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There are many analytical models to predict turbofan noise radiation in a free field.

However, these models explicitly ignore the effect of the aeroplane components on the

engine noise. The effects of the aeroplane on the radiated noise must be included because

it is the installed engine that affects people in the cabin and community. The original

contribution of this thesis is to present a theoretical model for the near-field fuselage

installation effects on tonal noise radiating from a turbofan engine inlet.

Historically, the fuselage installation effects have been modelled using theoretical

methods for open-rotor type sources. Installation effects include the scattering effect

from the fuselage, and the refraction effect of the boundary layer running down the

fuselage. In this thesis the established techniques are extended to include a new so-

phisticated analytical source for spinning modes radiating from a circular duct. The

source model includes the diffraction effect of the duct lip. The model applies Fourier

methods and implements the Wiener–Hopf method for diffraction. Owing to the physics

of the problem, simplifications in geometry and flow do not curtail the validity of the

predictions.

The refraction effect was quantified by evaluating the difference between sound pres-

sure levels with and without the boundary layer. Upstream of the source the refraction

leads to a paucity of surface acoustic pressure, yet downstream the boundary-layer effect

was minimal. Further investigations led to an alternative method of simulating refrac-

tion by altering wavenumbers in Fourier space. The installation method was optimised

for a turbulent boundary-layer profile by replacing a power-law with a scaled step-change

boundary-layer profile.

The model developed in this thesis combines the most sophisticated analytic radi-

ation models with current installation models. Due to the speed of the method, the

intended purpose for industry is to refine variables via parametric studies. Once these

are established, a numerical method could include more complex geometry and flow to

the model. By calculating the noise on the outside of the fuselage, the quantity and dis-

tribution of acoustic lagging can be optimised. This, over the lifetime of an aeroplane,

could lead to appropriate noise levels in the cabin whilst achieving potential reductions

in fuel consumption, emissions and costs.
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Chapter 1

Introduction

As organisations such as the International Civil Aviation Organisation (ICAO, 2008) and

the American Federal Aviation Administration (FAA) demand quieter aircraft, accurate

noise radiation predictions from aeroplanes has become essential. At take-off and cruise

the engines are a dominant source of noise from an aircraft. Turbofan engines are

extremely complicated and, as such, the noise generation and radiation mechanisms are

difficult to model accurately. The complexity is compounded by the presence of the

airframe. Consequently, turbofan noise radiation predictions are usually modelled in

the far and free field. However, the noise imposed on communities and those on the

aeroplane are from the aircraft as a whole: fuselage, wings, landing gear in ensemble.

The way in which the airframe and its components change the free-field predictions of

noise sources are referred to as aircraft installation effects. This thesis will focus on tonal

noise radiating from a turbofan engine and the fuselage installation effects.

This work will use theoretical methods to obtain noise predictions. In this context,

theoretical methods refers to the use of predominantly analytical mathematics as far as

possible. The benefit of this is that the solutions are exact and methods are relatively

quick to compute so trends can be identified quickly. The limitations of using analytical

methods are that simplifications to geometry and flow characteristics must be made.

Other methods such as finite element methods would be able to include nuances in

geometry and flow but require vast computational resources. The simplifications to the

analytical model do not curtail the validity of the model, this will be discussed in due

course.

This thesis details the developments of new methods to predict the fuselage instal-

lation effects from fan tones radiating from the inlet of an engine. The methods are

different to previous work which focuses on propeller type noise sources. The new work

in this thesis is all formulated based on fan tone sources from a turbofan jet engine.

The method is very quick, and the intended use in industry is to obtain a prediction

for shielding in the early design phase for either the turbofan design or fuselage acous-

tic lagging optimisation. A more detailed computational aeroacoustics (CAA) method
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could then be used.

1.1 Aeroacoustics

However, before the bulk of the thesis a brief overview of aeroacoustics is given. Initially

the aircraft noise limits are detailed before a short review of aircraft noise sources and

their implications.

1.1.1 Aircraft Noise Regulations

Over the last half a century, increasing numbers of people are choosing to fly, so to

meet demand the number of flights has increased. As the number of flights increases,

so does the power and size of the aircrafts. In addition, the size and number of airports

has increased. To limit the impact on communities, legislation has been introduced (for

example ICAO (2011)).

Each aircraft has a unique Effective Perceived Noise Level (EPNL) measured in

EPNLdB. The EPNL scale has been refined to include exposure duration and harmonic

content. The longer and the more tonal (or rough) a noise, the more annoying it is the

human observer and thus has a larger associated EPNL value.

Figure 1.1: Conversation in The Butcher’s Hook (Southampton) is interrupted by
landing gear noise.

In ACARE (2001) an aim to reduce 2000 EPNL values by 10 EPNLdB by 2020 was

set. As 2020 approaches, this ambitious target was modified by the European Commis-

sion (2011) to reduce perceived 2000 noise levels by 65% (Astley, 2014). ICAO (2008)
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suggests reducing EPNL values by reducing noise at source, effective land management,

operational procedures (cut-back and flight path variation) and operating restrictions.

As Figure (1.1) demonstrates, in populated areas such as the south of England, noise

imposed on the community is very significant due to flight path proximity. Therefore,

to placate community pressure groups, airports in populated areas often impose more

restrictive flight restrictions than the law requires (Smith, 1989). Heathrow voluntarily

schedules no aircraft departures between 11 pm and 6 am (heathrow.com/noise/heathrow-

operations/night-flights). Such strong restrictions are not required at airports with no

immediate surrounding communities.

1.1.2 Aircraft Noise Sources

Aircraft noise can be split into three broad categories: engine, jet and airframe. Engine

noise is covered in the literature review so jet and airframe noise is briefly discussed

here.

Airframe noise can be categorised as: landing gear, flap and trailing edge noise

(Lilley, 2001). On approach landing gear is dominant (Lockard et al., 2004) but Smith

(1989) reports that noise due to protruding flaps can be responsible for an increase of

around 10 dB on a clean wing.

Landing gear is created by aeolian tones. The fast flow causes vortices to be shed

and as the vortices separate from the solid they generate noise. For a single protrusion,

the directivity in the far-field is similar to a dipole. Landing gear is an ensemble of many

different geometries, the net effect is broadband noise. One way to reduce this noise is

to install a splitter plate which interrupts the trailing vortex streets (Dobrzynski et al.,

2002).

Flow over cavities causes noise to be radiated in a more subtle way. Lockard and

Lilley (2004) propose that noise from the leading edge of the cavity causes a vortex to

shed and when the vortex hits the trailing edge noise is radiated. The acoustic wave

then propagates to the leading edge and affects the rate of vortex shedding and thus has

a feedback loop/quasi-resonance.

Vortices are shed from high–lift and flap edges. These in turn lead to noise genera-

tion. Theoretical models provide accurate predictions, for example, Stoker et al. (2003)

published the sources of noise on the wing of a Boeing 777.

When the landing gear is stowed, the dominant source for airframe noise is generated

by trailing edges of the wings and tail Campos et al. (1999). Crighton and Leppington

(1970) modelled trailing edge noise analytically; they predicted that far-field intensity

scales with fifth power of velocity. However, most solid/fluid interaction noise is mod-

elled computationally. Such methods implement acoustic analogies such as the Ffowcs

William-Hawking approximation, Ffowcs Williams and Hawkings (1969).
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In addition to airframe noise, the jet makes a significant contribution to the EPNL

value. The fast flow of the core mixes with the slower flow in the bypass or ambient

fluid. When the fluid mixes a proportion of the pressure fluctuations radiate as noise.

For subsonic flow the noise is broadband in nature, supersonic flows gain screech tones.

In the 1950s Lighthill, after some jiggery-pokery, assembled an inhomogeneous linear

acoustic wave equation in quiescent flow from the Navier–Stokes equations. Balancing

the wave equation were a collection of monopoles, dipoles and quadrupoles (Lighthill

(1952) and Lighthill (1954)). These nonlinear source terms are referred to as Lighthill’s

tensor. He inferred these source terms are due to the turbulence. As such, Lighthill’s

source term is an analogy – albeit a good one.

To reduce the loudness of a jet, a non-specialist could recommend turning the jet off,

or reducing the velocity. Lighthill’s theory quantified the linear relationship between jet

noise and eighth power of flow velocity. This has driven the reduction in flow velocity

over the past half century.

This much lauded theory is flawed. At least some of the turbulence is due to the

sheared flow. This and the propagation in the shear is not included in the model.

The convected wave equation in shear flow was derived by Lilley (1958) and Phillips

(1960). Controversy surrounding the non-quadrupole sources in Lilley’s model were

clarified and cleared up by Goldstein (2001). Goldstein showed that, if the dependent

variable is scaled, the source terms were quadrupoles after all (Stone, 2015).

The main drawback with the acoustic analogy is that the characteristics of the flow,

including the turbulence, are required before you begin. Accurately predicting the exact

nature of turbulence is impossible (Davisdson, 2004) and so for as long as this remains

true, jet noise will never be precisely predicted without corrections factors. Alternatively,

solutions may be found exclusively in the far-field for idealised flow. Ray theory is also

a viable alternative for high frequency predictions.

It is worth noting that, like Lilley, in 1958, sound propagation in shear flow was also

modelled by Pridmore-Brown (1958). His analysis was for flow inside a duct, therefore

an incident field was already specified. This leads to a homogeneous form of Lilley’s

equation. The noise in the far-field is pertinent for jet noise, therefore to simplify the

analysis Lilley’s solution, valid in the far-field, is found by making a Green’s function in-

tegral approximation. In the near field, Pridmore-Brown makes no such approximations

and a numerical integral over axial wavenumbers is required. Pridmore-Brown suggests

the method of Frobenius to bridge the singularity that corresponds to the critical layer.

It is perhaps this more rigorous treatment that led to the acoustic wave equation in

shear flow operator to be referred to as the Pridmore-Brown equation.

Either by reducing the jet velocity or by introducing chevrons on the trailing edge

of the nacelle (Lee et al., 2014), reductions in jet noise are responsible for large drops in

noise levels (Smith (1989) and Casalino et al. (2008)). In fact, it has been suppressed
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to such an extent that other noise sources are now becoming dominant.

1.1.3 Significance of Noise Sources

At the three measurement positions for EPNL evaluation, the levels of various aircraft

noise sources are shown in Figure (1.2). It shows that the dominant noise source at

take-off is the engines. However, on approach to land, the landing gear is as loud as the

engine. It is very important to reduce all sources of noise, if not, tonal noise which may

have been masked previously will dominate the noise signature. Although quieter, the

aircraft would be more annoying and thus have a larger EPNL value – not ideal.
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Figure 1.2: Typical relative noise levels at take-off, side line and approach for a
mid-haul aircraft. Reproduced with permission from Lawrence (2014).

1.1.4 Installation Effects

All sources of noise are extremely complex to accurately model. Aeroacoustic noise

sources are no different. As such, noise predictions tend to be modelled in isolation, i.e.

in the free (and often far) field.

However, the noise that affects those on the aeroplane, and in the community, are

exposed to noise by the whole aircraft. Therefore, models that accurately predict the

noise once the source is installed in situ is expedient.

For example, many researches are investigating installed jet noise, one example (of

hundreds) is Pastouchenko and Tam (2007). In this paper the authors compare the noise

from the jet to the noise due to the jet impinging on the wing.
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However, this thesis is concerned with radiating engine fan tones and how these are

affected by the fuselage.

The physical presence of the solid, rigid fuselage will cause scattering. Some ambi-

guity surrounds this term; throughout this thesis scattering is defined as reflections and

diffraction of sound due to a solid object. In addition, running down the fuselage is a

boundary layer. For accurate predictions this must also be included in the model.

The importance of noise on the community is self evident. However, the pressure

on the surface of the fuselage is also important. To reduce noise in the cabin, acoustic

lagging and extra struts to damp panel resonances are installed in the fuselage walls,

Wilby and Scharton (1973). The SPL from the engine has a direct affect on the quantity

and distribution of acoustic lagging. If this could be minimised and optimised, over the

lifetime of the aircraft the reduced weight would lead to significant reductions in fuel

burn. This, in turn, would lead to reduced emissions, smaller fuel costs and would

benefit those in the cabin.

1.2 Aims and Objectives

The aim of the thesis is to model the fuselage installation effects for a radiating engine

fan tone. To achieve this aim and provide enough new, significant work for a PhD the

following objectives have been met:

1. Review installation effects literature to identify gaps in knowledge.

2. Derive a new disc source model representative of fan tones radiation in both the

near and far field.

3. Investigate the near-field characteristics of the incident field.

4. Add the diffraction effect of the nacelle lip by implementation of the Wiener–Hopf

method.

5. Investigate the near-field effect of the duct lip.

6. Introduce a cylinder with boundary layer adjacent to the source to simulate fuse-

lage installation effects.

7. Quantify the installation effects on the SPL levels on the surface of the cylinder.

This was achieved by conducting a parametric study in source characteristics

� source frequency,

� azimuthal order,

and flow effects

6



� ambient flow velocity,

� boundary layer profile,

� boundary layer thickness.

Each numbered objective will be referred to in the text when completed.

1.3 Layout of the Thesis and Original Contributions

The thesis is split into chapters; each chapter aims to fulfil an objective. They are listed

below together with the original contributions.

Chapter 2: Literature Review

By reviewing the literature, it is identified that research into installation effects have

prioritised propeller type sources and neglected turbofan sources. This chapter provides

the motivation for the thesis.

Original contribution: Identifying this gap in knowledge.

Objective: 1

Chapter 3: Disc Source Incident Field Formulation and Validation

The derivation of a new formulation of spinning modes representative of fan tones from

an inlet of a turbofan in the near- and free-field is presented. This derivation follows the

Tyler and Sofrin (1962) method but makes no far-field assumptions – critical once the

source is installed. Following is a discussion on the near- and far-field for the new disc

source.

Original contributions: Formulating a distributed source and quantifying the near-field

for the new disc source.

Objective: 2 and 3

Chapter 4: Duct Source Incident Field Theory

The Wiener–Hopf method is used to include the diffraction effect of the duct lip on the

radiated near and far field.

Original contributions: By comparing the disc source to the Wiener–Hopf source, the

near-field effect of the duct lip is quantified. The results show that differences in the

diffracted field is most significant at maxima in the directivity pattern.

Objective: 4 and 5
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Chapter 5: Installation Theory and Method

The main point/purpose/contribution of the thesis is in this chapter. The sources (de-

rived in the thesis) are installed next to a infinitely long, rigid cylinder with a constant

thickness shear layer running down its length. This cylinder and shear layer represents

a fuselage and boundary layer.

Original contributions: The model for a turbofan fan tone source adjacent to a cylinder

with boundary layer is new.

Objective: 6

Chapter 6: Near-Field Installed Results

The model is used to generate predictions of sound pressure on the surface of the cylinder.

Via a parametric study, the effects of the various parameters on cylinder scattering and

boundary–layer shielding are quantified.

Original contributions: All the results in this chapter are new. The main conclusions

are that fan tones are significantly shielded upstream and moderately affected down-

stream. This chapter also introduces a new metric that considers the effect over the

whole cylinder, not at discrete points or contours.

Objective: 7

Chapter 7: Near-Field Discussion

The near-field model and results are discussed in detail.

Original contributions: It is found that an axisymmetric source leads to an asymmetric

results on the cylinder. A phase change was mathematically proven and observed in the

instantaneous pressure for odd modes with opposite spin direction. The refraction effects

of the flow can be simulated with a wavenumber filter in Fourier space. Additionally

refraction characteristics for in-duct flow was confirmed on the exterior of the cylinder

and a scaled step-change boundary layer profile gave equivalent shielding as a power-law

profile. This leads to an extremely quick method for only a small decrease in accuracy.

Objective: 7

Chapter 8: Conclusion and Future Work

The material in the thesis is summarised and some future work is recommended.

1.4 Publications

So far, the PhD project has led to two published papers
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1. McAlpine, A., Gaffney, J. and Kingan, M. (2015). Near-field sound radiation of

fan tones from an installed turbofan aero–engine. Journal of the Acoustical Society

of America. 131, 1313 – 1324.

� Corresponds to Chapters 3 and 5.

2. Gaffney, J., McAlpine, A. and Kingan, M. (2016). Sound radiation of fan tones

from an installed turbofan aero-engine: fuselage boundary–layer refraction effects.

