and sub-antarctic giving rise to a classic reproductive paradigm, which was later 

given credence by Thorson (1950). Orton (1920) also received considerable support 

when he described a link between reproduction and temperature (reviewed by Giese 
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and Pearse, 1974). The outcome of this relationship led many to believe that the 

constant conditions at the poles would predispose taxa to continuous aseasonal 

development. Many also thought that the metabolic and nutritional demands of 

reproductive taxa at the poles would be the same as warm water taxa, mainly owing 

to the acceptance at the time of metabolic cold adaptation and temperature 

compensation.  

 

The reproductive characteristics originally assigned to Antarctic taxa were based on 

the knowledge that Antarctica exhibits a unique set of environmental conditions, 

namely a background of constant low temperatures contrasted against a highly 

seasonal food regime (Arntz et al., 1994). Such features, it was thought, include 

prolonged gametogenesis, deferred maturation, low fecundity and low reproductive 

condition (Clarke, 1987). These characteristics were said to be consistent with those 

of K-strategists (Clarke, 1979) and are commonly exhibited, at least in part, by a 

number of polar benthic invertebrates. Animals were also assumed to invest an 

appreciable amount of maternal energy in large egg development and therefore non-

feeding larval patterns and a relatively high frequency of brood protection was 

presumed to be likely (Picken, 1985). Thorson (1950) observed this trend in a wide 

range of benthic invertebrates sampled from the Arctic and found larger egg sizes in 

these animals compared to their European, temperate neighbours. He concluded that 

95% of all marine species of bottom invertebrate in the Arctic seemed to develop 

without a pelagic larva and suggested that this occurrence might be even more 

pronounced in the Antarctic. Most of Thorson’s work was based on studies of the 

Prosobranchia, a group he named the “barometer of the ecological conditions in the 

sea”. Thorson reconciled the gradual replacement of pelagic development with 

alternative strategies at the poles and in the deep-sea as a response to adverse abiotic 

and biotic conditions. This theory was reviewed by Mileikovsky (1971) who coined 

the term ‘Thorson’s Rule’ to explain a preference for non-pelagic development in 

larvae, which was modelled by Vance (1973). In general the eggs produced by the 

Antarctic benthos were thought to be larger than the spawn of comparable temperate 

species, and this represents another element incorporated into the evidence for 

another original theory of Thorson for a latitudinal cline in egg size (Clarke, 1992). 

However, the evidence for this trend is as yet equivocal. Egg size can also vary 

between females in a population. Larger females sometimes producing larger eggs 
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can explain some of this variation (Emlet et al., 1987). It is inevitable that there is a 

trade-off between egg size and fecundity, in that individuals producing many eggs 

tend to favour an average of smaller sizes. However, it is likely that both phenotypic 

and environmental factors are influential.  

 

Thorson’s rule appeared plausible when the hazardous nature of the pelagic 

environment was considered. Chia (1968) argued that, in an unstable environment 

where the phytoplankton crop may fail, natural selection would favour those species, 

which evade life cycle stages in the plankton. Hardy (1960) suggested that the 

salinity fluctuations common in shallow water, where ice forms and melts, would 

adversely affect pelagic larvae, as would the storm activity notorious in the Southern 

Ocean (Ostregren, 1912). Similarly the precedence of direct development, and 

limited dispersal, conveniently explains the isolation of the Antarctic taxa and the 

large numbers of endemic fauna observed (White, 1977).  

 

However, more recent studies have contradicted this major paradigm, presenting data 

confirming the presence of pelagic feeding larvae amongst several benthic taxa 

endemic to the Antarctic (Pearse et al., 1991: Berkman et al., 1991; Pearse, 1994), 

e.g. Sterechinus neumayeri (Pearse and Giese, 1966b), Odontaster validus (Pearse, 

1965), Parborlasia corrugatus (Peck, 1993), Nacella concinna (Picken, 1979), 

Liothyrella uva (Peck and Robinson, 1994) and three large bivalves (Laternula 

elliptica, Limatula hodgsoni and Adamussium colbecki). This suggests that the views 

of Thorson describe a general tendency as opposed to a rule (Clarke, 1992). This was 

further exemplified through the work of Hain and Arnaud (1992), who used the size 

of early larval shells of molluscs from the Eastern Weddell Sea, reputed to be a better 

predictor of larval development mode than egg size, to review Thorson’s data set. 

They concluded that out of 43 species of bivalve collected, 13 species reproduced via 

lecithotrophic larvae and 14 species by planktotrophic larvae. Brooding occurred in 

the 16 remaining Bivalvia species. A study by Pearse et al., (1991) looking at 

echinoderms agrees with the revisions of Thorson’s work and validates the assertion 

that pelagic lecithotrophy and planktotrophy are common at southern polar latitudes 

and more important than once thought (Pearse et al., 1986).  
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Some of the more conspicuous echinoderms observed in McMurdo Sound by Pearse 

(1994) produce pelagic planktotrophic larvae; the asteroids Odontaster validus, O. 

meridionalis and Porania antarctica (Pearse and Bosch, 1986; Bosch, 1988, 1989), 

the echinoid Sterechinus neumayeri (Bosch et al., 1987), and the ophiuroid 

Ophionotus victoriae (I. Bosch and R. Britton, unpublished observations of egg size, 

about 180μm diameter). These invertebrates are typical of the productive shallow 

water marine environment of Antarctica, which is frequently disturbed by anchor ice 

formation, and the correlation between pelagic development and high species 

abundance in the Antarctic has already been remarked upon by Clarke (1992) and 

reviewed by Mileikovsky (1971).  

 

Pearse (1994) concluded that pelagic lecithotrophy predominates for all cold water 

localities, i.e. the deep sea, Arctic and Antarctic. Reasons for this are not completely 

forthcoming. However, the limited food supply does not appear to be the only 

important factor. It is more likely that other factors such as improved 

dispersal/colonisation capability, rate of development at low temperatures (Emlet et 

al., 1987) or juvenile size at metamorphosis and habitat complexity, including 

potential larval predation may be more important (Ghiselin, 1987; Pearse et al., 

1991). The Antarctic benthos possesses very diverse and complex biotic 

assemblages, where larger eggs and the resulting advanced juveniles would have a 

competitive advantage (Pearse and Lockhart, 2004) and therefore this may explain 

the higher incidence of lecithotrophy.  

 

However, some Antarctic groups do forego pelagic development and display a high 

incidence of brooding; this is especially true of cidaroid and spatangoid urchins and 

prosobranch gastropods, with the exception of Nacella (Picken, 1979). Pearse and 

Lockhart (2004) suggest that this is not an adaptation to low temperature and low 

larval food supply; instead they suggest that species-rich clades of brooders probably 

reflect enhanced speciation under exceptional Antarctic conditions, e.g. features such 

as the “species diversity pump” caused by glacial cycling encouraging speciation in 

isolated refugia (Clarke and Crame, 1992, 1997). Cidaroid urchins are an interesting 

exception to the modern day perceptions of Antarctic reproduction. This group 

comprises one or two clades that compose 80% of the regular urchin species in the 

Antarctic. One species almost exhibits bipolarity, extending from the Antarctic shelf 
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through to the eastern Pacific to Alaska. Most species brood and reproduction 

appears aseasonal. Discoveries such as this have forced us to review the old 

paradigms and reconsider the ideology that the biodiversity patterns of marine 

invertebrates observed currently in the Antarctic are an adaptation to local 

environmental conditions. Instead, these patterns may be a result of several processes 

operating over different timescales. Poulin et al., (2002) has explained the unusually 

high proportion of brooders compared to broadcasters along the coastal Antarctic by 

describing a macroevolutionary trend resulting from differential extinction rates in 

development modes during adverse environmental conditions. They hypothesised the 

ecological dominance of broadcasters to be a result of processes operating at 

ecological timescales that are associated with the advantage of having a pelagic 

larvae under highly disturbed conditions (Poulin et al., 2002). 

  

Antarctic Reproductive Cycles: The degree to which reproductive traits are 

underpinned by the intense seasonality is variable among polar species (Arntz et al., 

1994) and may be expressed by the adult and/or during the larval phase. A number of 

hypotheses have been proposed to explain why seasonal reproduction is an 

evolutionary stable strategy (ESS) for many marine organisms (Olive et al., 2000). 

Some hypotheses have been developed to derive a fitness advantage for seasonal 

reproduction from factors impacting on the success of the larval phase, such as 

constraining breeding to times when larval food is plentiful and fitness is maximised. 

It is therefore supposed that these times can be predicted from environmental signals 

providing a mechanism for the evolution of physiological responses that deliver 

larvae at the optimum time. A second group of hypotheses can be identified where 

the fitness component is related to the synchronous release of gametes rather than the 

timing of release. The selective advantage of seasonal reproduction, the so called 

ultimate factors, however, are potentially diverse and not well understood especially 

in the Antarctic. It has become accepted that a distinction can be made between these 

factors and proximate factors; the environmental inputs that are transduced by an 

organism allowing physiological responses to occur that organise a temporal 

sequence of cellular and physiological events culminating in seasonal reproduction.   

 

Some Antarctic invertebrates do display strong seasonal oscillations in reproduction 

and growth, and tend to release their eggs/larvae/juveniles into the water column 
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coincident in timing with the summer bloom period (Pearse, 1965; Arnaud, 1977). 

Many of these species have relatively rapid gametogenic cycles generally complete 

within one year, have diminutive size and show fast growth during nutritionally rich 

periods of the summer, and overwinter as slow development stages (Arntz et al., 

1992), e.g. the planktonic copepod Calanoides acutus. Some seasonal breeders do 

however express prolonged reproductive cycles, e.g. Euphausia superba, which 

exhibits a deferred gonad cycle (> 1yr) and cyclic growth, which is elevated during 

the productive summer period. A similar response occurs in the deep sea, where the 

availability of organic matter through sinking is thought to form a labile food source 

to drive reproductive growth (Tyler et al., 1982; Tyler, 1986).  

 

Some of the most abundant shallow water invertebrates in Antarctica produce pelagic 

feeding larvae and exhibit gametogenic cycles underpinned by a strong seasonal 

cyclicity. Despite producing pelagic feeding larvae, a number of these invertebrates 

consistently deliver their progeny into the water column out-of-phase with the annual 

summer bloom event, e.g. Odontaster validus has a seasonal breeding regime 

spawning in the austral winter (Pearse, 1965; Tyler et al., 2003) and Sterechinus 

neumayeri spawns in the early austral spring (Pearse and Giese, 1966b). These 

echinoderms produce a feeding larva, which spends long periods in the plankton 

(Pearse and Bosch, 1986; Clarke, 1992; Stanwell-Smith et al., 1999), mainly acting 

as a dispersive agent avoiding the hazards of Antarctic surface waters before 

developing feeding capabilities during the following bloom event (White, 1977). 

Bosch et al., (1987) described the spawning cycle in Sterechinus neumayeri and 

concluded that a spring spawning period ensures larvae are in the plankton during the 

abbreviated summer bloom and are recruited as juveniles to the benthos when 

benthic chlorophyll a concentrations will be high.  

These larvae appear to benefit from an alternative food source utilising dissolved 

organic material, bacteria and picoplankton, surviving independently of the micro-

plankton cycle during a period when particulate material is diminished (Rivkin et al., 

1986; Pearse et al., 1991). The incidence of bacterivory and osmotrophy is relatively 

high among the larvae of benthic invertebrates (Rivkin et al., 1986; Olson et al., 

1987; Manahan, 1990; Rivkin, 1991) and Peck (1993) found that larvae of the 

nemertean Parborlasia corrugtaus were capable of feeding on particles less than 

1μm. Bosch et al., (1990) also showed that algae, bacteria and dissolved organic 
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matter could all make significant contributions to the nutrition of larvae of the 

Antarctic starfish Porania antarctica.  

 

Additionally the low temperatures observed in the Antarctic predispose feeding 

larvae to low metabolic rates and this may also contribute to larval survival during 

extended periods of apparent starvation (Olson et al., 1987; Hoegh-Guldberg and 

Manahan, 1995). A similar response is seen in temperate and tropical larvae on 

occasions when unsuitable conditions for settlement are experienced and 

metamorphosis is delayed extending the larval period in the water column. The 

larvae of the starfish Mediaster aequalis are lecithotropic and have insufficient 

maternal reserves to support a prolonged period in the plankton, consequently these 

larvae have to either down-regulate their metabolism or begin to uptake DOM 

(Bryan, 2004).  

 

Spawning during a nutrient poor winter is also possible as some taxa possess specific 

storage organs, which store energy reserves for periods of limited food availability, 

e.g. the pyloric caeca of the starfish Odontaster validus. Alternatively, adults 

releasing their progeny during the austral winter may benefit from a reduced risk of 

predation (Clarke, 1992). Benthic suspension feeders are understood to be prevalent 

in the Antarctic and some cease feeding in the winter, making this a more rational 

time for pelagic larvae to be released. However, the traditional view of a long period 

of winter starvation may need to be revised as there are some Antarctic suspension 

feeders capable of feeding virtually all year round, only ceasing for 2-3 months 

around the middle of the austral winter (June-July) (Barnes and Clarke, 1995). The 

bryozoan Arachnopusia inchoata appears to feed continuously throughout the year 

(Barnes and Clarke, 1994) and therefore the threat of predation can remain even 

during the winter. 

 

Seasonality of various types is common in Antarctic benthic invertebrates (reviewed 

by Clarke, 1988; Pearse et al., 1991; Brockington 2001). Orton’s (1920) original 

perception that sea temperature is very important for synchronizing reproduction in 

marine invertebrates is of limited generality. His original perceptions were based on 

observing animals with mature gonads and associating these trends with definite 

temperatures and spawning. These events are not synonymous since in many species 
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mature gonads are present long before spawning (Thorson, 1946). Factors with a 

more pronounced seasonality such as food availability and photoperiod are most 

probably more important, e.g. for Odontaster validus (Pearse, 1998). In contrast 

some taxa remain completely decoupled from the seasonal bloom event, reproducing 

either aseasonally with the capacity to broadcast propagules into the water column 

during the majority of the year (Glyptonotus antarcticus, Dearborn, 1967a; White, 

1970) or by investing large amounts of energy into their eggs and displaying 

lecithotrophic development or viviparity (Meidlinger et al., 1998). However, there 

are exceptions for example in the amphipod Orchomene plebs that broods releasing 

juveniles seasonally during the austral summer bloom. The ascidian Cnemidocarpa 

verrucosa also reproduces seasonally during the winter via a lecithotrophic larva 

with protracted development (Sahade et al., 2004) possibly securing development 

during the summer phytoplankton bloom.   

 

Levels of larval mortality are high in the water column (Strathmann, 1985). 

Therefore, environmental factors will be important in determining larval 

development mode and timing in the plankton, as well as determining benthic 

community structure (reviewed by Todd, 1998). Therefore, as in many other 

environments, the reproductive tempo of the Antarctic is controlled by the specific 

needs and constraints of species, and varies both among and between habitats. 

  

Gametogenesis: The gametogenic development period of many invertebrates appears 

deferred in the Antarctic. Extended periods of oogenesis and spermatogenesis have 

been attributed to both the low temperature and low-level resource supply (Picken, 

1985; Pearse, 1994). The ovary can exhibit two or even three annual cohorts of 

growing oocytes in the same animal at one time (Pearse et al., 1991) producing 

bimodal and sometimes tri-modal oocyte size distributions. These distributions arise 

after an overlap between the rapid growth of older oocytes, and a rapid 

replenishment of the supply of smaller oocytes to the oogonial pool. This pattern 

appears in a number of Antarctic seasonal breeders that have a period of gametogenic 

development between 18 and 24 months (Pearse 1965; Powell et al., 2001; 

Brockington et al., submitted). Bimodal oocyte distributions have been observed in 

taxa exhibiting both free-living and protected development strategies, e.g. 

Adamussium colbecki broadcasts planktotropic larvae (Pearse, 1965) whilst Lissarca 
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notorcadensis broods embryos (Brey and Hain, 1992). This pattern has also been 

observed in Odontaster validus from McMurdo Sound (Pearse 1965), the sea urchin 

Sterechinus neumayeri (Pearse and Cameron 1991; Brockington et al., submitted), 

the infaunal bivalve Laternula elliptica and the limpet Nacella concinna (Powell, 

2001) as well as deep sea echinoids (Tyler & Gage 1984a, b). Other Antarctic taxa 

with long gametogenic development times include the brachiopod Liothyrella uva 

(Meidlinger et al., 1998), the octocoral Ainigmaptilon antarcticum (18-24 months) 

(Orejas et al., 2002) and the amphipods Bovallia gigantea (> 12 months) and 

Kidderia subquadratum (15-19 months) (reviewed by Clarke, 1988). The prolonged 

development cycles characteristic of many Antarctic taxa allow the storage of energy 

over two consecutive summers, interspersed with a single winter period of limited 

food. This adaptation may provide invertebrates with a way of overcoming the 

limited resource and restricted energy acquisition period of the winter, although the 

scallop Adamussium colbecki and the ascidian Cnemidocarpa verrucosa exhibit a 

discrete 12-month cycle (Tyler et al., 2003; Sahade et al., 2004).  

 

Inter-annual Variation: Work on long-term reproductive cycles to date in marine 

environments worldwide is limited. Most studies are based on a grant or PhD 

duration of 2-3 years, which is inadequate to characterise variation between years, or 

even to evaluate seasonal variation accurately and identifying multi year trends is not 

possible. In Antarctica the situation is even worse. A few studies of reproductive 

cycles have been reported from Antarctic species using monthly samples over a 1-2 

year period (Brockington et al., submitted; Tyler et al., 2003; Sahade et al., 2004). 

Some of these have shown considerable inter-annual variation in reproductive 

condition, e.g. the brachiopod Liothyrella uva (Meidlinger et al., 1998), the bivalve 

mollusc Adamussium colbecki (Chiantore et al., 2002) and the ascidian 

Cnemidocarpa verucosa (Sahade et al., 2004). However, despite inter-annual 

variability in reproductive condition being high, the timing of reproductive events 

shows remarkable consistency between years in many species. These data provide 

evidence of a plastic reproductive pattern in many Antarctic invertebrates, adapted to 

overcome the low level resource supply characteristic of the Antarctic continent and 

its unique environmental conditions. These patterns go some way to explain how 

some invertebrates with flexible ecologies and capabilities to accommodate inter-

annual variation, have become dominant members of the Antarctic benthos. 
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However, this is not just an Antarctic phenomenon. Studies of many tropical and 

temperate invertebrate taxa have alluded to plastic reproductive patterns and year-

year variations in reproductive characteristics, e.g. Nepthys caeca and N. hombergi 

(Oilve et al., 1985, 1997), Strongylcentrotus droebachiensis (Meidel and Scheibling, 

1998) and Pecten maximus (Dorange et al., 1989). 

 

Rate of Larval Development: Stanwell-Smith and colleagues (1999) studied the 

distribution, abundance and seasonality of marine invertebrate larvae in the maritime 

Antarctic at Signy Island (60º 43’S, 45º 36’W). The larval ecological diversity 

observed was comparable to the levels reported in temperate locations and higher 

than in the Arctic. However, larval abundances were comparatively low because of 

the long development period in the plankton and dilution over large spatial scales 

(Okubo, 1994). Shreeve and Peck (1995) also observed a broad diversity of 16 larval 

and juvenile types representing 7 invertebrate phyla in the Bellingshausen Sea, of 

which the early stages of nemerteans and echinoderms were most common. 

 

Many studies have recorded the delayed rate at which embryonic development 

progresses in the Antarctic (Arntz et al., 1994), the most extreme example being the 

brooding gastropods, where some broods hatch after 30 months (Hain, 1991). In 

general, most studies reveal a reduction in development rate by x2-x20 for 

echinoderms (Bosch et al., 1987; Gutt, 1991; Stanwell-Smith and Peck, 1997) 

brachiopods (Peck et al., 2001) and nemerteans (Peck, 1993). Sterechinus neumayeri 

requires around 115 days to metamorphosize from a larval to juvenile phase at its 

ambient temperature (-1.5ºC), compared to the 60 days needed by its temperate 

Echinidae equivalent (10-16ºC), Parechinus angulosus (Bosch et al., 1987). Hoegh-

Guldberg and Pearse (1995) observed that rates of Antarctic echinoderm embryonic 

development are close to their maximum for any given ambient temperature 

worldwide, and that temperature is the main factor affecting development rate. 

Delayed development has also been associated with the predisposition of some 

Antarctic taxa to produce large eggs (McLaren et al., 1969; Clarke, 1992). A larger 

egg can support a longer period of protected development increasing the likelihood 

of larval survival, suggesting the seasonal food supply, as well as temperature, as 

important in terms of development time (Clarke, 1982). This theory also suggests 

that long development times are necessary so that the young released are advanced 
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and at a competitive advantage and are commonly in the water column when food 

supplies are plentiful. The Antarctic urchin Sterechinus neumayeri possesses eggs 

slightly larger than its temperate counterpart, however embryonic development is 

very much longer. Therefore, Hoegh-Guldberg and Pearse (1995) concluded that the 

evolution of developmental rates according to food availability has little support, and 

that instead temperature is most important. This describes the immediate 

thermodynamic effect of temperature on developmental processes and the increased 

sensitivity of these processes to low temperature.  

 

Other studies have discussed the relevance of temperature and/or food availability in 

determining Antarctic larval development rates and have considered the energy 

required during deferred development (Marsh et al., 1999). Many Antarctic 

echinoderms have extended development periods in the plankton during which larvae 

are devoid of particulate food and must survive on reserves (Pearse et al., 1991; 

Shilling and Manahan, 1994). Marsh et al., (1999) concluded that the low level 

resource environment of the Antarctic does not pose problems for urchin larvae 

during development, mainly owing to low rates of larval metabolism which are 

principally driven by low temperature and the ability of larval feeding stages to 

acquire dissolved organic material (Rivkin, 1991). Therefore, it appears that 

Antarctic larvae have developed unique physiological mechanisms related to energy 

metabolism to survive at low temperatures with a diminished food supply. 

  

1.4 Inter-annual Variation 

Short-term environmental change occurs on monthly, seasonal and annual time 

scales, as well as varying spatially. Recent studies have alluded to the importance of 

change on more long-term scales. A well-known source of long-term oceanographic 

variation is the El Niño Southern Oscillation (ENSO), which refers to a connection 

between exceptionally warm sea temperatures in the tropical Pacific and atmospheric 

anomalies (Karoly, 1989). Inter-decadal and multi-decadal frequencies have also 

been observed in the climate variations of the northeast Pacific (Ware and Thomson, 

2000). Air temperature records indicate that the climate of the northeast Pacific has 

oscillated at three dominant timescales over the last 400 years: the well documented 

2-8 year ENSO timescale, a 20-40 year inter-decadal timescale and a 60-80 year 
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multi-decadal timescale. These climatic variations can be felt over a broad scale even 

in the spatially distant deep sea (Smith et al., 2001; Ruhl and Smith, 2004). 

Anomalies on long-term time scales have also been described for the Antarctic on 

both inter-decadal and multi-decadal timescales (Murphy et al., 1995; White and 

Peterson, 1996; Turner et al., 2002; Turner, 2004). 

 

The Southern Ocean is the only oceanic domain to encircle the globe completely and 

is the unifying link for exchanges of water masses between the world’s major ocean 

basins. Therefore, this ocean is important for transmitting climate anomalies around 

the globe. In recent studies an inter-annual variation, with a cycle of 4-5 years, taking 

8-10 years to encircle the pole, has been recorded. White and Peterson (1996) 

described these 4-5 year anomalies as an eastward propagating feature and referred 

to it as the Antarctic Circumpolar Wave (ACW) in which a dipole variation in sea ice 

extent moves round the Antarctic. The ACW influences sea surface temperature, 

wind-speed and sea-ice extent. Many studies have linked Antarctic and Southern 

Ocean climate variability with climate anomalies at lower latitudes, specifically the 

ENSO, as both signals propagate eastwards with a 3-5 year cyclicity (Peterson and 

White, 1998; White et al., 2001; Meredith et al., 2003; White and Annis, 2003; 

reviewed by Turner, 2004). A number of studies have described a connection 

between these two climatic anomalies. However, although the relationships between 

ENSO and pelagic ecosystems have received a considerable amount of attention at 

tropical and high northern latitudes, few studies of ENSO and related effects have 

been undertaken across the Southern Ocean and in the Antarctic coastal region. 

 

Anomalies in sea surface temperature have been observed for a number of years in 

the North Atlantic Ocean (Dzhiganshin and Polonsky, 1995) and the Southern Ocean 

(Aoki, 1997). Inter-annual variation of Antarctic Ocean CO2 uptake has been related 

to variations in nitrate, oxygen and dissolved inorganic carbon, which can partly be a 

result of the ACW, as the latter has a strong influence on Antarctic water masses 

(Louanchi and Hoppema, 2000; Louanchi et al., 2001).  

 

Murphy et al., (1995) studied the long-term fast-ice record from the South Orkney 

Islands and commented upon the variability in sea ice extent, which appeared to 

show a clockwise circumpolar precession on a sub-decadal scale (7-9 years). Nihashi 
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and Ohshima (2001) also reviewed the inter-annual variation in Antarctic Ocean sea-

ice dynamics. The regional variability in sea ice extent appears to be linked to 

features of both the atmosphere and ocean systems and the overall configuration of 

sea ice around Antarctica.  

There is a close coupling between sea ice conditions and ecosystem dynamics. The 

timing of the waxing and waning of sea ice determines the levels of light available 

for photosynthesis and the period during which production is viable. These effects 

can be felt across many trophic levels, including top predators. Croxall et al., (1988) 

showed that inter-annual variation occurred in sea bird and sea mammal populations 

of islands in the north Weddell Sea and Fraser et al., (1992) described changes in the 

dynamics of penguin populations on the Antarctic Peninsula. Both identified 

connections with sea-ice dynamics. Boltovskoy and Alder (1992) also observed 

inter-annual differences in the abundance of microzooplankon groups at a number of 

stations in the Weddell Sea and attributed regional enhancements of cells to the 

presence of the ice edge, which may vary its position with changing environmental 

conditions over inter-annual time scales.  

 

Environmental inter-annual variation has significant implications for ecosystem 

function and the detection of short-term and long-term ecological change. Recent 

studies have described inter-annual variation in the reproductive seasonality and the 

reproductive condition of some marine invertebrates, e.g. in the gonad index of the 

green urchin Strongylocentrotus droebachiensis from Nova Scotia, Canada (Meidel 

and Scheibling, 1998), in the timing of spawning in Atlantic cod sampled off 

Newfoundland, Canada (Hutchings and Myers, 1994) and in a number of the 

Antarctic benthos including the brachiopod Liothyrella uva (Meidlinger et al., 1998), 

the limpet Nacella concinna, the bivalve Laternula elliptica (Powell, 2001) and the 

scallop Adamussium colbecki (Tyler et al., 2003). Chiantore et al., (2001) observed 

the degree to which inter-annual variation in reproduction varied between 

invertebrates with different feeding ecologies and concluded that the greatest year-

year variation was exhibited in A. colbecki. Consequently, many studies have alluded 

to the role of the available ration in determining inter-annual disparity in 

reproductive traits. However, the integral role of other oceanographic parameters, 

which determine the strength and availability of the austral bloom are also important, 

e.g. ice and seawater temperature.   
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Another important aspect of reproductive success is recruitment. Dayton (1989) has 

described inter-annual variations in benthic invertebrate recruitment for the 

Antarctic. He observed inter-decadal differences in the recruitment of sponge 

populations to the shelf community of McMurdo Sound and attributed year-year 

differences to the dynamics of anchor ice. Stanwell-Smith and Barnes (1997) studied 

recruitment and growth on settlement panels at Signy Island, Antarctica and 

observed that successful recruitment levels of colonising taxa showed seasonal and 

inter-annual variation. Similar year-year variation in recruitment has been 

documented in the southeast Pacific, specifically for mussels and barnacles, and has 

been linked to the large-scale oceanographic effects of the 1997-1998 El Niño event 

(Navarette et al., 2002).  

 

Therefore, inter-annual variation in the environment has important implications for 

biological processes and ecosystem dynamics, so that patterns in reproduction, 

recruitment and success vary over similar long-term time scales.   

 

1.5 Project Aims 
 
The primary aim of this study was to describe the long-term reproductive cycles of 

four species of Antarctic invertebrate (the ophiuroid Ophionotus victoriae, the 

asteroid Odontaster validus, the nemertean Parborlasia corrugatus and the 

holothurian Heterocucumis steineni) sampled from shallow water sites adjacent to 

the British Antarctic Survey’s Rothera Research Station, Adelaide Island, West 

Antarctic Peninsula (67˚34 S 68˚08 W).  

Reproductive success is a vital characteristic in species survival and evaluation of 

change in reproductive condition with time key to identifying vulnerable taxa. 

Characterising reproductive success with time is a major requirement in predicting 

species response to change and the early stages of species loss. This thesis describes 

the reproductive success of a selection of ecologically important Antarctic shallow 

water marine invertebrates over inter-annual time scales. Particular attention is paid 

to the reproductive cycles and reproductive condition of each invertebrate, and any 

intrinsic variability explained in terms of environmental oscillations and differences 

in species feeding ecology.  
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Additionally, aspects of invertebrate fertilisation kinetics will be investigated in both 

a temperate and polar starfish. A number of marine invertebrates, and especially 

echinoderms broadcast their gametes into the water column to await external 

fertilisation. Therefore, the successful fertilisation of these eggs and the adaptations 

undertaken to maximise potential fertilisation success, at the level of the gamete, 

individual, population and environment, are crucial elements of invertebrate 

reproductive fitness and survival. This thesis compares and contrasts the responses of 

a temperate and polar starfish, at the level of sperm and eggs, to variable 

environmental conditions in order to assess the effects of different environmental 

regimes on invertebrate fertilisation kinetics. The potential impacts of forecasted 

climate change are discussed in terms of gamete-specific characteristics and 

temperature sensitivity in the polar starfish.   

 

Finally, the relative contribution of different bodily components to the biochemical 

profile of two polar invertebrates will also be described. The quality and quantity of 

food arriving at the seabed in the Antarctic has several effects on the composition 

and condition of tissues in marine invertebrates. It has a direct effect on the amount 

and composition of material channelled directly into the digestive tissues and 

diverted to storage, and it can have an indirect influence on the timing of 

reproduction and how energy is allocated to the gonad. This is important in the 

understanding of Antarctic reproductive cycles, many of which are underpinned by 

the intensely seasonal signature in primary production, and especially relevant when 

the potential impact of environmental change, in terms of seasonality is considered.  

This thesis describes the seasonal changes in the biochemical and proximate 

composition of reproductive, digestive and bodily tissues of two polar echinoderms. 

Gender-specific differences in tissue composition are discussed, and any patterns in 

the biochemical profile of the echinoderms described in terms of seasonality and 

differences in each species reproductive condition and ecology. 

 

These data will be used to discuss the possible implications of future global change 

on species fitness and success, and the extreme sensitivity of the polar ecosystem 

used to emphasize the importance of Antarctic benthic invertebrates as highly 

sensitive and therefore, useful barometers for change.  
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Data also described in Grange et al., (2004) Long-term inter-annual cycles of the 

gametogenic ecology of the Antarctic brittle star Ophionotus victoriae. Marine 

Ecology Progress Series, 278. 141-155. (Appendix Reprint) 

2.1 Introduction 
 
The waters round the Antarctic have low but stable background temperatures set 

against a highly seasonal food regime (Lipps and Hickman, 1982; Clarke et al., 

1988; Dayton 1990; Clarke and Leakey, 1996). During the austral winter seawater 

temperatures drop to –1.9°C and the sea-surface is frozen, whereas summer water 

temperatures may rise to > 1.0°C. As a result of this stenothermal environment, 

energy input has a profound ecological effect. An intense seasonal signature in light 

and sea ice cover stimulates the very marked seasonality in surface primary 

production (Clarke, 1988), where the pulse of organic matter to the local seabed is 

temporally constrained.  

 

Polar reproductive patterns typically have a long duration and gametogenic 

development is slow (Hedgpeth, 1970; Grange et al., 2004). It has been argued that it 

may not be the low temperatures per se that restrict Antarctic marine invertebrates, 

but the seasonal pattern in food availability (Clarke, 1982; Pearse et al., 1991). The 

latter has been assumed to be responsible for Antarctic spawning frequencies and 

magnitudes (Giese, 1959; Pearse, 1994). However, a more recent multivariate 

analysis indicates that temperature is the most important environmental factor 

controlling larval developmental rates (Hoegh-Guldberg and Pearse, 1995). 

Mortensen (1936) and Thorson (1950) proposed a high incidence of brood protection 

in Arctic invertebrates and Mileikovsky (1971) suggested this principle as a general 

rule and coined the term ‘Thorson’s rule’. Much of this was attributed to the paucity 

of planktonic food (Chia, 1974). However, the frequent occurrence of pelagic 

feeding and non-feeding reproductive patterns has more recently been documented in 

invertebrates from Antarctic latitudes (Table. 2.1.1) (Pearse, 1994; Pearse and Bosch, 

1994). Thereafter, the current number of larval types in Antarctica has been shown to 

be high (Shreeve and Peck, 1995; Stanwell-Smith et al., 1999) in contrast to the 

earlier Arctic studies from the 1950s and 1960s.  
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Table. 2.1.1 Modified from Galley (2004). Reproductive periodicity and egg size (μm) in Antarctic 
shallow-water invertebrates. Length of oogenesis is referred to as Cycle; modes of development are 
listed as either AL = abbreviated lecithotrophy; B = brooding; L = lecithotrophic; P = planktotrophic. 
Periodicities are listed as either: A = aseasonal; S = seasonal. 
 

Species Location Depth 
(m) 

Fecundity
 

Egg size
(μm) 

Mode Periodicity Cycle 
(month) 

Reference

         

Antarctic invertebrates        

ASTEROIDEA         
Neosmilaster georgianus  Anvers Island 2-15  2170 B A  Bosch and 

Slattery, 1999
Diplasterias brucei McMurdo <33 300 2800 B A  Bosch and 

Pearse, 1990 
Notasterias armata McMurdo <33 50 3500 B S  Bosch and 

Pearse, 1990 
Acodontaster elongates McMurdo <33 3-4x103 540 L S  Bosch and 

Pearse, 1990 
Porania sp. East Cape 

Evans 
15-33 100-310 550 L A  Bosch, 1989; 

Bosch and 
Pearse, 1990 

Acodontaster hodgsoni McMurdo <33  550 L S  Bosch and 
Pearse, 1990 

Acodontaster conspicuus McMurdo <33 3-4x103 700 L S  Bosch and 
Pearse, 1990 

Bathybiaster loripes McMurdo <33  930 L S  Bosch and 
Pearse, 1990 

Psilaster charcoti McMurdo <33  950 L S  Bosch and 
Pearse, 1990 

Lophaster gaini McMurdo <33 3-4x103 1280 L S  Bosch and 
Pearse, 1990 

Perknaster fuscus McMurdo <33  1200 L A  Pearse et al., 
1985; Pearse 
et al., 1986 

Odontaster validus McMurdo  <10  150 P S <24 Pearse, 1965 
Odontaster meridionalis McMurdo <33  190 P S  Bosch and 

Pearse, 1990 
Porania antarctica New Harbor 15-33 3-4x104 550 P S  Bosch, 1989; 

Bosch and 
Pearse, 1990 

Psilaster charcoti Antarctic 
Peninsula 

~600m 10,000 578 L A 18-24 Galley, 2004 

         

HOLOTHUROIDEA         
Psolus dubiosus Weddell Sea 189-840  1500 B A  Gutt et al., 

1992 
Ekmocucumis steineni Weddell Sea 189-840  1000 L S  Gutt et al., 

1992 
Protelpidia murrayi West 

Antarctic 
Peninsula 

600 2000-35000 357 L S 18-24 Galley, 2004 

Peniagone sp Antarctic 
Peninsula 

600 5000 570 L S 18-24 Galley, 2004 

         
ECHINOIDEA         
Abatus nimrodi McMurdo shallow 30 1280 B A  Pearse and 

McClintock, 
1990 

Abatus cordatus Kerguelen intertidal  1300 B S 24 Magniez, 
1983 

Abatus shackletoni McMurdo shallow 30 1970 B A  Pearse and 
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Species Location Depth 
(m) 

Fecundity
 

Egg size
(μm) 

Mode Periodicity Cycle 
(month) 

Reference

McClintock, 
1990 

Sterechinus neumayeri McMurdo 
Rothera 

1-3 
15-30 

 125 
120 

P 
P 

S 
S 

18-24 
18-24 

Pearse and 
Giese, 1966a;  
Brockington, 
2001 

Sterechinus antarcticus West 
Antarctic 
Peninsula 

600 12700 186 L S 18-24 Galley, 2004 

Ctenodicaris perrieri West 
Antarctic 
Peninsula 

600 1000 1050 B A 18-24 Galley, 2004 

Amphipneustes lorioli West 
Antarctic 
Peninsula 

600 200 850 B A 18-24 Galley, 2004;
Galley et al., 
2005. 

         

OHIUROIDEA         
Ophiosparte gigas    350 L   Pearse 1994 
Ophionotus victoriae Circumpolar 

(Rothera) 
 

 
 
15-20 

140000 
 
1-2x105

180 
 
250 (max)
150 (max 
monthly 
average) 

P 
 
P 

S 
 
S 

18-24 
 
18-24 

Pearse, 1994; 
Mortensen, 
1936 
Grange et al., 
2004 

Ophionotus hexactis King Edward 
Cove 

5-15m Max 86 
juveniles 

200 B S  Morison, 
1979 

         
BIVALVES         
Adamussium colbecki 
 
 
 

Terra Nova 
 
Circumpolar 
(Rothera) 

10-70 
 
< 25 

 50 P 
 
P 

S 
 
S 

 
 
12 

Chiantore et 
al., (2002) 
Tyler et al., 
2003 

Lissarca notorcadensis Weddell Sea, 
South 
Orkneys and 
South 
Shetland 
Shelves 

  1000-1350 B S 18-24 Brey and 
Hain, 1992 

Laternula elliptica Rothera 15-20  240 L S 18-24 Powell, 2001 
Nacella concinna Rothera 15-20  180-240 L S 18-24 Powell, 2001 
         
BRACHIOPODS         
Liothyrella uva Signy Island 11 15-

2000embryos
300 B/L S 18-24 Meidlinger et 

al., 1998 
         
ASCIDIAN         
Cnemidocarpa verrucosa Potter Cove 

King George 
Island 

< 30  200-250 L 
 

S 12 Sahade et al., 
2004 

         
ANTHOZOAN         
Ainigmaptilon antarcticum Eastern 

Weddell Sea 
250-600 17000 oocytes 

12 per polyp 
700-900 AL S >12 Orejas et al., 

2002 

 

The benthic fauna of the Southern Ocean is now reasonably well known and 

generally diverse (Clarke and Johnston, 2003). The echinoderms are relatively well 
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described and are particularly diverse in the Southern Ocean, often representing one 

of the most abundant and speciose macroinvertebrate groups in shallow Antarctic 

seas. High Antarctic shallow waters are often dominated by the Echinodermata, 

especially the echinoid Sterechinus neumayeri, the seastar Odontaster validus and 

the ophiuroid Ophionotus victoriae (McClintock et al., 1988; Brockington, 2001; 

Manjón-Cabeza and Ramos, 2003). Photographic surveys of the local sampling sites 

adjacent to Rothera Research Station revealed echinoderms to be the most speciose, 

the most common taxa being the urchin S. neumayeri and the sea cucumber 

Heterocucumis steineni (Bowden, in press). The substantial occurrence of 

echinoderms in extreme environments with highly seasonal food regimes signifies 

this phylum’s ecological flexibility and energetic importance (McClintock, 1994). 

Consequently, echinoderms play a significant role in energy transfer in the Antarctic 

benthos.  

The Southern Ocean benthic nemertean fauna are relatively well known (Clarke and 

Johnston, 2003). However, the overall diversity of nemertean worms is somewhat 

diminished in comparison to other taxa. The Southern Ocean is unusual in this 

respect as one of its largest species, Parborlasia corrugatus, is an extremely 

common and conspicuous member of the Antarctic shallow water benthos. This 

species exerts an important influence on the local community as it is a voracious 

predator and scavenger (Gibson, 1983, 1985).    

 

An extensive series of studies have been published reviewing the reproductive 

ecology of echinoderms, and a few seminal papers have documented the 

reproductive habits of Antarctic taxa. Reproduction of ophiuroids has been reviewed 

most recently by Hendler (1991) and Byrne (1994), whilst the ecological specificities 

of Antarctic ophiuroids have been addressed by Dahm (1996). Brittle star spawning 

and reproductive patterns are extremely diverse (Hendler, 1991), and this plasticity 

has been coupled with variable environmental conditions (McGinley et al., 1987, 

Hadfield and Strathmann, 1996). However, the reproductive biology of high 

Antarctic ophiuroids is unknown except for remarks in major taxonomic works 

(Mortensen, 1936). Ophionotus victoriae (Bell, 1902) has a circumpolar distribution 

occurring throughout the high Antarctic in the Ross Sea and along the Antarctic 

Peninsula. This penta-radial ophiuroid often characterises macrobenthic assemblages 

within these regions and is an abundant shallow water invertebrate (Dahm, 1996; 
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Sáiz-Salinas et al., 1997, Arnaud et al., 1998). It inhabits a variety of substrata (level 

mud to gravel and rock bottoms) and ranges between 5 and 1266m depth (Madsen, 

1967). O. victoriae is oviparous (Koehler, 1912) and Mortensen (1936) described the 

eggs as ‘small and numerous’, indicative of producing a typical ophiopluteus larva. 

The diet of O. victoriae is also very catholic possibly consuming over 50 prey 

species (Dearborn, 1977; Fratt and Dearborn, 1984: Dearborn and Edwards, 1985). 

Large O. victoriae even appear to be cannibalistic on small individuals of its own 

species. This suggests that ophiuroids have a high dietary plasticity allowing the 

exploitation of habitats where the seasonal availability of food is changeable and 

varied.  

 

Chia and Walker (1991) have comprehensively reviewed the reproductive ecology of 

the asteroids. The reproductive characteristics of high Antarctic asteroids have 

received a relatively large amount of attention, mainly through the study of the 

common cushion star Odontaster validus. Most of this literature describes the 

McMurdo Sound (77°51 S, 166°40 E) population of the cushion star, although 

studies have also been done on individuals from Cape Evans (77º38 S, 166º24 E) 

(Pearse, 1965) and Signy Island in the maritime Antarctic (60º43 S, 45º36 W) 

(Stanwell-Smith and Clarke, 1998). O. validus (Koehler, 1912) is extremely 

abundant and distributed over a considerable area in most shallow water benthic sites 

that characterise the Antarctic continent (Dearborn, 1965; Arnaud, 1974; McClintock 

et al., 1988). This starfish occurs at sites in South Georgia (54˚ S), throughout the 

Southern Ocean and at an extreme southerly latitude in McMurdo Sound (78˚ S) 

(McClintock et al., 1988). Individuals range from the intertidal to 940m depth, but 

are most often observed at depths of ~15m down to 200m (Dearborn, 1977). O. 

validus displays an opportunistic feeding preference utilising a wide variety of 

available prey items by suspension feeding, grazing, scavenging and behaving as an 

active predator (Pearse, 1965). Feeding aggregations of this starfish have been 

recorded, several centimetres deep, on decaying organic material and Dayton et al., 

(1974) suggested that these starfish remove larval invertebrates during detrital 

feeding, possessing the capacity to regulate and control adult populations, e.g. 

regulate the sponge community by consuming the larval forms of sponge predators. 

Therefore, because of the numerical abundance of O.validus and the potential to 

exert considerable ecological influence on the benthic community, it is regarded to 
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be of great ecological importance. This starfish reproduces annually during the 

austral winter, broadcasting eggs and sperm into the water column (Pearse, 1965, 

1969). Pearse has also documented that O. validus, requires a prolonged 18-24 

months for its development cycle, which he argued is also characteristic of many 

Antarctic invertebrate taxa (Pearse, 1994). Feeding larvae develop in the plankton, 

free-swimming over a prolonged period (Pearse, 1969; Stanwell-Smith and Peck, 

1998) and they reportedly have the capacity to sequester dissolved organic material 

from the water column during the oligotrophic winter (Olson et al., 1987; Bosch et 

al., 1990).  

 

The Holothuroidea have been described in a number of review articles (Hyman, 

1955; Pawson, 1966). Holothurians are distributed widely in all seas and at all 

depths, and have adapted to a variety of different marine habitats (Pawson, 1966). 

However, this class has received limited attention compared to our knowledge of 

other echinoderm taxa, and this is especially true for Antarctic sea cucumbers, 

although they are recognised as being important members of the continental shelf 

and slope marine benthos, especially in sessile suspension feeding communities 

below the influence of ice scouring (Dayton et al., 1974; Gutt and Piepenburg, 1991). 

Various articles have also described the discovery of new holothurian species in the 

Weddell Sea (Gutt, 1990; Massin, 1992). A majority of the species found in the 

Antarctic belong to the dendochirotacean families, Psolidae and Cucumariidae (Dell, 

1972). The relative success of these families within the Antarctic has been attributed 

to their capacity to reproduce via viviparity or brood protection (Gutt, 1991b). The 

species studied here was originally described as Cucumaria antarcticus. It has been 

latterly renamed as Heterocucumis steineni (Ludwig, 1898). The population and 

reproductive ecology of this invertebrate has received limited attention. H. steineni is 

known from the Antarctic, sub-Antarctic and the Antarctic islands (Gutt et al., 1992) 

and forms an abundant shallow-water population adjacent to Rothera Research 

Station off Adelaide Island to the west of the Antarctic Peninsula (Fraser et al., 

2004). This holothurian is commonly observed with the posterior body half burrowed 

into the sediment. This plastic behaviour has been suggested as the main reason for it 

having the highest abundance among the Weddell Sea holothurians (Gutt, 1991a). 

Gutt et al., (1992) described seasonal differences in the reproductive habit and 

female fecundity of deep sea individuals of H. steineni. They also observed the 
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possession of large yolky oocytes (0.3-1.0mm in diameter) forming multiple cohorts 

in the ovary and suggested a summer-spring spawning period. Current work has also 

described the seasonal variation in protein synthesis and metabolism in a shallow 

water population of H. steineni sampled adjacent to Rothera Research Station (Fraser 

et al., 2004).  

 

A significant amount of work has been published describing the general morphology, 

ecology and characteristics of the Nemertea (Hyman, 1951; Gibson, 1994). The 

reproductive ecology has been previously described (Hyman, 1951). However, the 

reproductive biology of Antarctic nemerteans is relatively unknown except for 

Parborlasia corrugatus (McIntosh, 1876), a common member of the shallow-water 

marine benthos. This heteronemertean is conspicuous in the Antarctic mainly owing 

to its capacity to attain lengths in excess of a metre (Knox, 1970; Gibson, 1983). It 

has a circumpolar distribution and frequents depths from the intertidal down to 

3000m (Gibson, 1983). P. corrugatus feeds on a variety of prey items and is 

regarded as a voracious predator and scavenger, capable of taking diatoms, sponges, 

anemones, polychaetes and fish (Dearborn, 1965). The ecological importance of this 

species is further exemplified by the apparent lack of predators capable of preying 

upon it (Dayton et al., 1974), despite being numerous and high in energy and nutrient 

content (Heine et al., 1991). P. corrugatus has been observed to secrete toxic 

compounds indigestible to most marine taxa, which is a common characteristic of the 

phylum (Kem, 1985). The reproductive and developmental biology of this species 

has been relatively well described. Larval pilidia have been observed for prolonged 

periods throughout the year in shallow Antarctic waters leading many to suggest an 

aseasonal quasi-continuous reproductive habit for the nemertean (Pearse et al., 1991; 

Shreeve and Peck, 1995; Stanwell-Smith et al., 1999). Peck (1993) reared the 

planktotrophic larvae over a period of 50-56days, and a series of sampling 

programmes have suggested the pilidia capable of at least a 150day existence in the 

plankton, a period in excess of the normal development times recorded for 

comparable temperate pilidia. The paucity of planktonic food during this time has 

convinced many that these larvae can assimilate and accumulate dissolved organic 

material from the water column (Peck, 1993). Rogers et al., (1998) have also looked 

at P. corrugatus population genetics in a population from the South Orkney Islands.  
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The Southern Ocean is characterised by environmental variation on a range of 

frequencies. One of the most recently described of these is the ‘Antarctic 

Circumpolar Wave’ (White and Peterson, 1996), in which a dipole variation in sea 

ice extent moves round the Antarctic. There is also considerable debate as to whether 

the waters round Antarctica are being affected by global warming (Vaughan et al., 

2001; Meredith and King, 2005). The stenothermal character of polar invertebrates 

may make them highly susceptible to temperature change, and they may be amongst 

the most vulnerable species worldwide to environmental modifications (Pörtner et 

al., 1999; Peck and Conway, 2000; Peck, 2002: Pörtner, 2002). Reproductive success 

is a key characteristic in this respect and evaluation of change in reproductive 

condition with time key to identifying vulnerable taxa. 

 

Work to date on long-term reproductive cycles in marine environments worldwide is 

limited. Most studies are based on a grant or PhD duration of 2-3 years, which is 

inadequate to characterise variation between years, or even to evaluate seasonal 

variation accurately and identifying multi-year trends is not possible. In Antarctica 

the situation is even worse. A few studies of reproductive cycles have been reported 

from Antarctic species using monthly samples over a 1-2 year period (Tyler et al., 

2003; Sahade et al., 2004; Brockington et al., submitted). Some of these have shown 

considerable inter-annual variation in reproductive condition, specifically gonad 

index which expresses gonad weight as a percentage of total body weight e.g. 

Liothyrella uva (Meidlinger et al., 1998), Adamussium colbecki (Chiantore et al., 

2002) and the ascidian Cnemidocarpa verucosa (Sahade et al., 2004). However, 

despite inter-annual variability in reproductive condition being high, the timing of 

reproductive events shows remarkable consistency between years in many species. 

These data provide evidence of a plastic reproductive pattern in many Antarctic 

invertebrates, adapted to overcome the low level resource supply characteristic of the 

Antarctic continent and its unique environmental conditions. These patterns go some 

way to explain how some invertebrates with flexible ecologies and capabilities to 

accommodate inter-annual variation, have become dominant members of the 

Antarctic benthos.   

 

Owing to the limited duration and discontinuous sampling in previous invertebrate 

reproduction studies, this study is referred to as ‘long-term’. In this context ‘long-

 34



Long-term Reproductive Cycles  Chapter 2 

term’ describes the collection of reproductive material over consecutive sampling 

months for a duration exceeding 1-2 years. In this case a 4-year study was 

undertaken. The reproductive condition of invertebrates can be defined in a number 

of ways. However, a simple and widely accepted indicator of reproductive condition 

is gonad index. This term is defined as the ratio of weight of the gonads to the total 

animal wet weight, multiplied by 100 to convert it to a percentage (Grant and Tyler, 

1983), and was suitable for the purposes of this study. 

 

The main aim of this study was to comment on the long-term reproductive cycles and 

reproductive condition of four shallow water Antarctic marine invertebrates during a 

4-year study, (Ophionotus victoriae, Odontaster validus, Parborlasia corrugatus and 

Heterocucumis steineni). Where possible, comments were also made on the 

relationships between cycle characteristics and variability in the local physico-

chemical environment. A final comment was made on the extent of inter-annual 

variation in the reproductive characteristics of each species and the role of each 

species trophic biology discussed.     
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2.2 Materials and Methods 

 

Sampling 

A long-term study was undertaken at the British Antarctic Survey’s (BAS) Rothera 

Research station (Fig. 2.2.1) on Rothera Point, Adelaide Island to the west of the 

Antarctic Peninsula (67˚34 S 68˚08 W). Four shallow-water, abundant species of 

invertebrate were collected and their long-term gametogenic development analysed. 

These included the brittle star Ophionotus victoriae, the cushion star Odontaster 

validus, the nemertean Parborlasia corrugatus and the sea cucumber Heterocucumis 

steineni (Fig. 2.2.2). The sampling area was characterised by a predominantly cobble 

bottom with rocky boundaries, including a soft bottom area at Hanger Cove. 

    
Fig. 2.2.1 The British Antarctic Survey Rothera Research Station and shallow water sampling sites. 
 

Invertebrates were collected by SCUBA diver from 15-20m depth in North Cove, 

South Cove and Hanger Cove between July 1997 and January 2001 (Table. 2.2.1). A 

minimum of 10 adult individuals was collected each month, except on occasions 

when logistics problems and/or inclement weather precluded sample collection. 

Divers were instructed to collect large adults preferentially, where possible, to 
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maximise the number of reproductively mature individuals sampled. Once collected, 

samples were preserved in 4% formal saline for transport and subsequent storage in 

the UK.  

  A B

  
C D

 
Fig. 2.2.2 The brittle star Ophionotus victoriae (A), the starfish Odontaster validus (B), the nemertean 
Parborlasia corrugatus (C) and the sea cucumber Heterocucumis steineni (D) respectively. 
 
Table. 2.2.1 The monthly sampling regime for each invertebrate collected. 

 

Species Months 
Sampled 

Excluded Months Sample 
Site 

Ophionotus 
victoriae 

September 1997-
December 2000 
(38 months) 

April and June 1999 North and 
Hanger 
Cove  

Odontaster 
validus 

July 1997-January 
2001 (39 months) 

October 1997, April, May and 
September 1999 and September 2000 

South Cove 

Parborlasia 
corrugatus 

July 1997-
November 2000 
(39 months) 

April and June 1999 Hanger 
Cove 

Heterocucumis 
steineni 

September 1997-
January 2001 (39 
months) 

July and August 1999 South Cove 

 

An environmental, long-term oceanographic monitoring programme has been 

maintained at Rothera (RaTS) by the BAS since 1997 and these data continue to be 

collected and archived today. Data from this archive was used to profile the 

environmental variability at Rothera during 1997 to 2001 and was provided by 

Professor Andrew Clarke. This programme compiles weekly recordings of 

temperature (by a SIS reversing thermometer at 15m depth), light (PAR mW/cm2) 

and pigment concentrations (chlorophyll a and phaeophytin concentrations collected 
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at 15m with NIO or Niskin sampling bottles) in 20, 5, 2 and 0.2μm size fractions 

from a CTD cast to a depth of 200m in Ryder Bay (Fig. 2.2.3). A Rothera sediment 

trap has also been situated on the south side of Trolval Island since November 1997 

(Fig. 2.2.3). The trap is anchored to the bottom in 34m of water, and is suspended in 

mid water at 26m collecting particulate matter as it sinks through the water column. 

