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ABSTRACT
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Doctor of Philosophy

Domain Wall Dynamics and Resonant

Modes of Magnetic Nanostructures

by Maximilian Albert

In this work we present finite element-based simulations of magnetic nanostructures

using the micromagnetic software packages Nmag and Finmag developed at the University

of Southampton.

As part of this work the package Finmag has been extended with the implementation of

an eigenvalue-based method to compute resonant modes in magnetic nanosystems. The

details of this implementation are discussed, including certain complications encountered

in the context of a finite element discretisation scheme. The implementation is verified

using results from an independently published study on eigenmodes of an elliptical

nanodisc.

We present two studies of domain walls in magnetic nanowires. The first one investigates

field-driven domain wall motion in nanowires with edge roughness. A new roughness

model is introduced which allows the systematic study of how edge roughness features

influence the domain wall motion compared to the case of a smooth nanowire. While the

large-scale behaviour, such as the asymptotic domain wall velocity, is largely unaffected

by the roughness, it introduces marked local alterations to the domain wall trajectories

and can lead to dynamic pinning, both below and above the Walker breakdown. It is

shown that the effective pinning strength of the roughness features is strongest when

their size is comparable to the size of the domain wall.

The second domain wall study investigates different types of resonant modes (transla-

tional, breathing and twisting modes) of transverse domain walls pinned at notches in a
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magnetic nanowire. The different sensititivies of each mode type on the nanowire and

notch geometry are investigated in detail. It is found that the translational and twisting

mode respond relatively strongly to changes in the notch geometry, while the breathing

mode is fairly robust to changes in the notches’ size, making it a promising candidate for

applications.

We finally present a study of resonant modes in an elliptical magnetic nanodisc repre-

senting the free layer of a spin-torque nano-oscillator. We demonstrate that the resonant

frequencies and spatial mode profiles are altered in the presence of a magnetic nanopar-

ticle. The dependence of the frequency shifts on the nanoparticle position and material

parameters is studied systematically. It is shown that these frequency shifts exceed achiev-

able linewidths in state-of-the-art spin-torque oscillators and that they can be maintained

over large external field ranges (owing to to the fact that they are a direct response to

the stray field of the nanoparticle and do not rely on changes to the magnetic ground

state of the disc). This opens up promising applications for novel nano-sensing devices

using frequency-based detection schemes.
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Chapter 1

Introduction

Over the past decades, computer simulations have become a ubiquitous and indispensable

tool to assist research in engineering disciplines, as well as more theoretical branches

of science. [1] Especially in areas where it is a formidable engineering challenge to

build devices of interest, or perform experiments and measurements on them, computer

simulations can be invaluable to explore ideas, conduct feasibility studies and develop

or guide intuition. This is true for a large number of fields ranging from aerospace

engineering to nanotechnology. In nanotechnology, for example, it is highly challenging

to build nanostructures with sufficient precision and reproducibility, and a great deal of

research is dedicated to building devices with higher accuracy. Even after samples have

been successfully manufactured it is highly non-trivial to perform accurate measurements

on them. Due to their smallness (typically on the order of 100 nm to a few micrometres)

and the very short timescales of magnetisation dynamics (picoseconds to nanoseconds),

accurate measurements are a challenge. This is reflected in the fact that routinely some of

the highest-ranking publications report of breakthroughs in new measurement or imaging

techniques. [2–6]

Despite continuing improvements in those techniques, frequently an experimental physi-

cist can obtain only limited information from a measurement – for example, the spatially

averaged value of the magnetisation across the studied sample, or the total power ab-

sorbed when the sample is excited at a certain frequency. While this can give us a certain

level of insight into what is happening in the system, some effects cannot be explained

by these types of measurements alone. Models can give us greater insights into the

underlying processes and detailed dynamics that cause the experimentally observed be-

haviour. They allow us to gain a deeper understanding in these situations, helping to

refine our theories and to make predictions about new effects or to design novel kinds of

devices.
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Chapter 1 Introduction

In certain cases it is possible to capture a system’s behaviour using very simplified

one- or two-dimensional models, or even macrospin models where the complex three-

dimensional behaviour of the real system is represented by a single “macrospin” vector

instead of a spatially resolved vector field. The Stoner-Wohlfarth model [7, 8], which

successfully explains the basic principle behind magnetic hysteresis in single-domain

magnetic nanoparticles, is one of most well-known examples of such a macrospin model.

Richer simulations, based on the micromagnetic model introduced by Brown [9], can

provide a valuable tool to enhance our understanding enabling us to study certain ef-

fects and processes in much more intricate detail. Micromagnetic simulations cover a

middle ground between the experimental investigation of real samples and the drastic

simplifications of analytical calculations or models with reduced dimensionality. They

allow computing a fully 3d-resolved time evolution of the magnetic patterns in a nano-

device. With current technology this is virtually impossible to obtain in a real labora-

tory.

Micromagnetic simulations come with their own set of challenges – for example, the oc-

currence of stiff differential equations requiring a small timestep during time integration,

large data output for high spatial and temporal resolutions, etc. Moreover, the micromag-

netic model also makes certain simplifying assumptions. For example, the magnetisation

is assumed to be continuous, disallowing systems that are too close to atomic resolu-

tion (for which other simulation techniques are more appropriate). Also, temperature

effects are typically not included because the saturation magnetisation Ms of a material

is assumed to be constant. However, if used consciously the simplifying assumptions in a

model need not necessarily present a disadvantage. If a simplified model successfully ex-

plains an observation then this can tell us something about the dominant effects and the

relevant mechanisms at play in the system, especially if the model can make new predic-

tions that are later verified by experiments. While providing a powerful tool, models and

simulations in turn rely on observations and real data for parameterisation and to ensure

simplifications are justified. Ideally, simulations and experiments should go hand in hand

to complement the insight gained from each other and mutually guide the direction of

research. Increasingly, high-profile studies tend to follow this pattern of complementing

experimental measurements with simulation results (e.g. [10, 11]).

The main focus of the work in this thesis is on two types of magnetic nanostructures: do-

main walls (DWs) in magnetic nanowires and nanodisks in various flavours.

In magnetic materials, the competition between (mostly) the exchange interaction and

2



the magnetostatic interaction (see Chapter 2) leads to the formation of so-called do-

mains – regions of essentially uniform magnetisation which are separated by narrow

transition regions called domain walls. Magnetic storage devices rely on domains to

represent information stored as bits (e.g., magnetisation down=0, magnetisation up=1).

A solid understanding of domain walls is crucial in order to understand the stability

and switching of these domains, which is important for the design of smaller, faster and

denser storage technologies.

Domain walls have been an area of active research for a long time and their basic proper-

ties are well-understood. Yet, despite their apparent simplicity they exhibit rich and some-

times surprising behaviour. For example, domain walls can be pushed along nanowires

by use of an external field. The domain wall speed increases linearly with the field

strength, but only up to a certain critical field at which a “phase transition” occurs and

the motion switches from steady motion along the wire to oscillatory motion, which

drastically reduces the average domain wall speed – a phenomenon known as “Walker

breakdown”. [12]

Another, seemingly unrelated, phenomenon in magnetic nanostructures is the so-called

spin-transfer torque effect which was independently suggested by Slonczewksi [13] and

Berger [14] and shortly afterwards confirmed experimentally. Simply put, when an elec-

tric current flows through a magnetic material the electron spins interact with the mag-

netisation. By passing through a ferromagnetic layer with fixed magnetisation, the current

can become partially spin-polarised, and such a spin-polarised current can then exert a

torque on the magnetisation in a second ferromagnetic layer where the magnetisation

is free to precess. This effect can be used to manipulate the magnetisation in a material

without the need for any external fields, which opens up completely new possibilities in

the design of magnetic nanodevices.

The combination of spin-transfer torque and domain walls has led to the suggestion

of a novel data storage mechanism. Currently available magnetic storage devices use

magnetic fields created by a read/write head to store information on a hard disk and

to retreive it later. The use of a mechanical components (like the read/write head and

the moving arm to which it is attached) present a disadvantage because they need

to be engineered to very high precision1 and need to be able to deal with enormous

stress during operation, which makes them prone to failure. Moreover, current hard

disk drives are limited to effectively two-dimensional storage technology because the

1A common analogy makes the comparison with a fighter jet flying at supersonic speeds a few inches
above the ground while it needs to be able to count every single blade of grass.
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read/write head needs to move freely above the platter containing the data. A novel

design by Parkin [15] (dubbed “racetrack memory”) suggests to use the spin-transfer

torque effect to push the domain walls (and thus the domains) along the wire, i.e. to

shift the information itself towards a location where it can be read off, rather than

having an external component move towards the information. This would eliminate the

need for any mechanical parts and might even open up the path towards true three-

dimensional storage technology. There are many unsolved questions with this approach

(e.g., the prohibitively high current densities2 in currently available materials which

would lead to overheating in nanowires), but it is a very interesting and promising

suggestion.

For applications such as the racetrack memory it is crucial to understand how domain

walls travel along nanowires. In Chapter 3 we report a micromagnetic study of how

edge roughness can impact domain wall motion in a nanowire. This is important for

real-world applications because a fabricated sample will inevitably exhibit imperfections.

It also illustrates how simplifications made in computer simulations (e.g. to use perfectly

smooth wires) may lead to the inability to capture important behaviour (e.g. domain

wall pinning).

Nanotechnology has also become very important in applications related to sensing, espe-

cially in the context of so-called lab-on-a-chip applications. Current nano-sensing tech-

nology almost exclusively works on basis of the so-called giant magnetoresistive (GMR)

effect. The original discovery of the magnetoresistive effect at first did not receive much

attention until more recent advances in material science have led to a much bigger (hence

the term “giant”) effect that is very important in modern applications. The way this effect

works is that the sensor is composed of two different magnetic layers, separated by a

metallic (but non-magnetic) spacer layer to avoid exchange coupling between the two.

Since the entire structure is conducting, its resistance can be measured. With a suitable

choice of materials this resistance can vary considerably depending on the relative orien-

tation of the two layers. The device is fabricated in such a way that the magnetisation in

the bottom layer is “fixed” so that in the presence of a moderate external field its orien-

tation does not change. By contrast, the top layer is a “free” layer whose magnetisation

responds to and aligns with an external field. Therefore the resistance of the structure is

an indication of whether or not an external field is applied and which direction it points

2The problem of high current-densities may be solvable with the recent (re-)discovery of DMI materials.
These allow topological structures called Skyrmions which, like domain walls, can be used to store individual
bits of information. Recent research suggests that Skyrmians may need much lower current-densities to travel
along nanowires.
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in. Current nanosensing technology works by using precisely this effect, where the differ-

ence in the external field “felt” by the sensor is due to the presence of a nearby magnetic

nanoparticle.3 These nanoparticles can be “functionalised” by coating them with poly-

mers and tagging them with specific labels which act like antibodies that attach only to a

specific analyte of interest (e.g., a protein or a chemical pollutant) and can thus be used

for sensing purposes. The advantage of this is that many biological and environmental

samples exhibit negligible “magnetic background” so that magnetic sensing technologies

can achieve very high sensitivity.

In Chapter 7 we report a study exploring a novel sensing mechanisms based on a more

sophisticated scheme using so-called spin-transfer nano-oscillators (STNOs), which use

the spin-transfer torque effect mentioned above to create a steady precession of the

magnetisation so that they can act as nanoscale microwave emitters. We explore the

resonant frequencies and oscillation modes in a magnetic nanodisc representing the free

layer of a STNO. The key question is whether the presence of a magnetic nanoparticle

in the vicinity of the disc is able to alter the resonances in a way that can be measured

experimentally. This will be investigated in Chapter 7.

The study of resonant modes in general forms a core topic of this work, and a key con-

tribution was to implement an eigenvalue-based method in the finite element-based

micromagnetic simulation package Finmag which is collaboratively developed at the Uni-

versity of Southampton. The details of this implementation, as well as a comparison with

the so-called ringdown method is presented in Chapter 4 and the method is subsequently

applied to other types of nanosystems.

This thesis is structured as follows. In Chapter 2 we introduce the micromagnetic model.

In Chapter 3 we present the study of domain wall motion in nanowires with edge rough-

ness mentioned above. Chapter 4 continues with an in-depth discussion of the two main

methods for computing resonant oscillation modes in micromagnetic systems, including

the implementation details in Finmag. This implementation is verified using a compar-

ative case study in Chapter 5, which also highlights some of the key strengths of the

eigenvalue method. In Chapter 6 we study resonant modes of domain walls in magnetic

nanowires pinned at notches, and the behaviour of these modes in response to changes

3Another important application is in magnetic storage technology, where the read head of a magnetic
hard disk drive plays the role of the sensor. Current hard disk drive technology works on the basis of tunnel
magnetoresistance (TMR), a variant of the magnetoresistive effect in which the conducting spacer layer of
the magnetoresistive stack is replaced with a thin insulator that allows electrons to tunnel between the two
ferromagnetic layers.
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in the nanowire and notch geometry. Chapter 7 presents the study of resonant modes in

an elliptical nanodisc with applications to biosensing which was mentioned previously.

We conclude with a summary and outlook in Chapter 8.
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Chapter 2

The Micromagnetic Model

Micromagnetics deals with the study of magnetisation dynamics in ferromagnetic ma-

terials at a mesoscopic level, with typical length scales on the order of a few dozen

nanometres up to a few micrometres. The micromagnetic model uses a phenomenolog-

ical approach, ignoring the atomic structure of the material as a crystalline solid and

instead modelling the magnetisation as a continuous vector field M which can be thought

of as a smoothly varying average of the individual magnetic moments in the material. This

continuum assumption is valid as long as the length scales of the studied systems are suffi-

ciently larger than the atomic scale. In the standard micromagnetic model the saturation

magnetisationMs = |M| is assumed to be constant, i.e. M = Ms·m everywhere, where m
denotes the normalised magnetisation (|m| = 1). The assumption of constant Ms means

that thermal effects are not captured in this model.

The magnetisation dynamics are governed by the so-called Landau-Lifshitz-Gilbert (LLG)

equation, which is discussed in Section 2.1. It is an ordinary differential equation that

describes how the magnetisation evolves over time in response to an effective field Heff .

This effective field arises as the variational derivative of the total micromagnetic energy

in the system and determines the torque acting on the magnetisation at every point in

the magnetic body.

The standard micromagnetic model includes four contributions to the total energy, which

are discussed in Section 2.2. Each energy term in turn gives rise to an associated con-

tribution to the effective field. These are described in Section 2.3. We conclude with

some comments regarding the finite element discretisation in Section 2.4 which are

relevant for the computation of resonant modes in magnetic nanostructures (see Sec-

tion 4.3).
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The fact that the micromagnetic energies operate at different length scales and compete

against one another results in a rich energy landscape, often with multiple metastable

equilibria. This leads to complex patterns and behaviour, such as the formation of mag-

netic domains, vortex structures, and hysteresis, and makes micromagnetics a particularly

fruitful area for the discovery and engineering of interesting systems with useful applica-

tions (for example, magnetic logic devices, nanosensors, etc.).

Further details and derivations regarding the micromagnetic model can be found in stan-

dard textbooks such as Brown’s original treatise [9] from which the modern field of micro-

magnetics originates, as well as more recent works, for example by Aharoni [16].

2.1 The Landau-Lifshitz-Gilbert Equation

The dynamics of the magnetisation M are governed by the Landau-Lifshitz-Gilbert (LLG)

equation:
dM
dt = −γ ·M×Heff + α

Ms
·M× dM

dt . (2.1)

Here α is a dimensionless parameter, the so-called Gilbert damping constant. Furthermore,

γ = γe µ0 ≈ 2.213× 105 (m)/(s A), where γe ≈ 1.761× 1011 1/(s T) the electron gyro-

magnetic ratio and µ0 = 4π×10−7 T m/A the vacuum permeability.

The first term in Eq. (2.1) describes the precession of the magnetisation around the

(local) effective field axis. The second term is a phenomenological damping term which

describes the dissipation of energy from the system and the gradual alignment of the

magnetisation with the effective field.

Since both sides in Eq. (2.1) involve the time derivative of M, this implicit form of the

LLG equation is not well suited for computer implementations. For this purpose it is

more favourable to use the following mathematically equivalent1 form (Landau-Lifshitz

equation):
dM
dt = −γ′ ·

(
M×Heff + α

Ms
·M× (M×Heff)

)
, (2.2)

where γ′ = γ/(1 + α2). Dividing by Ms leads to the equivalent equation for the unit

magnetisation.
dm
dt = −γ′ ·

(
m×Heff + α ·m× (m×Heff)

)
, (2.3)

1The equivalence is easily seen by substituting the right-hand side of Eq. (2.1) for the last term dM
dt on

the right-hand side and applying the vector identity a × (b× c) = b(a · c)− c(a · b) to the last term in the
resulting equation.

8



2.2 The Micromagnetic Energy Contributions

In most magnetic materials the Gilbert damping constant α is small (for example, α ≈
0.01 in permalloy). As a result, the energy dissipation happens at a much slower time

scale than the precessional dynamics. This poses challenges for the numerical simu-

lation of micromagnetic systems because it leads to stiff differential equations which

require a sufficiently small step size during time integration to avoid numerical instabili-

ties.

2.2 The Micromagnetic Energy Contributions

In the standard micromagnetic model there are four contributions to the total energy in

a ferromagnetic body. These are the Zeeman energy, anisotropy energy, exchange energy

and magnetostatic energy:

Etotal = Eexch + Eanis + Edemag + EZeeman. (2.4)

They are discussed in the following sections.

2.2.1 Zeeman Energy

The Zeeman energy is due to an externally applied magnetic field Hext and is the simplest

of the four energy terms. The local energy density is given by the expression M ·Hext,

which measures the misalignment of the magnetisation with the external field axis. The

total Zeeman energy of the system is therefore given by integrating this expression over

the domain of the magnetic body Ω.

EZeeman = −µ0 ·
∫

Ω
M ·Hext dr. (2.5)

2.2.2 Anisotropy Energy

The anisotropy energy is due to material effects. It accounts for the fact that depending on

the crystal structure of the material the magnetisation may prefer to align along certain

directions over others. It has the general form∫
Ω
εanis(m) dr,
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where εanis is the local anisotropy energy density, which is a function of the magneti-

sation direction m. It is usually expressed as a truncated power series in the direc-

tion cosines of m with respect to the crystallographic axes. In the case of uniaxial

anisotropy with a single easy axis a (with |a| = 1) this series expansion has the fol-

lowing form.2

εanis(m) = −K1 cos2(θ)−K2 cos4(θ) + . . . ,

Here K1, K2, . . . are experimentally determined anisotropy constants and θ denotes the

angle between m and the anisotropy axis a. In most materials the higher-order terms

from K2 onwards are negligible. Using cos(θ) = a ·m, this leads to the the following

expression for the uniaxial anisotropy energy,

Eanis = −K1 ·
∫

Ω
(a ·m)2 dr. (2.6)

2.2.3 Exchange Energy

The exchange energy is defined as

Eexch = A ·
∫

Ω
(∇mx)2 + (∇my)2 + (∇mz)2 dr. (2.7)

Here A is the so-called exchange coupling constant. This energy contribution arises

from the exchange interaction, a quantum-mechanical effect that leads to the parallel

alignment of neighbouring magnetic moments. A derivation of Eq. (2.7) can be found

in Aharoni’s book [16, §7.1], among others. The exchange interaction is a very strong

effect, but it acts only over short length scales, typically on the order of a few nanome-

tres.

2.2.4 Magnetostatic Energy

The magnetostatic energy is due to the mutual magnetostatic interaction of the magnetic

moments in the material. Also known as the demagnetising energy because it effectively

reduces the overall magnetic moment of the system, it takes the form

Edemag = −µ0
2

∫
M ·Hdemag dr, (2.8)

2It is a theoretical fact that the anisotropy energy is symmetric with respect to the plane perpendicular
to a so that only even powers of cos(θ) occur in this expansion. [16]
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where Hdemag is the demagnetising field, which is the field created by all magnetic mo-

ments in the material.

All other energy terms discussed earlier are local functions of the magnetisation. By

contrast, the magnetostatic energy depends on the global state of the magnetisation

in the system: every magnetic moment influences every other one (of course, with the

strength of the interaction decreasing with distance).

The magnetostatic interaction has the opposite effect to the exchange interaction in that

the magnetostatic energy of two magnetic moments is minimised if they are aligned

antiparallel instead of parallel. The combination of the facts that the magnetostatic

interaction is much weaker than the exchange interaction but acts on much larger length

scales is one of the primary reasons which leads to competing energy terms on the

mesoscale and to the existence of magnetic domains.

2.3 The Effective Field

Let m0 be the magnetisation configuration in a (potentially metastable) equilibrium

state. An equilibrium is characterised by the free energy functional (Eq. (2.4)) attaining

a local minimum. Using variational calculus with the definitions of the energy terms

given above and the constraint |M| = Ms leads to the following condition (Brown’s
equation). [16]

M0 ×Heff = 0. (2.9)

Here the effective field is defined as follows via the variational derivative of the total

energy in the system:

Heff = − 1
µ0

δEtotal
δm

. (2.10)

The effective field can be decomposed into four contributions corresponding to the in-

dividual energy terms described above. For the Zeeman and magnetostatic energy we

simply recover the terms Hext and Hdemag. For the anisotropy and exchange interaction

this leads to the expressions

Hanis = −2K1(a ·m) · a, (2.11)

Hex = 2A
µ0
∇2m. (2.12)

11
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The effective field then is the sum of the four contributions

Heff = Hex + Hanis + Hdemag + Hext (2.13)

and reflects all geometric and magnetic properties of the system.

2.4 Finite Element Discretisation of the Effective Field

As explained above, in the continuum formulation the effective field is defined via the

variational derivative of the micromagnetic energy. We now discuss how it is computed

in the context of the finite element discretisation in Finmag. Given a finite element

mesh with N vertices, the magnetisation is defined at the mesh nodes and can be rep-

resented as a vector (Mj) of length 3N (three magnetisation components at each ver-

tex).

In principle, the effective field can be derived similarly as in the continuum case via min-

imisation of the total energy with respect to the individual magnetisation componentsMj .

However, this has two disadvantages. Firstly, the minimisation procedure requires solving

a sparse linear system of equations at each time step during the simulation to determine

the effective field for the current magnetisation configuration. Secondly, while the con-

tinuous versions of the exchange, anisotropy and Zeeman contribution only depend on

M locally (i.e., changing the magnetisation at one location will not change the effective

field far away), this condition is not satisfied any more for the solution for Heff obtained

in this way by solving the linear system. Therefore the numerical solution obtained in

this way behaves “unphysically”.

Both problems can be avoided by using the so-called “box scheme” [17, 18] which is also

used in the open source micromagnetic code Magpar. In this approach the effective field

is computed via

Heff,i = − 1
Vi

∂Etotal
∂Mi

(2.14)

Here Vi =
∫

Ω ηi dr denotes the volume of the mesh associated with node i of the fi-

nite element mesh (the function ηi under the integral is the “tent function” associ-

ated with node i, which has value 1 at the node itself and value zero everywhere

else).

This avoids the problem of a non-local influence of the magnetisation on the effective

field and also allows a more efficient computation of Heff . This method is used in various

12
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software packages for micromagnetic simulation, including Magpar [17], Nmag [19] and

Finmag. However, as we will see in Section 4.3 it has unfavourable consequences in the

context of computing resonance modes using an eigenvalue problem derived from the

effective field.
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Chapter 3

Domain wall motion in perpendicular
anisotropy nanowires with edge roughness

In computer simulations, it is often necessary to make simplifying assumptions, either

due to limitations of the model or in order to make the simulations computationally

feasible. While it is useful to study simple cases first to gain an understanding of the

fundamental mechanisms, real systems will often exhibit behaviour that cannot be fully

captured using such simplified techniques.

A good example related to magnetic nanosystems is given by the motion of domain walls

in nanowires. Typically, in computer simulations a nanowire is modelled as a long, flat

rectangular box with smooth sides. However, real nanowires inevitably exhibit imperfec-

tions stemming from the production process (e.g. nanolithography).

In this chapter we report a systematic study of field-driven domain wall motion in

nanowires with edge roughness. This edge roughness is introduced by deforming the

finite element mesh, and we vary the correlation length and magnitude of the roughness

deformation separately. We observe the typical Walker breakdown (a phase transition

from steady to oscillatory motion of the domain wall) both with and without roughness,

with steady domain wall motion for applied fields below the critical Walker field Hc,

and oscillatory motion for larger fields. The value of Hc is not altered in the presence of

roughness.