In 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France. AIAA-2016-2878.

� Corresponds to Chapters 3, 5 and 6.

and one journal paper currently under review

3. Gaffney, J., McAlpine, A. and Kingan, M. Fuselage boundary-layer refraction of fan

tones radiated from an installed turbofan aero–engine. Journal of the Acoustical

Society of America. Submitted September 2016.

� Corresponds to Chapters 5 and 6.

Note that Chapters 4, 5 and 6 will lead to another journal paper. This work corre-

sponds to the installation effects for the source that includes the diffraction effect of the

source duct lip. This model is also being used to generate evidence for the co-sponsor

(RR) to file a patent.
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Chapter 2

Literature Review

The previous chapter gave a broad introduction to the field of aeroacoustics. This chapter

presents an in-depth critique of installation acoustics literature with particular attention

paid to fuselage effects. Broad trends in the theoretical models and numerical methods

are identified over the history of the subject. Significantly, it is shown that the installed

sources are either propeller type or fundamental sources. In anticipation of installing

a turbofan, this leads to a discussion on turbofan noise in a free field. Sophisticated

models for radiation from a circular duct are discussed in detail.

2.1 Models for fuselage scattering and boundary layer

refraction

Both theoretical and computational methods are reviewed in detail. The theoretical

models are presented chronologically which also corresponds to an increase in model

complexity. CAA methods are discussed after.

2.1.1 Installation Theoretical Models

Analytical models that predict the effect of the fuselage boundary layer on noise prop-

agation have steadily improved over the last 30 years. As the analytical models have

become more comprehensive and accurate the complexity has also increased. This sec-

tion documents the model developments.

A brief letter to the editor of JSV by McAninch (1983) suggested to use a Pohlhausen

profile to predict refraction due to a boundary layer running down an aeroplane fuselage.

This publication was the first mention of the Frobenius1 series as a solution to the

singularity.

1The Froebenius solution was used in Pridmore-Brown (1958) so perhaps this set a precedent for
the treatment at the critical layer.
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Hanson (1984) was one of the first published papers to attempt to model the fuse-

lage boundary layer effects. The model was based upon a two dimensional model in

laminar flow by Brand and Nagel (1982). The motivation for the model was based on

measurements taken on an aeroplane fuselage upstream of a prototype scale model of

an open-rotor engine whilst in flight.

The metal fuselage can be expected to behave like a rigid boundary. On this type

of boundary the pressure field would double the free-field predictions. However, the

experimental data showed that the measured values were more than 20 dB lower than

the expected 6 dB increase. Analysis of the measured data showed that the discrepancy

was Mach number, angle and frequency dependent. These errors showed that the prior

models were inadequate at accurately predicting the sound field on the fuselage whilst

in flight.

When flow is near a solid surface a boundary layer develops. It was the absence

of the boundary layer in the model that caused the large discrepancies. This initial

Hanson paper developed a simple model for the boundary layer and its effect on acoustic

propagation.

Many of the subsequent papers are based upon this model, and because of the relative

simplicity, but generality to all subsequent models, the physics is described here. The

solid, rigid body was a flat plate in two dimensions. The boundary layer was a simple

step change from zero to the ambient flow velocity. Harmonic waves were assumed to

have a general function in the perpendicular direction. The pressure field outside of the

boundary layer is a sum of the incident and the reflected waves. The reflected wave takes

the shape of the scattering object, in this case a plane wave. The fuselage boundary is

rigid so the derivative of pressure is zero. In this case, the solution to the wave equation

can be simple trigonometric functions. The waves in the boundary layer and outside

are matched on the surface of the boundary layer by continuity of pressure and particle

displacement. All unknowns can be solved by the set of equations.

Hanson (1984) predicted significant reductions in free-field pressure levels upstream

of the noise source. For some boundary layer thicknesses the refraction effect caused

a decrease in SPL of up to 40 dB. When the boundary layer was reduced to zero the

6 dB increase was predicted, which corresponds to pressure doubling. Although this

model was in two dimensions and had a very simple boundary layer the predictions were

reasonably consistent with measured results and was an encouraging start to installation

acoustics.

As this was one of the first analytical studies of boundary layer effects, naturally

there were many simplifications: a step-change boundary layer profile, laminar flow

with a boundary layer of constant thickness and a flat plate. This study was for noise

generated by turboprops in the near field. The incident waves were plane in the model,

however, noise generated by these processes at such proximity do not behave like plane

12



z

Mz

M∞

δ

Figure 2.1: The ray leaving the source upstream is refracted out of the boundary layer
layer whilst the downstream ray is refracted onto the fuselage.

waves.

McAninch and Rawls (1984) devotes significant time in demonstrating the derivation

of the wave equation in shear flow from the mass, momentum and entropy equations

(which can be found in Miles (1957), Ribner (1957) and Morse and Ingard (1968)).

Solving the Pridmore-Brown equation is non-trivial due to a singularity at the critical

layer.

Integrating over the singular point is discussed at length and the Frobenius method

was favoured over a complex integration variable. The refraction effect on a plate was

compared successfully against measured values for open-rotor measurements in flight

on the fuselage surface. The plate assumption is reasonable in this case because the

microphone array was axially in line with a scaled down open-rotor engine.

A year later Hanson teamed up with Magliozzi (Hanson and Magliozzi, 1985) to de-

velop the earlier model of Hanson (1984). This model is significant because it included

an infinitely long cylinder to represent the fuselage, a more realistic source (to model

an open-rotor blade) and an arbitrary boundary-layer profile. Because this paper was

attempting to match propeller experimental data, the source term was a rotating dis-

tribution of monopole and dipole sources, developed by Hanson (1985). The model was

derived by matching the particle velocity at the boundary layer edge. The singularity is

dealt with by the method presented by Tam and Morris (1980). The model was solved

by ‘unwrapping’ the boundary layer so it can be solved in Cartesian coordinates. This

is a valid method if the boundary layer thickness is thin compared to the radius of the

cylinder.

Next, the theory was tested against measured values of a scale turboprop on a fuselage

in flight. The measured values were to within an acceptable amount of error to the

predicted values. Experimentally and analytically a strong dependency on the Mach
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number was observed. Above 0.7 M in the forward direction saw a decrease of more

than 20 dB compared to free-field predictions. The fuselage had an extreme shadowing

effect beyond 50o (measured from the engine axis). This effect is more severe for higher

frequencies.

The effects of the nuances of the boundary layer was the subject of an in depth review

by McAninch (1987). The pressure field was described by an incident and reflected plane

wave impinging on a flat infinite plate in laminar flow. The continuous, vortex sheet

and Poulhausen boundary layer profiles were compared. The main conclusions were

that the only significant attenuation occurs upstream of the noise source, attenuation

was strongly flow velocity dependent, incident angle was important and the effect was

more significant for high frequencies. The attenuation was dependent on the number and

placement of the notches in the Poulhausen boundaries. There was a strong dependence

on the thickness of the boundary layer.

The model developed by Hanson and Magliozzi (1985) was further improved by Lu

(1990). Whilst the 1985 model gave good predictions, Lu argues that the boundary

layer should not be limited to being thin in comparison to the radius of the fuselage.

Furthermore the boundary layer was not necessarily isothermal. The analysis is similar,

again the Frobenius series was used to integrate over the singular point at the critical

layer. The shielding effect of the boundary layer was shown to be strongly dependent

on Mach numbers, with significant shielding for M > 0.5. The other variables only tend

to affect the noise propagating in the forward direction and typically by 5 dB or less.

The boundary layer profile, frequency and angles have little effect. The other aim of the

paper was to include temperature changes. Temperature change was a non-result as it

had no significant effect on the SPL. The model was tested against measured data for

boundary layers on a smooth plate and tripped by two different rough surfaces. The

values for the predicted and the measured SPL of the tone was to within 0.8 dB.

Recently2 the solutions to installation effects have been researched with highly the-

oretical approaches. Belyaev (2012) studied the effect the fuselage boundary layer had

on the reduction of open-rotor noise. Various parameters were changed including rota-

tion speed of the source, flow velocity, boundary-layer velocity profile, boundary-layer

thickness and observer incident angles. One surprising result was that, of the profiles

tested, the boundary-layer profile did not affect the difference in SPL significantly.

The most recent study to include the boundary layer was Brouwer (2016) for open-

rotor sources near a cylinder. Both surface pressure and far-field predictions were given.

For the near-field predictions the turbulent profile boundary-layer refraction effect was,

again, reasonably strong upstream of the source. The results were only shown on the

2Installation effects research is closely linked to open-rotor research. The amount of open-rotor
research fluctuates with price of aviation fuel. In the 1990s and 2000s fuel was not particularly expensive.
However, the price has increased recently, as has interest in efficient engines. This is the reason for the
gap from 1990 to 2012.
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near-side of the cylinder. In the far-field the boundary-layer was only moderately sig-

nificant.

The scattering effect of a cylinder in quiescent flow was modelled by Fuller (1989).

A schematic of scattering is shown in Figure (2.2). The fuselage was an infinite cylinder

and the noise source were monopoles and dipoles near the fuselage. The total field is a

summation of incident and scattered waves. The scattered field is derived by Bowman

and Uslenghi (1969). A similar scattering paper by McAlpine and Kingan (2012) made

significant effort to obtain analytical expressions for realistic open-rotor sources and the

effect of an infinite cylinder with flow. Kingan and Self (2012) also concentrated on

theoretical effects of scattering and derived tailored Green’s functions for infinitely long

and rigid cylinder, again this work was applied to open-rotors.

k0a0 >> 1

k0a0 << 1
a0

k0

Figure 2.2: Scattering is dependent on frequency, for high k0a0 values significant
shielding occurs, for low frequencies the waves diffract around the cylinder.

The models discussed so far have simplified the boundary layer to laminar flow or

disregarded it completely. Salikuddin et al. (1988) included a more realistic turbulent

boundary layer. Aircraft are sufficiently fast and irregular to trip the laminar flow

in the boundary layer. Salikuddin et al. (1988) compared theoretical predictions to a

wind tunnel experiment for a flat plate. Measurements in a square wind tunnel with a

turbulent boundary layer and point source agreed with the theoretical model. The model

included a term that modelled the eddy viscosity effects. Large argument asymptotic

approximations were used so community noise was the motivation of this study. By

including viscosity the critical layer singularity is damped out. The numerical integration

used to solve the equation for pressure was stiff and takes more computational resources.

The main conclusions of this study were that attenuation was position, frequency and

flow velocity dependent. This is the same as the laminar cases. The authors do not

15



include a direct comparison between the effects of a laminar and turbulent boundary

layer so the significance of the turbulence is unknown.

The models that were used in the previous papers represented the fuselage as an

infinitely long cylinder. Due to weight considerations and other practical concerns,

fuselages are usually of finite length, therefore a model of a finite cylinder would be

more realistic. The scattering effect of finite cylinders for acoustic waves has been

modelled analytically but not by aeroacousticians. Whales, sand banks and large groups

of zooplankton can apparently be modelled as cylinders of finite length. The initial

papers attempted to model the signal for SONAR signals. Stanton (1988) modelled the

finite cylinder but neglected to include the effects of the cylinder ends. The targets were

marine animals so the model was underwater based and boundary conditions were not

rigid. Ye (1997) improved the model to include the end effects. Although the expressions

may need some modifications to be used for aeroacoustic applications they have potential

to be used in installation effects.

The installation effects of aircraft engines have been modelled to a reasonable degree

of complexity. Focus has been placed on open-rotors because of the large amplitude noise

generated by the blades and the proximity to the cabin. This has meant that the focus

of some papers has been to apply and test open-rotor noise models. Furthermore, the

pressure on the fuselage surface is often the goal. However, broad trends are consistent

in all cases of installation effects. The main ones are; fuselage produces a shadow zone at

large k0a values and there is significant attenuation upstream of the source. Insignificant

effects are the profile and temperature of the boundary layer. The impact of the effect

of turbulence and realistic, finite fuselage geometries are at this point unknown. The

installation effects due to noise generated from tonal fan noise have, to the author’s

knowledge, not been predicted using theoretical methods.

2.1.2 Installation Numerical Methods

Theoretical methods are a good way of understanding the physics and mechanics of

engineering problems and trends can be quickly evaluated. However, for the model to

be fully analytic, simplifications must be made. This usually involves approximating

geometries to simple shaped and simplifying complex, extended noise generators to fun-

damental sources. To include the intricacies of geometry and realistic predictions of flow

numerical methods can be employed. In this context numerical methods refers to ray

theory, Finite Element (FE) and Boundary Element (BE) methods. The discussion in

this section will focus on the results of the research into installation effects that have

utilised numerical methods, not on the process itself.

One of the first published paper into the numerical method to predict scattering of

installed aeroacoustic sources was by Atalla and Glegg (1991). Atalla and Glegg (1991)
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implement the ray acoustic method to predict scattering effect. The code developed

is based on a branch of ray acoustics called Geometric Acoustics (GA). The method

developed allowed for a moving source, moving fuselage, variable flow and a scattering

body of arbitrary shape. The GA method was applied to aeroacoustics for the first time

in this paper, however some of the underlining theory was developed by Lighthill (1972),

Candel (1972) and Whitham (1974). The GA code developed, which included a solver

of 18 simultaneous ODEs, was validated against theoretical predictions for spheres and

cylinders obtained from Morse and Ingard (1968). For large k0a values the difference

between the new ray theory and the analytic solutions was negligible.

The problem highlighted by Atalla and Glegg (1991) of the large amounts of memory

required to model installation problems using numerical methods is tackled by Stanescu

et al. (2003). Stanescu et al. (2003) calculate the solutions of inviscid flow equations

by the discontinuous Galerkin spectral element method. The nacelle, fuselage and a

reasonably realistic coaxial jet were included. This was made possible because of the

recent developments in computing power and the efficient way in which the power is

used.

A more recent application of ray acoustics was to demonstrate the significant reduc-

tion to community noise that installation effects can have on the ‘silent’ aircraft idea,

shown in Figure (2.3). Agarwal et al. (2007) predicted through ray tracing calculations,

that a reduction in the far-field of more than 10 dB can be achieved by placing the en-

gines above the fuselage/wing. Although the application is slightly sensational, a good

discussion on ray acoustics theory is presented. To solve the equations, various software

was used including one that was developed for electromagnetic waves. Experiments on

a scale model of the plane was compared against predicted values. They did not com-

pare particularly well because the sharp corners and small size of the winglets cause

diffraction that was below the apparent size to wavelength ratio limit.

Figure 2.3: The silent aircraft concept that has been modelled using ray acoustics by
Agarwal et al. (2007). From eng.cam.ac.uk

Spence (1992) implemented the analytical results derived by McAninch and Rawls

(1984). To do this, Spence (1992) developed a optimised numerical method that im-
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plemented the many infinite integrals and sums that are required in the solution. The

results are consistent with those predicted by analytical results. The results were com-

pared to measurements taken from an aircraft in flight and corresponded well.

BE methods have been utilised to investigate installation effects. One such example

is Wang and Zhou (1998) which utilised the BE method to investigate the fuselage

scattering effect due to propeller noise. Unlike the theoretical models of the previous

section, the solution is calculated based on the Ffowcs Williams-Hawkings equation.

Forward velocity of the fuselage is less than 0.3 M and the fuselage was rigid. They

contentiously assumed that flow of less than 0.3 M leads to negligible refraction. The

code was validated against analytical solutions.

The effect of the wing on the noise from a propeller was investigated by Marretta

et al. (2001) by implementing the BE method. The method made use of increasingly

accurate aerodynamic predictions and measurements of the flow around a wing. The

method incorporated the aerodynamic results to predict the acoustic field via the Ffowcs

Williams-Hawkings equation. The aim of the paper was to investigate the effect of the

wing on the sound field at low Mach numbers. Boundary layer effects are negligible at low

speeds (Hanson and Magliozzi (1985) and Lu (1990)). The fuselage was also neglected.

Despite these simplifications, the method gave reasonably accurate predictions when

compared to measured data by Sulc and Benda (1982). The predictions showed that the

wing affects the field modestly and is space dependent.