However, this programme has not provided a continuous record, and sampling was 

prevented in the winter of 2000 and in the aftermath of the Rothera fire in September 

2001.   

 
 
Fig. 2.2.3 The location of the Rothera sediment trap off Trolval Island and the CTD sampling site in 
Ryder Bay. 
 
The invertebrates collected between July 1997 and January 2001 generated a large 

number of histological samples. A proportion of these samples have been processed 

by other workers and completed in accordance with the requirements of 

undergraduate and masters dissertations at the National Oceanography Centre, 

Southampton UK (Appendix Table. 1). The author (Laura Grange) processed the 

remaining samples, and a 4-year data set was completed for each of the four 

invertebrates studied. The author also reviewed and re-analysed all of the data 

generated by other workers to ensure continuity between samples and species 

comparisons. All processing was carried out using the same methodology and data 

analysis at the National Oceanography Centre, Southampton UK.  

 
Biometry 

The size (diameter or length) of each individual was measured (+ 0.1mm) using 

vernier callipers, and where possible, the sex of individuals was determined during 
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dissection. Gonads of each individual were removed and stored in a 70% propan-2-ol 

solution.   

Ophionotus victoriae: The disc diameter of each individual was recorded (Fig. 

2.2.4). This brittle star was pentamerous, where collections of numerous discrete 

gonads were aligned along the proximal part of each arm and were attached to the 

coelomic side of each of ten bursae (two bursa between each arm). The aboral 

surface of the disc was cut away and the gonads removed from two bursae using 

tweezers. Male Ophionotus victoriae possessed a red, sac-like gonad, whereas the 

ovaries were spherical and yellow (Fig. 2.2.4).      

 

  

A B Gonad

GutD
Male

 

GonadC

Gut

Female

 
Fig. 2.2.4 Ophionotus victoriae. Disc diameter measurements showing the aboral and oral view (A), 
and male (B) and female (C) dissections identifying the gut and gonad tissue. 
 

Odontaster validus: Two diameter measurements were recorded for each cushion 

star, ‘R’ denoting radial length and ‘r’ denoting body radius (Mortensen, 1927). The 

appearance of this seastar often varied depending on the volume of water retained 

inside each individual (Fig. 2.2.5). Each seastar had a pair of gonads in each arm, 

which were tuft-like or digitate (Fig. 2.2.5). A single pair was removed using 

tweezers and preserved. The gonad colour of individual starfish ranged from white to 

orange, and although the testes tended to be paler than ovary tissue (Pearse, 1965), 

sexes could only be confirmed by gamete identification. A pair of pyloric caeca, 

composed of a mass of glandular cells, was also removed and preserved. There were 
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two pyloric caeca, or digestive glands, suspended in the coelom of each arm (Fig. 

2.2.5).  

 

     

 

R r A B 

C
Gonad

Pyloric 
caeca 

 
Fig. 2.2.5 Odontaster validus. Variation in body size caused by internal water content (A), 
measurements of radial length (R) and body radius (r) using an aboral and oral view (B) and a 
dissected individual describing the position and appearance of the gonad and pyloric caeca (C).  
 

Parborlasia corrugatus and Heterocucumis steineni: The length of both the 

nemertean and sea cucumber (Fig. 2.2.6 and 2.2.7) were measured using a marked 

piece of string and were compared to a metre rule. The length of each nemertean was 

taken as the retracted length (Fig. 2.2.6) as opposed to an absolute measurement, as 

these nemerteans possess the ability to elongate and contract. Measurements were 

further complicated by the tendency of this large species to fragment. Handling stress 

and preservation caused many of the individuals to splinter into several pieces. The 

frequency with which nemerteans fragment is high (Coe, 1943; Riser, 1974), 

especially under stressful conditions. Another response to stress is to evert the 

proboscis, which is either lost or protrudes from the body wall at various points along 

the nemertean’s length. Nemerteans are characterised by this eversible, muscular 

proboscis, which is contained within a dorsal fluid-filled chamber, the rhyncocoel 

(Gibson, 1994). Proboscis eversion or protrusion from the body wall was common in 

the sampled population and apparent in a small number of individuals in most 
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months (Fig. 2.2.6). 16% of the sampled population everted the proboscis. There was 

a significant difference between the proportion of males and females presenting an 

everted proboscis (Mann Whitney, W = 955.5, P = 0.006) and 66% of individuals 

exhibiting an everted proboscis were male. 

 

The nemertean reproductive system was simple. Gonads alternated with the intestinal 

diverticula to form a regular row along each side of the body. Gametes developed 

from stem cells that aggregated and became enclosed in an epithelium to form the 

gonad (Fig. 2.2.6). A piece of tissue ~5mm thick was dissected from each individual 

in cross section at a position approximately 1/3 of the animal’s absolute length. This 

ensured a position sufficiently anterior of the foregut was sampled and would contain 

gonad. A gelatinous pink substance in the body cavity, identifiable as oocytes, was 

characteristic of fecund females, whereas a whitish substance was unique to gravid 

males. 

  

L 

Proboscis GonadA B

 
Fig. 2.2.6 Parborlasia corrugatus. Retracted length (mm) is measured and the everted proboscis 
labelled (A). A 5mm cross-section of the nemertean is labelled to identify regions of the gonad (B).   
 

Heterocucumis steineni possessed a single gonad (Fig. 2.2.7), composed of a mass of 

tubules emanating from a gonad basis. The gonadal tubules were arranged as two 

tufts and a range of tubule sizes was observed, with the thinnest tubules being pale 

yellow, and the largest tubules being a darker orange containing large oocytes visible 

to the naked eye in females. The entire gonadal mass was removed from the body 

cavity for weighing and a subsample of gonad removed for histological preparation. 

Protrusions of the gonad were visible through the cloaca and body wall in several 

individuals and are common in many species under unfavourable conditions 

(Sedgwick, 1909; Pawson, 1966; Madsen and Hansen, 1994), perhaps caused by the 

stress of capture.     
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Fig. 2.2.7 Heterocucumis steineni. Animal length (mm) is measured (A) and an individual dissected to 
illustrate the position of the gonad (B). The gut and cloaca are also labelled.   
 

Reproductive Condition 

The wet weight (+0.01g) of each animal and individual gonad tissue was recorded 

for gonad index assessment. Gonad index was calculated in the same way for the 

starfish and the sea cucumber using total animal wet weight: 

 

GI = (GW*100)/BW Where GI = Gonad Index (%) GW = Gonad mass (g) BW = 

Total animal mass (g) 

 

However, this calculation was modified for the brittle star. Disc diameter and disc 

depth was used to calculate disc volume. Many individuals had part of or all of an 

arm missing, therefore a gross wet weight measure for gonad index was not possible 

and instead was calculated by the following formula: 

 

GI = (GW*100)/DV Where GI = Gonad Index (%) GW = Gonad mass (g) DV = 

Disc Volume (mm3).  

 

Another simple measure of reproductive condition was also calculated using the 

gonad index data. The percentage change in the ovary and testis index was calculated 

between the most gravid, mature months and the months when individuals were 

spent. These data were compared across the study period and for each species, with 

the exception of Parborlasia corrugatus. It was not possible to calculate a reliable 

gonad index for the nemertean owing to there being no discrete gonad.    
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Histological Preparation 

Each gonad sample was dehydrated in three two-hourly changes of 100% propan-2-

ol then transferred to a clearing solution (Xylene) for 4-6 hours. The nemertean 

gonad samples were retained in xylene for a further 6-8 hours owing to the larger 

size and thickness of the tissue sections. All samples were impregnated in molten 

wax in a thermally controlled oven (70ºC) for a period of 12-15 hours, after which all 

samples were wax embedded. The liquid wax used to impregnate the nemertean 

samples was changed for fresh wax half way through the 12-15 hours oven time to 

remove any excess xylene solution, which appeared to leach from the samples and 

compromise the embedding process. All wax blocks were sectioned at 7μm on a 

standard microtome, where provision was made for duplicate/triplicate slides to be 

produced for each sample. The tissue sections were mounted onto slides and stained 

with Haemotoxylin ‘Z’ and Eosin (Cell Path UK). A DPX mountant was used to 

coverslip the slides. 

 

Oocyte Image Analysis 

Images of each slide were captured using the software Rainbow Runner (Jandell 

Scientific Software) and the oocyte feret diameter (μm) of at least 100 oocytes from 

each individual measured using SigmaScan Pro4 (Jandell Scientific Software). The 

feret diameter calculates the diameter of each oocyte assuming the best-fit spherical 

size of the oocyte. Only oocyte sections possessing a nucleus were measured. 

Previtellogenic oocytes were smaller with a darkly stained, basophilic nucleus or 

nucleolus, whereas vitellogenic oocytes were larger, coarse looking and eosinophilic 

(Hendler, 1991) (Fig. 2.2.8A). Not all oocyte sections yielded 100 measurable 

oocytes. This was mainly owed to either poor tissue processing, especially in the case 

of Heterocucumis steineni, or limited amounts of gonad material being available. A 

minimum of 40 oocytes was measured in these instances. Consequently, any females 

possessing < 40 measurable oocytes in the gonad sections were removed from any 

further analysis.  

 

Staging Male Maturity 

Males were described and staged based upon the appearance and characteristics of 

the testes. Female stages are also included in the figures below to illustrate the 
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maturation process in the females collected (Fig. 2.2.8A, 2.2.9A, 2.2.10A and 

2.2.11A). However, the female stages were not used in any further analysis as the 

oocyte size data generated much more useful information. 

 

Five stages were identified in Ophionotus victoriae, specific to criteria distinguishing 

differences in the quantity and distribution of spermatozoa in the testes (Fig. 2.2.8B). 

Stage I: The testes are small and contain no spermatozoa. However, spermatocytes 

may be visible as a thin layer toward the periphery of the gonad. 

Stage II: Spermatozoa have rapidly increased in number, occurring in clusters but 

eventually radiating out into rows. Some spermatozoa also line the lumen of the 

testes, where the peripheral spermatocyte layer has visibly shrunk. 

Stage III: The testes have increased in size and the spermatocyte layer has reduced 

further in thickness. Spermatozoa extend to the lumen in chains and spermiogenesis 

is rapid. 

Stage IV: Spermatozoa occupy the entire lumen and have significantly increased in 

number explaining the increase in the size of the testes. Toward the end of this phase 

a whorl of spermatozoa develops, which arises from the remaining testicular mass, 

becomes separated and resides in the centre of the testes. The latter part of this stage 

precedes spawning. 

Stage V: The testes are reduced in size and are similar in appearance to their 

immature stage I, specifically in terms of a thin spermatocyte layer. The lumen may 

also contain undischarged spermatozoa. 
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Fig. 2.2.8 Ophionotus victoriae. Female (A) and male (B) histological sections identifying progressive 
stages in gametogenic development. PO = previtellogenic oocyte, VO = vitellogenic oocyte, N = 
nucleus, BP = by-products, SC = spermatocytes, SG = spermatogonia and SZ = spermatozoa. 
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Fig. 2.2.8 contd Ophionotus victoriae. Female (A) and male (B) histological sections identifying 
progressive stages in gametogenic development. PO = previtellogenic oocyte, VO = vitellogenic 
oocyte, N = nucleus, BP = by-products, SC = spermatocytes, SG = spermatogonia and SZ = 
spermatozoa. 
 

Male Odontaster validus were staged according to Pearse (1965). Pearse describes at 

least 5 histological stages, which are devised according to the relative amount and 

maturation stage of sperm in the testes (Fig. 2.2.9 B). A sixth stage (VI) describes the 

testes when spent. 

Stage (I): Spermatogonia are present throughout the year but are especially abundant 

during August and December. Spermatogonia occur at the base of the epithelium and 

are characterised by a relatively large nucleus (4-6µm).  

Stage (II): Spermatogonia give rise to spermatocytes, which have smaller nuclei (3-

4µm) with dispersed, thread-like chromatin and are commonly seen during July and 

May, most notably between September and January. 
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Stage (III): Early spermatids are visible in January. Late spermatids are formed by 

the concentration of the chromatin and the loss of cytoplasm (April). The flagellum 

develops. 

Stage (IV): Free in the central lumen of the testes are small (1.5µm), mature 

spermatozoa, each with an epical acrosome, a nucleus and a long flagellum (August). 

Stage (V): Animals collected during July to September normally have large amounts 

of active sperm in the testes. Spawning occurs between August and October leaving 

a few lobes of residual sperm. 

Stage (VI): Testes collected from mid-September to February are nearly devoid of 

active sperm and instead have a thick germinal epithelium. 

 

 

A
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Fig. 2.2.9 Odontaster validus. Female (A) and male (B) histological sections identifying progressive 
stages in gametogenic development. PO = previtellogenic oocyte, VO = vitellogenic oocyte, SC = 
spermatocytes, SG = spermatogonia and SZ = spermatozoa. 
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Fig. 2.2.9 contd Odontaster validus. Female (A) and male (B) histological sections identifying 
progressive stages in gametogenic development. PO = previtellogenic oocyte, VO = vitellogenic 
oocyte, SC = spermatocytes, SG = spermatogonia and SZ = spermatozoa. 
 

Male Heterocucumis steineni were staged according to the broad descriptions 

illustrated in Foster and Hodgson (1995) and divided into 4 main maturity stages plus 

a spent stage (Fig. 2.2.10B): 

Stage I: Gonad recovery post spawning: Any remaining spermatozoa are 

phagocytosed and removed from the testes as the tubules regress. The gonad is 

mainly composed of connective tissue and a thick epithelial layer. 

Stage II: Initial growth: Gametogenesis resumes and the wall of the gonadal tubules 

begin to thicken. Early sperm stages are visible in the gonad tubules.   

Stage III: Mature growth: Gametogenesis is at a mature stage and the tubules 

approach maximum diameter. 

Stage IV: Ripe/Gravid male: Maximum tubule diameters are present in the testes and 

are packed with spermatozoa (40-90% tubule volume). Spaces may appear in the 

tubules during this period owed to partial spawning. 

Stage V: Spent/Spawned: There is a rapid decrease in tubule diameters 

corresponding to the spawning of mature spermatozoa and individuals being spent. 

Spermatozoa content of the tubules drops to < 10%. 
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I II III

 
Fig. 2.2.10 Heterocucumis steineni. Female (A) and male (B) histological sections identifying 
progressive stages in gametogenic development. OG = oogonia, PO = previtellogenic oocyte, VO = 
vitellogenic oocyte, SG = spermatogonia and SZ = spermatozoa. 
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Fig. 2.2.10 contd Heterocucumis steineni. Female (A) and male (B) histological sections identifying 
progressive stages in gametogenic development. OG = oogonia, PO = previtellogenic oocyte, VO = 
vitellogenic oocyte, SG = spermatogonia and SZ = spermatozoa. 
 

Because of the paucity of information both describing and reviewing gametogenesis 

in Parborlasia corrugatus and nemerteans in general, individuals were staged by 

comparison with observations of the other three species using simple comparisons 

between slides (Fig. 2.2.11B). Five maturity stages were recognised plus a spent 

stage (Stage VI) similar to that described for Odontaster validus (Pearse, 1965).  
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Fig. 2.2.11 Parborlasia corrugatus. Female (A) and male (B) histological sections identifying 
progressive stages in gametogenic development. PO = previtellogenic oocyte, VO = vitellogenic 
oocyte, SC = spermatocytes, SG = spermatogonia and SZ = spermatozoa. 
 

Fecundity 

Fecundity of Ophionotus victoriae was determined according to Sumida et al., 

(2000) from individuals collected during the months immediately before spawning. 

Individuals were dissected and all gonads counted. Three gonads were selected from 

each individual to act as one sample and two replicates. Images were captured from 

ovarian smear preparations using the software package Rainbow Runner and the 
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gametes counted using SigmaScan Pro4. The number of vitellogenic oocytes was 

obtained as a measure of the actual instantaneous fecundity (egg number per gonad x 

gonad number) and the overall average egg number in each individual taken to 

produce an average fecundity for each year. The fecundity data were size-corrected 

to a standard female (standard female: average female disc diameter = 27mm): 

 

(Individual fecundity/Disc diameter) * Standard female disc diameter (27mm) 

 

A measure of reproductive output was calculated from the percentage decrease in 

gonad index over the spawning period of each sample year, and applied to the four 

yearly egg counts to determine the approximate number of eggs spawned.  

 

Egg counts of the remaining species would have required serial sectioning of the 

gonad. Therefore owing to time and fiscal constraints, further species fecundity 

assessments were not undertaken.      

 

Nutritional Analysis 

The gut tissue from ten brittle star individuals of a similar-size from the austral 

winter, summer and spawning period from each sampling year (1997-2000) was 

dissected and weighed wet (+0.01g) to calculate gut index (GtI):  

 

GtI = (GtW*100)/DV, where GtW = gut mass (g) and DV = disc volume (mm3). 

 

The pyloric caeca of the seastars were also weighed wet (+0.01g) and the pyloric 

caeca index (PI) calculated using total animal wet weight: 

 

PI = (PW*100)/BW, where PW = pyloric caeca wet weight (g) and BW = total 

animal wet weight (g). 

 

A simple measure of feeding effort was calculated using the percentage change in the 

pyloric caeca index for both males and females. This was determined from the 

months when animals appeared most satiated, with the largest proportion of stored 

material in the pyloric caeca, compared to months of relative starvation when the 
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pyloric caeca were comparatively empty. These data were compared annually and 

seasonally over the sampling period.   

 

Nutritional measurements were not possible for the nemertean or the sea cucumber. 

However, a number of nemertean individuals did display internal colouration 

particularly around the gut, exhibiting green and purple secretions possibly owed to 

dietary differences between individuals.    

 

Statistical Analysis 

Statistical techniques followed the methods of Fowler et al., (1998) and were carried 

out using Minitab 13.0. The majority of data were not normally distributed 

(according to the Anderson-Darling Normality test) and were tested using non-

parametric statistical analyses (Appendix Table. 2). However, where appropriate 

parametric tests were used on any normally distributed data. The sex ratio of each of 

the sampled populations was assessed using the Chi-Square test. Comparisons in size 

and reproductive measurements were made between the individual sampling years 

and the sampling period as a whole (1997-2001). Kruskal-Wallis or One-Way 

ANOVA tests were used to identify any significant differences in animal size, organ 

indices and the oocyte data over the sampling period. Differences between individual 

sampling years were tested using the Mann Whitney non-parametric statistical test. 

The non-parametric Wilcoxon test for matched pairs was used to assess differences 

between the males and females collected. Correlative techniques were used to test the 

relationship between both biological and physical variables and where necessary data 

were ranked before being statistically analysed (Pearsons Product Moment 

Correlation and Regression analysis).      
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2.3 Results 

 

Physical Environment 
Annual ice cover in Rothera was variable during 1997-2000, with greatest coverage 

during the austral winter of 1997. The extent of ice cover was much reduced in the 

following years of the study and the occurrence of ice in the latter period was patchy 

in comparison with the extent observed in 1997. Temperatures ranged between          

-1.89ûC in June 1997 and +1.42ûC in February 1999 respectively, with an annual 

peak during January/February and a minimum during June/July each year (Fig. 

2.3.1). The annual temperature cycle was closely tracked by the concentration of 

photosynthetic pigments in the waters around Rothera. Chlorophyll a concentrations 

ranged between 23mg m-3 in February 1998 and <0.03mg m-3 in September 1997. 

Maximum chlorophyll a concentrations varied between 1997-2000, with a lower 

peak in 1999 compared to 1998 and 2000.  Phaeophytin pigment concentrations 

showed a similar pattern but were generally more consistent between years at the 

time of the bloom event. Concentrations peaked at 12.55mg m-3 in January 2000 and 

a minimum of 0.05mg m-3 was recorded in June 1998. Defined phytoplankton 

blooms were noticeable during the austral summers of 1998, 1999 and 2000: 

February 98 (23.28mg m-3), February 99 (13.42mg m-3), and a series of peaks 

between December 99 and February 2000 (23.71, 18.69, 20.96 and 20.04mg m-3). 

The phytoplankton blooms generally lasted for 8-10 weeks. The annual light cycle, 

measured as averaged PAR data between 15 and 20m, ranged between 0 mW/cm2 in 

January 1998 and 16.28 mW/cm2 in December 1999. Light levels in 1998 also 

peaked during late November-early December (8.49 mW/cm2). In some years the 

light climate peaked either side of the bloom event, before dipping during the 

intervening period. The sedimentation data were reliable in a comparative sense, 

highlighting the relative differences between years. Sedimentation varied markedly 

between 1997-2000, with a remarkable peak during the austral summer of 1998-1999 

(550mg day-1). Moderate flux levels were observed in the summers prior to and after 

this maximum event. The sedimentation events observed in 1998-1999 and 1999-

2000 showed a wider coverage with periods of 240 days (September 98-May 99) and 

180 days (November 99-May 00) respectively, compared to a much more limited 

period in 1997-1998 (91 days; November 97-February 98). 
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Fig. 2.3.1 Rothera Time Series Water Sampling Programme (RaTS) environmental data (1997-2001). 
Julian Day scale beginning from 1 = 1 January 1997. Data provided by A. Clarke. 
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Ophionotus victoriae 

Sex Ratio and Disc Diameter  
377 individuals were dissected of which 208 (55%) were male and 169 (45%) were 

female (Table. 2.3.1). The sex ratio of the sampled population differed only slightly 

from a ratio of 1:1 with a small bias toward males (χ2 = 4.04, P < 0.05). The 

prevalence of males was significant in the smaller sample population collected 

during the austral summer of September 97-December 97 (χ2 = 6.43, P < 0.05) and 

January 98-December 98 (χ2 = 6.13, P < 0.05). However, the sex ratio was 1:1 in the 

samples collected in 1999 and 2000 (χ2 = 0.05 and χ2 = 0.31, N.S. respectively).  

 
Table. 2.3.1 Ophionotus victoriae. Sex ratio of males and females collected between 1997 and the end 
of 2000 using a Chi Square statistical test. 
  

Year   Male  Female    Total Individuals 

1997 (Sep-Dec) 28                    12                 40 
1998 73                    46                119 
1999 51                    49                100 
2000                        56             62               118 

 

Disc diameters ranged from 11.2mm to 38.1mm (mean = 26.46mm, Standard 

Deviation (SD) = 3.57, n = 378) (Fig. 2.3.2). The maximum disc diameter observed 

for both males (34.9mm) and females (38.1mm) exceeded the previous value 

reported for this species collected from the high Antarctic (32mm) (Dahm, 1999). 

The smallest individual in this study, an 11.2mm female had mature gonads, and was 

collected in October 2000. Therefore, the minimum size of this species at sexual 

maturity (in females) must be at least 11.2mm. The range of disc diameters between 

the male and female sample population did not differ significantly (Wilcoxon Test, 

W+ = 295 W- = 446, N = 38, P = 0.278). However, a one-way ANOVA of disc 

diameter confirmed a significant difference over the study period (F = 5.21, P < 

0.001), with larger ophiuroids being collected toward the end of the study (Fig. 

2.3.2). However, it is impossible to say whether this apparent increase in size is real 

or just a result of how different divers responded to instructions, especially as larger 

specimens were preferred to ensure reproductive maturity. Therefore, where 

necessary, some data are scaled to a standard individual to remove the affect of size.   
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Fig. 2.3.2 Ophionotus victoriae. Individual male (●) and female (○) disc diameter values for animals 
sampled on a monthly basis between September 1997 and December 2000. The larger range in disc 
diameter was recorded for female Ophionotus victoriae with a minimum disc diameter of 11.2mm and 
a maximum of 38.1mm (mean = 27.0, SD = 3.67, n = 169). Male disc diameter ranged from 17.6mm 
to a maximum of 34.9mm (mean = 26.05, SD = 3.47, n = 208). 
 

Fecundity 

The maximum average actual fecundity observed was 248,000 eggs per ripe 

individual in 1999 (Fig. 2.3.3).  
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Fig. 2.3.3 Ophionotus victoriae. Fecundity data for females sampled between 1997 and 2000. Egg 
number per gonad (●), average egg number per individual (○) and average egg number per year (▲). 
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However, mean fecundity varied from 100,000 eggs per individual during the ripest 

months of 1997 and 1998 and 220,000 during the late austral spring of 1999. The 

average fecundity of O. victoriae in 2000 was 160,000 eggs.  

 

There was significant variability within actual fecundity (Fig. 2.3.3) over the four 

spawning periods (One-Way ANOVA, F = 10.04, P < 0.001). Differences were also 

observed when fecundities were compared between individual years (Table. 2.3.2). A 

Tukey�s test for pairwise comparisons identified the largest differences between 

fecundities in 1997 and 1999 and 1998 and 1999. In contrast there was no significant 

difference between the fecundities observed in 1997 and 1998.  

 
Table. 2.3.2 Ophionotus victoriae. Comparisons in actual fecundity and overall gonad index between 
individual years (1997-2001). The variation in fecundity and gonad index of individual ophiuroids 
was tested between years. A 2-sample T-test or a non-parametric Mann Whitney test was used 
depending on if the data were normally distributed (Appendix Table. 2). A significant difference was 
indicated by a P < 0.05. A test for equal variance was also undertaken taken when a 2-sample T-test 
was employed and the results included in the assumptions of the test (Appendix Table. 3).  
 
Year Comparison Test and Test Statistic    P value      DF   

1997-1998 Fecundity 2-sample T-test, T value = -0.11    0.911         16  
1997-1999 Fecundity 2-sample T-test, T value = -4.84   < 0.001       16 
1997-2000 Fecundity 2-sample T-test, T value = -2.51    0.023         16 
1998-1999 Fecundity 2-sample T-test, T value = -4.32     0.001         16 
1998-2000 Fecundity 2-sample T-test, T value = -2.15    0.047         16 
1999-2000 Fecundity 2- sample T-test, T value = 2.72    0.015         16 
1997-1999 GI Mann Whitney, W = 1749.0   < 0.001 
1997-2000 GI Mann Whitney, W = 2034.0   < 0.001 
1998-1999 GI Mann Whitney, W = 10033.0   < 0.001 
1998-2000 GI             Mann Whitney, W = 11088.0        < 0.001 

 

The number of gonads was high and variable (80-240) and fecundity was disc 

diameter dependent (r2 = 0.725, P < 0.05) (Fig. 2.3.4).  
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Fig. 2.3.4 Ophionotus victoriae. Correlation between individual actual fecundity and individual disc 
diameter (+0.01mm). A linear regression was used and the variables were significantly correlated  (r2 

= 0.725, P < 0.05). 
 

Actual fecundity was also scaled on a per millimetre basis and calculated for a 

standard female (average size) of 27mm disc diameter (Fig. 2.3.5). Although the 

calculation of a proper scaling co-efficient would have been preferable, the limited 

data available prevented the calculation of such a relationship and slope. For a 

standard female (27mm disc diameter) fecundity was highest in 1999 (~2.0x105 + 

37570 eggs), with a more modest accumulation of eggs in 1997 and 1998 (1.1x105 + 

42096 and 1.2x105 + 57963 eggs). A standard female in 2000 produced 

approximately 1.5x105 + 36786 eggs. Comparisons between Figure 2.3.1, Figure 

2.3.3 and Figure 2.3.5 suggest that the annual pattern in fecundity between 1997-

2000 was uncoupled with the preceding chlorophyll maxima in the waters around 

Rothera, but was closely coupled with the magnitude of the preceding benthic 

sedimentation event (8-9 months previous).  
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Fig. 2.3.5 Ophionotus victoriae. Annual fecundity data calculated per millimetre disc diameter for a 
standard female (27mm disc diameter). The overall mean fecundity (●) is plotted and the error bars 
represent + SD (N = 3). 
 

Reproductive Condition 

The gonad index showed significant inter-annual variation (Fig. 2.3.6). The testis 

index ranged from 0.001 in October 1998 to 1.9 in September 1999 (mean = 0.2, 

SD= 0.30, n = 208), whereas the ovary index ranged from 0.01 in January 1999 to 

1.6 in October 2000 (mean = 0.2, SD = 0.25, n = 169). Four spawning events were 

apparent from the data, which were similar in their timing during November-

December of each year, but differed markedly in magnitude between years. In 

November 1997 spawning was limited (13% decrease), as no significant change in 

gonad index was evident. A moderate peak in the index occurred a year later in 1998 

(0.5) with a spawning event evident in December, indicated by a 90% reduction in 

gonad index. Gonad index was high in 1999 (1.9) and 2000 (1.6), where a percentage 

decrease of 96% and 89% was observed in gonad index respectively.  

Inter-annual variation in reproductive condition was synchronous between the male 

and females (Wilcoxon Test, W+ = 471 W- = 232, N = 37, P = 0.073). However, 

there was a significant difference in the overall gonad index during the sampling 

period (Kruskal-Wallis, H = 65.80, P < 0.001). There was no significant difference 

between the gonad indices of 1997 and 1998 (Mann Whitney, W = 3290.0, P = 

0.722) or between 1999 and 2000 (Mann Whitney, W = 11781.0, P = 0.074). 

However, significant differences were found between 1997 and 1999, 1997 and 

2000, 1998 and 1999 and 1998 and 2000 (Table. 2.3.2). The trend in gonad index 
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was similar to the variation in actual fecundity during the study period. Comparisons 

between Figure 2.3.1, 2.3.3 and 2.3.6 show that cycles in both reproductive 

characteristics were not strictly in phase with the annual sedimentation event at 

Rothera, although the patterns in all three characteristics were similar, e.g. a high 

fecundity followed a good nutritional season and a reduced fecundity occurred after a 

season of low surface flux.  
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Fig. 2.3.6 Ophionotus victoriae. Individual male (●) and female (○) gonad index values for animals 
sampled on a monthly basis between September 1997 and December 2000. 
 

The reproductive output calculations allowed an estimate of the number of eggs 

spawned. According to the 13%, 90%, 96% and 89% decrease in gonad index over 

the spawning periods of 1997, 1998, 1999 and 2000 respectively, spawning was a 

magnitude greater in 1999 (2x105 eggs) and 2000 (1.4x105 eggs) compared with the 

fecundity in 1997 (Table. 2.3.3). A smaller number of eggs were released in 1998 

(9.4x104 eggs), and the lowest spawning event was recorded in 1997 (1.3x104 eggs). 
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Table. 2.3.3 Ophionotus victoriae. Reproductive output is presented as the number of spawned eggs 
in individual years (1997 to 2001), calculated from the percentage decrease in female gonad index 
each year and average egg number produced each year by gravid females (egg counts were averaged 
from 3 females, and the number of eggs quantified from three ovaries in each female). 
 

Year  Gravid Percentage Post-spawned  Spawned 
  Fecundity Decrease (%) Fecundity         Eggs                              
1997                1.02E+5          12.5                8.92E + 4                     1.27E + 4 
1998                1.05E+5           90                1.05E + 4                     9.44E + 4 
1999                2.16E+5           96                8.64E + 3                     2.07E + 5 
2000             1.57E+5  88.9             1.75E + 4             1.40E + 5 

 
Oocyte Feret Diameter 

There was a marked intra- and inter-annual variation in mean oocyte size (oocyte 

feret diameter) between 1997-2000 (Kruskal-Wallis, H = 511.99, P < 0.001) (Fig. 

2.3.7).  
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Fig. 2.3.7 Ophionotus victoriae. Mean oocyte feret diameter (○) sampled on a monthly basis between 
September 1997 and December 2000. The overall mean oocyte size is plotted and the error bars 
represent + SD. Average male maturity stage is plotted (●) and male maturity stage V is plotted as 
zero to convey the testes as being spent. 
 

Four spawning events were identified. The first was moderate and marked the release 

of oocytes in the late austral spring/ early summer of 1997, where oocyte sizes 

decreased from an average of 116µm (SD = 40.1, n = 100) in September 1997 to 

42µm (SD = 24.4, n = 509) in January 1998. The maximum average oocyte size was 

observed in November 1998 (mean = 149µm, SD = 41.1, n = 341) followed by a 
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large spawning event and a reduction in average oocyte size to 34µm (SD = 17.0, n = 

615) in January 1999. This decrease in size translated to a significant loss in gamete 

volume consistent with the decrease in gonad index. The average oocyte size 

increased during 1999 but only reached an average of 93µm (SD = 33.5, n = 467) in 

November 1999. Spawning followed this period, but only reduced the average oocyte 

size to 73µm (SD = 32.7, n = 464) in January 2000. Average oocyte size increased to 

128µm (SD = 39.6, n = 681) in November 2000 and declined until the end of the 

study period, consistent in timing with the other three spawning events.  

 

The proportion of previtellogenic and vitellogenic oocytes differed significantly 

between months sampled (Mann Whitney, W = 996.0, P < 0.0001). The changeable 

pattern in oocyte maturity stages during each year suggests that this invertebrate is a 

seasonal reproducer, which is also illustrated in the pattern of oocyte size classes and 

the proportion of oocytes within each size category throughout the sampling period 

(Fig. 2.3.8). The largest vitellogenic oocytes predominated in the ovaries of gravid 

females during the early austral spring- early austral summer and are noticeably 

absent during late summer and early winter, when the oocyte pool was composed of 

previtellogenic generations of oocytes. 

 

The reproductive cycle had a long-term component in addition to the seasonal 

signature described above (Fig 2.3.8). This figure shows overlapping generations of 

oocytes. The first generation of pre-vitellogenic oocytes has started developing 

before spawning of the preceding generation, which is especially clear in oocyte 

frequency data for October/November 1997. These data illustrate a bimodal 

distribution of oocyte sizes showing the presence of two generations of oocytes and 

an 18-24 month gametogenic cycle. All of the individual oocyte size distribution 

histograms, for every female ophiuroid collected, are contained in Appendix Figure 

1.  
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Fig. 2.3.8 Ophionotus victoriae. Pooled oocyte feret diameter histograms (+ SD), where N = number 
of females, n = number of eggs counted (1997-2000) and monthly box plots covering the oocyte feret 
diameter range (the left and right hand limits of the box represent the 25th and 75th percentiles; box 
whiskers represent the 10th and 90th percentiles; the median (-) and mean (-) of each oocyte range is 
also shown). 
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Fig. 2.3.8 contd Ophionotus victoriae. Pooled oocyte feret diameter histograms (+ SD), where N = 
number of females, n = number of eggs counted (1997-2000) and monthly box plots covering the 
oocyte feret diameter range (the left and right hand limits of the box represent the 25th and 75th 
percentiles; box whiskers represent the 10th and 90th percentiles; the median (-) and mean (-) of each 
oocyte range is also shown). 
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In O. victoriae both oocyte number and average oocyte size changed each year 

emphasising the large inter-annual variation in the reproductive ecology of this 

animal.   

 

Male Maturity 

The Male Maturity Index ranged between being spent and being at an immature 

gametogenic stage (I-II) during the austral summer of each year (Fig 2.3.7). The 

latter was pronounced in January 2000 when the testes were spent. The more mature 

stages (III-IV) were found as early as the late austral winter up until the spawning 

season. Male and female spawning was synchronous.  

 

Reproductive Cycle 

Mean egg size was the only character that proved to be normally distributed 

(Anderson Darling Normality, A-squared = 0.521, P = 0.172). Therefore, these data 

were ranked prior to performing correlations. Some environmental and biological 

factors appeared correlated (Table. 2.3.4). Temperature was the only environmental 

factor that had a significant correlation with the mean maximum oocyte size 

(Pearsons Product Correlation, -0.409, P = 0.018), especially when the effect of 

chlorophyll was accounted for (Pearsons Product Correlation, -0.520, P = 0.002). 

The relationship between the mean maximum oocyte size and all the environmental 

factors combined (temperature and pigments) proved significant (r = 5.84, P = 

0.006). This was also the case for gonad index (r = 4.97, P = 0.039). 

  
Table. 2.3.4 Correlations between reproductive (average gonad index and average oocyte size) and 
environmental variables (chlorophyll, phaeophytin and temperature) between 1997 and the end of 
2000. All data were ranked prior to analysis and tested using Pearson�s Product Moment Correlation. 
A P < 0.05 indicated that variables were significantly correlated. 
  

Correlated Variable              Test Statistic         P-value   

Chlorophyll and Phaeophytin 0.910                      P < 0.001 
Temperature and Chlorophyll 0.747                      P < 0.001 
Temperature and Phaeophytin 0.695                      P < 0.001 
Gonad Index and Egg Size                        0.500                      P = 0.003 
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Nutritional condition 

Some inter-annual variation was evident in the gut index (Fig 2.3.9) and followed a 

similar trend to gonad index over the three-year sampling period, having two low-

value years (1997-1998) and two higher-value years (1999-2000). There was a lag of 

approximately three months between the peak gut index and peak gonad index. This 

was especially evident during 1999 and 2000. A marked decline occurred in the gut 

index during the spawning period of 1999 and 2000. Patterns in these data suggest an 

almost monotonic increase in gut index over the sampling period and this may reflect 

an underlying long-term component (~4 years). These patterns are not in phase with 

the cycle in the gonad or the annual sedimentation events at Rothera.  
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Fig. 2.3.9 Ophionotus victoriae. Monthly gut index values for October 1997 to December 2000. The 
overall mean gut index is plotted (●) and the error bars represent + SD (N = 10). 
 

An interesting discovery was observed in three brittle star individuals. Each 

exhibited a small polycheate within the disc, within the digestive tissue. A single 

specimen was sent to the Natural History Museum for identification. Polychaetes 

have been studied which live inside the guts of sea urchins, however most are 

commensal living on the exterior of their host when associated with echinoderms (G 

Patterson, pers. comm.). Unfortunately, the preserved state of the specimen was poor 

and little information was forthcoming, although the specimen was classed as 

Nepthyidae (G Patterson, pers. comm.).  



Long-term Reproductive Cycles  Chapter 2 

 66

Odontaster validus 
 

Sex ratio and Size Characteristics  

407 individuals were sampled of which 222 (54.5%) were male and 182 (44.7%) 

were female. 3 (0.7%) individuals collected during 1998 had both male and female 

characteristics and were classed as hermaphrodites (Table. 2.3.5). The sex ratio of 

the sampled population was slightly biased toward males (χ2 = 3.84, P < 0.05). This 

was not true for all years (1997 χ2 = 0.076, 1998 χ2 = 0.195 and 1999 χ2 = 0.134, 

N.S.) except 2000, where males were more numerous (χ2 = 8.377, P < 0.01).  

 
Table. 2.3.5 Odontaster validus. Sex ratio of males and females collected between 1997 and the 
beginning of 2001 using a Chi Square statistical test. 
 

Year   Male  Female Total Individuals 

1997 (Jul-Dec) 32  34                   66   
1998   69  64  133 (+ 3 hermaphrodites)  
1999   35  32  67   
2000 (Jan-Jan 2001) 86  52  138   

 

Animal wet weight ranged from 5.92g to 37.83g (mean = 15.92g, SD = 5.46, n = 

407) (Fig 2.3.10).  
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Fig. 2.3.10 Odontaster validus. Individual male (●), female (○) and hermaphrodite (▲) wet weight 
values (+0.01g) sampled on a monthly basis between July 1997 and January 2001. Female wet weight 
ranged between 6.37g and 37.83g (mean = 15.64g, SD = 5.54, n = 182) and male wet weight ranged 
between 5.92g and 34.70g (mean = 16.19g, SD = 5.41, n = 222). 
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The smallest individual collected during the study was male (5.92g). This animal was 

collected during June 1998 and was reproductively mature. The smallest female 

(6.37g), was collected during October 1998 was mature. The range in animal wet 

weight between the males and females sampled did not significantly differ 

(Wilcoxon Test, W+ = 432 W- = 271, N = 37, P = 0.228). The wet weight variation 

was also examined between years. Some years were significantly different from 

others (Table. 2.3.6). 

 
Table. 2.3.6 Odontaster validus. Comparisons in wet weight (+0.01g), radial length (R +0.01mm) and 
body radius (r +0.01mm) between individual years (1997-2001). The variation in wet weight, radial 
length and body radius of individual starfish was tested between years. A 2-sample T-test or a non-
parametric Mann Whitney test was used depending on if the data were normally distributed (Appendix 
Table. 2). A significant difference was indicated by a P < 0.05. A test for equal variance was also 
undertaken when a 2-sample T-test was employed and the results included in the assumptions of the 
test (Appendix Table. 4). 
 
 
Characteristic Year  Test Statistic  P-Value DF 

Animal Wet Weight    1997-98      W = 6784.0  P = 0.828   
   1997-99 W = 3940.5  P = 0.030 
   1997-00 W = 4885.0  P < 0.001 
   1998-99 W = 12836.5  P = 0.009 
   1998-00 W = 14968.0  P < 0.001 
   1999-00 W = 6220.0  P = 0.088 
Radial Length  1997-98 T = 3.21  P = 0.002 200 
   1997-99 T = 2.58  P = 0.011 118 
   1997-00 T = 6.35  P < 0.001 160 
   1998-99 T = -0.03  P = 0.975 201  
   1998-00 T = 3.22  P = 0.001 272 
   1999-00 T = 2.50  P = 0.013 203 
Body Radius  1997-98 W = 7384.0  P = 0.079 
   1997-99 W = 4412.5  P = 0.968 
   1997-00 W = 8784.5  P < 0.001 
   1998-99  W = 13267.5  P = 0.125 
   1998-00 W = 21628.5  P  < 0.001 
   1999-00 W = 8673.5  P  < 0.001 

 

Radial length (�R�) ranged from 19.00mm to 47.00mm (mean = 34.43mm, SD = 

5.54, n = 407 Fig. 2.3.11) and body radius (�r�) ranged from 10.00mm to 25.00mm 

(mean = 16.20mm, SD = 2.65, n = 407 Fig. 2.3.12). The range in radial length and 

body radius between the males and females sampled did not significantly differ (R = 

Wilcoxon Test, W+ = 420 W- = 246, N = 36, P = 0.174, r = Wilcoxon Test, W+ = 

384.5 W- = 281.5, N = 36, P = 0.423). The variation between both measurements 
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was also recorded between years, and again some years were significantly different 

from others (Table. 2.3.6).  
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Fig. 2.3.11 Odontaster validus. Individual male (●), female (○) and hermaphrodite (▲) radial length 
values (R +0.01mm) sampled on a monthly basis between July 1997 and January 2001. 
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Fig. 2.3.12 Odontaster validus. Individual male (●), female (○) and hermaphrodite (▲) body radius 
values (r +0.01mm) sampled on a monthly basis between July 1997 and January 2001. 
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All size variables were significantly correlated (Table. 2.3.7 and Fig. 2.3.13) and 

there was significant variation in all the size variables over the sampling period 

(Table. 2.3.8).  

 
Table. 2.3.7 Odontaster validus. Correlations between animal wet weight (+0.01g), radial length (R 
+0.01mm) and body radius (r +0.01mm) collected between 1997 and early 2001. All data were ranked 
and tested using Pearson�s Product Moment Correlation. A P < 0.05 indicated that variables were 
significantly correlated. 
 
Comparison   Test Statistic  P-Value 

Animal Wet Weight v R 0.585   P < 0.001 
Animal Wet Weight v r 0.588   P < 0.001 
R v r    0.705   P < 0.001 

 
Table 2.3.8 Odontaster validus. Comparisons in wet weight (+0.01g), radial length (R +0.01mm) and 
body radius (r +0.01mm) over the entire study period (1997-2001). The wet weight, radial length and 
body radius of individual starfish were compared. A One-way ANOVA or Kruskal-Wallis non-
parametric analysis was used depending on if the data were normally distributed and a significant 
difference was indicated by a P < 0.05.  
 

Characteristic  Test Statistic  P-Value 

Animal Wet Weight  H = 39.68  P < 0.001 
R    F = 5.15  P < 0.001 
r    H = 39.46  P < 0.001 
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Fig. 2.3.13 Odontaster validus. Non-liner (cubic) regression between radial length (●) and body 
radius (○) (+0.01mm) with wet weight (+0.01g) (R = 0.589 and 0.619 respectively, P < 0.0001) and 
linear regression between body radius and radial length. (R = 0.711, P < 0.0001). 
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Reproductive condition 

The gonad index did show evidence of inter-annual variation (Fig. 2.3.14). The testis 

index ranged from extreme values of 0.4 to 19.1 recorded in December 2000 and 

January 1999 respectively (mean = 6.3, SD = 4.05, n = 222), whereas the ovary index 

ranged from extreme values of 0.31 to 20.34 obtained for individuals collected in 

October 1998 and April 2000 respectively (mean = 5.5, SD = 3.28, n = 182).  
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Fig. 2.3.14 Odontaster validus. Individual male (●), female (○) and hermaphrodite (▲) gonad index 
values sampled on a monthly basis between July 1997 and January 2001. 
 

Four spawning events were evident from the data and were consistent in their timing 

between July and late November each year. However, these events varied in 

magnitude with the largest percentage decrease in the female gonad during 1997 and 

2000 (62% and 61% respectively), and the largest decreases occurring in the testes 

during 1997 and 1998 (78% and 73% respectively). Both males and females 

experienced the smallest event during 1999 (52% decrease and 34% decrease 

respectively) and moderate spawning episodes were recorded during the remaining 

years (Table. 2.3.9). 
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Table. 2.3.9 Odontaster validus. Reproductive condition is presented as the percentage decrease in the 
male and female gonad index between years (1997-2001), calculated from the average gonad index 
before (fecund) and after spawning (spent). 
 
Year Spawning Fecund GI Mean Spent GI Mean %Decrease 

Female 
1997 July-Dec 4.580   1.742   61.96 
1998 July-Nov 6.010   2.908   51.62  
1999 June-Nov 8.371   5.553   33.66 
2000 July-Nov 10.362   4.088   60.55 
Male 
1997 July-Dec 5.469   1.196   78.13 
1998 July-Nov 9.972   2.731   72.62 
1999 June-Nov 10.127   4.878   51.83 
2000 July-Nov 11.738   4.276   63.57 

 

Male and female reproductive condition did not differ significantly over the sampling 

period (Wilcoxon Test, W+ = 462 W- = 241, N = 37, P = 0.097). However, there was 

a significant difference in overall animal gonad index over the 3.5-year study 

(Kruskal Wallis H = 75.66, P < 0.001). This was also true for comparisons between 

the individual years sampled, except when comparing the variation in gonad index 

between 1999 and 2000 (Mann Whitney W = 6971.5, P = 0.861) (Table. 2.3.10).  

 
Table. 2.3.10 Odontaster validus. Comparisons in overall gonad index between individual years. The 
variation in gonad index of individual starfish was tested between years (1997-2001). A Mann 
Whitney non-parametric analysis was employed and a P < 0.05 indicated a significant difference in 
overall gonad index between years. 
 
Year  Test Statistic  P-Value 

1997-98 W = 5285.5  P < 0.001 
1997-99 W = 2967.0  P < 0.001 
1997-00 W = 3997.5  P < 0.001 
1998-99 W = 11919.0  P < 0.001 
1998-00 W = 15288.5  P < 0.001 
1999-00 W = 6971.5  P = 0.861 

 

Energy Investment and Storage 

The pyloric caeca index (PC index) did show evidence of strong seasonal variation 

(Fig. 2.3.15). Male PC index ranged from extreme values 2.6 to 36.7 in December 

1997 and August 1998 respectively, whereas female PC index ranged from 3.5 to 

32.7 obtained for individuals collected in February 1999 and December 1998 

respectively.  
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Fig. 2.3.15 Odontaster validus. Individual male (●), female (○) and hermaphrodite (▲) pyloric caeca 
index values sampled on a monthly basis between July 1997 and January 2001. 
 

This index was not as cyclical as the pattern observed in the gonad, although a 

significant removal of material from the digestive tissues was evident during 1999. 

This episode followed a period of investment in the pyloric caeca, which spanned 

nearly two years from the beginning of the study (July 1997) until January 1999. 

This period preceded an appreciable reduction in the PC index, which continued until 

the July 1999. The pattern observed in the pyloric caeca was reminiscent of a two-

year cycle and contrasted with the annual spawning signature evident in the gonad 

index. The male and female PC index showed similar losses in investment in 1999 

(68% and 64% respectively). Investment during the following year may be building 

up to a re-occurrence of this event. However, a further year�s data would be 

necessary to confirm this. Nevertheless, based on the current data I would expect the 

event in 2001 to be of a lesser magnitude owing to the lower values recorded during 

1999 compared to 1998.  

 

There was no significant difference between the male and female PC index during 

the 3.5-year study (Wilcoxon Test, W+ = 396 W- = 307, N = 37, P = 0.507). 

However, similar to the variability in gonad index, there was a significant difference 

in the PC index over the entire sampling period (Kruskal Wallis H = 85.36, P < 
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0.001). This was also true when index variability between the individual sampling 

years was compared, with the exception of the comparison between 1997 and 1999 

(Mann Whitney W = 4055.0, P = 0.099) (Table. 2.3.11). 

 
Table. 2.3.11 Odontaster validus. Comparisons in overall pyloric caeca index between individual 
years. The variation in pyloric caeca index of individual starfish was tested between years (1997-
2001). A Mann Whitney non-parametric analysis was employed and a P < 0.05 indicated a significant 
difference in overall pyloric caeca index between years. 
 
Year  Test Statistic  P-Value 

1997-98 W = 3486.0  P < 0.001 
1997-99 W = 4055.0  P = 0.099 
1997-00 W = 4254.0  P < 0.001 
1998-99  W = 16064  P < 0.001 
1998-00 W = 21121.5  P < 0.001 
1999-00 W = 5523.0  P < 0.001 

 

The pyloric caeca and gonad indices observed during the 3.5-year study were 

correlated  (Pearsons Product Correlation, 0.246, P < 0.001). 

 

Oocyte Feret Diameter 

There was a significant inter-annual variation in mean oocyte size during the 3.5-year 

study (One Way ANOVA F = 4.92, P = 0.006). The mean oocyte sizes recorded in 

2000 differed most from the mean value for all observations, having generally larger 

egg sizes. The largest differences in mean oocyte size were recorded between 1997 

and 2000, and 1998 and 2000 (Tukey�s test for pairwise comparisons). However, this 

variability was much less marked than the variation in oocyte size recorded for 

Ophionotus victoriae (Grange et al., 2004). The maximum oocyte size of 183µm was 

observed for one individual in July 2000 and the maximum average oocyte size of 

117µm was observed in May 2000.  

 

Four spawning events were identified characterising this animal as an annual 

reproducer (Fig. 2.3.16). The timing of each spawning event was consistent between 

years, releasing larger oocytes during the austral winter (July-November).  
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Fig. 2.3.16 Odontaster validus. Mean oocyte feret diameter (○) sampled on a monthly basis between 
July 1997 and January 2001. The overall mean oocyte size is plotted and the error bars represent + 
SD. Average male maturity stage is plotted (●) and male maturity stage VI is plotted as zero to convey 
the testes as being spent. 
 

These patterns in egg size, and the apparent decrease in the proportion of large 

oocytes in the ovary, coincided with reductions in gonad mass. The first spawning 

event spanned the months from July 1997 to the beginning of December, where 

mean oocyte size reduced from 111µm (SD = 23.16, n = 304) to 59µm (SD = 16.66, 

n = 604). This period coincided with the greatest percentage decrease in the ovary 

index (62%) of the whole study. The second episode was similar in timing between 

July 1998 and November 1998, but saw a less marked reduction in oocyte size from 

97µm (SD = 27.45, n = 734) to 73µm (SD = 16.77, n = 620), and also a smaller 

reduction in the gonad index of 52%. A similar trend was observed in the following 

year with the proportion of larger oocytes (mean = 103µm, SD = 22.62, n = 661) 

decreasing during the austral winter (mean = 70µm, SD = 16.87, n = 642). The 

smallest reduction in gonad index occurred during spawning in 1999 (34%). Patterns 

in egg size in 2000 were reminiscent of 1997. A larger mean oocyte size of 116µm 

(SD = 27.51, n = 437) decreased to 78µm (SD = 16.91, n = 349) from July to 

November. A similarly large reduction in gonad index was also recorded (61%). 

 

A significant difference between the proportions of oocyte stages in the ovary was 

evident over the whole of the sampling period (Mann Whitney, W = 2226.0, P < 
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0.0001). The proportion of previtellogenic and mature vitellogenic oocytes differed 

significantly between months sampled. The largest oocytes were unique to fecund 

females during the austral winter, and although present within the ovary during the 

majority of the sampling period, composed a lower percentage of the oocyte pool 

during the late austral spring and austral summer (Fig. 2.3.17). This pattern was 

repeated annually.   

 

The oocyte size distributions did not clearly show a long-term component in the 

reproductive cycle of O. validus (Fig. 2.3.17). The majority of the oocyte histograms 

exhibited a single cohort generation in the ovary at any one time and a reproductive 

tempo of ~12 months. This was illustrated well in September 1997, September 1998 

and November 1999 and was generally common throughout the study. This is 

unusual considering the substantial amount of evidence presented by Pearse (1965) 

for bimodality from McMurdo Sound and Cape Evans populations of the same 

seastar suggesting O.validus to possess a long-term gametogenic cycle (18-24 

months). There was little evidence of bi- or tri-modal oocyte size classes from this 

study, however the oocyte histograms constructed for August 1999, April 2000 and 

January 2001 possibly suggest the simultaneous existence of overlapping generations 

of cohorts in the ovary. All of the individual oocyte size distribution histograms, for 

every female asteroid collected, are contained in Appendix Figure 2. 
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Fig. 2.3.17 Odontaster validus. Pooled oocyte feret diameter histograms (+ SD), where N = number 
of females, n = number of eggs counted (1997-2001) and monthly box plots covering the oocyte feret 
diameter range (the left and right hand limits of the box represent the 25th and 75th percentiles; box 
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whiskers represent the 10th and 90th percentiles; the median (-) and mean (-) of each oocyte range is 
also shown).  
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Fig. 2.3.17 contd Odontaster validus. Pooled oocyte feret diameter histograms (+ SD), where N = 
number of females, n = number of eggs counted (1997-2001) and monthly box plots covering the 
oocyte feret diameter range (the left and right hand limits of the box represent the 25th and 75th 
percentiles; box whiskers represent the 10th and 90th percentiles; the median (-) and mean (-) of each 
oocyte range is also shown).  
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O. validus varied in both oocyte characteristics and reproductive condition each year 

emphasising the existence of inter-annual variation in the reproductive ecology of 

this seastar.  