The edge roughness introduces a depinning field. During the transient depinning process

from the initial configuration to steady domain wall motion, the domain wall velocity is

significantly reduced in comparison to a wire without roughness. The asymptotic domain

wall velocity, on the other hand, is virtually unaffected by the roughness, even though

the magnetisation reacts to the edge distortions during the entire course of motion, both
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above and below the Walker breakdown, The depinning field depends linearly on the

magnitude of the edge roughness. The strongest pinning fields are observed for roughness

correlation lengths that match the domain wall width.

A moving domain wall can get pinned again at some later point (‘dynamic pinning’).

Dynamic pinning is a stochastic process and is observed both for small fields below Hc

as well as for fields of any strength above Hc. In the latter case, where the domain

wall shows oscillatory motion and the magnetisation in the domain wall rotates in the

film plane, pinning can only occur at positions where the DW reverses direction and

the instantaneous velocity is zero, i.e., at the beginning or in the middle of a positional

oscillation cycle. In our simulations pinning was only observed at the beginnings of cycles,

where the magnetization is pointing along the wire.

The contents of this chapter have been published in a JPCM special issue on “Domain

wall dynamics in nanostructures”. [20]

3.1 Introduction

To realise potential storage devices, such as racetrack memory [15], nanowires with low

intrinsic pinning as well as nanowires with intended pinning sites for individual domain

walls are required. Real nanowires tend to exhibit a roughness at their boundaries, which

introduces additional complexity. It is reasonable to distinguish between the surface

roughness originating from the deposition process and the edge roughness that stems

from the lithography.

The influence of the latter has been studied for in-plane anisotropy and soft materi-

als [21], where a vortex-mediated breakdown localised at the sample edges was found

and it turned out that the edge roughness can significantly affect the vortex nucleation

and annihilation process that determines the behavior of the domain wall. The influ-

ence of surface roughness on the domain wall propagation process is also prominent in

perpendicular magnetic anisotropy media (PMA) and has been studied, e.g. using the

magneto-optical Kerr effect [22–24]. It has been found that as the wire width decreases,

the magnetic domain wall dynamics change from elastic creep in two dimensions to a

particle-like stochastic behaviour in one dimension.

Often, pinning sites are desired and can be realised by geometric constrictions to create

local confining potentials that act as pinning sites for individual domain walls [25–28].
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As an alternative, the local modification of magnetic properties by ion irradiation, e.g. by

implanting Cr ions, is suitable to induce pinning sites [29, 30]. In this case, a variation of

the wire geometry on the nanoscale is not required. The introduction of such magnetic

soft spots is attractive due to lower requirements on the lithography in comparison to

geometric constrictions on the nanoscale, a smaller distribution of properties due to

parallel processing during implantation, and fine tunability of the pinning potential via

the chromium ion fluence.

It is important to understand the influence of the usually undesired edge roughness

to support work on domain wall propagation in wires without constrictions, with con-

strictions, and with other intentionally created pinning centres. The role of disorder in

in-plane domain wall motion has been studied theoretically, including the effect of edge

roughness [21] and surface roughness [31] on the domain wall velocity, the interplay of

extrinsic pinning with the critical current or field at which the domain wall is depinned

and starts to move [32], the influence of thermal excitations and roughness on domain

wall motion [33], and domain wall velocity fluctuations due to edge pinning centers

[34].

Surface roughness has been modelled through introduction of a set of pinning centers

for the domain wall [32, 34]. To model edge roughness in the context of finite differ-

ence simulations, complete simulation cells have been removed from the micromagnetic

sample edge [33], introducing disorder at the length scale of the cell size (of the order

of 5 nm). Other works use a Voronoi tessellation to model grains in the material, then

remove grains from the sample edge, and map this modified sample edge boundary onto

the finite-difference grid [21, 35]. The grains are adequately resolved if they are larger

than the cell size. To model surface roughness in thin films with finite difference simula-

tions, one can also vary the saturation magnetisation in each finite difference cell instead

of varying the height of the cells [31]. The length scale of the surface roughness in this

model cannot be smaller than the cell size but can be chosen to be longer by varying the

saturation magnetisation slowly in space.

In this work, we study the effect of edge roughness which originates from the lithographic

sample fabrication process on the domain wall propagation in perpendicular magnetic

anisotropy media. A finite-element spatial discretisation of the nanowire and its edge

roughness is used. In Sec. 3.2 we introduce the simulation model, geometry and materials,

roughness model and comment on the automated data analysis used. We report simula-

tion results for a smooth nanowire in Sec. 3.3, before extending the simulation to include

edge roughness in Sec. 3.4. We close with a summary in Sec. 3.5.
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Figure 3.1: (a) Initial Néel wall configuration, after relaxation. (b) Convention of spherical
coordinate system. (c) Domain wall profile.

3.2 Method

All simulations are carried out using the micromagnetic simulation package Nmag [19,

36] developed at the University of Southampton, which employs a hybrid finite ele-

ment/boundary element method approach. For our purposes, an advantage over finite

difference-based discretisation is that this allows us to model the edge roughness of the

system more accurately using a tetrahedral mesh than would be possible with cuboidal

cells (see Fig. 3.2).

3.2.1 Geometry and Material

The system under consideration is a PMA nanowire with rectangular cross-section and

dimensions 1000 nm × 20 nm × 5 nm in x, y and z-axis directions, respectively. The ex-

tremal corners have coordinates (0 nm, 0 nm, 0 nm) and (1000 nm, 20 nm, 5 nm). We have

deliberately chosen the wire width to be rather small so that the system can be treated

as effectively one-dimensional since the exchange interaction keeps the magnetisation

almost constant in y- and z-direction. Figure 3.1 shows the initial configuration for which

we set the magnetisation to point down (in negative z-direction) at the left end of the

wire (i.e. at x = 0) and up at the other end, with a domain wall located between the

two uniform domains. This two-domain system with domain wall is well described by

two parameters: (i) the DW position and (ii) the azimuthal angle φ of the magnetisation

at the DW center. We use spherical coordinates to characterise the orientation of the

magnetisation at the centre of the DW, as shown in Fig. 3.1, where θ is the vertical angle

between M and the x-y-plane (polar angle), and φ is the horizontal angle between M
and the x-axis (azimuthal angle). In what follows, we are particularly interested in the

18



3.2 Method

value of φ at the center of the DW, as this – together with the DW position – captures

the DW state. The angle φ will frequently be referred to as the magnetisation angle of the

DW.

Inspired by experimental studies [37], we use the effective material parameters of a multi-

layered Co/Ni nanowire with saturation magnetisation Ms = 6.8× 105 A m−1, exchange

coupling A = 1.3× 10−11 J m−1 and uniaxial anisotropy constant K1 = 3.8× 105 J m−3.

The resulting exchange length is
√
A/K1 = 5.85 nm, the Gilbert damping parameter used

is α = 0.032 [38].

3.2.2 Simulation Stages

Each simulation consists of two stages: a relaxation phase and the main simulation of

the domain wall dynamics. In the relaxation phase we initialise the magnetisation M
in the nanowire to a Néel-like pattern, with My = 0 everywhere, i.e., the magnetisation

rotates in the x-z-plane (as shown in Fig. 3.1). The z-component Mz is initialised to

tanh
(√

K1/A · (x − 200)
)
, which describes the domain wall pattern for a system when

the demagnetising field is neglected, with the DW center located at x = 200 nm.1 This

is then relaxed until it reaches a metastable state as illustrated in Fig. 3.1, which takes

into account exchange, anisotropy and demagnetisation fields. The relaxation is carried

out by numerical integration of the Landau-Lifshitz-Gilbert equation. A large damping

coefficient, α = 1.0, is used to speed up the relaxation. The relaxed system exhibits a

Néel domain wall, as shown in Fig. 3.1, to avoid surface charges on the edges which

would be associated with a Bloch wall.

Once equilibrium is reached the second stage is started. The damping is set to the re-

alistic value, α = 0.032, and a constant external field Hext is applied along the z-axis.

The response of the magnetisation is then computed for 20 ns. Every 0.1 ns the domain

wall position (along the x-axis) is computed by finding the zero-crossing of θ along the

nanowire axis. This is done by probing θ at 2000 auxiliary nodes along this line and

determining the two adjacent nodes where a sign change occurs. Then θ is interpolated

linearly between these adjacent nodes to determine the position of the zero-crossing.2

1Control simulations suggest that boundary effects are negligible further than ≈ 150 nm away from the
ends of the nanowire. In this work no data of domain walls outside this range was used.

2The determination of the zero-crossing uses a Python function which is given to the simulation frame-
work with the instruction to call it every 0.1 ns during the computation, which avoids storing all the field data
for later postprocessing. The integration of the micromagnetic simulation tool into an existing programming
language thus simplifies data capture and analysis here [39].
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Figure 3.2: (a) Smooth mesh. For this mesh there are three layers of tetrahedra in z-direction
representing the film thickness of 5 nm and 15 layers in y-direction extending 20 nm. Only
a part of the mesh of the wire is shown in the x-direction. (b) Rough version of the same
mesh (with correlation length c = 2 nm and distortion amplitude d = 0.4 nm).

Moreover, at the position of the DW center the magnetisation angle φ is recorded and

both the domain wall position and magnetisation angle, together with the current time

step, are written to an output file for subsequent analysis.

3.2.3 Roughness Model

In this work, we use a finite element-based discretisation of space. This allows to model

rough edges explicitly using a distorted finite element mesh. We start from a smooth

tetrahedral mesh as shown in Fig. 3.2 (a) with dimensions 1000 nm×20 nm×5 nm, which

is subsequently distorted at front and rear edges as shown in Fig. 3.2 (b). In the following,

the term edge or edge surface always refers to the two surfaces of dimensions 1000 nm×
5 nm at the the long edges of the wire parallel to the x-z plane.

The overall distortion process works as follows. We first construct a ‘distortion function’

f(x). This function specifies the amount by which each node lying on the front edge
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surface of the mesh (where y = 0 nm) is displaced in y-direction, as a function of the x-

coordinate of the node. Analogously, the nodes at the rear edge surface (where y = 20 nm)

are displaced using a second, independently constructed distortion function g(x) so that

both edges of the mesh are distorted differently. The positions of the internal mesh nodes

are then rescaled in order to fit between the new distorted sides.

The distortion functions f and g are constructed as follows. First we pick equidistant

positions xi along the x-axis. These are just auxiliary entities and completely independent

of the actual mesh nodes. The distance between two neighbouring auxiliary nodes is re-

ferred to as the correlation length c of the distortion. Next, random values f(xi) and g(xi)
are assigned to each position xi, chosen from a Gaussian distribution with mean 0 and

standard deviation d, which is referred to as the distortion amplitude of the roughness or

simply as the roughness level. Finally, the random values f(xi) and g(xi) are interpolated

smoothly to obtain the continuous distortion functions f(x) and g(x). The whole process

is illustrated in Fig. 3.3. In order to make the randomisation reproducible, it is possible

to specify a seed for the internal random number generator. This allows us for a given

c to produce meshes with the same ‘shape of roughness’ but different roughness ampli-

tudes: the distortion functions of these meshes are just scaled versions of each other. We

introduce the distortion functions f and g, rather than displacing the mesh nodes on the

edges randomly and thus independently of each other, in order to be able to control the

roughness correlation length independently of the actual mesh discretization (assuming

that the edge length of the tetrahedra for the chosen mesh discretisation is smaller than

the correlation length c).

The effective roughness length scale, which we define as the average width of the peaks

and troughs of the rough edge, or – equivalently – the distance between adjacent local

minima in f(x) and g(x), is larger than the correlation length c as visible in Fig. 3.3 (b).

Statistical analysis of this effective roughness length scale for a range of disorder func-

tions f(x) and g(x) shows that the effective roughness length is given by ≈ 2.76c (see

Fig. 3.3 (d)).

There are several conceivable ways of modelling edge roughness, including locally vary-

ing material parameters or Voronoi cell approaches, as mentioned in Sec. 3.1. The method

used here models the kind of roughness associated with irregularities in the sample ge-

ometry originating from electron beam lithography, due to the remaining jitter of the

electron beam around a zero position. The amount of this jitter is modelled by the rough-

ness amplitude d. Depending on the speed of the beam along the edge this jitter is

‘spread out’ over a certain distance, which is modelled by the correlation length c. We

21



Chapter 3 Domain wall motion in perpendicular anisotropy nanowires with edge

roughness

(a)

(b)

c=correlation length d=avg. distortion

(c)

(d)

Figure 3.3: Illustration of the edge distortion process, showing a top view of the rear edge of
the nanowire. (a) Original mesh. (b) Construction of the distortion function g with certain
correlation length and distortion amplitude. (c) The mesh after distortion with g. The contour
of the distorted mesh follows the outline of g. (d) Distribution of the distances between
adjacent local minima. The data was gathered from a collection of 1000 different distortion
functions, each produced with a different randomisation seed at the fixed correlation length
c = 10 nm. The mean distance is 27.6 nm = 2.76× c, which defines the effective roughness
length scale.
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note, however, that there is a second source of roughness due to the chemical process

of transferring the latent image of the nanowire after exposure, which involves rather

long-chain molecules. Unless special care is taken this is usually the dominant source of

roughness.

3.2.4 Data Analysis

We have carried out over 24,000 simulations where we systematically vary the exter-

nal field strength H, roughness correlation length c, and roughness amplitude d. For

each configuration, i.e. combination of the three parameters (H, c, d), we carry out one

simulation run. Each simulation run produces an output file containing data recorded

every 0.1 ns between 0 ns and 20 ns. For each of the time steps the corresponding com-

puted domain wall position and the magnetisation angle φ inside the domain wall are

recorded.

The main observable we are interested in for each configuration is the DW velocity vx(t),
which is derived from the DW position rx(t) as a function of time. All other quantities,

such as the depinning field for a given roughness level, can be computed from this.

Our simulation results of a smooth nanowire in Sec. 3.3 and a nanowire with edge

roughness in Sec. 3.4 agree qualitatively with Walker’s prediction [12] that there is steady

domain wall motion for applied fields H below a critical field Hc, and oscillatory motion

for larger applied fields. We need to distinguish between these two regimes to apply

appropriate methods to compute the domain wall velocity. To do this, we use the angle

φ as the criterion: in the steady-motion regime the magnetisation angle φ approaches an

asymptotic value |φ| < π
2 , whereas in the oscillatory regime the magnetisation inside the

DW keeps precessing indefinitely, so that |φ| grows to infinity.

3.2.4.1 Mean velocity

The simplest way to compute the domain wall velocity is to subtract the initial domain

wall position rx(t0) at time t0 from the final position rx(tf) at time tf , and to divide by

the time it took to travel that distance:

vmean
x = rx(tf)− rx(t0)

tf − t0
(3.1)
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Later analysis in Sections 3.3 and 3.4 shows, however, that the initial depinning process of

a domain wall is qualitatively different from the subsequent domain wall motion: during

the depinning process, the domain wall increases its velocity from zero to an asymptotic

value for fields below the Walker breakdown, or shows asymptotic periodic behaviour for

fields above the Walker breakdown. As this increase does not happen instantaneously, the

transient process will reduce the mean velocity in the steady-motion regime if computed

using (3.1). The decrease will depend on the simulated time: the longer we run the

simulation, the smaller the reduction of vmean
x due to the initial transient, and the smaller

the difference between mean and asymptotic velocities. Moreover, for oscillatory motion

there can be some variation in the mean velocity as computed using (3.1) depending on

how much of the last oscillation cycle is completed when the simulation exits (but this is

purely a computational artifact due to the chosen stopping time tf).

3.2.4.2 Asymptotic velocity

We thus use a different method to compute the domain wall velocity, which eliminates the

reduction of vmean
x due to the initial transient and removes artefacts due to incomplete

oscillation cycles. To distinguish from the mean velocity, we refer to this as the asymptotic

velocity.

In the oscillatory case we identify the time and position of the DW at the beginning

of each oscillation cycle, i.e. when the angle φ is a multiple of π. Using a least-squares

approximation we then fit a line through these positions as a function of time, and

compute the velocity as the slope of the fitted line as shown in Fig. 3.4 (a).3 The initial

depinning transient is negligible for external fields above Hc and therefore does not

affect the calculation of the asymptotic velocity in this regime.

For applied fields below the Walker breakdown, the domain wall shows non-oscillatory

motion. To eliminate the initial transient from the data analysis in this regime, we identify

the first time t1 and domain wall position rx(t1) from which onwards the plot of domain

wall position as function of time shows an approximately linear dependence. We then

compute the velocity as

vasymptotic
x = rx(tf)− rx(t1)

tf − t1
(3.2)

3Contrary to the usual convention, in this paper we plot time t along the vertical axis and the DW posi-
tion x along the horizontal axis. This is consistent with the orientation of the nanowire in figures 3.1, 3.2, 3.7,
and allows better comparison between plots in the same figure. With this convention the velocities of the
domain walls are actually given by the inverse slope of the trajectories in these figures. Hence a steeper line
indicates a slower domain wall since it moves less far along the x-axis during the course of the simulation.
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Figure 3.4: Illustration of the computation of the asymptotic domain wall velocity. (a) In the
oscillatory case, the positions and times for the beginning of each oscillation cycle are iden-
tified, and a line is fitted through them (dashed blue line). The line’s slope provides the
velocity. (b) In the steady-motion regime below the Walker breakdown field, we identify the
beginning of the first straight segment in the plot (thickened red part), and take the position
and time of this point, together with the last position and time, to compute the asymptotic
velocity. The interpolated points for both cases are marked with blue dots in both plots.

We identify segments of the rx(t) function where the DW exhibits approximately straight

motion by using a Savitzky-Golay filter [40, Ch. 14.8]. This computes for each recorded

time step the second derivative of a smoothed version of the trajectory, which gives an

indication of the curvature of the trajectory at that point. By discarding points where

the second derivatives are above a given threshold we identify one or more segments

where the DW exhibits approximately straight motion as shown in Fig. 3.4 (b) (segments

marked with thick red lines).

3.2.4.3 Pinning

Using these tools, we can also identify when a domain wall (i) is never depinned, or (ii)

gets pinned again after having moved a certain distance (dynamic pinning; see Fig. 3.9

and Fig. 3.10 below for examples). In case (i), we record the domain wall velocity as

zero for both vmean
x and vasymptotic

x . In case (ii), we compute the mean velocity vmean
x

using (3.1) but record no velocity for vasymptotic
x as the motion is too irregular to estimate

the asymptotic velocity.
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Figure 3.5: (a) Sample DW trajectories for different applied fields H: steady (thick blue lines)
and oscillatory (thin red lines). (b) The corresponding magnetisation angles φ.

3.3 Smooth Nanowire

In the following we give a summary of the dynamics of perpendicular domain walls in

a smooth nanowire in external fields. These results present the reference for the rough

nanowire studied in Section 3.4.

The external field Hext is applied along the negative out-of-plane z-direction (see Figure

3.1). The domain wall then moves to the right, i.e. along the positive x-direction. This

behaviour can be understood in terms of energy minimisation: the domain wall moves

to the right to allow the left domain to grow. Indeed, a wider left domain corresponds to

an increased alignment of the magnetisation to the applied field and a reduction of the

Zeeman and total energy.

Figure 3.5 (a) shows the position of the domain wall against time for four different

applied field strengths. We see that the domain wall starts to move as the field is applied,

in all the considered cases. For the two lower fields (blue thick lines), the motion is

‘steady’, with the velocity increasing as the applied field is increased. In contrast, for the

two higher applied fields (thin red lines) the motion of the domain wall is oscillatory.

The domain wall moves backwards and forwards as a function of time, but moves further

forward than backward in each cycle, leading to a net positive velocity. The frequency

of the oscillation depends on the external field strength, and is higher for the larger
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Figure 3.6: Domain wall position (top) and domain wall velocity (bottom) as a function of
magnetisation angle φ for H = 3.8 kA m−1 in the oscillatory regime. The figure should be
read ’from right to left’ because the angle φ increases in the negative direction during the
DW motion.

external field (dashed thin line), while the net velocity is lower for the larger external

field.

Figure 3.5 (b) shows the magnetisation angle at the DW centre, φ, against time for the

same simulations considered in Fig. 3.5 (a). For the steady motion curves (thick lines), φ

changes from zero at time t = 0 to a very small negative value and then remains constant.

In the oscillatory regime (thin lines), φ behaves differently: it grows continuously as a

function of time, and grows faster for stronger applied fields. For the steady-motion

curves considered in Fig. 3.5 the angle is small because the fields are weak; for fields

close to Hc the asymptotic angle can become quite large until at Hc it reaches −π
2 and

‘tips over’ so that it can keep growing grow continuously.

Figure 3.6 combines the data from the two previous plots and shows domain wall po-

sition (top) and velocity (bottom) as a function of the magnetisation angleφ for the

H = 3.8 kA m−1 curve in Fig. 3.5. The figure should be read ’from right to left’ be-

cause the angle φ increases in the negative direction during motion. We can see that

the domain wall position increases as φ grows from 0 to −π
2 and that the velocity re-

mains positive in this interval. From φ = −π
2 the domain wall moves backwards until

φ = −π, at which point the cycle repeats. We note that φ changes by −π (not −2π) while

the domain wall position completes an oscillation cycle, so that the magnetisation in

27



Chapter 3 Domain wall motion in perpendicular anisotropy nanowires with edge

roughness

the domain wall centre points in the negative x direction at the end of the positional

cycle (i.e. φ = −π) whereas it was pointing in the positive x direction at the begin-

ning. After one more positional cycle the angle also returns to the original position, so

that the DW position completes two cycles during a full rotation of the magnetisation

angle.

Figure 3.7 shows a set of corresponding magnetisation configurations for different mag-

netisation angles φ. We use these figures to interpret the oscillatory motion. Starting

from Fig. 3.7 (a), the applied external field forces the magnetisation to precess so that φ

changes from 0 to a negative value. The configuration in Fig. 3.7 (a), resembles a Néel

wall which has no surface charges on the front and back edge of the wire. However, once

the magnetisation in the domain wall starts to rotate in the x-y plane, surface charges

start to appear on the sides of the wire as in Fig. 3.7 (b). These increase the demag-

netisation energy of the system, and energy has to be found to allow this change. This

energy is provided through the Zeeman term by growing the left domain in the wire:

both magnetisation and applied field point in the negative z direction in this domain.

Growing the domain on the left means that the domain wall needs to move to the right,

i.e. towards larger x values. The further φ grows towards −π
2 , the further the domain

wall needs to move.

For weak applied fields, the growing demagnetisation field can counteract the precession

torque from the applied field and the system settles into a steady state with fixed angle φ

in which the domain wall moves continuously towards larger x-values (thick lines in

Fig. 3.5). For large applied fields, however, φ eventually reaches −π
2 , corresponding to

snapshot 3.7 (c) where the magnetisation is pointing in the negative y direction, which

is best visible in the centre of the domain wall. While φ increases further from −π
2 to

−π, the surface charges reduce and thus the demagnetisation energy is reduced. This is

compensated by the domain wall moving back to the left to shrink the domain on the left

that is aligned with the applied field, as shown in Fig. 3.7 (d). When φ reaches −π, the

surface charges have disappeared and the cycle will start again in a mirror-symmetric way,

explaining why the domain wall moves backwards and forwards twice while φ increases

from 0 to −2π.

If there was no damping in this system (i.e. α = 0), the domain wall would move back to

its starting position when φ reaches multiples of π. It is the damping term that allows to

release energy from the system, and this results in a net motion of the domain wall in the

positive x direction due to the applied field in the negative z direction. We also note that
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Figure 3.7: Snapshots of a domain wall moving in a smooth nanowire (Hext = 9 kA m−1 > Hc).
The pictures show half a rotation of the first oscillation, with time increasing from top to
bottom. (a) The initial configuration, cf. Fig. 3.1. (b) The domain wall moves to the right as
the magnetisation angle φ precesses around the vertical axis. (c) At φ = π

2 the DW reverses
direction and (d) starts moving to the left. (e) At φ = π another reversal of direction
occurs and the DW moves to the right again. The same procedure repeats itself with two
more direction reversals at φ = 3/2π and φ = 2π (both not shown) until the angle φ has
completed a full turn and the DW starts its third oscillation. Large superimposed arrows
indicate velocity of the domain wall. The thin curly arrows indicate the direction of rotation
of the magnetic moments in the domain wall.
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Figure 3.8: Domain wall velocity as a function of Hext. The separation into two regimes, one
above and one below the Walker breakdown, is clearly distinguishable. The inset shows the
increase of the velocity for very strong fields� Hc (note the different scale).

if the simulations are carried out without consideration of the demagnetising field, then

the oscillations in the domain wall position cannot be observed.