Siefert and Delfs (2011) investigated the effect of refraction and spectral broadening

due to fuselage boundary layers from a monopole source. They calculated the flow field

along a cylinder by solving the Reynolds-averaged Navier-Stokes (RANS) equation at

0.75 M. Turbulence was added to the boundary by a Random-Particle-Mesh method

(RPM). The noise source was a monopole and the field was calculated by CAA, in this

case PIANO was used to solve the linearised Euler equations. As expected the high

frequency waves were refracted strongly away from the fuselage surface upstream of the

noise source. When turbulence was introduced to the boundary layer the sound was

scattered. The scattered noise was scattered into shadow zones. The tone was also

affected by haystacking effects of turbulence.

The computational model was made more realistic by Dierke et al. (2013). They

used realistic airframe geometry and most significantly changed the noise source to a

mode propagating from the turbofan. The change in source type was shown to be very

significant to the predicted pressure on the fuselage. The same method was used as in

Siefert and Delfs (2011) apart from additional code to calculate the propagating mode

from the turbofan engine. The modes that propagated from the engine was the (l, q) =

(20, 1) and (l, q) = (24, 1). Turbulence was included so haystacking and geometrical

scattering was modelled. The relatively quick flight condition of 0.85 M ensured that

the refraction effect of the boundary layer was significant. When the boundary layer was
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included, it was shown that the fuselage pressure was very dependent on the incident

angle of the incident wave. Although this is true for any source the effect is highlighted

for the (m,n) = (20, 1) because of the two lobed directivity pattern. The lode with less

incident angle was refracted very strongly and a reduction of 15 dB can be expected.

Contrary to a more modest, although still significant, reduction of 8 dB for the larger

grazing angle. The turbulent boundary layer scatters pressure into a broader area but

tends not to reduce the peak level significantly.

Although Dierke et al. (2013) showed some interesting results, they could only predict

the pressure in a reasonably small volume at low free stream velocities. The results took

one week to solve on 4 CPUs. The volume was created by extruding a two dimensional

result.

By reviewing the literature from numerical approaches to installation effects have

shown some extremely interesting results. Ray acoustics was employed by Agarwal et al.

(2007) however the lower limit of the high frequency limit was breached and significant

differences between predicted and measured values were observed. The established CAA

software PIANO was used to investigate the refraction and scattering (both spectral and

geometrical) effects due to the boundary layer by Siefert and Delfs (2011) for a monopole.

Dierke et al. (2013) then improved the source to a realistic tone propagating from a

turbofan. The differences between the two sources were extremely significant. All the

papers discussed in this section broadly agreed with the analytical results of the previous

section i.e. strong refraction upstream, angle of incidence and profile dependent. The

installation effects of tonal noise from turbofan engines have only been studied using

numerical methods and have been shown to be very significant.

2.2 Fan-tone Radiation

The previous sections have shown that analytic installation effects have been studied

with either fundamentally basic or propeller type sources. A new source for the engine

fan tone will be formulated to fill the gap in this knowledge. Fortunately there have

been several papers that model an engine fan tone in a free field. In this section, an

examination of engine fan tone radiation models is presented.

Turbofans are a type of aero-engine that generate thrust by compressing and setting

fire to a gas. This gas then expands to generate thrust. In a turbofan engine the

expansion drives a fan upstream of the combustion. This fan sucks more air into the

engine, and the cycle repeats. Thanks to the fan and the nacelle (which surrounds the

mechanisms) this type of engine is efficient and powerful and are installed on virtually

all mid to long haul aeroplanes.

Noise is generated in various sections of the engine, shown in Figure (2.4). Jet and

combustion noise tends to be broadband whereas the other types are tonal or a sum of
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Figure 2.4: Turbofan schematic with noise sources. Used with permission from A.
McAlpine: southampton.ac.uk/engineering/about/staff/amca.page.

tones.

As before, theoretical and numerical methods are examined for modelling fan-tone

radiation.

2.2.1 Theoretical Models for Radiation

In this analysis of theoretical methods to predict free-field radiation, two papers are

examined in detail; the blue ribbon paper for turbofan machinery noise Tyler and Sofrin

(1962) and a recent theoretical model by Gabard and Astley (2007).

The first significant paper to analytically model turbofan noise was Tyler and Sofrin

(1962). The authors start with the noise generating mechanisms for the rotor-locked

mode. As the fan (rotor) spins, it generates a pressure field which spins at the angular

velocity of the blades with a frequency equal to the blade passing frequency. This

pressure wave propagates along the duct. For physical reasons the acoustic mode is of

the same order as the number of blades. The nacelle was simplified to form a circular

duct. Under this condition, the acoustic field can be described as a summation of simple

mode shapes.

In a perfectly circular duct, via the method of separation of variables, the azimuthal

mode function is an exponent. The radial solution is a Bessel function. These shapes

propagate down the duct. This result can be gleaned from any number of methods,

however the rotor-stator interaction tones analysis was new. This simple observation

states that an azimuthal mode may be excited by the interaction between the fan and

the stators (located behind the fan). The mode order is the difference between the

number of blades and stators.
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This observation was very significant because the number of rotors and stators is

easily engineered such that the rotor-stator interaction mode may be optimised for pur-

pose. The mode could be high such that the mode grazes the nacelle liner, or so that

the mode radiates out the front of the fuselage.

For these generating mechanisms the forcing frequency is real. Therefore the modes

propagate down the duct with no loss in amplitude. The amplitude of a propagating

mode can be reduced with the addition of a liner. This thesis does not consider cut-off

modes.

The radiation from the duct termination was also modelled. The pressure on the

duct face can be described by simple modes mentioned above. An element of area on

the face is then modelled small enough to be thought of as a monopole source. The

strength of the source is proportional to the particle velocity normal to the duct plane.

A distributed source can be formed by integrating over the area of monopoles with a

volume velocity strength proportional to the analytic mode shape function.

Community noise was prioritised, therefore they moved to the far-field to integrate

over the source. This has the added advantage of making the integral over the source

simpler than the full, near-field solution.

Although the predictions give reasonably realistic values, at high polar angles the

results are not good. The reason for this is that directivity forces the principle lobe to

a large polar angle. At these large angles the diffraction due to the duct lip becomes

significant. To model these effects the Wiener–Hopf method could be implemented.

The Wiener–Hopf method is an analytic method that allows differential equations

with mixed boundary conditions to be solved. The important step is to split the relevant

transform into two parts. For example, for a mode radiating from a duct, the axial

transform is split from negative infinity to zero, and then from zero to positive infinity

to account for the rigid to boundary of the semi-infinite duct. The next step is to allow

the integrating variable to be complex. By doing these two steps, the full integral can

be taken (Noble, 1958).

The full integral is from negative to positive infinity. So long as these limits are

applied the path taken can stray from the real axis. An important part of the Wiener–

Hoft method is choosing the correct contour of integration. Care must be taken to

ensure that the integrand is regular whilst including the contributions of poles which

may or may not be physically relevant. Full analysis is presented Noble (1958) and for

concise treatment see; Mathematics for Acoustics (Wright, 2001) and Modern Methods

in Analytical Acoustics (Crighton et al., 1992).

The diffraction from a duct lip in the context of a turbofan engine was modelled

by Gabard and Astley (2006). This paper builds on Munt (1977) and ?. Munt (1977)

modelled a radiating mode from an outlet of a turbofan engine. In this set-up, the model

must incorporate the faster flow of the jet in the annulus. The original Munt predictions
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were in the far field. Rienstra added a centre body to the model, again this cannot be

ignored for radiation from the outlet of a turbofan. Thankfully, for the inlet problem

considered in this thesis, these added complexities may be ignored.

A diffraction problem is set up like so; the incident field is prescribed, the diffracted

field is formed such that the total field satisfies the boundary conditions (on the diffract-

ing object) and the far-field radiation criteria are satisfied.

In this model, the incident field is the mode radiating along the duct. The duct

boundary conditions are rigid and of infinitesimal thickness. The new part of the Gabard

paper was to include the vortex sheet as a boundary condition. This was done by

solving the convected wave equation for potential flow. The vortex sheet is described by

the Kutta condition and modelled by continuity of particle velocity. By summing the

two fields the total acoustic field is formed. No far-field approximations were made in

formulating the problem. Importantly for installation effects, the resulting equation is

an inverse Fourier transform. For a single tone and mode, the result show a strong effect

of the various variables.

In an engine all the modes below the highest mode are cut-on. Therefore it is very

important to model multimode sources. Very briefly, a recent example of multimode

modelling can be found in Sinayoko et al. (2010). This paper adds flow to the model of

Joseph and Morfey (1999). They use energy considerations to construct expressions for

the multimode solution in the far field.

Lastly, the effect of the incline of a flanged duct with quiescent flow was analytically

modelled in the far-field by McAlpine et al. (2012). The principle lobe is translated by

the angle of the highlight.

To sum up, analytic methods for modelling a mode radiating from a circular duct has

improved so that the analytical model includes; diffraction from duct lip, flow, a vortex

sheet for outlet problems, different flow velocities in/out of the core and a center-body.

The flow must be along the axis of the duct.

2.2.2 Numerical Methods for Radiation

Subtle changes in geometry and flow may be included in FE analysis. CAA modelling

of turbofan noise is summarised in Astley et al. (2010). Although CAA can give very

accurate predictions for realistic geometry and flow, they take too long to use in a

parametric study.

2.3 Chapter Summary

Historically, installation effects have been studied in the context of open-rotors. Sig-

nificant, general trends have been identified for fuselage scattering and boundary layer
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refraction, important effects are; significant shielding occurs at large k0a0 values on the

far-side of the fuselage, fuselage boundary layer effects are small below about 0.5 M are

stronger upstream. An insignificant effect is temperature change in the boundary layer.

In all these studies the boundary layer thickness has been constant along the cylinder.

The impact of the effect of turbulence and realistic, finite fuselage geometries have at

this point not been theoretically modelled in the context of installation effects. Also, the

installation effects due to noise generated from tonal fan noise are yet to be predicted

using theoretical methods. By identifying this gap in knowledge, the first objective has

been achieved.

Numerical methods have been successfully utilised to predict installation effects.

Tonal noise from turbofan engines have been modelled and the results can be used

to check future analytical work. The installation effects of tonal noise from turbofan

engines have only been studied using numerical methods and have been shown to be very

significant. The numerical methods are suitable for investigating complex geometries.

Noise radiating from a circular duct has been modelled in a free field. The models

have become sophisticated such that they include the diffraction from the duct lip,

regions of different flow speeds, an annular duct and vortex shedding. The latter three

of these is essential for accurate predictions for an outlet of an engine. Numerical

methods can be used for realistic turbofan geometries in three dimensions. However

these calculations can take a very long time.
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Chapter 3

Disc Source Incident Field Theory

and Validation

The noise radiating from the inlet of a turbofan in a free-field is analytically modelled

in this chapter. The sound field is obtained by solving the inhomogeneous convected

wave equation. The source is formulated by approximating the turbofan as a semi-

infinite circular duct. A distribution of monopoles are integrated over with no far-field

approximations to form the source. The source strength of the monopoles are taken as

the axial velocity of a mode of the circular duct. In doing this, the radiation due to a

propagating spinning mode is modelling in the near field. The diffraction of the duct lip

is explicitly neglected, therefore the model is only valid in the forward arc.

After the derivation of the incident field the directivities of the radiated field are

discussed. Specific attention to the near- and far-field of the new source is investigated.

Implementing the full solution is critical to accurate predictions in the near field.

3.1 Disc Source Theory

This section presents the derivation of the new source. The derivation of the source

is similar to McAlpine, Gaffney and Kingan (2015) however all variables are non-

dimensional in this derivation. The non-dimensional length scale is referenced to the

radius of the cylinder, a0 (the cylinder radius introduced in Chapter 5, it is used here

for consistency and only scales the results), the reference velocity is equal to the speed

of sound, c0, and the reference density is equal to the ambient density, ρ0. The pressure

is scaled by ρ0c
2
0.

3.1.1 The Duct Approximation

Turbofan noise is generated through many mechanisms: fan gust interaction, rotor noise,

rotor vane interaction, to name a few. Modelling these sources accurately is extremely
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challenging. However, because the nacelle wraps the engine in a duct, the propagation

of the sound is greatly simplified by modelling the problem with duct acoustics; any

sound field in a duct can be expressed as a sum of incoherent modes. Furthermore, the

mode shapes of circular ducts are analytical functions. Consequentially, turbofan are

commonly simplified as circular ducts. The first step in the derivation is to approximate

the inlet as an infinitely long, rigid circular duct. The modal superposition is valid for

any source.

Solving the wave equation by separation of variables shows the mode shapes functions

are Bessel’s function (Jl) in the radial direction, viz

p (r, φ, z, t) =
∞∑

l=−∞

∞∑
q=0

P±lq Jl(κlqr) e−j(lφ+k±z,lqz) ejω0t, (3.1.1)

where mode (l, q) is the lth azimuthal mode and the qth radial mode. In this thesis, only

a single mode propagating in the upstream (where the superscript + has been dropped)

direction is examined

plq (r, φ, z, t) = PlqJl(κlqr)e
−j(lφ+kz,lqz) ejω0t, (3.1.2)

where ω0 denotes the source frequency. See Figure (5.2) on page 69 for geometry.

Via the momentum equation, the non-dimensional axial particle velocity is

uz,lq (r, φ, z, t) = ξlqPlqJl(κlqr)e
j(−lφ−kz,lqz)ejω0t, (3.1.3)

where the velocity mode amplitude coefficient is

ξlq =
kz,lq

(k0 +M∞kz,lq)
, k0 = ω0 > 0. (3.1.4)

The flow in the uniform flow region, which includes the duct, is denoted by M∞. The

ambient flow is positive in the negative direction. This is done such that the fuselage

would move in the positive axial direction.

The dispersion relationship for the mode is

κ2
lq + k2

z,lq = (k0 + kz,lqM∞)2 , (3.1.5)

and the radial wavenumber, κlq, is an eigenvalue determined by J′l(κlqa) = 0. Therefore,

κlq is determined by the azimuthal mode of order l and the radius of the duct, a.

The axial wavenumber propagating against the flow in the duct is obtained by solving
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Equation (3.1.5) to give

kz,lq =
k0M∞ +

√
1− (1−M2

∞)κ2
lq/k

2
0

1−M∞
. (3.1.6)

The axial wavenumber for the upstream propagating wave is a smaller value than the

downstream wave.

If the value under the square root in Equation (3.1.6) is less than zero, the wavenum-

ber is complex. When this occurs the wave is evanescent and exponentially decays with

distance. The frequency ratio at which this occurs is given by

ζlq =
k0

κlq
√

1−M2
∞
, (3.1.7)

referred to as the cut-off ratio. When ζlq is less than unity the wave is cut-off, above

unity and the mode propagates. The cut-off ratio leads to the mode triangle; the salient

fact is that high forcing frequencies have a higher number of propagating modes.

The group velocity of the mode is smaller than the phase velocity. This is because

the wave travelling in the azimuthal direction travels around the duct and has further

to travel. If one were to look at a constant phase the mode appears to spin. The

speed at which the mode spins is dictated by the circumferential phase velocity. The

circumferential phase velocity decreases with increasing azimuthal mode (l). A barely

cut-on mode (ζlq & 1) spins slowly, in a lined duct such as a turbofan, thus has longest

contact with a liner so attenuation is increased.

κlq

kz,lq

k0 +M∞kz

M∞
z

φz,lq

M∞

z

φz,lq

ψz,lq

c0 cosφz,lq

M∞

c0 sinφz,lq
(b)(a)

Figure 3.1: A diagram of the dispersion relationship (leads to φz,lq), in (a) and is the
inner triangle in (b), and the group velocity triangle (which leads to ψz,lq) in (b).

The angle at which the vector normal to the wave fronts of the mode is φlq, this angle

is important for cut-on/off. The angle ψlq is the angle at which the group velocity vector

makes with the duct axis, this angle will come up later in the thesis. These angles are
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identical in quiescent flow. A diagram of these angles are shown in Figure (3.1).

The commonly referred to ‘spinning’ modes are a slight misnomer. In a rectangular

duct the standing wave is formed by a superposition of two waves travelling in opposite

directions. In a circular duct a standing wave can be simulated by superimposing a

clockwise rotating mode (−l) and an anticlockwise rotating mode (l). The standing

wave is not formed because in the azimuthal direction there are no boundaries.