 

Male Maturity 

There was a clear seasonal cycle in male spawning, which was consistent over the 

3.5-year study and comparable with the timing of female episodes (Fig. 2.3.16). 

Spawning was synchronous between individual male and female O. validus. The 

male maturity index ranged between being spent and being at an immature 

spermatogenic stage (I-II) during the austral winter (July-September) in each year. 

Significant amounts of active sperm (IV-V) were observed in the testes as early as 

February and were prevalent from May-June.  

 

Parborlasia corrugatus 
 
Sex ratio and Size Characteristics 

Over the 3.5 years a total of 467 individual nemerteans were sampled of which 59% 

(274) were male and 41% (193) were female (Table. 2.3.12) and the sex ratio 

differed from 1:1 (χ2 = 14.051, P < 0.01). This pattern was not consistent for all 

years, but males were more common in the 1999 and 2000 samples (χ2 = 6.434, P < 

0.05 and χ2 = 11.762, P < 0.01 respectively). Male and female numbers were not 

significantly different in 1997 and 1998 (χ2 = 0.032, N.S. and χ2 = 0.878, N.S. 

respectively). 

 
Table. 2.3.12 Parborlasia corrugatus. Sex ratio of males and females collected between 1997 and the 
end of 2000 using a Chi Square statistical test. 
 
Year   Male  Female Total Individuals  
 
1997 (July-Dec) 32  31  63 
1998   75  64  139 
1999   75  47  122 
2000 (Jan-Nov) 92  51  143 

 

The smallest individual was 150mm retracted length, whereas the largest was 

550mm (Fig. 2.3.18) (mean = 309mm, SD = 68.63, n = 467).  
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Fig. 2.3.18 Parborlasia corrugatus. Individual male (●) and female (○) retracted length values 
(+0.01mm) sampled on a monthly basis between July 1997 and November 2000. Female size varied 
from 157 to 540mm retracted length (mean = 310mm, SD = 66.46, n = 193) compared to 150 to 
550mm recorded for males (mean = 308mm, SD = 70.22, n = 274).  
 

There was no significant difference in retracted length between males and females 

(Wilcoxon Test, W+ = 345.5 W- = 434.5, N = 39, P = 0.539). There were however, 

significant differences in the length of individuals between years (Table. 2.3.13), 

with the exception of 1997 and 1999 and 1998 and 2000. A Kruskal-Wallis test 

confirmed a significant difference in the retracted length of individuals over the 

study period (H = 15.84, P < 0.001). Some individuals had fragmented, and a single 

male collected in June 2000 provided an example of a posteriorly bifid nemertean. 

Gibson and Winsor (1980) collected a similar individual during March 1970 from 

20-27m depth from a trawl area 63û30�15��W longitude along latitude 64û49�13��S. 

Gibson and Winsor (1980) concluded that the unusual body form was the result of 

aberrant regeneration subsequent to the animal receiving a deep injury. 
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Table. 2.3.13 Parborlasia corrugatus. Comparisons in retracted length (+0.01mm) between 
individual years. The variation in retracted length of individual nemerteans was tested between years 
(1997-2000). A Mann Whitney non-parametric analysis was employed and a P < 0.05 indicated a 
significant difference in retracted length between years. 
 
Year  Test Statistic  P-Value 

1997-1998 W = 5629.0  P = 0.004 
1997-1999 W = 5550.5  P = 0.372 
1997-2000 W = 5287.0  P = 0.002 
1998-1999 W = 19616.5  P = 0.021 
1998-2000 W = 19238.0  P = 0.530 
1999-2000 W = 14522.5  P = 0.006 

 

The total animal wet weight was also recorded for the nemerteans sampled, with the 

exception of the months between December 1998 and January 2000 (Fig. 2.3.19). 

This subsample was analysed by B. Caswell who did not to record animal wet 

weight. The common occurrence of fragmentation in this species when stressed 

renders any firm conclusions about weight compromised, and therefore no statistical 

manipulation was performed on these data. However, some general comments are 

made. Animal wet weight ranged between 25.45g (March 2000) and 155.25g 

(December 1997) (mean = 66.74g, SD = 21.36, n = 320). Female wet weight was 

recorded between 26.77g to 155.25g (mean = 67.28g, SD = 24.90, n = 132), and 

male wet weight ranged between extreme values of 25.45g and 133.20g (mean = 

66.36, SD = 18.53, n = 188). 
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Fig. 2.3.19 Parborlasia corrugatus. Individual male (●) and female (○) wet weight values (+0.01g) 
sampled on a monthly basis between July 1997 and November 2000. 
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Oocyte Feret Diameter   

There was no evidence of any significant inter-annual variation in mean oocyte size 

during the study period (One Way ANOVA, F = 0.71, P = 0.553). The maximum 

oocyte size (137µm) was recorded in a female collected in October 1997 and a 

maximum average oocyte size of 79µm was recorded in October 2000.  

 

The oocyte size distribution data suggested the occurrence of three separate 

spawning events between July 1997-November 2000 (Fig. 2.3.20).  
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Fig. 2.3.20 Parborlasia corrugatus. Mean oocyte feret diameter (○) sampled on a monthly basis 
between July 1997 and November 2000. The overall mean oocyte size is plotted and the error bars 
represent + SD. Only the negative tail of each error bar is plotted so overlap between data points is 
minimised. Average male maturity stage is plotted (●) and male maturity stage VI is plotted as zero to 
convey the testes as being spent. 
 

These events were consistent in timing between each sample year occurring in the 

mid-austral summer and were signified by a reduction in the proportion of large 

oocytes from the ovaries of gravid females. The first female spawning event possibly 

spanned the end of 1997 and the beginning of 1998, starting as early as November 

1997, and becoming properly established by January 1998. This event was marked 

by a reduction in oocyte size from an average 73µm in November 1997 to 32µm in 

February 1998. The spawning period in 1998 was less clear in females than in 1997. 

This may well be a product of the large variation between females within the months 



Long-term Reproductive Cycles  Chapter 2 

 83

spanning August 1998 to December 1998. However, a pronounced reduction in 

oocyte size occurred between December 1998 and January 1999 and this probably 

represents the second spawning event of the study period (55µm and 31µm 

respectively). The third and final spawning event was more obvious and described a 

reduction in average oocyte size from 72µm to 31µm between December 1999 and 

February 2000. Average oocyte size began to increase after this point up until the 

final month of sampling and presumably pre-empts a fourth spawning event at the 

beginning of 2001. The consistency of the post-spawning oocyte size is remarkable.   

P. corrugatus therefore exhibits a seasonal spawning pattern, consistent in timing 

between consecutive years. The proportion of maturing oocytes in the ovary differed 

significantly over the study period and confirms this seasonality (Mann Whitney, W 

= 1938.0, P < 0.001). Large vitellogenic oocytes were present throughout each 

sampling year (Fig. 2.3.21), however they were more common during the late austral 

winter to the mid-austral summer. The prolonged occurrence of vitellogenic oocytes 

in the ovary of fecund females was most evident in 1998, however spawning was 

complete by the following February. This period of the late austral summer also 

signified an increase in the proportion of small, pre-vitellogenic oocytes (0-50µm).  

 

The oogenic cycle exhibited by P. corrugatus took 15-16 months (Fig. 2.3.21). 

Shedding of large mature oocytes occurred during the mid-summer of each sampling 

year, and a corresponding increase in the proportion of small oocytes followed. 

However, there was a short overlap between the initiation of this new generation and 

the loss of the mature cohort, which is best illustrated by the bi-modal oocyte 

distributions between September 1997-January 1998, August 1998-December 1998 

and September 1999-December 1999. The remaining months exhibited normal 

oocyte size distributions characteristic of a species with an annual oogenic cycle. All 

of the individual oocyte size distribution histograms, for every female nemertean 

collected, are contained in Appendix Figure 3. 

 

Male Maturity  

Three separate spawning events were clear in the male gonad and were perhaps more 

marked than the progressive loss of mature oocytes from the ovary (Fig. 2.3.20). 

Male individuals were at a mature stage of gametogenic development (IV-V) 



Long-term Reproductive Cycles  Chapter 2 

 84

throughout the majority of the year, only exhibiting exceptions (I-III) during and 

immediately after each spawning event. The loss of active sperm from the testes was 

coincident with the reduction of large oocytes from the oocyte size distribution plots 

(Fig. 2.3.21). Therefore, male and female spawning was synchronous and consistent 

in timing during the mid-austral summer of each sampling year.   
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Fig. 2.3.21 Parborlasia corrugatus. Pooled oocyte feret diameter histograms (+ SD), where N = 
number of females, n = number of eggs counted (1997-2000) and monthly box plots covering the 
oocyte feret diameter range (the left and right hand limits of the box represent the 25th and 75th 
percentiles; box whiskers represent the 10th and 90th percentiles; the median (-) and mean (-) of each 
oocyte range is also shown). 
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Fig. 2.3.21 contd Parborlasia corrugatus. Pooled oocyte feret diameter histograms (+ SD), where N 
= number of females, n = number of eggs counted (1997-2000) and monthly box plots covering the 
oocyte feret diameter range (the left and right hand limits of the box represent the 25th and 75th 
percentiles; box whiskers represent the 10th and 90th percentiles; the median (-) and mean (-) of each 
oocyte range is also shown). 
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Heterocucumis steineni 
 
Sex ratio and Size Characteristics 

429 individuals were sampled, where 54% were male (230) and 46% were female 

(199) and the sex ratio did not significantly differ from 1:1 (χ2 = 2.242, N.S). The 

sex ratio was also 1:1 for each individual sampling year (1997 χ2 = 0.039, 1998 χ2 = 

0.264 and 2000 χ2 = 0.016, N.S.), with the exception of 1999 (Table. 2.3.14). 

Significantly more males were sampled in 1999 (χ2 = 5.743, P < 0.05).  

 
Table. 2.3.14 Heterocucumis steineni. Sex ratio of males and females collected between 1997 and 
early 2001 using a Chi Square statistical test. 
 

Year   Male  Female Total Individuals 

1997 (Sep-Dec) 26  25  51   
1998   73  67  140 
1999   67  42  109 
2000 (Jan 00-Jan01) 64  65  129 

 

The smallest individual (43.2mm) was collected in November 1999 and the largest 

(196.0mm) was collected in February 2000 (mean length = 89.83mm, SD = 23.40, n 

= 421 Fig. 2.3.22).  

Julian Day

0 91 182 273 364 455 546 637 728 819 910 1001 1092 1183 1274 1365 1456 1547

Le
ng

th
 (m

m
)

20

40

60

80

100

120

140

160

180

200

220

JanOctJul
1998 1999 2000 2001

Oct Jan Apr Jul Oct Jan Apr Jan AprOctJulJan JulApr
1997

 
Fig. 2.3.22 Heterocucumis steineni. Individual male (●) and female (○) length values (+0.01mm) 
sampled on a monthly basis between September 1997 and January 2001. Female length ranged 
between 45.0mm and 196.0mm (mean = 87.6mm, SD = 23.9, n = 194) and male length ranged 
between 43.2mm and 164.6mm (mean = 91.8, SD = 22.8, n = 227). 
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Individual length differed between some sampling years (Table. 2.3.15). However, 

male and female length did not vary significantly over the study period (Wilcoxon 

Test, W+ = 496 W- = 245, N = 38, P = 0.070). 

 
Table. 2.3.15 Heterocucumis steineni. Comparisons in wet weight (+0.01g) and length (+0.01mm) 
between individual years. The variation in wet weight and length of individual holothurians was tested 
between years (1997-2001). A Mann Whitney non-parametric analysis was employed and a P < 0.05 
indicated a significant difference in length between years. 
 

Characteristic  Year  Test Statistic   P-value 

Length   1997-1998 W = 4213.0  P = 0.136 
   1997-1999 W = 2728.0  P < 0.0001 
   1997-2000 W = 4058.0  P = 0.077 
   1998-1999 W = 13060.0  P < 0.0001 
   1998-2000 W = 16825.0  P = 0.444 
   1999-2000 W = 14825.5  P = 0.001 
Wet Weight  1997-1998 W = 3454.0  P = 0.0001 
   1997-1999 W = 2608.5  P < 0.0001 
   1997-2000 W = 3671.5  P = 0.003 
   1998-1999 W = 14438.0  P = 0.004 
   1998-2000 W = 17967.0  P = 0.267 
   1999-2000 W = 14935.0  P = 0.0003 
 

Animal wet weight also varied significantly over the sampling period (Kruskal 

Wallis, H = 34.53, P < 0.001). The smallest individual (18.88g) was collected in 

December 1997 and the largest (171.90g) was collected in February 2000 (mean wet 

weight= 64.90g, SD = 24.88, n = 421 Fig. 2.3.23). Animal wet weight differed 

between each sampling year (Table. 2.3.15) and there was a significant difference 

between male and female wet weight during the study period (Wilcoxon Test, W+ = 

568 W- = 173, N = 38, P = 0.004).  
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Fig. 2.3.23 Heterocucumis steineni. Individual male (●) and female (○) wet weight values (+0.01g) 
sampled on a monthly basis between July 1997 and January 2001. Female wet weight ranged from 
18.9g to 171.9g (mean = 61.9g, SD = 24.2, n = 194) and males between 20.9g and 171.6g (mean = 
67.4g, SD = 25.2, n = 227). 
 

Both size measurements were significantly correlated with each other and gonad 

index (Table. 2.3.16). A Kruskal-Wallis test in both sea cucumber length and wet 

weight confirmed a significant variation in these variables over time between 1997-

2001 (Table. 2.3.17).      

  
Table. 2.3.16 Heterocucumis steineni. Correlations between animal wet weight (+0.01g), length 
(+0.01mm) and gonad index collected between 1997 and early 2001. All data were ranked and tested 
using Pearson�s Product Moment Correlation. A P < 0.05 indicated that variables were significantly 
correlated. 
 

Comparison   Test Statistic  P-Value 

Wet Weight vs Length 0.524   P < 0.001 
Wet Weight vs Gonad Index  -0.1.58   P = 0.001 
Length vs Gonad Index -0.141   P = 0.004 
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Table 2.3.17 Heterocucumis steineni. Comparisons in wet weight (+0.01g) and length (R +0.01mm) 
over the entire study period (1997-2001). The wet weight and length of individual holothurians were 
compared. A Kruskal-Wallis non-parametric analysis was used and a significant difference was 
indicated by a P < 0.05. 
 
Characteristic �H� Test Statistic P-Value 

Wet Weight  34.53   P < 0.001  
Length   35.32   P < 0.001 

 

Reproductive Condition 

There was inter-annual variation in gonad index over the study period (Fig. 2.3.24). 

The lowest overall gonad index (3.8) was recorded in July 2000 and the highest 

(85.1) was recorded in August 2000 (mean = 25.0, SD = 9.55, n = 421). This 

variation was much less marked than the patterns observed in the brittle star.  

 

Julian Day

0 91 182 273 364 455 546 637 728 819 910 1001 1092 1183 1274 1365 1456 1547

G
on

ad
 In

de
x 

(%
)

0

10

20

30

40

50

60

70

80

90

JanOctJul
1997 1998 1999 2000 2001

Oct Jan Apr Jul Oct Jan Apr Jan AprOctJulJan JulApr

 
 
Fig. 2.3.24 Heterocucumis steineni. Individual male (●) and female (○) gonad index values sampled 
on a monthly basis between July 1997 and January 2001. 
 

Four spawning events were evident from the cycles in gonad index and all occurred 

during the austral winter (July-August). However, the spawning events differed in 

magnitude, with the largest reproductive investment being recorded in 1999 and 

2000 for both males and females (69% and 63% loss by females respectively and 

66% and 69% loss by males respectively). Inter-annual variation in reproductive 

condition was clear from comparisons between individual sampling years and was 
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better illustrated by the percentage loss from the gonad between gravid and spent 

periods (Table. 2.3.18).  

 
Table. 2.3.18 Heterocucumis steineni. Reproductive condition is presented as the percentage decrease 
in the male and female gonad index between years (1997-2001), calculated from the average gonad 
index before (fecund) and after spawning (spent). 
 
Year Spawning Fecund GI Mean Spent GI Mean %Decrease 

Female 
1997 Sep-Feb 29.70   13.57   54.30 
1998 July-Dec 26.35   15.76   40.20 
1999 June-Dec 31.06   9.73   68.68 
2000 Aug-Dec 38.72   14.41   62.78 
Male 
1997 Sep-Feb 28.66   22.97   19.87 
1998 July-Dec 35.17   22.77   35.26 
1999 June-Dec 32.42   10.90   66.38 
2000 Aug-Dec 45.05   13.76   69.45 
 

Male and female gonad index did vary significantly over the sampling period 

(Wilcoxon Test, W+ = 615 W- = 126, N = 38, P < 0.001). Female gonad index 

ranged from extreme values of 3.8 to 85.1 (mean = 22.4, SD = 9.59, n = 194), and 

males ranged from 3.8 to 64.8 (mean = 27.2, SD = 8.96, n = 227). The variation in 

individual gonad index was significant over the study period (One-Way ANOVA, F 

= 5.25, P = 0.001), and some of the individual years were also significantly different 

from each other (Table. 2.3.19). The largest difference in gonad index was recorded 

between 1997 and 2000, and 1999 and 2000 using Tukey�s test for pairwise 

comparisons. 
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Table. 2.3.19 Heterocucumis steineni. Comparisons in overall gonad index between individual years. 
The variation in gonad index of individual holothurians was tested between years (1997-2001). A 2-
sample T-test was employed and a P < 0.05 indicated a significant difference in overall gonad index 
between years. A test for equal variance was also undertaken and the results included in the 
assumptions of the test (Appendix Table. 5). The 2-sample T-test was repeated (1997-1999, 1997-
2000 and 1998-2000) assuming equal and unequal variance (*) when the test for equal variance 
returned P values both greater than and less than P = 0.05. 
 
Year  Test Statistic  P-Value DF 

1997-1998 T = -1.05  P = 0.296 181 
1997-1999* T = -0.11  P = 0.914 120 
1997-1999 T = -0.10  P = 0.920 188 
1997-2000* T = -3.05  P = 0.003 126 
1997-2000 T = -2.65  P = 0.009 178 
1998-1999 T = 1.08  P = 0.279 239 
1998-2000* T = -2.48  P = 0.014 241 
1998-2000 T = -2.49  P = 0.013 259 
1999-2000 T = -3.16  P = 0.002 236 
 

Oocyte Feret Diameter 

There was no significant inter-annual variation in the average oocyte feret diameter 

over the sampling period (One-Way ANOVA, F = 2.79, P = 0.055). The maximum 

oocyte size for an individual was 568µm and was recorded in November 1999. 

Female data were pooled and the average oocyte size recorded for each month 

studied. The average oocyte size was greatest during July 1999 (365µm). 

 

A proportion of these data were originally analysed as part of a separate 

undergraduate and masters dissertation project (Appendix Table. 1). The 

reproductive data generated for collections between April 1998 and December 1999 

were flawed, owing to poor sample processing and an inadequate interpretation of 

these data. It was not possible to repeat the reproductive analyses on the original 

gonad tissue, because the original samples had not been labelled or separately bagged 

and therefore, individual tissues were not identifiable. Consequently, I had to re-

section the original tissue and produce new slides, which I later calibrated and 

photographed. Previous sectioning meant that a limited number of sections could be 

cut from the original wax blocks and a correspondingly low number of eggs were 

captured (< 40 oocytes). Therefore, only a small number of females, or on occasions 

a single female, per sampling month could be re-analysed and the oocyte data used. 

Therefore, firm conclusions concerning the April 1998-December 1999 reproductive 
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data were compromised. However, broad patterns could be inferred, bearing the 

sampling limitations in mind.  

 

Two spawning events were discernable from the oocyte size data and each occurred 

in the austral winter (June-July) (Fig. 2.3.25). These events were each marked by a 

reduction in oocyte size and the shedding of large mature oocytes from fecund 

females.  
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Fig. 2.3.25 Heterocucumis steineni. Mean oocyte feret diameter (○) sampled on a monthly basis 
between July 1997 and January 2001. The overall mean oocyte size is plotted and the error bars 
represent + SD. Average male maturity stage is plotted (●) and male maturity stage V is plotted as 
zero to convey the testes as being spent. 
 

The spawning period in 1997 could not be obtained from the oocyte data, because 

sampling only started in September 1997 and spawning probably occurred before 

sampling started for this study. The oocyte cycle in 1998 was not clear, however 

there is some suggestion that spawning occurred during June-August, when the 

average oocyte size fell from 305µm to 163µm. The apparent loss of a significant 

proportion of large oocytes between April and May 1998 was not attributed to 

spawning. The May 1998 histogram represents only a single female�s oocyte size 

distribution and the small sample size probably accounted for this anomaly. A clear 

spawning episode was not apparent from the oocyte data in 1999 and poor sample 
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preparation and small sample sizes probably prevented the spawning cycle from 

being identified. The 2000 spawning event was more apparent, and the average 

oocyte size decreased from 329µm in July 2000 to 224µm in September.  

 

The proportion of previtellogenic and vitellogenic oocytes differed significantly 

between months sampled (Mann Whitney, W = 2268.0, P < 0.0001). The largest 

proportion of mature oocytes was present in the ovary during June-July (Fig. 2.3.26). 

However, this pattern was only clearly recorded in 1997 and 1999. Patterns in 1997 

and possibly 2000 suggested the removal of large vitellogenic oocytes from the 

ovary during the austral winter. However, the occurrence of a young cohort 

generation was apparent 2-3 months prior to the spawning period and persisted 

during the shedding of mature gametes. Therefore, there was a degree of overlap 

between the shedding of the mature generation and the introduction of new cohort to 

the oocyte pool.    

 

A long-term component in the gametogenic cycle of Heterocucumis steineni was not 

clear from the oocyte size distribution data (Fig. 2.3.26). The majority of the oocyte 

histograms exhibited uni-modal oocyte size classes and a single cohort of oocytes in 

the ovary at any one time, e.g. April, 1998, June 1999, January 2000 and May 2000. 

However, a bimodal oocyte distribution was suggested in June 1998, July 1998, 

March 2000 and August 2000 and described the simultaneous co-existence of two 

cohorts in the ovary. The distributions of the oocyte data in other months were not so 

clear and many were constructed from only one or two females possibly accounting 

for this anomaly, e.g. August 1998, September 1998 and December 1999. Many of 

the oocyte distributions were also broad encompassing a wide range of oocyte size 

classes, where the frequencies recorded for each class were similar. Therefore, any 

clear distribution patterns were difficult to discern especially in 1998-1999. All of the 

individual oocyte size distribution histograms, for every female holothurian 

collected, are contained in Appendix Figure 4.  
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Fig. 2.3.26 Heterocucumis steineni. Pooled oocyte feret diameter histograms (+ SD), where N = 
number of females, n = number of eggs counted (1997-2001) and monthly box plots covering the 
oocyte feret diameter range (the left and right hand limits of the box represent the 25th and 75th 
percentiles; box whiskers represent the 10th and 90th percentiles; the median (-) and mean (-) of each 
oocyte range is also shown). 
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Fig. 2.3.26 contd Heterocucumis steineni. Pooled oocyte feret diameter histograms (+ SD), where N = 
number of females, n = number of eggs counted (1997-2001) and monthly box plots covering the 
oocyte feret diameter range (the left and right hand limits of the box represent the 25th and 75th 
percentiles; box whiskers represent the 10th and 90th percentiles; the median (-) and mean (-) of each 
oocyte range is also shown). 
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Male Maturity    

Three separate spawning events were also evident in the male maturity data (Fig 

2.2.25). Mature males (IV) possessed active sperm during the austral winter. A 

notable decrease in male maturity occurred in the austral winter of 1998 and 2000. 

Immature males were sampled during the late austral spring-mid austral summer in 

1997 and 2000 after spawning. The apparent lack of immature males in 1999 was 

most probably a facet of the small sample number and poor sample preservation 

mentioned in the earlier section. This may also explain the variable signal observed 

in the male maturity index during most of 1999. Male and female spawning was 

synchronous and consistent in timing each year.  

 

Experimental Constraints 

• These data were generated by both this thesis and the work of previous 

undergraduate and masters dissertations. Therefore, each data set was re-

calibrated and re-measured to ensure consistency between data analyses and 

each study. Unfortunately, the methods employed by some previous workers 

were not of a high enough standard and this affected the reliability of some of 

the data. This was especially apparent for the 1998-1999 data for 

Heterocucumis steineni. In this species the oocyte data covering this period 

was seriously flawed and any means of re-calibrating the data set impossible. 

New sections had to be prepared from the original wax blocks, which had 

already been sectioned in a previous study. New blocks could not be made 

using the original gonad tissue, owing to its poor preservation and lack of 

labelling. Therefore, new sections often contained a limited number of eggs 

per female (< 40 eggs). Females with < 40 eggs were not included in the 

monthly oocyte distributions and this meant some months were only 

represented by one or two females.   

• Monthly field collections of each species were not always possible. This 

resulted in some months not being sampled and gaps in each data set. This 

was due to logistical difficulties hindering collections, e.g. poor weather 

during the austral winter. All species samples collected during 2001 and early 

2002 were lost on 29th September 2001 during a fire at the Bonner Laboratory 

facility on Rothera Research Station, which prevented a longer time series 
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from being analysed. The fire completely destroyed the laboratory and the 

station�s scuba diving facility, preventing sampling for a number of months 

and destroying all stored samples in the laboratory. However, sampling 

recommenced in early 2002.    
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2.4 Discussion 

Ophionotus victoriae 

 
Sex Ratio and Disc Diameter 

Ophionotus victoriae is dioecious, with a sex ratio that varied between samples from 

different years with a slight bias toward males. In dioecious ophiuroids the sex ratio 

is usually close to unity (Cuenot, 1988; Hendler, 1991). Deviation from unity may 

occur as a result of differential recruitment, growth, mortality or sampling bias 

(Vevers, 1953; Skjaeveland, 1973). Size selective bias for larger individuals by 

divers cannot explain the marginal male prevalence in O. victoriae, as there was no 

significant difference in the size of the male and female ophiuroids. Therefore, an 

ecological explanation may be more reliable, e.g. individual aggregations or 

recruitment/mortality factors. More general reproductive reviews suggest that most 

brittle stars are dioecious, although many hermaphroditic specimens have been 

observed, and these invariably brood their young (Byrne, 1994). Byrne (1991) 

described broodcare in a Florida population of the Caribbean ophiuroid Ophionereis 

olivacea, which is incidentally also a protandric hermaphrodite. This is a common 

feature amongst some Caribbean ophiuroids (Hendler, 1979), although the majority 

of viviparous ophiuroids that have been described are coldwater or deepwater forms 

(Mortensen, 1936).  

 

The smallest individual Ophionotus victoriae examined was 11.2mm disc diameter, 

and this individual was already developing gonads, suggesting early maturity in this 

species. The congeneric O. hexactis is similar, becoming sexually mature at 7 to 

10mm, and capable of brooding at 12mm disc diameter (Morison, 1979). The upper 

size range is similar in both species reaching a maximum diameter of 39mm (pers 

obs and Morison, 1979). Dahm and Brey (1998) used an iterative approach to correct 

size-at-age data for specimens of O. victoriae, where the largest individual examined 

was 22 years old with a disc diameter of 32.5mm. The smallest individual recorded 

in the present study would have been approximately 8-9 years old according to this 

method. Fell (1966) discussed the age at which ophiuroids reach their maximum size 

and maturity, and suggested the average maximum age of any ophiuroid to be around 
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15 years. However, we now recognise polar species live significantly longer than 

this.   

 

Reproductive Condition  

All individuals had developing gonads. The gonad index increased throughout the 

austral winter and spring, peaking during October and November before decreasing 

in December. A number of reproductive studies have identified discrete spawning 

cycles in ophiuroids (Hendler, 1991). However, prolonged breeding seasons and 

continuous reproduction are common in tropical brittle stars (Mladenov, 1983).  The 

cyclic pattern recorded in the current study displayed considerable inter-annual 

variation between consecutive years. During 1997 and 1998 the gonad index was low 

whilst in the following years (1999 and 2000) the index was significantly higher. 

Similarly, the actual fecundity recorded for O. victoriae, which although variable, 

remained relatively high, ranging from ~104 eggs in 1997 to ~2.0 x 105 eggs in 1999. 

Pearse (1994) described a similar fecundity in this brittle star ~ 1.4 x 105 from 

McMurdo Sound. A direct relationship between reproductive condition and 

planktonic chlorophyll production could not be established. However, a connection 

between the sedimentation events at Rothera and ophiuroid reproductive 

characteristics was suggested. The magnitude and duration of each annual 

sedimentation event may play an important role in the following year�s reproductive 

success. Patterns of ice cover and thickness probably modulate sedimentation, which 

then underpin reproductive condition in the following year.  

 

Oocyte Frequencies 

This study is the first to examine the temporal variation in oocyte size frequencies of 

Ophionotus victoriae. Pearse (1994) reported a maximum oocyte size of 180µm for 

this brittle star, which compares with the average maximum oocyte size frequency of 

170-190µm in the current study. This relatively small oocyte size, coupled with the 

high fecundity of this species, indicates planktotrophy. Most ophiuroid larvae 

proceed through a feeding ophiopluteus stage, characteristic of planktotrophic 

species (Byrne, 1994). This is in contrast to the old brooding paradigm referred to by 

Mileikovsky (1971) as Thorson�s rule. However, Fell (1966) recognised an increase 

in the prevalence of viviparity in the southern oceans (Antarctic, South America and 

New Zealand) and most deep sea species appear to reproduce directly, where indirect 
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development appears to be rare except for within a few truly deep-sea species, e.g. 

Ophiura ljungmani (Tyler, 1980), Ophiocten gracilis (Sumida et al., 2000) and 

Ophiocten hastatum (Gage et al., 2004). However, although most Antarctic larvae 

are pelagic lecithotrophs, some of the most abundant polar invertebrates produce 

planktotrophic larvae, and this trait is exhibited in 20-25% of polar echinoderms, 

many of which appear numerically abundant in shallow water sites, including the 

asteroids Odontaster validus, O. meridionalis and Porania antarctica (Pearse and 

Bosch, 1986; Bosch, 1988, 1989) and the echinoid Sterechinus neumayeri (Bosch et 

al., 1987). 

 

The genus Ophionotus comprises two species, Ophionotus victoriae and Ophionotus 

hexactis. The ecology of these species differs significantly. O. hexactis is a 

hexamerous ophiuroid, similar in size to its sibling species and with an overlapping 

distribution around South Georgia (Mortensen, 1936; Fell, 1966). However, a large 

dichotomy is exhibited between the reproductive habits of these two species. O. 

hexactis is a subantarctic brittle star with intraovarian broodcare. Its eggs develop to 

sizes around 200µm. Morison (1979) recorded variable numbers of embryos 

(between 16 and 24) in the ovary at any one time and the juveniles attain disc 

diameters of 8mm, developing arms with a series of segments before birth (Turner 

and Dearborn, 1979). Eckelbarger (1994) commented upon the enigma of 

discovering two sympatric species with different reproductive strategies under the 

same environmental conditions. He suggested that this intraspecific difference could 

not be habitat driven, but may be caused by differences in the vitellogenic 

mechanisms and the methods by which nutrients are distributed during oogenesis.  

 

The largest oocytes observed in the current study were around 250µm. These egg 

sizes are somewhat larger than those described by Hendler (1975) as being typical of 

a planktotrophic development pattern in tropical and temperate ophiuroids (70-90 

µm). Egg sizes in several groups do get larger towards the poles (Clarke, 1979, 

1992). This cline in egg size may partially account for the more extreme oocyte sizes 

observed. Alternatively, this may suggest a tendency towards a more adaptive 

development regime in Ophionotus victoriae. Larger egg sizes have been associated 

with a move to facultative planktotrophy associated with selection for larger 

juveniles, a shorter time for metamorphosis, a higher efficiency of fertilisation and 
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insurance against fluctuations in phytoplankton abundance (Wray, 1995). The 

incidence of facultative planktotrophy has been reported as present among some 

Antarctic ophiuroids (Hendler, 1975) and may explain the extreme oocyte sizes 

recorded. Intermediate egg sizes and an abbreviated developmental phase 

intermediate in character between a direct and indirect development strategy have 

also been previously described in some deep-sea ophiuroids (Tyler, 1980). 

 

Average oocyte size also varied inter-annually. Egg sizes in echinoderms vary not 

only between populations, location and time, but also within the single spawn of a 

single female and between females (Emlet et al., 1987). Seemingly, scientists 

working on January examples of O. victoriae in Terra Nova Bay, Ross Sea recorded 

egg sizes twice as large as those recorded in this study (M Chiantore, pers. comm.). 

Lawrence (1991) associated such variability with a change in nutritional status and 

or/condition of the female and may be an adaptive response to unpredictable 

environments (Travis, 1984; Kaplan and Cooper, 1984; Sibly et al., 1987). Scientific 

consensus is that �good� years, in terms of resource availability, favour the 

production of a large number of small eggs, whereas a �poor� year tends to see a few 

large eggs being produced (reviewed by George et al., 1991). Planktotrophic species 

are more affected by changes in food ration, especially when resources are scarce 

(McEdward and Miner 2003). Therefore, fecundity-time models tell us that when 

food is scarce fitness is low for small-egg strategies and increases with increasing 

egg size, whereas at higher food levels there is very high reproductive success when 

smaller egg sizes are favoured. Ophionotus victoriae appears to have a flexible 

strategy for egg size.  

 

The patterns exhibited in Figure 2.3.1 and Figure 2.3.7 suggest that the resource 

input that arrives at the sea-bed by sedimentation and precedes the following 

reproductive event at Rothera drives the reproductive characteristics in this brittle 

star. Temperature was the only other environmental variable to correlate significantly 

with oocyte size. Benoît and Pepin (1999) attributed this apparent effect to the way in 

which temperature interacts with maternal contributions to egg size, which are 

themselves partly ration dependent. 
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Gametogenic Cycle 

There were two distinct cohorts of oocytes maturing in the ovary at any one time 

throughout the study period. This pattern appears in a number of Antarctic seasonal 

breeders that have a period of gametogenic development between 18 and 24 months 

(Pearse, 1965; Powell et al., 2001, Brockington et al., submitted). This pattern has 

been observed in Odontaster validus from McMurdo Sound populations (Pearse, 

1965) and has also been recorded in Sterechinus neumayeri (Brockington, 2001; 

Pearse and Cameron, 1991), in the infaunal bivalve Laternula elliptica and in the 

limpet Nacella concinna (Powell, 2001), as well as in deep sea echinoids (Tyler and 

Gage, 1984b). Other Antarctic taxa with long gametogenic development times 

include the brachiopod Liothyrella uva (Meidlinger et al., 1998), the octocoral 

Ainigmaptilon antarcticum (18-24 months) (Orejas et al., 2002), the amphipod 

Bonallia gigantea (> 12 months) and the bivalve Kidderia subquadratum (15-19 

months) (reviewed by Clarke, 1988), although the scallop Adamussium colbecki and 

the ascidian Cnemidocarpa verrucosa exhibit a discrete 12-month cycle (Tyler et al., 

2003; Sahade et al., 2004). The prolonged development cycles characteristic of many 

Antarctic taxa allow the storage of energy over two consecutive summers, 

interspersed with a single winter period of limited food. This adaptation may provide 

invertebrates with a way of overcoming the limited resource and restricted energy 

acquisition period of the winter.  

 

These data suggest oocyte development is progressive, developing slowly at first and 

increasing rapidly prior to spawning when chlorophyll levels in the water column are 

increasing and much of the sedimented organics have been assimilated.  

 

Reproductive and Spawning Cycles 

There was no significant difference between the seasonal pattern of the gonad index 

of the males and females studied indicating synchrony of reproduction. Reproductive 

synchrony between male and female invertebrates has been documented before in the 

Antarctic, e.g. Odontaster validus (Pearse, 1965) and Adamussium colbecki (Tyler et 

al., 2003), and in the deep sea (Tyler, 1988; Eckelbarger and Watling, 1995). 

Synchronisation of spawning in these invertebrates may involve physical and 

biological cues from the environment (Himmelman, 1975; Starr et al., 1990), where 

endogenous rhythms, such as biological clocks, may also be involved. Soong et al., 
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(2005) discussed the possible roles of pheremones in inducing spawning in brittle 

stars and emphasised the importance of gametes being available when members of 

the opposite sex of the same species are in the vicinity. This behaviour in Ophionotus 

victoriae probably describes a mechanism by which reproductive synchrony is 

encouraged and gamete wastage is minimised. 

 

Spawning occurred annually during November and December. A similar spawning 

occurred in the circumpolar Antarctic echinoid S. neumayeri, where Brockington 

(2001) documented spawning between November and January during 1997 and 1998 

in the North Cove population of this species. Populations of the limpet Nacella 

concinna from the same location have also been observed to spawn during the early 

austral summer (Powell, 2001).  

The development rate of Antarctic echinoderm larvae is 2-5 times slower than 

development in comparable temperate echinoderms (Bosch et al., 1987; Stanwell-

Smith and Peck, 1998). Therefore, the ophioplutei probably remain in the plankton 

for an extended period with the additional advantage of occupying the water column 

during the high summer production period. However, no great number of ophioplutei 

was recovered by Stanwell-Smith et al., (1999) during plankton sampling in the 

shallow-water habitats at Signy in the maritime Antarctic. The behavioural habits of 

these larvae are poorly described, although demersal larvae have been described for 

some other Antarctic taxa (Pearse, 1994). Recent work confirms the presence of 

ophiuroid larvae, albeit in very low numbers, during December in the shallow water 

habitats adjacent to Rothera Research Station and early recruits were observed 

settling in January (D Bowden, pers. comm.). The timing of the spawning period 

may also confer additional benefits for this Antarctic brittle star, by providing 

slightly warmer water conditions in an environment where development is 

characteristically slow and allowing a sufficient time period for development to 

proceed and allow larval settlement under optimal conditions in terms of local food 

abundance and/or predation pressure (Stanwell-Smith and Peck, 1998).    

 

Nutritional condition 

The strong seasonality of the water column chlorophyll biomass at Rothera has 

implications for benthic feeding rates both for suspension feeders, via vertical flux, 

and for generalists and deposit feeders dependent on fixation and remineralisation 
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(Brockington et al., 2001). This habit has been exhibited well within the genus 

Ophiura in the Bristol Channel (Tyler, 1977). The availability of food limited gonad 

production of O. albida and has been recognised as an important factor governing 

gonad production in most echinoderms (Holland, 1967; Gonor, 1973). However, our 

data indicate that the bloom itself is not the most important factor for O. victoriae, 

because sedimentation appears to have a stronger role. Kellogg and Kellogg (1982) 

referred to the acquisition of sediment by Ophionotus victoriae and reviewed its 

implications on sediment reworking. The small but evident peak in gut index during 

September and October in 1998 may be attributed to the break up of winter fast ice in 

Ryder Bay and the initiation of a benthic bloom, a feature observed previously at 

Signy Island (Gilbert, 1991a), and exploited by the echinoid S. neumayeri 

(Brockington et al., 2001). The significant decline in the gut index during 

September-November 1999 and 2000 may have been caused by a diversion of energy 

into reproductive condition. Ophiuroids may find it difficult to feed when gravid 

owing to the space occupied by the gonads in the disc. Thorson (1953) also 

commented on a �loading up� before spawning and the swelling of ophiuroid gonads, 

totally reducing the lumen of the stomach and preventing brittle stars from feeding. 

 

The almost monotonic increase in gut index over the sampling period suggests the 

possibility of a long-term component in the gut index cycle. The patterns in gut index 

are not strictly in phase with the annual cycle in gonad index or sedimentation so no 

direct link can be argued from the current data. However, the largest index occurred 

in 2000 following a moderate flux event, after the largest sedimentation event, which 

occurred in the previous year (1999). This may reflect a combined effect between the 

1999 and 2000 flux events and a larger availability of material at the seabed during 

1999 and 2000. Owing to the magnitude of the flux in 1999 material may have 

persisted over a prolonged time period, being processed slowly and remaining in the 

sediment over a long duration, available for consumption alongside the flux event in 

2000. Smaller flux events seen in the preceding years may be processed more rapidly 

producing smaller peaks in gut index. However, it is difficult to say if this cycle is 

intrinsic or driven by some external environmental variable, especially as the cycle 

appears to be at least 4 years in duration and ideally additional years data would be 

required before any firm conclusions could be made.    
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Odontaster validus 

 
Sex ratio and Size (Radial length �R� and Body radius �r�) 

The sex ratio of the sampled population was slightly biased toward males, mainly 

owing to the inflated number of males collected in the last year of study. However, a 

1:1 sex ratio was observed in three out of the four-year study period. Of the 407 

individuals dissected 3 were hermaphrodites. Pearse (1965) described a single 

hermaphrodite from sampling sites in the high Antarctic and this specimen was the 

largest individual collected (25.7g eviscerated weight from Cape Evans 77û38�S, 

166û24�E). The population sampled by Pearse totalled 349 individuals (182 males 

and 167 females) and had a sex ratio of 1:1. Pearse (1965) compared populations 

from McMurdo Sound (77û51S, 166û40�E) and Cape Evans. Individuals from 

McMurdo Sound were smaller than those from Cape Evans (largest animal collected 

18.4g eviscerated weight). One gram of eviscerated weight equates to 2-3g wet 

weight (Pearse, 1965). The maximum size of individuals recovered from McMurdo 

Sound and Cape Evans corresponded to a wet weight of 36.8-55.2g and 51.4-77.1g 

respectively. The maximum size observed in an individual from the current study 

was a 37.83g female. Therefore, the starfish collected from shallow water sites 

adjacent to Adelaide Island, on the West Antarctic Peninsula are more comparable in 

size to the McMurdo Sound population. The variation in body water content recorded 

by Pearse was similar to the observations made in this study. Stanwell-Smith and 

Clarke (1998) also studied a shallow water population of O. validus at Signy Island 

in the maritime Antarctic (60û43�S, 45û36�W). Weights were calculated for starfish 

in the range of 5.7g to 41.8g wet mass (mean = 19.92 + 0.46). This range in wet mass 

is comparable to the weights recorded in the current study (5.92 to 37.83g). 221 

individuals were sexed (120 females, 95 males and 6 hermaphrodites), and as in the 

aforementioned study by Pearse (1965), a 1:1 male and female sex ratio was 

observed. Stanwell-Smith and Clarke (1998) also referred to a moderate (38%) 

number of the population being parasitised by the ascothoracid barnacle 

Dendrogaster antarctica. However, no incidences of parasitism were observed in the 

current study.  
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Reproductive Condition  

The gonad index exhibited a significant degree of inter-annual variation. Spawning 

occurred each year between July and November over the 3.5 years of this study. 

Pearse (1965, 1969) suggested that Odontaster validus is capable of spawning from 

May to mid-September, where the actual onset and duration of spawning varies 

slightly between sites. Stanwell-Smith and Clarke (1998) observed a similar winter 

spawning period in this seastar between April and June at Signy Island, and also 

found it could be artificially induced to spawn during May and June. Despite the 

timing of spawning events being comparable between sites, the magnitude of 

gametes released varies both spatially and temporally, suggesting that inter-annual 

variation in reproductive condition is not just a phenomenon isolated to the shallow 

water populations of O. validus adjacent to the Peninsula. Brockington (2001) 

observed large differences in reproductive output in the Rothera population of the 

Antarctic urchin Sterechinus neumayeri over short distances, which he attributed to 

food supply.  

 

Pearse (1965) observed a clear dichotomy between the gonads of individuals 

sampled from McMurdo Sound and Cape Evans. The Cape Evans population had 

gonads twice as large as those collected from McMurdo and correspondingly 

produced more gametes during spawning. He attributed these trends to a better 

quality food ration available at Cape Evans. Only a single population of this seastar 

was investigated in the present study. Relatively, larger spawning years were 

observed during 1997, 1998 and 2000 compared to 1999. The chlorophyll levels 

recorded in the plankton at Rothera during 1999 were also lower in comparison to 

the other years studied. Although O. validus is somewhat decoupled from the 

summer phytoplankton bloom because it is a scavenger and predator, the increased 

availability of dead and decaying material and possible prey species at this time, may 

go some may to explain the trends observed in gonad index and reproductive 

condition. However, the degree of inter-annual variation evident in O. validus was 

reduced in comparison to the marked variation in the gonad index of Ophionotus 

victoriae over the same time period. The more conservative response of Odontaster 

validus is probably a consequence of its opportunistic feeding habit, capable of 

utilising many prey items through scavenging and behaving as an active predator, as 

well as removing plankton and detrital material from the surrounding water column 
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and benthos (Pearse, 1965). The detritivorous habit of the brittle star may result it its 

reproductive biology being more heavily affected by annual sedimentation events, 

which were extremely seasonal and variable during the study period. The 

comparative study of Chiantore et al., (2002) described the reproductive ecology of 

O. validus from Terra Nova Bay over a 2-year period and compared the degree of 

inter-annual variation observed with an Antarctic generalist, Sterechinus neumayeri 

and the suspension feeding Antarctic scallop, Adamussium colbecki. They recorded 

strong inter-annual differences between years in the scallop, but failed to record any 

differences of a comparable magnitude in the other species. These patterns were 

attributed to the inter-annual differences in food availability and the success of O. 

validus attributed to a 2-year oogenic cycle, coupled with an opportunistic feeding 

behaviour, expressed in both the starfish and sea urchin. Stanwell-Smith and Clarke 

(1998) also recorded inter-annual variability in the gonad index of this starfish at 

Signy Island over a 2-year study period. However, with only two year�s data 

available for comparison, the study allowed no firm conclusions to be made about 

the main factors affecting the reproductive cycle. This was made further complicated 

by the large amount of variation recorded between individual gonad index, which 

was also noted in the present study, especially during the spawning period.  

 

No significant difference was observed between the male and female gonad index 

during the present study. There was also no significant difference observed between 

the male and female population studied at Signy Island (Stanwell-Smith and Clarke, 

1998).  

 

Energy Investment and Storage 

A significant degree of inter-annual variation was evident in both the male and 

female pyloric caeca index during the study period and a long-term cycle was also 

observed in these tissues. Patterns in the pyloric caeca index suggested that an annual 

cycle, clearly exhibited by gonad index in O. validus, was not reciprocated in the 

pyloric caeca. It is difficult to determine whether this long-term component is 

intrinsic to the nutrient storage cycle in O. validus, or whether an external 

environmental variable is responsible. A study would have to be extended over a 

much longer time scale to ascertain whether this pattern is intrinsic and replicated on 

a 2-yearly basis, or is merely an anomaly of the time period studied. However, many 
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have remarked upon the slow rate at which life in the Antarctic progresses, where 

prolonged growth, gametogenic and development cycles are considered characteristic 

of many invertebrates (Pearse, 1994). The importance of this underlying long-term 

component in the cycle in the pyloric caeca cannot be reliably concluded from a ~4 

year study period, and additional years would be necessary to identify the main 

factor driving this long-term cycle. 

 

The population in the present study exhibited increasing pyloric caeca index values 

during July 1997 until January 1999. A large reduction in the pyloric caeca index 

followed this period of investment, indicative of starvation or at least a time of 

reduced feeding during the following winter. Levels only began to increase again in 

the following July. The period of investment in the pyloric caeca coincided with a 

period of investment in the gonads over the austral summer. Pearse (1965) recorded a 

similar parallel investment pattern in the Cape Evans population of O. validus. This 

population exhibited over a 50% increase in the pyloric caeca index between January 

and April, where the proximate composition of lipid, carbohydrate and protein also 

increased over the same time period. Pearse (1965) attributed these trends to the 

nutritionally-rich environment providing resources both directly to gametogenic 

growth and the pyloric caeca to be stored in reserve. A similar parallel summer 

growth period was also recorded in the starfish population at Signy Island (Stanwell-

Smith and Clarke, 1998). A relationship between the accumulation of nutrient 

reserves in the pyloric caeca and gametogenesis has also been suggested by studies 

on Asterias rubens, on Pisaster ochraceus and P. brevispinus (Chia and Walker, 

1991). However, in these asteroid species the size of the pyloric caeca varies 

reciprocally over the year with the size of the gonads. Identifying such links in long-

lived slow growing species with extended gametogenic cycles that live in extremely 

seasonal environments might be expected to be more difficult. Previous studies of 

asteroids have found that seasonal changes in the gonad index are common, but not 

always inversely correlated with a decline in the pyloric caeca index (Chia and 

Walker, 1991). The prolonged nature of the cycle exhibited in the present study is 

most probably driven by similar factors that determine the extended ecological cycles 

expressed in many Antarctic asteroids.          
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Oocyte Feret Diameter  

There was a significant difference in mean oocyte size over the sampling period of 

the current study. The range in echinoderm oocyte sizes can vary greatly between 

individual females and within a population (Emlet et al., 1987). The maximum 

average oocyte size was recorded as 117µm in the current study. The largest oocyte 

size recorded was 183µm. Pearse (1965) recorded a similar maximum egg size of 

170µm. This seastar produces a planktotrophic larva (Pearse, 1994), which is similar 

to several other conspicuous Antarctic echinoderms, e.g. Odontaster meridionalis, 

Porania antarctica (Pearse and Bosch, 1986; Bosch, 1988, 1989) and the echinoid 

Sterechinus neumayeri (Bosch et al., 1987). Pelagic planktotrophy is also expressed 

in three other asteroid species known in McMurdo Sound (Bosch and Pearse, 1990).  

 

The current study revealed a ~12 month period of oocyte growth in O. validus. A 

series of monthly oocyte size distributions exhibited mainly uni-modal egg size 

classes during the study period, which is somewhat counterintuitive if the 

conclusions of previous studies are considered. Pearse (1965) recorded an 18-24 

month oocyte cycle in O. validus, with overlapping annual generations of oocytes in 

both populations from McMurdo Sound and Cape Evans. Pearse (1965) estimated 

the frequency of different sizes of oocytes in ovarian sections by counting and 

measuring at random the diameters of 50 oocytes per animal and only used oocytes 

sectioned through the nucleus. He constructed oocyte frequency polygons by 

dividing the size range of oocytes between 0-150µm at 17.8µm intervals and 

averaged the percentage of each oocyte size group. A similar technique was used in 

this study, however 100 oocytes not 50, sectioned through the nucleus, were selected 

at random and measured. An oocyte range of 0-250µm was divided first into 25 

groups, at 10µm intervals, and then into 50 groups, at 5µm intervals and the 

percentage of each size group averaged and a size distribution histogram constructed 

so as to identify bi- or tri-modal cohorts. However, the frequency polygons 

constructed by Pearse (1965) represented a single female from either McMurdo 

Sound or Cape Evans, whereas the histograms constructed in the current study 

represented the monthly distributions of oocyte sizes averaged and pooled for all the 

females collected in each month. These histograms are contained in Appendix Figure 

2 and the majority have a uni-modal distribution similar to the monthly oocyte size 
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classes. The similarity between the methods used to display the oocyte data suggests 

the differences between these studies are not method driven. Furthermore, the many 

similarities in the reproductive characteristics of these two populations, such as the 

timing of spawning in the seastar and the release of planktotrophic larvae, would 

suggest that the period of gametogenic maturation should be similar. The prevalence 

of a prolonged development period (18-24 month) among some invertebrates has 

been attributed to the extreme seasonality characteristic of the Antarctic and the 

harsh winter conditions, allowing individuals to store energy over two consecutive 

summers, interspersed with a single period of limited food. Rothera differs by almost 

11 degrees of latitude from McMurdo Sound and Cape Evans. Individuals at the 

more extreme southerly latitude experience harsher winters, a strongly seasonal 

photoperiod, a longer duration of winter fast ice and a greatly reduced seasonal 

variation in seawater temperatures, which will inevitably influence reproductive 

ecology. Differences in larval development time between populations of seastars 

have also been observed between Signy and McMurdo Sound and were recorded by 

Stanwell-Smith (1997), emphasising the fact that spatial heterogeneity in 

environmental factors can result in biological differences throughout the Southern 

Ocean. Therefore, subtle differences in the salient features of the environment 

between the two localities may in part account for this anomaly. It may be that there 

is a relationship between the duration of oogenesis, the duration of primary 

production hence latitude, and the observation of bi-modal or uni-modal oocyte size 

distributions. That is, if oogenesis requires a certain energy input, it may be that this 

is achieved in one summer at the latitude of Rothera, but spread over consecutive 

summers at McMurdo Sound. This would give a bi-modal oocyte distribution at the 

higher latitude sites because mature oocytes initiated in the previous summer would 

be present at the same time as the newly-forming oocytes in the present summer. 

However, in the absence of a longer study it is difficult to say whether the 12 month 

gametogenic cycle suggested by the current study is a real characteristic of the 

Rothera Point population of Odontaster validus.   

 

Both 12 month and extended gametogenic development periods have been observed 

in a number of Antarctic invertebrates, including Parborlasia corrugatus (15-16 

months this study), Adamussium colbecki (12 months Tyler et al., 2003), Sterechinus 

neumayeri (14-24 months Brockington, 2001) and Ophionotus victoriae (18-24 
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months Grange et al., 2004). Similar long-term cycles have been recorded in the 

brooding asteroid Lepasterias hexactis (Chia, 1964) and in the echinoid 

Stronglycentrotus purpuratus (Holland, 1964). This is in contrast to the less than or 

slightly more than 1 year required for primary oocyte growth in many species of 

Asteriidae, Ophidiastridae and Astropectinidae (Pearse, 1965). Oocyte cycles are 

therefore extended in many cold-water echinoderms x2-x3 times over temperate 

species. 

 

Male Maturity  

There was a clear seasonal cycle in male gonad index, consistent in timing between 

consecutive years of the study period and coincident with the female episodes of 

gamete release. Male and female gametogenesis also proceeded in synchrony in the 

population of O. validus at McMurdo Sound and Cape Evans (Pearse, 1965). 5 

spermatogenic stages were observed in the current study and were recognisable from 

the histological gonad preparations according to Pearse (1965).  