We thus find two different domain wall motion regimes: steady motion for applied fields

H below the so-called Walker breakdown field Hc and oscillatory motion for H > Hc

[12]. Figure 3.8 shows the DW velocity as a function of the external field. In a smooth

system as simulated here, i.e. in the absence of any domain wall pinning due to roughness,

the domain wall starts to move if any non-zero external field is applied. In line with

Walker’s prediction the domain wall velocity increases with the applied field up to the

Walker breakdown field Hc at which the velocity reaches its maximum. For larger applied

fields, the domain wall velocity decreases. Sample simulations with field strengths much

larger than Hc have shown that the DW velocity assumes a minimum around H =
30 kA m−1 and increases again for even stronger external fields.

3.4 Nanowire with edge roughness

In this section we introduce edge roughness to the wire geometry and repeat the simula-

tions of field driven domain wall motion from Section 3.3 in the presence of this disorder.

The relaxation stage of the simulations (Section 3.2.2) allows the domain wall to settle

into an energetically favourable position inside a constriction caused by the edge rough-

ness (which typically deviates slightly from the initial position in the smooth case). As a

result, the system needs a certain applied field strength to depin the domain wall from
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this location and cause the domain wall to move. In this section we investigate how the

edge roughness affects the domain wall motion (Section 3.4.1), the domain wall velocity

(Section 3.4.2) and the depinning field (Section 3.4.3).

3.4.1 Domain wall motion

We discuss the effect of roughness on domain wall motion for applied fields H below

(Section 3.4.1.1) and above (Section 3.4.1.2) the Walker breakdown field Hc sepa-

rately.

3.4.1.1 Influence of the roughness below the Walker breakdown

Figure 3.9 (a) shows some typical domain wall trajectories in nanowires with different

strengths of edge roughness in a fixed external field H = 0.6 kA m−1. One additional

trajectory for a different field strength H = 0.5 kA m−1 (dotted curve) was included

to illustrate dynamic pinning.4 The roughness correlation length is fixed at c = 4 nm
whereas the roughness magnitude varies between d = 0 nm (smooth wire) and d =
0.06 nm; for clarity, the curves for some intermediate values of d have been omitted in the

figure. The same randomisation seed was used in all cases so that the shape of the edge

distortions is the same and only the amplitude d varies. The particular edge roughness

profile used is displayed at the top of the figure: we see the distortions introduced by

the roughness functions f(x) and g(x) as explained in Section 3.2.3. For visibility, the

vertical extents of the distortions f(x) and g(x) are scaled up in this plot. As mentioned

previously, we plot the domain wall position x along the horizontal axis. This allows us

to compare the domain wall trajectories with the roughness profile that the domain wall

centre is located in.

The trajectory in the smooth wire (dashed curve) shows the same characteristics as the

ones discussed in Section 3.3: it takes the domain wall ≈ 3 ns to reach its full speed, dur-

ing which time the magnetisation angle φ increases and approaches its asymptotic value

as can be seen in Fig. 3.9 (b). Once this is reached so that the surface charges on the sides

of the wire balance the torque which the external field exerts on the magnetisation inside

the DW, the DW moves along the nanowire with constant velocity.

4We note that this dynamic pinning site is located at a constriction of the nanowire which at first glance
appears to be less pronounced than others along the wire. However, its width almost exactly matches the
size of the DW so that it exhibits a strong pinning effect, as discussed in Section 3.4.3.
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Figure 3.9: (a) Sample trajectories in a constant external field Hext = 0.6 kA m−1 < Hc for
varying roughness magnitudes d. The roughness correlation length is fixed at c = 4 nm.
One additional trajectory for a different field strength H = 0.5 kA m−1 (dotted curve) was
included to illustrate dynamic pinning. The particular edge roughness profiles used in these
simulations is shown as an inset towards the top: the roughness has been scaled up along the
vertical axis to make the profile visible more easily. (b) Time evolution of the magnetisation
angle φ for selected trajectories d = 0 nm (dashed) and d = 0.06 nm (solid) at Hext =
0.6 kA/m and d = 0.05 nm at Hext = 0.5 kA/m (dotted).
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The trajectories for non-zero roughness show two marked differences in comparison to

the smooth system. Firstly, it takes a longer time for the domain wall to depin and for

the angle φ to approach its asymptotic value. The effect is stronger for greater rough-

ness magnitude d as shown by solid lines in Fig. 3.9 (a). For d = 0.02 nm the effect

is small and the DW reaches its full speed after ≈ 4 ns. For d = 0.06 nm this initial

phase takes ≈ 8 ns — almost triple the time of the domain wall in the smooth nanowire

(d = 0 nm). For d = 0.06 nm, we can see from Figures 3.9 (a) and (b) that the DW

reacts to the edge distortions between x = 200 nm and x = 250 nm during this initial

transient.

The second difference between the trajectories in the smooth and the rough nanowires is

that we observe local decelerations of the DW during the motion in the presence of edge

roughness. In the examples shown in Fig. 3.9 (a) these manifest themselves as bumps in

the curves and occur at x ≈ 380 nm and x ≈ 640 nm. For the lower roughness magnitudes

(d = 0.02 nm, 0.04 nm) these are hardly noticeable, whereas for d = 0.05 nm and 0.06 nm
they become visible. However, for the largest part of the motion the DW couples very

weakly to the edge distortions and the curve is effectively straight (corresponding to

constant velocity) with the velocity being virtually the same as in the smooth nanowire

in these sections between the decelerations. If the driving field is too weak then the DW

can get dynamically pinned during one of these decelerations. This is illustrated by the

dotted curve in Fig. 3.9 (a).

In order to gain a better understanding of these two phenomena it is helpful to look at

the magnetisation angle φ inside the DW. Figure 3.9 (b) shows the time evolution of φ as

the DW progresses along the nanowire. In the smooth system (dashed curve) φ gradually

increases from zero until it reaches its asymptotic value and then remains constant. For

d = 0.06 nm (solid line) the angle φ shows a much more erratic behaviour as a function

of time as the magnetisation reacts to the edge distortions in an attempt to minimise

the surface charges at the sides. The value of φ for the domain wall in the wire with

d = 0.06 nm approaches the asymptotic value of φ in the smooth system at t ≈ 8 ns. For

larger values of t the angle φ shows small, apparently random deviations from this value.

There are two exceptions at t ≈ 11 ns and t ≈ 19 ns where |φ| gets close to zero, resulting

in two larger spikes in the dashed curve. These correspond to the two local decelerations

visible in Fig. 3.9 (a).

The dotted curve shows the time evolution of φ in the slightly weaker fieldH = 0.5 kA m−1,

corresponding to the dotted trajectory in Fig. 3.9 (a). The way in which φ reacts to the

edge distortions during the first half of the simulation is virtually identical to H =
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Figure 3.10: (a) Sample trajectories in a constant external field Hext = 5.75 kA m−1 for varying
roughness magnitudes d. The roughness correlation length is fixed at c = 4 nm. The inset at
the top shows the profile of the nanowire with roughness as in Fig. 3.9. (b) Time evolution
of the magnetisation angle φ for these trajectories.

0.6 kA m−1, except that the changes happen more slowly due to the lower driving field.

Thus the first half of the dotted curve in Fig. 3.9 (b), before t = 12 ns, is just a slightly ver-

tically stretched version of the solid curve. The DW reaches the pinning site x ≈ 380 nm
at t ≈ 11 ns in the stronger field (solid curve) and at t ≈ 13 ns in the weaker field (dotted

curve). In the first case the field is strong enough to push the DW past the pinning site,

which only results in a small spike of the angle towards zero. For the weaker field, on the

other hand, the DW gets pinned and φ slowly relaxes back into the zero-position where

the magnetisation points along the nanowire axis.

3.4.1.2 Influence of the roughness above the Walker breakdown

Figure 3.10 (a) shows three trajectories of domain walls in an external field H =
5.75 kA m−1 > Hc. The roughness correlation length c = 4 nm is fixed and only the

roughness magnitude d varies between 0.3 nm and 0.5 nm. All trajectories show the oscil-

latory motion typical of fields H > Hc. In the absence of roughness (i.e. d = 0.0 nm), all

three curves would coincide.
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The trajectory for the smallest roughness magnitude d = 0.3 nm (dashed red curve) is the

most regular of the three and quite similar to the trajectory in the smooth wire (not shown

to avoid clutter in the plot). For the next larger value of roughness magnitude d = 0.4 nm
(dotted blue curve) the edge distortions around x = 230 nm result in one short cycle with

two quick direction reversals during the first 2 ns. Subsequently, the DW performs two

larger position oscillation cycles before it gets caught by a pinning site at x = 261 nm
and relaxes into a metastable state at this location. For the largest value shown in the

plot, d = 0.5 nm (solid green curve), the domain wall reacts even more strongly to the

edge roughness around x = 230 nm, this time performing four quick direction reversals

during the first 2 ns, before it continues in a fashion similar to the dashed curve (d =
0.3 nm).

The x-positions where the domain wall reverses direction during the oscillations in each

of the trajectories are not arbitrarily distributed along the nanowire. Rather, the direction

reversals nearly always fall into a constriction of the wire. The dashed black vertical line

at x = 357 nm indicates one example where four direction reversals at different time

steps in two trajectories (marked with green and red dots) fall into the same constriction.

The same applies to virtually all other cycles in the three curves. This shows that the

DW couples rather strongly to the edge distortions at the left and right turning points of

the domain wall position cycles. Thus individual cycles can be lengthened or shortened

as the DW reacts to the roughness, which accounts for the alterations in the trajectories

visible for higher roughness strengths. By contrast, the edge distortions do not have a

noticeable influence on the motion in the middle of a cycle.

For d = 0.4 nm the DW gets dynamically pinned at x = 261 nm, whereas pinning does

not occur for the smaller roughness magnitude d = 0.3 nm nor the larger one d = 0.5 nm.

Similarly, other simulation runs at a fixed roughness magnitude d have shown that it is

possible for the DW to get dynamically pinned in an external field of a certain strength

while no pinning occurs for higher or lower fields.

We explain these observations by studying how the magnetisation angle φ in the domain

wall couples to the edge distortions in the nanowire in the next section.

3.4.1.3 Discussion

Dynamic pinning occurs where the total energy of the domain wall can be reduced by

moving it into the pinning position. The domain wall carries a certain exchange and

anisotropy energy which grow proportionally with the length (extension in y-direction)
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of the domain wall. The domain wall energy can thus be reduced if it moves to locations

where the edge distortions on both sides of the nanowire collude to form a constriction,

and thus reduce the length of the domain wall. For example, the domain wall for d =
0.4 nm that is shown as a dotted line in Fig. 3.10 (a) is dynamically pinned at x ≈ 261 nm,

and we see a constriction in the roughness profile which is shown as an inset in the top

of the figure.

Above the Walker breakdown, the angle φ keeps growing, which reflects the rotation

of the magnetisation in the x-y-plane during the oscillatory motion of the domain wall;

the displacement of the domain wall and the change in φ are coupled as described in

Section 3.3 and visible in Fig. 3.6. For φ = nπ with n = 0,±1,±2, . . ., the domain wall

magnetisation points along the wire and there are no surface charges along the edges

associated with the domain wall, so the demagnetisation energy of the domain wall is

minimal. Conversely, for φ = (n+ 1
2)π the magnetisation points in ±y direction, and this

maximises the demagnetisation energy associated with the domain wall. Between those

extrema the energy varies continuously. The increase in demagnetisation energy due to

φ changing from, say, 0 to π
2 is large in comparison to the energy fluctuations caused by

the edge roughness, such as the decrease in energy due to a reduced domain wall length

in a constriction.

Therefore the domain wall only interacts with the roughness where the energy reduction

caused by a constriction is of a magnitude comparable to the change in the demagneti-

sation energy associated with a small displacement of the domain wall, or equivalently

a small change in φ. The response of the demagnetisation energy to a change in φ is

smallest around extrema, i.e. around φ = nπ (minima) and φ = (n + 1
2)π (maxima).

For intermediate values of φ, the energy change due to roughness is insignificant in

comparison to the dominating demagnetisation energy change.

This interpretation explains why the turning points of the positions of the domain wall

tend to coincide with constrictions in the roughness pattern: at the left-hand turning

points we have φ = nπ and at the right-hand turning points φ = (n+ 1
2)π, so that the DW

can couple to the edge distortions at these points in the motion. Figure 3.10 (a) shows

selected turning points of the oscillating domain wall position and illustrates how these

align with the effective constrictions in the roughness of the wire as indicated by the

vertical dashed black line.

The same argument suggests that dynamic pinning above the Walker breakdown can

only occur for φ ≈ nπ and φ ≈ (n + 1
2)π. In our simulations, we have only observed

dynamic pinning where φ ≈ nπ. An example for this dynamic pinning above the Walker

36



3.4 Nanowire with edge roughness

breakdown is shown in Fig. 3.10 (a) for d = 0.4 nm as a dotted line. The domain wall

shows oscillatory motion up to t ≈ 5 ns, and subsequently gets pinned at t ≈ 7 ns. The

corresponding dotted line in Fig. 3.10 (b) shows that φ = −3π, i.e. sin(φ) = 0, when the

domain wall reaches the pinning site. The requirement that φ must be close to nπ or

(n + 1
2)π for dynamic pinning to occur above the Walker breakdown explains why the

domain wall d = 0.4 nm in Fig. 3.10 (a) can pass through the pinning site x ≈ 260 nm
repeatedly without being pinned (three times for t < 5 ns).

Below the Walker breakdown, there is competition between the external field that drives

the domain wall forward and the effective potential that the domain wall experiences

due to the roughness. If the roughness exhibits a constriction, this reduces the domain

wall length and energy. The constriction can be interpreted as a pinning potential well

that the domain wall experiences if we use a model where the domain wall is a particle

that experiences a spatially varying potential energy. It depends on the depth and width

of this potential well whether the applied field can push the domain wall through it or

whether pinning takes place. An increasing external field reduces the pinning strength.

This is in line with our observations that pinning becomes less likely for larger fields H

below the critical Walker breakdown field.

We hypothesise that in addition to the length (in y-direction) of a constriction in the

roughness profile, it is also its width (in x-direction) which contributes to how effective

a constriction is as a dynamic pinning centre: constrictions of width comparable to the

domain wall width are most effective (see discussion in Section 3.4.3), but the detailed

shape of the constriction is likely to be important, too.

The discussion above shows that in the steady and oscillatory regimes the pinning process,

although guided by the same underlying principles, leads to rather different phenomena.

For H < Hc the probability of the DW being pinned decreases with increasing external

field H since higher fields lead to a larger asymptotic value of φ, whereas for H > Hc

there is no simple relationship between the strength of the field and the pinning prob-

ability since the latter depends on the intricate interaction of the constantly precessing

magnetisation and the edge distortions. Our simulation results have shown that pinning

above the Walker breakdown occurs in the whole range up to the highest simulated

fields (10 kA m−1) and appears to be more common for higher fields than for fields just

above Hc. This seemingly counter-intuitive observation can be explained by the fact that

the oscillations of the DW position are much shorter for large fields H than for small

fields. For large fields, the domain wall position trajectory overlaps with itself (see the

quickly oscillating curves in figures 3.5 (a) and 3.10 (a)). Thus the DW passes the same
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location in the nanowire more often, with different angles. This makes it more likely

to reach a pinning site with φ = nπ or φ = (n + 1
2)π and thus increases the pinning

probability.

3.4.2 Influence of the roughness on the domain wall velocity

The domain wall trajectories in Fig. 3.10 (a) show that, although individual oscillation

cycles can be significantly altered at different roughness levels d, the changes mostly aver-

age out over time. Thus the mean velocities are quite similar for all roughness strengths.

This is in line with the observation which we made earlier for H < Hc in Fig. 3.9 (a),

where the asymptotic velocities are also virtually identical for all trajectories. In this

section we study the influence of the roughness on the domain wall velocity in more

detail.

As discussed in Section 3.2.4, there are two distinct ways of computing the velocity: (i)

the mean velocity, which uses the distance travelled during the simulated time based on

the first and last point of the trajectory; (ii) the asymptotic velocity, which attempts to

estimate the asymptotic velocity by disregarding the depinning process and, for fields

above the Walker breakdown, removes artefacts due to incomplete oscillation cycles at

the end of the simulation. We discuss both methods, putting our main emphasis on the

second one.

Figure 3.11 (a) shows plots of the asymptotic domain wall velocity (Section 3.2.4.2)

as a function of the applied field for various roughness magnitudes d. Figure 3.11 (b)

shows the corresponding mean velocity (Section 3.2.4.1). The correlation length of the

roughness is c = 6.0 nm for all data shown while the roughness amplitude varies between

d = 0.0 nm (smooth wire) and d = 0.09 nm in steps of 0.01 nm. The same randomisation

seed was used to produce the roughness profile in all cases so that increasing d does

not change the shape of the edge roughness but only increases the vertical size of the

distortions. For each value of d the external field was increased from 0 A m−1 up to

3000 A m−1 in steps of 100 A m−1 and a simulation was run for each applied field value

in order to compute the DW velocities. In a second phase the external field interval

containing the depinning field was discretised in finer steps of 10 A m−1 to obtain a

better resolution.

We define the depinning field Hdepin as the smallest field that is just strong enough to

drive the DW away from its original position into which the system has been relaxed
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(a)

(b)

Figure 3.11: (a) Asymptotic domain wall velocity, computed using the method described in
Section 3.2.4.2, as a function of applied field H. Each line corresponds to one roughness
magnitude d. (b) Corresponding mean domain wall velocity, computed using method de-
scribed in Section 3.2.4.1.
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during the first stage of the simulation, irrespective of whether the DW gets pinned at

a later stage or not. The depinning field is a function of the correlation length c and

roughness magnitude d that define the edge roughness: Hdepin = Hdepin(c, d). For the

discussion of Fig. 3.11, c is kept fixed at 6 nm.

The line for d = 0 nm in Fig. 3.11 corresponds to a nanowire without roughness, and

there is no depinning field defined: any finite applied field will result in domain wall

motion. For increasing roughness magnitude we see that the domain wall remains pinned

in its original position (corresponding to zero velocity) up to the critical depinning field,

which increases with increasing d. Once the external field H exceeds Hdepin for a given

roughness magnitude d, the DW starts moving.

For a couple of small values of d, such as d = 0.02 nm or 0.03 nm, the DW mean velocity

appears to increase ‘in leaps’ (Fig. 3.11 (b)), which is due to the DW being pinned

dynamically for small fields so that the mean velocity is reduced. This is not visible in the

asymptotic velocity (Fig. 3.11 (a)) where these data points have been removed as in these

cases the asymptotic velocity is not defined (see Section 3.2.4.3). However, for larger d

such as d = 0.04− 0.09 nm the asymptotic velocity appears, on the scale of this graph, to

jump immediately from zero to the velocity of the smooth system. For stronger applied

fields up to the critical Walker field Hc ≈ 1.7 kA m−1 the asymptotic DW velocities are

virtually identical for all roughness strenghts. Above the Walker breakdown there is some

slight variation, but the discrepancies are small (≈ 10% for the largest deviations, e.g.

for H = 2.0 kA m−1).

The plot of the domain wall mean velocities in Fig. 3.11 (b) shows that there is a some-

what gradual increase in the mean velocity once Hext exceeds Hdepin and that up to the

Walker field Hc the DW velocity in rough nanowires always stays below the value of the

smooth wire. The larger the roughness magnitude d, the further does the mean velocity

stay below the domain wall velocity of the smooth wire. It appears as if larger roughness

reduces the velocity, but the comparison with the asymptotic velocities (Fig. 3.11 (a))

reveals that it is the initial depinning process that gets increasingly slower with increas-

ing roughness magnitude d (see Section 3.4.1.1). As the mean velocity is a time average

of the domain wall velocity, this initial slowdown is visible. We note that the reduction

of the mean velocity due to the depinning will decrease if the domain wall motion is

simulated for longer periods of time. Unless we want to study the effect of the depin-

ning process on the mean velocity, we prefer the asymptotic velocity as an observable

because it is independent of the simulated time. However, the mean velocity can be a

useful observable for applications where the DW only moves over a limited distance,
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for example between engineered notches in racetrack memory [15] and similar applica-

tions.

Above the critical Walker field, the mean velocity curves in Fig. 3.11 (b) exhibit a seem-

ingly erratic behaviour. Even the one for the smooth system (d = 0.0 nm) shows a kind of

undulation which the other curves more or less follow. To illustrate this more clearly, the

curve for the smooth system has been extended up to H = 3.5 kA m−1. This behaviour

can be explained as follows. Since the DW motion is oscillatory, the end point of the

trajectory can vary significantly depending on where last oscillation is cut off when the

simulation exits. With the exit time of the simulation remaining constant at 20 ns but the

oscillations becoming shorter for increasing Hext, the cut-off point varies significantly and

also jumps backward and forward, leading to the undulating values of the velocity within

each curve in Fig. 3.11 (b). The two outliers forH = 2.2 kA m−1 indicate that the DW was

dynamically pinned for these two roughness levels, which affects the mean velocity but

is filtered out by our method to compute the asymptotic velocity.

The observation that the asymptotic velocity in the presence of roughness coincides with

the domain wall velocity without roughness is in agreement with the data and discussion

in sections 3.4.1.1 and 3.4.1.2: Figures 3.9 (a) and 3.10 (a) illustrate that even though

there are perturbations in the trajectories – local decelerations below Hc and alterations

of the oscillations above Hc – the asymptotic velocities are effectively the same as in the

smooth nanowire even for higher roughness amplitudes.

Figure 3.11 shows that the critical Walker breakdown field is the same for all roughness

strengths, which was observed in all other performed simulation runs as well. This is

in contrast to a similar study of in-plane domain walls by Min et al.[31], where an

increase of the critical field (combined with a slightly decreased peak DW velocity) was

observed for higher roughness magnitudes. Similarly, Nakatani et al.[21] also observe

a suppression of the Walker breakdown for in-plane domain walls, due to the fact that

the formation of an antivortex (which absorbs most of the torque exerted by the external

field, thus leading to a slowdown of the DW) is inhibited by the edge roughness. The

reason why in our case no change in the critical Walker field is observed is because

our nanowire is much narrower, leading to effectively one-dimensional behaviour of the

magnetisation inside the DW without internal degrees of freedom.

We have discussed two different ways to analyze data from the time dependent simula-

tions to compute (i) the mean velocity, and (ii) the asymptotic velocity. Depending on

the experimental context, either entity may be of interest: for domain wall motion in

very short nanowires, inclusion of the depinning time as in the mean velocity calculation
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may be desired. If the simulation is meant to simulate a system where the depinning

time is irrelevant (because the wire is very long) but matters in the simulation (be-

cause the simulated wire is not so long), then the asymptotic velocity may be a better

measure.

3.4.3 Influence of the roughness on the depinning field

In the study of Fig. 3.11, where the roughness correlation length is c = 6 nm, we have

noted that the depinning field Hdepin(c, d) increases as a function of roughness magni-

tude d. In this section, we analyse this dependence quantitatively for varying correlation

lengths c. The corresponding simulation results are gathered in Fig. 3.12. Each of the

curves displays the dependence of the depinning field Hdepin on the roughness magni-

tude d for a fixed roughness correlation length c. The data shows that the depinning field

has an approximately linear dependence on the roughness magnitude d for all values

of c. We denote the constant of proportionality in this linear relationship by βc, so that

Hdepin(c, d) = βc · d. Thus βc is a measure of the effective pinning strength of the edge

roughness for a given roughness correlation length c, and given by the slope of the lines

in Fig. 3.12. We use a least-squares fit to determine the value of βc for each line, omitting

the data points for 0.01 ≤ d ≤ 0.09 to avoid a bias.