In a turbofan operating with a supersonic tip speed, the amplitude of the rotor-locked

mode is much greater than the other modes. The real valued modal amplitude Plq can

be chosen appropriately to replicate a source. In this thesis, single mode calculations

are performed and without loss of generality the modal amplitude is always set equal to

unity.

Furthermore, it can be shown that at z = 0 the pressure is

plq|z=0 ∼ Jl(κlqr) e−jlφ, (3.1.8)

the relationship between a clockwise and anticlockwise mode is

pl,q = (−1)l p∗−l,q , (3.1.9)

where ∗ is the complex conjugate. This result means that for even order modes the

real pressure is identical whereas there is a phase change of π radians in the imaginary

component. For the odd modes the imaginary component is identical for clockwise and

anti-clockwise spinning modes, whereas the real component has the phase change of π.

Figure (3.2) shows the incident pressure for modes used later in the thesis. They

show that the energy is more concentrated towards the radius outer wall as the azimuthal

order increases. This is due to the property of the first kind of Bessel function.
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(a) (0, 1) (b) (4, 1)

(c) (16, 1) (d) (24, 1)

Figure 3.2: Normalised instantaneous pressure for spinning modes (l, q).

3.1.2 Derivation of Source

At this point the turbofan has been approximated as a cylindrical duct with a superpo-

sition of modes for an arbitrary source. In this section, the distributed source is formed

by taking the conditions on the cross section of the duct at a location equivalent to the

inlet’s highlight. This is achieved by imposing the axial acoustic velocity from the duct

on a distribution of monopoles. The solution is found by starting with the solution to

the wave equation in cylindrical coordinates for a monopole. From this result a number

of monopoles are manipulated so that the solution for a ring and then mode solution is

derived.

Throughout this thesis the Fourier and inverse Fourier transform is defined as

p̃m (r, kz, ω) =

∫ ∞
−∞

∫ π

−π

∫ ∞
−∞

p (r, φ, z, t) ej(kzz+mφ−ωt) dz dφ dt, (3.1.10)

and

p (r, φ, z, t) =
1

(2π)3

∞∑
m=−∞

(∫ ∞
−∞

∫ ∞
−∞

p̃m (r, kz, ω) e−j(kzz−ωt) dkzdt

)
e−jmφ. (3.1.11)

Note that all the solutions are time harmonic of the convention ejω0t.
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Point Source Model

The pressure due to a single monopole (σ) in cylindrical coordinates is given by the

Fourier series of inverse transforms

pσi (r, φ, z, t) =
1

(2π)2

∞∑
m=−∞

∫ ∞
−∞

p̃i,m,σ e−jkzzdkz e−jmφ ejω0t, (3.1.12)

where the transformed pressure is

p̃σi,m(r, kz) =
π

2
Qσ(k0 + kzM∞) H(2)

m (krr>)Jm(krr<), (3.1.13)

and

r> =

{
r r > τ

τ r < τ,
(3.1.14a)

r< =

{
τ r > τ

r r < τ.
(3.1.14b)

The source is located at radial position τ is a temporary variable used in this integral

only whereas r is the field position.

This result is derived in McAlpine and Kingan (2012) in dimensional form and need

not be re-derived in full. Briefly, the solution was obtained by Fourier methods. In the

Fourier domain the wave equation in cylindrical polar coordinates reduces to Bessel’s

equation, which is where the H
(2)
l and Jl come from. The second kind of Hankel function

is chosen to ensure appropriately decaying outwardly propagating waves. The method

of variation of parameters is used to solve the inhomogeneous Bessel’s equation.

For a source at the centre of the origin the expression reduces to

pσi (r, φ, z) =
1

(2π)2

∫ ∞
−∞

p̃σi,m e−jkzzdkz, (3.1.15)

and

p̃σi,m(r, kz, t) =
π

2
Qσ(k0 + kzM∞) H

(2)
0 (krr). (3.1.16)

Only the zero-th term is required because Jn(0) ≡ 0 for n ∈ {Z|n 6= 0} and J0(0) = 1.

The radial wavenumber of the radiated field, kr, is given by the dispersion relationship

k2
r + k2

z = (k0 + kzM∞)2 , (3.1.17)

and equals zero at

k−z = − k0

1 +M∞
and k+

z =
k0

1−M∞
. (3.1.18)

In the range k−z < kz < k+
z , the wavenumber kr is real and positive, and corresponds
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to wavenumbers which radiate to the far field. Outside of this range, kr = −jγ where

γ =
√
k2
z − (k0 + kzMz)2 > 0, this wavenumber range corresponds to an evanescent

field. Accordingly, the integration of the inverse Fourier transform in Equation (3.1.2)

is split into three parts as shown in Table 3.1.

Label
Limits

kr
lower higher

I1 −∞ k−z −jγ
I2 k−z k+

z

√
(k0 +Mzkz)2 − k2

z

I3 k+
z ∞ −jγ

Table 3.1: Breakdown of the inverse Fourier transform integral. The full integral is
given by I1 + I2 + I3. The value of the wavenumber kr in each region is specified.

The dispersion relationship leads to a removable singularity when the argument of

the Hankel function is equal to zero. The branch cuts are chosen to go from k±z to

infinity, this becomes crucial later in Chapter 4. This is shown in Figure (3.3).

k−z

k+z

Re {kz}

Im {kz}

kz < 0 kz > 0

kr = −jγ
γ > 0

arg {kr} = −π/2

Figure 3.3: Argand diagram of radial wavenumber for real kz. Branch points at k±z are
shown with dots. The branch cuts are shown as dashed lines.

Distributed Source Model

In this section the monopole solution is extended to a distribution to represent a ring

and then a spinning mode source. The axial acoustic velocity in a plane of the duct is

taken as a source strength for a distribution of monopoles. The method is similar to

Tyler and Sofrin (1962) however we make no far-field approximations.
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Let a single monopole, σ, be at angular displacement

φ̂ = φ− σ∆ψ, (3.1.19)

where ∆ψ is the angular displacement between the equally spaced monopoles, see Figure

(3.4). This immediately substitutes into Equation (3.1.12) as

pσi (r, φ, z) =
1

(2π)2

∞∑
m=−∞

∫ ∞
−∞

p̃σi,m e−jkzzdkz e−jm(φ−σ∆ψ). (3.1.20)

The source strengthQσ for each monopole is specified by taking the axial particle velocity

of the mode (l, q) at the duct termination, so the position of the monopole is (r, φ, z) =

(τ, σ∆ψ, 0);

Qσ(τ, σ∆ψ, 0) = uz,lq(τ, σ∆ψ, 0) δA = ξlqPlqJl(κlqτ)e−jlσ∆ψ τδτ δψ, (3.1.21)

where δA = τδτδψ.

Figure 3.4: A sketch of the finite monopole arrangement. This shows a ring of
monopole sources at r = τ .
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So for a single monopole (σ) at an angle (σ∆ψ) the transformed pressure is

p̃σi =
π

2
ξlqPlqJl(κlqτ)e−jlσ∆ψ(k0 + kzM∞) H(2)

m (krr>)Jm(krr<) τ δτδψ. (3.1.22)

Initially the solution for a ring source is formulated. The number of monopoles equally

angularly spaced (at the same radius, τ) is increased and the space between them is

reduced, see Figure (3.4). For f− 1 monopoles the coherent sum is

p̃fi =
f−1∑
σ=0

π

2
ξlqPlq e−jlσ∆ψ(k0 + kzM∞) H(2)

m (krr>)Jm(krr<)Jl(κlqτ) τδτδψ, (3.1.23)

which is evaluated by the standard sum formula

f−1∑
σ=0

e−j(l−m)σ∆ψ =
ej(l−m)∆ψ

(
1− e−j(l−m)f∆ψ

)
ej(l−m)∆ψ − 1

=

{
0 m 6= l − nf
f m = l − nf

, (3.1.24)

where n is any integer. This modifies the expression for pressure to

pfi = f
ξlqPlq

8π

∞∑
n=−∞

∫ ∞
−∞

(k0 + kzM∞)H
(2)
l−nf(krr>)Jl−nf(krr<) Jl(κlqτ)e−jkzz dkz

e−jlφ τδτδψ. (3.1.25)

A continuous ring of monopoles is formed by letting the number of monopoles tend to

infinity as the area they occupy tends to zero

lim
∆ψ→0
f→∞

f δψ = 2π. (3.1.26)

The n series represents duplicates in the azimuthal direction of the source. Further-

more, large order asymptotic approximations show that the value of the Bessel functions

decrease to zero as the order increases to infinity for a finite argument. Therefore only

n = 0 terms in the series are sufficient for the solution

pi,l =
ξlqPlq

4

∫ ∞
−∞

(k0 + kzM∞)H
(2)
l (krr>)Jl(krr<)Jl(κlqτ) e−jkzz dkz e−jlφ τδτ. (3.1.27)

This is the solution for a ring source of order l.

To obtain a disc source, for mode (l, q), the solution is integrated from τ = 0 to a

pi,lq =
ξlqPlq

4

∫ ∞
−∞

(
(k0 + kzM∞)

∫ a

τ=0

H
(2)
l (krr>)Jl(krr<)Jl(κlqτ)τ dτ

)
e−jkzz dkze

−jlφ.

(3.1.28)
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The integral over τ is renamed Ψ[
lq

Ψ[
lq =

∫ a

τ=0

H
(2)
l (krr>)Jl(krr<)Jl(κlqτ)τ dτ. (3.1.29)

Other authors make far-field approximations, but we maintain the full, exact solution

by evaluating the integral exactly

Ψ[
lq =


H

(2)
l (krr)

kra
κ2
lq−k2

r
Jl(κlqa)J′l(kra), r > τ,

Jl(krr)
krτ

κ2
lq−k2

r
Jl(κlqτ)H

(2)
l (krτ)

∣∣∣r
τ=0

+ H
(2)
l (krr)

kra
κ2
lq−k2

r
Jl(κlqτ)Jl(krτ)

∣∣∣a
τ=r

, r < τ.

(3.1.30)

However, to find the pressure away from the source only requires the r > τ result1.

The final solution is the inverse Fourier transform

pi,lq =
ξlqPlq

4

∫ ∞
−∞

(k0 + kzM∞)H
(2)
l (krr)Ψlq e−jkzz dkz e−jlφ, (3.1.31)

with

Ψlq =


kra

κ2
lq−k2

r
Jl(κlqa)J′l(kra), kr 6= κlq,

1
2

(
a2 − l2

κ2
lq

)
J2
l (κlqa), kr = κlq.

(3.1.32)

For plane waves the integral over the disc reduces to

Ψ01 =

{
− a
kr

J′0(kra), kr 6= 0,
1
2
a2, kr = 0.

(3.1.33)

To aid discussion and clarity we break the transformed pressure field into a dis-

tance component, in this case the Hankel function, and a complex amplitude η with the

subscript lq to denote disc source mode

pi,lq(r̄, φ̄, z̄, t) =

∫ ∞
−∞

η̃lqH
(2)
l (krr) e−jkzz dkz ejω0t, (3.1.34)

where for a spinning mode the complex amplitude is

η̃lq =
ξlqPlq

4
(k0 + kzM∞)Ψlq e−jlφ. (3.1.35)

Since the duct itself, and thus the diffraction effect of the duct lip, has been omitted

these new solutions are only valid at z̄ > 0.

1The τ < r solution is evaluated in this chapter only.
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3.2 Disc Source Incident Field Method

This section introduces the method. After a discussion on how the theoretical equations

are implemented the method is validated by comparing the predictions for a simple

monopole case. Furthermore, the method is tested against simple far-field asymptotic

predictions.

3.2.1 Description of Method

The method for evaluating Equations (3.1.34) and (3.1.35) is discussed. The expression

for the incident field due to the spinning mode is not particularly complicated. However,

the integral over the axial wavenumber domain has some quirks that are easiest discussed

for this simple expression. For ease of reading, and foresight, only the expression for

r > a is discussed.

The inverse Fourier transform integral over the kz domain is split as shown in Table

(3.1). This corresponds to the integral∫ ∞
−∞

p̃i e
−jkzz dkz =

∫ k−

−∞
p̃i e
−jkzz dkz︸ ︷︷ ︸
I1

+

∫ k+

k−
p̃i e
−jkzz dkz︸ ︷︷ ︸
I2

+

∫ ∞
k+

p̃i e
−jkzz dkz︸ ︷︷ ︸
I3

. (3.2.1)

The integrals I1 and I3 are in the evanescent part of the spectrum, an example of

the integrand is shown in Figure (3.5).

Large kz values are in the evanescent part of the spectrum (I1 and I3). By replacing

the relevant components with their large argument asymptotic approximations

lim
kz→∞

H
(2)
l (−jγr)J′l(−jγa) ∝ lim

kz→∞
Kl(γr)I

′
l(γa) ≈ 1

2π
ekr(a−r)

(
1√
kra
− 1√

(kra)3

)
→ 0.

(3.2.2)

Because it would be computationally inefficient to integrate from minus to positive

infinity, the limits of the integral are appropriately chosen at finite values. As the large

argument asymptotic expansion shows, at very large values of of kz the contribution to

the overall integral is negligible. Therefore, the integral is truncated at appropriately

large values of kz until the function becomes significant (larger than a felicitous toler-

ance). At this value of kz (plus or minus a safety ∆kz to be extra sure) the limit of

integration is set.
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Figure 3.5: The integrand of Equation (3.1.34), I1 and I3 are shown in dashed lines.
Relevant parameters are: r = 0.707, z = 0.707 (R = 1 and θ = π/4c) for k0a = 10,

(l, q) = (4, 1) and M∞ = 0.75.

Bessel’s function of the first kind is well behaved over the whole domain. However,

the Hankel function is singular when the argument is zero, this occurs at k±z . However

small asymptotic analysis shows that the singularities are removable for l 6= 0. The

relevant components are

ΨlqH
(2)
l (krr) ∝

kra

κ2
lq − k2

r

J′l(kra)H
(2)
l (krr), (3.2.3)

for l 6= 0 the limit for small kr is2

lim
kr→0

kra

κ2
lq − k2

r

1
2

(
1
2
kra
)l−1

(l − 1)!
j

(l − 1)!
(

1
2
krr
)−l

π
=

j

πκlqrl
, (3.2.4)

and for l = 0

lim
kr→0

J0(kra)H
(2)
0 (krr)→ j∞. (3.2.5)

The integration is performed by the built-in MATLAB routine quadgk which is adaptive

and designed to integrate oscillatory functions with singularities on the integration limits.

2Note this discussion is for r > a.

36



3.2.2 Validation of Method

In this section the method for computing the incident field is validated. To show that the

new code is working correctly, it is benchmarked against simple, established results. Ini-

tially the plane wave mode is examined and it is shown to be comparable to a monopole

under certain conditions. Secondly the incident field directivity is compared to simple

directivity approximations at large observer positions.

Comparison with a monopole point source

In Cartesian coordinates and no flow, the solution to a single monopole at the origin is

pσ(x, t) = P σjk0
e−jk0x+jω0t

4π|x| . (3.2.6)

where P σ is a real amplitude coefficient.

The new disc model can be compared to this solution. To simulate a monopole the

plane wave mode (0, 1) is chosen. If the radius of the disc is much smaller than the

acoustic wavelength of the source then the directivity tends towards omnidirectivity.

The complex amplitude of the plane wave mode is

η̃01 =
1

4
(k0 + kzM∞)Ψ01 e−jlφ, (3.2.7)

where ξ01 has been omitted because it is equal to one. For the zeroth mode and no flow

this simplifies to

η̃01 =
1

4
k0Ψ01. (3.2.8)

Figure (3.6) shows that the two normalised predictions are essentially identical. The

solutions are plotted against multiples of the disc radius (of 0.01) to show that the

radius is small compared to the wavelength, λ/a ≈ 126.

It can be shown that if the radius of the disc is sufficiently small the solution for the

distributed source is identical to that of the monopole solution in cylindrical coordinates.

Using the small asymptotic arguments the integral over the disc radius is set to a small

value

lim
a→ι

Ψ01 =
1

2
ι2 +O

(
(krι)

3
)
, (3.2.9)

where ι << 1.