 

Gametogenic Cycle and Larval Release 

The reproductive periodicities of O. validus in populations at McMurdo Sound 

(Pearse, 1965), the Balleny Islands (67ºS) and Robertson Bay (71ºS) (Pearse, 1966) 

agree with the periodicity described in the population collected during the current 

study from South Cove, Rothera. These studies indicate reproductive synchrony in 

this species over much of its circumcontinental Antarctic distribution. These 

locations differ quite markedly in the duration of the photoperiod and the range of 

winter temperatures, suggesting that the gametogenic cycle in this seastar is unlikely 

to be under direct photoperiodic or temperature control. However, the onset of 

summer production appears very well defined throughout Antarctic waters, and most 

probably acts in some way to synchronise reproduction ensuring the release of eggs 

into the water column within sufficient time to develop into competent feeding 

larvae, capable of utilising the elevated food levels experienced during the following 

austral summer. Figure 2.3.17 shows a larger proportion of vitellogenic oocytes in 

the ovary from April onwards, suggesting O.validus may process the most recent 

bloom into larvae ready for release into the water column in the austral winter.     

The cycle in female and male gonad index, female oocyte size classes and male 

maturity index all indicate a marked seasonality in the reproductive habit of O. 
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validus. A reduction in gonad mass, coincident with a synchronous shedding of large, 

mature oocytes from the ovary and active sperm from the testis occurred during the 

austral winter of each year in the current study. These data confirm that O. validus 

reproduces via a feeding planktotrophic larva released into the water column in the 

early winter (Stanwell-Smith and Clarke, 1998). Recent work by Bowden (D 

Bowden, pers. comm.) recorded high numbers of asteroid larvae (gastrula and 

bipinnaria) in the plankton during August-November during 2001 and 2002 from 

shallow water sites adjacent to Rothera Research Station (Fig. 2.4.1). However, 

larvae released during this time period are subject to an environment devoid and 

depauperate in available planktonic food. Rivkin et al., (1986) produced evidence 

that asteroid larvae could feed on bacteria, a behaviour also exhibited in other 

Antarctic invertebrate larvae (Peck, 1993). Pearse et al., (1991) found that bacterial 

ingestion was of little importance to O. validus, although the ability of larvae to 

sequester dissolved organic material and to depress their metabolic rate to a low 

level, decreases the importance of food abundance as a selection criterion for this 

invertebrate. The low temperatures observed in the Antarctic predispose many 

feeding larvae to low metabolic rates and this contributes to larval survival during 

extended periods of apparent starvation (Olson et al., 1987; Brockington, 2001; Peck 

and Prothero-Thomas, 2002).  

Month
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

0

2

4

6

8

10

12

14

16
2002
2001

N
um

be
r p

er
 5

00
0l

 
Fig. 2.4.1 Larval abundance for asteroids (gastrulae/bipinnaria) during 2001-2002 from shallow water 
sites adjacent to Rothera Research Station, Adelaide Island, West Antarctic Peninsula (D Bowden, 
pers. comm.). 
 
Both Pearse (1965) and Stanwell-Smith and Clarke (1998) suggested the possible 

benefits associated with winter spawning. Embryonic development in O. validus is 

very slow, and nearly 2 months are required for the bipinnaria larva to develop from 
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a fertilised egg (Pearse, 1965, 1969; Peck and Prothero-Thomas, 2002). If 

development proceeded at the same slow rate 7-9 months would be required until an 

advanced larval stage was attained (Pearse, 1965; Bosch, 1988; Hoegh-Guldberg and 

Manahan, 1994; Shilling and Manahan, 1994). Therefore, advanced larvae should 

appear in the water column at the time of high summer production and would be able 

to take full advantage of the superior summer food conditions. Early O. validus 

recruits were observed settling on settlement plates as early as December, but mainly 

during January, when planktonic and benthic food levels were increasing (D 

Bowden, pers. comm.). Spawning events in advance of the summer production 

period also occur in other Antarctic invertebrates with planktotrophic larvae, e.g. 

Sterechinus neumayeri and Ophionotus victoriae, which spawn in the early austral 

spring (Brockington, 2001; Grange et al., 2004). Some adult members of the 

Antarctic benthos are also able to reproduce during a nutrient-poor winter, as they 

possess energy reserves laid down in specific storage organs for periods of limited 

food availability. The data from the current study confirm this role of the pyloric 

caeca in the starfish O. validus. Alternatively, adults may benefit from the release of 

their progeny during the austral winter, when predation upon pelagic larvae is 

minimal (Clarke, 1988, 1992). Benthic suspension feeders are prevalent in the 

Antarctic and commonly cease feeding in the winter (A Clarke, pers. comm.), 

making this a more rational time for pelagic larvae to be released. However, 

advantages and disadvantages can be associated with both a winter and summer 

spawning pattern (Stanwell-Smith and Peck, 1998). The relationship between 

temperature and development rate and temperature and embryonic mortality are 

likely to be important in the spawning pattern and field occurrence of larvae, e.g. in 

O. meridionalis where the number of non-viable embryos increase with increasing 

temperature and Sterechinus neumayeri where eggs are optimally viable only within 

a strict temperature window (-0.2 to +1.7ûC, Stanwell-Smith and Peck, 1998). 

However, others factors such as egg quality, which should be associated with 

previous adult nutrition and benthic predation/food availability during the settlement 

phase may also be important.  

 

Bowden (D Bowden, pers.comm.) has shown that many vagile species at Rothera 

Point, regardless of development type, recruit to the benthos in the summer and has 

suggested that this is because the juveniles are dependent on benthic food restricted 
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to the summer: benthic algal films and deposited phytoplankton for grazers and 

juveniles of prey species for predators. This theory may explain why many benthic 

Antarctic invertebrates, including Ophionotus victoriae and Odontaster validus, 

spawn some months prior to the austral summer. 

 

Parborlasia corrugatus 

 
Sex ratio and Size Characteristics 

P. corrugatus is a heteronemertean in the class Anopla belonging to the phylum 

Rhynchocoela. This species is dioecious. Most nemertean species are oviparous and 

possess separate sexes (Hyman, 1951; Riser, 1974; Gibson, 1994). However, 

hermaphroditism has been observed in Prostoma, Prosorhochmus and some species 

of Argonemertes (Gibson, 1994). The study population deviated from a 1:1 sex ratio, 

with a disproportionate number of male individuals being collected during the last 

two years of the study. Individuals were randomly collected and gender was not 

distinguishable from the external morphology, so it is unlikely this anomaly resulted 

from sampling bias. The specimens in the current study ranged between 157 and 

550mm in retracted length and there was no difference between male and female 

length. Nemerteans are characteristically elongate and are often capable of 

considerable elongation and contraction (Gibson, 1994). Species of nemertean range 

in length between a few millimetres (Carcinonemertes, Oerstedia, Tetrastemma) up 

to 30m (Lineus longissimus). However, the majority are usually recorded between 

20-30cm and the size range between male and female individuals is usually 

approximately the same (Riser, 1974). Therefore, Parborlasia corrugatus exhibits a 

good example of polar gigantism, capable of growing to a length in excess of 1m 

(Knox, 1970) and a wet mass of 140g (Heine et al., 1991). The individuals collected 

by Heine et al., (1991) were all weighed > 25g wet mass. The nemerteans sampled in 

the present study ranged between 24.45-155.25g wet mass (mean = 66.74g + 21.36 

SD). These data were comparable to the average measurements (68.7g wet mass) 

made by Heine et al., (1991). Many examples of the marine benthos attain large sizes 

in the Antarctic, and this appears to be facilitated by oxygen availability (Chapelle 

and Peck, 1999, 2004), or more specifically the amount of oxygen available to cross 

respiratory surfaces, which increases with decreasing temperature. 
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Oocyte Feret Diameter 

A maximum oocyte size of 137µm was recorded in the present study. Peck (1993) 

used air-shock stimuli to induce spawning in an aquarium-reared population of P. 

corrugatus. These individuals spawned vast numbers of spherical eggs of 136µm 

into seawater. Smaller egg sizes have been observed in other previously described 

nemerteans, e.g. Micrura caeca mature eggs are 90µm and M. akkeshiensis are 

100µm (Peck, 1993). There was no significant variation in average oocyte size over 

the sampling period of the current study. However, inter-annual differences were 

observed in the size of both the brittle star and starfish oocytes recorded over the 

same time period. These data support the release of planktotrophic pilidia larvae 

observed by Peck (1993).  

 

Three distinct spawning events were evident in this nemertean and were signified by 

the loss of a significant proportion of large, mature oocytes from the ovary. These 

events occurred annually during the austral summer and were consistent in timing 

between consecutive years of the study period. The description of a seasonal 

spawning period from the current study contradicts the assumptions of previous work 

on this nemertean. Larval pilidia have been observed for prolonged periods 

throughout the year in shallow Antarctic waters leading many to suggest an 

aseasonal quasi-continuous reproductive habit for P. corrugatus (Pearse et al., 1991; 

Shreeve and Peck, 1995; Stanwell-Smith et al., 1999). However, Pearse and Giese 

(1966a) did observe spawned-out specimens of P. corrugatus in McMurdo Sound, 

Antarctica in November and December, indicative of an early austral summer 

spawner. The scavenging and predatory behaviour exhibited in P.corrugatus further 

supports a de-coupling of this nemertean from the extreme seasonality characteristic 

of the Antarctic (Dayton, 1965). While the oocyte size distributions produced in this 

study do exhibit an annual spawning period during December-February, large 

oocytes were present in the gonad throughout most of the year. These data illustrate a 

15-16 month oogenic cycle in the ovary of P. corrugatus, which is reduced in 

comparison to the prolonged gametogenic development cycle (18-24 months) 

exhibited in many Antarctic invertebrates. This cycle is similar to the gametogenic 

development exhibited by the deep sea echinoid Echinus affinis from the Rockall 

Trough, northeast Atlantic Ocean (Tyler and Gage, 1984a) and shorter oogenic 
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cycles have been observed in the Antarctic before. Tyler et al., (2003) reported a 

reproductive habit more pectinid (12 month) in character than Antarctic in the 

scallop Adamussium colbecki and the ascidian Cnemidocarpa verrucosa also 

displays a discrete 12-month reproductive cycle (Sahade et al., 2004).    

 

Male Maturity 

The release of active sperm from the testes coincided with the loss of mature oocytes 

from the ovary confirming an annual spawning period in this nemertean and a 

synchronous reproductive habit between the males and females sampled during the 

present study. Despite their being discrete spawning periods in male P. corrugatus, 

mature sperm were apparent in the testes throughout most of the year. Most 

nemerteans exhibit seasonal reproduction, even though this may extend over 3-4 

months (Gibson, 1994). The presence of active sperm and vitellogenic oocytes in the 

gonad of P. corrugatus throughout the present study suggests that this nemertean has 

the potential to spawn frequently and/or over a prolonged period. Malacobdella 

grossa is the only nemertean in the British Isles to reproduce throughout the year, 

although superimposed upon the annual rhythm are peaks in activity, which can be 

correlated with the availability of planktonic food (Gibson, 1968). Such a 

reproductive habit may explain the patterns observed in the current population of P. 

corrugatus, which exhibited a tendency to spawn actively during the austral summer 

when levels of planktonic food in the water column are increasing.   

  

Reproductive cycle and Larval Development 

Male and female spawning was synchronous in the current study. Little is known 

about the natural reproductive habits of nemerteans, although it is known that in 

some species mature worms associate together and spawn synchronously, e.g. Lineus 

rubber (Gibson, 1994). Synchronous spawning may also occur without individual 

contact, apparently through chemical stimulation (Hyman, 1951). Alternatively the 

male can crawl across the female broadcasting sperm or in many species several 

worms enclose themselves in a mucous sheath within which the sex cells are 

discharged.  

 

The small oocyte sizes recorded in the current study and observations of reared larval 

pilidia by Peck (1993) support planktotrophic larval development in P. corrugatus. 
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This is a common trait in the development of heteronemerteans (Gibson, 1994). 

Asexual reproduction as a regular reproductive adaptation is rare amongst 

nemerteans. The development stages observed in the embryos of P. corrugatus are 

similar to those previously described for some temperate water nemerteans (Peck, 

1993). However, a broad dichotomy exists between the developmental times of 

temperate and polar pilidia. The pilidium stage in temperate species is reached 120-

190 hours post-fertilisation, which is much sooner than in P. corrugatus (600-700 

hours) (Peck, 1993). The persistence of pilidia larvae in Antarctic shallow waters has 

also suggested that the larvae have a long planktonic phase (Shreeve and Peck, 

1995). Delayed development times have been described in a number of Antarctic 

invertebrates. Embryos and larvae of Antarctic echinoderms have been shown to 

develop 2-5 times slower than comparable temperate species (Bosch et al., 1987). 

Development in P. corrugatus proceeds 2.5-20 times slower than comparable 

temperate species (Peck, 1993). The prolonged development time exhibited in 

Antarctic nemertean larvae lends little support to the theory of temperature 

compensation in cold water species (Peck, 1993) and also suggests alternative 

feeding adaptation must be prevalent amongst Antarctic larvae if individuals are to 

survive the depauperate austral winter. Recent work by Bowden (D Bowden, pers. 

comm.) observed large numbers of pilidia larvae in the water column adjacent to 

Rothera Research Station during 2001 and 2002 in the early austral winter (Fig. 

2.4.2).  
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Fig. 2.4.2 Larval abundance for nemerteans (pilidia) during 2001-2002 from shallow water sites 
adjacent to Rothera Research Station, Adelaide Island, West Antarctic Peninsula (D Bowden, pers. 
comm.). 
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Peck (1993) observed the feeding behaviour of larval pilidia and confirmed the 

capability of P. corrugatus to utilise a wide variety of prey items, including bacteria 

and cell fragments < 1µm in diameter, as well as microalgae. Early recruits were 

observed settling during December-March, when summer production levels were 

high (D Bowden pers. comm.).   

 

Heterocucumis steineni 
 
Sex ratio and Size Characteristics 

Heterocucumis steineni collected in the current study were separately sexed. A male 

to female sex ratio of 1:1 was observed and is a common characteristic of gonochoric 

holothurians (Smiley et al., 1991). An exception is observed in Thyonepsolus 

nutriens (Wootton, 1949) which has a female:male sex ratio of 14:1. Deviation from 

a 1:1 ratio is common in parasitic and commensal species, but the majority of 

Holothuroidea are dioecious (Hyman, 1955). However, there are some 

hermaphrodite species in the cucumarids, synaptids and some within the 

aspidochirotes. This study recorded a range in individual size between 43.2mm and 

196.0mm in length (mean = 89.83mm, SD = 23.40). A comparison of sea cucumber 

length between individuals and between different species is subjective as these 

echinoderms commonly retract (Hyman, 1955). A wet mass measure is also flawed 

owing to many individuals retaining water internally. The individuals weighed 

recorded a range between the extreme values of 18.88g and 171.90g wet mass (mean 

= 64.90g, SD = 24.88). The females and males did not significantly differ in length, 

however animal wet weight did differ sexually. Gutt et al., (1992) studied a 

southeastern Weddell Sea population of Heterocucumis steineni. They quantified the 

�gutted weight� of each individual by removing the intestine and gonad and then 

weighing the whole animal wet mass. Therefore, the range in individual gutted wet 

weight recorded is not comparable (< 10g) to the total body wet mass recorded in this 

study, although it was the case that no significant difference was observed between 

the mean gutted weights of the male and female population. The largest individuals 

in the current study were female and observed during February, which may reflect 

increased feeding activities during high summer production levels. Barnes and 

Clarke (1995) observed a distinct seasonality in the feeding activity of many 
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suspension feeding Antarctic invertebrates, coincident with high summer production 

levels. Antarctic holothurians represent an abundant and influential member of the 

Antarctic benthic suspension feeding community (Dayton et al., 1974).    

 

Reproductive Condition       

A limited degree of variation in male and female gonad index between the sampling 

years was recorded in the present study. This holothurian is a filter feeder and 

therefore I would expect to have seen a large signal in gonad index in response to the 

seasonal variation in phytoplankton production over the sampling period. However, 

these data should be considered with some caution owing to the method used to 

calculate gonad index. The gonad mass of each individual was expressed over total 

animal wet weight to ascertain a measure of the gonad index. Animal wet weight 

may vary quite considerably between individuals, owing to the changeable volume of 

water retained internally. Therefore, these data should be interpreted carefully. There 

was a significant difference between the male and female gonad index recorded 

during the current study, although the average indices observed by Gutt et al., (1992) 

were similar between the males and females studied from the southeastern Weddell 

Sea.  

 

Four distinct spawning events were evident in the loss of mass from the ovary and 

testis of individuals during the present study and were coincident in timing during 

each consecutive austral winter. The majority of the Holothuroidea display an annual 

reproductive cycle (Smiley et al., 1991). The largest investment in reproductive 

condition occurred during 1999 and 2000, which saw the greatest loss of mass from 

both the male and female gonad. A similar response was described in the 

reproductive condition of the brittle star Ophionotus victoriae over the same time 

period (Grange et al., 2004). The reproductive cycle of this Antarctic ophiuroid has 

been connected with the sedimentation patterns at Rothera (Grange et al., 2004) and 

may also be important in the reproductive activities of H. steineni. Gutt et al., (1992) 

found no direct correlation between the reproductive period of H. steineni and 

summer production. However, the strong seasonality of the water column 

chlorophyll biomass recorded at Rothera is likely to have important implications for 

benthic feeding rates both for suspension feeders, via vertical flux, and also for 

generalists and deposit feeders depending on fixation and remineralisation rates 
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(Brockington et al., 2001). Therefore, this may explain the comparable patterns in 

the reproductive condition of these two Antarctic echinoderms.  

 

Gutt et al., (1992) suggested an alternative spawning pattern in H. steineni releasing 

gametes into the water during the austral summer. This contrasts with the winter 

spawning pattern described in the present study. Differences in the biological 

characteristics between populations of the same species have been attributed to 

spatial heterogeneity and differences in environmental variables (Stanwell-Smith, 

1997). The individuals sampled by Gutt et al., (1992) were collected from the 

southeastern Weddell Sea between 200 and 800m, in contrast to the individuals 

sampled in this study from a shallow-water (15-20m), coastal site adjacent to 

Adelaide Island, to the west of the Antarctic Peninsula. Gutt et al., (1992) also 

suggested a delayed or prolonged spawning to be possible depending on the locality 

of the individuals studied. The area studied by Gutt et al., (1992) experiences a large 

degree of variation in sea ice extent from one year to the next (Zwally et al., 1983), 

and an area of open water larger than the yearly average was evident during the 

sampling year, suggesting an important part of the annual flux of organic material to 

the sea bed would have occurred early. These extreme conditions may have been 

responsible for the observed timing of the holothurian reproductive period, but 

without further years of data or a complete year being sampled, it is impossible to 

confirm if this was the case. This may explain the disparity in the timing of 

reproduction between the two sites. Furthermore, Gutt et al., (1992) only carried out 

sampling on two single occasions providing a snap shot in time of the conditions 

present in the southeastern Weddell Sea within a single year, whereas the current 

study encompassed almost a 4-year monthly sampling programme. It is therefore 

difficult to make any firm comparisons between their study and the current study, 

which comments on inter-annual variation in the cycles of gametogenic development 

in the Antarctic holothurian.  

 

Gutt et al., (1992) also studied the reproductive biology of Psolus dubiosus from the 

southeastern Weddell Sea and observed a different reproductive habit to that 

described for H. steineni. P. dubiosus possessed larger oocytes and a lower 

fecundity, reproducing aseasonally via brood protection. Gutt et al., (1992) suggested 

since H. steineni has a more northern limit of distribution than P. dubiosus, the 
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difference in evolutionary development is in accordance with Thorson�s rule. Direct 

development has also been previously described in a number of deep sea 

holothurians (Tyler et al., 1985, 1994; Gutt, 1991b reviewed by Smiley et al, 1991). 

 

Oocyte Feret Diameter 

There was no significant variation in egg size during the current study period. The 

maximum egg size observed was 568µm and the maximum average egg size was 

recorded during July 1999 (365µm). These egg sizes correspond to a release of large, 

yolky oocytes into the water column, which develop through a lecithotrophic larva 

(Smiley et al., 1991). A large number of larval types are now recognised in the 

Antarctic, many of which have been described as possessing a lecithotrophic life 

history (Pearse et al., 1991). Gutt et al., (1992) confirmed the presence of large, 

yolky oocytes in the ovary of H. steineni and the same lecithotrophic development. 

However, they observed oocytes between 0.3-1.0mm, which exceed the maximum 

oocyte size recorded in the current study. However, deep sea holothurians are 

predisposed to larger egg sizes (Smiley et al., 1991). Similar maximum egg sizes to 

the one recorded in the current study have been reported previously for the 

Dendrochirotida, e.g. Cucumaria frondosa 575µm, C. miniata 550µm and C. 

piperata 525µm (Smiley et al., 1991).  

 

The specimens examined in this study did appear to possess distinct cohorts of 

unbranched tubules containing different stages of oocytes. This satisfies one of the 

assumptions made in the formulation of the �Tubule Recruitment Model� described 

by Smiley, (1988) for Parastichopus californicus (as Stichopus californicus). The 

position and arrangement of the gonadal tubules along the gonad basis was not 

studied, and therefore the assumption that oocyte maturity and tubule diameter 

progresses from anterior to posterior can neither be substantiated or disproved. 

However in contrast, Gutt et al., (1992) reported the presence of oocytes of all 

developmental stages in single gonadal tubules in H. steineni. Geographical 

differences in the patterns of gonad development have been described for a number 

of holothurians (Sewell et al., 1997) and may explain the differences between the 

current study and observations made by Gutt et al., (1992). The model also assumes 

that spent tubules are resorbed and that oogensis takes ~12 months. However, 
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phagocyctosis was rarely observed in the current study and many polar invertebrates 

have prolonged gametogenic development cycles, although this was not overly clear 

in this holothurian (18-24 months Pearse, 1965; Brockington, 2001; Grange et al., 

2004). Without further investigation it is not possible to state whether H. steineni 

conforms to the tubule recruitment model or not, although Smiley et al., (1991) did 

suggest that the model may not be applicable to Antarctic or deep sea species, which 

was also found to be the case by Tyler et al., (1994). Sewell et al., (1997) concluded 

that the recruitment model may only be applied to a small number of holothurians 

and most appropriate in the aspidochirote families Stichopodidae and Holthuriidae. 

However, it is not valid for many other aspidochirotids. The discovery that gonad 

development varies in holothurians as a function of taxonomic position, geographical 

location, and habitat, and even within individuals in the same location, suggests that 

the model does not have a wide applicability within the holothurians.     

 

The shedding of mature oocytes from the ovary indicated a distinct annual spawning 

event during the austral winter for H. steineni. Gutt et al., (1992) observed a lack of 

mature oocytes in females sampled during the austral autumn, contrasting the winter 

spawning habit described in the current study. However, the current data should be 

interpreted with some caution. A number of the monthly samples collected had to be 

re-analysed and owing to limitations of the data, only a small number of individuals 

or a single female could be taken as representative of each month and used in the 

reproductive analyses.  

 

A long-term 18-24 month cycle in gametogenic development was not clearly shown 

in the oocyte size distributions, in fact many exhibited either uni-modal size classes 

or extremely broad oocyte size distributions. However, Gutt et al., (1992) did 

describe the presence of two overlapping oocyte generations in the ovary of H. 

steineni and observed the presence of large, yolky oocytes forming 1-3 cohorts in the 

ovary at any one time. The differences between these two studies can probably be 

explained by the limitations in the data described above and is further complicated as 

histological analysis of the holothurian gonad is also problematic. The gonad is 

composed of numerous tubules of different diameters and an equal cross section of 

all of these tubules needs to be processed through histology if a true representation of 

gametogenic maturity is to be attained. The large number of gonadal tubules makes it 
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difficult to attain a true representation of the proportion of different oocyte size 

classes in the ovary at any one time and may partially account for the oocyte 

distributions described. Many other Antarctic invertebrate taxa exhibit prolonged 

oogenesis cycles (18-24months), including a number of shallow water Antarctic 

echinoderms, e.g. Odontaster validus (Pearse, 1965), Sterechinus neumayeri 

(Brockington, 2001) and Ophionotus victoriae (Grange et al., 2004).  

 

Male Maturity 

Annual spawning events were more clearly indicated in the male maturity data. Male 

H. steineni possessed active sperm during the austral winter. Large proportions of 

active sperm were lost during this period of the current study, which was consistent 

in timing between consecutive years and coincident with the spawning events in the 

female population sampled. Synchrony between the reproductive signals of male and 

female invertebrates has been reported in the Antarctic before (Pearse et al., 1991; 

Brockington et al, 2001; Grange et al., 2004). Synchronous spawning within the 

Holothuroidea has been suggested by the aggregating of individuals into assemblages 

(Smiley et al., 1991) and has the advantage of increasing the chances of successful 

external fertilisation.  

 

Reproductive Cycle and Larval Development 

The cycle in gonad index, male maturity index and female oocyte size all suggest a 

winter spawning pattern in this shallow-water population of H. steineni. The release 

of large yolky oocytes into the water column supports a lecithotrophic life history in 

this holothurian. Broadcasters with direct development have been described before 

within the Holothuroidea (Smiley et al., 1991). However, the majority of these have 

been described as possessing summer or spring spawning patterns (February-May) 

and have been concentrated in the cold temperate waters of the northern oceans. 

Despite this, Boolootian�s (1966) analysis of the reproductive cycle of Thyone 

briareus showed winter spawning. This species belongs to the Dendrochirotida, to 

which H. steineni also belongs. The timing of direct-developing holothurian 

reproductive events has been associated with the food requirements of the juveniles 

upon settling (Smiley et al., 1991). Recent work by Bowden (D Bowden pers. 

comm.) has confirmed the presence of early holothurian recruits on settlement plates 

in February/March. He also occasionally observed holothurian doliolarias throughout 
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the austral winter, which may suggest the capacity of these larvae to overwinter. The 

decoupling of these larvae from high summer production levels and the availability 

of planktonic food in the water column is largely a result of their lecithotrophic life 

history. Consequently these larvae utilise internal nutrient reserves to sustain energy 

levels during the depauperate winter, settling during the following summer when 

food levels are increasing. Many Antarctic echinoderm larvae exhibit adaptive 

feeding patterns to survive the nutrient-poor winter, including the uptake of dissolved 

organic material, e.g. Odontaster validus (Olson et al., 1987) Parborlasia corrugatus 

(Peck, 1993) and Cucumaria ferrari (McClintock et al., 1994). A prolonged over-

wintering development cycle has been previously described for Antarctic echinoderm 

larvae, most notably within the starfish Odontaster validus (Pearse, 1969; Bosch et 

al., 1987).          

    

Inter-annual Variation 

Recent evidence suggests inter-annual cycles to be important not only within 

Antarctic invertebrates, but within marine communities worldwide. The El Nino 

Southern Ocean Oscillation (ENSO) modifies the physico-chemical and biological 

signatures of the Pacific Ocean every few years (Navarrete et al., 2002; Wong et al., 

2002) and the effect may extend to the Southern Ocean (Dayton, 1989; Meredith et 

al., 2004). A similar forcing has been recently identified in the Antarctic as the 

�Antarctic Circumpolar Wave� characterised by a 4-5 year cycle influencing both 

biological and environmental parameters (White and Peterson, 1996).  

 

The potential of further global climate change has important implications for the 

western Antarctic Peninsula, which has undergone the most rapid warming of any 

region in the Southern Hemisphere (King, 1994; King and Harangozo, 1998; 

Meredith and King, 2005), with mean annual temperatures increasing by more than 

2.5ºC over the last fifty years. Antarctic taxa are regarded as very sensitive 

barometers for change. The combination of very limited functional scopes, with slow 

rates of adaptation and restricted dispersal capacities makes Antarctic invertebrates 

the most temperature sensitive fauna on Earth and are likely to be amongst the most 

vulnerable species worldwide to environmental modifications (Peck et al., 2004). 

The functional ecology of a selection of sensitive and ecologically important 

Antarctic marine invertebrates has been investigated. All have upper experimental 
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temperatures at or below 10ºC, and the most stenothermal, the brachiopod 

Liothyrella uva, the infaunal bivalve Laternula elliptica and the scallop Adamussium 

colbecki, experience fatalities at 4ºC. A broad range of invertebrates experience 

anaerobic metabolism between 2-6ºC and their basic biological functions appear to 

be inhibited between 2-8ºC. These data suggest that the majority of taxa now known 

in the Antarctic would be adversely affected by any future rise in sea temperature 

that could elevate current summer temperatures 1-2ºC above their annual mean. 

Reproductive success is a vital characteristic in species survival and evaluation of 

change in reproductive condition with time key to identifying vulnerable taxa. 

Characterising reproductive success with time is a major requirement in predicting 

species response to change and the early stages of species loss. 

 

A large diversity in the reproductive patterns of four shallow-water invertebrates was 

observed in the current study. Three of the four invertebrates were broadcast 

spawners and possessed indirect development via a planktotrophic larva (the brittle 

star Ophionotus victoriae, the seastar Odontaster validus and the nemertean 

Parborlasia corrugatus). However, the timing of spawning differed amongst these 

invertebrates during the late austral spring, the austral winter and during the late 

austral summer respectively. The sea cucumber Heterocucumis steineni was also a 

broadcast spawner releasing eggs during the austral winter, but possessed large, 

yolky eggs typical of lecithotrophic development.  

 

This study presents further evidence of inter-annual variation in reproduction in the 

Antarctic. A significant degree of inter-annual variation was evident in the 

reproductive ecology of the detritivore, Ophionotus victoriae, which may have been 

driven by the highly seasonal sedimentation events at Rothera. The amount of inter-

annual variation exhibited in the reproductive ecology of Odontaster validus, a 

scavenger, was reduced in comparison, and lowest in the predatory nemertean P. 

corrugatus. Chiantore et al., (2002) observed a very obvious dichotomy between the 

inter-annual variation in reproduction in the scallop Adamussium colbecki, a filter-

feeder, and two other Antarctic opportunists, capable of utilising a number of prey 

items. They attributed these differences to the trophic biology of the invertebrates 

and the significant degree of coupling between cycles in Antarctic seasonality and 

suspension feeders. The strong seasonality of water column chlorophyll in the 
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Antarctic has an important influence on filter feeders, via vertical flux, and 

detritivores, dependent on fixation and remineralisation, and probably drives the 

patterns observed in the current study and the previous investigation by Chiantore et 

al., (2002). Assuming these assertions are correct, I would have expected to have 

seen a large signal in the gonad index and gametogenic cycle of the only filter-feeder 

studied, Heterocucumis steineni, in response to the seasonality in phytoplankton 

production levels over the study period. However, evidence for inter-annual variation 

in the reproduction of the sea cucumber was lacking, although the limitations of the 

data described previously probably account for this anomaly. Therefore, the trophic 

position and reliance of Antarctic invertebrates on the seasonal water column 

production appears to be important in both reproductive ecology and inter-annual 

variation in gametogenic development.  

 

I believe there were 3 main aspects to the reproductive ecology of these 

invertebrates: (1) The timing of each spawning event was the same between 

consecutive years (1997-2000) and between males and females (2) the oogenic cycle 

underlying the annual seasonal cycle was prolonged in Ophionotus victoriae (18-24 

months), although this typically Antarctic characteristic was not clear in the other 

echinoderms studied (Odontaster validus and Heterocucumis steineni), and a discrete 

15-16 month oogenic cycle was observed in Parborlasia corrugatus (3) inter-annual 

variation in reproductive condition was observed, and appeared to be influenced by 

the trophic position of each invertebrate. A combination of all or some of these 

patterns may be an adaptation to the strong seasonality and low level resource supply 

characteristic of the Antarctic. The plasticity of these species and their ability to 

reproduce despite dramatic inter-annual variation in food supply and the variability 

in the physical components of the environment, may explain why each is a dominant 

member of the Antarctic benthos and a useful barometer for change. 
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3.1 Introduction 

A number of marine invertebrates, and especially echinoderms broadcast their 

gametes into the water column to await external fertilisation (Giese and Kanatani, 

1987). The successful fertilisation of these eggs is a crucial element of invertebrate 

reproductive success and can contribute to the level of recruitment to the parent 

population and the viability of the future generation of propagules. In as early as 

1938 Mortensen recognised the discrepancy between the number of eggs produced 

and the number of offspring settling, attributing this inconsistency to gamete wastage 

and fertilisation failures. An appreciation of the factors controlling the fertilisation 

process is essential, if the circumstances causing fertilisation success and failure are 

to be fully understood.  

 

These factors are numerous and varied, and include the concentration of sperm 

available to fertilise eggs, the density, behaviour and distribution of the spawning 

population, the longevity of gametes and the physical traits of eggs and sperm. The 

situation is made further complicated by the effects of external physical parameters 

on the fertilisation processes, including temperature and salinity effects, and the 

hydrodynamic flow conditions experienced within the immediate environment. The 

factors able to mediate fertilisation success were categorised into gamete, individual, 

population and environmental specific factors by Levitan (1995) and are summarised 

in Table. 3.1.1. The relative importance of each factor is equivocal and probably 

depends on species and habitat/environment-specific characteristics.    
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Table. 3.1.1 Factors influencing fertilisation success (adapted from Levitan, 1995 and Powell, 2001). 
 

Gamete Individual Population Environmental 

1. Sperm 

   Morphology 

   Behaviour 

   Velocity 

   Longevity   

2. Egg 

   Size 

   Jelly Coat 

   Chemotaxis 

   Sperm               

receptors 

3. General 

   Age 

   Compatibility 

1. Behaviour 

   Aggregation 

   Synchrony 

   Spawning  

2. Posture 

   Spawning rate 

3. Morphology 

   Size 

   Reproductive 

output 

4. Age 

5. Energy 

Allocation 

1. Density 

2. Size 

3. Distribution 

4. Size 

Structure 

5. Age 

Structure 

6. Sex Ratio 

1. Topographical Complexity 

2. Flow 

   Advective Velocity 

   Turbulence 

3. Water depth 

4. Water Quality 

   Temperature 

   Salinity 

   pH 

5. Nutrients (Harrison and 

Ward, 2001) 

6. Toxic algae (Granmo et 

al., 1988; Caldwell et al., 

2002) 

7. Pollution (Krause, 1994). 

 

 

A number of studies have investigated the subject of fertilisation success in marine 

invertebrates using both laboratory and field-based techniques, and in some instances 

examples of in situ natural spawning success have been observed and quantified.   

 

The vast majority of these studies have utilised temperate and tropical invertebrates 

(reviewed by Levitan, 1995; Levitan and Sewell, 1998). These studies have included 

a wide array of molluscan species, some commercially important, polychaetes 

annelids, coral, ascidians, bryozoans and fish (Table. 3.1.2). 
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Table. 3.1.2  Fertilisation studies using a number of temperate and tropical marine invertebrates.   
 

Species Reference 

Molluscs 
Haliotis tuberculata (abalone) 
Chlamys bifrons (scallop) 
C. asperrima (scallop) 
Cerastoderma edule (mussel) 
Mytilus edulis (mussel) 
Polychaetes 
Sabellaria cementarium 
Phragmatopoma californica 
Galeolaria caespitose 
Coral 
Pseudoplexaura porosa 
Plexaura kuna 
Ascidians 
Ciona intestinalis 
Pyura stolonifera 
Bryozoans 
Celleporella hyaline 
Fish 
Clupea pallasi 
 
Gadus morhua 

 
Baker and Tyler, 2001 
Styan and Butler, 2000 
Styan and Butler, 2000 
André and Lindegarth 1995 
Levy and Couturier, 1996 
 
Thomas, 1994a 
Thomas, 1994a 
Kupriyanova and Havenhand, 2002 
 
Lasker et al., 1996; Coma and Lasker, 
1997ab 
Lasker et al., 1996; Coma and Lasker, 
1997ab 
 
Jantzen and Havenhand, 2001 
Marshall et al., 2000 
 
Yund and McCartney, 1994; Manriquez 
et al., 2001 
Griffin et al., 1998 
Litvak and Trippel, 1998 

 

On many occasions echinoderms, and especially echinoids have been regarded as 

useful models for free-spawning invertebrates in fertilisation kinetics studies (Table. 

3.1.3). 
 

Table. 3.1.3 Echinoid fertilisation studies. 
 

Species Reference 

Paracentrotus lividus 
Strongylocentrotus droebachiensis 
 
S. franciscanus 
S. purpuratus 
Echinometra lacunter 

Vogel et al., 1982 
Pennington, 1985; Meidel and Yund, 
2001; Epel, 1991 
Levitan et al., 1991 
Mead and Denny, 1995 
Sewell and Young, 1999 

 

Sewell and Levitan (1992) also reported on the fertilisation success of the 

dendrochirotid sea cucumber Cucumaria miniata during a natural spawning event 

and variable spawning rates have been demonstrated for several other holothurians 
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(Babcock et al., 1992). In addition asteroids have received considerable attention. 

Dramatic increases in the number of individuals in populations of the crown-of-

thorns starfish Acanthaster planci have had devastating effects on coral reefs 

worldwide (Moran, 1986), and may be specifically relevant to fertilisation success, 

which has encouraged the comprehensive study of this asteroid (Babcock et al., 

1994; Benzie and Dixon, 1994; Benzie et al., 1994). A number of other seastars have 

also been investigated and have had aspects of their fertilisation ecology described 

(Luidia clathrata Hintz and Lawrence, 1994; Lepasterias polaris Hamel and 

Mercier, 1995; Asterias rubens Williams and Bentley, 2002; Coscinasterias muricata 

Babcock et al., 2000; Oreaster reticulatus Metaxas et al., 2002).   

 

Studies have also researched the substances controlling oocyte maturation and 

spawning in echinoderms, specifically starfish (Kanatani and Shirai, 1971; Kanatani, 

1975; Kanatani and Nagahama, 1983; Shirai, 1991). The system that operates in 

starfish involves a peptide hormone in the nervous system, a gonad-stimulating 

substance (GSS), which triggers the gonad to produce a maturation-inducing 

substance (MIS), an inducer of oocyte maturation and spawning (Kanatani, 1975). 

This system has also been observed in sea cucumbers (Shirai, 1991) and involves the 

substance 1-methyladenine which is also commonly dissolved in distilled water and 

injected intracoelomically into asteroids to induce spawning artificially (Bosch and 

Pearse, 1990). External cues have also been identified as important triggers that act 

to initiate and sometimes synchronise spawning success in asteroids (temperature: 

Minchin, 1987; photoperiod: Pearse and Eernisse, 1986; food and lunar/tidal cycling 

(Boolootian, 1966 and reviewed by Chia and Walker, 1991).    

 

In both laboratory and field observational studies, female fertilisation success ranges 

between 0-100% (Levitan, 1995). Many field experiments have exhibited high 

fertilisation levels, but success is variable and rarely reaches 100%. This is mainly a 

result of rapid dilution of gametes in the water column and subsequent sperm 

limitation (Levitan and Petersen, 1995). This situation is exacerbated in moderate-

high flow conditions, which can severely limit the number of eggs successfully 

fertilised (Pennington, 1985), especially in regions like the surf zone where 

fertilisation success has been reported to be as low as zero (Denny and Shibata, 

1989). Therefore, invertebrates have developed spawning adaptations to counter 
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these detrimental effects, such as aggregative behaviour and synchronous spawning 

(Pennington, 1985; Babcock et al., 1992; Levitan et al., 1992; Sewell and Levitan, 

1992; Coma and Lasker, 1997ab), which have been demonstrated for crinoids 

(Kubota, 1981), holothurians (McEuen, 1988; Sewell and Levitan, 1992), asteroids 

(Minchin, 1987), ophiuroids (Hendler and Meyer, 1982; Run et al., 1988), echinoids 

(Randall et al., 1964; Minchin, 1992) and in the deep sea (Young et al., 1992). 

Highly synchronised seasonal spawning has been suggested to also have the 

advantage of swamping predators or preventing specialised predator feeding (Olive 

et al., 2000). Furthermore, Levitan (1988) observed poor fertilisation success in the 

sea urchin Diadema antillarum when spawning episodes were asynchronous and 

sporadic, and only involved a few sparse individuals. Soong et al., (2005) discussed 

the importance of inductive mechanisms in inducing males and females of the same 

species to spawn whilst in close proximity. In echinoderms both sexes have been 

observed to release gametes first, although more species have been reported to 

exhibit male-first spawning. However, the relative importance of sperm limitation or 

sperm competition in a species probably determines the order by which male and 

female echinoderms spawn, e.g. the high selective pressure of sperm limitation in 

some species will result in females spawning first, closely followed by males, 

whereas sperm competition may encourage the early release of sperm, occasionally 

some time prior to the appearance of eggs in the water column. However, in some 

species, e.g. the starfish Asterias rubens, induction is bi-directional where the 

gametes of either sex induce the opposite sex to spawn (Soong et al., 2005). 

Therefore, the possible role of pheromones in ensuring fertilisation success may also 

be important in some species of echinoderm. Other adaptations have been gamete-

specific and have included adaptations in both sperm and egg morphology, common 

in many marine invertebrates (Table. 3.1.4).  
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Table. 3.1.4 Gamete-specific adaptations to maximise fertilisation success.   
 

Adaptation Reference 

Sperm  
Morphology 
Velocity 
Egg 
Size 
 
Jelly Coat 
Surface Receptors 
Other 
Chemotaxis 
 
Gamete Longevity 

 
Eckelbarger et al., 1989abc 
Kupriyanova and Havenhand, 2002) 
 
Levitan, 1993, 1996, 1998; Podolsky and 
Strathmann, 1996; Marshall et al., 2000 
Podolsky, 2002 
Rosati, 1995 
 
Miller, 1982, 1985, 1989; Bolton and 
Havenhand, 1996 
Manriquez et al., 2001; Meidel and 
Yund, 2001; Williams and Bentley, 
2002; Johnson and Yund, 2004 

 

The release of gametes in viscous fluids also delays the rate at which gametes 

disperse and are diluted (Levitan, 1995). The influence of egg concentration is often 

recorded as comparatively negligible and only has a significant influence when egg 

concentration is high, which only ever strictly applies to the first few moments after 

female spawning (Levitan, 1995).     

 

There are many examples of free-spawning broadcast spawners amongst Antarctic 

polar invertebrates that develop into pelagic larvae in the water column at 

temperatures between –1.8 and 2ºC (Clarke, 1992; Pearse, 1994; Stanwell-Smith et 

al.,1999). Many of these invertebrates also exhibit spawning adaptations including 

aggregative behaviour, observed in the stacks of Nacella concinna (Picken and 

Allan, 1983) and synchronous spawning, demonstrated for the brittle star Ophionotus 

victoriae (Grange et al., 2004). However, the fertilisation dynamics of polar 

invertebrates have received limited attention except for a small number of species-

specific studies (Powell et al., 2001).  

 

Antarctic invertebrates have evolved over millennial time timescales and have 

become closely adapted to the low temperatures that characterise the marine 

environment (Clarke and Crame, 1989). These low temperatures affect the physical 

attributes of the marine environment increasing water viscosity and density, gas 
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solubility and decreasing pH. Temperature changes have a great effect on sperm and 

specifically sperm motility, as well as directly affecting fertilisation success 

(Greenwood and Bennett, 1981). Viscosity also has a marked influence on the 

motion and movement of small microscopic cells (Podolsky and Emlet, 1993). 40% 

of the decrease in swimming speed of sand dollar larvae, Dendraster excentricus, 

over a 10-degree drop in temperature, was accounted for by increases in viscosity. 

Viscosity can also affect other biological processes such as suspension feeding, 

accounting for over half the reduction in larval feeding rate at lower temperatures 

(Podolsky, 1994). Therefore, the high viscosities inherent at low temperatures, most 

probably affect the path and velocity at which sperm swim. However, although these 

attributes are known to characterise Antarctic waters, their effect and influence on 

invertebrate fertilisation success remain largely unknown.  

 

Antarctic invertebrates are also stenothermal and experience a very narrow range of 

environmental parameters within which they can function efficiently (Peck et al., 

2004). The thermal resistance of cells, such as male and female gametes, tends to be 

species-specific and is often correlated with the degree of thermophily of the species 

concerned (Andronikov, 1975). This has important implications for the distribution 

and potential survival of Antarctic invertebrates, especially if the predicted global 

ocean temperature rise of 1 to 2ºC over the next century is realised.   

 

Studies of the fertilisation ecology of Antarctic shallow-water invertebrates are rare. 

The fertilisation ecology of the Antarctic shallow-water bivalve Laternula elliptica 

and the common Antarctic limpet Nacella concinna contrasts with the patterns 

observed in comparable temperate and tropical species (Powell et al., 2001).  These 

invertebrates necessitate sperm concentrations 1-2 orders of magnitude larger than 

their comparable temperate counterparts to achieve optimal fertilisation rates. These 

sperm are also long-lived, and the gametes are stenothermal and stenohaline. These 

species also employ spawning adaptations to maximise fertilisation success, such as 

aggregative behaviour, spawning under ice and during low flow conditions. The 

differences in fertilisation patterns between temperate and Antarctic conspecifics are 

most probably species and environment driven, and comparisons between these two 

regions are important if we are to understand how fertilisation kinetics are driven in 

 134



Fertilisation Kinetics  Chapter 3 

different locations, and how animals will respond to environmental modifications at 

the gamete level.     

  

The current study investigated the fertilisation kinetics of a temperate starfish 

Marthasterias glacialis and an ecologically similar seastar from the Antarctic, 

Odontaster validus. These species are ideal for fertilisation studies as they are both 

abundant and conspicuous members of the benthos and are free-spawners. They 

differ dramatically in distribution and there is a broad dichotomy between their 

functional limits and the environmental conditions they experience. 

 

Marthasterias glacialis, the spiny starfish, has a broad range and occurs from the 

Northern extremity of Iceland to South Africa, including the Mediterranean (Nichols 

and Barker, 1984; Minchin, 1987). It is common in Irish Waters and in the English 

Channel, where Plymouth Sound is towards the eastern edge of its range. Individuals 

in Plymouth Sound experience a broad range in temperature between 5-18˚C and 

salinities of 32. The fertilisation kinetics of this asteroid have not been investigated, 

however the reproductive ecology has received some attention. According to 

Mortensen (1927) and Lönning (1976) spawning takes place in the summer. Nichols 

and Barker (1984) observed spawning in Plymouth Sound, England, during May-

June and Minchin (1987) recorded spawning in the Mulroy Bay, Ireland population 

during July and August in 1978.  

 

Odontaster validus is ubiquitous to the Antarctic and is extremely abundant. This 

starfish can be observed at sites in South Georgia (54˚S), throughout the Southern 

Ocean and at an extreme southerly latitude in McMurdo Sound (78˚S) (McClintock 

et al., 1988). It is a conspicuous member of the shallow-water benthos experiencing 

temperatures between –1.9 and 2˚C and a stable background of typical marine 

salinities (Clarke and Leakey, 1996). The reproductive ecology of O. validus has 

received considerable attention (Pearse, 1965; 1969) and it produces a planktotrophic 

larva during the austral winter (Pearse, 1969; Pearse et al., 1991). Stanwell-Smith 

and Clarke (1998) studied spawning competence in the starfish and found individuals 

could be induced to spawn during May and June. However, the factors affecting 

fertilisation success in this invertebrate have yet to be studied in any detail.    
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The main aim of this study was to assess the affects of several factors on fertilisation 

success in both Marthasterias glacialis and Odontaster validus: sperm dilution, 

temperature, salinity, gamete longevity, contact time between gametes, viscosity and 

egg jelly characteristics and sperm motility. Secondly, efforts were made to compare 

and contrast the fertilisation success of both starfish under controlled experimental 

conditions, manipulating a single variable whilst the ambient conditions were 

maintained constant. A final comment was made on the broadscale implications of 

these fertilisation traits in respect of forecasted climatic change and predicted 

environmental warming in the Antarctic.    
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3.2 Materials and Methods 

 

Sampling  

The temperate Marthasterias glacialis was SCUBA diver collected from 15-20m 

depth just east of Knap Shoal, (50°19.57S 4°09.55W) in Plymouth Sound (Fig. 

3.2.1), during March 2003 and March 2004. Live individuals were retained in 

collection bags and suspended from the marina pontoon for a short period after 

collection. The samples were then transported back to the aquarium at the National 

Oceanography Centre, Southampton (NOC) in two large cool boxes, using seawater 

from the Sound and freezer packs to maintain a cool temperature inside each 

container (Fig. 3.3.2). The sampled individuals were kept in three 1m deep tanks in a 

circulating natural seawater system and were maintained at ambient seawater 

temperature (~12-13˚C). Individuals were fed with a diet of live mussels (Mytilus 

edulis) and occasionally small pieces of fish. Experimental trials were undertaken 

during April-mid May to coincide with the published spawning period in the natural 

populations of this starfish. 

 
 
Fig. 3.2.1 Marthasterias glacialis. Starfish sampling site at Knap Shoal (-), Plymouth Sound, UK 
(50°19.57S 4°09.55W). 
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  A B 

 
Fig. 3.2.2 Marthasterias glacialis. A collection of average sized individuals (A) and the NOC flow 
through seawater aquarium (B). 
 

The Antarctic Odontaster validus was SCUBA diver collected from 15-20m depth in 

South Cove, Rothera Point, Adelaide Island (67˚34 S 68˚08 W). Collections were 

undertaken during the late summer field seasons of March 2003 and March 2004. 

Starfish were transferred directly to the Bonner Laboratory aquarium facility in a 

bucket of water to minimise handling and thermal stress. Live individuals were 

maintained on station in the temperature controlled, flow-through seawater aquarium, 

adjacent to South Cove (Fig. 3.2.3). Animals were transported back to the UK aboard 

the RRS Ernest Shackleton in a thermally controlled transport aquarium, housed in a 

large refrigeration container. They were then transferred to the British Antarctic 

Survey Headquarters in Cambridge and kept in 1m deep tanks in a purpose-built 

aquarium. This semi-closed recirculating system was housed in a constant 

temperature room, where a refrigeration system helped the air temperature to remain 

at 0°C ± 2ºC. This in turn maintained the seawater temperature at 0.5ºC ± 0.5ºC. 

Animals were fed a varied diet of fish and crustaceans. Experimental trials were 

conducted in July-late August to coincide with the natural spawning period of O. 

validus during the austral winter. 

  A B 

 
Fig. 3.2.3 Odontaster validus. A photograph of a natural assemblage of O. validus (A) and the Bonner 
Laboratory Aquarium Facility (B) housed at the BAS Rothera Research Station. 
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A similar methodology was adopted in the experiments on both starfish species and 

wherever possible trials were repeated three times. Each experiment involved the use 

of a single male and female pairing. Different individuals were used for each trial.  

 

Sperm Dilution 

Individual starfish (n = 6) were contained in separate aquaria with 1-2L of seawater. 

Experiments were undertaken at the normal physiological temperature of each 

species and maintained constant. In the case of Odontaster validus the aquaria were 

placed in a thermally controlled experimental room adjacent to the main aquarium, 

where experimental seawater temperatures were maintained between 0.5ºC + 0.5ºC 

(Fig. 3.2.4). Male and female starfish could not be distinguished from the external 

morphology of either species. Therefore, individuals were chosen at random, 

although where possible larger starfish were preferred to ensure the majority of 

individuals selected would be reproductively mature. Each starfish was weighed wet 

(+0.01g) on an electronic balance and measured using vernier callipers (+0.01mm). 

The radial length (R) and body radius (r) were measured (Chapter 2.2). Each starfish 

was injected intracoelomically with a dose of refrigerated (~4ºC) 1-methyladenine 

99% (1x10-4M 0.015g in 100ml distilled water)  (Sigma Chemicals) using a sterile 

needle to artificially induce spawning (3-4ml for Marthasterias rubens and 1-3ml for 

Odontaster validus). Each animal was injected at the top of each arm, into the 

coelom (Bosch and Pearse, 1990), and a different needle was used for each 

individual to avoid any contamination between individuals. 

 

Aquaria 
Balance 

 
Fig. 3.2.4 A typical aquarium set-up, consisting of an electronic balance and 6 small aquaria used to 
house individual starfish. 
 

A series of 30x 30ml experimental vials were set up in triplicate (3 replicates) and 

provision was also made for 3 control vials. All glassware was sterile before use. A 
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9ml sample of seawater was transferred into each experimental vial and each control 

vial using a micropipettor (Volac). The time necessary for each individual to spawn 

was invariably different, although approximately 20-30 minutes was usual. Males 

tended to spawn before females in both species. In both species males spawned thick, 

milky-white packets of sperm from the gonopores on their aboral surfaces (Fig. 

3.2.5). Females released eggs from the gonopores, which were negatively buoyant 

and settled upon the aquaria floor. Eggs spawned by female M. glacialis were pink in 

colour, whereas female O. validus released orange eggs (Fig. 3.2.5). The viability of 

both male and female gametes was checked under a compound microscope using a 

well slide. Checks ensured eggs were spherical and smooth and sperm were motile 

and active. Experimental trials were abandoned and repeated where possible, if this 

was not the case. 

N.B. An aqueous yellow secretion was sometimes visible from the oral surface of 

starfish after administering the 1-methyladenine injection. These were stomach 

secretions and were a secondary effect of the administered chemical, most probably 

caused by spontaneous contractions of the gut (A Marsh, pers. comm.). 

 

   

A B 

Eggs 

Sperm 

  

D C

Sperm 
Eggs

 
Fig. 3.2.5 Marthasterias glacialis and Odontaster validus. Typical signs of male and female spawning 
(A = M.glacialis male, B = M. glacialis female, C = O. validus male and D = O.validus female). 
 

A sterile Pasteur pipette was used to siphon concentrated sperm from the gonopores 

and surrounding seawater of the most active male and was deposited into a sterile 

vial. 1ml of the dry sperm was transferred using a micropipettor into the first three 
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replicate vials and agitated to ensure thorough mixing. This produced a 10-1 dilution 

of the initial sperm concentrate, after which the pipette tip was changed. A 1ml 

subsample of 10-1 sperm dilution was transferred into the second set of vials and this 

process was repeated for all replicate 10-1 sperm solutions, producing a sperm 

dilution of 10-2 in strength in the second set of experimental vials. The same protocol 

was followed between all remaining vials creating a stepwise serial dilution in sperm 

concentration from 10-1 to 10-10. A final 1ml subsample was removed from the last 

set of experimental vials and discarded. 