Figure 3.13 shows how βc varies as a function of c. The data points marked with a

cross and connected by a solid line show the slopes of the ten lines that are plotted in

Fig. 3.12. The dashed line shows corresponding results that have been averaged over four

different sets of simulation runs (i.e. using four different random seeds for the domain

wall roughness functions, and then repeating all simulations required to obtain the βc’s).

Both curves show low values for small and large c and a maximum between at c = 7 nm
(solid line) and c = 9 nm.

The largest influence of the roughness on the DW motion is expected if the characteristic

length scale of the edge distortions is of the same order as the domain wall width: for

very small correlation lengths c the roughness is at a scale too small to be noticed by the

DW, whereas for very large values of c the wire edge appears locally flat to the DW. The

characteristic domain wall width is taken as π
√
A/K1 [41, 42], which is 18.4 nm for our

material parameters. The effective roughness length scale for a given parameter c is on

the order of 2.76 c as shown in Section 3.2.3. Matching of the effective roughness length

scale with the domain wall width should thus occur where c = π
√
A/K1/2.76 ≈ 6.7 nm.
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3.4 Nanowire with edge roughness

Figure 3.12: Depinning field Hdepin as a function of the roughness amplitude d, for different
correlation lengths c.

Figure 3.13: Proportionality constants βc describing the dependence of the depinning field on
the roughness level d for each correlation length c. The solid line corresponds to Fig. 3.12;
the dashed line represents values averaged over four runs with different roughness shapes.
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roughness

This is compatible with the data shown in Fig. 3.13 where the most effective pinning is

found for c in the range 7 nm to 9 nm.

Finally, focusing on the range of values which βc takes for different roughness correlation

lengths c, we note that by matching the effective roughness length scale with the domain

wall width, the pinning effect can be increased significantly (approximately a factor of 5

for the data shown here).

3.5 Summary

We have studied the dynamics of field-driven domain walls in perpendicular magnetic

anisotropy (PMA) nanowires with added edge roughness. We used a finite-element based

roughness model which allows systematic exploration of the roughness configuration

space using two parameters: (i) the roughness length scale c and (ii) the roughness

magnitude d (Section 3.2.3).

The dynamics of a domain wall moving in a smooth nanowire was studied first in or-

der to have a reference point for the rough systems. The typical Walker breakdown

was observed, with the domain wall showing steady motion below the critical Walker

field Hc and oscillatory motion above Hc. In the smooth system the DW dynamics can

be understood in terms of the precession of the magnetisation angle φ inside the domain

wall.

In the nanowire with edge roughness, the Walker breakdown occurs at the same critical

applied field Hc as in the smooth nanowire, due to the fact that the system studied here is

effectively one-dimensional. This is in contrast to results seen in other studies of in-plane

domain walls in wider nanowires (which allow internal degrees of freedom of the DW),

where the presence of edge roughness can suppress the Walker breakdown until much

larger fields.

While in the smooth system the DW moves for any non-zero applied field, with added

edge roughness the domain wall remains pinned up to a critical depinning field Hdepin

which increases with increasing roughness magnitude d. For fields H > Hdepin the

roughness affects the DW trajectories. In the steady-state regime below the Walker

breakdown the roughness leads to a significantly prolonged initial depinning process

and introduces local decelerations in the DW motion, resulting in sporadic distortions
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of the trajectory which otherwise remains largely unchanged (Fig. 3.9 (a)). In the os-

cillatory regime the individual DW cycles can be markedly altered in size and shape

(Fig. 3.10 (a)).

The presence of edge distortions can also lead to dynamic pinning during the DW motion.

This is a process which is stochastic in nature. We find that dynamic pinning above the

Walker breakdown is only likely to happen when the magnetisation angle φ is aligned

with, or perpendicular to, the long wire-axis, as these are the points in the trajectory

where the domain wall couples most strongly to the roughness distortions. Somewhat

counterintuitively, this means that dynamic pinning above the Walker breakdown is more

likely to happen for stronger fields because these result in faster and shorter oscillation

cycles so that the DW has more opportunity to interact with the edge roughness profile

at the beginning and end of a cycle.

We studied the influence of the roughness on the domain wall velocity, and computed two

different observables: the mean velocity and the asymptotic velocity. The results have

shown that in a nanowire with edge roughness the mean velocity of the domain wall

during the simulation can be significantly lower than in the smooth system (Fig. 3.11 (b)).

This slowdown occurs for fields slightly above the depinning field and is the result of

the prolonged initial depinning process in the presence of rough edges (Fig. 3.9 (a)).

However, the asymptotic DW velocity, which ignores the initial depinning, is essentially

unaltered by the presence of roughness (Fig. 3.11 (a)), in spite of the noticeable influence

of the roughness on the DW trajectories. In contrast to the mean velocity observable, the

data obtained for the asymptotic velocity does not depend on the length of the simulated

time.

Finally, we studied the dependence of the depinning field on the roughness parameters

in our model. We find that Hdepin increases approximately linearly with the roughness

amplitude d, which controls the vertical size of the edge distortions. We showed that the

effectiveness of pinning increases considerably if the width of the roughness peaks and

troughs correlates with the domain wall width.
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Chapter 4

Resonant Modes in Magnetic Nanosystems

Oscillations and resonances are ubiquitous in nature, and micromagnetic systems are no

exception. This is evident from the LLG equation (Eq. (2.1)): its first term describes a

continuous oscillation around the magnetic field axis due to Larmor precession. Whenever

one studies a system with oscillating parts, it makes sense to study its normal modes

because these tell us how the system can be efficiently excited or destabilised out of a

local equilibrium state using external driving forces (for example, oscillating magnetic

fields).

The term “normal mode” refers to an oscillation pattern where all components of the

system under consideration oscillate with the same frequency, and thus at a fixed relative

phase relation with respect to each other. A prototypical example is given by coupled

harmonic oscillators, such as a series of masses connected with ideal springs obeying

Hooke’s force law (F = k∆x). In this example the restoring force depends linearly on

the perturbation ∆x from an equilibrium state and the resulting equations of motion lead

directly to a set of to oscillatory solutions at different frequencies – the normal modes of

the system.

For a general system, in the vicinity of a local equilibrium the restoring force will still be

approximately linear.1 As a consequence, if the perturbation from the equilibrium state

is small, the dynamics can be studied through the linearised equations of motion and de-

scribed approximately as a superposition of normal mode oscillations.

This insight makes normal modes a powerful tool applicable to many different situa-

tions also in a micromagnetic context. For example, the peak power frequencies in a

spin-torque nano-oscillator (STNO) are determined by its resonance frequencies, and

1The reason for this is that at an equilibrium state the energy has a local minimum and can therefore
locally be written as a quadratic function in ∆x; thus the restoring force, which is the derivative of the
energy, depends linearly on ∆x in the vicinity of the equilibrium.
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Chapter 4 Resonant Modes in Magnetic Nanosystems

understanding these resonances is crucial for the design of STNOs suitable for applica-

tions, e.g. by maximising the power output. In later chapters we present several studies

of resonant modes in magnetic nanosystems. In this chapter we start with the theoretical

foundations.

Section 4.1 introduces the two main approaches to computing normal modes in micro-

magnetic systems – the ringdown method and the eigenvalue method – with a discussion

of the specific advantages and drawbacks of each. While the ringdown method can be

used with virtually any micromagnetic framework, the eigenvalue method requires a

special implementation. A key contribution of this work was to implement the eigen-

value method in the micromagnetic software Finmag, developed at the University of

Southampton, and apply it to the study of resonant modes in different kinds of magnetic

nanosystems. The main focus of subsequent sections will therefore be on the eigenvalue

method.

Section 4.2 explains the mathematical background for the eigenvalue method. We discuss

how to linearise the LLG equation and how to formulate the resulting linearised equation

as an eigenvalue problem which can be solved numerically to compute the resonance

frequencies and oscillation patterns of the micromagnetic system under study.

There are multiple choices to make regarding the numerical solution of the resulting

eigenvalue problem. Section 4.3 discusses these alternatives, the specific problems en-

countered in the context of a finite element micromagnetic code and the choices made

in our implementation as well as their implications for efficiency and performance.

Later, in Chapter 5, we will present a case study to illustrate the differences between the

ringdown and eigenvalue method with a real-world example. This also provides a numeri-

cal verification of the implementation of the eigenvalue method in Finmag.

4.1 Approaches to Computing Resonant Modes in Magnetic
Nanosystems

This section introduces the two main methods for computing resonant modes in magnetic

nanosystems: the ringdown method and the eigenvalue method. It provides a high-level

overview of these methods and discusses their particular characteristics. These will later

be illustrated with a comparative case study (see Chapter 5).

Some of the material in Section 4.1.1 is based on recent a joint publication [43] which

proposes a micromagnetic standard problem for ferromagnetic resonance (FMR) simula-
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tions, in order to facilitate the implementation of the ringdown method and verification

of results.

4.1.1 The Ringdown Method

4.1.1.1 Overview

The traditional way to compute normal modes of a micromagnetic system is the so-called

ringdown method. [44, 45] The idea is to apply a small excitation – for example, a short

constant or time-varying field pulse – to slightly perturb the system out of its equilibrium

state and then let it relax again. This is similar to how resonant mode oscillations can be

excited in an experiment. [46]

During the relaxation phase the spatially resolved magnetisation is recorded at regular

intervals. This results in a time series of the magnetisation dynamics at the location

of each node in the finite element mesh (or each discretised cell in the case of finite

difference simulations). A typical trajectory of an individual magnetisation degree of

freedom is shown in Fig. 4.1(a), illustrating the superposition of oscillations at multi-

ple resonant frequencies and the slow decay of the oscillations due to damping. Using

a discrete Fourier transform we can extract and plot the intensity of each frequency

contribution to this ringdown oscillation, resulting in a power spectrum plot such as in

Fig. 4.1(b).

The resonant modes of the system correspond to peaks in this power spectrum. Once the

frequency of a mode has been identified, the ringdown dynamics can be filtered to retain

only the contribution of this particular mode frequency to the dynamics, by discarding

the Fourier coefficients belonging to all other frequencies. Applying this procedure to the

spatially resolved magnetisation data allows extracting and visualising the spatial mode

profile, i.e. its magnetisation oscillation pattern across the sample.2

4.1.1.2 Details of the procedure

We now explain the computational details of this prodecure. Let tk = k · ∆t be the

timesteps at which the magnetisation is sampled during the simulation (k = 1, . . . , N),

with ∆t the size of the sampling interval and T = N ·∆t the total duration of the recorded

2The Github repository [47] accompanying our proposal [43] of a new micromagnetic standard problem
for ferromagnetic resonance simulations contains explicit example code illustrating how to do this.
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Figure 4.1: (a) Sample ringdown dynamics in a thin film permalloy sample of dimensions
120 nm× 120 nm× 10 nm. The plot shows the y-component of the spatially averaged mag-
netisation, using the simulation setup described in a recently proposed micromagnetic stan-
dard problem for ferromagnetic resonance simulations. [43]
(b) Power spectrum obtained from the Fourier transform of the data shown in (a), computed
using Eq. (4.2) in Section 4.1.1.2.
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ringdown. The sampling interval determines the maximum frequency contribution to the

signal that is resolvable by the discrete Fourier transform. It is given by the Nyquist
frequency, fN = 1/(2∆t). [40, Sect. 12.1] Similarly, the attainable frequency resolution

in the resulting power spectrum is given by ∆f = 1/T .

For each timestep tk the spatially resolved magnetisation M(rj , tk) is recorded at a num-

ber of spatial sampling locations rj (these would typically be the mesh vertices in a finite

element simulation or the centres of the discretised cells in a finite difference approach).

At each sampling location rj this yields a time series for each of the three magnetisation

components. For example, in the case of Mx:

Mx(rj , tk), k = 1, . . . , N. (4.1)

The equations in this section are only stated forMx because they are identical for all three

magnetisation components. However, depending on the geometry of the sample and the

excitation used, the actual ringdown dynamics of each component may be significantly

different due to the way in which the magnetisation couples to the excitation. It is

therefore important to analyse the power spectra from all three components in order to

capture all information.

There are two different ways in which the power spectrum can be computed from the

time series in Eq. (4.1). The first approach is to calculate the spatial average of Mx across

the sample at each timestep, resulting in a single time series 〈Mx〉r(tk) (we use 〈.〉r to

denote a spatial average across all sampling locations). From this time series the power

spectrum Sx(f) can be computed as follows.

Sx(f) = |Fx(f)|2 with (4.2)

Fx(f) =
N∑
k=1
〈Mx〉r(tk) e−i 2πftk . (4.3)

We refer to this approach as method 1. It results in power spectra similar to what would

be measured in an experiment, where only the spatially averaged magnetisation can be

sampled at a time rate suitable for resolving high-frequency dynamics. However, it has

the significant disadvantage that it will miss many eigenmodes with spatial symmetries

because they are lost from the signal during the averaging process. An example of this is

shown in the next chapter Fig. 5.1 (spectrum at the bottom left) where the only visible

mode is the fundamental mode of the nanodisc.

This problem can be avoided by using a different method, which first computes the local
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power spectra Sx(rj , f) at each sampling point rj from the time series of the magnetisa-

tion at that point.

Sx(rj , f) =
∣∣Fx(rj , f)

∣∣2 with (4.4)

Fx(rj , f) =
N∑
k=1

Mx(rj , tk) e−i 2πftk . (4.5)

By averaging these local power spectra across the sample we obtain the global spec-

trum,

S̃x(f) = 〈Sx(rj , f)〉r. (4.6)

We refer to this approach as method 2. It overcomes the problem of missing modes with

spatial symmetries and typically results in spectra with many more peaks than those

obtained via method 1. An example is again shown in Fig. 5.1, where the three spectra

on the top left are computed using method 2.

For a fixed resonant frequency f , the spatial oscillation profile of the corresponding

eigenmode can be obtained from the local power spectral density coefficients Sx(rj , f) in

Eq. (4.5). Namely, the amplitude of the magnetisation oscillation at this location is given

by the absolute value of the (complex) coefficient, whereas the argument of the coefficient

(in the complex polar representation) contains the phase information.3

4.1.1.3 Advantages and drawbacks of the ringdown method

The major advantage of the ringdown method is that it does not require any special

implementation and can thus be performed with any micromagnetic software package.

The only additional code required is for the Fourier transform, for which readily available

implementations exist (for example in numpy/scipy [48]).

However, the ringdown method also comes with a number of drawbacks. Firstly, it is

very difficult to find all normal modes in this way. This is because the symmetry of the

excitation determines which modes will be excited4 and thus not all modes will couple to

a specific excitation. An example of this for eigenmodes of a domain wall in a nanowire

3As mentioned previously, the Github repository [47] contains example code to to produce plots of
spatial mode profiles obtained in this way.

4In experimental studies, this can be used to selectively excite certain modes, for example with high-
frequency time-varying fields of the correct frequency. [49]
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is discussed in Chapter 6 where an in-plane field excitation in the transversal direction

(i.e., across the wire) only excites the “breathing mode” (Fig. 6.1) of the domain wall but

no other modes.

There are workarounds for this issue. For example, one can use multiple excitations

with different symmetries, but this requires multiple simulation runs and is thus more

computationally expensive. Alternatively, one can use a field pulse which varies as a

suitably scaled sinc function (sinc(x) = sinx
x ) in both time and space. Because the Fourier

transform of the sinc function is a rectangular pulse, this results in an excitation at all

spatial wavelengths and uniformly across the frequency spectrum (both within a certain

range defined by scaling of the sinc function). It can therefore be used to excite most or

all eigenmodes. [50] An interesting alternative approach is used in a study by Carlotti

et al. [51] where they introduce stochastic noise caused by thermal excitations in order

to excite all the modes. However, neither of these approaches is trivial to implement and

there is still a chance to miss certain eigenmodes.

Another disadvantage comes from the fact that many systems possess multiple eigen-

modes with identical or very similar frequencies, for example caused by symmetries in

the geometry. These modes cannot be distinguished using the ringdown method because

they will show up as a single peak in the power spectrum. This issue is illustrated in

Chapter 5 where it is demonstrated that certain modes of an elliptical nanodisc are

not captured by the ringdown approach used by Carlotti et al. [51], but they can be

detected using our calculations using the eigenvalue method (described in the next sec-

tion).

Moreover, it can be difficult or impossible to use the ringdown method in situations

where small changes in the external field can destabilise the system – for example, close

to the depinning field of a domain wall, or near the coercive field of a nanodisc at which

magnetisation reversal is triggered. In these cases the ringdown method breaks down

because the external field pulse necessary to excite the modes triggers a phase transition.

On the other hand, the eigenvalue method does not suffer from these problems because

it considers excitations in the infinitesimal limit which are already part of the equations

being solved. We use it in Chapters 5 and 6 to study the above-mentioned examples (see

results in Figs. 5.3 and 6.6).

Lastly, the frequency resolution obtainable by the ringdown method depends on the

length of the ringdown phase, thus requiring potentially very long simulation times

in order to obtain a fine resolution. Similarly, the maximum resolvable frequency in
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the spectrum depends on how often snapshots of the magnetisation are sampled dur-

ing the simulation. Thus, if eigenmodes with large frequencies are present this may

result in potentially large storage requirements (due to frequent sampling of the mag-

netisation) and slower simulation runs caused by the increased I/O operations. By con-

trast, the eigenvalue method does not have these issues because the numerical can com-

pute eigenfrequencies of any magnitude, irrespective of the eigenfrequencies of other

modes.

Within its limitations the ringdown method is a useful tool for computing resonant modes

of magnetic nanosystems. However, despite its conceptual simplicity there is consider-

able margin for error in the implementation due to the variety of design choices (such as

spatial discretisation, relaxation time, sampling timestep, choice of damping constant α).

It is therefore desirable to have a good test case against which new implementations

can be calibrated. Therefore a new micromagnetic standard problem was recently pro-

posed [43] with a detailed specification and analysis of a sufficiently simple problem that

can be simulated by micromagnetic simulation packages with varying capabilities. The

effects of initial conditions and simulation parameters on the observed resonance modes

are explored, which is useful for the debugging and verification of new implementations.

Detailed instructions and code are provided in an accompanying GitHub repository [47]

to allow other researchers to reproduce our results and to help with numerical calculation

of ferromagnetic resonance spectra and modes in general.

My main contributions to this publication include co-design of the proposed system

setup (for example, the idea of applying a canted external field in order to avoid mode

degeneracies), verification of results using my implementation of the eigenvalue method

in Finmag (see next section), continued discussions/feedback with co-authors during the

write-up phase as well as major work on the GitHub repository which provides code to

reproduce our results.

4.1.2 The Eigenvalue Method

The second approach for computing normal modes of a magnetic nanosystem is to use

a (semi-)analytical method which we refer to as the eigenvalue method. It is a general

approach that works for any system of coupled oscillators (not just micromagnetic sys-

tems), although the details of the implementation vary with the underlying equations of

the interactions. In this section we explain the method in the context of micromagnet-

ics.
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The basic underlying idea is that the energy of a system attains a local minimum at a

stable or metastable equilibrium, with vanishing first derivative of the energy. In the

vicinity of a local equilibrium the potential can therefore be approximately described

as a quadratic function and therefore to first order the restoring force (given by the

derivative of the energy) which acts on a small perturbation depends linearly on this

perturbation, resulting in harmonic oscillations if the system is perturbed slightly out of

equilibrium.

In the case of the LLG equation, it can be shown rigorously that in the vicinity of a

stable equilibrium the nonlinear magnetisation dynamics are well approximated by the

linearised version of the LLG equation. [52] Using a finite element (or finite difference)

discretisation the linearised equation of motion can be written as a system of ordinary

differential equations (ODEs) describing the dynamics of the magnetisation components

at each node in the finite element mesh. This linear system of ODEs has a full set of solu-

tions representing the normal modes of the micromagnetic system. These solutions can be

computed numerically by reformulating the problem as a large eigenvalue problem. The

resulting eigenvalues represent the resonant frequencies of the micromagnetic system,

and the eigenvectors encode the oscillation patterns of the magnetisation at the mesh

nodes. The details of this process are described in Section 4.2.

The eigenvalue method solves the main problems with the ringdown method mentioned

in Section 4.1.1 because it computes the eigenmodes directly (using the governing equa-

tions to determine the coupling and interactions between individual magnetic moments),

instead of relying on an external excitation and subsequent postprocessing of the system’s

response. This makes it possible to compute all eigenmodes of a micromagnetic sample

(or a selected subset, for example the first n modes with the lowest frequencies) without

having to worry about accidentally missing any modes.

Similarly, degenerate modes with identical frequencies do not pose a problem – they

simply show up as eigenvectors belonging to the same eigenvalue. However, depending

on the numerical eigensolver the returned eigenvectors may be linear superpositions

of the expected eigenmodes. An example of this is discussed in Chapter 6 where we

observed a frequency crossing of two eigenmodes while one parameter of the system

(the width of the nanowire) was varied continuously. For the parameter value where

both eigenmodes attained the same frequency the numerical solver appeared to return

“hybrid” modes, but these turned out to be just superpositions of the “pure” modes (see

Section 6.A).
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The major drawback of the eigenvalue method is that it is non-trivial to implement

and requires a considerable amount of upfront mathematical preparation and code im-

plementation. Moreover, depending on the formulation of the eigenproblem and the

numerical solver used there can be issues with numerical stability (see discussion in

Section 4.3).

However, once this is work is done and the numerical issues are addressed, the results are

much cleaner and more complete, and the simulations do not require as much experimen-

tation during setup and manual inspection/postprocessing of the results.

Therefore the trade-off between the ringdown and the eigenvalue method could be de-

scribed as “no upfront work needed but potentially tricky to use in practice” vs. “lots of up-

front work needed but elegant and much less painful to use in practice”.

We will describe the details of the eigenvalue method in Section 4.2 and discuss in

Section 4.3 how to deal with implementation issues.

4.2 The Eigenvalue Method: Theoretical Background

In this section we describe the mathematical details of the eigenvalue method. There

are two main steps. Firstly, we need to linearise the LLG equation. This is done in Sec-

tion 4.2.1 for the conservative (i.e., undamped) LLG equation, i.e. α = 0. The linearised

LLG equation with damping included is given in Section 4.2.5.

In a second step, the linearised LLG equation is reformulated as an eigenvalue problem

in Section 4.2.2. There are two ways to do this: as an ordinary eigenvalue problem or as

a generalised eigenvalue problem. Both are discussed because they have implications for

the numerical implementation (discussed in Section 4.3).

The general discussion follows d’Aquino [52], but we show the derivations so that they

are directly applicable to a finite element discretisation and also discuss specific issues

encountered in this context. All fields in this section are considered as discretised fields

defined on a finite element mesh with N vertices and can therefore be represented as

vectors in R3N . For example, the magnetisation m ∈ R3N can be represented as a vector

with 3N degrees of freedom, namely, three magnetisation components for each mesh

node. As a consequence, the cross product in the equations below is to be understood

as a vertex-wise operation, acting separately on the three vector components associated
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with each mesh node. In all equations in this section we write H instead of Heff for the

effective field to avoid unnecessary clutter.

4.2.1 Linearising the Conservative LLG Equation

We consider a local equilibrium state m0 with an infinitesimal variation v(t) around it, i.e.

m(t) = m0 + v(t). For the time being we allow arbitrary variations v(t) ∈ R3N . However,

due to the constraint |m| = 1 the only permitted variations are those which are orthog-

onal to m0 at each vertex. This isue will be discussed and addressed in Section 4.2.3

below.

Inserting m(t) = m0 + v(t) into the conservative LLG equation (Eq. (2.1) with α = 0) re-

sults in the following differential equation governing the dynamics of v.

d
dt
(
m0 + v(t)

)
= −γ ·

(
m0 + v(t)

)
× H

(
m0 + v(t)

)
(4.7)

Because m0 is not time-dependent, the left-hand side of Eq. (4.7) simplifies to d
dtv(t).

On the right-hand side, we can rewrite the last term H
(
m0 + v(t)

)
using a Taylor expan-

sion:

H
(
m0 + v(t)

)
= H(m0) + dH

dm
(
m0
)
· v(t) +O(|v|2). (4.8)

Here dH
dm
(
m0
)

denotes the matrix5 of size 3N × 3N representing the derivative of H with

respect to m, evaluated at m0.