For the value of Ψ01 in Equation (3.2.9) to remain accurate the product krι also must

be small. As ι is very small the maximum real value of krι is also very small. However in

the evanescent field, kr approaches j∞. As before the Hankel function decays at greater

rate than (krι)
3 becomes large.
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The plane wave mode solution for a small disc is

p̃i,01 = π2 1

2
ι2︸ ︷︷ ︸

Real amplitude

(k0 + kzM∞) H
(2)
0 (krr), (3.2.10)

which is identical apart from real amplitude constant to the monopole solution at r = 0

given by

p̃i,σ =
π

2
Q0︸︷︷︸

Real amplitude

(k0 + kzM∞) H
(2)
0 (krr), (3.2.11)

from Equation (3.1.12). At r = 0 the sum drops out because J`(0) ≡ 0 for integer ` 6= 0.

Figure 3.6: The disc source and monopole solutions for k0 = 5 and disc radius of
a = 0.01. The real part is solid line and the imaginary component is dashed line. The

monopole solution is shown with added × for real and ◦ imaginary components.
R ∈ [0.02, 10] and φ = π/4c. Both solutions have been normalised.

Far-Field Comparison

The new source formulation contains no far-field approximations. As such it is more

complicated than far-field approximations. Such approximations are used because they

are less complex. The new code can be validated against the far field approximations in

the far field.
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The far-field approximation for a mode radiating from a circular duct is

pi,ff (R) =
Plq
R
jl+1κlqa

k0a sin θ

(κlqa)2 − (k0a sin θ)2 aJ′l (k0a sin θ) Jl(κlqa) e−j(lφ+kz), (3.2.12)

from McAlpine et al. (2012). Tyler and Sofrin (1962) derived the far-field radiation for

a spinning mode in a duct, and is surmised by McAlpine et al. (2012).

Figure (3.7)3 shows that the near- and far-directivity give very similar results. The

example result is for a high frequency of k0a = 40. As frequency increases the integrand

becomes increasingly oscillatory and the numerical integration becomes less accurate. It

is therefore encouraging that the results are practically the same.

The results are shown against polar angle at a constant radius of 20a, equivalent to

127λ0 which is well away from the source. This value is in the far field, the discussion

on this is presented in the next section.

Figure 3.7: The disc source predictions at R = 20 (solid line) and the far-field
directivity (dashed line, ×) are in almost exact agreement. The relevant parameters

are: k0a = 40, a = 0.5, (l, q) = (4, 1) and M∞ = 0.

3.2.3 Comparison against Measured Results

In McAlpine et al. (2015) the incident field predictions were compared against measured

data. The comparisons showed that an incoherent sum over all cut-on mode solutions

3All decibel predictions throughout the thesis are normalised, therefore the reference value is 1 Pa
and does not need to be included.
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compared well against the measurements.

3.3 Source Discussion

So far, the turbofan inlet has been simplified to a cylindrical duct, the pressure field

inside is extracted from the duct to formulate the source. In this section the incident

field is discussed. The results show that the new, full solution is critical to obtain

accurate predictions in the near field. Following, is a discussion on where the far-field

for the new source begins. Some of the incident fields of the new source are presented

and related to the duct acoustics.

3.3.1 Location and Amplitudes of Principal and Side Lobes

The directivity of a mode radiating from a duct consists of the principal and side lobes.

Several methods are available to calculate the angle of the principal lobe. This section

shows that only full calculation of the near-field solution leads to accurate principal lobe

angle.

For a hollow cylindrical duct, the principal lobe is the first lobe (measured from

the duct axis) and always has the largest amplitude; the principle lobe is the global

maximum. As the polar angle is increased, side lobes may appear when k0a >> l.

The value of the relative amplitude of these lobes decreases with angle. The results are

normalised to the amplitude of the principal lobe.

The far-field for the sound propagating from a duct is given in the previous section,

Equation (3.2.12). The far-field directivity is Equation (3.2.12) without the 1/R term.

The angle of the principal lobe may be found by taking the derivative of the far-field

directivity with respect to polar angle and then solving for the angle at which the

derivative is zero. The roots of this equation must be found numerically. The derivative

of the near-field equation cannot be found analytically. Again the turning point may be

found numerically.

Alternatively, in the far-field the angle of the principle lobe was predicted by Rice

et al. (1979) as

cos (ψz,lq) =
√

1−M2
∞

{
1− 1/ζ2

lq

1−M2
∞
(
1− 1/ζ2

lq

)}1/2

, (3.3.1)

where ζlq is the cut-off ratio of Equation (3.1.7). Rice collected work from Candel (1973),

Homicz and Lordi (1975) and Lansing et al. (1970) to derive the above result. A diagram

of this angle is shown in Figure (3.1).

The incident fields are shown in Figures (3.8) – (3.11) in the near- and far-field for

parameters that will be used later in the thesis. The normalised directivity functions
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are shown against polar angle at R = 2a and R = 100a. The blue dot on the following

figures denote the Rice prediction, the far-field prediction maximum is shown by the red

dot and the near-field solution maximum is highlighted by the yellow dot.

Figure (3.8) shows the incident field for a reasonably low frequency of k0a = 10 and

(l, q) = (4, 1). For this mode and frequency the mode is reasonably cut-on. The principal

angle predicted by Rice, Equation (3.3.1), is about 32o. The maximum of the near- and

far-field directivities are close, as the lobe is wide. The ψz,lq value under predicts the

actual maximum in the near-field by ten degrees and the near-field maximum by 7o.

The near-field prediction differs significantly to the far-field directivity at angles

above the principal angle. The maximum difference between the two predictions is

around 30 dB. This occurs at the null in the directivity.

Figure 3.8: Disc source at R = 2a (solid line) and the far-field directivity (dashed line)
at a low frequency of k0a = 10, a = 0.5, (l, q) = (4, 1) with M∞ = 0.

The frequency has been increased in Figure (3.9) with all other variables kept con-

stant. The mode is very cut-on, with a principal angle of roughly 18o for both predictions

in the near and far field. Again the Rice formula under predicts by about 5o for these

parameters. The principal lobe angle has decreased because the modal radial wavenum-

ber, κlq has not changed as this is determined by the radius of the duct, but the axial

and resultant wavenumber have increased.

At the higher frequency the number of side lobes has increased. This is because the

k0a value has increased to be much larger than l. At low values the source becomes
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omnidirectional.

The difference between the near- and far-field directivities is more than 5 dB at angles

greater than the principal lobe angle. Apart from the relative amplitude difference the

angular location of the turning points of the side lobes are greater for the near-field

predictions. The difference is 5o at the fourth lobe.

Figure 3.9: Disc source at R = 2a (solid line) and the far-field directivity (dashed line)
at a high frequency of k0a = 20, a = 0.5, (l, q) = (4, 1) with M∞ = 0.

The flow velocity has been increased in Figure (3.10) from quiescent flow to M∞ =

0.75. The sound is propagating against the flow. The convective effect means that the

axial wavenumber increases (wavelength decreases) and as such the k+
z a value increases.

This does not change the angle of the principal lobe significantly. However, for this mode

the increase in k+
z a has resulted in 4 extra side lobes. As before, the angular position

and relative amplitudes are significantly different between directivities in the near and

far field.
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Figure 3.10: Disc source at R = 2a (solid line) and the far-field directivity (dashed line)
at a frequency of k0a = 20, a = 0.5, (l, q) = (4, 1) with flow increased to M∞ = 0.75.

The azimuthal mode has increased in Figure (3.11) from (l, q) = (4, 1) to (24, 1). At

this high frequency the mode is only just cut-on. This means that the principal lobe has

increased to 75o. Despite the high frequency no side lobes are present; although k0a is

larger, l is also large. The predictions are similar between the directivities in the near

and far field.

At this high azimuthal value the radial wavenumber is high. The phase speed in the

radial direction is low. Mathematically, in the far-field the directivity is proportional

to the derivative of the Bessel’s equation. The derivative stays zero with increasing

argument for longer as order is increased.

This short section has introduced the incident field of the disc source. It has been

demonstrated that the mode angle of Rice et al. (1979) and the far-field predictions are

not sufficient for accurate predictions for the angle of the principal lobe.
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Figure 3.11: Disc source at R = 2a (solid line) and the far-field directivity (dashed line)
for the mode (24, 1). The other parameters are: k0a = 20, a = 0.5 and M∞ = 0.75.

3.3.2 Near/Far Field

In the following Chapters the source will be radiating with a cylinder in the near field.

Therefore it is necessary to show that the more complicated source formulation is re-

quired for accurate pressure predictions on the cylinder. To define the difference between

the near- and far-field directivities is defined

∆ [dB] = D∞ −D (R). (3.3.2)

There are two far fields; the acoustic far-field and a geometrical far field. The acoustic

far-field is usually defined as several wavelengths away from a source. For the new disc

source of k0a = 20, the associated wavelength is approximately 0.15. Over the diameter

of the source there are approximately 6λ0. Therefore one side of the source is in the

acoustic far-field from the other. The geometric far-field is where the dimensions of a

distributed source are negligible.

Figure (3.12) shows the difference between the directivity at R = 100 and the di-

rectivities nearer the source. The different lines correspond to increasing R at different

polar angles. The radiation pattern is shown in Figure (3.8). It shows that the differ-

ence between the directivities is negligible for R > 5. However nearer the source the

differences increase to 4 dB.
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Figure 3.12: The difference (∆) between near- and far-field values at 45o (solid line),
60o (dashed line), 75o (solid, ◦) and 90o (dashed, �). The parameters are: k0a = 10,

a = 0.5, (l, q) = (4, 1) and M∞ = 0.75.

Under the same conditions but at a higher frequency of k0a = 20 the difference ∆

is shown in Figure (3.13). The difference is larger than the lower frequency in Figure

(3.12) for small values of R. For R > 6 the difference is negligible.

The frequency effect is not large. This confirms that the geometric far-field is the

relevant one. The far-field begins at R > 6a0 or 12a. This is true regardless of the

source frequency because very low frequency modes cut-off and aeroacoustic applications

are mostly concerned with frequencies similar to the blade passing frequencies. This

frequency is relatively high.
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Figure 3.13: The difference (∆) between near- and far-field values at 45o (solid line),
60o (dashed line), 75o (solid, ◦) and 90o (dashed, �). The parameters are: k0a = 20,

a = 0.5, (l, q) = (4, 1) and M∞ = 0.75.

However, as ascertained in the previous section, the difference in the directivities are

greatest in the nulls of the directivity pattern. The difference between the first null and

the second lobe are compared in Figure (3.14). The source is the same as Figure (3.13).

For the lobe maximum, the difference is reasonably small over the range. The non-zero

values of ∆ arises from the change in angular displacement of the lobe discussed in the

previous section. At the null the difference is significant over the whole range.

Mathematically, the reason that the near- and far-field predictions are different is

due to the contributions of I1 and I2. For the near-field variables shown in Figure (3.13)

at θ = 45o, I1 and I3 contribute about 6% of the overall integral. At R = 10 these

integrals only contribute 7× 10−10% of the total integral. Physically, these two integrals

correspond to the evanescent field, so naturally do not propagate to the far field.

The results in this section show that the directivity of the source changes as a function

of radial distance and that it is very important to use the new, full solution for installation

effect predictions. If the far-field predictions were used, the position and the relative

amplitude of the side lobes would be wrong. The side lobes and nulls need to be accurate.

Once the source is installed adjacent to the cylinder the side lobes are nearest to the

source and are thus most susceptible to the near-field affects. Additionally, if the far-

field approximations were used then the nulls would be at a significantly lower amplitude

than they actually are. As under predictions are potentially more damaging than over
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predictions, it is therefore critical to use the near-field solutions in installation problems.

Figure 3.14: The difference between far- and near-field (∆) values at the maximum of
the far-field side lobe (dashed line) and the minimum of the first null (solid line). The

parameters were: k0a = 20, a = 0.5, (l, q) = (4, 1) and M∞ = 0.75.

3.4 Chapter Summary

This chapter started by formulating the source representative of a turbofan. By approx-

imating the turbofan inlet as a semi-infinitely long cylindrical duct the noise source can

be represented as spinning duct mode. A new source was formed by

� truncating the duct to represent the inlet,

� taking the pressure field and using the associated axial velocity for a mode,

� imposing it on a distribution of monopoles,

� integrating over the disc without any far-field approximations.

In formulating the source Objective 2 has been met.

The expressions for the types of source at the origin are expressed in the inverse

Fourier transform and the zero-th order of the series

pi(r, φ, z) =
1

(2π)2

∫ ∞
−∞

p̃i e−jkzz dkz, (3.4.1)
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where the transformed pressure is further split into a complex amplitude η and a prop-

agation function

p̃i = η̃i f(r). (3.4.2)

For the sources used in this thesis the complex amplitude and propagation are sum-

marised in Table (3.2). Note that sum over m has not been included because all the

sources are at the origin and m 6= 0 orders are identically zero.

Type of Source Subscript, i = Complex amplitude, η̃i f(r)

Single monopole σ (π/2)Qσ (k0 + kzM∞) H
(2)
0 (krr)

Ring (order l) l π2ξlPl (k0 + kzM∞) Jl(krη)Jl(κlη)e−jlφ H
(2)
l (krr)

Mode (l, q) lq π2ξlqPlq (k0 + kzM∞) Ψlqe
−jlφ H

(2)
l (krr)

Table 3.2: The complex amplitude and propagation function for the sources used in
the thesis for τ = 0.

The implementation of the resulting equations was then discussed. The radiation of

the incident field was discussed. It was shown that

� with a very small disc and plane wave mode, the solution converges to a monopole

solution in quiescent flow,

� the new formulation matches the far-field approximations very well,

� in the geometric near-field the angular position and relative amplitudes values for

side lobes are different depending on the distance from the source,

� the levels of the nulls in the directivities are extremely different depending on the

distance from the source.

Far-field approximations for the frequencies and modes relevant to aeroacoustics are not

accurate for values for R < 6 (or 12a). This discussion fulfilled Objective 3.
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Chapter 4

Duct Source Incident Field Theory

In the analysis up to this point, the diffraction at the duct termination has been ne-

glected. As such, the disc source is only valid in the forward arc. The aim of this

chapter is to include the diffraction effect of the duct lip on the radiated field and thus

extend the solution to all polar angles. To achieve this aim, the Wiener–Hopf method is

used to model a spinning mode exiting from a semi-infinite circular duct of infinitesimal

wall thickness. Although this theory is not new, a concise derivation is presented for

nomenclature continuity and to aid discussion in later chapters.

The resulting equations are implemented by the established in-house code GXMunt.

This code is adapted later in the thesis, so the implementation of the method is discussed.

The discussion focuses on sign convention and branch cut location. To quantify the effect

of diffraction in the near-field the disc source (lq) and duct model (d, lq) are compared

for the relevant parameters used throughout the thesis. Quantifying the duct effect in

the near-field has not previously been investigated.

4.1 Brief Theory of Wiener–Hopf

The derivation presented here for a mode radiating from a duct is based on Gabard and

Astley (2007), there are several differences between this derivation and the one presented

here. This derivation uses pressure, not velocity potential, for nomenclature continuity.

Velocity potential is required to model the vortex shedding, but the problem presented is

an inlet problem vortex shedding is not relevant. Another difference is that the opposite

time convention is used here, this means the final solution of one method is the complex

conjugate of the other. Finally, uniform flow is assumed everywhere. Physically, this is

a reasonable assumption for the inlet problem.
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4.1.1 Problem Set-up

This section outlines the geometry and boundary conditions before the Wiener–Hopf

technique is applied to solve the problem. The geometry is shown in Figure (4.1).

Initially, a mode propagating against the flow in a circular, rigid duct takes the form

pi,lq = PlqJl(κlqr) e−j(lφ+kz,lqz) ejω0t, ∀z and 0 < r < a, (4.1.1)

where all the symbols have the same meaning as defined in Chapter 3. For brevity Plq

is unity and omitted from the analysis along with ejω0t. The problem is formulated such

that the mode propagates on axis from negative to positive infinity.

The problem is axisymmetric, therefore the diffracted field (diff, lq) will take the

same azimuthal form as the incident mode

pdiff,lq = Λlq(r, z) e−jlφ, ∀z and r > 0, (4.1.2)

where Λlq is to be determined.