A sterile Pasteur pipette was used to transfer eggs from the most fecund female and 

deposited into a sterile glass receptacle. Subsamples of eggs were then placed in a 1L 

beaker of seawater to produce an optimum egg solution (100-200 eggs ml-1). One ml 

of optimum egg solution was transferred into each control vial (eggs plus seawater 

only) and each experimental vial, taking care not to contaminate the pipette tip with 

the contained sperm dilution. Each vial was agitated to ensure thorough mixing and 

left to incubate over 1-2 hours. Each solution was then fixed using 4% buffered 

formalin. These samples allowed the optimum sperm concentration to be calculated. 

The most active male and female were then returned to the aquarium and held 

separate from the remaining sample population to ensure that they were not re-

sampled, and to reduce the chance of spontaneous spawning of other individuals in 

their vicinity.  

Any remaining starfish not selected for the sperm dilution experiment, that had 

successfully spawned, were allowed to spawn for an hour before being returned to 

the aquarium. The 1L sperm and egg suspensions of these individuals were fixed 

using 4% buffered formalin. These samples were used to quantify gamete release in 

both species of starfish.  

 

Experiments conducted were designed to test the effects of several control variables 

on fertilisation success. Each trial necessitated the collection of 6 starfish and their 

separation into individual plastic aquaria containing 1-2L seawater. An injection of 

1-methyladenine was administered intracoelomically to each starfish, after 

individuals were weighed wet (+0.01g) on an electronic balance and measured using 

vernier callipers (+0.01mm) (R and r). Individuals were then allowed to spawn, and 

dry sperm and eggs were collected from the most active male and fecund female 

respectively. Optimum gamete concentrations (obtained from previous trials) were 
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prepared and used to test the effects of separate variables on fertilisation success (1-

3x105 sperm ml-1 Marthasterias glacialis, 1-3x106 sperm ml-1 Odontaster validus and 

100-200 eggs ml-1 for both species). Mixed sperm and egg solutions were left to 

develop under specific conditions over 1-2 hours before being fixed using 4% 

buffered formalin. Any remaining starfish that had spawned, but were not selected 

for the individual trials, were allowed to spawn over the period an hour. Individuals 

were then returned to the aquarium and the remaining 1L sperm and egg solutions 

were fixed using 4% buffered formalin and used to quantify male and female gamete 

release in both starfish. 

 

Temperature 

A temperature gradient was set up between two Haake thermo-circulators using two 

aluminium thermo-gradient blocks and a series of tube connectors (Fig. 3.2.6). The 

temperature range required was set according to the normal functional limits of each 

species and the circulators were programmed to reach both high and low extremes 

outside the normal scope of each starfish (5-30°C for Marthasterias glacialis and -

1.8-13°C for Odontaster validus). On occasions when this experiment was carried 

out at the BAS, the equipment was set up adjacent to the thermally-controlled 

aquarium in a refrigerated experimental room. A series of sterile 30ml experimental 

vials were positioned in triplicate at intervals along the thermo-gradient blocks. A 

micropipettor was used to distribute 8ml seawater into each vial and allowed to 

acclimate for 1 to 2 hours. The seawater temperature in each vial was checked using 

an aquarium probe and recorded.   

 

Thermo-circulator Cooler 
unit Thermo-gradient

Block 

 
Fig. 3.2.6 A typical temperature trial experimental set-up, consisting of two aluminium 
thermogradient blocks and two Haake thermocirculators including a cooler unit. 
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One ml optimum sperm solution was placed in each experimental vial along the 

thermogradient blocks and allowed to acclimate to the in situ temperature for 30-

minutes. A 1ml subsample of the optimum egg solution was then transferred into 

each experimental vial, with care not to contaminate the pipette tip with the 

contained sperm solution. Each vial was agitated to ensure thorough mixing and left 

to incubate for 1 to 2 hours. A control experiment was also set up at ambient 

temperature, using three replicate samples of 9ml seawater and 1ml optimum egg 

solution.  

 

Salinity 

The effect of salinity on fertilisation success was assessed. Eight sterile 30ml 

experimental vials were set up in triplicate and filled with 10ml serial dilutions of 

seawater. Progressively larger quantities of freshwater were used to produce a 

gradient in salinity between the 8 sets of experimental vials: 

1. 10ml seawater = 33 

2. 9.5ml seawater + 0.5ml freshwater = 32 

3. 9.0ml seawater + 1.0ml freshwater = 31 

4. 8.5ml seawater + 1.5ml freshwater = 30 

5. 8.0ml seawater + 2.0ml freshwater = 29 

6. 7.5ml seawater + 2.5ml freshwater = 28 

7. 7.0ml seawater + 3.0ml freshwater = 27 

8. 6.5ml seawater + 3.5ml freshwater = 26 

 

These salinities were checked with a PINPOINT salinity monitor (American Marine 

USA Inc), which uses electrical conductivity to measure salinity. A micropipettor 

was used to deliver 1ml optimum sperm concentration to each experimental vial. 

Each sperm solution was permitted 30 minutes for the sperm to acclimate to the in 

situ salinity. A 1ml subsample of optimum egg solution was then added to each vial 

and the contents were thoroughly mixed. Three replicate seawater and optimum egg 

solutions (without sperm) were set up in addition as controls.  
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Gamete Age          

The effect of gamete age on fertilisation success was assessed. 18 sterile 30ml 

experimental vials were set up containing 8ml of seawater. Optimum sperm and egg 

solutions were kept aerated over long periods. Gametes were aged according to the 

following protocol: 0mins (time of spawning), 30mins, 1hour, 1h30mins, 2hours and 

2h30mins, and where possible some trials were extended at generally 4 to 12 hourly 

intervals to cover a 48hour period. Separate micropipettors were used to deliver 1ml 

optimum sperm and egg solution into the experimental vials at these set time 

intervals. A triplicate control experiment was included using 9ml seawater and 1ml 

optimum egg solution. Time constraints only allowed aged sperm and egg to be 

tested. Ideally both the effects of fresh eggs and aged sperm, and fresh sperm and 

aged eggs would have also been investigated had time constraints not been an issue.  

 

Contact time between gametes      

60 sterile 60ml experimental vials were set up and filled with 8ml seawater (6 

replicates for 10 experimental trials). A straining apparatus was made using 20ml 

Nitex syringes and a 48μm mesh (Fig. 3.2.7), according to Baker (2001). 30 Nitex 

mesh strainers were inserted into three of the six replicate vials for each of the 10 

experimental trials, for the easy removal of eggs from each sperm solution. Separate 

micropipettors were used to transfer 1ml optimum gamete solution into each 

experimental vial containing a Nitex mesh strainer. The strainers were carefully 

removed at set time intervals from each vial individually and the mesh washed in a 

1L beaker of seawater This action was repeated several times to ensure the removal 

of any residual sperm from both the syringe and the retained eggs, and guaranteed 

any fertilisation observed to be the product of interactions between male and female 

gametes during the set contact-time intervals: 5secs, 30secs, 1 min, 2 min, 5 min, 10 

min, 30 min, 1 hour, 2 hours and 4 hours, timed using a stopwatch. After thorough 

washing the Nitex strainers were inserted into the remaining experimental vials, 

possessing only eggs retained on the 48μm mesh. Three replicate control vials 

containing only eggs and seawater were also set up.  
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Nitex 20ml 
syringe 

48μm mesh 

 
Fig. 3.2.7 An example of a 20ml Nitex mesh strainer used to separate sperm and eggs after specified 
contact times.  
 

Viscosity   

Three different chemical agents were used to alter seawater viscosity artificially; 

glycerol, methylcellulose and polyvinylpyrollidone (PVP) (Sigma Chemicals). Each 

solution was prepared with progressively larger quantities of each chemical and the 

resultant solutions were agitated using an electronic stirrer until they were 

homogenous. The viscosity of each solution was measured using a Gilmont Falling 

Ball Viscometer (Glass Tube #1). The viscometer was assembled and filled with 

solution taking care to avoid air bubbles. The rate at which two high precision balls 

of stainless steel and tantalum progressed down the tube was recorded and repeated 

in triplicate using a stopwatch. The type of ball chosen depended on the viscosity of 

the solution and the fall rate of each ball. Measurements were reproducible from 0.2-

1% depending upon the time of descent. The viscosity was calculated as follows: 

μ =  K(pf-p)t 

where, μ = viscosity in centipoises (cp) 

           pf = density of ball (gms ml-1) 

80.2 for stainless steel 

 16.6 for tantalum 

            p =  density of liquid (gms/ml) 

            t  =   time of descent (minutes) 

K =  viscometer constant (for a Glass tube #1 K = 0.3). The viscometer 

standard is obtained by measuring the time of descent for a standard liquid.    

 

Five different seawater solutions of each agent were tested in triplicate (x3 replicate 

experimental vials, Table. 3.2.1). 
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Table. 3.2.1 Separate experimental trials were designed using increasing concentrations of three 
chemical agents used to artificially alter seawater viscosity. Viscosity was calculated using a Falling 
Ball Viscometer and quantified by the passage of a weighted ball along the viscometer’s length. 
Viscosity A = seawater viscosity maintained at 12ºC + 0.5ºC, B = seawater viscosity maintained at 
0.5ºC + 0.5ºC.  
 

Solution Chemical Agent High Precision Ball Viscosity A (cp) Viscosity B (cp)
SW1 Seawater only Stainless Steel 1.27 1.45 

SW2 PVP 0.14g 100ml SW Stainless Steel 1.48 1.62 
SW3 PVP 0.28g 100ml SW Stainless Steel 1.77 1.96 
SW4 PVP 0.56g 100ml SW Stainless Steel 2.35 2.58 
SW5 PVP 1.12g 100ml SW Tantalum 4.24 5.21 
SW6 PVP 2.24g 100ml SW Tantalum 9.23 10.08 

SW2 Methylcellulose 0.14g 100ml SW Stainless Steel N/A 1.76 
SW3 Methylcellulose 0.28g 100ml SW Stainless Steel N/A 2.05 
SW4 Methylcellulose 0.56g 100ml SW Stainless Steel N/A 3.09 
SW5 Methylcellulose 1.12g 100ml SW Tantalum N/A 6.54 
SW6 Methylcellulose 5.24g 100ml SW Tantalum N/A 16.02 

SW2 Gylcerol 5ml 100ml SW Stainless Steel N/A 1.61 
SW3 Gylcerol 10ml 100ml SW Stainless Steel N/A 1.80 
SW4 Gylcerol 15ml 100ml SW Stainless Steel N/A 2.08 
SW5 Gylcerol 20ml 100ml SW Tantalum N/A 2.67 
SW6 Gylcerol 30ml 100ml SW Tantalum N/A 3.21 
 

8ml of each solution was placed into three replicate sterile 30ml experimental vials 

(48 vials total) and 3 control vials were also set up containing only eggs and 

seawater. Different pipette tips were used to dispense each solution to avoid cross 

contamination between dilutions and between agents.  

A micropipettor was used to dispense 1ml optimum sperm solution into each 

experimental vial and 30 minutes allowed for sperm to acclimate to the in situ 

seawater viscosity. 1ml optimum egg solution was added to each vial and agitated to 

ensure thorough mixing.  

N.B. The effect of viscosity on fertilisation success was assessed for Marthasterias 

glacialis and Odontaster validus using PVP-seawater solutions only. The poor 

spawning response of O. validus prevented an extensive investigation from being 

undertaken and consequently only a single PVP treatment was tested. Experiments 

on the effect of viscosity on fertilisation success were therefore transferred to the 

infaunal Antarctic bivalve Laternula elliptica, using serial dilutions of PVP with 

seawater, and two other chemical agents. This invertebrate could be reliably strip-

spawned and had a greater potential of producing successful experimental trials.    
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Egg Jelly      

The jelly coats were separated from starfish eggs following the protocol for 

removing mucopolysaccharides from samples for later analysis, according to Adam 

Marsh (A Marsh, pers. comm.). Glacial acetic acid was used to adjust the ph of a 

100ml volume of seawater to 5.2. A 10ml subsample of this solution was pipetted 

into 3 replicate 30ml experimental vials containing Nitex mesh strainers. Another 6 

vials were filled with 10ml normal seawater. A 1ml subsample of optimum egg 

solution was pipetted into the 3 vials containing acidic seawater and 3 of the vials 

containing normal seawater. The acidic solutions were gently mixed and placed in a 

cool box over ice for approximately 5 minutes. The Nitex mesh strainers were 

removed from each vial individually and washed carefully in a 1L beaker of 

seawater. Each Nitex strainer was then inserted into a new 60ml vial containing 10ml 

normal seawater. A 1ml subsample of optimum sperm solution was pipetted into 

each experimental vial containing the strained eggs and the vials containing eggs in 

normal seawater.  

    

Fecundity 

Individual Odontaster validus were held in separate aquaria and induced to spawn 

using injections of 1-methyladenine. Each starfish was weighed wet (+0.01g) and 

measured using vernier callipers (+0.01mm). Only female starfish were required. 

Therefore, any males were returned to the aquarium and any spare aquaria were 

emptied. Individuals were allowed to spawn into 1L seawater over an extended 

period until all visual signs of spawning had stopped. All 1L samples were fixed 

using 4% buffered formalin and used to quantify female fecundity. 

 

Fertilisation and Gamete Counts 

100 eggs were counted from each experimental trial and were quantified using a 

Sedgewick Rafter counting cell. Each count was repeated in triplicate. The 

percentage of fertilised and non-fertilised eggs was quantified to indicate fertilisation 

success. Fertilised eggs were identified by the presence of a fertilisation membrane. 

Instances of normal and abnormal fertilisation, including polyspermy, were also 
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recorded. The presence of multiple sperm attached to the jelly coat of an egg was 

used to indicate polyspermy (Fig. 3.2.8).  

 

 A. Not Fertilised B. Fertilised  

   C. Normal 2 cell D. Normal 4 cell E. Polyspermy 
 
Fig. 3.2.8 Fertilisation was scored by the absence (A) or presence of a fertilisation membrane (B), and 
normal cell cleavages (C and D). Polyspermy was also recorded and regarded as abnormal (E). 
 
Individual female fecundity and gamete release were measured in 3 replicate 1ml 

samples using a Sedgewick Rafter counting cell and the number of eggs in 1L of 

seawater calculated. Checks were made to ensure optimum egg solutions were 

accurate (100-200 eggs ml-1). 100 eggs from each control were also counted and the 

occurrence of any fertilised eggs recorded. Any experiments where controls had a 

fertilisation rate >1% were discarded and, where possible repeated.  

Individual male gamete release and concentrated sperm counts were accomplished 

using two methods. A haemocytometer counting cell was used to quantify the 

amount of sperm per ml-1 in three replicate counts of the 2003 samples of both 

starfish species. The 2004 samples of both species were quantified using a Coulter 

Multisizer II. Three replicate 500μl samples of each solution were analysed and the 

number of sperm quantified on a 1.9-20.0μm scale for particle size. Solutions were 

continually agitated to ensure thorough mixing using the in-built stirrer apparatus and 

the 500μl subsamples were counted within a 100μm tube. Serial dilutions of each 

sample had to be prepared using a standard control solution (isoton) to ensure 

accurate counts. A control (isoton) count was also undertaken in triplicate and 

recorded as a background count, which was subtracted from all other sperm counts. 

The concentration of sperm ml-1 calculated by both methods was converted into the 

number of sperm in 1L seawater. A 1ml subsample of dry sperm from both 

Marthasterias glacialis and Odontaster validus was quantified and compared 
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between the two methods to ensure that similar concentrations of sperm were being 

detected. This test was undertaken for a single male of each species in 2003 using the 

haemocytometer and in 2004 using the Coulter Multisizer II, and 3 replicate counts 

of each dry sperm sample were tested (Table. 3.2.2). 

 
Table. 3.2.2 Dry sperm concentrations (ml-1) from individual males in 2003, using the 
haemocytometer counting cell, and in 2004 using the Coulter Multisizer II. Data are presented as 
overall means and +SD from 3 replicate counts.      
 

Haemocytometer Mean SD Min Max 
Marthasterias glacialis 2.10E+08 2.10E+07 1.92E+08 2.33E+08

Odontaster validus 3.18E+08 3.13E+07 2.98E+08 3.54E+08

Coulter Multisizer Mean SD Min Max 
Marthasterias glacialis 1.70E+08 5.71E+06 1.65E+08 1.76E+08

Odontaster validus 3.88E+08 1.23E+07 3.74E+08 3.96E+08

 

Competence to spawn 

Individual Odontaster validus were SCUBA diver collected from 15-20m in South 

Cove, adjacent to Rothera Research Station during the summer and winter field 

season of 2003-2004 (December 2003-August 2004). Individuals were maintained in 

the Bonner Laboratory’s flow-through aquarium facility. Monthly collections of 

individuals (10-15 starfish) were separated into individual aquaria and held in a 

thermally controlled experimental room adjacent to the main aquarium. Individuals 

were weighed wet (+0.01g) and measured using vernier callipers (+0.01mm) (R and 

r). Injections of 1-methyladenine were administered to induce spawning. The 

spawning competence of each individual starfish was assessed as the ability to 

release eggs or sperm. The starfish often contorted their body shape, curled up and 

raised themselves onto the tips of each arm. This behaviour was similar to the 

spawning posture often exhibited by natural populations of starfish. A lack of 

spawning was also noted.   

 

Sperm Swimming Speed 

The poor spawning response of individual Odontaster validus necessitated a more 

reliable Antarctic invertebrate to be selected and used in the sperm swimming trials. 
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The infaunal bivalve Laternula elliptica and the nemertean Parborlasia corrugatus 

were chosen and could be reliably strip spawned. 

Experimental trials were implemented in the facilities of Rothera Research Station 

and the British Antarctic Survey, Cambridge aquarium during the Antarctic summer 

field season of 2003-2004 and during summer 2004 in the UK respectively. The 

infaunal bivalve Laternula elliptica and the nemertean Parborlasia corrugatus were 

SCUBA diver collected from 15-20m in Hanger Cove to the north of Rothera 

Research Station. Individuals were maintained in the Bonner Laboratory aquarium 

facility. A collection of these animals was also transported to the BAS headquarters 

on the RRS Ernest Shackleton in a purpose built container aquarium. The effects of 

temperature and viscosity on sperm swimming speed were studied. Individuals were 

strip spawned and a single male was required for each experimental trial. A single 

incision was made along the shell skirt to cut the adductor muscle of the 

hermaphrodite bivalve Laternula elliptica. The two shell valves were prized apart to 

allow access to the gonad (Fig. 3.2.9). A scalpel was used to make a small incision 

along the posterior section of the gonad. Care was taken not to puncture the gonad in 

an anterior position, to avoid eggs being released. Concentrated sperm was siphoned 

from the gonad using a sterile Pasteur pipette and deposited into a 30ml vial. Animal 

wet weight (+0.01g), shell length, width and height were also measured using vernier 

callipers (+0.01mm) (Fig. 3.2.9). Individual Parborlasia corrugatus were also strip 

spawned, however separate sexes could not be distinguished by external 

morphology. Therefore, dissections had to be made to find a suitable male specimen 

and any female individuals were discarded. A long incision was made down the 

length of each nemertean at a position sufficiently posterior to the mouth (1/3 

animal’s length) to avoid the foregut. Packets of sperm were visible running laterally 

down the length of each male within the epithelium of the body wall and could be 

pierced using a sterile Pasteur pipette (Fig. 3.2.9). Concentrated sperm was also 

found free in the body cavity. Dry sperm was siphoned from each nemertean using a 

sterile Pasteur pipette and deposited into a 30ml vial. Individuals were weighed wet 

(+0.01g) and their retracted length (+0.01 mm) was also recorded (Fig. 3.2.9).   
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D Sperm C 
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Fig. 3.2.9 Laternula elliptica (A and B) and Parborlasia corrugatus (C and D). Individuals were 
weighed wet, measured and concentrated sperm was removed by strip spawning. L = length 
(+0.01mm), W = width (+0.01mm) and H = height (+0.01mm). 
 

The effects of temperature were assessed along a temperature gradient set up 

between two Haake Thermo-circulators using coupled aluminium thermo-gradient 

blocks. The thermo-circulators were filled with 50% ethanol and programmed 

between the ambient winter seawater temperature of –1.9ºC and an upper limit 

outside the normal scope of Antarctic invertebrates (~6°C). After temperatures across 

the blocks had equilibrated the temperature of each vial was checked and recorded. 

Sterile 30ml experimental vials were positioned at set intervals along the temperature 

gradient blocks. The concentrated sperm was diluted in seawater to a concentration 

of 10-1. Two ml of the sperm solution was distributed between each vial and allowed 

30 minutes to acclimatise to the in situ temperature. Small subsamples of sperm were 

taken from each vial and transferred separately onto a standard microscope slide, and 

viewed under a compound microscope. A Peltier cold stage apparatus was mounted 

onto the microscope and connected to a microcontroller to modify accurately the 

temperature of each slide and the microenvironment of sperm whilst being viewed 

(Fig. 3.2.10). A Nikon Digital camera was mounted onto the microscope and used to 

capture 40 seconds of video footage at each temperature. The temperature of the 

Peltier apparatus was modified between experimental trials to match the exact 

temperature recorded in each vial along the thermogradient blocks. 
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Microcontroller 
Cold stage 

A B 

Cold stage 

 
Fig. 3.2.10 The Peltier Cold Stage (A) and a typical experimental set-up (B) used to monitor sperm 
swimming speed. 
 

In viscosity trials using glycerol, methylcellulose and polyvinylpyrollidone (PVP) 

solutions in seawater, 5 dilutions of each agent were prepared in 8ml triplicates, plus 

a final seawater control (Table. 3.2.1). Viscosity was measured using a Gilmont 

Falling Ball Viscometer. A 1ml subsample of concentrated sperm was pipetted into 

each solution and agitated to ensure thorough mixing. The sperm solutions were 

placed in the thermogradient block, which had been set to 0.5 + 0.5°C and left over a 

30 minute period to acclimatise to the in situ conditions. Small subsamples of sperm 

were taken from each vial and transferred individually onto a standard microscope 

slide, and viewed under a compound microscope. The Peltier cold stage apparatus 

was used to maintain each slide at a constant temperature (0.5 + 0.5°C). A Nikon 

digital camera was mounted onto the microscope and used to capture 40 seconds of 

video footage of sperm at each viscosity.   

The video footage from each trial was viewed using QuickTime Viewer. The rate of 

sperm swimming was recorded by hand, frame by frame, and calibrated for 3 

replicate sperm and the data compared between trials. The path travelled by 

individual sperm was traced from the screen over a measured number of seconds and 

calibrated to a magnification of x100. The concentration of dry sperm collected from 

Laternula elliptica and Parborlasia corrugatus during each trial was also quantified.        

 

Statistical Manipulation 

All data were tested using the Anderson-Darling test for normality (Appendix Table. 

6-10). The effects of different variables on fertilisation success were investigated 
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separately. If any interesting patterns in the effect of individual variables on 

fertilisation success were apparent graphically, those variables were statistically 

tested. The effect of viscosity on fertilisation success was tested for Marthasterias 

glacialis, Odontaster validus and Laternula elliptica. A 2-sample T-test was used to 

test for a significant difference in fertilisation success between high and low 

viscosities. The effect of removing the jelly coat from the eggs of O. validus was also 

assessed using a 2-sample T-test. On occasions where the 2-sample T-test was used a 

test for equal variance was also undertaken on the data, and the results of this 

analysis included in the assumptions of the T-test.  

 

The relationships between animal wet weight (+0.01g) and size (R and r +0.01mm), 

and female fecundity and male and female gamete release were tested using 

parametric and non-parametric correlations. Decisions on which test to use were 

taken following analyses to see if the data were normally distributed.  

 

The competence of spawning in O. validus was also statistically tested. The 

difference between the wet weight (+0.01g) and size (R and r +0.01mm) of the 

competent and non-responsive individuals was determined using a Mann Whitney 

test. The same non-parametric analysis was used to test for a significant difference in 

the wet weight (+0.01g) and size (R and r +0.01mm) of both the competent males 

and females with the wet weight (+0.01g) and size (R and r +0.01mm) of the total 

number of starfish injected. 

 

All statistical tests were undertaken using Minitab 13.0 and all data were plotted 

using Sigma Plot 8.0 (SPSS Software).       
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3.3 Results 

 

Sperm Dilution Marthasterias glacialis (Fig. 3.3.1) 

An optimum sperm concentration was calculated between 1.70x105-3.79x105 sperm 

ml-1. 100% fertilisation success was observed at these concentrations. However, large 

numbers of eggs (>80%) were being successfully fertilised over a broad range of 

sperm concentrations (106-103 sperm ml-1). Fertilisation success was greatly reduced 

at sperm concentrations < 102ml-1 (~15%-0%). The frequency of abnormal 

development was considerable at sperm concentrations > 106ml-1 and in all cases was 

attributed to polyspermy.  

 

Sperm Dilution Odontaster validus (Fig. 3.3.2) 

The optimum sperm concentration was a magnitude greater in the polar starfish 

compared to its temperate counterpart. Fertilisation success was optimum at sperm 

concentrations between 1.66x106-3.18x106 sperm ml-1. Fertilisation success varied 

between experimental trials (80-100%), but was consistently high at concentrations 

between 106-105 sperm ml-1. Polyspermy was common above these concentrations. 

Fertilisation success decreased at concentrations < 104ml-1. A large proportion of 

eggs remained unfertilised at these low concentrations of sperm. However, the 

decline in the number of eggs successfully fertilised was more dramatic in M. 

glacialis, often dropping to near 0% below concentrations of 102ml-1. Moderate 

fertilisation success (20-40%) was still apparent in O. validus at these concentrations. 
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Fig. 3.3.1 Marthasterias glacialis. The effect of sperm dilution on fertilisation success. This 
experiment was repeated on three separate occasions using one male and one female starfish. A 
different male-female paring was used during each trial. Data are presented as overall means + SD of 
three replicate egg counts. Data are based on normal, abnormal and unfertilised egg counts. Only the 
normal and abnormal fertilisation data are plotted. Temperature was maintained at 12˚C + 0.5˚C. 
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Fig. 3.3.2 Odontaster validus. The effect of sperm dilution on fertilisation success. This experiment 
was repeated on three separate occasions using one male and one female starfish. A different male-
female paring was used during each trial. Data are presented as overall means + SD of three replicate 
egg counts. Data are based on normal, abnormal and unfertilised egg counts. Only the normal and 
abnormal fertilisation data are plotted. Temperature was maintained at 0.5˚C + 0.5˚C. 
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Temperature Marthasterias glacialis (Fig. 3.3.3) 

A large proportion of eggs (>60%) were fertilised by sperm acclimated to 

temperatures between 8-19˚C. Maximum fertilisation success (90%) was observed at 

12.5ºC. Lower fertilisation success was observed under conditions outside this 

temperature window. A decline in fertilisation occurred at temperatures > 20.0ºC and 

no eggs were fertilised at temperatures above 25ºC. The number of fertilised eggs 

also decreased at temperatures < 7ºC, with  ~40% success achieved at 5.5ºC. 
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Fig. 3.3.3 Marthasterias glacialis. The effect of temperature on fertilisation success. The plot 
represents the fertilisation success between a single male and female. Data are presented as overall 
means + SD of three replicate egg counts. Data are based on normal fertilisation and unfertilised egg 
counts, although the unfertilised egg counts are not plotted. No abnormal fertilisation was observed. 
 

Temperature Odontaster validus (Fig. 3.3.4) 

The highest level of fertilisation success recorded varied between replicates and 

between each trial (20-100%). However, all three experimental trials revealed a 

similar pattern. Fertilisation success was generally impaired at temperatures > 4ºC 

and maximum success was achieved at -1ºC. The proportion of fertilised eggs was 

greatly reduced at temperatures > 6ºC. No eggs were normally fertilised at 

temperatures above this point and the frequency of abnormal development increased 

above 4ºC. Temperature was more restrictive on O. validus, limiting successful 

fertilisation to a narrow temperature window (-1ºC to +4ºC). 
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Fig. 3.3.4 Odontaster validus. The effect of temperature on fertilisation success. This experiment was 
repeated on three separate occasions using one male and one female starfish. A different male-female 
paring was used during each trial. The first trial was only undertaken between –1ºC and 8ºC. Future 
trials were extended to 13ºC. Data are presented as overall means + SD of three replicate egg counts. 
Data are based on normal, abnormal and unfertilised egg counts, although the unfertilised egg counts 
are not plotted. 
 

Salinity Marthasterias glacialis (Fig. 3.3.5) 

In each experimental trial fertilisation success decreased consistently with decreasing 

salinity. The number of eggs fertilised declined to a low level below a salinity of 24. 

A consistent increase in the proportion of abnormal egg development was also 
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exhibited. Extremely low and zero levels of fertilisation success were common at 

salinities at and below 24. Maximum fertilisation success was observed in normal 

seawater conditions (33-34). 
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Fig. 3.3.5 Marthasterias glacialis. The effect of salinity on fertilisation success. This experiment was 
repeated on two separate occasions using one male and one female starfish. A different male-female 
paring was used during each trial. Data are presented as overall means + SD of three replicate egg 
counts. Data are based on normal, abnormal and unfertilised egg counts, although the unfertilised egg 
counts are not plotted. No abnormal fertilisation was apparent in the first trial. Temperature was 
maintained at 12˚C + 0.5˚C. 
 

Salinity Odontaster validus (Fig. 3.3.6) 

The highest level of fertilisation success was variable between each experimental 

trial (40-100%), but a clear pattern between salinity and the number of eggs fertilised 

was observed.  
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Fig. 3.3.6 Odontaster validus. The effect of salinity on fertilisation success. This experiment was 
repeated on three separate occasions using one male and one female starfish. A different male-female 
paring was used during each trial. Data are presented as overall means + SD of three replicate egg 
counts. Data are based on normal and unfertilised egg counts. No abnormal fertilisation was observed. 
Temperature was maintained at 0.5˚C + 0.5˚C. 
 

Fertilisation success decreased with decreasing salinity. There was a considerable 

decline in the number of eggs fertilised at salinities below 30. Low and zero levels of 

fertilisation success were observed at salinities below 28. Maximum fertilisation 

success was recorded in normal seawater conditions (33-34). 
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Gamete Age Marthasterias glacialis (Fig. 3.3.7) 

Fertilisation success varied between experimental trials (40-100%), but the effect of 

gamete age was consistent.  
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Fig. 3.3.7 Marthasterias glacialis. The effect of gamete age on fertilisation success. This experiment 
was repeated on three separate occasions using one male and one female starfish. A different male-
female paring was used during each trial. Data are presented as overall means + SD of three replicate 
egg counts. Data are based on normal, abnormal and unfertilised egg counts, although the unfertilised 
egg counts are not plotted. No abnormal fertilisation was apparent in the first trial. Temperature was 
maintained at 12˚C + 0.5˚C. 
 

High levels of fertilisation success were observed when gametes were aged from 0 

(just spawned) to 2 hours. Interactions between gametes of a greater age resulted in a 

lower number of fertilised eggs. This was especially apparent after eggs and sperm 
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were aged for more than 4 hours before being mixed. Abnormal cleavages increased 

after 2 hours of aging and accounted for all interactions after 6 hours. 

  

Gamete Age Odontaster validus (Fig. 3.3.8) 

Gamete age had an important and replicable effect on fertilisation success, but 

maximum fertilisation success varied between experimental trials (40-80%).  
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Fig. 3.3.8 Odontaster validus. The effect of gamete age on fertilisation success. This experiment was 
repeated on three separate occasions using one male and one female starfish. A different male-female 
paring was used during each trial. Data are presented as overall means + SD of three replicate egg 
counts. Data are based on normal, abnormal and unfertilised egg counts, although the unfertilised egg 
counts are not plotted. No abnormal development was apparent in the first two trials. Temperature was 
maintained at 0.5˚C + 0.5˚C. 
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The majority of eggs were fertilised using recently spawned gametes. A steady 

decline in fertilisation success was evident with gamete age. Fertilisation was still 

possible, albeit at a low level, between gametes aged > 6 hours and 24 hours. Low 

levels of fertilisation success were coincident with an increase in the number of 

abnormal embryos produced. A large proportion of eggs were not fertilised by sperm 

aged in excess of 24hours. 

 

Contact Time between Egg and Sperm Marthasterias glacialis (Fig. 3.3.9)  

Maximum fertilisation success was low in this trial (40%). No successful sperm-egg 

interactions were recorded before 5 minutes of contact had elapsed between gametes. 

After this point, fertilisation success generally increased with sperm-egg contact 

time. Maximum success was recorded after 2hrs, although a similar number of 

successful interactions were observed between gametes exposed to contact times 

between 5mins and 2hours.  

Contact Time
5s 10s 30s 1m 5m 10m 30m 1hr 2hr

Fe
rti

lis
at

io
n 

S
uc

ce
ss

 (%
)

0

20

40

60

80

100

 
 
Fig 3.3.9 Marthasterias glacialis. The effect of egg and sperm contact time on fertilisation success. 
This plot represents the fertilisation success between a single male and female. Data are presented as 
overall means of three replicate egg counts + SD. Data are based on normal fertilisation and 
unfertilised egg counts. No abnormal fertilisation was observed. Temperature was maintained at 12˚C 
+ 0.5˚C. 
 

Contact Time between Egg and Sperm Odontaster validus (Fig. 3.3.10) 

Number of successful sperm and egg interactions increased with contact time 

between gametes, at least over the early stages of the trials. A large proportion of 
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eggs (~70%) was fertilised after only limited contact between egg and sperm (5 

seconds-1 minute). Maximum fertilisation success (100%) was observed after a 5 

minute contact period between gametes. Prolonged contact times above 5 minutes 

accrued no obvious benefits to fertilisation success.  
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Fig. 3.3.10 Odontaster validus. The effect of egg and sperm contact time on fertilisation success. This 
experiment was repeated on two separate occasions using one male and one female starfish. A 
different male-female paring was used during each trial. Data are presented as overall means + SD of 
three replicate egg counts. Data are based on normal fertilisation and unfertilised egg counts, although 
the unfertilised egg counts are not plotted. No abnormal fertilisation was observed. Temperature was 
maintained at 0.5˚C + 0.5˚C. 
 

Viscosity Marthasterias glacialis (Fig. 3.3.11) 

The effect of seawater viscosity on fertilisation success was assessed using 

increasing quantities of PVP. Fertilisation success decreased with increasing 

seawater viscosity. A rapid decline in the number of fertilised eggs resulting in 

normal egg development was observed in seawater solutions with a viscosity of > 

3.5cp. Very low egg numbers were fertilised at seawater viscosities > 4.0cp. There 

was a significant difference between the number of eggs fertilised above and below a 
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seawater viscosity of 4.0cp (Mann Whitney W = 540.0, P < 0.001). A consistent 

increase in abnormal egg development was observed with increasing seawater 

viscosity.  
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Fig. 3.3.11 Marthasterias glacialis. The effect of seawater viscosity on fertilisation success. This plot 
represents the fertilisation success between a single male and female. Data are presented as overall 
means + SD of three replicate egg counts. Data are based on normal, abnormal and unfertilised egg 
counts, although the unfertilised egg counts are not plotted. Temperature was maintained at 12˚C + 
0.5˚C. 
 

Viscosity Odontaster validus (Fig. 3.3.12) 

Preliminary work suggested a negative effect of increased viscosity on fertilisation 

success. This initial trial used PVP to increase the viscosity of seawater artificially. 

There was a significant difference between the levels of success recorded in natural 

seawater and in a PVP-seawater solution (2 sample T-test with equal variance (Table. 

3.3.1) T value = 8.29, DF = 4, P = 0.001). A number of attempts were made to repeat 

this experiment using Odontaster validus. However, competence to spawn amongst 

the sample population was low. Therefore, Laternula elliptica was used instead. 

 
Table. 3.3.1 Odontaster validus. Test for equal variance in fertilisation success between normal 
seawater and PVP-seawater conditions. 
 

Test  Test Statistic P-value 

F-Test  1.79  0.717 
Levene’s Test 0.11  0.759 
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Fig. 3.3.12 Odontaster validus. The effect of seawater viscosity on fertilisation success. Data are 
presented as overall means + SD from three replicate egg counts. Data are based on normal, abnormal 
and unfertilised egg counts, although the unfertilised egg counts are not plotted. Temperature was 
maintained at 0.5˚C + 0.5˚C. 
 

Viscosity Laternula elliptica  (Fig. 3.3.13) 

Experiments tested the effects of three separate chemical agents, including PVP 

(glycerol and methylcellulose) on the fertilisation success of the infaunal Antarctic 

bivalve, Laternula elliptica. L. elliptica was strip spawned and the sperm and egg 

were siphoned from separate regions of the gonad to avoid mixing and premature 

fertilisation. A general trend between increasing seawater viscosity and decreasing 

fertilisation success was evident in each trial. Maximum fertilisation success was 

observed under normal seawater conditions. The frequency of normal egg 

development decreased with even small increments in viscosity and low levels of 

success were recorded at viscosities > 4.0cp. A similar trend was observed both in 

the temperate starfish and between chemical agents.  
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Fig. 3.3.12 Laternula elliptica. The effect of seawater viscosity on fertilisation success. This plot 
represents the fertilisation success between a single male and female. Data are presented as overall 
means + SD of three replicate egg counts. Data are based on normal fertilisation and unfertilised egg 
counts, although the unfertilised egg counts are not plotted. No abnormal fertilisation was observed. 
Temperature was maintained at 0.5˚C + 0.5˚C. 
 

A significant difference in fertilisation success was recorded between seawater 

viscosities above and below 4.0cp, when methylcellulose was used to alter seawater 

viscosity artificially (2-sample T-test with equal variance (Table. 3.3.2) T value =      

-2.39, DF = 16, P = 0.030), although there was no significant difference between the 

effects of seawater viscosities above and below 4.0cp on fertilisation success, when 

PVP was used (2-sample T-test with equal variance (Table. 3.3.2) T value = -0.09, 
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DF = 16, P = 0.930). Further increases in seawater viscosity had little influence on 

fertilisation success, with the exception of zero success after sperm were acclimated 

to the most viscous seawater solution (16.0cp using methylcellulose). Seawater 

viscosity was altered less by the additions of glycerol (maximum = 3.5cp). However, 

a significant difference in success was recorded between seawater viscosities above 

and below 2.0cp using glycerol (2-sample T-test with equal variance (Table. 3.3.2) 

T-value = -5.48, DF = 16, P <0.001).      

 
Table. 3.3.2 Laternula elliptica. Test for equal variance in fertilisation success between normal 
seawater conditions and enhanced seawater viscosities using PVP, glycerol and methylcellulose. 
 

Test   Test Statistic P-value

Glycerol  
F-Test   0.66  0.678 
Levene’s Test  0.00  0.950 
PVP 
F-Test   1.06  0.868 
Levene’s Test  0.12  0.732 
Methylcellulose 
F-Test   1.76  0.406 
Levene’s Test  1.56  0.229 
 

Egg Jelly Odontaster validus (Fig. 3.3.14)  

Fertilisation success was optimal under normal seawater and egg conditions in 

Odontaster validus (100%). The removal of the jelly coat from starfish eggs did 

significantly affect fertilisation success (2-Sample T test with equal variance (Table. 

3.3.3) T value = 5.00, DF = 4, P = 0.038), and reduced the number of successful 

sperm-egg interactions recorded from ~100% to ~80%.  

 
Table. 3.3.3 Odontaster validus. Test for equal variance in fertilisation success between normal egg 
conditions and the removal of the jelly coat.  
 

Test  Test Statistic P-value 

F-Test  0.16  0.273 
Levene’s Test 0.40  0.564 
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Fig. 3.3.14 Odontaster validus. The effect of egg jelly coat removal on fertilisation success. This plot 
represents the fertilisation success between a single male and female. Data are presented as overall 
means + SD of three replicate egg counts. Data are based on normal fertilisation and unfertilised egg 
counts, although the unfertilised egg counts are not plotted. No abnormal fertilisation was observed. 
Temperature was maintained at 0.5˚C + 0.5˚C. 
 

Fecundity Odontaster validus (Fig. 3.3.15) 

A range in female fecundity between 1.18E+05 and 6.83E+05 eggs in 1L (mean = 

4.48E+05 eggs, SD = 2.07E+05, n = 8) was recorded. The variability in egg number 

between females was size related, in terms of both wet weight and radial length (R) 

(Table. 3.3.4). 

 
Table. 3.3.4 Odontaster validus. Correlations between female fecundity and female wet weight 
(+0.01g) and size (R and r +0.01mm) using Pearsons Product Moment Correlation. All variables were 
normally distributed. 
 
Variables     Test Statistic P-value 
 
Fecundity vs. Wet Weight    0.743  0.035  
Fecundity vs. Radial Length (R)   0.830  0.011 
Fecundity vs. Body Radius (r)   0.673  0.067  
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Fig. 3.3.15 Odontaster validus. The relationship between female fecundity and animal size (Weight, R 
and r). Data are presented as egg counts per female (mean = 4.48E+05 eggs, SD = 2.07E+05, n = 8). 
 

Gamete Release Marthasterias glacialis  

18 males were observed over an hour to quantify gamete release (Table. 3.3.5). The 

number of sperm released varied between males; 1.04E+09-5.15E+10 sperm. There 

was no significant correlation between individual size, in terms of wet weight or 

body size (R and r), and the number of sperm released (Table. 3.3.6). 15 females 

were observed over the same time period and the number of eggs quantified to 

determine female gamete release (Table. 3.3.5). 
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Table. 3.3.5 Marthasterias glacialis. Male (mean = 1.80E+10 sperm, SD = 1.86E+10, n = 18) and 
female (mean = 1.59E+06 eggs, SD = 1.40E+06, n = 15) gamete release (into 1L seawater) over an 
hour. Data are presented as overall means. Male and female wet weight (+0.01g) and size (R and r 
+0.01mm) are also presented. 
 

Date Sex Weight (g) R (mm) r (mm) Gametes (ml) Gamete in 1 L 
24/04/2003 Male 61.18 85.00 10.00 4.85E+07 4.85E+10 
25/04/2003 Male 46.85 80.00 15.00 4.21E+06 4.21E+09 
26/04/2003 Male 52.74 85.00 15.00 8.24E+06 8.24E+09 
27/04/2003 Male 47.23 80.00 10.00 4.59E+07 4.59E+10 
19/05/2003 Male 63.59 90.00 13.00 2.70E+07 2.70E+10 
20/05/2003 Male 64.85 85.00 10.00 5.15E+07 5.15E+10 
20/05/2003 Male 72.00 100.00 15.00 1.01E+07 1.01E+10 
23/05/2003 Male 86.49 102.00 15.00 3.86E+06 3.86E+09 
01/04/2004 Male 84.0 75.00 10.00 2.71E+07 2.71E+10 
01/04/2004 Male 52.0 83.00 13.00 6.45E+06 6.45E+09 
06/04/2004 Male 49.0 65.00 10.00 6.22E+06 6.22E+09 
09/04/2004 Male 74.0 84.00 10.00 5.41E+06 5.41E+09 
12/04/2004 Male 41.0 70.00 9.00 4.67E+06 4.67E+09 
15/04/2004 Male 122.0 107.00 12.00 1.04E+06 1.04E+09 
19/04/2004 Male 56.0 79.00 9.00 6.42E+06 6.42E+09 
21/04/2004 Male 51.0 89.00 10.00 5.10E+07 5.10E+10 
21/04/2004 Male 69.0 91.00 10.00 1.27E+07 1.27E+10 
27/04/2004 Male 61.0 75.00 10.00 3.38E+06 3.38E+09 
22/04/2003 Female 60.35 110.00 14.00 852 8.52E+05 
19/05/2003 Female 63.29 90.00 10.00 63 6.30E+04 
20/05/2003 Female 72.08 95.00 15.00 1120 1.12E+06 
20/05/2003 Female 72.02 85.00 15.00 5370 5.37E+06 
20/05/2003 Female 54.60 80.00 10.00 3200 3.20E+06 
23/05/2003 Female 62.45 100.00 10.00 2480 2.48E+06 
06/04/2004 Female 60.00 77.00 10.00 56 5.60E+04 
09/04/2004 Female 62.00 85.00 10.00 1603 1.60E+06 
15/04/2004 Female 51.00 80.00 8.00 971 9.71E+05 
15/04/2004 Female 62.00 85.00 10.00 2173 2.17E+06 
19/04/2004 Female 70.00 87.00 10.00 705 7.05E+05 
14/05/2004 Female 87.00 89.00 10.00 2553 2.55E+06 
14/05/2004 Female 88.00 98.00 11.00 504 5.04E+05 
15/05/2004 Female 70.00 87.00 11.00 915 9.15E+05 
15/05/2004 Female 315.00 200.00 25.00 1348 1.35E+06 

 

The maximum number of eggs released by a single female was 5.37E+06 eggs and a 

minimum of 5.60E+04 eggs was recorded in a different female. There was no clear 

correlation between female size and the quantity of gametes released (Table. 3.3.6). 
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Table. 3.3.6 Marthasterias glacialis. Correlations between the number of sperm and male wet weight 
(+0.01g) and size (R and r +0.01mm) using Pearsons Product Moment Correlation. Male wet weight 
and egg number were the only variables to be normally distributed (Appendix Table. 8). Therefore, all 
data were ranked prior to analysis and tested non-parametrically. Parametric testing on the non-ranked 
data produced the same statistical conclusions.    
 

Ranked Data   Non-Ranked Data 
Variables   Test Statistic P-value Test Statistic P-value 
 
Sperm vs. Wet Weight -0.073  0.773  -0.195  0.439 
Sperm vs. Radial Length (R)  0.104  0.683  -0.018  0.994 
Sperm vs. Body Radius (r) -0.189  0.453  -0.342  0.165 
Egg vs. Wet Weight  0.055  0.844  -0.038  0.894 
Egg vs. Radial Length (R) -0.106  0.707  -0.089  0.753 
Egg vs. Body Radius (r) 0.060  0.831  0.116  0.682 

 

Gamete Release Odontaster validus 

Odontaster validus could not be induced to spawn as easily as its temperate 

counterpart. No spawning or a very poor spawning response was often observed after 

the 1-methyadenine injection had been administered. Additional injections failed to 

improve the success rate. Therefore, the quantities described below should be 

interpreted with some caution. Eight males were used to quantify gamete release over 

the period of an hour (Table. 3.3.7). The number of sperm released varied between 

males; 1.73E+09-3.49E+10 sperm.  

 
Table. 3.3.7 Odontaster validus. Male (mean = 1.41E+10, SD = 1.61E+10, n = 8) and female (mean = 
8.40E+4 eggs, SD = 8.78E+4, n = 9) gamete release over an hour. Data are presented as overall 
means. Male and female wet weight (+0.01g) and size (R and r +0.01mm) are also presented. 
 

Date Sex Weight (g) R (mm) r (mm) Gametes (ml) Gametes in 1L 
22/07/2003 Male 10.20 33.00 15.00 1.73E+06 1.73E+09 
22/07/2003 Male 19.60 45.00 20.00 1.12E+07 1.12E+10 
22/07/2003 Male 11.90 38.00 15.00 1.20E+07 1.20E+10 
21/07/2003 Male 8.40 34.00 13.00 2.48E+06 2.48E+09 
21/07/2003 Male 19.50 42.00 16.00 5.56E+06 5.56E+09 
31/07/2004 Male 38.25 52.00 22.20 3.49E+07 3.49E+10 
31/07/2004 Male 24.15 41.60 19.20 2.23E+07 2.23E+10 
05/08/2004 Male 21.62 42.00 17.70 2.29E+07 2.29E+10 
21/07/2003 Female 7.30 35.00 14.00 113 1.13E+05 
21/07/2003 Female 13.60 38.00 16.00 57 5.70E+04 
21/07/2003 Female 23.20 43.00 20.00 270 2.70E+05 
22/07/2003 Female 24.10 47.00 19.00 177 1.77E+05 
02/07/2004 Female 19.10 41.10 15.00 16 1.60E+04 
02/07/2004 Female 11.70 30.00 11.00 35 3.53E+04 
31/07/2004 Female 16.29 39.90 15.90 5 4.67E+03 
31/07/2004 Female 18.23 43.90 19.00 47 4.65E+04 
10/08/2004 Female 17.12 41.00 17.00 37 3.70E+04 
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These data were comparable with the sperm concentrations described for 

Marthasterias glacialis. However, the number of sperm released in the polar starfish 

was significantly correlated with individual size, in terms of wet weight, radial length 

and body radius (Table. 3.3.8). Nine females were monitored over an hour and the 

numbers of eggs spawned were quantified to determine female gamete release 

(Table. 3.3.7). The number of eggs released varied between extremes of 4.67E+03 

and 2.70E+05 eggs. There was no correlation between the egg numbers released and 

female size, in terms of wet weight or body size (R and r) (Table. 3.3.8). 

 
Table. 3.3.8 Odontaster validus. The correlation between number of sperm and male wet weight 
(+0.01g) and size (R and r +0.01mm) using Pearsons Product Moment Correlation. All male variables 
were normally distributed. All female variables were normally distributed except egg number. 
Therefore, the female wet weight, size and egg number were ranked prior to analysis and tested non-
parametrically. Parametric testing on the non-ranked data produced the same statistical conclusions. 
 
    Ranked Data   Non-Ranked Data 
Variables   Test Statistic P-value Test Statistic P-value 
 
Sperm vs. Wet Weight  0.883  0.004 
Sperm vs. Radial Length (R)  0.850  0.008 
Sperm vs. Body Radius (r)  0.817  0.013 
Egg vs. Wet Weight   0.094  0.809  0.200  0.606 
Egg vs. Radial Length (R)  0.152  0.697  0.217  0.576 
Egg vs. Body Radius (r)  0.053  0.893  0.067  0.864 

 

Competence to Spawn 

On 14 dates between January 2004 and August 2004, samples of 10-20 individual 

starfish were injected with 1-methyladenine to assess their competence to spawn. 

There was a very weak spawning response in the sampled population during the late 

austral summer (January-March). The radial length (‘R’) of individuals injected 

ranged between extreme values of 17.20 to 55mm (mean = 36.62mm, SD = 6.64, n = 

165), equivalent to a body radius (‘r’) of 11.0 to 26.10mm (mean = 16.54mm, SD = 

3.40, n = 165). Starfish injected covered a range in wet weight 3.90 and 52.30g 

(mean = 19.13g, SD = 9.41, n = 165). No starfish could be induced to spawn during 

January. However, a small percentage of males released sperm into the surrounding 

seawater in February and March after being injected (3% and 7% respectively). The 

competence to spawn increased during the austral winter. 55% of individuals 

spawned during May and 85% spawned during June. The majority of these 
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individuals were female (82% and 65% respectively). A significant decline in 

competence occurred between July and August, when only a single female could be 

induced. Many individuals displayed a classic spawning posture after being injected 

(65%). However, spawning did not occur in all of the individuals injected, even 

during the peak months.   

 

There was a significant difference between the size of the competent and non-

responsive individuals, with the exception of radial length (Table. 3.3.9).  

 
Table. 3.3.9 Odontaster validus. A Mann Whitney statistical test was used to compare the size (R and 
r +0.01mm) and wet weight (+0.01g) of competent and non-responsive starfish. The majority of the 
size variables were not normally distributed, except radial length in the competent and non-responsive 
individuals (Appendix Table. 9). Therefore, the data were tested non-parametrically. 
 
Variables  Test Statistic P-value
 
Weight   W = 3068.5 0.039 
Radial Length (R) W = 2546.5 0.914 
Body Radius (r) W = 3101.0 0.028 

 

In both males and females, there was no significant difference between the 

individuals competent to spawn and the mean size of all starfish injected (Table. 

3.3.10-3.311).  

 
Table. 3.3.10 Odontaster validus. A Mann Whitney statistical test was used to compare the size (R 
and r +0.01mm) and wet weight (+0.01g) of competent males and females with the total number of 
starfish injected.  The size and weight variables of the competent males and females and the total 
number of starfish injected were normally and not normally distributed (Appendix Table. 10).  
 
Variables     Test Statistic P-value 
 
Injected Weight vs Competent Males  W = 14246.5 0.079  
Injected R vs Competent Males   T = -1.20 0.230 
Injected r vs Competent Males   W = 14297.5 0.154 
Injected Weight vs Competent Females  W = 15205.5 0.341  
Injected R vs Competent Females   T = -0.62 0.537 
Injected r vs Competent Females   W = 15122.0 0.189 
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Table. 3.3.11 Odontaster validus. Test for equal variance in radial length (R +0.01mm) between 
competent males and injected starfish and competent females and injected starfish. 
 
Test      Test Statistic P-value 

Competent Males and Injected Starfish  
F-test      0.83  0.592 
Levene’s test     0.15  0.699  
Competent Females and Injected Starfish 
F-test      0.85  0.690 
Levene’s test     0.40  0.530 

 

Sperm Swimming Speed (Fig. 3.3.16) 

The wet weight (+ 0.01g) and size (+ 0.01mm) of 9 Laternula elliptica and 2 

Parborlasia corrugatus were measured and the individuals strip spawned to 

investigate sperm swimming speed (Table. 3.3.12). 

 
Table. 3.3.12 Laternula elliptica and Parborlasia corrugatus. Wet weight (+0.01g) and size 
(+0.01mm) of bivalves (n = 9) and nemerteans (n = 2) strip spawned to investigate sperm swimming 
speed. 
 

Sample Wet Weight (g) Length (mm) Width (mm) Height (mm) 

17/8/04 Laternula 84.39 59.1 96.5 42.1 

21/8/04 Laternula 70.41 55.30 80.10 44.00 

21/8/04 Laternula 71.90 55.50 74.80 43.60 

22/8/04 Laternula 165.58 84.10 119.60 58.80 

22/8/04 Laternula 70.85 59.00 78.30 41.70 

26/8/04 Laternula 122.97 70.90 95.00 48.30 

26/8/04 Laternula 78.87 55.20 78.30 42.00 

27/8/04 Laternula 67.72 57.00 84.40 37.10 

27/8/04 Laternula 73.58 61.00 84.30 39.00 

19/8/04 Parborlasia 51.12 220.00 33.30 n/a 

20/8/04 Parborlasia 53.84 200.00 40.00 n/a 

 

The number of successful experimental trials for both species was limited, owing to 

experimental constraints. These data represent a crude measure of sperm swimming 

speed and the effect of both temperature and viscosity. Swimming velocity increased 

in both Laternula elliptica and Parborlasia corrugatus with increasing temperature. 