Using the abbreviation H0 = H(m0) for the effective field of the equilibrium state we

substitute Eq. (4.8) in Eq. (4.7) and expand the cross product.

d
dtv(t) = −γ ·

[
m0 ×H0 + v(t)×H0 + m0 ×

(dH
dm

(
m0
)
· v(t)

)]
+O(|v|2).

The first term m0×H0 vanishes because in equilibrium no torque acts on m0 (see Brown’s

equation (2.9)). Discarding quadratic terms in |v| therefore results in the following

linearised LLG equation.

d
dtv(t) = −γ ·

[
v(t)×H0 + m0 ×

(dH
dm

(
m0
)
· v(t)

)]
. (4.9)

5Note that while in theory this matrix is symmetric because it represents the Hessian of the micromag-
netic energy, in the context of the finite element implementation in Finmag this is not the case due to the
use of the box scheme for the effective field computation (see Section 2.4). This is discussed in more detail
in Section 4.3.2 below.
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4.2.2 Formulation as an Eigenvalue Problem

In order to solve the linearised LLG equation numerically, we need to reformulate it as

an eigenvalue problem. The first step is to bring Eq. (4.9) into the form d
dtv(t) = A · v(t),

where the matrix A represents the linear operator on the right-hand side. Then we can

make the standard ansatz with an exponential solution to eliminate the derivative and

arrive at an eigenvalue problem.

We start by rearranging the right-hand side of Eq. (4.9) in order to isolate v(t). Us-

ing the fact that m0 has unit length and that H0 is parallel to m0 everywhere (be-

cause m0 is an equilibrium state), we can write H0 = h0m0, where h0 = |H0| is the

magnitude of the effective field. We can thus rewrite the first term in Eq. (4.9) as fol-

lows:

v(t)×H0 = v(t)× h0m0 = h0v(t)×m0 = −m0 × h0v(t)

This has the two-fold advantage of bringing v(t) to the right-hand side of the cross

product and writing this expression in terms of a cross product with m0 instead of

H0, enabling further manipulations below. Substituting this last expression in Eq. (4.9)

enables us to rearrange that equation as follows, first factoring out the cross product with

m0 and subsequently the dot product with v0.

d
dtv(t) = −γ ·

[
−m0 × h0v(t) + m0 ×

(dH
dm

(
m0
)
· v(t)

)]
= γ ·m0 ×

[
h0v(t)− dH

dm
(
m0
)
· v(t)

]
= γ ·m0 ×

[(
h0 · 1−

dH
dm

(
m0
))
· v(t)

]
= γ ·m0 ×A0 · v(t). (4.10)

In the last line A0 denotes the operator A0 = h0 · 1− dH
dm
(
m0
)
, where 1 is the 3N × 3N

identity matrix.

The final step is to find a single matrix representation which combines the action on v(t)
of both the operators m0 × . . . and A0. In order to do so we note that for any 3-

vector w̃ = (w1, w2, w3) the matrix Λ(w̃) =
(

0 −w3 w2
w3 0 −w1
−w2 w1 0

)
provides a matrix repre-

sentation of the cross product with w̃ from the left, i.e. w̃ × ṽ = Λ(w̃) · ṽ for any

ṽ ∈ R3. Therefore we can represent the vertex-wise cross product with m0 ∈ R3N as
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4.2 The Eigenvalue Method: Theoretical Background

a block-diagonal matrix of the following form, which by slight abuse of notation we

denote Λ(m0).

Λ(m0) :=


Λ(m0,1)

. . .

Λ(m0,N )

 . (4.11)

Here m0,i denotes the 3-vector containing the magnetisation components of m0 at mesh

vertex i.

Using this notation we define the following 3N × 3N matrix, which represents the action

of both the cross product m0 × . . . and the operator A0.

A = γ · Λ(m0) ·
[
h0 · 1−

dH
dm

(
m0
)]
. (4.12)

This allows us to rewrite Eq. (4.10) as follows.

d
dtv(t) = A · v(t). (4.13)

This is the desired form of the linearised LLG equation (4.9) that enables us to turn it

into an eigenvalue problem.

From the theory of linear differential equations we know that Eq. (4.13) has a full set

of solutions. We make the ansatz v(t) = Re{eiωt · v0}, where ω ∈ R is the (unknown)

angular frequency of the normal mode oscillation, v0 ∈ C3N is a constant vector and

Re{. . .} denotes the real part of a complex number (i.e., we are using phasor notation).

Inserting this expression into Eq. (4.13) we obtain:6

Re{iω · eiωt · v0} = Re{A · eiωt · v0}.

Dividing the inner expressions on both sides by eiωt we end up with the following.

A · v0 = iω · v0. (4.14)

This equation defines an eigenproblem which can be solved numerically. Each solu-

tion v0 gives rise to a normal mode oscillation of the form m(t) = m0 + Re{eiωt · v0}
which satisfies the linearised LLG equation. The resonant frequency of the mode is given

6Here we use the fact that Re{. . .} commutes with the derivative d
dt because taking the real part of a

complex number is a linear operation.
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by f = 1
2πω, and its oscillation pattern across the finite element mesh is encoded in

the coefficients of v0: the absolute value of each (complex) coefficient represents the

oscillation amplitude of the corresponding magnetisation degree of freedom, whereas

the argument of the coefficient (in the complex polar representation) contains the phase

information.

4.2.3 Admissible variations and reduction of dimensionality

So far we have allowed arbitrary variations v(t) ∈ R3N . However, as a consequence of the

condition |m| = 1 the only admissible variations are those that lie in the 2-dimensional

subspace orthogonal to m0 at each mesh node.7 Because we have not restricted v in any

way, Eq. (4.14) will have a number of eigensolutions which do not represent admissible

variations.8 In order to exclude those solutions we need to constrain v in a suitable way.

This actually turns out to be an advantage because it reduces the number of degrees of

freedom from 3N to 2N , resulting in significantly reduced memory consumption of the

matrix A of approx. 55 %.

At each mesh vertex i we choose two vectors which form an orthonormal basis of the

plane perpendicular to the magnetisation vector m0,i at this node. Then any admissible

variation will be a linear combination of those two vectors at each vertex. Let C be the

matrix of size 3N × 2N which represents the vertex-wise embedding of R2 into R3 that

maps the two standard basis vectors of R2 onto the chosen orthonormal basis at each

vertex. Similarly, we can construct a matrix D of size 2N × 3N which represents the

vertex-wise projection from R3 onto the plane perpendicular to m0 (by dropping the

component parallel to m0 at each vertex and leaving the components for the other two

basis vectors untouched). Both of these matrices are block matrics with blocks of size

3× 2 and 2× 3, respectively. It is easy to see that these operations cancel each other so

that D · C = 12N×2N .

Any admissible variation v can now be written as v = C · v̂ where v̂ ∈ R2N is an arbitrary

vector. Conversely any 2N -vector v̂ gives rise to an admissible variation in this way. Insert-

ing this into Eq. (4.13) and multiplying byD from the left results in

d
dt v̂(t) = (D ·A · C) · v̂(t) = Â · v̂(t) (4.15)

7In the continuous case the vector field v(t) is required to be tangential to the manifold defined
by |m| = 1.

8In fact, A is degenerate. For example, m0 is an eigenvector of A with eigenvalue zero.
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4.2 The Eigenvalue Method: Theoretical Background

This gives a well-defined eigenproblem with a non-degenerate matrix Â ∈ R2N×2N ,

which we can finally solve numerically.

4.2.4 Generalised eigenvalue problem

Equation (4.10) was used to formulate the linearised LLG equation as an ordinary eigen-

value problem. Using a slight rearrangement of this equation we can also obtain a for-

mulation as a generalised eigenvalue problem. The key observation is that if v(t) is an

admissible variation (i.e., v(t) lies in the plane orthogonal to m0 at each vertex) then

the operation of taking the cross product (m0 × . . . ) is invertible because it represents a

rotation within this plane around the axis given by m0. The inverse is (−m0× . . . ), which

represents the rotation by the same amount in the opposite direction. Therefore, in the

case of admissible variations Eq. (4.10) can be rewritten as follows.

−m0 ×
d
dtv(t) = γA0 · v(t). (4.16)

Using an ansatz with an exponential solution as described above results in the following

generalised eigenvalue problem.

B · v0 = ω ·M · v0 (4.17)

The matrices B and M are defined as follows.

B = γA0, (4.18)

M = −iΛ(m0). (4.19)

The matrix M is Hermitian, and in theory this should also be the case for B. However,

due to the use of the box scheme (Section 2.4) for the finite element discretisation of the

effective field this is not the case in Finmag. The implications of this will be discussed in

Section 4.3 below.

4.2.5 The Linearised Non-Conservative LLG Equation

The linearisation of the non-conservative LLG equation (i.e., with α 6= 0) can be per-

formed in way analogous to the derivation in Section 4.2.1. The resulting linearised LLG
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equation looks as follows (with γ′ = γ/(1 + α2); see page 8).

d
dtv(t) = −γ′ ·

[
v(t)×H0 + m0 ×

dH
dm

(
m0
)
· v(t)

]
− α · γ′ ·

[
m0 ×

(
m0 ×

dH
dm

(
m0
)
· v(t)

)
+ m0 ×

(
v(t)×H0

)]
(4.20)

The formulation of this equation as an eigenvalue problem procedes in the same way as

described in Section 4.2.2, resulting in the following eigenproblem matrix.

A = γ′ · Λ(m0) ·
[
h0 · 1−

dH
dm

(
m0
)]
·
[
1+ α · Λ(m0)

]
(4.21)

We can see that Eqs. (4.20) and (4.21) reduce to Eqs. (4.9) and (4.12), respectively, for

α = 0.

4.3 The Eigenvalue Method: Numerical Implementation

The previous section discussed the mathematical details of formulating the linearised

LLG equation as an (ordinary or generalised) eigenvalue problem. In this section we

explain how this eigenvalue problem can be implemented numerically. From a conceptual

point of view there is a clear optimal choice for the implementation strategy, which is

discussed in Section 4.3.1. In practice, however there are limitations due to the way in

which the micromagnetic equations are typically implemented in finite element-based

micromagnetic packages such as Magpar, Nmag and Finmag. We discuss the details in

Section 4.3.2 and also explain the implementation used in Finmag.

Ref. [53] provides an excellent reference for the different kinds of eigenvalue problems

and eigensolvers encountered in numerical applications (as briefly described in Sec-

tion 4.3.1 below). It discusses the specific properties of each type of eigenvalue problem

and solver and gives good guidance for the choice of a suitable solver depending on the

situation.

4.3.1 Optimal Implementation Strategy

There are two general categories of numerical eigensolvers. We refer to these as direct
solvers and iterative solvers.
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A direct solver computes eigensolutions of a matrix A by applying a series of transforma-

tions to it in order to bring it into a form where the solutions are easy to read off directly.

Typically, this uses a variant of the QR algorithm where the matrix is decomposed as

A = QR with an orthogonal matrix Q and an upper triangular matrix R. Due to the use

of orthogonal transformations these algorithms are numerically stable. However, the fact

that they operate on the matrix A directly and compute all eigenvalues and eigenvectors

simultaneously makes them slow and memory-intensive because the entire matrix needs

to be kept in memory.

By contrast, iterative solvers are able to compute only a few selected eigenvectors and

eigenvalues. Starting from an initial guess v0 for an approximate solution, they iteratively

compute a series of better approximations vn until the residual error is below a given

tolerance. In the simplest case, a power iteration of the form vn = An · v0 converges

towards an eigenvector associated with the largest-magnitude eigenvalue. More sophisti-

cated approaches (for example, using a shift-and-invert method) allow the computation

of eigenvectors for, say, the k smallest-magnitude eigenvalues.

Iterative methods can be numerically less stable than direct methods and it is not guar-

anteed that the iteration will converge. I have seen examples with micromagnetic test

cases where iterative solvers failed to converge but a direct solver computed the correct

solution.9 On the other hand, iterative solvers have two main advantages over direct

methods. Firstly, they are much faster due to the fact that they can selectively compute

a small subset of eigensolutions (say, those for the k smallest-magnitude eigenvalues).

Moreover, because they do not directly operate on the eigenproblem matrix A they do

not require it to be specified explicitly. Instead, they only need to be able to compute the

action of A on an arbitrary vector v (i.e., the matrix-vector product A · v). If this action

can be computed without explicitly assembling the matrix A, an iterative solver can be

much more memory-efficient than a direct one.

Both direct and iterative solvers can make use of special properties of the eigenproblem.

For example, in case the matrix A is Hermitian10, there are optimised numerical algo-

rithms available which are both faster and numerically more stable than algorithms for

generic eigenproblems without any symmetry properties. [53]

9In order to explore this in more detail and to compare both the stability and performance of different
eigensolvers (e.g. Scipy, SLEPc, . . . ) I wrote a software package which allows convenient computation and
comparison of different eigensolvers applied to the same eigenproblem. I am planning to make this available
on Github.

10A matrix A is called Hermitian if A† = A, where A† = Atr denotes the transpose of the complex-
conjugate of A. An Hermitian matrix with only real entries is also called symmetric.
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As discussed previously in Section 4.2.4, the linearised LLG equation permits a formula-

tion as a generalised eigenvalue problem of the form B · v0 = ω ·M · v0 with Hermitian

matrices B, M . Furthermore, the action of M and B on a vector v can be computed

directly as follows.

M · v0 = −i ·m× v0, (4.22)

B · v0 = γ ·
(
h0 · v0 −H(v0)

)
. (4.23)

The second equation is derived from the definition of the operator A0 (see the line after

Eq. (4.10)) and uses the fact the effective field H is linear in its argument and therefore co-

incides with its own derivative. In particular, dH
dm
(
m0
)
·v0 = H(v0).

An optimal implementation of the eigenvalue method would therefore be based on the

formulation as a generalised eigenvalue problem with Hermitian matrices in Eq. (4.17).

It would use an iterative solver specialised for Hermitian problems and would avoid

assembling the matrices B and M explicitly by passing functions to the solver which

implement the actions given in Eqs. (4.22) and (4.23).11 Such an implementation would

yield all three advantages mentioned above: speed, memory-efficiency and numerical

stability.

4.3.2 Complications Due to Finite Element Formulation in Finmag

Unfortunately, there are two major complications in the context of a finite element im-

plementation such as the one in Finmag.

Firstly, the derivation of Eq. (4.23) relies on the fact that H(m) is a linear function

in m because it requires the simplification dH
dm
(
m0
)
(v) = H(v). While this equality

holds mathematically, it is only approximately satisfied in Finmag. This is because the

implementation of the demag field computation via the Fredkin-Koehler method [54]

requires the solution of a linear system as a sub-step, which is done via an iterative linear

solver that introduces small numerical inaccuracies and prevents the effective field H
from being exactly linear in m (up to machine precision). As a consequence, in my

experiments with iterative eigensolvers that calculate the action of B via Eq. (4.23) they

failed to converge in all test cases. Therefore it is necessary to assemble the eigenproblem

matrix explicitly and compute the action using the expression dH
dm
(
m0
)
(v) instead of H(v).

11For example, the solver scipy.sparse.linalg.eigsh from the scipy package meets all of these crite-
ria.
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This results in two major bottlenecks for computing resonant modes of micromagnetic

systems in Finmag: the memory consumption of the eigenproblem matrix and the time

needed to assemble it.12

The computation of the eigenproblem matrix B involves the partial derivatives of H
with respect to each magnetisation component. This should result in a symmetric ma-

trix because it represents the Hessian of the micromagnetic energy. However, due to

the use of the box scheme (Section 2.4) in Finmag the resulting matrix is asymmetric

due to the division by the nodal volumes Vi in Eq. (2.14). As a result, we cannot use

a specialised Hermitian eigensolver and must use a generic one instead. In fact, given

that the matrices are not Hermitian there is no advantage in using the formulation as a

generalised eigenproblem at all – this only doubles the memory requirements because

two matrices must be kept in memory instead of a single one. Therefore the implemen-

tation in Finmag uses the formulation as an ordinary eigenvalue problem (Eq. (4.14)).

The matrix A itself is assembled according to Eq. (4.12) by numerically computing the

derivative of the effective field with respect to the magnetisation, H′(m), via a finite

difference scheme.

12The size of the eigenproblem matrix scales quadratically with the number vertices in the finite element
mesh, limiting mesh sizes to ca. 15,000 vertices for which the matrix occupies ca. 7 GB of memory.
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Chapter 5

Resonant Modes of an Elliptical Nanodisc

In order to illustrate the differences between the ringdown and eigenvalue method and

to highlight their particular characteristics with a concrete example we now present a

comparative case study which also provides a numerical verification of our implementa-

tion of the eigenvalue method. It consists of the computation of resonant modes in an

elliptical magnetic nanodisc using these two different approaches.

The ringdown results stem from a recently published study by Carlotti et al. [51]. Their

simulation setup together with a summary of the main results are presented in Section 5.1.

The eigenmode calculations were performed using our implementation in Finmag. These

results are discussed in Section 5.2 and compared with those by Carlotti et al. Despite the

difference in simulation method there is excellent qualitative and quantitative agreement.

Various advantages of the eigenvalue are demonstrated, including the fact that it can

distinguish between frequency-degenerate modes which the ringdown method is unable

to resolve.

This comparative study serves two goals. Firstly, it illustrates the differences discussed

in Section 4.1 between the ringdown and eigenvalue method. In particular, it highlights

some key strengths of the latter. Secondly, it verifies our implementation of the eigenvalue

method in Finmag because the ringdown results were obtained using a independent code

base developed by a third-party group.

5.1 Ringdown Results by Carlotti et al.

We start by summarising the simulation setup and results by Carlotti et al. The stud-

ied system is an elliptical nanodisc with dimensions 100 nm× 60 nm× 5 nm. Simula-
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Quantity Symbol Value (CGS-emu) Value (SI)
Saturation magnetisation Ms 860 emu/cm3 860 kA/m
Gyromagnetic ratio γ 1.76× 107 1/(Oe s) 2.212× 106 m/(A s)
Exchange stiffness constant A 1.3× 10−6 erg/cm 13 pJ/m
Uniaxial anisotropy constant K1 1× 105 erg/cm3 10 kJ/m3

(anisotropy axis: x-axis)

Table 5.1: Material parameters used by Carlotti et al. and their equivalents in SI units.

tions were performed with the finite difference-based commercial software package

MicroMagus [55] using the material parameters1 for polycristalline permalloy given in

Table 5.1.

Carlotti et al. employ a variant of the ringdown approach in which the system is excited

via small, random thermal fluctuations. This results in a uniform excitation of all modes

both spatially and across the frequency spectrum, overcoming the major problem encoun-

tered when using a field pulse that only modes with an appropriate symmetry couple to

the excitation (see Section 4.1.1).

During the simulation the spatially resolved magnetisation dynamics are recorded for a

duration of T = 200 ns (resulting in a frequency resolution of 1/T = 0.005 GHz for the

computed spectra). A local Fourier transform is applied to the data collected for each

discretised cell and the resulting local power spectra are averaged to obtain the global

power spectrum. This is the procedure referred to as method 2 in Section 4.1.1.2, which

avoids the problem with method 1 that eigenmodes with particular spatial symmetries

may not be captured in the spectrum.

Applying a uniform magnetic field H to the nanodisc will result in a shift of the resonance

frequencies. Examples of the global power spectrum for three different strengths of H
are shown on the left-hand side of Fig. 5.1. The peaks in each spectrum correspond to

the resonant modes of the nanodisc. By extracting the spatially resolved Fourier coeffi-

cients for a particular resonant frequency the associated spatial eigenmode profile can

be extracted. The profiles for the first few modes are shown on the right-hand side of

Fig. 5.1.

1In their paper Carlotti et al. report that they used a value of Ms = 860 G for the saturation magneti-
sation. However, the unit G (= Gauss) is most likely a misprint and the value should be 860 emu/cm3

instead, which is a standard value for permalloy. In our simulations we therefore used Ms = 860 kA/m =
860 emu/cm3, leading to excellent agreement with their results.
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5.1 Ringdown Results by Carlotti et al.

Figure 5.1: Original Fig. 1 from Carlotti et al. [51]

Left: Spectra obtained for different strengths of the applied field H. The top three spectra are
computed using spatially resolved ringdown data (method 2 in Section 4.1.1.2). The bottom
one uses the spatially averaged magnetisation data (method 1) and shows only a single peak
for the fundamental mode.

Right: Spatial profiles (amplitude and phase) of the first few eigenmodes.
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Figure 5.2:

Left: Original Fig. 2 from Carlotti et al. showing the evolution of the eigenmode frequencies
in absence of any external field as a function of the mode index m and/or n.

Right: The same results produced using eigenmode computations in Finmag (coloured mark-
ers and lines). For better comparison the data from Carlotti et al. is also shown (black
markers). The eigenvalue method produces a series of additional modes at virtually no extra
computational cost (labelled data points without corresponding black markers).

Note that the fourth spectrum shown in Fig. 5.1 (at the bottom left) is obtained from the

Fourier transform of the spatially averaged instead of the spatially resolved magnetisation

(i.e., using method 1 described in Section 4.1.1.2). It shows only a single peak corre-

sponding to the fundamental mode (plus an almost imperceptible one for mode (2, 0)),

illustrating the fact that most information is lost if the global spectrum is computed from

the spatially averaged magnetisation.

Carlotti et al. introduce a numbering scheme to classify the eigenmodes of the nanodisc.

Each mode is labelled (m,n), where m and n are the number of nodal lines perpendicular

to the major and minor axis of the nanodisc, respectively. For example, the fundamental

mode (0, 0) consists of in-phase precession of the magnetisation in the entire disc and

thus possesses no nodal lines. On the other hand, for mode (1, 0) the magnetic moments

in the left and right half of the nanodisc exhibit out-of-phase precession with respect to

each other, separated by a nodal line of zero precession amplitude through the centre

(see mode profiles in Figs. 5.1 and 5.4). The dependence of the computed eigenmode

frequencies on the mode indices m and n is shown in Fig. 5.2 (left).

During the ringdown simulations Carlotti et al. apply a constant external field along the
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Figure 5.3:

Left: Original Fig. 3 from Carlotti et al. showing the frequencies of the first ten eigenmodes
as a function of the external field strength H, computed using the ringdown approach.

Right: The same results produced using eigenmode computations in Finmag (coloured dots).
For better comparison the data from Carlotti et al. is also shown (black lines).

major axis of the ellipse, at a slight angle of 2° (to avoid artifacts caused by unstable

equilibrium states). The evolution of the resonant frequencies with varying field strength

is shown in Fig. 5.3 (left). Almost all modes exhibit an effectively linear dependence on

the field strength. However, as the applied field approaches the coercive field for which

magnetisation reversal in the nanodisc is triggered (Hx ≈ −630 Oe), the fundamental

mode (0, 0) softens and its frequency approaches zero.

5.2 Eigenmode Results Computed With Finmag and Discussion

Based on the geometry and material parameters reported by Carlotti et al. (see Ta-

ble 5.1) we re-implemented the simulation setup using Finmag and computed the reso-

nant modes using our implementation of the eigenvalue method described in Section 4.3.

The spatial profiles for the first few eigenmodes computed by the eigenvalue method
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Figure 5.4: Spatial profiles of the first few modes computed using the implementation of the
eigenvalue value method in Finmag. Compared to the profiles computed by Carlotti et al.
using the ringdown method (Fig. 5.1) these do not suffer from noise.

are shown in Fig. 5.4. There is a clear correspondence with the ringdown modes in

Fig. 5.1, but the profiles do not suffer from noise introduced by the random fluctua-

tions in the ringdown method (which is needed to excite and thus detect all resonant

modes).

Using the computed eigenfrequencies in the absence of an applied field the plot in

Fig. 5.2 (left) was recreated using our own values, shown in Fig. 5.2 (right). For bet-

ter comparison, the original data values from Carlotti et al. are also displayed as small

black markers. (The values were extracted using the Open Source tool WebPlotDigi-

tizer. [56])

There is remarkable agreement between both methods, despite the vastly different simula-

tion appproaches. The figure also contains a number of additional data points computed

by the eigenvalue method (shown with labels indicating the mode indices (m,n)). These

correspond to modes that have not been computed by Carlotti et al. , either because they
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have a higher frequency or because they could not be resolved from other modes with

a similar frequency, as is likely the case for mode (5, 0), which is part of the broad peak

around 28 GHz at H = 0 in Fig. 5.1.