The total field is a superposition of the mode in the duct and the diffracted field, so

takes the form

pd,lq =
[
Λlq(r, z) + Jl(κlqr) e−jkz,lqz

]
e−jlφ, r > 0. (4.1.3)

To find Λlq the boundary conditions are used. From the non-dimensional momentum

equation, for all of z on r = a the pressure radial derivative is equal

−D0

Dt
ur =

∂pd,lq(a
−)

∂r
=
∂pd,lq(a

+)

∂r
, ∀z, (4.1.4)

where the superscript − denotes approaching a from the inside of the duct, and + the

outside. The walls have infinitesimal thickness so limr→a− r = limr→a+ r = a. Further-

more, on the rigid duct wall the derivative is zero

−D0

Dt
ur =

∂pd,lq(a
−)

∂r
=
∂pd,lq(a

+)

∂r
= 0, z 6 0, (4.1.5)

and in front of the duct is pressure continuity in the total field

pd,lq(a
−) = pdiff,lq(a

−) + pi,lq(a
−) = pdiff,lq(a

+) = pd,lq(a
+), z > 0. (4.1.6)

This is not true for either side of the duct boundary. On the duct, the incident field is

the sum of the propagating mode and the diffracted field

pdiff,lq(a
+) + pi,lq(a

−) 6= pdiff,lq(a
+), z < 0. (4.1.7)
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a

Figure 4.1: A schematic of the diffraction problem. The mode is represented by dots
and the diffracted field is represented by dot-dot-dashes. Showing a discontinuity at a

in the incident (i, lq) and diffracted field (diff).

Therefore, to maintain continuous pressure the diffracted field must be discontinuous at

a. This must lead to a pressure jump in the diffracted field

∆pdiff,lq = pdiff,lq(a
−)− pdiff,lq(a+) = pi,lq(a

−), z > 0. (4.1.8)

This is especially prudent because the pressure on the inside of the incident field is

known due to the prescribed, analytic mode shape and may be calculated.

Solving the Problem

As before, Fourier methods are used to reduce the wave equation to an ODE. In the

work leading up to this chapter, the axial wavenumber was real, this leads to wholly real

or imaginary radial wavenumbers. For the diffraction problem the wavenumber is now

complex, i.e.

kz = <{kz}+ j={kz} = |kz| ejε, (4.1.9)

where −π/2 6 ε 6 0 which leads to complex radial wavenumbers.

To take account of the mixed boundary conditions on r = a the axial Fourier trans-

form is split at the duct termination

p̃−(kz) =

∫ 0

−∞
pd,lq (z) ejkzz dz and p̃+(kz) =

∫ ∞
0

pd,lq (z) ejkzz dz, (4.1.10)
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so the full transform is

p̃d,lq = p̃− + p̃+. (4.1.11)

The other transforms are the same as before, Equations (3.1.10) on page 29.

Upon Fourier transformations the convected wave equation simplifies to Bessel’s

equation, the solutions are chosen, again, as

p̃d,lq =

{
A(kz) H

(2)
l (krr), r > a,

B(kz) Jl(krr), r < a.
(4.1.12)

The radial wavenumber is now factorised to

kr = k−r k
+
r = (k0 − kz(M∞ − 1))1/2(k0 − kz(M∞ + 1))1/2, (4.1.13)

which are equal to zero, and thus lead to branch points, at k±z . The branch cuts are the

same as shown in Figure (3.3) on page 31.

The transform of the acoustic velocity on a, labelled F , simplifies to the half trans-

form

F+(kz) =

∫ ∞
0

ur ejkzz dz, (4.1.14)

because the particle velocity, and thus F−, is zero on the rigid duct.

From Equation (4.1.12), on the outside of the duct wall (a+) the pressure derivative

and acoustic pressure is

−j(k0 + kzM∞)F+(kz) = A(kz) krH
(2)′
l (kra), (4.1.15)

and on the inside (a−)

−j(k0 + kzM∞)F+(kz) = B(kz) krJ
′
l(kra). (4.1.16)

The task at hand is to obtain A(kz) and B(kz) by deriving an expression for F+.

The transform of the pressure jump of the diffracted field (Equation (4.1.1)) is

G(kz) = ∆̃pdiff,lq =

∫ ∞
−∞

[
pdiff,lq(a

+)− pdiff,lq(a−)
]

ejkzz dz, (4.1.17)

which is

G (kz) = A(kz) H
(2)
l (kra)−B(kz) Jl(kra). (4.1.18)

The pressure is continuous in front of the inlet and the positive component of G can be

evaluated analytically

G+(kz) =

∫ ∞
0

Jl(κlqr) e−jkz,lqz ejkzz dz = j
Jl(kra)

kz,lq − kz
. (4.1.19)
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Next, substituting for A(kz) and B(kz) from Equations (4.1.15) and (4.1.16)

G (kz) = G−(kz) +G+(kz) =
F+

kr
K, (4.1.20)

where the kernel K is

K (kz) = j(k0 + kzM∞)

(
H

(2)
l (kra)

H
(2)′
l (kra)

− Jl(kra)

J′l(kra)

)
. (4.1.21)

The functions will be factorised into analytic and non-analytic functions in the upper

and lower half planes. So factorise K to positive and negative functions

K =
K+

K−
(4.1.22)

where K+ is regular in the upper half plane and K− is regular in in the lower half plane.

When substituted into Equation (4.1.20) this gives

G−(kz)K−k
−
r +G+(kz)K−k

−
r =

F+

k+
r

K+. (4.1.23)

In order to ensure that G+ term (and thus the L.H.S) is regular in the negative plane,

Equation (4.1.23) is modified as follows

G−(kz)K−k
−
r +G+(kz)K−k

−
r −k−r (κlq)K−(κlq)G+(kz) =

F+

k+
r

K+−k−r (κlq)K−(κlq)G+(kz).

(4.1.24)

Using Liouville’s theorem (see Noble (1958)) both sides of Equation (4.1.24) are equal

to a constant, say E. Let E(k0) = −k−r (κlq)K−(κlq)G+(k0) so that F+ may be found as

F+(kz) = −kr(κlq)
K−(κlq)

K+(kz)
[G+(k0)−G+(kz)] . (4.1.25)

Using the method in Gabard and Astley (2006) shown in their Appendix A, K± can

be evaluated. The constants for the Bessel’s functions are now

A(kz) = −j(k0 + kzM∞)
F+

krH
(2)′
l (kra)

, (4.1.26)

B(kz) = −j(k0 + kzM∞)
F+

krJ′l(kra)
, (4.1.27)

so the transformed pressure is

p̃d,lq (kz) = −j(k0 + kzM∞)
F+

kr


H

(2)
l (krr)

H
(2)′
l (kra)

r > a,

Jl(krr)
J′l(kra)

r < a.
(4.1.28)
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Figure 4.2: kr in the complex plane. k0 = 0.5 and M∞ = 0.25.

The pressure is then the inverse Fourier transform of Equation (4.1.28) which is

pd,lq (r, z, φ) = − j

2π


∫∞
−∞

(k0+kzM∞)F+

krH
(2)′
l (kra)

H
(2)
l (krr) ejkzz dkz e−jlφ, r > a,∫∞

−∞
(k0+kzM∞)F+

krJ′l(kra)
Jl(krr) ejkzz dkz e−jlφ , r < a.

(4.1.29)

Note the expressions preceding e−jlφ are equal to Λlq from Equation (4.1.1).

For the installed duct the expression required is

pd,lq (r, z, φ, t) = −j Plq
2π

∫ ∞
−∞

(k0 + kzM∞)F+

krH
(2)′
l (kra)

H
(2)
l (krr) ejkzz dkz e−jlφ ejω0t, (4.1.30)

where the real valued modal amplitude constant Plq has been reintroduced.
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The integration contour is in a strip such that all the functions (including the + and

− components) are analytic, in practice this is along the contour Γ as defined in Gabard

and Astley (2006). In the Fourier domain, the directivity of the radiation is enveloped

by all the functions preceding the Hankel function. The Hankel function is related to

propagation.

This discussion has focused on a hollow duct with uniform flow. This simplification

was done for readability and this thesis prioritises inlet applications. However it is trivial

to adapt the theory to an annular duct. The form of the final solution does not change;

the only change to the implemented expressions is in Equation (4.1.21). This would be

modified to

K = (k0 + kzM∞)

(
Y′l (krh) Jl (kra)− J′l (krh) Yl (kra)

Y′l (krh) J′l (kra)− J′l (krh) Y′l (kra)
− H

(2)
l (kra)

H
(2)′
l (kra)

)
, (4.1.31)

where h = a/ainner. This is reproduced and adapted from Gabard and Astley (2006)

and the analysis would continue as before.

4.1.2 Issues with Implementation

The incident field formulation is now complete. Now attention is focussed on the im-

plementation of the expressions derived in the previous section. The implementation is

done in GXMunt, an established in-house code. This code is adapted later in the thesis

so a discussion of the simpler free-field case is prudent.

For a real frequency, branch points k±z lie on the real axis. At these points kr is

zero so a singularity is caused by the Hankel function evaluating an argument of zero.

The inverse Fourier transform integrates from negative to positive infinity, therefore this

integral will cross over the branch point. At the branch point the function is not analytic.

The singularities in the disc source were dealt with by the integration routine.

To avoid integrating over the non-analytic points the path of integration can be

chosen such that it is slightly displaced from the real axis. Cauchy’s integral theorem

shows that deforming the contour is equivalent to integrating along the real axis, so long

as the integration limits are the same.

Furthermore, the branch cut of a principle square root of a complex number is usually

defined to run along the negative real axis. The radial wavenumber is now complex, the

branch cut location is of practical importance. To ensure that the integral path is not

affected by the branch cuts they can be defined to go to infinity at an angle of ±π/2
radians.

Figure (4.2) shows that the branch cuts that were defined in Chapter 3 (Argand

digram in Figure (3.3), page 31) but for complex axial wavenumbers. They show the

branch cut from k−z , at an angle of π/2 radians which is analytic in the negative complex
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Figure 4.3: An example of deformation of path of integration with the chosen sign
convention. k0 = 0.5 and M∞ = 0.25

plane. Contrastingly, the branch cut from k+
z at an angle of −π/2 radians. Hence the

contour is deformed into the negative plane for negative kz and positive plane for positive

kz. By doing this the functions are all analytic.

The ejω0t convention has been chosen. As such, the path must be deformed into the

negative quadrant for negative kz and is positive for the positive kz. As well as avoiding

the branch cut, the function is not analytic on the other side of the real line. This is

shown in Figure (4.3). In practise, this leads to the complex conjugate of Gabard and

Astley’s (2006) solution to the one presented here.

4.2 Near-Field Effects of the Nacelle Lip

The far-field effects of the nacelle lip on sound radiation are well documented. Hocter

(1999) and Homicz and Lordi (1975), for example, showed that the diffraction effect on

radiation was negligible below approximately 80o measured from the source axis. How-

ever, the near-field effect is not well documented. This section quantifies the diffraction

effect of the duct lip in the near field. This is possible using the disc source formulation.

As the Wiener–Hopf method is more complicated, it is strange this has not been quan-

tified in previous work. The coordinates system employed in this section is spherical

polar coordinates.

Predictions between the two methods are shown in Figures (4.5) – (4.10). The

variables are the same as some of the examples shown in the previous chapter. All

predictions and differences are evaluated along a line or at a point shown in Figure

(4.4). Initially the effect of frequency is analysed, followed by the radial distance and
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Figure 4.4: Schematic showing the duct and where the comparisons are made.

azimuthal mode order.

The predictions from the two models for k0a = 10 and (l, q) = (4, 1) on an arc of

radius 2a (= 1a0) (contour I in Figure (4.4)) are shown in Figure (4.5). For this case

the predictions are very similar from the source axis to approximately 75o. The slight

differences at low polar angles is due to the difference in the methods and is negligible.

At polar angles above 75o it is seen that there is an increasing difference between the

models. The largest difference is at 90o and is about 4 dB.

For the same mode as before but with a higher frequency, of k0a = 20, the predictions

are shown in Figure (4.6.a). For the previous frequency the low mode of (l, q) = (4, 1)

means the mode is very cut-on. The two models give very similar predictions up to

around 80o. The maximum difference is about 6 dB at 90o. Figures (4.5) and (4.6) show

that the effect of the nacelle is insignificant for angles upto approximately 75o, and that

for a given mode the frequency does not significantly alter the lobe and null structure

of the directivity pattern.

Figure (4.6.b) shows the same variables as Figure (4.6.a) but with a very high az-

imuthal mode order of 24, this means the mode is only just cut-on. As before, the

differences are negligible up to about 80o. Above this value the difference increases to a

maximum of 5 dB.

By plotting predictions from the two models a modest difference is observed at high

polar angles. A useful metric to quantify the effect of the nacelle lip is to compare the

difference between the two models. Initially, the difference between the models as a

function of polar angle is defined as

∆θ = SPLd,lq(θ)− SPLlq(θ), (4.2.1)
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Figure 4.5: Predictions of the new source (solid line, ×) and Wiener–Hopf (dashed
line) against polar angle at R = 2a (on contour I). The parameters are the same as

Figure (3.8): k0a = 10, a = 0.5, (l, q) = (4, 1) and M∞ = 0.

evaluated in the near-field at R = 2a. Negative values of ∆θ indicate shielding due to

the diffraction of the duct lip.

The difference is shown in Figure (4.7). It shows that for angles greater than 70o

the difference for all the parameter variables increases with increasing polar angle. The

maximum difference for all cases is at 90o. For all the variables the difference is no more

than 5 dB. This is surprisingly small considering the rather large range in the variables.

Next, the effect of increasing radial distance on the diffracted field. For a given polar

angle the difference is defined as

∆r = SPLd,lq(r)− SPLlq(r), (4.2.2)

again this means that negative values indicate shielding. This is shown on the schematic

in Figure (4.4) as lines II.a, II.b and II.c. This metric is useful because any large

differences between the models would shown a dependency between the near/far field.

Figure (4.8) shows ∆r for k0a = 20 and mode (l, q) = (4, 1) along the radial lines.

They show that the models are very similar at 45o and 62.5o (π/4 and π/8 radians).

At 90o the two models give significantly different predictions. For the well cut-on

mode the difference is 6 dB and for the just cut-on mode it is slightly more at 7.5 dB.

Predictions start at 1.5a and extends to 25a, this corresponds to 0.75 − 12.5 in the
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(a) (l, q) = (4, 1)

(b) (l, q) = (24, 1)

Figure 4.6: Predictions of the disc source (solid line, ×) and Wiener–Hopf (dashed
line) against polar angle for two modes at R = 2a (on contour I). The parameters are
the same as Figure (3.10) and (3.11): k0a = 20, a = 0.5, (l, q) = (4, 1) and M∞ = 0.75.
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Figure 4.7: The difference between the predictions of the disc source and Wiener–Hopf
along contour III for; k0a = 20 and (l, q) = (24, 1) (no symbols), k0a = 20 and

(l, q) = (4, 1) (◦), k0a = 10 and (l, q) = (4, 1) (4) and k0a = 5 and (l, q) = (4, 1) (×).
The other parameters are: R = 2a, a = 0.5 and M∞ = 0.75.
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(a) (4, 1)

(b) (24, 1)

Figure 4.8: The difference between the two models as a function of radial distance for
two modes (l, q) = (4, 1) and (24, 1) for angles; 45o (solid line, contour II.a), 62.5o

(dashed, × for contour II.b) and 90o (dash-dot, ◦ for contour II.c). Note that the
non-dimensional range for this example is 0.75 – 12.5. The parameters are the same as

Figure (4.6): k0a = 20, a = 0.5 and M∞ = 0.75.
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Figure 4.9: Predictions at 90o (point III) for the disc source (◦) and Wiener–Hopf (×)
against azimuthal mode up to cut-off. The parameters are: k0a = 20, a = 0.5, R = 2a

and M∞ = 0.75

non-dimensional length units referenced to a0. The lower limit is in the near-field and

the upper in the far-field, as shown in the previous chapter. Importantly, because ∆r is

constant the near-field is affecting the diffracted field in the same way as the disc source.

This shows no significant near-field effects on the diffracted field compared to the disc

source.

The last two figures are predictions shown at point III. Figure (4.9) shows the

predictions at 90o and R = 2a for k0a = 20, as the azimuthal mode is increased from 0

to 24. The graph shows that the Wiener–Hopf solution is always at a lower amplitude.

However the difference between the two models is not constant.