Speeds were highest at 6ºC, where sperm reached 73μm s-1 and 42μm s-1 in L. 

elliptica and P. corrugatus respectively. Swimming speed increased linearly with 

temperature in L. elliptica, however speeds in P. corrugatus reached a plateau at 

~30μm s-1 between 2-4ºC, after an initial increase. Velocities increased again to 
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~48μm s-1 at 6˚C. Changes in sperm swimming speed with seawater viscosity were 

monitored in P. corrugatus and viscosity had a marked effect on sperm velocity. 

Swimming speeds decreased with increasing seawater viscosity, with a maximum 

speed recorded in normal seawater conditions (~22μm s-1). Sperm swimming speed 

decreased by 53% in P. corrugatus, when the temperature of seawater was reduced 

from 0ºC (mean = 21.50μm s-1) to –1.9ºC (mean = 10.00μm s-1). When seawater 

temperatures were maintained at 0.5ºC and only viscosity was adjusted to reflect a 

drop in temperature from 0ºC to –1.9ºC, sperm swimming speed declined by 25% 

from 25.10μm s-1 to 18.85μm s-1. Thus, about 47% of the decline in speed was 

attributable to changes in seawater viscosity and the remaining 53% to other effects 

of temperature.   
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Fig. 3.3.16 Laternula elliptica and Parborlasia corrugatus. The effect of temperature and viscosity on 
sperm swimming speed. A single individual was used for each trial and the data are presented as 
overall means in swimming speed + SD of three replicate sperm. The experimental temperature was 
maintained at 0.5˚C + 0.5˚C when seawater viscosity was varied. 
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Experimental Constraints 

• The spawning response of a number of Odontaster validus was poor, 

especially during the 2004 experimental trials. The long period of transit and 

artificial aquarium surroundings may have had a detrimental effect on the 

spawning competence of these individuals. Handling stress may have also 

altered the normal allocation of energy resources and metabolism in these 

starfish, possibly diverting reserves to requirements for body maintenance 

away from reproduction. This behaviour resulted in a number of trials being 

abandoned and owing to the limited period over which spawning is viable 

naturally, limited the number of trials conducted. However, on most 

occasions each trial was completed in triplicate.  

• Unfortunately only a single trial was completed to assess temperature effects 

and the effect of contact time between gametes on fertilisation success in the 

temperate starfish.  This was a result of logistics problems with essential 

equipment. The thermocirculator and thermogradient block system required 

for the temperature trial and the Nitex strainers required to assess the effect of 

contact time, were used in the Antarctic field season during November 2003-

March 2004. These items were in transit from Antarctica until late May 2004, 

at which point laboratory spawning could no longer be induced. 

• The counting of sperm using a haemocytometer proved very labour intensive 

and complicated. Therefore, later experimental trials were quantified using a 

Coulter Multisizer II. This procedure did save on time and similar, consistent 

counts were obtained with both methods (Table. 3.2.2).   

• The over and underestimation of fertilisation success can occur under 

laboratory conditions. Fertilisation success was quantified by scoring the 

presence of a fertilisation membrane around each oocyte. Fertilisation was 

recorded as ‘normal’ if a fertilisation envelope was scored, unless obvious 

oocyte abnormalities or polyspermy were evident. However, the presence of a 

fertilisation membrane does not always result in normal larval development, 

which can progress abnormally even if early signs are positive (Styan, 1998). 

This may partly explain the scoring of abnormal development in some 

experimental trials, but its absence from others even though the same variable 

is under test. Therefore, many studies score the occurrence of cleaved eggs 
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instead (Oliver and Babcock, 1992; Desrosiers et al. 1996; Keesing and 

Babcock, 1996). However, the time and resource limitations precluded 

prolonged observations, and a simpler and earlier means of measuring 

fertilisation success was used. The artificial induction of spawning can also 

sometimes cause the release of unripe, unfertilisable eggs (Styan and Butler, 

2000), which inevitably reduces the potential number of successful sperm-

egg interactions recorded, compared to what would normally be observed in 

natural populations. However, by choosing to undertake laboratory trials 

during the natural and published spawning seasons of both starfish, and 

checking the appearance of the gametes prior to trials, I hoped to minimise 

this potential problem. These starfish also naturally release 1-methyladenine 

prior to spawning where it acts as a maturation inducing substance (MIS).   

• The assessment of sperm swimming and the effects of temperature and 

viscosity were difficult to measure and very labour intensive. An automated 

analysis of the rate of swimming would have been preferable to measuring 

sperm activity by hand, frame by frame, e.g. a sperm tracker. However, 

financial constraints precluded this option. It was also difficult to attain an 

optimum sperm concentration. If the solutions were too concentrated a single 

sperm could not be isolated, however if the solution was too dilute the sperm 

cells were very difficult to distinguish. Tracking individual sperm was also 

made further complicated as most exhibited a helical path of motion and 

rarely swam along a direct course. Additionally, a number of Parborlasia 

corrugatus were lost after transit preventing more trials.  

• Sperm swimming was quantified from a small volume of sperm solution 

placed on a microscope slide. Several theoretical treatments have suggested 

that the drag forces associated with motion on the surface of a microscope 

slide, and exerted on sperm, significantly affect sperm swimming speed and 

have caused velocity to be exaggerated in the past (Gee and Zimmer-Faust, 

1997). Although important, the main objective of this study was not to 

quantify absolute velocity, but was to observe variations in behavioural 

patterns and sperm swimming speed under changing external conditions. 

Additionally, sperm motility can be highly variable even in the absence of 

physical forces, especially when the influence of sperm age (Levitan, 2000) 

and paternity are considered (Gee and Zimmer-Faust, 1997).  
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3.4 Discussion 
 

Sperm Dilution 

Sperm limitation was extremely important in the fertilisation success of both the 

temperate and polar starfish (see Fig. 3.3.1 and Fig. 3.3.2). High numbers of eggs 

were successfully fertilised over a similar range in both starfish (106-105 sperm ml-1). 

Similarly high numbers of eggs were successfully fertilised by sperm concentrations 

as low as 103ml-1, but only in M. glacialis. In general, Odontaster validus required an 

order of magnitude more sperm than the temperate Marthasterias glacialis to achieve 

optimum fertilisation success. Powell et al., (2001) observed a similar disparity 

between the concentration of sperm required to optimally fertilise the eggs of the 

Antarctic limpet and bivalve, Nacella concinna and Laternula elliptica respectively, 

compared to comparable temperate molluscs. These patterns may simply reflect the 

inherent differences between the two species gametes. Alternatively, it may be the 

harsh external conditions endured by the sperm, which dictates this characteristic. 

Success levels dropped off dramatically in M. glacialis below concentrations of 

102ml-1. However, this was not observed in O. validus. Moderate-low fertilisation 

success (20-40%) was observed in this species even at the lowest sperm 

concentrations tested. This may be the result of either one or a number of differences 

in the gametes of the starfish, such as longevity or chemotaxis.  

  

Both starfish achieved high fertilisation levels in the laboratory (85-100%). A 

number of field studies observing echinoderms spawning have recorded high levels 

of spawning success (Acanthaster planci: 83% Babcock and Mundy, 1992; 

Cucumaria miniata: 86-99% Sewell and Levitan, 1992; C. frondosa: 60-85% Hamel 

and Mercier, 1995). However, comparisons between induced and natural spawning 

success tend to be complicated by the unpredictable nature of echinoderm spawning 

episodes (Minchin, 1987; Babcock et al., 1992). 

 

Polyspermy was common at high sperm concentrations in both starfish (>106ml-1). 

Benzie et al., (1994) observed that the larvae developed from the fertilisation of A. 

planci at a laboratory sperm concentration of 105 sperm ml-1 were often malformed, 
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and they attributed these abnormalities to polyspermy. Invertebrates are able to 

counter potential polyspermy of their eggs by employing blocks (Styan, 1998). These 

blocks are extremely effective in avoiding the consequences of high sperm 

concentrations and are common to many taxa (McClary, 1992; Styan and Butler, 

2000). However they may differ in the process by which they act, being either fast-

acting electrical blocks or employing a slower cortical reaction. Species-specific 

differences in polyspermy blocks and their presence or absence in an egg may partly 

explain the difference between the sperm concentrations observed to cause 

polyspermy in the starfish of the present study. Styan and Butler (2000) also 

observed polyspermy in two species of scallop, Chlamys bifrons and C. asperrima at 

sperm concentrations >104 sperm ml-1. A more rapid decline in success was recorded 

for C. bifrons suggesting this species is more sensitive to polyspermy and less 

effective at minimising abnormalities at high sperm concentrations. This may suggest 

that the polyspermy blocks in O. validus are either more numerous, or maybe more 

efficient, than those associated with the eggs of M. glacialis, withstanding higher 

concentrations of sperm before succumbing to abnormal effects.  

 

Many studies have observed sperm limitation of reproductive and fertilisation 

success of free spawning invertebrates (Pennington, 1985; Denny and Shibata, 1989; 

Levitan, 1995). In the present study spawning success was greatly limited below 

sperm concentrations of 102 sperm ml-1 and 104 sperm ml-1 in M. glacialis and O. 

validus respectively (see Fig. 3.3.1 and Fig. 3.3.2). A gradient in fertilisation success 

with decreasing sperm concentration has also been recorded in the crown-of-thorns 

starfish (Benzie and Dixon, 1994). This is a common trait in many fertilisation 

studies, including those that have described the spawning success of echinoderms 

(Strongylcentrotus droebachiensis: ~ 0% at <104 sperm ml-1 Pennington, 1985; S. 

franciscanus: 18% at 4.7x103 sperm ml-1 Levitan et al., 1991) and molluscs 

(Cerastoderma edule: ~0% at 103 sperm ml-1 André and Lindegarth, 1995; Chlamys 

bifrons and C. asperrima: 18% and 35% at 102 sperm ml-1 Styan and Butler, 2000; 

Haliotis tuberculata: 20% at 103 sperm ml-1 Baker and Tyler, 2001). Concentrations 

between 104-105 sperm ml-1 also produced a low percentage of fertilised eggs in an 

Antarctic bivalve and limpet (Powell et al., 2001). 
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Temperature  

There was a striking difference between M. glacialis and O. validus in fertilisation 

success with temperature (see Fig. 3.3.3 and Fig. 3.3.4). Moderate-high fertilisation 

success was achieved by M. glacialis within a broad temperature window (8-19ºC). 

The optimum number of eggs were fertilised at 12.5ºC. However, spawning success 

was limited in O. validus to temperatures below 6ºC and optimum fertilisation levels 

were restricted over a much narrower temperature range (-1 to +4ºC). Development 

was abnormal in the Antarctic starfish above these temperatures. Stanwell-Smith and 

Peck (1998) also showed increasing numbers of non-viable eggs and embryos above 

2ºC in O. meridionalis from Signy Island, Antarctica. However for O. validus, the 

number of non-viable eggs and embryos did not increase with temperature (-2 to 

+3ºC), averaging approximately 12.5% throughout Stanwell-Smith and Peck’s study. 

The broader range of temperatures tested in the present study (-2 to +14ºC) may 

explain the higher frequency of abnormal fertilisation observed at increasing 

temperatures in this starfish compared to the previous investigation by Stanwell-

Smith and Peck (1998). Differences in egg quality between the two studies and the 

possibility for local adaptations in fertilisation and embryonic development may also 

be partly accountable for the differences observed.  

  

Hagström and Hagström (1959) reported that elevated temperatures above normal 

result in reduced fertilisation with associated increases in polyspermy and abnormal 

cleavages. They observed that a 10-12 degree rise in temperature above normal 

would commonly result in pathological larvae. In this study fertilisation was reduced 

to zero at a temperature of 25ºC in M. glacialis, some 10ºC above normal. This was 

also the case in the sea urchin Parechinus angulosus (Greenwood and Bennett, 

1981). However, temperature was much more restrictive in O. validus with zero 

fertilisation recorded above only a 6ºC rise in ambient temperature.  

 

Nichols and Barker (1984) observed spawning during May-June in the Plymouth 

Sound population of M. glacialis. Seawater temperatures during May were ~12ºC 

and rose to ~16ºC by July/August. Fertilisation trials were undertaken in the 

laboratory during a similar time of year in the present study, where high fertilisation 

success was recorded between 10-14ºC, which corresponds well with observed 
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spawning in the natural population. A similar rise in seawater temperature was 

observed by Minchin (1987) in Mulroy Bay, Ireland and was identified as the main 

spawning cue for M. glacialis. Fertilisation was viable over a broad temperature 

range, in keeping with the considerable fluctuation in temperature recorded both 

seasonally and annually in Plymouth Sound. Temperatures rarely rose above 18ºC or 

fell below 5ºC during Nichols and Barker’s (1984) study in accordance with with the 

current study, where fertilisation was adversely affected above 19ºC and below 7ºC.  

O. validus spawns during the austral winter (Pearse, 1965, 1969; Stanwell-Smith and 

Peck, 1998). The current study sampled individuals from South Cove, adjacent to 

Rothera Research Station on the West Antarctic Peninsula, where winter 

temperatures rarely rise above +1ºC and fluctuate within a narrow range (Grange et 

al., 2004). Therefore, the range of temperatures over which an optimum number of 

eggs was fertilised in the current study is comparable to the timing and occurrence of 

these temperatures in relation to spawning in natural populations of this starfish. No 

eggs were normally fertilised at and above 6ºC, after which development proceeded 

abnormally. A narrow window of opportunity for successful fertilisation with rising 

temperatures has been recorded before in the Antarctic in an echinoid (Sterechinus 

neumayeri) at Signy Island, Antarctica (Stanwell-Smith and Peck, 1998) and in the 

infaunal bivalve Laternula elliptica at Rothera Research Station (Powell et al., 

2001). The number of non-viable eggs and embryos increased for S. neumayeri 

above 1.7ºC, although embryonic development rate remained relatively constant 

above 0.2ºC (Stanwell-Smith and Peck, 1998). Therefore, a window of optimal 

temperature between 0.2Cº and 1.7ºC was proposed for this population of the 

Antarctic urchin. 80% fertilisation success in L. elliptica was recorded between –1.9 

and +0.2ºC, where success declined rapidly between 0.7 and 5.0ºC. However, all 

fertilisation was abnormal at this maximum temperature. Consequently, several 

Antarctic invertebrates experience extremely poor fertilisation success in excess of 5-

6ºC.  

 

Benthic invertebrates, especially echinoderms, are extremely sensitive to water 

temperatures above normal ambient (Farmanfarmaian and Giese, 1963) and the 

thermal tolerance of cells is correlated well with the thermophily of the species 

concerned (Andronikov, 1975). Antarctic invertebrates are highly stenothermal 

(Arnaud, 1977; Peck and Conway, 2000) and possess functional limits within a very 
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narrow range of thermal tolerance (Peck, 2002; Peck et al., 2004). The upper lethal 

limit recorded for O. validus and L. elliptica, at which the functional scope to under 

take fundamental biological activity is diminished, is 5-6ºC (Peck, 2002), which 

corresponds well with the inability of these invertebrates to fertilise eggs normally at 

similar temperatures. Most Antarctic invertebrates operate within 20-50% of the 

temperature window observed for temperate species (Peck and Conway, 2000), 

which may explain the much broader capacity of M. glacialis to fertilise eggs 

successfully over a wider temperature range. This has important implications for how 

marine invertebrates are geographically distributed (Andronikov, 1975). Stanwell-

Smith and Peck, (1998) concluded that the relationships between development rate 

and temperature and embryonic mortality and temperature may be important factors 

delineating the ability of species to colonise different habitats. Therefore, the 

relationship between fertilisation success and temperature may also affect 

distributions of Antarctic echinoderms.     

 

Salinity 

A decline in fertilisation success with decreasing salinity was observed in both the 

temperate and Antarctic starfish (see Fig. 3.3.5 and Fig. 3.3.6). Both inhabit typical 

marine sites where salinity is stable. Therefore, these data are in keeping with the 

conditions experienced in natural populations of both starfish and suggest both 

species are stenohaline in reproduction. Most echinoderms have been traditionally 

considered as stenohaline (Binyon, 1972), There are however exceptions where some 

species inhabit areas of seasonal or tidal fluctuating salinities (Luidia clathrata Hintz 

and Lawrence, 1994). However, in general fertilisation and development is optimal 

at the salinity at which parents are maintained (e.g. Psammechinus miliaris Gezelius, 

1962; Strongylcentrotus purpuratus Dinnel et al., 1987).  

 

Zero and abnormal fertilisation success was observed in both M. glacialis and O. 

validus below a salinity of 28. A number of studies have recorded detrimental effects 

of low salinities on fertilisation success (Greenwood and Bennett, 1981; Griffin et 

al., 1998; Litvik and Trippel, 1998), including very low and zero fertilisation being 

recorded in an Antarctic limpet and bivalve below a salinity of 27 (Powell, 2001). 

Low salinities can affect both the viability of sperm and ova by arresting sperm 
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motility (Griffin et al., 1998; Litvak and Trippel, 1998) and being injurious to the 

ova (Greenwood and Bennett, 1981). 

 

Gamete Age 

Similarities were observed between the longevity of gametes broadcast by the 

temperate and Antarctic starfish. The longevity of M. glacialis gametes was ~6 hours 

(see Fig. 3.3.7). Optimum fertilisation (90-100%) was recorded in M. glacialis after 

interactions between dry sperm and eggs and between gametes aged over a 2-hour 

period. All development proceeded abnormally from interactions between sperm and 

eggs aged in excess of 6 hours. Optimum fertilisation was restricted in O. validus to 

interactions between freshly spawned gametes and sperm and eggs aged <1hour (see 

Fig. 3.3.8). Normal fertilisation was still possible, albeit at a very low level, with 

gametes aged between 6 and 24 hours. However, abnormal development accounted 

for most fertilisation above 6 hours. The occurrence of long-lived sperm in an 

Antarctic invertebrate has been reported before, with the sperm of Laternula elliptica 

and Nacella concinna able to fertilise eggs after 90+ and 70 hours of ageing 

respectively (Powell et al., 2001). These longevities are well in excess of the 24hour 

age recorded in the current study for O. validus, although experimental protocols, in 

terms of the equipment used, were very similar. However, Powell (2000) only 

investigated sperm longevity, using freshly spawned eggs for each experimental trail. 

Egg longevity is not static and varies between individuals and studies owing to 

exogenous and endogenous factors (Meidel and Yund, 2001), e.g. bacterial 

contaminants can cause lysis of eggs under laboratory conditions (Epel et al., 1998). 

This was not accounted for in the current study, and may have contributed to the 

results observed. Alternatively, sperm viability may have been greater than that of 

the eggs used, although several studies have suggested the opposite based on the 

‘respiratory dilution effect’ (Chia and Bickell, 1983). As both aged sperm and eggs 

were used in the current study it is difficult to say which of the gamete characteristics 

limited the maximum age at which gametes were viable most, and the results 

recorded were not necessarily caused by a shared characteristic of the eggs and 

sperm. However, owing to time constraints I chose to test the characteristic most 

sensitive in a shared system, i.e. the coincident ageing of eggs and sperm that would 

naturally occur in the water column especially after synchronous spawning. With 
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more time I would have tested for the effects of both aged sperm and freshly 

spawned eggs, and aged eggs and freshly spawned sperm on fertilisation success. 

 

The greater longevity observed in the sperm of L. elliptica may be attributed to this 

species’ ecology. Individuals remain buried in the sediment for prolonged periods of 

time acquiring nutrients through filter feeding (Powell, 2000), and therefore accrue 

benefits from locating to sites of relatively high flow. However, moderate-high flow 

rates tend to dilute sperm broadcast into the water column and limit fertilisation 

success downstream of spawning males (Pennington, 1985). Therefore, longer-lived 

sperm would confer an advantage encouraging fertilisation success to accrue over 

time and distance. However, L. elliptica also occurs at high densities (Ahn, 1993; 

Ahn, 1994; Ahn et al., 1996; Ahn et al., 2003) and can on occasions spawn en masse 

vast quantities of eggs and sperm, sometimes producing carpets of gametes (Powell, 

2001). During these episodes the presence of a rapidly spawned mass may be 

sufficient to delay the progress of sperm reaching viable eggs, where greater sperm 

longevity would be beneficial. Mass spawning is common in several broadcast 

spawners and on some of these occasions when sperm dilution is less important, 

sperm competition may be more of a concern than sperm limitation, favouring the 

production of fast sperm at the cost of longevity, thereby capable of rapidly routing 

out a pool of ever decreasing virgin eggs (Levitan, 1993). Alternatively, increased 

longevity may simply be a result of slower swimming sperm, however additional 

experimental trails would be required if this variable was to be measured accurately. 

Therefore, even if the increased sperm longevity of Antarctic spermatozoa is only a 

result of low water temperature (Davenport, 1995), the benefits are not reduced. 

Long-lived sperm can increase the success of synchronous mass spawning events by 

permitting sufficient time for sperm densities to reach the high levels required for 

fertilisation success. The current study has already reported a requirement for 1-2 

orders of magnitude more sperm to achieve optimal fertilisation in the Antarctic and 

may be partly accountable for long-lived gametes.   

 

A broad range of sperm longevities has been reported amongst a variety of free 

spawning invertebrates, including sea urchins (Strongylcentrotus droebachiensis: 0.3 

hour Pennington, 1985; S. franciscanus: 2.5 hours Levitan et al., 1991), seastars 

(Asterias rubens: 24 hours Williams, 1999; Acanthaster planci: 7 hours Benzie and 
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Dixon, 1994), polychaetes (Nereis virens: ~24 hours and Arenicola marina: ~85 

hours Williams, 1999) gastropods (Haliotis ascina: 2+ hours Encena et al., 1998; H. 

tuberculata Baker and Tyler, 2001) bivalves (Mytilus edulis: 5+ hours Levy and 

Couturier 1996; Cerastoderma edule: 4-8 hours (André and Lindegarth, 1995) 

bryozoans (Celleporella hyaline: 1.2 hours Manriquez et al., 2001), ascidians 

(Ascidia mentula: 48 hours Havenhand, 1991) and coral (Platygyra sinensis: ~5 

hours Oliver and Babcock, 1992). 

Previous studies have also described the detrimental influence of increasing gamete 

age on fertilisation success in echinoderms and polychaetes (Lytechinus variegatus 

Levitan, 2000; S. droebachiensis Meidel and Yund, 2001; Asterias rubens, Arenicola 

marina and Nereis virens Williams and Bentley, 2002), molluscs (Mytilus edulis 

Levy and Couturier, 1996) bryozoans (Celleporella hyalina Manriquez et al., 2001) 

and ascidians (Botryllus schlosseri Johnson and Yund, 2004).  

 

It is generally reported that sperm become senescent more rapidly than eggs in free 

spawning invertebrates (Williams and Bentley, 2002) and that the longevity of a 

sperm suspension relies mainly on the concentration of sperm. The latter has been 

attributed to oxygen consumption and as concentrated sperm respire at a lower rate 

than dilute sperm- the respiratory dilution effect (Chia and Bickell, 1983)- sperm 

longevity is reduced at low concentrations. Evidence of the respiratory dilution effect 

has been demonstrated before, for the seastar Acanthaster planci (Benzie and Dixon, 

1994), the sea urchin S. franciscanus (Levitan et al., 1991) and the ormer Haliotis 

tuberculata (Baker and Tyler, 2001). Oocyte longevity has been correlated with the 

reproductive mode of a species and longer-lived oocytes are acknowledged to confer 

an advantage by being fertilisable by sperm a number of hours or days after release 

(Williams and Bentley, 2002).  

 

The ageing of gametes within the gonad of an animal is also a component of 

fertilisation success, although the ageing of gametes post-spawning is more 

commonly studied. The age at which sperm and eggs are broadcast into the water 

column will affect the competency of those gametes to be fertilised. Inevitably, 

immature sperm and eggs will fail to fertilise, or to be fertilised successfully, and as a 

result a lower number of successful fertilisations will result than otherwise would 

occur from interactions between mature, ripe gametes. Therefore, an animal’s age 
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and reproductive maturity are also important factors in fertilisation success (Levitan, 

1995).    

  

However, the influence of gamete age on fertilisation success is contentious, 

especially as many consider the influence of gamete limitation to be far more 

important, diluting gametes below fertilisable concentrations well before the viable 

life of gametes expires (Levitan et al., 1991). This is especially relevant to the 

success of free spawning invertebrates, and fundamental in the fertilisation traits of 

individuals experiencing a high flow regime. However, many invertebrates exhibit 

adaptive spawning patterns to limit the influence of sperm dilution and as a 

consequence can secure high spawning success, such as synchronous spawning, 

broadcasting gametes in viscous fluids (echinoderms and polychaetes Thomas, 

1994ab; S. droebachiensis Meidel and Yund, 2001) or depositing sperm onto the 

substratum, which remain quiescent until activated by female spawning (Lepasterias 

polaris Hamel and Mercier, 1995). Increases in viscosity have been shown to affect 

the passage of particles through the water column (Podolsky and Emlet, 1993; 

Podolsky, 1994), and arresting effects on sperm swimming speed have been inferred 

from these studies as seawater viscosities increase. A reduction in sperm swimming 

speed with increasing seawater viscosity was observed in the current study. 

Therefore, the broadcasting of sperm in a viscous fluid would for a time arrest the 

activity of the sperm released, conserve energy and minimise the early onset of the 

‘respiratory dilution effect’. Synchronous spawning has been demonstrated before in 

the Antarctic limpet Nacella concinna (Picken and Allan, 1983), which forms 

discrete spawning stacks of individuals, and in the Antarctic brittle star Ophionotus 

victoriae (Grange et al., 2004). In these instances gamete age becomes more 

important and the possession of longer lived sperm an advantage. This is also true of 

some invertebrates that internally fertilise their eggs (Bishop, 1998) and maximise 

success by efficiently disseminating, capturing and storing relatively long-lived 

sperm (e.g. the bryozoans Celleporella hyalina Manriquez et al., 2001).  

 

Contact Time     

Contact time did affect the fertilisation success recorded in the temperate and polar 

starfish. However, successful fertilisation was recorded much sooner in O. validus 
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(after 5 seconds) compared to the zero fertilisation levels observed in M. glacialis, 

until 5 minutes contact time between eggs and sperm had elapsed (see Fig. 3.3.9 and 

Fig. 3.3.10). High fertilisation success (70%) was recorded in O.validus during the 

first minute of contact between gametes. A maximum number of eggs were fertilised 

after approximately 5 minutes contact time. At sperm-egg contact times > 5minutes, 

all treatments showed similar fertilisation success (80-100%). Levitan (2000) also 

observed a significant effect of contact time on fertilisation success in the urchin 

Lytechinus variegatus, particularly within the small time intervals most likely to be 

important in the field (less than 1 minute). Rothschild and Swann (1951) also came 

to a similar conclusion for Psammechinus miliaris. Fertilisation in M. glacialis was 

notably low, never exceeding ~40% and was absent at contact times <5minutes. The 

absence of fertilisation in M. glacialis before 5 minutes contact time between 

gametes may reflect the quality of the gametes used in the trial, although the pattern 

of fertilisation success in this seastar was comparable to that of O.validus and other 

asteroids (e.g. Asterias rubens Williams, 1999) that require several minutes to 

achieve optimal levels of fertilisation. Why O. validus should need such a short time 

for successful fertilisation compared to M. glacialis is not overly clear. However, the 

rate and steps by which fertilisation proceeds in different invertebrates are varied. A 

similar plan or organisation of the structures involved in fertilisation are recognised 

in most gametes studied, however large variability is apparent in the way in which 

gametes recognise each other and interact in different groups and species, e.g. 

chemotaxis  (Rosati, 1995). Therefore, one explanation may be that the eggs of O. 

validus exude greater amounts of, or more effective, sperm attractant than those of 

M. glacialis lending to higher overall success rates during shorter contact times under 

optimum conditions. Differences in other egg traits, such as the density of sperm 

receptors on the egg membrane may also influence the rates and efficiency of 

fertilisation between the starfish. If receptors on the egg surface of M glacialis are at 

a lower density than those on the eggs of O. validus, then a larger proportion of the 

sperm that arrive at the egg surface of M. glacialis may not be able to bind to the 

receptors as quickly. M. glacialis also appeared to be more susceptible to the effects 

of polyspermy at lower sperm concentrations compared to O. validus. An increased 

sensitivity to polyspermy can result in selection for increased resistance to sperm at 

the level of egg receptor proteins, with the outcome that a lower proportion of 

attempted sperm-egg receptor fusions are successful, and this may explain the slower 
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rates of successful fertilisation observed in M. glacialis. These species-specific 

differences may partly explain the differences observed between M. glacialis and O. 

validus, and have also been discussed by Styan et al., (2005) to explain the 

differences in fertilisation success between Patiriella calcar and P. regularis. 

Unfortunately, only a single trial was undertaken to assess the effects of contact time 

on fertilisation success in M. glacialis and therefore, further trials would be required 

before any firm conclusions could be made. 

These data indicate that in the case of M. glacialis, eggs need to remain in contact 

with a sperm suspension for several minutes in order to achieve high numbers of 

fertilised eggs. Similar results have been demonstrated for the sea urchins Echinus 

esculentus (Williams, 1999) and Strongylcentrotus purpuratus (Levitan et al., 1991) 

and for the polychaete Nereis virens (Williams, 1999). However, some species do not 

exhibit any notable effect of contact time on fertilisation success owing to rapid 

attachment of a sperm to an egg, which was observed by Babcock and Keesing 

(1999) in Haliotis laevigata. Successful fertilisation was also very rapid, under 

optimum conditions, in O. validus and may possibly describe an adaptation to 

overcome the problems experienced when broadcasting gametes into a low 

temperature environment. 

 

Viscosity      

Emlet and Strathmann, (1985) commented that most zooplankters and planktonic 

larvae of benthic marine invertebrates live in a world dominated by viscosity. Our 

data indicate that the viscosity of the external medium has an important effect on 

fertilisation success in both the temperate and Antarctic starfish and the bivalve 

Laternula elliptica. However, the range of viscosities tested was broad, some of 

which were in excess of what would be experienced naturally. Seawater temperatures 

were maintained at 0.5ºC (1.27cp; O. validus and L. elliptica) and 15ºC (1.45cp; M. 

glacialis) and viscosities were increased using additions of PVP, methylcellulose and 

glycerol (only used PVP for M. glacialis and O. validus). Fertilisation success 

decreased with increasing viscosity (see Fig. 3.3.11, Fig. 3.3.12 and Fig. 3.3.13). 

Podolsky (1994) demonstrated a decrease in larval feeding rate with temperature and 

he attributed over half of the observed effect to viscosity, concluding this effect to be 

responsible for the slower feeding rates observed in polar filter feeders. Emlet and 

 189



Fertilisation Success  Chapter 3 

Strathmann, (1985) also looked at the effects of viscosity on feeding in small 

zooplankton and suggested that when viscosity is a dominant factor, there is a thick 

layer of water that moves with an animal and deflects food-laden pockets of water 

from its path, inhibiting the capacity of zooplankton to feed. Given the similarities 

between suspension feeding and other processes involving contact between small 

particles, temperature-induced viscosity change is likely to impact a range of 

biological processes including fertilisation kinetics (Podolsky, 1994). A similar 

response was demonstrated in the swimming speed of larvae in the sand dollar 

Dendraster excentricus (Podolosky and Emlet, 1993). A 10-degree drop in 

temperature reduced larval swimming speed by 40% and water movement by 35%. 

40% of the decrease in swimming speed and 55% of the decrease in water movement 

was attributed to viscosity effects alone. Viscosity also has an important effect on 

larval fish swimming (Fuiman and Batty, 1997) and Brokaw (2001) has previously 

described the propagation of bending waves along a sea urchin sperm tail needed to 

push the spermatozoan through a viscous environment. At a high viscosity the sperm 

tail generates bending waves with shorter wavelengths and high bend angles. Normal 

seawater conditions produced the highest fertilisation success in the current study. 

However, high fertilisation was still possible in M. glacialis and L. elliptica outside 

the normal range of seawater viscosities. This may have been caused by the retention 

of packets of concentrated sperm in the more viscous solutions, easily capable of 

fertilising collections of passing eggs.  

 

Egg Jelly   

Removal of the jelly coat reduced the number of successful sperm-egg interactions in 

O. validus (see Fig. 3.3.14). Many studies have discussed and reviewed the relative 

importance and influence of accessory egg structures on invertebrate fertilisation 

success. Studies have demonstrated both the influence of these structures on effective 

egg size (Levitan, 1993; Marshall et al., 2000; Podolosky, 2002) and the importance 

of chemoattractants often associated with the egg (Miller, 1982, 1985; Bolton and 

Havenhand, 1996; Jantzen and Havenhand, 2001). 

 

Podolsky (2002) demonstrated the important physical role of egg accessory 

structures on fertilisation success, increasing the size and buoyancy of the egg 
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making it a preferred target for sperm. The egg jelly increased the target egg size of 

the sand dollar Dendraster excentricus six-fold. Podolsky (2002) also recorded a 

decline in fertilisation success in the same experiment when the egg jelly was 

removed, and attributed this effect to changes in the rate of sperm-egg collisions. 

This led some to reason that under sperm dilution, larger eggs would be fertilised 

with greater probability and would therefore be selected for (Levitan, 1993, 1998). 

Therefore, a trade off between egg size, sperm velocity and longevity and gamete 

concentration is likely. This has been demonstrated in three species of sea urchin 

Strongylcentrotus purpuratus, S. franciscanus and S. droebachiensis (Levitan, 1993) 

and in a free-spawning ascidian Pyura stolonifera (Marshall et al., 2000). However, 

Podolsky and Strathmann (1996) suggested interspecific differences in egg 

fertilizability and sperm-half life to be more important than the probability of egg 

fertilization in the evolution of free-spawning invertebrate egg sizes.  Styan et al., 

(2005) recorded no significant difference in fertilisation success between small and 

large starfish eggs in the genus Patiriella and therefore also concluded an uncoupling 

of egg size and the likelihood of fertilisation. Consequently, fertilisation may not be a 

major constraint on the evolution of egg size. 

 

Compounds contained in or released from accessory egg structures have also been 

shown to influence fertilisation success by affecting sperm morphology, respiration, 

motility, longevity (Bolton and Havenhand, 1996), chemotaxis (Miller, 1982, 1985), 

species specificity and acrosome interaction (Hoshi, 1991). The rapid diffusion of 

sperm chemoattractants from an egg can also contribute to higher fertilisation 

success by increasing the effective target egg size. This has been demonstrated for 

the solitary ascidian Ciona intestinalis (Jantzen and Havenhand, 2001). Sperm 

chemotaxis has been exhibited in echinoderms before (Ward et al., 1985; Miller, 

1985), as well as in other taxa including the Mollusca, Urochordata and Cnidaria 

(Bolton and Havenhand, 1996), and acts to counter the damaging effects of sperm 

dilution. The reduction in fertilisation success observed in O. validus in the present 

study, after the removal of the jelly coat, may have resulted from detrimental effects 

on both the physical and chemical attributes of the starfish eggs. A recent study by 

Styan et al., (2005) suggested the lesser importance of egg size on fertilisation 

success in two species of starfish, concluding that there must be a difference between 

the species in the likelihood that when a sperm routes out a conspecific egg it can 
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successfully attach and fertilise. The current study also suggests the greater 

importance of species-specific gamete traits, other than egg size, in fertilisation 

success as both O. validus and M. glacialis broadcast eggs of a similar size into the 

water column, but produce different levels of fertilisation success under optimum 

conditions. The removal of compounds associated with or released from the jelly 

coat, when this accessory structure is removed from the eggs of O. validus, probably 

plays a more critical role in the levels of fertilisation success observed.       

 

Competence to spawn 
 

O.validus produced the largest induced spawning response during May (55%) and 

June (85%). Stanwell-Smith and Peck (1998) also found that spawning could be 

successfully induced in a Signy Island population of the same species during the 

winter months (May-July). The reproductive cycle of this polar starfish has been 

described previously by Pearse (1965, 1969) and confirms the loss of large oocytes 

and active sperm from the gonad during the austral winter. Feeding larval stages of 

O. validus have been sampled in the waters round the Antarctic as early as May, and 

most abundantly in July, confirming a spawning during May-June in natural 

populations (Shreeve and Peck, 1993; Stanwell-Smith and Peck, 1998; Stanwell-

Smith et al., 1999).  

 

The males and females induced to spawn in the present study were larger than the 

mean size of the starfish injected. This has been demonstrated before in O.validus by 

Stanwell-Smith and Clarke (1998), who also reported a higher frequency of females 

(81%) spawning compared to males (19%). Females accounted for 65% and 82% of 

the induced individuals in May and June respectively. Both studies confirmed that 

not all starfish injected could be induced to spawn. Stanwell-Smith and Clarke 

(1998) attributed this disparity to the prolonged gametogenic cycle exhibited in O. 

validus. An 18-24 month oogenic cycle with distinct overlapping cohorts has been 

described for a number of free-spawning invertebrates in the Antarctic, including 

shallow-water echinoderms (Pearse, 1965; Grange et al., 2004). This confirms the 

simultaneous existence of two oocyte generations in the gonad, where spawning is 

annual and a proportion of oocytes are broadcast each year. Larval data also confirm 
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that at least some individuals are able to spawn annually. The higher frequency of 

females being induced to spawn is somewhat counterintuitive to what is normally 

observed. Most species are reported to show male-first spawning in echinoderms 

(Soong et al., 2005). However, incidences of male-first spawning are normally in 

response to the high selective pressure of sperm competition, where males spawn 

well in advance of females and are thus easier to observe. The preference for female-

first spawning in O. validus may indicate a higher selective pressure of sperm 

limitation, which is supported by the observation that an order of magnitude more 

sperm is required to fertilise eggs under optimum conditions, compared to the 

amount of sperm required to produce similar results in a temperate equivalent. In 

these instances males closely follow the release of eggs with sperm, inadvertently 

reducing the gap in spawning time between the sexes, making female-first release 

more difficult to observe and less likely to be documented regularly. Therefore, the 

females collected from natural populations of O. validus during the spawning period 

in 2004 may have been more readily induced to spawn than the males sampled, 

relying on the appearance of eggs in the water column to synchronise a reproductive 

response.  

 

65% of the individuals observed to spawn in the current study exhibited interesting 

pre-spawning behaviour. Each starfish contorted, arched and raised itself above the 

floor of the plastic aquaria. This ‘spawning posture’ is commonly observed in the 

field during the spawning episodes of natural echinoderm populations and can be 

expressed by spawning and non-spawning individuals (Hendler and Meyer, 1982). 

Many studies have interpreted this behaviour as an adaptive behaviour to ensure the 

release of gametes into the water column away from the seabed, minimising gamete 

wastage and maximising the chance of long-range dispersal by raising the gonopores 

into the field of flow (Hendler and Meyer, 1982; Babcock et al., 1994). A similar 

benefit has been described from mounting high coral heads to spawn, which has been 

observed in Acanthaster planci (Benzie et al., 1994). However, such behaviour can 

have an adverse effect of elevating individuals into higher flow regimes, where 

potential dilution effects may act to counter any benefits gained from dispersal and 

act as a stronger selective pressure. Consequently, this behaviour is commonly 

coincident with adult aggregative behaviour and high fertilisation levels have been 

demonstrated for echinoderms under similar circumstances that act to counter 
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dilution effects (Pennington, 1985; Levitan et al., 1992; Hamel and Mercier, 1995; 

Levitan, 1995). 

 

Sperm swimming speeds 

Sperm speeds are notoriously difficult to measure (Styan and Butler, 2000) and 

complications experienced in the current study made it difficult to attain an accurate 

measurement of sperm swimming speed. However, temperature and seawater 

viscosity had an important effect on sperm swimming velocity (see Fig. 3.3.16). The 

effects of both temperature and seawater viscosity on motility have been investigated 

before in the swimming capacity of larvae in the sand dollar Dendraster excentricus 

(Podolsky and Emlet, 1993). The physical influence of viscosity accounted for a 

large proportion of the observed temperature effect on larval swimming and could 

explain 40% of the recorded decline in swimming speed with a 10-degree drop in 

temperature. The current study suggests sperm velocity is severely impaired by 

increases in seawater viscosity and increased by rising temperatures. The effect of 

temperature on the swimming velocity of Antarctic sperm has been demonstrated for 

Laternula elliptica (Powell, 2000). Increasing temperatures caused an increase in 

velocity and although the actual speeds recorded differ from the current study the 

same pattern was observed. It is likely that the actual speeds varied between these 

studies because of differences in paternity (Gee and Zimmer-Faust, 1997). However, 

the similar patterns observed in sperm swimming speed with increasing temperature 

in both studies were most probably temperature driven. A similar response to 

temperature is described in the present study for Parborlasia corrugatus, including a 

plateau in sperm swimming speed between 2-4˚C, reminiscent of the similar 

velocities recorded between –0.5ºC and +2ºC in L. elliptica by Powell (2000). 

Approximately, 47% of the decline in speed was attributable to changes in seawater 

viscosity alone and 53% to other effects of temperature.   

 

Sperm swimming velocity is important to fertilisation success as it determines the 

number of sperm-egg collisions (Farley, 2002; Kupriyanova and Havenhand, 2002). 

Rises in temperature elevate sperm swimming speed (Mita et al., 1984; Powell, 

2000), and can impair fertilisation success in free-spawning invertebrates, especially 

in Antarctic species (Powell et al., 2001). This has been attributed to the trade off 
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between sperm velocity and longevity (Levitan, 2000). A decline in longevity with 

increasing activity has been demonstrated for sperm of the urchin Lytechinus 

variegatus (Levitan, 2001) and has been attributed to the ‘respiratory dilution effect’ 

(Chia and Bickell, 1983). Increases in viscosity also affect the physical attributes of 

sperm (Brokaw, 2001) and arrest sperm motility by exerting excessive drag on 

swimming cells (Fuiman and Batty, 1997). Therefore, the physical attributes of 

seawater exert important influences on sperm motility, including salinity effects 

(Powell et al., 2001). Seawater salinities below 26 impaired swimming in the sperm 

of the Antarctic bivalve L. elliptica.    

 
 

Conclusions 
 

Many factors contribute to fertilisation success in free-spawning marine 

invertebrates. As a consequence fertilisation success can vary between 0-100% 

(Levitan, 1995). Our study suggests that Antarctic invertebrates have evolved unique 

spawning patterns to maximise fertilisation success. Antarctic free-spawning 

invertebrates encounter a very arduous and unforgiving environment, where 

consistently low temperatures, high seawater viscosities and at times appreciable 

flow conditions undermine successful sperm-egg interactions.    

 

This study suggests that there is a similar range in sperm concentration over which 

high numbers of eggs can be fertilised in both a temperate and polar starfish. 

However, equally high numbers of eggs are only successfully fertilised at lower 

concentrations in the temperate starfish. Therefore, Antarctic invertebrates require 1-

2 orders of magnitude more sperm to ensure optimal fertilisation success. These 

sperm tend to be long-lived and are capable of fertilising eggs 24+ hours after 

release. Synchronous spawning, aggregations and specific pre-spawning behaviour 

help to counter the deleterious effects of sperm limitation.   

 

Antarctic eggs and sperm are also highly stenothermal, with extremely narrow ranges 

of thermal and salinity tolerance. Therefore, even small modifications in temperature 

and salinity can dramatically reduce the number of eggs fertilised. This has important 

implications for the geographical distribution of Antarctic invertebrates, but more 
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intuitively confirms the susceptibility of these invertebrates to environmental 

modification, making them one of the most temperature sensitive fauna on the Earth. 

Such stenothermy is of particular relevance if the 1-2ºC rise in global temperature, 

predicted over the next century, is realised.  
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4.1 Introduction 

The quality and quantity of food arriving at the seabed in the Antarctic has several 

effects on the composition and condition of tissues in marine invertebrates. It has a 

direct effect on the amount and composition of material channelled directly into the 

digestive tissues and diverted to storage, and it can have an indirect influence on the 

timing of reproduction and how energy is allocated to the gonad. This is important in 

the understanding of Antarctic reproductive cycles, many of which are underpinned 

by the intensely seasonal signature in primary production, and especially relevant 

when the potential impact of environmental change, in terms of seasonality is 

considered.  

 

The biochemical constitution of an organism is basic to the understanding of its 

physiology (Giese, 1966a). The relative contribution of different bodily constituents 

(protein, lipid, carbohydrate, nucleic acids and mineral ash) influences the amount of 

energy provisioned between maintenance, growth and reproduction, and provides 

information on the nutritional economy of an organism. However, the organic 

composition of Antarctic invertebrates has received relatively limited attention, 

except for the study of pelagic zooplankton. 

 

Pearse and Giese (1966a) were the first to describe the organic profile of a selection 

of benthic animals collected from an extreme southerly latitude at McMurdo Sound. 

This investigation questioned the generally-accepted paradigm that polar animals 

invest in unusually high lipid stores to counter starvation during the long Antarctic 

winter (MacGinite, 1955; Littepage, 1965). Pearse and Giese (1966a) and some more 

recent studies have found results contradictory to this theory, especially amongst 

benthic invertebrates, although it is still considered typical of the planktonic 

zooplankton in the Antarctic (Clarke and Peck, 1991).  

 

Pearse and Giese (1966a) commented on the bodily constitution of 7 benthic 

invertebrates and arrived at a number of tentative conclusions, which formed the 

basis for future investigations into the biochemical composition of Antarctic taxa. 

Protein accounted for the largest percentage dry mass of the tissues studied and 

explained approximately 50% of the tissue compositions. These invertebrates also 
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exhibited moderate to low lipid levels and a minimal contribution from carbohydrate, 

comparable to the values typical in temperate taxa. In most instances all species 

conformed to this composition. However, a large tissue lipid content was 

demonstrated for the isopod Glyptonotus antarcticus, which was illustrative of the 

original paradigm describing most previously-studied Antarctic crustaceans. This 

study thus indicated that the organic constitution of polar invertebrates is not 

dissimilar from the tissue composition of comparable temperate marine forms, and 

that a latitudinal gradient in lipid composition does not apply to all polar marine 

animals.     

 

Many studies have commented upon the biochemical profile of tropical, subtropical, 

temperate and sub-polar echinoderm species (Giese, 1966a; Lawrence and Guille, 

1982; Magniez, 1983; Walker et al., 1987; McClintock et al., 1990; Bishop and 

Watts, 1992; David and MacDonald, 2002). Pearse and Giese (1966a) were some of 

the first to turn their attentions poleward and reported on the biochemical 

composition of 7 benthic invertebrates, including three Antarctic asteroids, 

Acodondaster hodgsoni, Diplasterias brucei and Perknaster fuscus antarcticus. 

Studies into each of the echinoderm classes have followed (McClintock and Pearse, 

1987; McClintock, 1989; Stanwell-Smith and Clarke, 1998; Brockington et al., 

2001), including the study of deep-water species (Galley, 2004).  

 

The biochemical composition of echinoderms varies between taxa, between sexes 

and through temporal variations in tissue composition. The role of different bodily 

constituents also varies between organs, which can be influenced by sex and/or 

season. 

 

The study of whole body echinoderms has been widespread and has highlighted the 

predominance of ash in the skeletal tissues, e.g. in the body wall of asteroids and 

holothurians (~30 to 80%), the disc (~49 to 72%) and arms (~57 to 73%) of 

ophiuroids, the test (~80%) and spines (~89%) of echinoids and the crinoid arms 

(~64%), calyx (~79%) and cirri (~83%) (McClintock and Pearse, 1987). The use of 

calcium carbonate, or silica in some holothurians, in body wall support is thought to 

explain the elevated ash levels in echinoderm tissues (Giese, 1966a). Some internal 

tissues are also known to contain calcium carbonate deposits, e.g. the gut and gonad 
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wall of some ophiuroids (Tyler, 1980). High ash levels have also been reported in 

Antarctic gelatinous zooplankton (Clarke et al., 1992), diluting the presence of other 

bodily constituents. However, some echinoderms, particularly some species of 

asteroid, do exhibit elevated levels of protein, mainly with a structural role, in these 

tissues. The body wall of the Antarctic asteroid Perknaster fuscus antarcticus is 

comparatively rich in protein because the body wall is devoid of the normal 

calcareous plates typical of echinoderms, mainly being composed of connective 

tissue (Pearse and Giese, 1966a). Most echinoderms exhibit moderate-low levels of 

lipid in skeletal tissues, including those species Antarctic in origin (Giese, 1966b; 

Pearse and Giese, 1966ab; McClintock and Pearse, 1987). These lipids tend to have 

either a structural role or are stored in reserve. The lipid levels of whole bodies of 

echinoderms have been compiled previously and describe a generally low lipid 

content in echinoids and holothurians (1 to 2%), ophiuroids (1 to 2.6%), crinoids (1.5 

to 5.3%) and asteroids (2.0 to 12.6%) (Giese, 1966b).  

 

Some tissues contain large reserves of protein and lipid. Protein tends to constitute a 

large fraction of individual tissues, sometimes accounting for nearly half of the 

biochemical profile (Giese, 1966a; Giese and Pearse, 1966a; McClintock and Pearse, 

1987). They form the basic architecture of cells, therefore where cells contribute to a 

major part of a tissue, levels of protein are expected to be considerable. Proteins may 

also be used as an overwintering energy store in some benthic taxa such as 

brachiopods (Peck et al., 1987). Lipids are often accumulated and sequentially stored 

to provide a reserve for when energetic demand is high or when nutrients are scarce. 

The actual lipid content exhibited by invertebrates commonly varies with a species’ 

trophic ecology and lifestyle (Clarke and Peck, 1991). Herbivory is normally 

associated with low lipid reserves in the Antarctic benthos. Levels are generally 

higher in carnivorous invertebrates, although benthic accumulations of lipid are 

diminished in comparison to the inhabitants of the pelagic.   

 

Elevated levels of lipid and protein have been observed in the digestive and nutrient 

storage organs of echinoderms (Giese, 1966a; McClintock and Pearse, 1987) and 

may reflect the fact that the gut tends to be highly metabolic tissue. A secondary role 

of short-term nutrient storage has also been described for the gut tissues of 

ophiuroids, echinoids and holothurians (Lawrence et al., 1965; McClintock and 
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Pearse, 1987; Klinger et al., 1988; Bishop and Watts, 1992). However, any capacity 

for long-term storage is limited.  

 

The role of the pyloric caeca in asteroids is much more diverse (mobilisation of 

nutrients, provision of nutrients during gametogenesis). One of the most important of 

its functions is as a long-term storage organ. The role of this body component in 

nutrient storage is reflected in the high levels of both protein and lipid found in the 

pyloric caeca of Antarctic asteroids, e.g. in Odontaster validus (Pearse, 1965; 

McClintock et al., 1988). McClintock (1989) actually observed a higher proportion 

of energy in the pyloric caeca of O. validus compared to the body wall or the gonads, 

and argued that this large capacity to store nutrients and energy in the pyloric caeca 

may have contributed to the success of the starfish in the Antarctic. The role of the 

pyloric caeca in providing nutrients to the gonad during gametogenic development 

has also been identified as important, both in terms of the seasonal changes in the 

biochemical constitution of asteroids and also in the provisioning of energy between 

somatic and reproductive demands.  

 

Levels of protein and lipid tend to be highest in the reproductive tissues of 

invertebrates, especially during pre-spawning periods when individuals are gravid. 

Elevated lipid levels are common in the reproductive tissues of echinoderms, 

especially in the female ovary (Giese, 1966a). Most studies have described a clear 

dichotomy between the biochemical compositions of echinoderm ovaries and testes. 

This has been observed in the Antarctic (McClintock and Pearse, 1987), where 88% 

of the species studied exhibited higher ovarian lipid compared to the testes. Lipids 

serve an important role in maturing gonadal tissues and constitute a large amount of 

reproductive material. Eggs of marine invertebrates often accumulate large volumes 

of lipid and lipoprotein, which results in some echinoderms having a high overall 

tissue lipid content, especially those that exhibit lecithotrophy and broodcare e.g. 

Porania sp (lipid = 53.5%) and Acondaster hodgsoni (lipid = 62%) (McClintock and 

Pearse, 1987). McClintock and Pearse (1987) found large lipid reserves in the gonads 

of a number of Antarctic asteroid species and attributed this to the preponderance for 

lecithotrophy at high latitudes. A lower lipid content was largely limited to those 

species favouring investment in planktotrophic larvae, e.g. Odontaster validus 

(~13% lipid) and O. meridionalis (23% lipid). Brockington et al., (2001) also 
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recorded a low lipid level in the gonad of the common Antarctic urchin Sterechinus 

neumayeri, a broadcast spawner. However, these trends are probably widespread and 

more dependent on reproductive pattern than existing at a polar latitude.   

 

In contrast to the female gonad, the testes exhibit higher levels of protein. 

McClintock and Pearse (1987) recorded high levels of insoluble protein in the testes 

of many Antarctic echinoderms and concluded that these reflected the presence of 

nucleic acids associated with sperm. The high levels of insoluble protein recorded 

also reflect the analytical techniques available at the time of the study, when abilities 

to dissolve protein were limited. Consequently, the ‘insoluble’ fraction of nitrogen-

containing biochemical constituents probably included both refractory protein and 

nucleic acids. Comparatively lower levels of lipid are typical in the testes and reflect 

the inherently larger contribution of lipid to the development of oocytes compared to 

sperm.   

 

Carbohydrate is often interpreted to represent the allocation of tissue space to food 

storage (chiefly glycogen) and the nutritional well being of an animal (Giese, 1966a). 