Similar to Carlotti et al., we performed a series of simulations with different strengths of

the external field H, varying from −650 Oe to 700 Oe in steps of 50 Oe. A few additional

simulations were performed to obtain better resolution around the coercive field, which

in our case was at Hx = −652 Oe. The dependence of the eigenfrequencies on the field

strength for the twelve lowest-frequency eigenmodes is shown in Fig. 5.3 (right). For

convenience, the mode frequencies computed by Carlotti et al. (extracted from their plot

using WebPlotDigitizer) are included as black lines.

Again, the agreement between both methods is excellent. The most noticeable difference

occurs at small field values for the fundamental mode (0, 0) and the mode (1, 0). For

both eigenmodes the agreement is very good for Hx > −300 Oe, but for values close

to the coercive field (Hx = −652 Oe) the frequencies computed by Carlotti et al. are

lower than the ones computed by the eigenvalue method, and the fundamental mode

softens more quickly as the applied field approaches the coercive field. This is expected

because the simulations in Finmag do not take temperature effects into account, whereas

the ringdown simulations include thermal effects. The temperature fluctuations result

in a reduced coercive field and therefore the softening of the fundamental mode occurs

sooner in the ringdown simulations than in the eigenvalue simulations, accounting for

the discrepancy seen in Fig. 5.3.

In Section 4.1.1.3 we discussed the fact that the ringdown method has difficulties re-

solving multiple resonant modes with similar frequencies. The comparison in Fig. 5.3

illustrates this. In their original plot (Fig. 5.3, left) Carlotti et al. show only the single

eigenmode (0, 2) in the frequency range 20 − 25 GHz. Similarly, in Fig. 5.1 the spectra

only exhibit a single (if broad) peak for this mode. However, our eigenvalue compu-

tations show that there exist in fact two distinct modes with very similar frequencies:

mode (0, 2) at 24.28 GHz and mode (3, 1) at 24.56 GHz (frequency values for zero ap-

plied field). A similar situation occurs for mode (1, 2) at 28.41 GHz, which has a “com-

panion mode” with indices (5, 0) at the slightly lower frequency 27.97 GHz that is also

not reported by Carlotti et al. (and is not distinguishable from it in the relatively noisy

spectrum).

These examples illustrate the distinct advantage of the eigenvalue method over the ring-

down method when dealing with frequency-degenerate modes. This property will be

crucial again in Chapter 6 where we present a study of domain wall resonant modes in
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a magnetic nanowire. As the width of the nanowire is varied, two of the eigenmodes

exhibit a frequency crossing, which would not have been possible to study effectively

with a ringdown approach.

5.3 Conclusion

In this section we presented a study of resonant modes in an elliptical magnetic nanodisc,

reproducing recently published results by Carlotti et al. [51] which were computed using

a ringdown approach. There is excellent agreement with the eigenmode results computed

in Finmag, with minor discrepancies due to thermal effects in the ringdown simulations

that are not taken into account in our simulations. A few key advantages of the eigenvalue

method are illustrated, including the fact that frequency-degenerate eigenmodes can be

easily distinguished and that modes up to much higher frequencies can be computed at

no additional cost.
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Chapter 6

Resonant translational, breathing and
twisting modes of transverse magnetic
domain walls pinned at notches

The work described in this chapter was published in Ref. [57]. The contents of the paper are
reproduced below. This work has been carried out in collaboration with Dr Peter Metaxas
from the University of Western Australia. All the simulations for this publication were
carried out using my implementation of the eigenvalue method in Finmag, using simulation
code that I wrote and adapted based on ideas by Dr Metaxas. Most of the simulation runs
and data evaluation were performed by Dr Metaxas and the paper manuscript was mostly
written by him, with my continual input and discussions about the contents of the paper,
as well as advice regarding technical aspects of running the simulations and analysing
the results. I also performed the analysis of the hybrid modes described in Sections 6.A
and 6.3.2.

The eigenvalue method described in Chapter 4 was used to study various types of res-

onant modes (namely, translational, breathing and twisting modes) of transverse mag-

netic domain walls pinned at notches in ferromagnetic nanostrips. We demonstrate that

a mode’s sensitivity to notches depends strongly on the mode’s characteristics. For ex-

ample, the frequencies of modes that involve lateral motion of the domain wall are the

most sensitive to changes in the notch intrusion depth, especially at the narrow, more

strongly confined end of the domain wall. In contrast, the breathing mode, whose dy-

namics are concentrated away from the notches is relatively insensitive to changes in the

notches’ sizes. We also demonstrate a sharp drop in the translational mode’s frequency

towards zero when approaching depinning which is confirmed, using a harmonic oscil-
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lator model, to be consistent with a reduction in the local slope of the notch-induced

confining potential at its edge.

6.1 Introduction

Domain walls (DWs) are (typically nano-scale) transition regions which separate oppo-

sitely oriented magnetic domains in ferromagnetic materials. Many promising future

applications of DWs rely on the current-driven displacement or resonant excitation of

DWs in ferromagnetic nanostrips, the latter representing a type of DW conduit. The

range of DW applications is broad and includes spintronic memristors which use DW dis-

placements to control device resistances [58, 59], next generation data storage devices

relying on DW-based shift registers [15] and even devices for the capture and trans-

port of magnetic microbeads with envisioned use in biotechnology [60, 61]. Resonant

DW excitations [62] refer to resonant precessional magnetization dynamics localized at a

DW [45, 62–74]. These excitations have been shown to have the potential to be exploited

in numerous areas of device-focused research, including the design of radiofrequency

electronic oscillators [75], enabling control over spin wave propagation in magnonic

devices [76, 77] and assisting with DW motion [78–82] and DW depinning [65, 66, 83–

85], the latter via resonant excitation of a DW within a pinning (or ‘trapping’) poten-

tial.

The ability to exploit resonant phenomena in applications will however rely on successful

control of the resonant modes of DWs. It is known that large geometrical constrictions

such as notches (also widely used for positional control [15, 26, 86–88]) in micron-

scale strips can be used to tune the frequency of a DW’s translational mode [75]. For

smaller [89] device geometries however, uniform fabrication of small notches may be-

come challenging since the notches’ dimensions will likely become comparable to those

characteristic of edge roughness or lithographic defects.

In this work we show how different DW resonances have different sensitivities to notches

and that these sensitivities can be linked to the nature of the mode and the structure of

the DW. For example, modes which involve either local or global translation of the wall

can be highly sensitive to the presence, size and position of the notch. Our work focuses

in particular on the resonant properties of pinned head-to-head transverse domain walls

(TDWs, Fig. 6.1(a)) which arise in thin, narrow, in-plane magnetized strips [90]. Here,

the TDWs are pinned at triangular notches located on the edges of the strip. We use a
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Figure 6.1: (a) Zero-field equilibrium magnetization configuration, m0(r), in a 75 nm wide NiFe
strip with symmetric notches (wnotch = 20 nm, dnotch = 10 nm) containing a head-to-head
TDW with my color scaling. The black arrows indicate the local magnetization direction.
The x and y axis origins are also shown. (b-d) Snapshots of the translational, breathing
and twisting modes showing the dynamic component only (dm(r)). The translational mode
snapshot (b) uses my color scaling and is taken when the TDW is displaced to the right (+x)
at which point there is a significant dynamic +mx component. The breathing mode snapshot
(c) also usesmy color scaling and is taken at the point during the TDW width oscillation when
the width is larger than its equilibrium value. There is thus a large dynamic +my component
at the TDW edges which broadens the TDW. The twisting mode snapshot (d) uses mx color
scaling and is taken at the point when the wide end of the TDW (+y) is displaced to the
right and the narrow end of the TDW (−y) is displaced to the left. See also animations of
the modes at http://link.aps.org/supplemental/10.1103/PhysRevB.93.054414.

numerical eigenmode method to study three TDW resonances, corresponding to trans-

lational [64, 65, 75, 91], twisting [45, 92] and breathing [64, 93–97] excitations of the

TDW. The latter mode has recently been studied for oscillator applications [98] and we

demonstrate that this mode has the lowest sensitivity to changes in notch depths, making

it an appealing choice for devices. The eigenmode method we use also enables the study

of the translational mode in the vicinity of the static depinning field where we find a

sharp drop off in this mode’s frequency. This dramatic change in frequency can be linked

directly to the position-dependence of the slope of the notch-induced confining potential

which, as done in experiment [67, 99], we probe by field-induced displacements of the

TDW within the potential.

6.2 Micromagnetic simulation method

Many numerical studies of resonant modes in confined geometries use time domain

(‘ringdown’) methods in which Fourier analysis of precessional magnetization dynamics

is employed to extract resonant mode frequencies and spatial profiles. These methods

require the system to be subjected to an external excitation [44, 45, 92, 100, 101], often

a pulsed magnetic field. In contrast, eigenmode methods [52, 102] enable a direct calcu-

77

http://link.aps.org/supplemental/ 10.1103/PhysRevB.93.054414


Chapter 6 Resonant translational, breathing and twisting modes of transverse magnetic

domain walls pinned at notches

lation of resonant magnetic modes from a system’s equilibrium magnetic configuration,

m0(r) (as do dynamical matrix methods [103]). This enables the observation of the full

mode spectrum without requiring careful choice of the ringdown excitation’s symmetry.

It also enables us to study DW modes at fields which are in the close neighborhood of the

static depinning field where excited translational resonances could otherwise resonantly

depin [65, 66, 83–85] the wall.

Our simulations were run on a Permalloy strip having saturation magnetizationMS = 860
kA/m and exchange stiffness Aex = 13 pJ/m. The strip has tapered ends and two central

notches for TDW pinning (Fig. 6.1(a)). Unless otherwise noted, the notches are located

at x = 0, the strip thickness is 5 nm and the total length is 750 nm. Simulations were

run using the finite element micromagnetic package, Finmag, which is the successor to

Nmag [19] and is based on a similar design.

Magnetic eigenmodes are determined from m0(r) with Finmag using a method similar

to that described by d’Aquino et. al. [52] It is valid for small time-dependent oscillations,

dm(r, t), around m0(r) and has been used recently to model ferromagnetic resonances in

magnonic crystals [104]. The basic principle is to linearize the (undamped) LLG equation

around the equilibrium state m0(r), resulting in a linear system of ordinary differential

equations (ODEs) for the oscillations dm(r, t) which has has the form ∂
∂tdm(r, t) =

A · dm(r, t) with a matrix A ∈ R3N×3N , where N is the number of nodes in the finite

element mesh1. This system of ODEs has a full set of solutions of the form dm(r, t) =
Re{(}ei2πftv(r)). Each solution vector v ∈ C3N represents an eigenmode of the nanostrip

corresponding to the frequency f ; its complex coefficients encode the local amplitudes

and relative phases of the eigenmode at the mesh nodes. In theory, the eigenfrequencies

f are purely real. However, due to the formulation of the problem as a non-Hermitian

eigenvalue problem the eigensolver returns complex solutions with a small imaginary

component due to numerical inaccuracies. We quote the real parts of f . Eigenmodes

localized at the TDW can be identified by visual inspection of the spatially resolved

eigenvectors. Either the dynamic component, dm(r, t), may be inspected alone or it can

be scaled and added to m0(r), enabling a visualization of the actual TDW dynamics for

1The matrix A has the form A = γ · Λ(m0) · (H0 − H′
eff(m0)), where γ is the gyromagnetic ratio,

Λ(m0) is a block-diagonal matrix representing the point-wise cross product with m0 at each mesh node
(i.e., it is defined such that Λ(m0) · w = m0 × w holds for any w ∈ R3N ), and H0 is a block-diagonal
matrix where each block is a 3 × 3 identity matrix multiplied by the dot product Heff ·m0 evaluated at
the mesh node corresponding to this block. The matrix A can be derived by starting from the undamped
LLG equation ∂m

∂t
= −γ ·m×Heff, making the ansatz m(r, t) = m0 + dm(r, t), multiplying out the cross

product, neglecting any higher-order terms and applying suitable rearrangements to the equation in order
to isolate dm(r, t). See Eq. (95) in Ref. [52].
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each mode (e.g. see mode animations2).

To find m0(r), the system was initialized with a trial head-to-head TDW configuration

centered on x = 0 and allowed to relax with damping parameter α = 1, typically until
dm
dt < 1◦/ns at all points in the strip. For a strip width of 75 nm and a thickness of 5 nm,

using the stricter criterion dm
dt < 0.1◦/ns resulted in changes in the mode frequencies of

1.1 Mhz or less (≤ 0.04%). The relaxed configuration was a pinned TDW for all studied

geometries [90]. Note that the TDW (Fig. 6.1(a)) is wider at the +y side of the strip

which will be important for determining TDW-notch interactions.

We used a non-uniform finite element meshing with a characteristic internode length of

lmesh = 3 nm at x = 0 (less than the NiFe exchange length [105] of 5.7 nm). There was

a smooth transition to lmesh = 8 nm at the ends of the strip. This reduces computational

time and memory use. However, a post-relaxation mesh coarsening [104] could poten-

tially be applied to future studies. We note that except for those simulations in which

magnetic fields close to the DW depinning field are applied, the error in the mode fre-

quency associated with the non-uniform meshing was less than 1%. However, as a result

of the non-uniform mesh, we present results only on those modes which are localized on

the TDW near the center of the strip since modes associated with the domains themselves

will be in regions with lmesh close to or larger than the exchange length. This said, such

modes (typically multiple GHz) can also be excited in experiment together with the DW

modes [74].

6.3 TDW modes

The three lowest frequency TDW modes correspond to translational, breathing or twisting

deformations. In Figs. 6.1(b-d) these three calculated modes are shown (as a snapshot

of the mode’s dynamic component, dm(r, t) at a time such that dm(r, t) is large) for a

75 nm strip with symmetric, triangular notches, each with width, wnotch = 20 nm and

a depth of intrusion into the strip, dnotch = 10 nm. The translational mode (2.70 GHz)

corresponds to an oscillatory, side-to-side motion of the TDW away from the notches

(Fig. 6.1(b)). For the breathing mode [64, 92–97] (6.57 GHz, Fig. 6.1(c)), dynamics

are concentrated at the edges of the domain wall with the excitations mirrored around

x = 0. The dynamics of this mode result in an oscillatory change in the TDW’s width as a

2See supplemental material at https://journals.aps.org/prb/supplemental/10.1103/PhysRevB.
93.054414 for animated .GIF files which show the full resonant TDW dynamics, m0(r) + dm(r, t), for
each of the three TDW modes at a strip width of 75 nm with dnotch = 10 nm and wnotch = 20 nm.
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function of time. For this strip width, the highest frequency mode is the 7.03 GHz twisting

mode (Fig. 6.1(d)). This mode involves the TDW’s two ends (near the top/bottom of the

strip) moving laterally but in opposite directions. Idealizing the TDW as a string crossing

the nanostrip, this mode has similarities to a standing wave with a zero-displacement

node (dm ≈ 0) near y = 0. As shown below, and in contrast to what is observed for the

translational mode, a finite frequency for the breathing and twisting modes is non-reliant

on confinement (i.e. they are intrinsic f > 0 TDW excitations). Indeed, Wang et al. [92]

have observed what appear to be similar breathing and twisting modes for unpinned

TDWs.

We now confirm that the frequencies of the translational and breathing modes obtained

using the eigenmode method have good consistency with those obtained via a time do-

main ringdown method. To do this, we applied external excitation fields to the system

which had the correct symmetry to couple to each of these two modes (we note however

that we were not able to efficiently excite the twisting mode either with uniform or non-

uniform excitations3). For the translational mode, we applied pre-ringdown excitation

field in the x direction: x-fields will displace the wall and thus can be used to couple

to the transaltional mode. For the breathing mode, we applied a field in the y direction

which acts to increase the TDW width, thus coupling to the breathing mode’s width os-

cillation. Fourier analysis of the resultant ringdown dynamics (mx(t) for ftrans and my(t)
for fbreathe) at a strip width of 80 nm demonstrated successful field-induced excitation of

the translational and breathing modes at ftrans = 2.6± 0.1 GHz and fbreathe = 6.4± 0.1
GHz. These frequencies are in good agreement with the eigenmode results of ftrans = 2.61
GHz and fbreathe = 6.38 GHz for w = 80 nm (as per Fig. 6.2 which will be discussed later

with regards to strip-width dependence of the mode frequencies).

Although this work does not attempt to address spin torque driven auto-oscillations asso-

ciated with the TDW modes, radiofrequency magnetic fields (or effective fields associated

with spin torques) having symmetries as discussed above can be used experimentally to

drive the breathing and translational modes. This could be achieved using x or y ori-

ented (real or effective) magnetic fields generated by striplines [71] (x or y), Oersted

fields due to in-plane current injection [106] (y) or tailorable [107] Slonczewski or

field-like spin torques (x or y) under perpendicular current injection in magnetic tunnel

junctions (MTJs) [74, 108–110] and all-metallic magnetoresistive stacks [111]. Indeed,

Lequeux et al [74] recently observed the translational mode under microwave frequency

3To do this, we attempted both spatially uniform excitations along the x, y and diagonal axes an non-
uniform excitation, the latter having a field parallel to the x-axis everywhere but with a strength proportional
to the y-position; i.e. pointing in positive (negative) x-direction at positive (negative) y as per Fig. 6.1(a).
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Figure 6.2: (a) Frequencies of the three TDW eigenmodes as a function of strip width, w. The
notches are symmetric (dnotch = 10 nm, wnotch = 20 nm). At w = 88.4 nm the calculated
modes are ‘hybrid’ breathing-twisting modes (see inset, b). (c) shows snapshots of the
amplitude of the dynamic component (red) of the hybrid modes found for w = 88.2 nm at
6.091 GHz (upper, primarily a breathing mode) and 6.099 GHz (lower, primarily a twisting
mode).
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current injection in a MTJ. Numerous other studies have also demonstrated the excita-

tion of the translational mode using spin torques due to in-plane current injection [62,

65, 75] and new possibilities exist with regards to the use of spin-orbit torques [112–

114].

6.3.1 Notch dependence

We now examine the dependence of the modes on the size of the notches used to pin

the TDW. The translational and twisting modes both involve some movement of the

TDW away from the energetically favorable x = 0 position. This can either be a global

side-to-side movement of the TDW (as for the translational mode) or a local side-to-

side movement (as for the twisting mode where out of phase lateral TDW movements

arise at opposite edges of the strip). Lateral movement has strong implications for notch

sensitivity: both the twisting and translational modes have a strong dependence on the

notch size. In contrast, dynamics of the breathing mode are concentrated at the lateral

edges of the TDW structure (and thus away from the central notches) which results in a

much weaker sensitivity to the notch and changes to it.

To demonstrate the different sensitivities of each mode to notch size, we have plotted

each TDW eigenfrequency in Figs. 6.3(a,b) as a function of the notches’ intrusion depths

for a 75 nm wide strip with a 20 nm (= wnotch) wide notch. Here, both notches have the

same geometry on the two sides of the strip. One will notice immediately that the twisting

and translational modes (i.e. those with a translational nature) are highly dependent on

dnotch. The translational mode’s frequency, ftrans, decreases smoothly with dnotch, going

to zero at dnotch = 0 (Fig. 6.3(a)). This latter result is consistent with the wall being free

to translate laterally at ftrans = 0 in the absence of pinning (i.e. dnotch = 0 corresponds to

a smooth-edged strip with no notches). The twisting mode frequency, ftwist, also depends

quite strongly on dnotch, reducing by ∼40% (∼ 2 GHz) when changing dnotch from 20

nm to 0 nm (Fig. 6.3(b)). In contrast, the breathing mode frequency, fbreathe, changes by

only 1.5% over the same range of dnotch values (Fig. 6.3(b)). Note also in Fig. 6.3(b) that

fbreathe and ftwist remain finite at dnotch = 0, consistent with these modes being intrinsic

TDW excitations for which the observation of a finite eigenfrequency is non-reliant on

notch-induced, lateral TDW confinement.

Despite both notches being geometrically identical, one can see from the mode snapshots

in Figs. 6.1(b,d) that both the twisting and translational modes’ dynamics are largest at

the wide end of the TDW. This suggests that this end of the TDW has a weaker lateral
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Figure 6.3: (a,b) TDW eigenfrequencies versus dnotch when varying dnotch for both notches
simultaneously. (c,d) Eigenfrequencies when varying dnotch only at one side of the strip,
either at the wide end or narrow end of the wall while keeping the other notch with dnotch =
10 nm. For all data wnotch = 20.

confinement than the narrow end of the TDW. This is confirmed in Fig. 6.4 which shows

a TDW being pushed away from the notches under the action of a magnetic field, H,

applied along the x axis (H < Hdepin, the static depinning field). It is indeed the less

strongly pinned wide end of the TDW which is displaced furthest from the notch. To see

what effect notches at each end of the wall have on the modes, we show in Figs. 6.3(c,d)

results obtained while varying dnotch on only one side of the strip (either at the wide end

or at the narrow end of the TDW) while keeping the other notch’s intrusion depth fixed

at 10 nm. We indeed find that ftrans is most sensitive to changes of dnotch at the narrow

end of the wall, that notch being dominant in determining ftrans. For example, reducing

dnotch from 10 nm to 2 nm at the narrow end of the wall (filled circles in Fig. 6.3(c))

generates a very strong, 40% reduction in ftrans. This reduction in ftrans is accompanied

by a transition to a more pure translation of the TDW structure in its entirety rather than

an excitation in which the highest amplitude dynamics occur at the wide end of the TDW

(as in Fig. 6.1(a)) since now both ends of the wall are experiencing a relatively weak

pinning. If we change dnotch only at the wide end of the wall however, we observe much

weaker changes in ftrans (crossed open circles in Fig. 6.3(c)) with similar trends seen for

ftwist. The dnotch-dependence of fbreathe again remains very weak.
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Figure 6.4: Deformed domain wall in a 75 nm strip for Hx = 5530 A/m.

To test the limits of the dnotch-insensitivity of fbreathe, simulations were run with the

notch at the wide end of the wall displaced away from x = 0 for the 75 nm wide strip.

This did lead to small changes in fbreathe (dnotch = 10 nm, wnotch = 20 nm) with some

distortion of the breathing mode observed when the notch was right at the edge of the

TDW. However the maximum frequency change still remained within 3% of the value

observed for two laterally centered notches. We also looked at the percentage variation

of fbreathe for two other strip widths for centrally located notches (60 nm and 100 nm

wide strips again having a 5 nm thickness). We found the lowest sensitivity occurred for

larger strip widths where the notch intrudes comparatively less far into the strip and thus

presumably generates the weakest change to the energy landscape that is experienced by

the TDW (confirmed in Sec. 6.3.3 for the translational mode). Reducing the thickness of

the layer also led to a further reduced sensitivity. This can be seen in Fig. 6.5(b) where we

again plot resonance data for 60 nm and 75 nm wide strips but this time with a reduced

(2.5 nm) strip thickness. An important point to note from Fig. 6.5 is that the breathing

mode remains highly insensitive to changes in the dnotch of small notches for all studied

strip widths. Indeed, we see the largest changes in fbreathe when dnotch becomes larger

than about 12 nm suggesting that small defects should have only a very minor effect on

the breathing mode. In contrast, the other two modes exhibit the highest sensitivity to

changes in dnotch when dnotch is small (Fig. 6.3).