Figure (4.10) shows a very similar trend as Figure (4.9), however the wavenumber

is increased for the mode (4, 1). The peaks correspond to a lobe and the minima are

nulls in the directivity. This graph shows that the difference between the two models

are greatest at the maxima and nulls, but the difference can be negligible between these.

This is more clearly shown by plotting the SPL. The combination of variables such that

a lobe occurs at 90o is the relevant factor.

The purpose of this section was to quantify the diffraction effects of the duct lip on

a radiating mode in the near field. Therefore, the conclusion to be drawn is that the

maximum destructive interference caused by the lip is a fairly moderate maximum of

about 7 dB. Therefore, generally the diffraction effect can be neglected in the forward

arc (as it was in McAlpine, Gaffney and Kingan (2015)). But is crucial in the rear arc.

However, this difference is not constant, the effect is strongest at 90o to the duct and
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Figure 4.10: Predictions at 90o (point III) for the disc source (solid line, ×) and
Wiener–Hopf (dashed line) against frequency. The parameters are: (l, q) = (4, 1),

R = 2a and M∞ = 0.75

when there is a lobe near this angle. Therefore the diffraction effect does not depend on

mode or frequency – it depends on the the ratio of these variables. Also, the diffracted

field is affected by the same amount as the disc source.

4.3 Chapter Summary

This chapter has presented a derivation of the sound field due to a mode radiating from a

semi-infinite circular duct of infinitesimal wall thickness, Objective 4. With the adoption

of complex axial wavenumbers, branch cut locations, caused by the square root in kr,

are of practical relevance. A comparison between the disc source and the Wiener–Hopf

predictions showed that

� the effect of the duct in the forward arc moderately reduces amplitude at large

polar angles (75o – 90o),

� for a given angle, no single parameter change causes a monotonic increase or de-

crease in the ∆’s,

� the important factor is the ratio between the mode and frequency such that at a

maxima in the radiation directivity is where most reduction occurs,

� the shielding due to the duct does not depend of radial distance for the distances

examined.
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This investigation has completed Objective 5. The disc source is not as complicated as

the Wiener–Hopf model and is simpler to implement. It is therefore very important to

quantify the diffraction of the duct if the disc source is to be used in predictions. The

main reason to include the diffraction effect is to extend the range of predictions to the

rear arc.
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Chapter 5

The Installation Theory and

Method

The engine tone radiation in the free-field has been modelled in the previous section. In

this chapter a cylinder of infinite length is introduced to simulate the scattering effect of

the fuselage. Running down the length of the cylinder is a boundary layer of constant

thickness. The model includes the refraction effects of the boundary layer by solving

the Pridmore–Brown equation. The Pridmore-Brown equation contains a singularity

referred to as the critical layer. This singularity is discussed and a solution in its locality

is derived as a Frobenious solution. The special case of a boundary layer of infinitesimal

thickness leads to the scattered solution for uniform flow.

The disc source method is then validated against published results. In addition

the Fourier sum, ODE solver, Frobenius series and the optimisation of the method are

discussed in detail. The Wiener–Hopf method solution is discussed separately as the

method is significantly different to the disc method.

5.1 Installed Theory

In this first part of the chapter, an infinitely long cylinder is placed adjacent to the new

sources. As before, Fourier methods are used and the same normalisation is employed.

The source is described using a coordinate system centred in the cylinder. The cylinder

is introduced and the pressure in the boundary layer is evaluated.

5.1.1 Graf’s Addition Theorem

The results derived in the previous chapter give the sound expressed in the coordinates

of the source. With foresight, it is more convenient to express the total field in new

coordinates centred on a cylinder. The inclusion of the cylinder in the model is in the

next section; this section allows room for the cylinder.
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The pressure due to an untranslated source is given by

pi(r, φ, z, t) =

∫ ∞
−∞

p̃i (kz) e−jkzz dkz e−jlφejω0t, (5.1.1)

where

p̃i (kz) = η̃i H
(2)
l (krr), (5.1.2)

as ascertained in Section 3.1.2 (page 34).

Graf’s Addition theorem is used to transform from the source coordinates (r, φ, z)

to the cylinder coordinates (r̄, φ̄, z̄). By doing this the incident field is expressed in the

cylindrical polar coordinates centred on the cylinder. The theorem is

B`(w)ej`χ =
∞∑

n=−∞

B`+n(u)Jn(v)ejnα (5.1.3)

where B` can be any Bessel function or any linear combination (Abramowitz and Stegun,

1964) of integer order `. The arguments may be complex.

Figure (5.1.1) shows that w = krr, u = krb, v = krr̄, χ = π − φ+ β and α = φ̄− β.

Note these are different for the far-field solution.

So, to shift coordinates from r and φ to r̄ and φ̄, application of Graf’s theorem gives

H
(2)
l (krr) e−jlφ =

∞∑
n=−∞

(−1)(l+n)H
(2)
l−n(krb)Jn(krr̄)e

−jnφ̄e−j(l−n)β. (5.1.4)

Therefore the incident field expressed in the cylinder coordinates (r̄, φ̄, z̄) is

pi(r̄, φ̄, z̄) =
1

(2π)2

∞∑
n=−∞

∫ ∞
−∞

p̃i,ne−jkz z̄ dkz e−jnφ̄, (5.1.5)

where the transformed pressure now takes the form

p̃i,n = η̃i,n Jn(krr̄). (5.1.6)

For example, the disc source (i = lq) is now

p̃i,n(r̄, φ̄, z̄) = π2ξlqPlq(−1)(l+n)e−(l−n)β (k0 + kzM∞) ΨlqH
(2)
l−n(krb)︸ ︷︷ ︸

η̃lq,n

Jn(krr̄). (5.1.7)

By translating the source, the radial distance function has changed from the second

type of Hankel function to the first kind of Bessel function. The translation introduces

azimuthal harmonics e−jnφ̄ of order n. Therefore, the final solution is represented as a

Fourier series with each term an inverse Fourier transform.
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(a) The geometry used for Graf’s Addition theorem.

krb

krr

kr r̄

ȳ

x̄
β

φ̄

x

y

β
φ

β

(b) The same triangle as (a) with the arguments of the Bessel functions included on the
sides of the triangle and the angles measured from the relevant coordinate systems.

Figure 5.1: The two similar triangles used to apply the near-field application of Graf’s
Addition theorem. The observer is located at the black circle.
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The translated incident field for the sources given in the previous chapter can all

now be expressed in the cylinder’s coordinates. The translated amplitude coefficients

and distance function are given in Table (5.1).

Type of Source Subscript, i = Complex amplitude, η̃i f(r̄)

Single monopole σ
(π/2) (k0 + kzM∞)Qσ(−1)ne−jnβ

Jn(krr̄)
H

(2)
l−n(krb)

Ring (order l) l
π2ξl(−1)l+nej(l−n)βPl (k0 + kzM∞)

Jn(krr̄)
Jl(krη)Jl(κlη)H

(2)
l−n(krb)

Mode (l, q) lq
π2ξlq(−1)l+nej(l−n)βPlq (k0 + kzM∞) Ψlq

Jn(krr̄)
H

(2)
l−n(krb)

Diffracted (l, q) d, lq
ξlq(−1)l+nej(l−n)βPlq(k0 + kzM∞) F+

krH
(2)′
l (kra) Jn(krr̄)

H
(2)
l−n(krb)

Table 5.1: The complex amplitude and propagation function for the translated sources
used in the thesis.

5.1.2 The Installed Field

The source has been translated to make room for the cylinder, this section inserts one.

The fuselage is approximated as an infinitely long, rigid cylinder. This assumption is

discussed in Chapter 7. Running down the fuselage is a boundary layer. A boundary

layer of constant thickness is included in the model for a prescribed velocity profile.

In one fell swoop we can put the cylinder (and scattering effects) and the boundary-

layer refraction effects in the model. The solution outside the boundary layer will be

matched, in Fourier space, to the solution inside the boundary layer, whilst ensuring

that the appropriate boundary and radiation conditions are satisfied. The geometry for

the problem is shown in Figure (5.2).
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Figure 5.2: Sketch of the cylindrical fuselage, including a constant-thickness boundary
layer.

A cylinder of infinite length is placed with its centre aligned with the z̄ axis. The

radius of the cylinder is a0, however since this is the reference length the non-dimensional

radius of the cylinder is unity.

The Mach velocity profile Mz is given by

Mz =

{
M(r̄), 1 < r̄ ≤ 1 + δ,

M∞, 1 + δ < r̄,
(5.1.8)

where δ is the non-dimensional thickness of the boundary-layer, and M∞ is the constant

Mach number of the uniform flow outside the boundary-layer region.

Outside the boundary layer, where there is uniform flow, the acoustic pressure field

is found by solving the convected wave equation. In this region, the solution is simply

p̃n = η̃n Jn(krr̄) + γ̃n H(2)
n (krr̄), (5.1.9)

where η̃n(kz) and γ̃n(kz) are amplitude coefficients of the incident and scattered waves

respectively. The dispersion relationship in the uniform flow is still

k2
r + k2

z = (k0 + kzM∞)2 . (5.1.10)

Inside the boundary layer region, the pressure field will satisfy the Pridmore-Brown

equation; an inviscid compressible isentropic perfect gas flow is assumed. Additionally,

the mean flow is assumed to be axisymmetric and parallel, with constant mean density

and sound speed profiles inside the boundary layer. In this case, the non-dimensional
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Pridmore-Brown equation is

D0

Dt

(
D2

0p

Dt2
−∇2p

)
− 2M ′ ∂

2p

∂r̄∂z̄
= 0 , (5.1.11)

where M ′ = dM/dr̄. Inside the boundary layer, the total pressure field satisfies the

Pridmore-Brown equation. Therefore, in the boundary layer the scattering effect of

the cylinder is also included in the model. Inside the boundary layer the dispersion

relationship is

k2
r + k2

z = (k0 + kzM)2 . (5.1.12)

The Pridmore-Brown equation is a third order PDE, to solve it we choose to use

Fourier methods. On Fourier transforming in axial and azimuthal direction and time

(Equation (3.1.10), page 29), the Pridmore-Brown equation reduces to[
d2

dr̄2
+

(
1

r̄
− 2kzM

′

k0 + kzM

)
d

dr̄
+

(
k2
r −

n2

r̄2

)]
p̃n = 0 . (5.1.13)

Equation (5.1.13) has a regular singularity at k0 + kzM(r̄c) = 0 on the real kz axis, for

a real valued k0. Where this occurs, referred to as the critical layer, the phase speed

equals the local flow velocity. Equation (5.1.13) can be solved by numerical integration

across the boundary layer. However, special treatment must be given to the solution in

the critical layer region.

Following the previous literature (Hanson and Magliozzi (1985), Lu (1990) and Bram-

bley et al. (2012)), a Frobenius solution is used to bridge the singularity at r̄ = r̄c.

Introducing the critical layer coordinate

ς = r̄ − r̄c , (5.1.14)

two independent solutions of the transformed Pridmore-Brown Equation (5.1.13) in the

critical layer are given, up to O(ς3), by

p̃n,F1 = αF1ς
3 and p̃n,F2 = αF2

(
1− 1

2

(
k2
z +

n2

r̄2

)
ς2 + ΩαF1ς

3 ln ς

)
, (5.1.15)

where αF1 and αF1 are constants, and

Ω = −1

3

(
M ′′(r̄c)

M ′(r̄c)
− 1

r̄c

)(
k2
z +

n2

r̄2
c

)
− 2n2

3r̄3
c

. (5.1.16)

Note that these results are for a general boundary-layer profile close to r̄c. On taking

a linear profile this result is found to be in agreement with Brambley et al. (2012) and

Belyaev (2012). The derivation for this result is in the next section.

There is no known analytical solution to the Pridmore-Brown equation, therefore
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a numerical integration routine (Runge–Kutta) is used. The pressure in the boundary

layer, p̃n,bl, is normalised, i.e.

p̃n,bl(r̄, kz) = α̃n(kz)f̃n(r̄, kz) , (5.1.17)

where f̃n is the normalised pressure, which is scaled by α̃n(kz). The integration, starting

from the surface of the cylinder at r̄ = 1, is calculated by expressing the Pridmore-Brown

equation as two first-order differential equations[
x′2

x′1

]
=

[
−
(

1
r̄
− 2kzM ′

k0+kzM

)
−(k2

r − n2

r̄2 )

1 0

][
x2

x1

]
, (5.1.18)

where x1 = f̃n and x2 = df̃n/dr̄ = f̃ ′n. With nondimensional specific acoustic admit-

tance, A, and slip velocity is permitted at the wall, the impedance boundary condition

is

p̃′n,bl(1, kz)− jk0A

(
1 + j

M∞kz
k

)
p̃n,bl(1, kz) = 0 . (5.1.19)

However, published acoustical impedance values for a metal cylinder are not available,

therefore in this thesis the cylinder will be rigid and no slip is assumed. The rigid

boundary condition is a valid assumption as a metal cylinder is almost rigid. Therefore,

without loss of generality, on the surface of the rigid cylinder, the normalised pressure

is set as f̃n(1, kz) = 1, and the derivative f̃ ′n(1, kz) = 0. Accordingly, the boundary

conditions on the cylinder are

p̃n,bl(1, kz) = α̃n and p̃′n,bl(1, kz) = 0 . (5.1.20)

The value of α̃n must be proportional to the incoming wave. The pressure and its

derivative at the edge of the boundary layer can be used to formulate α̃n in terms of the

incident wave amplitude. Applying continuity of pressure and the pressure gradient at

the edge of the boundary layer gives

α̃nf̃n

∣∣∣
1+δ

= p̃i,n|1+δ + p̃s,n|1+δ = η̃nJn(kr[1 + δ]) + γ̃n H(2)
n (kr[1 + δ]) , (5.1.21a)

α̃nf̃
′
n

∣∣∣
1+δ

= p̃′i,n
∣∣
1+δ

+ p̃′s,n
∣∣
1+δ

= η̃nkrJ
′
n(kr[1 + δ]) + γ̃nkr H(2)′

n (kr[1 + δ]) ,(5.1.21b)

where η̃n(kz) and γ̃n(kz) are amplitude coefficients of the incident and scattered waves

respectively. This was why the incident field is formulated to be ∝ η̃i. The pressure in

the boundary layer is scaled to match the amplitude of the incoming wave, i.e.

α̃n(kz) = −
(

2j

π[1 + δ]

)(
η̃n

f̃n

∣∣∣
1+δ

krH
(2) ′
n (kr[1 + δ])− f̃ ′n

∣∣∣
1+δ

H
(2)
n (kr[1 + δ])

)
, (5.1.22)
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for any source in the form of η̃if(r̄). The installation effect is

BL = −
(

2j

π[1 + δ]

)(
1

f̃n

∣∣∣
1+δ

krH
(2) ′
n (kr[1 + δ])− f̃ ′n

∣∣∣
1+δ

H
(2)
n (kr[1 + δ])

)
, (5.1.23)

which is α̃ without the incident field.

Inserting Equation (5.1.22) into (5.1.17), and then taking the inverse Fourier trans-

form given by Equation (3.1.11) (on page 29), on the surface of the cylinder, the pressure

can be calculated via

pt(a0, φ̄, z̄) =
1

(2π)2

∞∑
n=−∞

(∫ ∞
−∞

α̃n(kz) e−jkz z̄dkz

)
e−jnφ̄ . (5.1.24)

5.1.3 Critical layer

In the previous section the Pridmore-Brown equation was added to the model to include

the refraction effect of the boundary layer running down the fuselage. Pridmore-Brown

(1958) was one of the first to model sound propagation in sheared flow. In the Fourier

domain the Pridmore-Brown equation contains a singularity. The transformed Pridmore-

Brown Equation (Equation (5.1.13)) is singular when k0 +kzM(r̄) = 0, this occurs at the

critical layer r̄c. The value of r̄c is unique to the profile and frequency. To implement

this solution as it is, the ODE would lose accuracy at this point. Therefore, special

treatment is required to solve the equation at the critical layer. To bridge the singu-

larity a Frobenius solution is derived for any monotonically increasing, axisymmetric

boundary layer profile of constant thickness. Initially the transformed Pridmore-Brown

equation needs to be rearranged into a form suitable to derive a Frobenius series solution

(Kreyszig, 2011). Namely, this requires the Pridmore-Brown equation[
d2

dr̄2
+

(
1

r̄
− 2kzM

′

k0 + kzM

)
d

dr̄
+

(
k2
r −

n2

r̄2

)]
p̃n = 0 , (5.1.25)

to be expressed in the form

ς2P (ς)p̃′′ + ςQ(ς)p̃′ +R(ς)p̃ = 0. (5.1.26)

In this section, the Pridmore-Brown equation is transformed into a PDE of this form,

where the prime denotes ordinary differentiation w.r.t to ς. In order to obtain Equation

(5.1.25) into this form the Binomial theorem is applied. Consequently care is taken over

the order of the error of the approximations.