This constituent often varies with the nutritional condition of the animal and the 

provision of reserves between different localities. Glycogen is preferentially stored 

by some invertebrates (e.g. in molluscs) and lacking in others (e.g. echinoderms), and 

these distinctions are also maintained in Antarctica. Most Antarctic echinoderms 

possess carbohydrate levels at the lower end of the invertebrate range, which are 

generally comparable to, or slightly less than, the levels observed in temperate 

equivalents. McClintock and Pearse (1987) observed low carbohydrate levels in 24 

species of Antarctic echinoderm. Pearse and Giese (1966a) did find two exceptions 

to this general rule, reporting larger than average carbohydrate levels in Perknaster 

fuscus antarcticus and O. validus. Pearse and Giese (1966b) also observed elevated 

carbohydrate values in the gonad of the Antarctic echinoid S. neumayeri.      

 

Therefore, several studies have substantiated that there is no latitudinal gradient in 

organic composition in echinoderms, and that any differences are driven by 

variations in bodily components.  
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The intense seasonality experienced in the Antarctic is likely to underpin the 

seasonal cycles in the biochemical constitution of many benthic invertebrates, 

especially in terms of stored nutrient and reproductive reserves. The prolonged and 

arduous winter typical of the Antarctic has led many to postulate that endemic 

invertebrates would benefit from the accumulation of large ration reserves (namely 

lipid) in summer to ensure survival during the depauperate austral winter. The lack of 

any appreciable lipid storage in many benthic invertebrates has encouraged the study 

of winter survival, especially in filter feeders that appear to flourish irrespective of 

the harsh winter conditions (Peck et al., 1986; Peck et al., 1987). These invertebrates 

survive by virtue of their reduced metabolic rates and tend to favour the utilisation of 

protein over lipid, during late winter when nutrients are scare (Ahn et al., 2000, 

2003; Fraser et al., 2004).  

 

The tissue composition of invertebrates may also vary with time depending on the 

tempos and stage of the reproductive cycle (Giese, 1959; 1966a; Boolootian, 1966). 

Periods of reproductive investment and maturity have exhibited large accumulations 

of stored lipid and protein in both ovarian and testicular constituents. Comparatively 

lower levels are common after recent spawning and during gonad recovery. These 

cycles are common in the Antarctic, where many invertebrates possess discrete 

sexual cycles in reproduction, e.g. Odontaster validus (Pearse, 1965). However, not 

all individuals display variation in organic levels of the gonad during the 

reproductive cycle, e.g. S. neumayeri (Pearse and Giese, 1966b).  

 

Therefore to summarise, we know that echinoderms have substantially high ash 

contents by virtue of their skeletal elements, and in some instances internal tissues, 

being commonly composed of calcareous deposits. Previous studies have also 

alluded to typically low carbohydrate levels in these invertebrates, whereas the 

organic fraction of most marine invertebrates is typically dominated by protein. 

Therefore, the carbon:nitrogen ratio in most tissues is determined by the ratio of 

lipid:protein, which is a trend generally maintained in Antarctic echinoderms. 

Current consensus also suggests the importance of protein and lipid in the ovary and 

protein and nucleic acids in the testis, where energy for metabolism is typically 

provided by protein.     
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The main objective of this study was to determine the organic constitution of two 

Antarctic echinoderms, the starfish Odontaster validus and the brittlestar Ophionotus 

victoriae, with particular regard to their reproductive, digestive and nutrient storage 

organs, and to evaluate the compliance of both species to the previously described 

biochemical profile ‘typical’ of most taxa. Both species are extremely abundant in 

shallow water sites of the marine Antarctic and exhibit seasonal reproductive cycles 

(Pearse, 1965; Grange et al., 2004). However, these echinoderms differ in their 

reproductive timing and trophic position and therefore should provide some 

information on how different species partition their energy between competing 

processes during an annual cycle, given the same background of environmental 

conditions (Fig. 4.1.1). Odontaster validus spawns during May-August, favouring 

the release of planktotrophic larvae during the austral winter. These discrete 

spawning cycles may well influence the cycling of constituents in the starfish gonad. 

However, I expect the provisioning of nutrients from the pyloric caeca to the gonad 

during gametogenesis to underpin the main patterns in the elemental and proximate 

composition of this tissue. The adult starfish are also characterised as scavengers and 

opportunistic feeders, suggesting that they are somewhat de-coupled from the intense 

seasonality typical of the Antarctic and that any patterns in tissue composition will 

also reflect this disassociation. Ophionotus victoriae is also characterised by 

broadcast spawning and the release of feeding larvae into the water column. 

However, the brittlestar spawns during the austral spring some 3-4 months after the 

starfish. This ophiuroid is a detritivore consuming mostly decayed and remineralised 

material from the seabed. The seasonal tempos of this echinoderm have been 

attributed in part, to the seasonal sedimentation events common in the high Antarctic 

(Grange et al., 2004), and consequently I would expect patterns in the elemental and 

proximate composition of both the reproductive and digestive tissues to reflect this 

seasonality.   
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Fig. 4.1.1 Ophionotus victoriae and Odontaster validus. The timing of the spawning period in two 
Antarctic echinoderms and the summer phytoplankton bloom. 
 

The main aim of this study was to determine the elemental and proximate 

composition of the ophiuroid bodily tissues, the ophiuroid gut, the asteroid pyloric 

caeca and the gonad of both echinoderms. Steps were also taken to compare and 

contrast the sexual variation in tissue composition in each species and to describe any 

seasonal variation in tissue composition in the two echinoderms. A final comment 

was made on the biochemical profile of both echinoderms in relation to each species 

ecology and reproductive patterns.  
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4.2 Materials and Methods 
 

Sampling 

Samples were collected for elemental (CHN) analysis from shallow water marine 

sites adjacent to Rothera Research Station on Adelaide Island, to the west of the 

Antarctic Peninsula (67˚34 S 68˚08 W). Monthly sampling was undertaken during 

the 2003 and 2004 field seasons and 10-15 individuals were collected each month. 

The brittle star Ophionotus victoriae and the starfish Odontaster validus were 

SCUBA diver collected from depths of 15-20m (Table. 4.2.1).  

 
Table. 4.2.1 Individuals were collected over monthly intervals from shallow water sites adjacent to 
Rothera Research Station. 10-15 starfish and brittlestars were sampled over a 4 and 10 month period 
respectively. 
 

Samples Sampling Site Number of Individuals
Odontaster validus  

16/12/2003 South Cove 10 
19/12/2003 South Cove 10 
09/01/2004 South Cove 10 
05/02/2004 South Cove 15 
19/03/2004 South Cove 15 

Ophionotus victoriae  
13/02/2003 Hanger Cove 10 
10/03/2003 Hanger Cove 10 
09/04/2003 Hanger Cove 10 
05/05/2003 Hanger Cove 10 
17/06/2003 Hanger Cove 9 
10/07/2003 Hanger Cove 10 
13/12/2003 Hanger Cove 13 
07/01/2004 Hanger Cove 12 
11/02/2004 Hanger Cove 15 
09/03/2004 Hanger Cove 15 

  

Sampling was not possible during August 2003-end of November 2003, because 

diving operations were suspended. These measures followed the death of the BAS 

Marine Biologist Kirsty Brown. 
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Sample Preparation 

Individual Odontaster validus were dissected soon after collection. Individuals were 

maintained at ambient seawater temperature in a thermally controlled aquarium to 

reduce any stress and the effects of handling prior to dissection. Individuals were 

weighed wet (+0.01g) and measured using vernier callipers to an accuracy of 

0.01mm (‘R’ and ‘r’), and the gonad and pyloric caeca tissue removed for further 

analysis. A scalpel was used to cut away and peel back the aboral body surface, and 

the gonad and pyloric caeca were removed using tweezers. It was important to 

remove the tissues when fresh and at the time of collection, to ensure that tissue 

degradation and changes to the elemental composition of the tissue were minimised. 

Tissues were stored and labelled separately, held at –80ºC, and transported back to 

the UK for elemental analysis.  

 

Initial attempts were made to dissect individual Ophionotus victoriae immediately 

after collection when fresh. However, within a short period of time tissues lost 

coherence making dissection very difficult. Difficulties were also experienced 

separating the gonads intact from the skeletal elements of each ophiuroid. Therefore, 

after collection individuals were placed in a –80ºC freezer for 2-5 minutes before 

dissection. During this time individuals were bagged separately to ensure that any 

loss of arms was contained to a single individual. Ophiuroids were removed from the 

freezer separately and were measured using vernier callipers (+0.01mm disc 

diameter) and weighed frozen. The whole body volume of each brittle star was 

measured following Peck (1993). A weighing vessel was fashioned out of a plastic 

lid and suspended from a clamp stand using two pieces of wire of equal length. The 

wire was threaded through four drill holes in the plastic lid and twisted together at 

the top to permit the vessel to hang from the stand. A beaker of seawater was placed 

on an electronic balance and the weighing vessel positioned over the beaker and 

lowered until the plastic lid was submerged approximately 5cm below the seawater 

surface. Particular attention was paid to ensure that the vessel was suspended freely 

without touching any side of the beaker. The electronic balance was then tared. An 

individual brittle star could then be lowered carefully into the weighing vessel using 

tweezers. The specimen was dropped into the vessel from just above the surface of 

the seawater to ensure water was not lost from the beaker from splash back and to 
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prevent the tweezers from breaking the water surface. The weight observed on the 

electronic scale was recorded and the density of seawater used to calculate the whole 

body volume of each brittle star: 

 

Weight of sample (g) x density of seawater (1.025) = Volume of sample (cm3) 

 

N.B. The weight of each sample was equivalent to the volume of water displaced. 

Small gas bubbles were commonly produced when a sample was placed into the 

weighing vessel, causing the weight recorded on the electronic balance to fluctuate 

slightly (0.01-0.05g). However, this error was very small (0.25-1%). 

 

The aboral surface of the disc was cut away and removed so as the internal tissues 

were easily accessed. As the tissues began to thaw there was a short time window 

within which the tissues remained generally intact and fairly easy to separate from 

the skeletal elements of the ophiuroid. A quantity of both gonad and digestive tissue 

was removed using a warmed scalpel to cut through any ice, and the tissue removed 

with tweezers. The tissues were individually weighed to ensure samples were large 

enough for elemental analysis (> 2mg). The sex of individuals was also recorded and 

determined by the appearance of the gonad (Chapter 2.2). Individual tissues and 

dissected whole ophiuroids were bagged separately and labelled to identify the 

sampling site and date of collection. Tissue samples were also labelled to identify the 

adult of origin. Individual tissue samples were stored in a –80ºC freezer and 

transported back to the UK.  

 

 Grinding, Drying and Ashing 

The dissected whole ophiuroids were dried in the Rothera Research Station’s Bonner 

Laboratory. Initially individuals were dried separately in ceramic crucibles of a 

known weight in a thermally controlled oven at 70ºC (Heraeus Kelvitron) for 24 

hours. The samples were then removed and placed in a dessicator containing silica 

dessicant, designed to keep the atmospheric humidity low and to prevent the tissues 

from re-absorbing water, and individually weighed. Samples were returned to the 

oven for a further 12 hours after which the weighing procedure was repeated. A final 

dry weight was recorded after a full 48 hours. There was no measurable weight loss 
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from the samples after the initial 24-hour oven period. Therefore, subsequent 

samples were dried for 24hours at 70ºC.  

 

The dissected whole ophiuroids were then ground in a fume cupboard using a mortar 

and pestle. Samples were ground until the material was homogeneous. The 

calcareous skeleton of the ophiuroid was quite robust and required approximately 20-

30 minutes grinding. Once ground, the dried samples were suitable for ashing. A trial 

was undertaken to establish the most appropriate ashing time on a subsample of the 

dried material. Work at the British Antarctic Survey involving the ashing of a variety 

of benthic marine invertebrate tissues at a range of temperatures, and analysing the 

carbon content in the ash, has suggested 550-650ºC as the optimum temperature for 

ashing echinoderms (A Clarke, pers. comm.). This pragmatic approach seeks the 

temperature, which offers the best compromise to maximise oxidation of organic 

carbon and minimise losses of inorganic carbonate from a sample. 1 mg samples 

were ashed in pre-weighed (~2g), pre-ashed aluminium crucibles in a thermally 

controlled furnace (Carbolite) at 600ºC for 24 hours. To ensure that excess material 

was not lost from the samples the temperature in the furnace was programmed to 

ramp up over a period of an hour. A temperature of 600ºC was maintained for the 

following 12 hours, after which the furnace was programmed to cool progressively to 

ambient temperature during the final 11 hours. The ashed samples were removed 

from the furnace, placed in a dessicator and individually weighed. The ashing 

process was then repeated for a further 24 hours. The ashed material maintained a 

constant weight after the first 24 hours in the furnace and all of the remaining 

samples were ashed using the same protocol. Both the dry and ashed whole 

ophiuroid samples were stored at –80ºC in separately labelled vials and transported 

frozen back to the UK.  

 

All of the reproductive and digestive tissue samples were dried and prepared at the 

British Antarctic Survey, Cambridge. The gonad samples of Odontaster validus were 

also sexed at this stage. Small pieces of frozen tissue were sampled and allowed to 

thaw slightly. This material was used to produce gonad smear preparations from each 

individual sampled, and viewed under a compound microscope where eggs or pools 

of sperm were visible.  
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Several methods were used to prepare the individual tissue samples for analysis. 

Initially a subsample was removed from each of the frozen tissues using a scalpel 

and tweezers. The size of the subsample taken was equivalent to a ~1mg sample of 

dried material. Samples were removed from the –80ºC freezer and dissected on a 

bench immediately adjacent, to minimise the time that material was exposed to 

ambient room temperature. Subsamples were placed in labelled, pre-weighed 

ceramic crucibles and stored in a cool box over ice. The crucibles were then 

transferred to a thermally controlled oven (Heraeus Kelvitron) and dried for 24 hours 

at 70ºC. This process proved unsatisfactory, owing to the oily nature of both the 

digestive and gonad tissues. Drying caused the tissues to liquefy and produce a 

resultant thin film of protein sitting in a sticky pool of oxidised fat, which remained 

cemented to the base of the crucible. This was a common occurrence when the tissue 

was lipid rich. This material was impossible to grind and could not be adequately 

removed from the crucible without leaving a significant degree of residue on the 

ceramic surface.  

 

A second method proved more successful, and allowed the direct transfer of dried 

samples from the oven to the CHN elemental autoanalyser (Carlo Erba EA1108). A 

series of light-weight tin capsules (7x7mm), specifically designed to retain samples 

during elemental analysis, were pre-weighed and arranged in a grid of labelled wells 

in a plastic tray, suitable to withstand oven temperatures. Duplicate subsamples of 

both frozen reproductive and digestive tissue were placed in the tin capsules and 

stored in a cool box over ice in the plastic tray. The tray was then transferred to a 

thermally controlled oven and dried over a 24 hour period at 70ºC. The samples were 

then placed in a dessicator to cool and were transported to the CHN elemental 

autoanalyser (Carlo Erba EA1108) using an airtight box containing surplus silica 

dessicant. The tin capsules were re-weighed and the tissue dry weight recorded as the 

difference between this value and the original weight of the tin capsule. Care was 

taken to seal each capsule before re-weighing to ensure against sample loss. This 

method was adopted for both the starfish and brittle star gonad and the pyloric caeca 

and gut tissues.  

 

A proportion of the frozen gut, pyloric caeca and gonad tissues were subsampled for 

ashing. 15 and 30 samples were selected for the starfish and brittle star respectively. 
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Tissues were selected using random numbers generated by Minitab (version 13, 

Pennsylvania State University), subsampled frozen and placed into pre-ashed 

metallic crucibles of a known weight in a cool box over ice. The samples were then 

transferred to a thermally controlled oven and dried for 24 hours at 70ºC. Once dry 

the samples were transferred to a dessicator and weighed within the crucibles to 

obtain a dry weight. Each sample was then ashed for 24 hours at 600ºC and weighed 

to provide an ashed weight. The overall mean weight of the ashed samples was 

calculated for each tissue (pyloric caeca, gut and gonad).  

 

The CHN Elemental Autoanalyser (EA1108)    

All samples were processed through a CHN Elemental Autoanalyser (Carlo Erba 

EA1108), set up for the measurement of carbon, nitrogen and hydrogen only. 

Elemental composition data were generated after each sample was processed, using 

the software Eager 800 on a compatible workstation PC. The machine was calibrated 

prior to running any samples and again after every 200 samples had been run (Fig 

4.2.1), when the combustion column had to be disconnected and the excess ash and 

combustion products removed.  

 

 
 
Fig. 4.2.1 Example trace of a standard carbon calibration curve.  
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This process required an airblank, a sample blank (empty tin capsule Fig. 4.2.2) and 

4x1mg standard samples to be processed (Fig. 4.2.3). A final 1mg standard sample 

was run to ascertain whether the calibration procedure had been a success and to 

ensure that the autoanalyser was operating at its optimum. The standard used was 

Acetanilide with a defined N:C:H ratio.  

 

 
 
Fig. 4.2.2 Example chromatogram trace of a sample blank (empty tin capsule). 

 

 
 

Fig. 4.2.3 An example chromatogram trace of a standard sample run. 
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The ratio of the standard was accepted within a 2% error margin (Table. 4.2.2). A 

single Acetanilide standard was run consistently after every 12 samples to monitor 

the accuracy of the autoanalyser throughout prolonged sample runs. 

 
Table. 4.2.2 The biochemical composition of the standard Acetanilide and the error boundaries 
accepted for each constituent after calibration. 
 

Element Ratio 2% error margin 

Nitrogen 10.36 10.17-10.55 

Carbon 71.09 69.68-72.50 

Hydrogen 6.71 6.58-6.84 

 

It was very important to obtain an accurate weight of both standard and sample. 

Slightly varied weighing procedures were necessary for the different sample tissues, 

based on their preparation and drying. The whole ophiuroid samples were already 

ground and dried, and a subsample ashed prior to arrival at the British Antarctic 

Survey, Cambridge. These samples (dry and ash) were stored and transported frozen 

and therefore had to be re-dried in a thermally controlled oven for 24 hours at 70ºC 

before being processed. This ensured any excess moisture retained during stowage 

was driven off. Samples were then stored inside a dessicator containing surplus silica 

dessicant. Individual tin capsules were tared on an electronic microbalance 

(+0.01mg) and handled using forceps. Particular care was taken not to touch the 

sample or capsule. A spatula was used to deposit a small amount (~1mg) of dry 

sample into each pre-weighed capsule (6x4mm). Each capsule was then sealed using 

forceps, folded into a small ball and placed back onto the tared balance to be 

weighed. A series of 50 samples could be placed into the carousel of the autoanalyser 

at one time; each sample required approximately 10 minutes to process. Samples 

were processed in duplicate and a crucible of silica dessicant was placed into the 

carousel during each run to keep the pre-loaded samples dry.  

 

The oily nature of the gonad and digestive tissues necessitated a different approach, 

which has been described above. Samples were dried in pre-weighed tin capsules and 

the dry weight attained from re-weighing the capsules after 24 hours oven time and 

calculating the difference. These capsules were sealed using forceps and care was 
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taken when folding the tin foil, as the material was brittle after drying and the 

capsules easily torn where the tissue samples had liquefied and dried. The samples 

were then transferred to the carousel and analysed as above. During the initial 

subsampling of the frozen tissues the amount of material removed into the capsules 

had to be estimated (~1mg of dry material). On occasion the dry sample was >1mg 

and therefore an airblank was run after every 12th sample in addition to a standard, to 

ascertain whether any excess material had swamped the consecutive sample runs.     

 

Data Analysis                 

The raw data generated from the Eager 800 computer software presented a N:C:H 

ratio based on the amount of each element as a percentage dry weight of each sample 

processed. Samples were processed in duplicate and each sample pair was assigned a 

number based on the numerical order in which they were collected. These 

preliminary data were checked by plotting each sample, and by comparing the 

difference between each replicate and the range of monthly samples for each element 

(%carbon and %nitrogen) (Fig. 4.2.4).  
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Fig. 4.2.4 An example of a raw data plot to identify sample outliers. Plot shows the %dry mass of 
carbon in bodily tissue samples of Ophionotus victoriae. Samples were ran in duplicate and the range 
in %carbon between each replicate plotted to identify any outliers. A triplicate sample was ran where 
large differences were noted between replicate samples. 
 

The difference between duplicate samples was sorted according to magnitude and 

plotted in rank order to identify any obvious outliers. The range in %carbon and 

%nitrogen values between sample replicates was also plotted as frequency 
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histograms (Fig. 4.2.5). Any obvious outliers were identified and a triplicate sample 

processed to ensure the repeatability and reliability of the data.  

 
Fig. 4.3.5 Histogram to show the range in %dry mass of carbon between duplicate samples of bodily 
tissues in Ophionotus victoriae. Sample outliers are identified by → and indicate the lower frequency 
of samples, where the difference in %dry mass of carbon between replicates was large. These samples 
were processed in triplicate. 
 

CHN Algorithm 

An algorithm based on the stoichiometric arguments in Gnaiger and Bitterlich (1984) 

and modified by Andrew Clarke, was used to calculate a proximate composition 

from the elemental composition (C, H, N and ash, all as a percentage of dry mass) of 

each sample through a macro executable in Minitab 13.0.  

 

Before the macro could be executed, it was necessary to set values for three key 

variables: percentage residual water, percentage of non-protein nitrogen and the mass 

fraction of nitrogen in non-protein nitrogen (NPN: nucleic acid, chitin): 

1. Oven-dried tissues always contain a small amount of tightly-bound residual 

water, which must be allowed for in the calculations. A default value was 

inserted into the macro when the percentage residual water was unknown. 

Gnaiger and Bitterlich (1984) determined this value to be 6. 

2. The percentage of total nitrogen that is non-protein nitrogen had to be entered 

next. In the absence of firm data Gnaiger and Bitterlich (1984) determined 

this value to be 5, which is considered typical of marine invertebrate tissue. 
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3. The final value to be entered was the mass fraction of nitrogen in the non-

protein nitrogen, which normally lies within a range of 0.01 to 1.0. A default 

value of 0.15, being the median value for normal amino acids (range 0.08-

0.32) was used.  

 

These data were included in the Minitab macro, which organised data into several 

columns including sample reference number, dry mass (% wet mass), ash content (% 

dry mass), carbon (% dry mass), nitrogen (% dry mass), hydrogen (% dry mass), 

phosphorous (% dry mass) and inorganic carbon (% mineral ash). The dry mass (% 

wet mass) and phosphorous (% dry mass) column were not integral to the algorithm 

and were left blank. The carbon, nitrogen and hydrogen (% dry mass) data were 

obtained from the raw data generated for each sample. The autoanalyser could not 

distinguish between carbon in calcium carbonate or organic carbon. Therefore, to 

estimate the proximate (lipid, carbohydrate and protein) composition of a tissue from 

the CHN data, values of ash content, and the carbon content of the ash were also 

required. The ash content (% dry mass) of samples was obtained from the furnace 

data and included the individual ash data for all of the dissected whole ophiuroid 

samples and the average ash data for individual gonad and digestive tissues.  The 

inorganic carbon (% mineral ash) data were obtained from the %carbon values 

generated by the Eager 800 software after processing ash samples. Real data were 

only available for the dissected whole ophiuroid samples. The ashed gonad and 

digestive tissue were not processed through the CHN elemental autoanalyser (Carlo 

Erba EA1108). Therefore, in these instances a default value of 0.01 was entered. This 

default value was also used on occasions when a negative %carbon or zero value was 

detected by the CHN machine, and it reflects the level of carbon in ash in typical 

marine invertebrate tissue (A Clarke, pers. comm.), although this default is not 

suitable for those tissues high in ash, e.g. the carbonate skeletons of echinoderms. 

Direct measurements of these tissues were made in the current study. 

 

The algorithm was executable as follows: 

1. Calculate absolute dry mass by subtracting the residual water content from 

oven-dried mass. 

2. Estimate organic carbon by subtraction of inorganic carbon from 

measurement of the carbon content in the ash. 
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3. Estimate the fraction of total nitrogen explained by protein. 

4. Estimate mass of protein from mass fraction of nitrogen in protein 

(conversion factor = 0.173). 

5. Estimate C and H in this protein and subtract from total organic C and H. 

6. Partition remaining organic carbon between lipid (fraction of carbon = 0.776) 

and carbohydrate (fraction of carbon = 0.444). 

7. Sum components (protein, lipid, carbohydrate and non-protein nitrogen) to 

check that organic components explain between 95 and 105% organic matter.  

 

The routine returns error messages when variables exceed boundary conditions 

defined within the macro. Negative values of both lipid and carbohydrate can be 

returned if the fraction of carbon explained by protein has been over or 

underestimated respectively. The mass fraction of carbon in the non-protein organic 

matter should lie within the range of 0.776 to 0.444. A sample within the middle of 

this range is comprised of a mixture of carbohydrate and lipid, whereas a sample at 

either extreme is pure lipid or pure carbohydrate respectively. A value >0.776 has 

been overestimated for lipid and will produce negative carbohydrate values. The 

most plausible explanation for this is the overestimation of non-protein nitrogen 

(NPN) or that the residual water value is too high. Alternatively, a severe 

underestimation of the residual water content can cause an overestimation of 

carbohydrate and negative lipid values. If this occurred the samples were re-run 

using optimised values of non-protein nitrogen (NPN) or residual water content 

where necessary, until the algorithm returned values within the boundary limits of 

the macro. Owing to the variables that have to be set or estimated, the algorithm 

cannot provide a definitive composition. It can, however, provide a valuable guide to 

proximate composition. 

 

Statistical manipulation 

The elemental and proximate composition data were analysed statistically. Only 

carbon, nitrogen, protein and lipid were analysed and plotted. However, the average 

and standard deviation of each tissue component was calculated. Hydrogen and 

carbohydrate values were not processed further, owing to the large variability 

inherent in hydrogen data caused by the inconsistent water content of tissues, and the 
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limited percentage dry mass attributable to carbohydrate in most invertebrate tissues 

(A Clarke, pers. comm.). Although carbon and nitrogen are often considered 

indicative of lipid and protein respectively, these relationships are not direct, and 

neither are these data calculated simply using carbon and nitrogen in the algorithm. 

Therefore, all four data sets were analysed and plotted, and any patterns identified. 

The data were separated based on species and tissue type, and box plots of each 

element and tissue component were plotted over time. These data were statistically 

analysed for normality using the Anderson-Darling Normality test (Appendix Table. 

11). One-Way ANOVA was used to test for the effects of sex and month sampled on 

each data set, when the data were normally distributed. Data that exhibited 

significant differences with month sampled were analysed using Tukey’s Test for 

pairwise multiple comparisons. Data that were considered non-normal were also 

processed using a non-parametric statistical test to identify any significant 

differences with sex and month sampled. The Kruskal-Wallis test was employed in 

these cases. Comparisons between tissues and between the two echinoderm species 

using the non-parametric Mann Whitney test and 2-sample T-test were undertaken, 

depending on the normality of the data. All data were separated by month sampled 

and sex, and were plotted by Julian Day (1st January 2003 = Day 1), where any 

obvious patterns with time could be identified. All statistical tests were under taken 

using Minitab 13.0 and all data were plotted using Sigma Plot 8.0 (SPSS Software).       
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4.3 Results 

Compatibility of the data and the algorithm 

The elemental tissue components of each of the two echinoderms analysed varied 

beyond the ranges acceptable for the macro used. Subsequently, data had to be 

separated and the default values optimised individually, so as the majority of values 

returned fell within the boundary limits of the macro (Table. 4.3.1 and 4.3.2). This 

mainly involved substituting the default residual water content with values until the 

macro returned acceptable results. Thus, the different species and tissues types were 

processed individually, and each elemental data set was separated by month sampled. 

Further separation according to sex was sometimes necessary where the data 

continued to deviate outside the normal boundary limits of the macro. However, 

some data were more easily accommodated by the algorithm and on occasion 

returned realistic results using the defaults recommended by Gnaiger and Bitterlich 

(1984).  

The elemental data for pyloric caeca tissue from Odontaster validus fitted the 

algorithm reasonably well, returning realistic values for monthly sample sets when 

the default boundaries were optimised. However, the remaining data had to be 

separated initially by month, and then by sex in order to fit the macro. The tissues 

(whole body, gut and gonad) of Ophionotus victoriae produced elemental data less 

consistent with the limits of the macro, necessitating all data to be separated first by 

month and then by sex. In some instances, despite optimising the default inputs 

suggested by Gnaiger and Bitterlich (1984), not all values fell within the 

recommended boundary limits and some reported negative lipid or carbohydrate 

values. These data were disregarded and removed from any further analysis (Table. 

4.3.1 and 4.3.2). 

 

The elemental data for gonad tissue from Odontaster validus consistently returned 

negative carbohydrate values, even after the data were separated by month and sex 

and ran individually through the macro. Extremely negative carbohydrate values 

commonly result when the amount of lipid is overestimated by the algorithm, and 

usually occur when the fraction of non-protein nitrogen is too high or the residual 

water value excessive. However, the gonad data consistently failed to conform to the  
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boundaries of the algorithm. Therefore, this tissue was plotted and analysed only in 

terms of its elemental composition (C and N).   

 

The elemental and proximate composition data for the individual tissues from each 

echinoderm analysed are presented in Table. 4.3.13 - 4.3.16. Also note that all energy 

values are quoted as negative (the thermodynamic convention that illustrates that the 

energy created is exothermic).  

 

Temporal and Sexual Differences  
   

Odontaster validus Gonad 

10-15 starfish were collected on 5 separate dates during the Antarctic summer field 

season 2003-2004 (December-March). The average ash content of the gonad tissue 

was high (39.92%). A slightly larger percentage composition was attributed to 

carbon (mean = 42.74%), and nitrogen (mean = 10.46%) accounted for a much 

smaller fraction of the gonad (Table. 4.3.3). This pattern was true of both the testes 

and ovaries.  

 

The elemental composition of the gonad tissue did not differ significantly over the 

sampling period (Table. 4.3.4), although carbon and nitrogen composition between 

the sexes were significantly different. Similar carbon and nitrogen values were 

observed in the gonad of individuals sampled during December 2003-March 2004 

(Fig. 4.3.1). The percentage composition of carbon remained consistently high 

(~42%). Nitrogen levels were comparatively low (~11%). However, the trends in 

tissue composition varied between the testes and ovaries (Fig. 4.3.2 and 4.3.3). The 

percentage composition of carbon and nitrogen in the testes were relatively 

consistent and similar to the mean composition observed (Table. 4.3.3). However, a 

decline in both carbon and nitrogen content was observed over the Antarctic summer 

in the ovaries and generally higher levels of carbon were recorded (Fig. 4.3.3).   
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Fig. 4.3.1 Odontaster validus. Biochemical and proximate composition of pyloric caeca and gonad 
tissue collected on a monthly basis between December 2003 and March 2004. Data are plotted as box 
plots. The boundary of the box closest to zero indicates the 25th percentile, the black and grey line 
within the box marks the median and mean respectively, and the boundary of the box farthest from 
zero indicates the 75th percentile. Whiskers (error bars) above and below the box indicate the 90th 
and 10th percentiles. 
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Fig. 4.3.2 Odontaster validus. Biochemical and proximate composition of male pyloric caeca and 
gonad tissue collected on a monthly basis between December 2003 and March 2004. Data are plotted 
as an overall mean + SD.  
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Fig. 4.3.3 Odontaster validus. Biochemical and proximate composition of female pyloric caeca and 
gonad tissue collected on a monthly basis between December 2003 and March 2004. Data are plotted 
as an overall mean + SD.  
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Table. 4.3.3 Odontaster validus. Descriptive statistics (mean + SD, range, N) describing the 
composition of the gonad and pyloric caeca tissues in males and females.  
 

Species Tissue Composition (% dry mass) Average SD Min Max N 
Odontaster validus Gonad Carbon 42.74 2.50 38.11 55.03 60 

    Male Carbon 41.43 1.58 38.11 43.79 27 

    Female Carbon 43.81 2.61 39.91 55.03 33 

    Nitrogen 10.46 1.42 8.27 12.85 60 

    Male Nitrogen 11.51 1.17 8.61 12.70 27 

    Female Nitrogen 9.61 0.99 8.27 12.85 33 

  Pyloric caeca Carbon 45.82 2.44 40.31 50.26 60 

    Male Carbon 45.79 2.63 40.31 50.18 27 

    Female Carbon 45.85 2.32 41.58 50.26 33 

    Nitrogen 9.39 0.52 8.25 10.90 60 

    Male Nitrogen 9.29 0.46 8.25 10.17 27 

    Female Nitrogen 9.48 0.56 8.52 10.90 33 

    Protein 52.39 3.23 45.28 62.93 54 

    Male Protein 51.13 2.35 45.28 57.59 23 

    Female Protein 53.33 3.50 46.81 62.93 31 

    Lipid 16.92 5.86 4.27 29.89 54 

    Male Lipid 17.18 5.37 5.73 26.87 23 

    Female Lipid 16.72 6.28 4.27 29.89 31 

    Carbohydrate 7.80 5.49 0.13 20.36 54 

    Male Carbohydrate 7.53 5.45 0.13 20.36 23 

    Female Carbohydrate 8.01 5.59 0.16 20.13 31 

    Energy -20.99 1.33 -17.87 -23.60 54 

    Male Energy -20.86 1.34 -17.87 -22.84 23 

    Female Energy -21.08 1.35 -18.56 -23.60 31 

   

Odontaster validus Pyloric Caeca 

The pyloric caeca had a lower average ash content compared to the gonad (19.7%), 

which was calculated from 15 representative tissue samples chosen at random. 

However, similar carbon (mean = 45.8%) and nitrogen (mean = 9.4%) values were 

observed. Very similar levels of these constituents were recorded in the digestive 

tissues of both the males and females (Table. 4.3.3), which were not significantly 

different between the sexes (Table. 4.3.4).  

 

The elemental composition of the pyloric caeca tissue varied over the sampled 

months (Table. 4.3.4), although this statistical difference was only significant for 

carbon. Nitrogen levels did not vary significantly with sampling month and remained 
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consistent around ~9.5% (Fig. 4.3.1). Carbon levels increased over the majority of 

the sampling period, decreasing in the following March. The percentage of carbon 

recorded in the pyloric caeca on December 16th was significantly lower than levels 

recorded in tissues collected on the remaining sampling dates (Table. 4.3.5). These 

patterns were repeated in both the males and females (Fig. 4.3.2 and 4.3.3).  

 
Table. 4.3.5 Odontaster validus and Ophionotus victoriae. The results of one-way ANOVA and the 
Tukey Test for pairwise multiple comparisons testing for differences between month sampled in 
bodily, digestive and reproductive tissues. A significant difference was recorded at a significance level 
P < 0.05. Differences identified by the Tukey Test are described numerically, (1-10 for February 
2003-March 2004 in O. victoriae and 1-5 for December 16th 2003-March 2004 for Odontaster 
validus) displaying the month tested against the most dissimilar months in brackets. If a general 
overall difference was recorded the Tukey comparison was recorded as ‘none’. 
 

   ANOVA  

   Month  

Species Tissue Element F P value Significant Tukey Comparisons 
Odontaster validus Pyloric caeca C 12.34 < 0.001 yes 1 (2,3,4,5) 

  Lipid 3.05 0.025 yes none 

Ophionotus victoriae Whole Animal Protein 3.02 0.003 yes 2 (6) 

 Gut Protein 3.27 0.002 yes none 

  Lipid 2.16 0.033 yes none 

 

 

The proximate composition of these tissues was also analysed. Protein accounted for 

the largest percentage composition of the pyloric caeca (mean = 52.4%). Levels of 

lipid (mean = 16.9%) and carbohydrate (mean = 7.8%) were smaller (Table. 4.3.3) 

and accounted for the third and fourth most important constituents respectively. 

There was a significant difference in the percentage composition of protein between 

the male and female tissues, although levels of lipid were similar in the pyloric caeca 

irrespective of sex (Table. 4.3.4).  

 

Despite the sexual difference in percentage composition of protein, no difference was 

observed over the sampled months. However, a statistical difference in the levels of 

lipid was evident over the same period (Table. 4.3.4). Protein levels in the pyloric 

caeca remained high during the sampling period (~50%) and appeared to increase 

slightly (Fig. 4.3.1). The percentage of protein also increased in the female pyloric 

caeca over the sampling period (Fig. 4.3.3). A clear pattern in composition was not 

so apparent in the males, and large error bars associated with the January 2004 
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samples may be partially accountable for the lack of pattern observed. The 

percentage composition of lipid varied markedly within each month and differences 

between months were not significant (Fig. 4.3.1 and Table. 4.3.5). Lipid levels 

increased during the sampling period, although a decrease in the percentage 

composition of the pyloric caeca was apparent during March 2004. This trend was 

clear in the females (Fig. 4.3.3) and males although the percentage lipid content in 

males declined earlier during February 2004 (Fig. 4.3.2). The allocation of energy to 

the pyloric caeca was also similar between males and females (2 sample T-test, equal 

variance (Table. 4.3.6) T = -0.58, P = 0.567, DF = 52).        

 
Table. 4.3.6 Odontaster validus. Test for equal variance in energy content of the pyloric caeca 
between males and females. A P < 0.05 indicates unequal variance. 
 

Test  Test Statistic P-value 
F-test  1.01  0.988 
Levene’s test 0.01  0.919        

 

Ophionotus victoriae Whole Animal 

The average ash content of the ophiuroids collected was 44.6%. Carbon and nitrogen 

accounted for a lower average percentage dry mass of the tissue, composing 23.1% 

and 3.8% of the tissue respectively (Table. 4.3.7). There was no statistical difference 

in the range of carbon and nitrogen levels observed between the males and females 

sampled (Table 4.3.4).  
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Table. 4.3.7 Ophionotus victoriae. Descriptive statistics (mean + SD, range, N) describing the 
composition of the bodily, gut and gonad tissues in males and females. 
 
 

Species Tissue Composition (% dry mass) Average SD Min Max N
Whole Animal Ash 44.60 4.13 36.20 59.84 114

  Male Ash 45.30 4.94 36.20 59.84 54
    Female Ash 43.96 3.15 39.20 56.56 60
    Carbon 23.11 2.21 19.53 28.46 114
    Male Carbon 23.31 2.25 19.53 28.22 54
    Female Carbon 22.92 2.17 19.56 28.46 60
    Nitrogen 3.81 0.52 2.90 5.38 114
    Male Nitrogen 3.90 0.58 2.90 5.38 54
    Female Nitrogen 3.73 0.46 2.93 4.66 60
    Protein 20.95 2.68 15.90 29.56 104
    Male Protein 21.57 2.88 15.90 29.56 48
    Female Protein 20.42 2.40 16.10 24.96 56
    Lipid 6.11 4.31 0.03 16.46 104
    Male Lipid 5.75 3.92 0.03 14.13 48
    Female Lipid 6.42 4.63 0.09 16.46 56
    Carbohydrate 13.19 6.62 0.03 24.40 104
    Male Carbohydrate 13.47 6.74 0.03 24.40 48
    Female Carbohydrate 12.96 6.58 1.54 24.16 56
    Energy -9.92 1.27 -7.08 -13.20 104
    Male Energy -9.99 1.22 -7.44 -12.69 48
    Female Energy -9.86 1.32 -7.08 -13.20 56
  Gut Carbon 46.77 6.66 15.07 57.80 114
   Male Carbon 47.23 7.61 15.07 57.80 54
    Female Carbon 46.36 5.71 18.77 52.32 60
    Nitrogen 7.45 1.25 1.57 9.31 114
    Male Nitrogen 7.17 1.20 1.57 9.07 54
    Female Nitrogen 7.71 1.25 1.82 9.31 60
    Protein 42.68 4.25 31.15 52.65 93
    Male Protein 41.51 3.84 31.98 49.83 40
    Female Protein 43.57 4.37 31.15 52.65 53
    Lipid 25.75 8.21 4.56 41.46 93
    Male Lipid 27.78 8.80 6.12 40.71 40
    Female Lipid 24.22 7.45 4.56 41.46 53
    Carbohydrate 9.41 9.13 0.06 37.93 93
    Male Carbohydrate 9.03 9.19 0.06 37.93 40
    Female Carbohydrate 9.70 9.17 0.48 36.37 53
    Energy -22.40 1.87 -17.75 -25.50 93
    Male Energy -22.87 1.90 -17.94 -25.50 40
    Female Energy -22.06 1.78 -17.75 -25.37 53
  Gonad Carbon 46.67 6.18 31.97 67.24 114
   Male Carbon 41.80 2.62 31.97 45.99 54
    Female Carbon 51.05 5.09 38.51 67.24 60
    Nitrogen 9.99 2.14 6.55 13.70 114
    Male Nitrogen 11.71 1.17 7.56 13.70 54
    Female Nitrogen 8.44 1.54 6.55 12.68 60
    Protein 56.85 11.14 39.72 72.38 80
    Male Protein 65.48 4.24 55.85 72.38 40
    Female Protein 48.23 8.99 39.72 69.66 40
    Lipid 14.28 13.46 0.43 41.41 80
    Male Lipid 4.66 3.20 0.43 14.61 40
    Female Lipid 23.89 12.94 0.78 41.41 40
    Carbohydrate 7.06 6.02 0.03 36.70 80
    Male Carbohydrate 5.78 4.38 0.03 16.22 40
    Female Carbohydrate 8.34 7.13 0.05 36.70 40
    Energy -21.06 2.60 -17.42 -26.31 80
    Male Energy -19.19 0.73 -17.93 -21.31 40
    Female Energy -22.92 2.46 -17.42 -26.31 40
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The elemental composition of the ophiuroids did differ significantly over the 

sampling period (Table. 4.3.4). This was true for both the percentage dry mass of 

carbon and nitrogen. Carbon and nitrogen produced similar patterns in the bodily 

tissues of the ophiuroid (Fig. 4.3.4), decreasing initially between February-March 

2003, before increasing over the following months (until July). The percentage 

composition of both constituents decreased between May-June 2003. A lower 

percentage carbon and nitrogen were observed in December 2003, and continued to 

decline until February 2004. These patterns were clearly indicated in the females 

(Fig. 4.3.6) and in most cases were also exhibited by the males, with the exception of 

missing data in April 2003 and an anomalous high value being observed in the 

following May (Fig. 4.3.5). Data were absent during April as all of the individuals 

sampled were identified as female and owing to the limited amount of individuals 

returning values consistent within the boundary restrictions of the macro, only 2 

males could be reliably plotted for May 2003. Such a small sample size may have 

skewed the data distribution and resulted in an anonymously high average.   

 
The proximate composition of these tissues was also determined. Protein accounted 

for the largest fraction of the bodily tissues (mean = 21.0%), with smaller fractions 

being composed of carbohydrate and lipid (mean = 13.2% and 6.1% respectively). A 

statistical difference was apparent in the proximate composition of the tissues 

between the sexes (Table. 4.3.4). However, this was only demonstrated for protein. 

The average percentage composition of protein was higher in the males (21.6%). The 

percentage composition of protein also differed significantly over the sampling 

period. A significant difference in composition was apparent between March and 

July 2003 (Table. 4.3.5). The patterns exhibited in protein and lipid were similar to 

the trends observed in nitrogen and carbon (Fig. 4.3.4). The percentage composition 

of both components increased during March-July 2003 and decreased between May 

and June 2003. Similar levels were observed in the following December, before a 

brief period of increase between February and March 2004. Again these patterns 

were clearly indicated in the female ophiuroids (Fig. 4.3.6). However, an increase in 

the percentage composition of the male ophiuroids occurred earlier in January 2004 

and percentage lipid levels proceeded to decline during the following March, which 

was not replicated in the female data (Fig. 4.3.5).  
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Fig. 4.3.4 Ophionotus victoriae. Biochemical and proximate composition of bodily, gut and gonad 
tissues collected on a monthly basis between February 2003 and March 2004. Data are plotted as box 
plots. The boundary of the box closest to zero indicates the 25th percentile, the black and grey line 
within the box marks the median and mean respectively, and the boundary of the box farthest from 
zero indicates the 75th percentile. Whiskers (error bars) above and below the box indicate the 90th 
and 10th percentiles.   
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Fig. 4.3.5 Ophionotus victoriae. Biochemical and proximate composition of male bodily, gut and 
gonad tissues collected on a monthly basis between February 2003 and March 2004. Data are plotted 
as an overall mean + SD.  
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Fig. 4.3.6 Ophionotus victoriae. Biochemical and proximate composition of female bodily, gut and 
gonad tissues collected on a monthly basis between February 2003 and March 2004. Data are plotted 
as an overall mean + SD. 
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The amount of energy allocated to bodily tissues of the ophiuroid was low compared 

to the other tissues and similar between males and females (Mann Whitney, W = 

3059.0, P = 0.440). 

      

Ophionotus victoriae Gut 

Lower ash levels were exhibited in the ophiuroid digestive tissues. An average ash 

composition of 30 random tissues was determined (19%). The remainder of the gut 

was mainly composed of carbon (mean = 46.8%), with a smaller fraction being 

attributable to nitrogen (mean = 7.5%) (Table. 4.3.7). The elemental composition of 

the male and female gut tissue was significantly different (Table. 4.3.4).  

 

A statistical difference in both the percentage dry mass of carbon and nitrogen was 

apparent over the sampling period (Table. 4.3.4) and similar patterns were observed 

in both components. The percentage composition of both constituents declined 

between February and May 2003. A small increase in levels followed during June 

and July. Similar levels were observed in the following December, and remained 

fairly consistent during the following months, although a slight increase in the 

percentage composition of both carbon and nitrogen in the gut could be discerned 

over the same time period. These patterns were apparent in the both the male and 

female gut tissues (Fig. 4.3.5 and 4.3.6). However, the missing data and large error 

associated with the male data in April and May 2003 obscured the trend.  

 

Protein accounted for the largest fraction of material in the ophiuroid gut (mean = 

42.7%). Lipid and carbohydrate accounted for the remaining dry mass (mean = 

25.8% and 9.4% respectively). There was a significant difference in the proximate 

composition of the male and female gut tissues (Table. 4.3.4). This was true for both 

the percentage dry mass of protein and lipid.  

 

A significant difference in the levels of protein and lipid was also evident over the 

sampling period (Table. 4.3.4), although there was no significant difference between 

individual sampling months (Table. 4.3.5). Patterns in the percentage composition of 

lipid and protein were similar. Percentages declined between February and 

March/April 2003, and April/May and July 2003. The percentage composition 
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increased during April/May. Slightly higher levels of protein were recorded in the 

gut in the following December, whereas lipid levels were comparatively lower. 

These values remained relatively consistent in terms of protein, but decreased 

slightly in lipid during February 2004 before increasing in the following March. 

These patterns were clearly indicated in both the male and female gut tissues. The 

allocation of energy to the gut tissues was slightly higher in males (Mann Whitney, 

W = 2780.0, P = 0.046). 

 

Ophionotus victoriae Gonad  

The average ash content was reduced in the gonad (16.2%) compared to the gut. 

Carbon accounted for the largest fraction of the ophiuroid gonad (mean = 46.7%). 

The average percentage composition of nitrogen was diminished by comparison 

(10.0%) (Table 4.3.7). There was a significant difference in the elemental 

composition of the gonad between males and females (Table. 4.3.4), in terms of both 

carbon and nitrogen. Generally higher levels of carbon were observed in the ovaries, 

whereas nitrogen values were generally larger in the testes (Fig. 4.3.5 and 4.3.6). 

 

A statistical difference was not evident in the elemental composition of the gonad 

over the 10-month sampling period (Table. 4.3.4), despite a sexual difference being 

identified. The patterns in carbon and nitrogen varied (Fig. 4.3.4). The percentage 

composition of carbon increased between February-April 2003 and decreased 

between April and May and between June and July, despite a higher percentage 

composition in the gonad during June. Comparable carbon levels were exhibited in 

the following December, with similar values being determined during February and 

March 2004. A small increase in the percentage composition of carbon was apparent 

during January 2004. Nitrogen values were more variable and generally decreased 

during February-April 2003. The percentage composition of nitrogen increased in the 

gonad during May and July and decreased in June 2003. Comparable levels of 

nitrogen were observed in the following December. Lower percentage nitrogen was 

observed during the following month, but increased again during February and 

March 2004. Similar patterns in both the percentage dry mass of carbon and nitrogen 

were evident in the ovaries (Fig. 4.3.6). However, the composition of the testes was 

generally consistent over the sampling period (Fig. 4.3.5). 
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The proximate composition of the gonad was also determined identifying protein as 

the main tissue component (mean = 56.9%). Lipid accounted for the third most 

abundant component of the ophiuroid gonad (mean = 14.3%), and a smaller fraction 

was contributed by carbohydrate (mean = 7.1%). A clear dichotomy existed between 

the testes and ovaries composition (Table. 4.3.7). The testes exhibited generally 

higher fractions of protein (Fig. 4.3.5), whereas lipid levels composed a higher 

percentage dry mass of the ovaries (Fig. 4.3.6). 

 

A significant difference in the percentage composition of protein was evident over 

the sampling period (Table. 4.3.4). A large variation in lipid content in the gonad was 

evident between the individuals sampled on a monthly basis, although no statistical 

difference was recorded between February 2003 and March 2004. However, a 

significant difference in composition was apparent between the testes and ovaries 

(Table. 4.3.4). Patterns in protein and lipid varied in the ophiuroid gonad (Fig. 4.3.4), 

but were similar to the trends observed in the percentage composition of nitrogen and 

carbon respectively, and were highly seasonal. The percentage composition of 

protein declined between February and April 2003, increasing over the following 

months until July 2003. Similar protein levels were apparent in the following 

December, before increasing during the remainder of the sampling period. 

Conversely, the percentage composition of lipid increased during the first three 

months of sampling. However, lower lipid levels were observed during May-June 

2003, although much higher lipid was recorded in July. A similar percentage 

composition was observed in the following December, which increased during 

January 2004. A lower percentage composition was apparent during the latter stages 

of sampling. These patterns were clearly emphasised in the ovaries (Fig 4.3.6).  

 

Patterns exhibited in the testes were much less variable and lacked any obvious 

seasonality. Protein levels remained consistently high in the testes and increased 

slightly during February to July 2003 and December 2003 to March 2004. However, 

the percentage composition of lipid remained consistently low and decreased slightly 

between February and July 2003. Larger amounts of energy were invested in the gut, 

compared to the gonad (Mann Whitney, W = 8159.0, P = 0.0005), and females 

appeared to invest to a greater degree compared to males when allocating reserves to 

the gonad (Mann Whitney, W = 1004.0, P < 0.0001). 
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Differences in individual tissue composition   

Unfortunately, owing to the problems described earlier, the gonad tissue of 

Odontaster validus could only be analysed in terms of its elemental composition. 

Therefore, the pyloric caeca and gonad data are only compared in terms of the 

percentage dry mass of ash, carbon and nitrogen. 

 

The average ash content of the gonad and pyloric caeca tissues was calculated from 

15 randomly chosen tissue samples and differed markedly. The average ash level in 

the gonad was twice as large (mean = 39.9%) as the value recorded in the pyloric 

caeca (mean = 19.8%). Carbon accounted for the largest fraction of material in both 

tissues, although the percentage carbon composition of the pyloric caeca was 

significantly higher (Mann Whitney, W = 2418.0, P < 0.0001). The lowest fraction of 

material in these tissues was attributed to nitrogen, although a higher percentage 

composition was recorded in the gonad (Mann Whitney, W = 4363.0, P = 0.0001). 

However, similar nitrogen levels were observed in the gonad and pyloric caeca of 

females (2-sample T-test, unequal variance (Table. 4.3.8) T = 0.65, P = 0.517, DF = 

50).  

 
Table. 4.3.8 Odontaster validus. Test for equal variance in %nitrogen content between female gonad 
and pyloric caeca tissue. P < 0.05 indicates unequal variance. 
 

Test  Test Statistic P-value 

F-test  3.18  0.002 
Levene’s test 5.01  0.029 

   

The ash content of the ophiuroid bodily tissues was determined and compared to an 

average ash content calculated from 30 randomly chosen gut and gonad tissues. 

Similar levels of ash were observed in the gut and gonad (mean = 19.0 and 16.2% 

respectively), and a generally larger fraction of the ophiuroid body was ash (mean = 

44.6%). This component accounted for the largest percentage dry mass of the 

ophiuroid bodily tissue.  

 

The largest percentage dry mass of the gut (mean = 46.8%) and gonad tissue (mean = 

46.7%) was composed of carbon, which contributed moderately to the bodily tissues 

(mean = 23.1%). Similar levels of carbon were observed in the gut and gonad (Mann 



Tissue Composition and Condition  Chapter 4 

 240

Whitney, W = 13848.0, P = 0.111), although differences were apparent in the males 

and females (Table. 4.3.9). Nitrogen accounted for only a small fraction of the 

ophiuroid, contributing least to the ophiuroid body. A significant difference in 

nitrogen was apparent between the gut and gonad tissues (Mann Whitney, W = 

9082.0, P < 0.0001), although no difference was observed in the females (Mann 

Whitney, W = 3429.0, P = 0.293).    

 
Table 4.3.9 Ophionotus victoriae. Comparisons between the %carbon content in the gut and gonad 
tissues in males and females. A Mann-Whitney non parametric analysis was employed and a P < 0.05 
indicated a significant difference in tissue biochemical composition. 
 
Variable Test Statistic P-value 

Female  W = 2684.0 < 0.0001  
Male   W = 4023.0 < 0.0001 

 

Protein accounted for the largest fraction of material in the gonad and gut (mean = 

56.9% and 42.7% respectively), and contributed moderately to the ophiuroid bodily 

tissues (mean = 21.0%). A larger percentage composition of the gonad was attributed 

to protein (Mann Whitney, W = 5585.0, P < 0.0001), although no difference was 

observed in the females (Mann Whitney, W = 2246.0, P = 0.058).  

 

Moderate levels of lipid contributed to the composition of the gut and gonad (mean = 

25.8% and 14.3% respectively), and accounted for the smallest tissue fraction in the 

ophiuroid body (mean = 6.1%). Larger levels of lipid were recorded in the gut, 

compared to the gonad (Mann Whitney, W = 9877.0, P < 0.0001), although similar 

levels were observed between the female gut and ovaries (Mann Whitney, W = 

2368.0, P = 0.342).  

 

Carbohydrate accounted for the smallest tissue fraction in the ophiuroid and the 

percentage composition of the reproductive and digestive tissues was similar (Table. 