We briefly note that changes in the width of the notch (for a fixed notch depth of 10 nm)

yielded only weak changes for fbreathe and ftwist. Over a range of notch widths from 5

nm to 50 nm we observed ∆ftwist ≤ 3 % and ∆fbreathe ≤ 2 %. The change in ftrans was

also quite small when reducing the notch width below 20 nm (∆ftrans ≤ 6 %). However,

broadening the notch to 50 nm led to a strong reduction in ftrans of > 60 %, presumably

due to a strongly reduced confinement by the broader notches (the effect of confinement

on ftrans is discussed further below).
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Figure 6.5: Percentage change in fbreathe with respect to fbreathe at dnotch = 10 plotted against
dnotch for (a) 5 nm thick strips and (b) 2.5 nm thick strips at various strip widths (see
legends).
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6.3.2 Strip width dependence

When holding the notch geometry constant (wnotch = 20 nm and dnotch = 10 nm), an

increasing the strip width generates an reduction in each of the TDW mode frequencies

(Fig. 6.2(a)). The breathing and twisting modes remain highest in frequency and their

similar frequencies, coupled with slightly different width dependencies, results in a mode

crossing which occurs at w = wc ≈ 88.4 nm for this 5 nm thick strip (Figs. 6.2(b)). At w ≈
wc, a translational mode as well as two other distinct TDW modes are found with the latter

appearing as ‘hybrid’ twisting-breathing modes (e.g. Fig. 6.2(c)). However, their hybrid

nature is due to the arbitrary basis chosen by the eigensolver: each hybrid mode can in

fact be shown to be a linear combination of the ‘pure’ orthogonal twisting and breathing

eigenmodes (see Appendix 6.A). Indeed, we expect no coupling between different modes

due to the exclusion of damping and non-linear terms in our approach [52]. The hybrid

nature of the modes remains clearly identifiable via visual inspection for |w − wc| .
1.5 nm. However, as |w − wc| increases, the computed modes become more ‘pure’ (i.e. a

dominant breathing or twisting characteristic). In Fig. 6.2(b), all modes at w 6= 88.4 nm

are labeled either as twisting or breathing with the label corresponding to the mode

which is dominant. Analogous hybrid modes were also calculated for a similar geometry

using the mode solver in the SpinFlow3D simulation packag. Some details on this solver

have been given previously [102].

6.3.3 Width dependent confinement and its effect on the translational
mode

We now turn specifically to the width dependence of the translational mode which

will be shown to be linked to the width-dependence of the notch-induced confine-

ment of the TDW. Note that some qualitative models for the higher frequency breath-

ing and twisting mode frequencies as a function of strip width are given in Appendix

6.B.

The frequency of the translational mode of the pinned TDW, ftrans, as a function of

H < Hdepin is shown for a number of strip widths in Fig. 6.6 (again we use wnotch = 20
nm and dnotch = 10 nm). Note that for fields above the depinning field (i.e. H > Hdepin),

the system’s relaxed configuration is that of a quasi-uniformly magnetized strip with

the TDW having been displaced towards the end of the strip and annihilated during

the simulation’s relaxation stage (i.e. the moment where we first determine m0(r)). As
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such, there is no TDW mode data above Hdepin (since no TDW is present). For all strip

widths, ftrans shows a weak negative monotonic dependence on H for small H/Hdepin.

However, ftrans drops sharply to zero (i.e. again going toward the case of a free TDW)

as H → Hdepin. DW resonant frequency reductions near depinning have been previously

observed experimentally [67, 99]. Note that for H ≈ Hdepin, ftrans exhibits a stronger

sensitivity to the relaxation parameters of the simulation, requiring the use of a smaller
dm
dt nearHdepin. ftrans as well as the determined value ofHdepin itself is also more sensitive

to the non-uniform meshing than the undeformed TDW at H = 0. For example, a slightly

higher Hdepin (< 1% relative change) was found when using lmesh = 3 nm throughout

the structure at w = 60 nm. Thus, there is some influence of the meshing on the pinning

of the wall here.

As Hdepin is approached, ftwist also drops in frequency (Fig. 6.6(b)) which may, in part,

be due to the wide part of the TDW being away from the upper notch (as per Fig. 6.4).

This shifts the concentration of the dynamics at the upper edge of the strip away from

the notch (Fig. 6.6(c)). We have already seen that strongly reducing the size of the upper

notch for an undisplaced wall reduces ftwist (Fig. 6.3(d)) and the case of the displaced

wall is somewhat analogous as the upper part of the wall is now far from the notch

(i.e. we effectively have dnotch → 0 at the location of the upper end of the TDW). Unlike

ftrans, ftwist remains finite near depinning, analogous to the finite ftwist observed for

dnotch = 0 in Fig. 6.3(b). The breathing mode again shows a very weak change in its

frequency even near depinning where the spatial profile of the mode is strongly deformed

(Fig. 6.6(d)) with respect to the case of a non-displaced wall (Fig. 6.1(c)). Once again this

highlights the robustness of fbreathe (to notch geometry and now in-plane-field-induced

deformation).

In Fig. 6.6 an increased ftrans can be observed at small strip widths (a trend which has

already been seen in Fig. 6.2(a)) and this is accompanied by an increased Hdepin. To

understand this, we will take the previously used approach of modeling a parabolic,

notch-induced TDW confining potential [33, 66, 75, 84, 115]. This results in a spring like

behavior of the DW with a restoring force of −kNx where kN is the pinned TDW’s spring

constant and x its displacement from the center of the strip. The equilibrium position of

the TDW at a given H is determined by a balance between this restoring force and the

effective force due to the applied magnetic field [33, 84]. This force can be estimated

from the x-derivative of the change in Zeeman energy for the displaced TDW: 2µ0wtMSH

where t = 5 nm is the strip thickness and µ0 = 4π × 10−7 T·m/A. Note that we neglect

the locally altered strip width at the notch.
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Figure 6.6: (a) ftrans versus in-plane field, H (oriented along +x), for strip widths of 50, 60, 75
and 110 nm (dnotch = 10 nm and wnotch = 20 nm). (b) fbreathe and ftwist versus H at a strip
width of 75 nm. (c,d) Snapshots of the amplitude of the dynamic component (red) of the
magnetization for the (c) twisting and (d) breathing modes at a strip width of 75 nm for
H = 5530 A/m (i.e. close to depinning).
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Figure 6.7: (a) Equilibrium TDW position versus H applied along the +x direction. Solid lines
are linear fits to the low field data (typically the first four to five points). (b) TDW spring
constant versus strip width calculated from the linear fits in (a) using Eq. (6.1). (c) Thiele
domain wall width of the H-deformed TDWs versus H. (d) Calculated ftrans (calculated as
per the text using the data in (a,c) and Eqs. (6.1-6.3)) versus the simulated ftrans taken from
the data in Fig. 6.6.

To extract kN , in Fig. 6.7(a) we plot the equilibrium position for the domain wall versusH

for the data shown in Fig. 6.6. The position of the field-deformed TDW (see, e.g., Fig. 6.4),

x, was determined from the spatially averaged x-component of the magnetization along

the strip [33, 84]. For low field, there is good linearity between x and H, indicative of

a close-to-parabolic pinning potential. At larger fields however, there is a faster than

linear growth in the xTDW, the effect of which will be discussed further below. From the

data in the linear region (which has slope dx/dH = glinear), we can estimate a value for

kN :

kN = (2µ0wtMS)(x/H)−1 = (2µ0wtMS)g−1
linear. (6.1)

kN , plotted in Fig. 6.7(b) versus the strip width, reduces with increasing strip width. At

small widths, this results in a stiffer domain wall where the notch, which has a fixed size

here, makes a larger relative intrusion into the strip.
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We can now use the values of kN to estimate ftrans at H = 0 and compare to the data in

Fig. 6.2 [33, 84]:

ftrans = 1
2π

√
kN
mw

. (6.2)

Here, mw is the mass (e.g. [62, 91, 116]) of the TDW. Note that an increased resonant

frequency is observed for smaller widths (Fig. 6.6) where kN is higher (Fig. 6.7(b)).

Thus we can immediately see that our results are qualitatively consistent with the trend

suggested by Eq. (6.2), at least under the assumption of a w-independent mass. To

obtain numerical values for ftrans however, we must estimate the mass for which we

use the damping-free (α = 0) expression [33, 84] (a similar expression is given by

Krüger [117]):

mw = 2µ0wt

γ2(Nz −Ny)∆
. (6.3)

γ = 2.210713×105 m/A.s and ∆ = ∆T is the Thiele DW width [118] (field dependent, as

per Fig. 6.7(c)) which is defined by 2/∆T = 1/(wt)
∫
V (dm/dx)2 where V is the nanostrip

volume. Ny and Nz are the demagnetizing factors for the TDW in the y and z directions.

To calculate these factors, we used expressions given by Aharoni [119], treating the TDW

as a uniformly magnetized slab with a length in the y direction equal to the strip width,

a height in the z direction equal to the strip thickness and a width in the x direction of

ρ∆T (H = 0). ρ, a scaling factor, is the only free parameter since the strip width and strip

thickness are fixed. It sets the width of the rectangular prism used for the demagnetizing

field calculation as a fraction of the Thiele width.

As can be seen in Fig. 6.7(d), good agreement between the eigenmode simulation at

H = 0 and the spring model (Eq. (6.2)) is found for the four studied thicknesses when

using ρ = 1
3 . This means that the slab used for the demagnetizing factor calculation

is ∼ 10 nm wide in the x direction, essentially covering a central narrow slice of the

TDW structure where the magnetization is quasi-uniformly magnetized in the y-direction

(Fig. 6.8(a)) and thus close to our original model of a uniformly magnetized slab. Note

that the magnetization undergoes an almost complete rotation from being aligned along

+x to−x over a much larger distance∼ π∆T (Fig. 6.8(a)). It is however the central region

of the TDW which appears to be the relevant part in this approach.

The effective width of the pinning potential, Lpin, defined here as the maximum displace-

ment of the TDW measured before depinning (Fig. 6.7(a)), increases with ∆T (read from

Fig. 6.8(b)) and thus with strip width. However, the depinning field (the field at which the

wall can escape from the pinning potential) is smallest in these wide strips (Fig. 6.6(a))

which are characterized by a larger Lpin. Thus, although the pinning potential has a larger
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Figure 6.8: (a) x-dependence of the x and y components of the magnetization taken at y = 0
(at the center of the strip). ∆T is the Thiele DW width and ρ is a scaling factor used in the
demagnetizing field calculation. (b) Effective width of the pinning potential (Lpin) estimated
from the maximum displacement of the TDW before depinning (taken from Fig. 6.7(a))
plotted against ∆T for strip widths of 50, 60, 75 and 110 nm. The largest width strip has the
largest ∆T .
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effective width when the strip width is larger (increasing by a factor of ∼1.4, Fig. 6.7(c)),

it appears to be the reduced kN (which changes more strongly, reducing by a factor of

∼2, Fig. 6.7(b)) which is dominant in determining the strength of the depinning field

(i.e. leading to a reduced Hdepin (and ftrans) at larger strip widths).

Finally, we address the faster than linear growth in the TDW position versusH (Fig. 6.7(a))

which is a result of the pinning potential having a reduced steepness near its edge [99].

We can show that Eq. (6.2) remains valid in describing ftrans at x 6= 0 (i.e. even in the

non-parabolic [67, 99] part of the potential) if we replace kN by a local effective spring

constant

kN,eff(x(H)) = 2µ0wtMS

dx/dH
. (6.4)

In Fig. 6.9
√

(dxTDW/dH)−1 (∝ ftrans as per Eq. (6.2)) has been plotted versus the

simulated values of ftrans for all studied strips. We have neglected any field-induced

change in the TDW mass (mw = mw(H = 0)) and have used a numerical derivative

of the data in Fig. 6.7(a) to determine dxTDW/dH. We find a high degree of linear-

ity over the full field range for all strip widths. This confirms the continued validity of

Eq. (6.2) and demonstrates that the sharp drop-off in ftrans near Hdepin (Fig. 6.6) can

be linked with a change in the local gradient of the pinning potential at its edge, the

latter determining the resonant frequency of the displaced TDW in the small oscilla-

tion limit. Note that from Eq. (6.2), we expect that the slope of the data in Fig. 6.9

will be 2π
√
mw(H = 0)/2µ0wtMs. We have plotted the ratio of the predicted slope to

the fitted slope in the inset of Fig. 6.9(d) where we indeed find consistency to within

2.5%.

6.4 Conclusion

We have numerically calculated eigenmodes of transverse domain walls (TDWs) which

are pinned at triangular notches in in-plane magnetized nanostrips. This enabled the

study of translational, twisting and breathing resonances of TDWs and the effect that

notch geometry and field-induced TDW displacements have on these modes.

The twisting and translational modes both involve either local or global lateral translation

of the wall structure within the notch-induced pinning potential. This leads to a clear

sensitivity to changes in the intrusion depth of the notches especially to that of the notch

at the narrow end of the TDW structure which has a dominant role in laterally confining

the TDW. The breathing mode, which is characterized by dynamics concentrated at the
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Figure 6.9: Plot of (dxTDW/dH)−1, proportional to the local effective spring constant, versus
ftrans for field-displaced TDWs in strip widths of (a) 50, (b) 60, (c) 75, and (d) 110 nm.
(dxTDW/dH)−1 and ftrans data were taken, respectively, from Figs. 6.7(a) and 6.6. Solid
lines are linear fits to the data assuming a zero x-axis intercept. The inset in (d) shows the
ratio of the slope of the data in (a-c) predicted from the spring model to the measured slope.
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lateral edges of the TDW (and thus away from the notches), was relatively insensitive to

changes in the notch intrusion depth and width. For example, when varying the notch

intrusion depth from 0 to 20 nm, the largest change in the mode’s frequency was 3%

(observed for the narrowest studied strip width of 60 nm). Based on our results, this sen-

sitivity could be further reduced by using a thinner or wider strip.

These results may be relevant when choosing which TDW mode to exploit in DW oscil-

lators or when aiming to individually or simultaneously excite (multiple) DWs pinned

at different positions within a strip (e.g. in shift registers [15, 98, 120]). This is be-

cause certain modes (i.e. those with a translational nature) will be more sensitive to

non-uniformity of notch geometries and/or to the presence of small uncontrolled defects.

Our results suggest that the breathing mode frequency will be the most robust to the

introduction of small unwanted defects or non-uniformity in fabricated notch geometries,

especially at larger strip widths or smaller notch depths. In contrast, having a transla-

tional or twisting mode frequency which is robust to small changes in the notch geometry

appears to be reliant on having relatively large notches.

For a fixed notch geometry, the frequencies of all modes increased with decreasing strip

width, making this an important device parameter to control. In the particular case of

the translational mode’s frequency, its width dependence could be reproduced with a

spring model for notch-induced TDW confinement. Furthermore, the eigenmode method

(which does not rely on the forced driving of the TDW’s resonant dynamics) allowed

us to determine the translational mode frequencies over a wide range of fields, includ-

ing in the vicinity of the static depinning field where the translational mode frequency

dropped sharply towards zero as the TDW was displaced to the edge of the confining

potential. At low applied magnetic fields (and thus low TDW displacements), the notch-

induced confining potential was parabolic, enabling us to analytically reproduce the

simulated translational mode frequency at zero field. At large fields (which generated

larger displacements of the TDW within the confining potential), the growth of the pin-

ning potential’s energy with displacement was sub-parabolic (as seen previously for a

vortex DW [99]). Here the spring model could still be used to reproduce the translational

mode frequencies as long as the local slope of the pinning potential was used to calculate

the spring constant. This calculation required a DW mass determination with a good

match between quasi-analytics and simulation achieved when using only the very narrow

central part of the TDW for the calculation of the TDW’s demagnetizing factors (critical

for the determination of the TDW’s mass).

Finally, we note that ftrans is finite only in the presence of confinement. In contrast,
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fbreathe and ftwist remain large and finite even without a notch or close to the depinning

field, demonstrating an intrinsic f > 0 characteristic, albeit with some (mode-dependent)

sensitivity to the notches’ presence.

Appendices

6.A Extraction of pure modes from hybrid modes

To demonstrate that each ‘hybrid’ mode (Fig. 6.2(c)) is a linear combination of the ‘pure’

orthogonal twisting and breathing eigenmodes, we let v1,v2 be the hybrid mode eigen-

vectors as returned by the solver (their complex entries encode the amplitude and relative

phase of the magnetization oscillations at each mesh node). To show that these can be

reduced to the ‘pure’ modes we need to find complex scalars a1, a2 such that the linear

combination v = a1v1 + a2v2 represents a breathing or twisting mode. The breathing

mode is characterized by being fully symmetric about the y-axis, i.e. the oscillations in

the left and right half of the nanostrip are out of phase by 180◦: v(x, y, z) = −v(−x, y, z).
The expression

∫
|v(x, y, z) + v(−x, y, z)| thus measures the deviation from symmetry for

an eigenmode v and we can find the ‘most symmetric’ linear combination by minimizing

this with respect to a1, a2. Since each eigenvector is only determined up to a scalar, we

can assume that a1 = 1 (or a2 = 1), reducing the dimensionality of the optimization prob-

lem. The obtained linear combination is confirmed to be an eigenvector corresponding to

a breathing mode. Similarly, the twisting mode can be recovered by using the condition

vtwist(x, y, z) = vtwist(−x, y, z).

6.B Modeling the twisting and breathing modes

We detail here two simple qualitative models for the fbreathe andftwist strip width depen-

dencies seen in Fig. 6.2(a).

The general trend of decreasing ftwist with w for fixed notch geometry is qualitatively con-

sistent with a string-like mode that is confined across the strip having a single node in the

strip’s center (i.e. with wavelength ∼ 2w and thus a frequency ∝ 1
w ). We plot ftwist versus

1
w in Fig. 6.10(a) with reasonable linearity at larger widths.
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Figure 6.10: (a) ftwist versus the inverse strip width. (b) fbreathe versus
√
Ny (see text for Ny

calculation) for a number of strip widths. The linear fits have been obtained by constraining
the x-axis intercept to zero.

96



6.B Modeling the twisting and breathing modes

Liu and Grütter have constructed a model for DW width resonances in magnetic films [94]

which predicts that fbreathe will be proportional to
√
Keff where Keff is the effective

anisotropy energy associated with the domain wall. For our static TDW (here in a confined

geometry rather than a continuous layer), Keff comes from the TDW’s demagnetizing

energy and can be written as 1
2µ0M

2
SNy (e.g. [121]), giving fbreathe ∝

√
Ny. Indeed, this

relation reproduces the observed fbreathe trend relatively well over the entire strip width

range, as calculated for a number of strip width values in Fig. 6.10. To determine Ny, we

used the same slab approach as used in Sec. 6.3.2.
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Chapter 7

Frequency-based nanoparticle sensing over
large field ranges using the ferromagnetic
resonances of a magnetic nanodisc

The contents of this chapter have been accepted for publication [122] in IOP Nanotechnology
and are currently in press. The paper is reproduced below. The work was carried out in collab-
oration with Dr Peter Metaxas from the University of Western Australia.

In this chapter we use the eigenvalue method implemented in Finmag (see Section 4.1.2)

to study resonant modes in a thin magnetic disc with dimensions typical of those in

out-of-plane magnetized spin torque nano oscillators. In particular, we study the effect

of magnetostatic coupling between magnetic nanoparticles and the disc. We identify

the resonant dynamic magnetisation modes within the disc using direct magnetic eigen-

mode calculations and study how these modes are modified in the presence of a nearby

magnetic nanoparticle. We demonstrate that particles with properties typical of those

under study for biosensing applications can generate changes in the resonant frequency

of the fundamental mode which exceed typical oscillator linewidths, enabling frequency-

based nanoparticle detection. Furthermore, these shifts can be maintained over large

field ranges (here up to 1T) since the resonance frequency responds directly to the

nanoparticle stray field (i.e. detection does not rely on nanoparticle-induced changes to

the magnetic ground state of the disk).
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Figure 7.1: (a) Schematic of a biological entity bound to a magnetic field detection device and
a magnetic nanoparticle. (b) Schematic of precessional magnetisation dynamics in a bare
nano-element (left), and in the presence of a particle which changes the local field and
thus the resonant dynamics (right). (c) The geometry used for the finite element simulation,
composed of a magnetic nanoparticle and an elliptical magnetic disc. The red arrow indicates
the equilibrium magnetisation m0 of the disc, which points out-of-plane due to perpendicular
anisotropy. The centre of the disc is located at (x, y) = (0, 0).

7.1 Introduction

Nano-magnetic and spintronic technologies find application in various sensing scenar-

ios [123–125]. Their appeal in biological sensing or ‘biosensing’ comes partly from the fact

that most biomedical samples have a negligible magnetic background enabling matrix-

insensitivity [126]. This enables the use of magnetic nanoparticles (MNPs) to tag and

subsequently detect biological analytes of interest reliably within a range of bodily flu-

ids [126–128]. Common device setups [128] include sandwich assays [126, 129, 130],

where the analyte is immobilised on the sensor surface and sandwiched between two anti-

bodies which bind it to both the sensor and the MNP used for detection (Fig. 7.1(a)), and

flow cytometry [131, 132], where the MNP-tagged analyte is detected as it flows through

a microfluidic channel. While numerous techniques for particle detection exist [133–

139], there has been a strong focus on electronic field sensing technologies employing

magnetoresistive stacks [126, 127, 129–132, 140–146] or Hall effect devices [147, 148].

These devices can be used to detect small variations in magnetic field, including those

generated by functionalised MNPs, converting the presence of a MNP to a change in the

device resistance (typically measured as a voltage).
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In conventional ferromagetic magnetoresistive sensors, MNPs induce a change in the

static magnetisation configuration of the device’s active sensing layer [149]. This trans-

lates to a change in the device resistance, enabling electronic nanoparticle detection.

However, one may also exploit the magnetic field dependence of ferromagnetic reso-

nance for detection of magnetic fields [150–154] and thus magnetic nanoparticles [104,

154–159]. Notably, the ferromagnetic resonance frequency within the device will re-

spond directly to the field of the MNP (Fig. 7.1(b)), even when the underlying magnetic

ground state is unchanged. This opens pathways to intrinsically frequency-based detec-

tion schemes [150, 153]. Potential advantages of a frequency-based, dynamic technique

over static magnetoresistive sensing include a larger field range over which the device

response is linear [150, 160, 161] (enabling larger fields to be applied and thus generate

higher MNP moments), intrinsically frequency-based operation (typically at GHz frequen-

cies and thus far from low-frequency 1/f contributions), the lack of d.c. voltage-level

drift (when using direct frequency measurement) and excellent size scalability [150].

Electrical read-out of dynamics in isolated devices can be carried out using spin torque

oscillators (STOs, where d.c. current is used to drive magnetisation dynamics that can

then be detected in real time magnetoresistively [162–164]) or by using devices ex-

ploiting the inverse spin Hall effect [165] which enables voltage-level-based read-out of

dynamics. Although the latter is not a direct frequency-based method (in that dynamics

are sensed using a voltage), such a technique can still benefit from the reduced device

sizes and larger operational field ranges which come with a switch to sensing based on

magnetisation dynamics.

In this work, we use micromagnetic simulations and eigenmode evaluation to quantify

the effect of a MNP on resonant modes of precessional magnetisation dynamics in an un-

derlying, out-of-plane magnetised ferromagnetic nanodisc. The simulations demonstrate

that the MNP can induce large shifts of the mode frequencies for the disc’s quasi-uniform

and higher order resonances. At small separations, the shifts notably depend strongly on

the position of the particle relative to the regions in the disc where the dynamics asso-

ciated with each particular mode are concentrated. This is a result of the non-uniform

but intense field directly beneath the MNP acting on resonant dynamics within the disc

which are also highly spatially non-uniform. At larger separations however, the stray field

is weaker and more uniform over the length scale of the disc. This results in a weaker

dependence of the frequency shift on the lateral particle position and, as a result, similar

responses for all modes (despite their different localisations within the disk). We will also

demonstrate that strongly increasing the external field does not significantly compromise

device sensitivity (measured in terms of the magnitude of the MNP-induced frequency
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shift).

The paper is organised as follows. In Sec. 7.2 we will discuss the system and the sim-

ulation method. In Sec. 7.3.1 we present the first five eigenmodes of the bare disk

(without an MNP), including spatial profiles and field dependencies of the modes in the

presence of spatially uniform, out-of-plane magnetic fields. We then present results on

MNP-modified modes (Sec. 7.3.2) and show how these modifications depend on both

the position of the particle and the profiles of each mode (Sec. 7.3.3). Finally, we discuss

the dependence of the frequency shifts on particle parameters and external field strength

(Sec. 7.3.4).

7.2 Methods

In Fig. 7.1(c) we show the simulated 1.6 nm thick elliptical nanodisc which has major

and minor axis lengths of 150 nm and 70 nm, respectively. A spherical MNP is located

above the disc. The separation between the upper surface of the disc and the bottom

surface of the MNP is denoted by d. The nanodisc approximates the CoFeB free layer

of a STO shown recently to function under low injected current and without strong

external magnetic fields [11], properties which may be advantageous for low-power,

portable diagnostics [146]. Indeed, exploiting precession of out-of-plane moments in

STOs offers excellent potential in terms of achieving low linewidth outputs [161, 166,

167], something which is critical for distinguishing MNP-induced frequency changes.