4.3.10). The amount of energy allocated to the individual tissues varied, although 

generally higher levels were invested in the gut, compared to the gonad (Mann 

Whitney, W = 7066.0, P = 00.01). However, a larger allocation of energy was 

recorded to the ovaries, compared to the female gut (Mann Whitney, W = 2802.0, P 

= 0.016). A relatively smaller amount of energy was associated with the ophiuroid 

bodily tissues (mean = -9.92 kJ g-1 DM).  
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Table. 4.3.10 Ophionotus victoriae. Comparisons between the %carbohydrate content in the gut and 
gonad tissues. Comparisons in these tissues in males and females are also recorded. A Mann-Whitney 
non parametric analysis was employed and a P < 0.05 indicated a significant difference in tissue 
biochemical composition. 
 
Variable Test Statistic P-value 

Tissue  W = 8643.0 0.207 
Female  W = 2535.0 0.734 
Male  W = 1833.0 0.152 

 

Differences between species 

The elemental and proximate compositions of individual tissues are compared for the 

two echinoderms analysed. However, the gonad data can only be compared on an 

elemental level, owing to the poor conformity of the starfish data to the macro. 

 

The ash content of the digestive gland was very similar between the two echinoderms 

(~19%). However, the gonad tissues differed quite extensively, where the starfish 

gonad was composed of more than double the ash content of the brittlestar gonad. 

The ash content was also important in the ophiuroid bodily tissue accounting for 

almost 45% of the tissue composition, and although this constituent was important in 

all tissues, other components dominated the composition of the reproductive and 

digestive tissues. 

 

The percentage composition of carbon was important in the digestive tissues of both 

echinoderms, although higher levels were recorded in the ophiuroid gut (Mann 

Whitney, W = 11249.0, P = 0.0001). A significant difference in the gonad was also 

apparent in carbon content between the two echinoderm species (Mann Whitney, W 

= 11212.0, P = 0.0001), with higher levels in the ophiuroid. The bodily tissue was 

diminished in carbon containing approximately half the carbon content of the 

aforementioned tissues (~20%). Nitrogen accounted for a much smaller fraction of 

the tissue composition in both echinoderms. A significant difference in nitrogen 

content was apparent in the digestive tissues of the two echinoderms (Mann Whitney, 

W = 8483.0, P< 0.0001), with higher levels being observed in the pyloric caeca of 

Odontaster validus. However, a similar percentage composition of nitrogen was 

recorded in the gonad of the two echinoderms (Mann Whitney, W = 5777.0, P = 

0.096), although a significant difference was apparent between the ovaries of the two 
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species (Mann Whitney, W = 2176.0, P < 0.0001). Levels of nitrogen were lowest in 

the ophiuroid body tissue (~4%). 

 

Protein was the largest component of tissue in both the pyloric caeca of the starfish 

and the brittlestar gut tissue (~40-50%). A higher percentage composition of protein 

was apparent in the pyloric caeca compared to the ophiuroid gut (2 sample T-test, 

unequal variance (Table. 4.3.11) T = 15.59, P < 0.001, DF = 134). In comparison, the 

ophiuroid bodily tissue was composed of half the amount of protein (~20%).  

 
Table. 4.3.11 Test for equal variance in %protein content between the gut of Ophionotus victoriae 
and the pyloric caeca of Odontaster validus. P < 0.05 indicates unequal variance. 
 
Test  Test Statistic P-value 

F-test  0.58  0.031 
Levene’s test 4.62  0.033 

 

A more visible contrast was apparent in lipid composition between the two species. 

The percentage dry mass of lipid was higher in the gut of the brittlestar (2-sample T-

test, unequal variance (Table. 4.3.12) T =  -7.57, P < 0.001, DF = 138). However, the 

digestive tissues in both echinoderms contained 2-4 times the tissue composition of 

lipid compared to the ophiuroid body. The lowest lipid levels were recorded for this 

bodily tissue (~6%).  

 
Table. 4.3.12 Test for equal variance in %lipid content between the gut of Ophionotus victoriae and 
the pyloric caeca of Odontaster validus. P < 0.05 indicates unequal variance 
 

Test  Test Statistic P-value 

F-test  0.51  0.009 
Levene’s test 4.15  0.043 

 

The lowest percentage dry mass of tissue was attributed to carbohydrate in both the 

gut and pyloric caeca of the echinoderms analysed (~8-9%). A similar percentage 

composition of carbohydrate was recorded in the gut and the pyloric caeca (Mann 

Whitney, W = 3967.0, P = 0.825). The contribution of carbohydrate to the bodily 

tissues was also slight, although the lowest percentage dry mass of this tissue was 

attributed to lipid.  
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A significant difference in the amount of energy allocated to the ophiuroid gut and 

the asteroid pyloric caeca was apparent (Mann Whitney, W = 5235.0, P < 0.0001), 

where a larger allocation in Ophionotus victoriae was observed. However, the 

provisioning of energy to the ophiuroid bodily tissue was much lower (~ 9 kJ g-1 

DM).    

 

Experimental Constraints 

• Sample storage may have affected the biochemical composition of the frozen 

tissues. Samples were transported and held at the British Antarctic Survey 

Headquarters, Cambridge at –80ºC. Prolonged periods of storage have been 

shown to leach nitrogen from stored tissues, which is accelerated in tissues 

originally rich in nitrogen (R Shreeve, pers. comm.). The loss of nitrogen 

from samples also appears to be disproportionately high during the first few 

months of storage. However, each tissue was stored according to the same 

protocol and for a limited period (~ 6 months), keeping any error consistent 

and to a minimum. 

• A small degree of error is inherent when using the CHN autoanalyser, caused 

principally by imprecise sample weighing, especially when weighing frozen 

samples. The detection accuracy of the CHN autoanalyser was also 

compromised when ashed (whole ophiuroid) samples were processed. Zero 

and sometimes negative carbon values were returned when the machine was 

required to operate at the extreme lower end of its detection limits. Therefore, 

these data were reported and input into the macro as the default (0.01%) as 

recommended by Gnaiger and Bittlerlich (1984) and any positive values were 

inputted as normal. 

• The algorithm was used with variable success. It has been reported that the 

algorithm devised by Gnaiger and Bitterlich (1984) works well when the 

tissues processed vary little in seasonal tissue composition. This may explain 

the greater degree of conformity observed in the pyloric caeca tissues from 

Odontaster validus. These tissues were collected over a smaller time period 

(4 months) compared to the 10month sample collections under taken for 

Ophionotus victoriae. Therefore, in comparison the amount of seasonal 

variation would have been limited in the starfish tissues, especially as 
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collections were made outside the normal spawning period of this 

invertebrate, when reproductive activity would have exerted a greater 

influence on composition. However, as both of these invertebrates have 

seasonal cycles in reproduction and activity (Pearse, 1965; Grange et al. 

2004) it is not surprising that the tissue data rarely conformed perfectly to the 

boundary limits of the macro. Clarke et al. (1992) also experienced 

unresolved difficulties when they attempted to process tissue from gelatinous 

zooplankton through the Gnaiger and Bitterlich (1984) algorithm, which were 

attributed to excessive residual water content (~10%) in the tissues. Galley 

(2004) found similar problems when processing holothurian tissue. However, 

the algorithm has been shown to give accurate results when compared to 

direct assays (Brockington et al., 2001).  

The poor conformity of the starfish gonad tissue is more problematic as this 

tissue has been successfully processed before (Stanwell-Smith, 1997). 

However, the ash content determined in the current study (39.92%) is well in 

excess of any previous estimates (13.90+0.18 Stanwell-Smith, 1997). This 

will have affected the execution of the macro. Stanwell-Smith (1997) ashed at 

480ºC. Subsequent studies have suggested 600ºC as a more appropriate 

ashing temperature for echinoderm tissues (A Clarke, pers. comm). At 600ºC 

virtually all of the organic matter in the tissue should have been burnt off and 

therefore, a lower ash content would be expected in the current study 

compared to Stanwell-Smith’s data (Fig. 4.3.7). However, this was not the 

case and is difficult to explain. A possible explanation is that the samples 

used in the current study contained more mineral material than the tissues 

used in Stanwell-Smith’s investigation. At 600ºC it is also possible that 

excess aluminium, and possibly tissue, may have been burnt off from the 

weighing crucibles. However, the crucibles were initially ashed empty (pre-

ashed) and the furnace temperature ramped to minimise this potential 

problem. Small sample sizes meant that very small sample weights were 

recorded for both dry and ashed tissue, and that little difference was recorded 

in weight between the dry and ashed samples. Consequently, weighing 

inaccuracies may have affected the final results.  

The same method was also used to prepare and ash all of the samples, 

including the starfish gonad. All of the other gonad and gut tissues used in the 
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current study produced comparable data to previous studies and were 

amenable to the macro. Therefore, a clear explanation for the high ash 

content of the starfish gonad is not forthcoming.   

       

Alternatively, the poor conformity of the starfish gonad data to the macro 

may have been biochemically driven. The macro persistently returned 

negative carbohydrate values commonly observed when the fraction of non-

protein nitrogen is overestimated and the amount of carbon explained by 

protein underestimated. This may suggest the presence of an unmeasured or 

underestimated NPN component, possibly a glycoprotein or amino-

polysaccharide. This was especially evident in the male gonad tissue and may 

be attributable to the investment of a large amount of non-protein nitrogen in 

DNA in sperm, which is not accounted for in the default boundary limits of 

the macro.       

 
 

Fig. 4.3.7 Odontaster validus. Mineral ash content (percentage dry mass) of echinoderm body 
tissues versus temperature to illustrate the variation in ash content calculated using different 
ashing temperatures. 
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4.4. Discussion 
 
The elemental and proximate composition of the echinoderms analysed varied both 

seasonally and between sexes. Differences between the species and the fundamental 

compositions of the individual tissues were also observed. 

 

The two Antarctic echinoderm species studied had similar biochemical compositions 

to those described previously in benthic Antarctic invertebrates (Pearse and Giese, 

1966ab; McClintock and Pearse, 1987; McClintock et al., 1988; McClintock, 1989; 

Stanwell-Smith, 1997). These compositions are not dissimilar to many temperate 

marine forms (Giese, 1966a). However, the percentage composition of ash was 

elevated in the digestive and reproductive tissues of the echinoderms when compared 

to other studies (Stanwell-Smith, 1997). High levels of ash have been described in 

the tissues of Antarctic echinoderms (Galley, 2004) and have been attributed to an 

investment in structural components in the echinoderm gonad and gut. The 

employment of different ashing temperatures can also affect the percentage 

composition of ash determined from the same tissues (A Clarke, pers. comm.). 

Carbohydrate levels were also slightly elevated in some instances (~13% ophiuroid 

body) compared to previous studies (<6%) (McClintock and Pearse, 1987; 

McClintock et al., 1988; McClintock, 1989). However, similar data were described 

by Galley (2004) in a number of deep sea Antarctic echinoderms and were also 

reported in the tissues of the Antarctic urchin, Sterechinus neumayeri (Pearse and 

Giese, 1966b; Brockington et al., 2001). These patterns have been previously 

associated with diet. Giese (1966a) commented on the possible accumulation of 

carbohydrate when echinoderms utilise nutrient-rich food sources whilst, 

Brockington et al., (2001) suggested the involvement of diet to explain the higher 

carbohydrate levels observed in the Antarctic urchin, Sterechinus neumayeri. 

 

Ophiuroid Body Tissues    
The ophiuroid bodily tissues (including the disc) were mainly composed of ash 

(~45%). This is comparable to the values previously reported for Antarctic 

echinoderms (McClintock and Pearse, 1987) and has been attributed to the high 

mineral content of the calcareous skeletal structures characteristic of the taxon. The 
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ophiuroid disc is composed of many calcareous plates and ossicles. Another 

interesting feature, originally reported by Mortensen (1933), is the calcareous 

deposits found in the soft tissue, especially in the gut and gonad wall, of some 

ophiuroids (Tyler, 1980), which may have contributed to the large ash content 

observed. The organic composition of the dissected whole ophiuroids used in the 

current study was lower in comparison to the ash portion, and was mainly dominated 

by protein. Giese (1966a) attributed the protein content of these tissues to structural 

components and the heavy musculature of the disc and arms. The contributions of 

lipid and carbohydrate to the bodily tissues of the ophiuroid were limited in 

comparison, which is a common observation in the tissues of both Antarctic and 

temperate echinoderms (Giese, 1966ab; Pearse and Giese, 1966ab; McClintock and 

Pearse, 1987; McClintock et al., 1988; McClintock, 1989; Stanwell-Smith, 1997). 

Higher levels of organic material have been observed in the body wall of asteroids 

and holothurians suggesting an additional role as nutrient storage tissue (McClintock 

and Pearse, 1987).  

 

Ophiuroid gut  

The gut of Ophionotus victoriae was also relatively high in protein (~43%). Lipid 

levels were also higher in the digestive tissues of O. victoriae (~26%) compared to 

Odontaster validus. McClintock and Pearse (1987) observed comparable levels of 

these constituents in the same species of brittlestar, although the levels of protein 

observed were slightly higher in the current study, and suggested the gut to have a 

role in providing material and energy for metabolic function and possibly 

gametogenesis. Carbohydrate levels were again elevated in the current study and 

most probably reflect dietary differences in the ration available. McClintock and 

Pearse (1987) only collected individuals during October and November between 

1984 and 1985, which may partially explain the differences between their study and 

the current data, which collected animals over a 10-month period. The considerable 

contribution from lipid to the composition of the gut tissue does suggest a role of 

nutrient storage (Bishop and Watts, 1992). This may be of particular importance to 

Ophionotus victoriae and other species of ophiuroid when reproductively mature, 

when the space occupied by the gonads in the ophiuroid disc is large and impairs the 

normal acquisition of nutrients through feeding (Thorson, 1953). 
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Asteroid pyloric caeca   

The organic composition of the pyloric caeca in Odontaster validus was dominated 

by high levels of protein (~52%) and moderate contributions from lipid (~17%). The 

amount of ash recorded was similar to the levels of ash observed in the ophiuroid 

digestive tissue and was relatively low compared to the contents of the other tissues 

in the study. The mean level of lipid (~17%) in the pyloric caeca was similar to the 

values (~22%) reported for O. validus by McClintock and Pearse (1987). However, 

slightly higher levels of protein and carbohydrate were observed in the current study. 

Similar investments in lipid and protein in the pyloric caeca have also been reported 

by Stanwell-Smith (1997), who also observed higher carbohydrate levels in the 

pyloric caeca compared to McClintock and Pearse (1987). These differences 

probably reflect variations in food availability between the sampling sites and the 

times of each study, especially as Odontaster validus reproduces seasonally. The role 

of the pyloric caeca in asteroids as a nutrient storage organ is evident in the high 

levels of both protein and lipid observed in this bodily component. The pyloric caeca 

was generally high in energy and similar between sexes, which was primarily a result 

of the consistently high levels of protein and lipid invested. 

 

Echinoderm gonads 

The mean biochemical and proximate composition of the gonad tissues indicated 

differences between the sexes of both echinoderm species. Carbon levels were higher 

in the females of both the asteroid and ophiuroid and nitrogen levels were higher in 

the testes. A similar pattern was observed in lipid and protein respectively in the 

gonad tissue of the brittlestar. This reflects the requirement of an inherently greater 

energetic contribution of lipid to the development of an oocyte and the production of 

a juvenile when compared to sperm (McClintock and Pearse, 1987). High lipid levels 

are common in a number of Antarctic echinoderms, and have been associated with 

the preponderance of lecithotrophy at polar latitudes (McClintock and Pearse, 1987). 

In contrast high levels of protein are common in the testes of both temperate (Giese, 

1966a) and Antarctic echinoderms (Pearse and Giese, 1966a; McClintock and 

Pearse, 1987; McClintock 1989). Large contributions of non-protein nitrogen reflect 

the high levels of nucleic acids and DNA commonly associated with sperm. The 

energetic cost of producing eggs in female O. victoriae was significantly larger than 
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the cost of producing sperm in males, which is a common assumption for many 

marine invertebrates (Giese, 1966a). However, as spermatozoa contain relatively 

more proteinacious substances than ova, and protein synthesis is an expensive 

metabolic process in terms of sperm production, the general validity of the 

assumption that ‘sperm is cheap’ is sometimes doubtful, e.g. in the Icelandic scallop 

Chlamys islandica (Vahl and Sundet, 1985).      

 

The mean biochemical composition of the gonad tissues indicated differences 

between the two species of echinoderm. Ash levels in the asteroid gonad were much 

higher than the levels observed in the ophiuroid. This suggests that the asteroid 

gonad is composed to a greater degree by structural components than the ophiuroid 

tissue. Feder and Larsson (1968) described the wide distribution of calcareous 

deposits in the soft tissues of some asteroids. However, a similar occurrence has been 

described in both abyssal and bathyal ophiuroids, and therefore may not explain the 

disparity in levels of ash between the two echinoderm species. Previous studies have 

recorded much lower levels of ash in Odontaster validus (Stanwell-Smith, 1977) and 

suggest that the very high ash content of the gonad in the current study is anomalous. 

Levels of carbon were also elevated in the ophiuroid gonad, which was especially 

evident when the mean percentage composition of the ovaries was compared. 

However, the range in nitrogen levels was similar between the two echinoderm 

species.  

 

Differences between the two echinoderm species are most probably attributable to 

subtle differences in their reproductive patterns. Both of these Antarctic echinoderms 

have been reported to broadcast small planktotrophic eggs into the water column 

(Pearse, 1965; Grange et al., 2004). However, Grange et al., (2004) remarked on a 

flexible egg strategy demonstrated for the brittle star (Chapter 2), producing inter-

annually variable numbers of small and large eggs coincident with the quantity and 

quality of the seasonal arrival of material at the sea-bed. The production of larger 

eggs (>200μm) by the brittle star and the practice of a more facultative planktotrophy 

may explain the generally larger contribution of carbon to the ophiuroid ovaries. The 

absence of any lipid data for the asteroid gonad prevents any further comparison in 

the current study. However, previous studies have reported generally low-moderate 

levels of lipid (~9-13%) in the gonads of Odontaster validus (McClintock and 
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Pearse, 1987; McClintock, 1989; Stanwell-Smith, 1997). Elevated lipid levels have 

been observed in the ovaries of Ophionotus victoriae both in previous studies (~27% 

McClintock and Pearse, 1987) and in the current study (24%). This may reflect a 

greater maternal investment by the brittlestar and similar contributions from lipid 

(~23%) have been previously reported in the ovaries of another Antarctic 

echinoderm with planktotrophic development (Odontaster meridionalis McClintock 

and Pearse, 1987).  

 

Despite differences in the levels of carbon and lipid observed in the gonads of the 

asteroid and ophiuroid energy contents were similar between the two echinoderms 

(McClintock and Pearse, 1987; Stanwell-Smith, 1997; current study). This most 

probably reflects a trade-off between fecundity and egg size.  

     

Seasonal Variation in Tissue Composition 

Seasonal variation in the tissue composition of Odontaster validus was small. A 

significant difference in the biochemical constitution of tissue was only observed in 

the asteroid pyloric caeca and could only be proven for carbon and consequently 

lipid. The levels of other bodily constituents were generally consistent over the 

sampling period. The absence of any obvious seasonality in the composition of the 

asteroid gonad probably reflects the limited period over which the study was 

undertaken (~4 months December 2003-March 2004). Many studies have also 

commented upon the close relationship between the asteroid gonad and pyloric caeca 

as a nutrient storage organ (Asterias rubens, Oreaster reticulatus, Stichaster australis 

and Luidia clathrata; McClintock, 1989). The transfer of nutrients from the pyloric 

caeca to the gonad may explain the lack of any systematic trend in the biochemical 

composition of the asteroid reproductive tissue. The composition of gonad tissue 

observed by Stanwell-Smith (1997) in the same species also remained broadly 

similar throughout the adult reproductive cycle. 

 

Generally consistent levels of protein were observed in the pyloric caeca tissues. A 

seasonal cycle in lipid was more apparent and both the male and female storage 

tissues exhibited a period of investment during late 2003 when the percentage lipid 

composition increased. This period coincides with the Antarctic phytoplankton 
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bloom and although this asteroid is a scavenger and somewhat decoupled from the 

availability of primary production in the water column, the elevated presence of dead 

and digested material and potential prey items is likely to enhance the capacity of the 

asteroid to sequester and store nutrients. A decrease in the percentage lipid 

composition in both the males and females occurred in February to March 2004 and 

may be related to the mobilisation of lipid energy reserves to the gonad for 

gametogenesis.           

 

Seasonal variation was evident in the biochemical composition of Ophionotus 

victoriae. The Antarctic experiences a distinct seasonal and inter-annual cycle in 

primary production. The intense seasonality characteristic of the Antarctic is 

recognised as pivotal, not only for the filter feeding community but also for the 

benthic individuals reliant on the recycled and remineralised material which arrives 

at the sea-bed during the late austral summer. Such variation in the quality and 

quantity of food supply may have several effects on the biochemistry of body 

components. It may have a direct effect on the amount and composition of material 

channelled directly into the digestive tissues and diverted to storage such as in the 

gut lining, or it may have an indirect influence on the timing of reproduction and 

how energy is allocated to the gonad. This ophiuroid is a detritivore consuming 

decayed and remineralised material from the seabed and the seasonal tempos of this 

echinoderm has been attributed in part, to the seasonal sedimentation events common 

in the high Antarctic (Grange et al., 2004).  

 

A clear cycle in the composition of the ophiuroid was difficult to decipher owing to 

the absence of data between July-December 2003, especially as this period 

encompasses the months when individuals are gravid and likely to spawn (Grange et 

al., 2004). However, the most significant seasonal variation in tissue composition 

was observed in the ovaries. Variation in the testes was small, where the lipid content 

remained consistently low during the sampling period and protein remained 

consistently high. A clear dichotomy between the male and female gonad has been 

reported before in most temperate (Giese, 1966a) and Antarctic echinoderms (Pearse 

and Giese, 1966a; McClintock and Pearse, 1987; McClintock et al., 1988; 

McClintock, 1989) and has been attributed to the inherently higher accumulations of 

lipid required to produce oocytes, and the large fraction of insoluble protein 
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concentrated in nucleic acids and the DNA associated with sperm. A higher 

percentage lipid composition was apparent in the ovaries during February-April 2003 

and may reflect the transfer of material to the gonad, which has sedimented to the 

benthos after the break-up of the austral summer phytoplankton bloom. A similar 

percentage composition was also apparent at the same time in the following year. A 

much lower percentage lipid composition was recorded during the following May-

June 2003, which is somewhat counterintuitive as this time period precedes the 

perceived spawning event by approximately 4 months and is commonly when 

reproductive reserves are being invested in the gonad (Chapter 2.3). The increase in 

lipid composition in the following July further suggested that reserves were being 

built and that the diminished values reported in the preceding May-June were most 

probably anomalous, either because of the small sample size in some of the sampled 

months or because of the problems experienced when processing this material. The 

lower lipid content recorded in the ovaries in the following December may have been 

due to spawning and the removal of lipid rich oocytes from the ovary, already 

identified from the reproductive index and female fecundity data as occurring in 

November/December each year (Chapter 2.3).  

 

The amount of protein in the ovaries also appeared to vary quite considerably over 

the sampling period. However, if the high percentage composition recorded in May-

June 2003 are disregarded the percentage composition of protein in the ovaries 

remained relatively high and consistent over the sampling period.  

 

The biochemical composition of the ophiuroid gut and the bodily tissues varied to a 

lesser degree but seasonal differences were still apparent in both the male and female 

tissues. The percentage lipid composition was generally higher in the male gut tissue 

compared to the percentage composition observed in the females. The relatively 

large contribution of lipid to the composition of the ophiuroid digestive tissues 

suggests the gut may reserve a nutrient storage role, accumulating nutrients for both 

general maintenance and reproduction. The percentage composition of lipid 

remained relatively high between February-July 2003, suggesting the short-term 

storage of this component in the gut. A decrease in lipid content was observed 

between July and December 2003 and may reflect the transfer of nutrients to the 

gonad for gametogenesis and/or a prolonged period when reserves are slowly utilised 
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and the food supply is very low during the prolonged austral winter. Protein levels 

generally declined during the initial part of the study (February-July 2003). Protein is 

commonly high in most gut tissues and the pattern observed probably reflects the use 

of this material as a major substrate to fuel metabolic and reproductive demands as 

seen in other Antarctic marine invertebrates (Peck et al., 1987). The percentage 

composition of protein was elevated in the following December and persisted in the 

gut until March 2004, and may be indicative of a higher food supply in the austral 

summer. The seasonal changes in the biochemical composition of the ophiuroid gut 

suggest this invertebrate responds rapidly to changes in the availability of food and 

the quality of the ration.  

 

Despite the small contribution of organic components to the ophiuroid bodily and 

skeletal tissues the percentage composition of protein and lipid did exhibit some 

degree of seasonality in bodily composition during the sampling period. A large 

variation in the percentage composition of lipid was apparent between the individual 

ophiuroids sampled and obscured any obvious temporal trends in the bodily tissues. 

The percentage composition of protein did significantly differ over the same 

sampling period and may reflect the complicated balance between the acquisition of 

nutrients from the environment and the distribution of bodily constituents between 

maintenance, somatic and reproductive demands. 

 

Seasonal changes in the biochemical composition of tissues caused either by a direct 

response to external food resources or by an indirect influence of discrete 

gametogenic cycles could be seen in both of the echinoderm species. However, this 

was not true of the asteroid gonad. This tissue showed no significant variation in 

biochemical composition over the sampling period. It may be that in providing stored 

nutrients to the gonad, the pyloric caeca act as a make-shift buffer, smoothing any 

evidence of seasonal cycling in the asteroid gonad. The greatest variation in 

biochemical composition was evident in the female gonad of the ophiuroid 

Ophionotus victoriae. This species has a highly plastic reproductive pattern, whereby 

the proportion of oocyte sizes and the annual female fecundity produced is variable 

depending on the quantity and quality of the seasonal flux event arriving at the 

benthos (Grange et al., 2004). Some degree of seasonality was also apparent in the 

pyloric caeca and gut tissue of the asteroid and ophiuroid reflecting the role of these 
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tissues in nutrient storage and the inherent response of each to both changing food 

levels and reproductive demands.                             
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5.1 Synopsis 
 
The most pressing challenge for environmental scientists at present is to investigate 

the potential impact of global climate change and to explain the recent phenomenon 

of global warming. Most importantly scientists are being asked how such changes 

will affect our and other species’ capacity to inhabit the earth. Scientists have 

suggested a rise of sea temperature of at least 1 to 2 degrees is likely over the next 

100 years (Hadley Centre Model 3, Mitchell et al., 1998) and in 2001 the 

Intergovernmental Panel on Climate Change (IPCC) reported a global mean warming 

of 0.6+0.2ºC during the 20th Century, attributing much of this elevation to the 

anthropogenic increases in greenhouse gases. However, regional patterns of warming 

are much more complex and temperatures have not risen uniformly. Regions that are 

considered to have undergone a very rapid warming are all at high latitude, and have 

become focal areas for climate change research, including the Antarctic Peninsula 

and the Bellingshausen Sea.  

 

Certain areas of Antarctica have been increasing in temperature as fast as any other 

region on earth, where the average temperature trend for all Antarctic stations for 

1959 to 1996 was +1.2ºC per century, which is well above the global mean (Vaughan 

et al., 2001). Reliable records from the Antarctic Peninsula confirm that this region 

has been warming since the 1950s and that this trend has been exceptional and 

considerably more pronounced than the mean Antarctic trend. The climate of the 

Western Antarctic Peninsula is thought to be the most rapidly changing in the 

Southern Hemisphere, with a rise in atmospheric temperature of nearly 3ºC since 

1951 (Meredith and King, 2005). For the first time, the adjacent ocean has also 

shown profound coincident changes in temperature, with summer temperatures rising 

more than 1ºC (Meredith and King, 2005). There have also been associated 

cryospheric impacts. Three out of the four ice core records from the Antarctic 

Peninsula have yielded data to support warming over the last 50 years, and in some 

cases have provided convincing evidence for a close coupling between increasing 

greenhouse gas levels (CO2 and CH4) and Antarctic air temperature records (Petit et 

al., 1999). Current studies also suggest a significant environmental impact, e.g. the 

receding of glaciers and ice shelves (Vaughan and Doake, 1996), the shrinking of 

 259



Synopsis  Chapter 5 

seasonal snow cover (Fox and Cooper, 1998), and dramatic changes in freshwater 

lake and pool ecosystems (Quayle et al., 2002, 2003). This warming is believed to 

have caused the disintegration of both the Wordie Ice Shelf (Doake and Vaughan, 

1991) and the northern extent of the Larsen Ice Shelf (Vaughan and Doake, 1996), 

and current concern over the stability of the West Antarctic ice sheet is also growing 

(Zwally, 1991). However, the proximate mechanism or mechanisms that have acted 

as the impetus for this exceptional warming are not yet evident. 

 

Interest in this region’s climate has also grown, as Antarctica and areas of the 

Southern Ocean are major components of the global climate system through the 

connective circumpolar pathway between the major ocean basins and the formation 

of deep and intermediate water (Drewry, 1993). Consequently, Antarctica plays a 

key role in global change as interactions between the atmosphere, ice, oceans and 

biota affect the entire earth system through a number of feedback mechanisms. It is 

therefore even more important that the responses of Antarctica, its inhabitants and 

the surrounding oceans to radiative forcing are understood. 

 

Climate change has long been regarded as an important factor in species life history, 

the origins of species and evolution (Clarke, 1993). Therefore, temperature or 

temperature-associated factors probably play an important role in determining the 

limits of performance and success for many species. Consequently, early detection of 

change in the normal biological functions of animals has proven invaluable in the 

study of environmental change and the ecological implications of climate change are 

now being comprehensively studied in Antarctica. 

 

Changes in seawater temperature directly affect many aspects of the marine Antarctic 

environment and ultimately aspects of species survival. Some factors that will alter 

with temperature are water viscosity (important in larval and sperm swimming and in 

the passage of particles through the water column), gas solubility (especially when 

the dynamics of oxygen and carbon dioxide dissolution in seawater are considered) 

and carbonate dissolution (important in cold water where a higher energy 

expenditure is required to sequester calcium carbonate from seawater). Temperature 

also influences animal physiology especially when the processes of metabolism, 

protein synthesis, enzyme activity and reaction rate are considered, and very few 
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physiological processes tend to be compensated for temperature completely (Clarke, 

2003ab, 2004; Clarke and Fraser, 2004). The rate of temperature change is also very 

important, where long-term climate change may allow the adaptation of physiology 

not possible when sudden changes in temperature are experienced. This is even more 

important in high polar seas where many organisms have evolved to become closely 

coupled with the thermally-stable environment and function within a very narrow 

range of thermal tolerance (Peck, 2002). Most Antarctic invertebrates exhibit 

temperature windows only 20-50% as large as those observed for temperate species, 

with a strict upper lethal limit between 5ºC and 9ºC for most species. Pörtner et al., 

(1999) described the most extreme example of this stenothermy in the Weddell Sea 

bivalve Limopsis marionenis, which has an upper lethal limit between 2-4˚C 

depending on the length of temperature exposure. Such stenothermy sets the 

functional limits at which Antarctic animals can complete fundamental biological 

functions, e.g. feeding, growth, reproduction and larval physiology and development 

(Peck and Prothero-Thomas, 2002; Peck et al., 2004) and illustrates well the 

sensitivity of these animals to environmental modifications and their suitability as 

early indicators for even the smallest changes in climate. 

  

However, recent evidence suggests that extinction in the sea is unlikely as a direct 

thermal effect of temperature change, and is instead more likely from ecological 

factors (Clarke, 1993). These extinctions normally describe an event where the 

causal agent of extinction is associated with a change in temperature, e.g. a change in 

the degree of seasonality, although it is often difficult to distinguish between the co-

varying effect of temperature and seasonality. 

 

The Antarctic provides a unique natural laboratory for scientific study, where the 

affects of temperature and seasonal food availability can be examined individually. 

The nearshore environment is characterised by consistently low temperatures, which 

are contrasted by an intensely seasonal signal in food supply. The development of 

these conditions over millennial timescales has resulted in a fauna whose physiology 

is highly stenothermal and in some respects is closely associated with the 

environmental seasonality. Therefore, Antarctic marine animals are some of the most 

temperature sensitive fauna on earth and are likely to be susceptible to even the 

smallest environmental modifications. Consequently, the Antarctic benthos is a 
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useful barometer for climate change, especially as these taxa have already undergone 

a prolonged but dramatic change since the break up of Gondwana (Clarke and 

Crame, 1992). Owing to the extreme sensitivity and stenothermal nature of many 

Antarctic marine taxa, responses in these organisms are expected to be much larger 

and earlier than the responses of the terrestrial ecosystem and in organisms at lower 

latitudes (Manabe and Stouffer, 1979; Clarke and Harris, 2003; Peck et al., 2004). 

Reproductive success is a vital characteristic in species survival and evaluation of 

change in reproductive condition with time key to identifying vulnerable taxa. 

Therefore, the study of invertebrate reproductive ecology in the Antarctic may 

provide an early insight into the effects of global environmental change, and the 

long-term patterns in Antarctic reproduction used to predict future trends if warming 

continues. The studies undertaken within this thesis lend some weight to that 

argument and illustrate well the complex and diverse reproductive patterns, 

previously dismissed by many, in the Antarctic.  

 

The current study provides an example of inter-annual variation in the long-term 

reproductive cycles of four shallow water Antarctic invertebrates. Previous studies of 

invertebrate reproductive cycles in the Antarctic are limited and this study provides a 

basis upon which longer-term studies can be based and the causal environmental 

factors identified. Most investigations to date have been based on a PhD or Masters 

duration (1 to 2 years). However, although this thesis presents four years of data, the 

proximate factor or factors most important in driving the inter-annual variation in 

invertebrate reproduction are difficult to discern. The long-term cycles intrinsic in 

the Antarctic, e.g. the 18-24 month gametogenic cycle common in many 

invertebrates, necessitate observations to be made over prolonged time periods and a 

number of co-varying environmental variables to be tested. These cycles obscure any 

obvious relationships between biological and environmental patterns from being 

easily and quickly identified. The difficulty in deciphering between the effects of 

temperature and seasonality has been exemplified well in the advancement of 

knowledge in reproductive ecology in the Southern Ocean. The differing degrees of 

inter-annual variation exhibited by the 4 invertebrates in the current study suggest 

that, the seasonal food supply and trophic position, and not the low temperatures per 

se, appear to be the major influences on the long-term reproductive patterns 

observed. This was well demonstrated for the detritivore Ophionotus victoriae, 
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where the reproductive tempos and effort was associated with the annual 

sedimentation event.  

 

This species exhibited a significant degree of inter-annual variation in reproductive 

effort. This inter-annual variation was expressed less in species decoupled from the 

seasonal phytoplankton bloom, e.g. in the scavenger Odontaster validus and more so 

in the predatory nemertean Parborlasia corrugatus. The limited amount of inter-

annual variation demonstrated for the sea cucumber Heterocucumis steineni was 

somewhat counterintuitive, as this species is a filter feeder and very reliant on the 

intense summer production. However, the difficulties experienced in sample 

processing and analysis probably obscured any real variability from being identified. 

The reproductive plasticity of these invertebrates, illustrates their ability to succeed 

and their role as important and abundant members of the Antarctic benthos.  

 

This study also presents evidence to suggest that Antarctic invertebrates have 

achieved many reproductive adaptations to succeed in the conditions experienced in 

the Antarctic environment. These include adaptations to achieve high fertilisation 

success. Antarctic invertebrates need 1-2 orders of magnitude more sperm to ensure 

optimal fertilisation than temperate species (Powell et al., 2001) and sperm tend to be 

long-lived and capable of fertilising eggs 24+ hours after release. Synchronous 

spawning, aggregations and specific pre-spawning behaviour help counter the 

deleterious effects of sperm limitation. Antarctic eggs and sperm are also highly 

stenothermal, with extremely narrow ranges of thermal and salinity tolerance 

(Powell, 2001; Powell et al., 2001). Therefore, even small modifications in 

temperature and salinity can dramatically reduce the number of eggs fertilised. This 

has important implications for the geographical distribution of Antarctic 

invertebrates, and more importantly confirms the susceptibility of these invertebrates 

to environmental modification. Such stenothermy is of particular relevance if the 1 to 

2ºC rise in global temperature, predicted over the next century, is realised.  

 

This thesis also suggests that the quality and quantity of food arriving at the seabed 

in the Antarctic has several effects on the composition and condition of tissues in 

marine invertebrates. It has a direct effect on the amount and composition of material 

channelled directly into the digestive tissues and diverted to storage, and it can have 
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an indirect influence on the timing of reproduction and how energy is allocated to the 

gonad. The allocation of reserves between reproductive and maintenance processes 

varies temporally, spatially and between the sexes. The echinoderms studied 

displayed seasonal cycles in biochemical and proximate tissue composition and 

exhibited tradeoffs between reproductive and metabolic requirements. The 

occurrence of a reduced growth rate and low metabolism, for any given food intake 

in the Antarctic means more energy should be available for reproduction and activity 

(Clarke, 1980). There is a reduced metabolic cost at low temperature, which is 

correlated with a reduced annual energy requirement, an increased ecological growth 

efficiency (Clarke, 1987), and a reduced requirement for an overwintering energy 

store (in contrast to pelagic zooplankton; Clarke and Peck, 1991). The allocation of 

reserves to organs such as the asteroid pyloric caeca and ophiuroid gut provides 

nutrients for both metabolic maintenance and gametogenesis. These adaptations are 

the most efficient way of adapting to a cold seasonally-productive environment 

(Clarke, 1979) and reflect why these invertebrates are abundant and conspicuous 

members of the Antarctic benthos. Therefore, any temperature-induced change in 

seasonality would have important implications for many Antarctic marine animals, 

directly affecting the allocation of reserves to digestive tissues and storage, and 

indirectly influencing reproductive processes.  

 

These studies have identified some of the ways by which Antarctic invertebrates 

have adapted to exploit the unique conditions characteristic of the Antarctic 

environment, especially in terms of its seasonality, and have contributed to the 

current consensus which suggests that switches in reproductive mode in the Antarctic 

have arisen through changes in seasonality in primary production, and not 

temperature directly. However, these studies have also demonstrated the close 

coupling between Antarctic invertebrates and the seasonally-productive, 

stenothermal environment and suggest that the majority of taxa now known in the 

Antarctic would be adversely affected by any future rise in sea temperature that 

could elevate current summer temperatures 1 to 2ºC above their annual mean. The 

combination of very limited functional scopes, with slow rates of adaptation (Peck et 

al., 2004) confirms the vulnerability of many Antarctic marine taxa to any future 

warming and promotes the use of Antarctic marine animals as early indicators of 

environmental change, especially if the current climate model predictions are 
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realised, e.g. the HADCM3 model predicts that global sea temperature at 1.5m depth 

will rise by approximately 2ºC over current temperatures by 2100 (King, 1994; 

Murphy and Mitchell, 1995; Mitchell et al., 1998) and the IPCC have suggested a 

possible global atmospheric rise of 3ºC if greenhouse gases double in the 

atmosphere, with a rise of 6ºC occurring in the Antarctic (IPCC, 2001) having grave 

consequences for the inhabiting fauna. Irrespective of the underlying physiology, it is 

clear that animals with such a limited capacity to cope will be adversely affected by 

even modest environmental warming. Consequently, we should be looking to the 

Antarctic marine benthos for early signs of large-scale population loss and/or 

reproductive failures, or species extinction in the coming decades.  

 

Future Work  

In the past many studies have only investigated the short-term response of organisms 

to temperature variation, many of which have involved eurythermal subjects so 

organisms survive the initial change. However, data have only alluded to the short-

term phenotypic capacity of animals to respond and survive. The close coupling 

between environmental variation and long-term reproductive patterns observed in 

this thesis, confirms the importance of prolonged monitoring projects, possibly over 

decadal timescales, if the evolutionary change over protracted time scales is to be 

determined.  

 

This study could be employed as part of a much larger project developed to measure 

the reproductive success of Antarctic invertebrates over a decadal timescale and the 

data used to produce a model which would be predictive of future climate change 

effects (global warming) on population biology.   

 

Such a project would develop and build on the existing BAS long-term monitoring 

data sets, which have included the collation of environmental parameters (Rothera 

Time Series Programme: RaTS) and biological samples for invertebrate reproductive 

analysis in the coastal Antarctic (Rothera research station). It would involve the 

completion of reproductive and environmental analyses for a 10-year monitoring 

period (1997-2007), and combine these data with field population size frequency 

studies, investigations into invertebrate recruitment and in situ growth measures in 
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order to develop the data into a powerful predictive model. These analyses would 

also allow us to go some way towards identifying the factor or factors most 

important in driving Antarctic reproduction, i.e. is it food availability or temperature 

that is most important or some other factor? The data presented in this thesis could be 

used and combined with data gathering of future samples to develop a unique long-

term data set, exceptional in terms of Antarctic research history and possibly 

worldwide. 
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Table. 2 Ophionotus victoriae, Odontaster validus, Parborlasia corrugatus and Heterocucumis 
steineni. Anderson-Darling Normality test on reproductive data. Normally distributed data are given 
by P-values >0.05. 
 

Species Variable 
AD Test 
Statistic P-value 

Ophionotus victoriae Disc Diameter (mm) 0.246 0.755 

  Disc Volume (mm) 7.859 < 0.005 

 Actual Fecundity 0.465 0.240 

  Gonad Index (%) 30.934 < 0.005 

  Oocyte Feret Diameter (μm) 5.469 < 0.005 

  Pre-vitellogenic Oocytes (Proportion) 1.129 < 0.005 

  Vitellogenic Oocytes (Proportion) 1.129 < 0.005 

  Average Monthly Oocyte Size (μm) 0.521 0.172 

  Average Monthly Gonad Index (%) 2.421 < 0.005 

  Temperature (deg C) 2.156 < 0.005 

  Phaeophytin (mg m-3) 4.689 < 0.005 

  Chlorophyll (mg m-3) 5.315 < 0.005 

Odontaster validus Wet Weight (g) 2.916 < 0.005 

  Radial Length (R mm) 0.624 0.104 

  Body Radius (r mm) 1.724 < 0.005 

  Gonad Index (%) 7.798 < 0.005 

  Pyloric caeca Index (%) 4.276 < 0.005 

  Oocyte Feret Diameter (μm) 0.598 0.113 

  Pre-vitellogenic Oocytes (Proportion) 1.019 0.010 

  Vitellogenic Oocytes (Proportion) 1.019 0.010 

Parborlasia corrugatus Retracted Length (mm) 2.823 < 0.005 

  Oocyte Feret Diameter (mm) 0.719 0.056 

  Pre-vitellogenic Oocytes (Proportion) 0.894 0.020 

  Vitellogenic Oocytes (Proportion) 0.894 0.020 

Heterocucumis steineni Wet Weight (g) 7.284 < 0.005 

  Length (mm) 5.937 < 0.005 

  Gonad Index (%) 0.688 0.072 

  Oocyte Feret Diameter (mm) 0.630 0.093 

  Pre-vitellogenic Oocytes (Proportion) 4.427 < 0.005 

  Vitellogenic Oocytes (Proportion) 4.584 < 0.005 
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Table. 3 Ophionotus victoriae. Test for equal variance in actual fecundity between individual years 
(1997 to 2001). Years with equal variance were indicated by an F-test and a Levene’s test when P > 
0.05.    
 
Variable  Test Statistic  P-value 

1997-1998 
F-test   0.73   0.671 
Levene’s Test  0.01   0.922 
1997-1999 
F-test   1.10   0.897 
Levene’s Test  0.11   0.740 
1997-2000 
F-test   1.45   0.610 
Levene’s Test  0.27   0.609 
1998-1999 
F-test   1.50   0.580 
Levene’s Test  0.02   0.892 
1998-2000 
F-test   1.98   0.353 
Levene’s Test  0.06   0.812 
1999-2000 
F-test   1.32   0.703 
Levene’s Test  0.02   0.883 
 

 
Table. 4 Odontaster validus. Test for equal variance in radial length (R +0.01mm) between individual 
years (1997 to 2001). Years with equal variance were indicated by an F-test and a Levene’s test when 
P > 0.05.    
 
Variable  Test Statistic  P-value 

1997-1998 
F-test   0.67   0.071 
Levene’s Test  2.35   0.127 
1997-1999 
F-test   0.50   0.005 
Levene’s Test  8.84   0.004 
1997-2000 
F-test   0.61   0.027 
Levene’s Test  6.54   0.011 
1998-1999 
F-test   0.74   0.147 
Levene’s Test  3.11   0.079 
1998-2000 
F-test   0.91   0.593 
Levene’s Test  1.21   0.272 
1999-2000 
F-test   1.23   0.312 
Levene’s Test  0.89   0.346 
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Table. 5 Heterocucumis steineni. Test for equal variance in overall gonad index between individual 
years (1997-2001). Years with equal variance were indicated by an F-test and a Levene’s test when P 
> 0.05.    
 
Variable  Test-Statistic  P-value 

1997-1998 
F-test   0.85   0.530 
Levene’s Test  1.78   0.184 
1997-1999 
F-test   0.64   0.076 
Levene’s Test  4.83   0.029 
1997-2000 
F-test   0.52   0.009 
Levene’s Test  2.52   0.114 
1998-1999 
F-test   0.75   0.109 
Levene’s Test  2.22   0.137 
1998-2000 
F-test   0.61   0.005 
Levene’s Test  1.05   0.307 
1999-2000 
F-test   0.81   0.270 
Levene’s Test  0.04   0.834 
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Table. 6 Odontaster validus, Marthasterias glacialis and Laternula elliptica. Anderson-Darling 
Normality test on fertilisation success variables. 
 

Species Variable   AD Test Statistic P-value 

M. glacialis Viscosity   
   < 4.0cp   1.042   0.008 
  > 4.0cp   1.193   < 0.005 
O. validus Viscosity 
  Seawater   0.262   0.375 
  PVP-seawater   0.322   0.230 
L. elliptica Viscosity 
  Glycerol < 2.0cp  0.220   0.787  
  Glycerol > 2.0cp  0.581   0.072 
  PVP < 2.0cp   0.480   0.188 
  PVP > 2.0cp   0.581   0.072 
  Methylcellulose < 4.0cp 0.552   0.120 
  Methylcellulose > 4.0cp 0.392   0.253 
 
 
Table. 7 Odontaster validus. Anderson-Darling Normality test on female wet weight (+0.01g), size (R 
and r +0.01mm) and fecundity (egg number). Normally distributed data were indicated by P > 0.05. 
 

Variable AD Test Statistic P-value  

Wet weight 0.228   0.722 
R  0.274   0.558 
r   0.173   0.892 
Fecundity 0.652   0.055 
 
 
Table. 8 Marthasterias glacialis. Anderson-Darling Normality test on male and female wet weight 
(+0.01g), size (R and r +0.01mm) and on sperm and egg numbers released during gamete release 
experiments. 
 

Variable  AD Test Statistic P-value 

Sperm    1.903   < 0.005 
Male Wet Weight 0.732   0.046 
Male R   0.299   0.548 
Male r   1.865   < 0.005 
Egg   0.638   0.078 
Female Wet Weight 3.589   < 0.005 
Female R  2.556   < 0.005 
Female r  2.029   < 0.005 
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Table. 9 Odontaster validus. Anderson-Darling Normality test on the wet weight (+0.01mm) and size 
(R and r +0.01mm) of both competent and non-responsive starfish. 
 

Variable   AD Test Statistic P-value 

Competent Wet Weight 1.533   < 0.005  
Competent R   0.729   0.051 
Competent r   1.328   < 0.005 
Non-responsive Wet Weight 2.908   < 0.005 
Non-responsive R  0.272   0.666 
Non-responsive r  1.238   < 0.005 
 
 
Table. 10 Odontaster validus. Anderson-Darling Normality test on the wet weight (+0.01mm) and 
size (R and r +0.01mm) of competent males and females, and the total number of starfish injected. 
 

Variable    AD Test-Statistic P-value 

Competent Male Wet Weight  1.295   < 0.005 
Competent Male R   0.527   0.158 
Competent Male r   0.833   0.026 
Competent Female Wet Weight 0.454   0.211 
Competent Female R   0.354   0.385 
Competent Female r   0.687   0.050 
Injected Wet Weight   4.253   < 0.005 
Injected R    0.535   0.168 
Injected r    2.358   < 0.005 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 325



Table. 11 Odontaster validus and Ophionotus victoriae. The Anderson-Darling Normality test 
statistics and recorded p-values for the biochemical and proximate composition of bodily, digestive 
and gonad tissue in two shallow-water Antarctic echinoderms. Normally distributed data are indicated 
by P > 0.05. 
 

Species Tissue Element Anderson-Darling Statistic P value Normal 
Odontaster validus Gonad C 0.968 0.014 Not 

    N 1.755 < 0.005 Not 

  Pyloric caeca C 0.3 0.572 Normal 

    N 0.232 0.793 Normal 

    Protein 0.494 0.207 Normal 

    Lipid 0.344 0.476 Normal 

Ophionotus victoriae Whole Animal C 1.12 0.006 Not 

    N 0.794 0.039 Not 

    Protein 0.584 0.126 Normal 

    Lipid 1.699 < 0.005 Not 

  Gut C 8.655 < 0.005 Not 

    N 4.713 < 0.005 Not 

    Protein 0.289 0.609 Normal 

    Lipid 0.639 0.093 Normal 

  Gonad C 3.046 < 0.005 Not 

    N 4.929 < 0.005 Not 

    Protein 3.968 < 0.005 Not 

    Lipid 5.346 < 0.005  Not 
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Fig. 1 Ophionotus victoriae. Individual oocyte feret diameter histograms, where month sampled and 
the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), and n 
= number of eggs counted (1997-2001). 
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Fig. 1 contd Ophionotus victoriae. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001).
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Fig. 1 contd Ophionotus victoriae. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 1 contd Ophionotus victoriae. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 1 contd Ophionotus victoriae. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 1 contd Ophionotus victoriae. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 1 contd Ophionotus victoriae. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 1 contd Ophionotus victoriae. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 1 contd Ophionotus victoriae. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 2 Odontaster validus. Individual oocyte feret diameter histograms, where month sampled and the 
number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), and n = 
number of eggs counted (1997-2001). 
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Fig. 2 contd Odontaster validus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 2 contd Odontaster validus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 2 contd Odontaster validus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001).



 340

0
10
20
30
40
50
60
70

Oct 11
n = 100

Oct 12
n = 100

0
10
20
30
40
50
60
70

Nov 01
n = 100

Nov 03
n = 101

Nov 02
n = 111

0
10
20
30
40
50
60
70

Nov 11
n = 101

Nov 13
n = 104

Nov 14
n = 103

0
10
20
30
40
50
60
70

P
er

ce
nt

ag
e 

Fr
eq

ue
nc

y 
(%

)

0
10
20
30
40
50
60
70

Dec 02
n = 103

Dec 05
n = 101

Dec 07
n = 101

Dec 03
n = 100

Dec 06
n = 104

0
10
20
30
40
50
60
70

Jan 01
n = 101

Jan 09
n = 102

Jan 05
n = 102

0
10
20
30
40
50
60
70

0 50 100 150 200 250
0

10
20
30
40
50
60
70

Feb 03
n = 105

Feb 07
n = 101

Feb 04
n = 103

Feb 08 
n = 100

Oocyte Feret Diameter (µm)

0 50 100 150 200 250 0 50 100 150 200 250

Feb 11
n = 100

Feb 12
n = 100

1998 1998

1998 1998 1998

1998 1998 1998

1998 1998 1998

1998 1998

19991999 1999

1999 1999 1999

1999 1999 1999

 
Fig. 2 contd Odontaster validus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 2 contd Odontaster validus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 2 contd Odontaster validus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 2 contd Odontaster validus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 2 contd Odontaster validus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 2 contd Odontaster validus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 3 Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month sampled 
and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), 
and n = number of eggs counted (1997-2001). 
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Fig. 3 contd Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 3 contd Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 3 contd Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 3 contd Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 3 contd Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 3 contd Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 3 contd Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 3 contd Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 



 355

0 10 20 30 40 50 60 70 80 90100110120130140150

P
er

ce
nt

ag
e 

Fr
eq

ue
nc

y 
(%

)

0
10
20
30
40
50
60
70
80
90

0 10 20 30 40 50 60 70 80 90100110120130140150

Oocyte Feret Diameter (µm)

0 10 20 30 40 50 60 70 80 90100110120130140150

Nov 04
n = 103

Nov 08
n = 100

Nov 06
n = 102

2000 2000 2000

 
 
 
Fig. 3 contd Parborlasia corrugatus. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 4 Heterocucumis steineni. Individual oocyte feret diameter histograms, where month sampled and 
the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in September), and n 
= number of eggs counted (1997-2001). 
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Fig. 4 contd Heterocucumis steineni. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 4 contd Heterocucumis steineni. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001)
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Fig. 4 contd Heterocucumis steineni. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 4 contd Heterocucumis steineni. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 4 contd Heterocucumis steineni. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 



 362

0

5

10

15

20

25

30
Feb 10
n = 100

0

5

10

15

20

25

30
Mar 05
n = 99

Mar 08
n = 100

Mar 11
n = 100

0

5

10

15

20

25

30
Mar 12
n = 66

0

5

10

15

20

25

30
Apr 02
n = 100

Apr 05
n = 100

Apr 07
n = 100

P
er

ce
nt

ag
e 

Fr
eq

ue
nc

y 
(%

)

0

5

10

15

20

25

30
Apr 08
n = 100

0

5

10

15

20

25

30
May 01
n = 100

May 03
n = 100

May 04
n = 100

0

5

10

15

20

25

30
May 05
n = 100

Oocyte Feret Diameter (µm)

0 50 100150200250300350400450500550600

May 06
n = 100

0 50 100150200250300350400450500550600

May 07
n = 100

0 50 100150200250300350400450500550600
0

5

10

15

20

25

30
May 08
n = 100

2000

2000 2000 2000

2000

2000 2000 2000

2000

2000 2000 2000

2000 2000 2000

2000

 
 
Fig. 4 contd Heterocucumis steineni. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 4 contd Heterocucumis steineni. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 
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Fig. 4 contd Heterocucumis steineni. Individual oocyte feret diameter histograms, where month 
sampled and the number individual are indicated (e.g. Sep 01 = Individual number 1 sampled in 
September), and n = number of eggs counted (1997-2001). 