Since we look only at dynamics within the disc, our results can be equally well applied

to (arrays of) discs probed using inductive techniques [104] or, as mentioned above, via

the inverse spin Hall effect [165] (rather than the dynamic magnetoresistive techniques

exploited in STO measurements).

We use the following simulation parameters for the nanodisc [11]: saturation magneti-

sation Ms = 1.1 MA/m, exchange stiffness A = 20 pJ/m and perpendicular magnetic

anisotropy constant K1 = 0.74 MJ/m3. The equilibrium magnetisation m0 in the bare

disc is aligned with the (out-of-plane) +z-direction, due to the perpendicular anisotropy

(see Fig. 7.1(c)). We also model a ‘generic’ spherical MNP with saturation magnetisation

of 1 MA/m. This magnetisation is higher than that generally expected for saturated iron

oxide MNPs (∼ 0.25 MA/m) but lower than that observed in high moment FeCo sys-

tems [168] (∼ 1.8 MA/m assuming a density of ∼ 8.3 g/cm3). Its diameter will be 20 nm

unless otherwise specified. The dipole field of the MNP, when uniformly z-magnetised, is
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shown in Fig. 7.2. The strong z-component of the MNP’s field directly beneath the MNP

is clearly visible. Unless otherwise noted, simulations have been run with an external +z
field of 0.1 T.
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Figure 7.2: Vector field plot of the dipole field generated by a uniformly z-magnetised MNP. The
vectors are scaled to uniform length with their colour indicating the field strength (orange
is high and violet/black is low). The vertical lines correspond to the x-values where modes
1 and 2 have maxima in their spin precession amplitude (see Fig. 7.3(a)-(b)). A schematic
of the nanodisc is shown at the bottom.

We use a finite element based micromagnetic simulation tool inspired by the Nmag pack-

age [19] and based on the FEniCS libraries [169]. Sumatra [170, 171], IPython [172],

the Jupyter notebook [173], numpy/scipy [174], pandas [175], matplotlib [176] and

HoloViews [177] have been used for simulation capture and data analysis. For the com-

putation of the resonant magnetisation modes of the system we employ an eigenvalue

problem-based method used recently in Refs. [57, 104] which is similar to that pre-

sented by d’Aquino et al. [52]. Firstly, we compute the system’s equilibrium configura-

tion m0(r) and then linearise the Landau-Lifshitz equation for magnetisation dynamics

around m0(r). This results in a system of linear differential equations for resonant oscilla-

tions of the magnetisation, dm(r, t), occurring around m0(r). This system of differential

equations can be written as an eigenvalue problem [57]. The eigenvectors correspond to

the resonant eigenmodes [43] of the nanodisc, each occurring at a resonant frequency

given by the mode’s eigenvalue.

The raw data for the relevant figures in this paper, as well as Jupyter notebooks [173] to

reproduce them from this data, are available in the associated electronic supplementary
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material for this paper [178].

7.3 Results and discussion

7.3.1 Magnetic eigenmodes of a bare disc

We firstly compute the eigenmodes of the STO’s elliptical free layer in the absence of a

MNP. In the absence of an external field the obtained resonance frequencies of the first

five modes (in order of frequency) are f1 = 1.60 GHz, f2 = 3.09 GHz, f3 = 5.09 GHz,

f4 = 5.55 GHz and f5 = 7.77 GHz. f1 is of the same order as the excited mode reported

by Zeng et al. [11] when extrapolating their data to the zero-current case. Representa-

tions of the spatial profiles of mode 1 (most relevant for STOs) as well as the next four

higher order modes are shown in Fig. 7.3. The shading encodes the amplitude of the

magnetisation precession for each mode, with dark regions representing high amplitude

resonant oscillations.

The fundamental N = 1 mode (Fig. 7.3(a)) consists of an in-phase precession of all

magnetic moments. The precession amplitude is largest at the disc’s centre and decays

in amplitude towards the boundaries of the free layer. The N = 2 mode (Fig. 7.3(b)) is

characterised by two regions of large precession amplitude in the left/right halves of the

disc, with the magnetic moments in the two parts precessing out-of-phase. Modes 3 and

5 (Figs. 7.3(c, e)) both have multiple nodal axes parallel to the short axis of the ellipse.

Mode 4 (Fig. 7.3(d)) is similar to mode 2 but with a nodal axis along the long axis of the

disc.

In Fig. 7.4 we show the dependence of each mode frequency on the magnitude of a

spatially uniform magnetic field applied along +z (aligned with m0(r)). The extracted

field sensitivities (frequency shift per unit field) of all modes are consistent with one

another to within 0.8% and have a value of 28.162 ± 0.108 MHz/mT. As will be shown

below, however, the situation is more complex in the presence of a small MNP due to the

combination of the localised MNP stray field and spatially non-uniform mode profiles.

This will generate a clear dependence of the frequency shifts on the position of the MNP

relative to the disc (both in the lateral and vertical directions).
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Figure 7.3: Profiles of the first five modes of the bare disc. Dark regions correspond to large-
amplitude precessions of the dynamic magnetisation.
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Figure 7.4: Out-of-plane (+z) field dependence of the frequencies of the first five modes of
the bare disc. Linear regressions (black lines) fitted to the data points demonstrate that the
field-induced changes in each eigenfrequency are equivalent to one another to within 0.8%.
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7.3.2 MNP-modified eigenmodes

We now introduce a magnetic nanoparticle to the system as per Fig. 7.1(c). It is magne-

tised in the +z-direction, parallel to the applied external field.

In the equilibrium configuration of the bare disc, the disc’s free layer magnetisation is par-

allel to the (out-of-plane) z-axis everywhere due to the strong perpendicular anisotropy.

This is illustrated in Fig. 7.5(a), which shows the magnetisation vector field along the

disc’s long x-axis. If a MNP is present however, its stray field locally modifies the magneti-

sation. Examples of this are shown in Figs. 7.5(b) and 7.5(c) where the MNP is located

at x = −30 nm and x = −60 nm, respectively, above the major axis (y = 0) of the disc

at d = 5 nm. The presence of the localised MNP field results in a slight localised canting

of the magnetisation towards the MNP due to the in-plane components of the stray field.

Note, however, that the actual change in the magnetisation orientation is very small. For

example, at separation d = 5 nm the spatially averaged, normalised out-of-plane mag-

netisation is 0.99874 and at d = 20 nm it is 0.99981. These are both very close to 1, which

is the value expected for a perfectly out-of-plane magnetised disc. However, despite only

inducing a very small change in the magnetisation configuration, the stray field from the

MNP can generate strong changes in the resonant frequency (up to ∼ 350 MHz for N = 1
at d = 5 nm), as will be shown below.

Beyond modifying the resonance precession frequency of the magnetisation, the non-

uniformity of the MNP field can also noticeably modify the spatial profile of the eigen-

mode. An example for the N = 1 mode is shown in Fig. 7.6(a), with a MNP at d = 5 nm.

Although the mode excitations remain in-phase over the entire disc there is a reduced

oscillation amplitude directly beneath the MNP, consistent with a MNP-induced, local

stiffening of the magnetic moment. This also occurs for the N = 3 mode (Fig. 7.6(b)),

which is the only other mode studied here that has an antinode (= location of maximum

oscillation amplitude) at the disc’s centre. Similarly, a left displaced particle (Fig. 7.6(c))

will lead to larger oscillation amplitudes for the N = 1 mode on the opposing (right)

side of the disc. Somewhat analogously for vortices, a localised out-of-plane field at the

core of a vortex can stiffen the core, increasing the frequency of its gyrotropic mode in

the small displacement limit [157].
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Figure 7.5: Cross section of the equilibrium magnetisation configuration along the x-axis in
absence of a MNP (a), and in presence of a MNP (d = 5 nm) above the major axis of the
disc, at x = −30 nm (b) and x = −60 nm (c). The colours represent the amount of canting
of the magnetisation (magnitude and direction of the mx-component).

Figure 7.6: Mode profiles with a MNP centred above the disc for N = 1 (a) and N = 3 (b) as well
as for an off-centre MNP for N = 1 (c). The MNP-disc separation, d, is 5 nm. Dark regions
correspond to large-amplitude precessions of the dynamic magnetisation.
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7.3.3 MNP position and height dependence

We now look more closely at the influence of the position of the MNP on the frequency

shifts, ∆f . In the case of small MNP-disc separations (d / 15 nm), there is an intense,

localised and predominantly +z oriented field directly beneath the MNP (Fig. 7.2). As a

result, at these small separations the effect of the MNP on a mode is determined by where

the mode’s dynamics are concentrated relative to the MNP’s location. For MNPs directly

above regions where there are high precession amplitudes, there is a frequency upshift

(∆f > 0) due to the increased local z-field below the particle. This result is qualitatively

consistent with that seen for uniform +z-fields in Fig. 7.4. However, when dynamics

are occurring in a region which is laterally offset from the particle and the particle is

very close to the disc, the precessing moments can be subject to a field oriented in the

−z–direction (see again Fig. 7.2), leading to a reduction in the frequency (∆f < 0). We

discuss these behaviours below.

Fig. 7.7 shows the ∆f values observed for all five eigenmodes (N = 1, . . . , 5) when

shifting the MNP along the disc’s long axis at vertical separations of d = 5, 20 and 50 nm,

for lateral MNP positions of y = 0 nm and y = 20 nm. If the MNP is close to the surface

of the disc (d = 5 nm, red lines in Fig. 7.7) then ∆f closely follows the spatial mode

pattern, as can be seen by comparing the red lines in Fig. 7.7 with Fig. 7.3(a)-(e). This

reflects the fact that in this case the MNP stray field has a very localised influence on

the underlying precessing moments. For example, for N = 1 there is a single, broad

sensitivity peak near the centre of the disc (x = 0 nm) for both values of y, which mirrors

that mode’s spatial profile. Likewise, the N = 2 mode exhibits two sensitivity peaks near

x ≈ ±40 nm, i.e. near the locations of the mode’s antinodes (see Fig. 7.3(b)). The curve

for N = 3 shows three such peaks, with the outer ones slightly higher, reflecting the fact

that the outer antinodes of this mode have a larger amplitude than the middle one (see

Fig. 7.3(c)).

This pattern continues for N = 4 and N = 5, but while the modes N = 1, 2, 3 show fairly

similar sensitivities for y = 0 nm and y = 20 nm, those for N = 4, 5 are quite different for

both values of y, reflecting the fact that these two modes are less uniform along the short

axis of the disc. This is very obvious for N = 4 where the mode antinodes are located at

y ≈ ±25 nm (Fig. 7.3(d)), leading to a large positive ∆f for the laterally y-offset MNP

(bottom plot for N = 4 in Fig. 7.7).

Comparing the curves obtained for different d values in Fig. 7.7, it is evident that with

increasing disc-MNP separations, the shifts are reduced and the curves become more
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Figure 7.7: Frequency change ∆f as a function of lateral particle position x for the first five
eigenmodes (N = 1− 5), with the MNP either above the major axis of the ellipse (top row)
or shifted by 20 nm in y-direction (bottom row). The frequency change for each mode is
shown for three values of the MNP-disc separation (red: d = 5 nm, blue: d = 20 nm, dashed
black: d = 50 nm).

homogeneous and indeed comparable for each mode. For an intermediate separation of

d = 20 nm (solid blue lines), the influence of the mode profiles on the MNP-position-

dependent frequency shifts are still visible. However, at a larger separation of d = 50 nm

(dashed black lines), the ∆f curves for each mode become very similar (those forN = 1, 4
show a flat, broad peak around the centre of the disc whereas those for N = 2, 3, 5 have

a more plateau-shaped profile, but the difference is small). This is consistent with two

factors: (i) a much more uniform MNP field across the disc at large d (Fig. 7.2) (with a

net +z-orientation, leading to a frequency increase); and (ii) almost identical sensitivities

for each mode in a uniform +z-field (Fig. 7.4), leading to similar ∆f values for each

mode. We note that in the presence of multiple MNPs at similarly large separations (as

might occur in real devices) this will likely result in a ∆f that is (roughly) proportional to

the number of nanoparticles present, due to the fact that all of them induce a similar fre-

quency change, independent of their exact location above the disc.

Fig. 7.8 shows how ∆f varies as the vertical separation d is varied for a laterally cen-

tred MNP (i.e., one which is laterally positioned at (x, y) = (0, 0)). Consistent with the

d = 5 nm data in Fig. 7.7, the N = 1 and N = 3 modes, which both have dynamics

concentrated below the centred MNP, exhibit the largest ∆f at small separations. Fur-

thermore, due to the concentration of dynamics below the MNP, the shifts are positive for
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these two modes for all d values. This is because as d is varied there is no sign change in

the out-of-plane component of the MNP stray field, HZ
MNP, which acts on the central pre-

cessing moments in the disc (cf. blue vertical line in Fig. 7.2). At large distances, all other

modes also exhibit a positive ∆f which decreases with increasing d, again consistent with

what is seen in Fig. 7.7 and discussed above. Note that although the mode N = 3 also has

an antinode at the disc centre, its ∆f is smaller than that seen for N=1 because the the

N=3 dynamics are distributed amongst three antinodes (cf. Fig. 7.3(c)), with the outer

antinodes being less strongly affected by the centralised MNP.

One can also see in Fig. 7.8 that the frequency shift for modes 2, 4 and 5 decreases as d

approaches zero. This is because these modes have dynamics concentrated away from the

centre of the disc and they are thus exposed to a weaker or even a negativeHZ
MNP at small

MNP-disc separations when the MNP is laterally centred above the disc. For example, the

frequency shift for N = 2 is zero at d ≈ 10 nm (blue triangles in Fig. 7.8). At this value

of d, HZ
MNP is indeed ≈ 0 near the location where the mode dynamics are concentrated

(x ≈ ±41 nm; see the vertical red lines in Fig. 7.2). Note that the exact value of |x| where

HZ
MNP is zero is slightly smaller than 41 nm. This is however not unexpected because

the frequency shift will result from what is effectively a convolution between the mode

profile and the particle stray field whose magnitude is non-uniform across the disc [149].

We also note that at x ≈ ±41 nm HZ
MNP becomes negative for values of d smaller than

≈ 15 nm (Fig. 7.2). This is consistent with the observed negative frequency shift for the

N=2 mode at very small d in Fig. 7.8. Regarding the N = 4, 5 modes, because they have

antinodes located closer to the lateral centre of the disc than the N = 2 mode (Fig. 7.3)

they do not experience a null or negative HZ
MNP until even smaller MNP-disc separations

(as per Fig. 7.2). This is consistent with their ∆f = 0 crossing in Fig. 7.8 occurring at

smaller d. Finally, we note that for a particle shifted in the y-direction (and thus lying

above the antinode of the N = 4 mode), it is the N = 4 mode which exhibits the highest

∆f (see purple diamonds in inset of Fig. 7.8).

7.3.4 System dependencies of ∆f

For sufficiently large read-out signals, detection based on identifying changes to the res-

onant frequency of a device will ultimately be limited by the resonance linewidth as

well as the MNP-induced ∆f , with a small linewidth and large ∆f being optimal. In the

STO study of Zeng et al. [11], the minimum observed linewidth of the primary mode

(corresponding to the N = 1 mode here) was on the order of 30 MHz, suggesting that
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Figure 7.8: Frequency change ∆f as a function of particle separation d for a MNP located above
the centre of the free layer at (x, y) = (0, 0). The inset shows ∆f for the first three modes as
a function of d for an off-centre particle at (x, y) = (0, 20 nm).

detection could be realised for d up to ∼ 50 or 60 nm (based on the ∆f values shown

in Fig. 7.8). This assumes however that such linewidths can be maintained under the

fields required to magnetise the MNP and that passivation layers and/or upper contacts

can be made sufficiently thin (this is potentially achievable given that typical passiva-

tion layers are on the order of 30-50 nm thick [128, 130] and coating layers for MNP

biofunctionalisation can be made very thin, on the order of 2-5 nm [128, 179]). We

note that lower linewidths [167] (e.g. 6 MHz full-width-half-maximum [161]) have been

observed in out-of-plane magnetised STOs. We also note that oscillators based on mag-

netic vortices can offer even lower linewidths [10, 180, 181], but they also typically have

lower field sensitivities, highlighting the need to optimise the sensitivity-to-linewidth

ratio if sensing is to be done by directly identifying changes to the frequency. The sen-

sitivity of the specific resonance of the device to localised fields [157] is also critical of

course.

There are a number of ways to increase ∆f without modifying the properties of the

nanodisc that is being used as a detector. For example, one can attempt to engineer par-

ticles with higher moments (see Fig. 7.9(a), which shows ∆f versus particle moment)

or increase the size of the particles (see Fig. 7.9(b), showing ∆f versus particle diame-
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Figure 7.9: (a) Dependence of ∆f on the particle’s saturation magnetisation Ms for the first
five modes, with a particle located above the centre of the disc at separation d = 20 nm.
(b) Dependence of ∆f on particle size for the first five modes, with the separation between
the bottom of the particle and the disc surface held constant at d = 30 nm. (c) ∆f for N = 1
for different out-of-plane fields (other simulation parameters unchanged from Fig. 7.8). Inset
shows the profile of the fundamental mode N = 1 in an external field of strength µ0H = 1 T
with a particle (not shown) off-centre at x = −30 nm, d = 5 nm.

ter). In both cases, this increases the MNP-generated magnetic stray fields and thus the

resultant shifts. However, oft-used iron-oxide particles will have lower moments and thus

generate lower shifts. We note that in contrast to the case of magnetic vortices [157], for

this system we saw monotonic increases in ∆f when increasing the particle size (and

moment).

The time-averaged moment of superparamagnetic particles can also be increased by

increasing the applied field. Thanks to the continued linearity of ∆f as a function of the

external field strength Hext over a large range of field values (Fig. 7.4), the external field

can be increased without significantly compromising ∆f . Indeed, we see good consistency

between the calculated ∆f values obtained at vastly differing fields of 0 T, 0.1 T and 1 T

(shown for N = 1 in Fig. 7.9(c)). Note that here we (unphysically) assume the same

particle moment at each field to enable direct comparison of the ∆f values. We note that

at high field (1 T), the particle still clearly modifies the distribution of the dynamics of the

N = 1 mode (shown for a laterally offset particle in the inset of Fig. 7.9(c)). The retained

sensitivity of this system even in large external fields is in contrast to magnetoresistive

sensors whose sensitivities will be almost nil when the magnetisation is (quasi-)uniform

in a sufficiently high field.
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7.4 Conclusion

Using finite element micromagnetic simulations, we have shown how localised magnetic

fields generated by magnetic nanoparticles (typically having diameters of 20 nm) modify

the spatial profiles and frequencies of confined ferromagnetic resonances in underlying

out-of-plane-magnetised ferromagnetic nanodiscs. By electrically detecting these reso-

nances, nanoparticle-induced modifications to the resonances can be exploited to create

nano-scale, frequency-based nanoparticle detectors for applications such as solid-state

bio-detection [150].

Due to the non-uniform spatial profiles of resonant mode dynamics, the observed shifts

(exceeding 300 MHz in some cases) can depend strongly on the position of the nanopar-

ticle. This is most obvious for small disc-particle separations, where small regions of the

disc will be subject to the intense magnetic field localised directly beneath the particle.

In this case, the shifts are maximised when the particle is above those regions where

the spins are undergoing the highest amplitude precessional dynamics. At larger separa-

tions, the disc will be subject to a weaker but more uniform field, which leads to shifts

that are smaller (∼ 20 MHz at an 80 nm vertical separation) but also less dependent

on the lateral particle position. It was also shown that it is possible to maintain large

nanoparticle-induced frequency shifts over a wide range of external fields, exploiting the

fact that detection is dependent on the action of the field on the resonant dynamics rather

than a change to the static magnetisation configuration within the device. The ability

to detect frequency changes experimentally will depend on the linewidth of the mea-

sured signal relative to the nanoparticle-induced frequency changes. The latter can be

optimised by having small particle-disc separations and/or large particle moments (with

the moment being maximised when the external field is large, for optimised nanoparticle

compositions, and/or of course for larger particles).
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In this work we have used the micromagnetic software packages Nmag and Finmag, devel-

oped at the University of Southampton, to model different kinds of magnetic nanostruc-

tures. The main focus has been on domain walls in nanowires and resonant modes of mag-

netic nanodiscs, with applications to magnetic storage and nano-sensing devices.

In Chapter 3 a new model was developed in order to study edge roughness in magnetic

nanowires in a more systematic and more realistic way than has previously been possible

with other simulation packages. The classical Walker breakdown was observed, but addi-

tional phenomena occurred in rough geometries that do not exist in smooth nanowires,

such as dynamic domain wall pinning at constrictions. The asymptotic behaviour of the

domain wall was largely unaffected by the roughness, despite the fact that it introduced

marked local alterations to the domain wall trajectories, especially in the oscillatory

regime above the Walker breakdown where the length and shape of individual oscillation

cycles was altered due to the interaction of the domain wall with the roughness features.

As a somewhat surprising consequence, in this regime stronger applied fields are more
likely to dynamically pin the domain wall because the resulting shorter oscillation cycles

give it more opportunity to interact with the roughness. It was found that the effective

pinning strength of roughness features is strongest when their size is comparable with

that of the domain wall. One limitation of the presented model is that it only considers

edge roughness, whereas real nanowires also exhibit other types, such as surface rough-

ness. Studying those effects could be the topic of future work.

In Chapter 4 we presented a detailed discussion of the two main methods for computing

resonant modes in magnetic nanostructures: the ringdown method and an eigenvalue-

based method. The implementation of the latter in a finite element context was explained

in detail, including the key advantages over the ringdown method. We also discussed

115



Chapter 8 Summary and Conclusions

certain limitations with respect to memory requirements and speed of the implementa-

tion in Finmag caused by the finite element discretisation scheme. Further optimisation

of our implementation would be a promising topic for further research because it could

potentially lead to a significant speed-up and a greatly reduced memory footprint, en-

abling the simulation of much larger systems. However, it would involve working around

the issues posed by the standard algorithms in use for finite element micromagnetics (in

particular, the way in which the demagnetising field is computed and the use of the box

scheme for the approximation of the effective field). Despite these minor limitations, the

implementation of the eigenvalue method in Finmag has been successfully applied to a

variety of different magnetic nanosystems and resulted in multiple publications described

in later chapters.

Our implementation of the eigenvalue method was verified by reproducing results from

an independent study by Carlotti et al. [51] Despite the different simulation methods –

Carlotti et al. use a ringdown approach with a finite difference micromagnetic solver,

whereas our calculations use a finite element-based implementation of the eigenvalue

method – there is excellent agreement in the results. Minor discrepancies in the computed

eigenfrequencies are due to the use of thermal excitations in the ringdown simulations,

which are not present in our simulations.

In Chapter 6 the eigenvalue method was applied to a study of different kinds of reso-

nant modes (translational, breathing and twisting) occurring in domain walls pinned

at notches in a magnetic nanowire. It was shown that these different kinds of modes

exhibit different sensititivies to alterations in the notch shapes and to changes in the

nanowire geometry, and these are discussed in detail. As the width of the nanowire is

varied, the breathing and twisting modes become frequency-degenerate. The eigenvalue

method enabled us to study the behaviour at this frequency-crossing, which would not

have been possible with a ringdown approach. Similarly, computing the eigenfrequencies

in applied fields close to the depinning field of the domain wall was only possible using

this eigenvalue-based approach.

In Chapter 7 we presented a study of resonant modes of an elliptical nanodisc resembling

the free layer in a spin-torque nano-oscillator. We explored how these modes are altered

in the presence of a magnetic nanoparticle, which has applications for the development of

novel biosensing devices. The results show that there is a strong modification of the eigen-

mode frequencies and spatial mode profiles caused by the stray field of the particle. The

resulting eigenfrequency shifts can be maintained over large external field ranges because

they do not rely on a modification of the magnetic ground state of the disc but are rather
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a direct response to the nanoparticle stray field. For the studied particle characteristics

these frequency alterations are larger than achievable linewidths in state-of-the-art spin-

torque oscillators, assuming that devices can be fabricated with sufficiently thin contacts

and capping layers to allow the particle to be close enough to the disc. As we showed,

changing the particle characteristics (for example, increasing the size or choosing a ma-

terial with higher saturation magnetisation) will increase the frequency shifts and thus

make detection easier. These results have promising applications for the development of

nanosensors with better sensitivity than existing devices.
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