The equation is simplified by shifting the singularity to the origin by the change of

variable

ς = r̄ − r̄c, (5.1.27)
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so that the critical layer occurs at ς = 0.

The derivatives transform to

d

dr̄
=

d

dς
⇒ d2

dr̄2
=

d2

dς2
. (5.1.28)

The Taylor’s series expansion of the Mach profile is

M(r̄c + ς) = M(r̄c) + ςM ′(r̄c) +
ς2

2!
M ′′(r̄c) +

ς3

3!
M ′′′(r̄c)..., (5.1.29)

and the derivative

M ′(r̄c + ς) = M ′(r̄c) + ςM ′′(r̄c) +
ς2

2!
M ′′′(r̄c) +

ς3

3!
M ′′′′(r̄c)... . (5.1.30)

Substituting these expansions and employing the Binomial expansion, the important

term involving M ′ in Equation (5.1.24) is

2kzM
′

k + kzM
=

2kzM
′(r̄c)

kzςM ′(r̄c)

(
1 + ς

M ′′(r̄c)

M ′(r̄c)
+O(ς2)

)(
1− ς

2!

M ′′(r̄c)

M ′(r̄c
+O(ς2)

)
, (5.1.31)

=
2

ς

(
1 +

ς

2

M ′′(r̄c)

M ′(r̄c)

)
+O

(
ς2
)
. (5.1.32)

The last term in Equation (5.1.25) also reduces

(k + kzM)2 =
(
k + kz

(
M(r̄c) + ςM ′(r̄c) +O(ς2)

))2
. (5.1.33)

Also, the final part of the equation to the second order leads to

(k + kzM)2 − k2
z −

n2

r̄2
= −k2

z −
n2

r̄2
c

(
1− 2

ς

r̄c

)
+O(ς2). (5.1.34)

Using the same method

1

r̄2
=

1

(ς + r̄c)
2 =

1

r̄2
c

1(
1 + ς

r̄c

)2 =
1

r̄2
c

(
1− 2

ς

r̄c

)
+O

(
ς2
)
. (5.1.35)

Substituting these results into Equation (5.1.25) gives

p̃′′ +

(
1

r̄c

(
1− ς

r̄c

)
− 2

ς

(
1 +

ς

2

M ′′(r̄c)

M ′(r̄c)

))
p̃′ +

(
−k2

z −
n2

r̄2
c

(
1− 2

ς

r̄c

))
p̃+O(ς2) = 0.

(5.1.36)
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The last step is to multiply by ς2

ς2p̃′′ + ς

(
−2 + ς

(
1

r̄c
− ς

r̄2
c

− M ′′(r̄c)

M ′(r̄c)

))
p̃′ + ς2

(
−k2

z −
n2

r̄2
c

(
1− 2

ς

r̄c

))
p̃+O(ς4) = 0.

(5.1.37)

Equation (5.1.25) now in the form of Equation (5.1.26), where

P (ς) = 1, (5.1.38a)

Q(ς) = −2 + ς

(
1

r̄c
− ς

r̄2
c

− M ′′(r̄c)

M ′(r̄c)

)
, (5.1.38b)

R(ς) = ς2

(
−k2

z −
n2

r̄2
c

(
1− 2

ς

r̄c

))
. (5.1.38c)

and is equivalent when ς4 << 1.

The singularity is now when ς = 0 and this is a regular singularity because

lim
ς→0

{
ς

[
1

r̄c

(
1− ς

r̄c

)
+

2

ς

(
1 +

ς

2

M ′′(r̄c)

M ′(r̄c)

)]}
= 2, (5.1.39)

which is finite and infinitely differentiable. Where Equation (5.1.25) contains a regular

singularity, the Frobenius solution may now be derived.

Frobenius Method

The critical layer singularity has been shifted to the origin and is in a suitable form for

a Frobenius solution to be derived. This method has been chosen for consistency with

installation effects literature: Hanson (1984), McAninch (1983), Hanson and Magliozzi

(1985), Lu (1990) and Belyaev (2012). Another method, for example, of negating the

critical layer would be to let ς or r̄ (as in Smith (2004)) have a small imaginary compo-

nent.

The equation we seek a solution for is

ς2p̃′′+ς

(
−2 + ς

(
1

r̄c
− ς

r̄2
c

− M ′′(r̄c)

M ′(r̄c)

))
p̃′+ς2

(
−k2

z −
n2

r̄2
c

(
1− 2

ς

r̄c

))
p̃ = 0, (5.1.40)

where terms of order ς4 have been omitted.

For brevity let

λ =
1

r̄c
− M ′′(r̄c)

M ′(r̄c)
and γ2 = −k2

z −
n2

r̄2
c

, (5.1.41)

which simplifies to

ς2 d2p̃

dς2
+ ς

(
ς

(
λ− ς

r̄2
c

)
− 2

)
dp̃

dς
+ ς2

(
γ + 2

n2

r̄3
c

ς

)
p̃ = 0. (5.1.42)
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The solution is expressed in terms of a power solution of the form

p̃ =
∞∑
ψ=0

aψς
ψ+κ, (5.1.43)

where for this section only aψ is the coefficient of order ψ – not radius of the source. Note

a different form of solution is required at a turning point. A profile with a turning point

would correspond to a separated boundary layer which is unlikely (in normal operating

conditions) along the fuselage, and not considered in this thesis. The derivatives are

given by

p̃′ =
∞∑
ψ=0

(ψ + κ)aψς
ψ+κ−1, (5.1.44)

p̃′′ =
∞∑
ψ=0

(ψ + κ)(ψ + κ− 1)aψς
ψ+κ−2. (5.1.45)

Substitute Equations (5.1.43), (5.1.44) and (5.1.45) into Equation (5.1.42) to obtain

∞∑
ψ=0

(ψ+κ)(ψ+κ−1)aψς
ψ+κ+

(
ς

(
λ− ς

r̄2
c

)
− 2

) ∞∑
ψ=0

(ψ+κ)aψς
ψ+κ+

(
γ + 2

n2

r̄3
c

ς

) ∞∑
ψ=0

aψς
ψ+κ+2 = 0.

(5.1.46)

Next shift the indices and factorise the ςψ+κ term to obtain

∞∑
ψ=0

{
[(ψ + κ)(ψ + κ− 1)− 2(ψ + κ)] aψ + λ(ψ + κ− 1)aψ−1 +

(
γ − ψ + κ− 2

r̄2
c

)
aψ−2

+2
n2

r̄3
c

aψ−3

}
ςψ+κ = 0, (5.1.47)

as the negative coefficients of aψ are identically zero by definition.

Taking the lowest term of ψ = 0 and since a0 6= 0, the indicial equation is

κ (κ− 3) = 0. (5.1.48)

Two solutions with integer difference of this quadratic equation, κ = 0 and 3, and

therefore leads to two linearly independent solutions (Kreyszig, 2011) of the form

p̃F1 =
∞∑
ψ=0

aψς
ψ+3 and p̃F2 = Ωp̃1 ln ς +

∞∑
ψ=0

bψς
ψ, (5.1.49)

where F stands for a Frobenius solution.

The first solution is simply

p̃F1 = ς3 +O(ς4), (5.1.50)
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where a0 = 1. For simple profiles a full solution may be derived (Brambley et al. (2012)

Campos and Serrao (1998) , Campos et al. (1999), Lu (1990)) but our solution is valid

for any profile so long as ς is sufficiently small.

The second solution is derived from the first solution. Taking the derivatives

p̃F2 = Ωp̃F1 ln ς +
∞∑
ψ=0

bψς
ψ, (5.1.51)

p̃′F2 = Ω

(
ln ςp̃′f1 +

p̃f1

ς

)
+
∞∑
ψ=0

bψψς
ψ−1, (5.1.52)

and

p̃′′F2 = Ω

(
ln ςp̃′′F1 + 2

p̃′F1

ς
− p̃F1

ς2

)
+
∞∑
ψ=0

bψψ(ψ − 1)ςψ−2. (5.1.53)

Substituting into Equation (5.1.42) the logarithm terms cancel, and subtracting the p̃F1

terms and shifting the indices leads to

∞∑
ψ=0

(
ψ(ψ − 3)bψ + (ψ − 1)λbψ−1 +

[
2− ψ
r̄2
c

+ γ

]
bψ−2 + 2

n2

r̄3
c

bψ−3

)
ςψ =

Ω
∞∑
ψ=3

(
−(2ψ − 3)aψ−3 − λaψ−4 +

1

r̄2
c

aψ−5

)
ςψ. (5.1.54)

By comparing coefficients of ς, bψ may be obtained

ψ bψ

0 0 (this allows b0 = 1),

1 0,

2 γ
2

= −1
2

(
k2
z + n2

r̄2
c

)
,

3 −λγ + 2n
2

r̄3
c

= −3Ω,

therefore,

Ω = −1

3

(
M ′′(r̄c)

M ′(r̄c)
− 1

r̄c

)(
k2
z +

n2

r̄2
c

)
− 2n2

3r̄3
c

. (5.1.55)

To conclude, for ς4 << 1, the solutions at the critical layer are

p̃F1 = αF1ς
3 +O

(
ς4
)
, (5.1.56a)

and

p̃F2 = αF2

(
1− 1

2

(
k2
z +

n2

r̄2
c

)
ς2 + Ωp̃F1 ln ς

)
+O

(
ς4
)
, (5.1.56b)
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where αF1,F2 are constants. In full, the pressure is expressed as

p̃F (r̄) = αF1 (r̄ − r̄c)3 + αF2

(
1− 1

2

(
k2
z +

n2

r̄2
c

)
(r̄ − r̄c)2 + ΩαF1 (r̄ − r̄c)3 ln (r̄ − r̄c)

)
+O

(
(r̄ − r̄c)4) . (5.1.57)

This solution is consistent with Brambley et al. (2012), Belyaev (2012) and Campos and

Serrao (1998).

The log singularity is finite at ς = 0 by L’Hopital’s rule i.e.

lim
ς→0

ς3 ln ς = lim
ς→0

(ln ς)′

(1/ς3)′
= lim

ς→0

1/ς

−3/ς4
= 0, (5.1.58)

as expected.

For negative ς the log is defined as

ln(|r̄ − r̄c|) + jπ, r̄ < r̄c. (5.1.59)

5.1.4 δ = 0: Scattering Case

The scattering effect of the cylinder and the refraction effect of the boundary layer were

added to the model simultaneously. If the boundary layer is set equal to a thickness of

zero then the total field may be separated into the incident and scattered field.

Mathematically, this is expressed by the familiar Fourier series of inverse Fourier

transforms where under these conditions α̃(1, kz) = p̃i + p̃s

pt =
1

(2π)2

∞∑
n=−∞

(∫ ∞
−∞

(p̃i + p̃s) e−jkz z̄ dkz

)
e−jnφ̄. (5.1.60)

The result can be derived from the incident field as in McAlpine, Gaffney and Kingan

(2015) or from the solution presented here.

The transformed pressure of the surface of the cylinder is given by

α̃(1, kz) = −
(

2j

π[1 + δ]

)(
η̃n

f̃n

∣∣∣
1+δ

krH
(2) ′
n (kr[1 + δ])− f̃ ′n

∣∣∣
1+δ

H
(2)
n (kr[1 + δ])

)
, (5.1.61)

so if the boundary layer is of infinitesimal thickness, δ = 0, α̃ reduces to

lim
δ→0

α̃n(1, kz) = −j 2

π

η̃n

krH
(2) ′
n (kr)

, (5.1.62)

on the surface of the rigid cylinder because f̃(1) = 1 and f̃ ′(1) = 0. With the aid of the
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Wronskian identity

J`(�)H
(2)′
` (�)− J′`(�)H

(2)
` (�) = −j 2

π�
, (5.1.63)

the function α̃ can be expressed as

α̃n(1, kz) = η̃i,n
Jn(kr)H

(2)′
n (kr)− J′n(kr)H

(2)
n (kr)

H
(2)′
n (kr)

, (5.1.64)

which, when separated leads to

α̃n(1, kz) = η̃i,nJn(kr)− η̃i,n
J′n(kr)H

(2)
n (kr)

H
(2)′
n (kr)

. (5.1.65)

If we note that the first part of Equation (5.1.65) is the incident field as defined in

Equation (5.1.6), we can infer that the remainder must be the transformed scattered

field:

p̃s = −η̃i,n
J′n(kr)

H
(2)′
n (kr)

H(2)
n (kr), (5.1.66)

where H
(2)
n (kr) can be interpreted as an outgoing cylindrical wave on the surface of the

cylinder and the Bessel function derivatives occur owing to the rigid boundary conditions,

which requires the pressure derivative to equal zero.

5.2 Installed Method and Validation

With the installation model now complete, the matter at hand is implementing the

resulting equations. The model is implemented by MATLAB, from henceforth the nu-

merical implementation will be referred to as either the method or code. The aim of

this section is to validate the method. To achieve this end, initially the method is

described with attention paid to mathematical characteristics that are exploited. The

various components in the code that need validating are then done so: Fourier sum,

ODE solver, critical layer and optimisation by interpolation. Under certain conditions

the new solution is compared to existing predictions to validate the method.

The Wiener–Hopf method is different so discussed separately.

5.2.1 Description of Method

This section describes the method to implement the pressure on the surface of the

cylinder from a spinning mode. The discussion in Section 3.2.1 on the decay of the

Bessel functions as kz goes large and the behaviour at k±z is still valid and need not

be reproduced. The solution for the wave on the surface of the cylinder immersed in a
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boundary layer is given by the Fourier series

pt(a0, φ̄, z̄) =
1

(2π)2

∞∑
n=−∞

(∫ ∞
−∞

α̃n(kz) e−jkz z̄dkz

)
e−jnφ̄ . (5.2.1)

The incoming wave may be any source, so long as it is in the appropriate form. For

this discussion the spinning mode (l, q), i.e.

η̃lq,n(kz) = π2ξlqPlq(−1)l+ne−j(l−n)β (k0 + kzM∞) ΨlqH
(2)
l−n(krb) , (5.2.2)

is chosen.

Figure (5.3) shows the process to calculate α̃n(kz). Equation (5.1.18) is integrated

using a standard Ordinary Differential Equation solver, starting from the surface of the

cylinder at r̄ = 1, up to the edge of the boundary layer r̄ = 1 + δ. If, for the prescribed

value of kz, there is a critical layer, the ODE solver integrates to near the critical layer

at r̄ = r̄c− ε. Then the Frobenius solution is used to the bridge the layer, and the ODE

solver is restarted on the other side of the critical layer at r̄ = r̄c + ε. The integration

continues until the edge of the boundary layer at r̄ = 1 + δ. At this point the boundary-

layer solution is matched to the solution for uniform flow, which determines α̃n(kz). The

total pressure on the surface of the cylinder is then evaluated by integrating α̃n over kz,

in order to calculate the Fourier harmonics in the Fourier series solution (5.1.24). An

appropriate number of harmonics are needed to ensure that the series has converged.

Figure 5.3: Illustration showing the method to solve the Pridmore-Brown equation in
the boundary layer for a given harmonic n. The numerical solution obtained using a
standard ODE solver is matched to the Frobenius solution either side of the critical

layer, in order to bridge the critical point r̄c.
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5.2.2 Validation

The new mode source code is verified in the section by inspecting the convergence of

the Fourier sum and comparing against: established results of Fuller (1989), an existing

method and against published refraction predictions. This code is compared against the

mode source code for verification.

Fourier Series

To save time, the infinite Fourier series is truncated at a finite order. This is possible

because the transformed incident wave amplitude decreases with increasing harmonic

order. This is proved by the large order asymptote for the complex amplitude for the

radiating mode

lim
n→∞

|η̃n,lq| ∼ lim
n→∞

∣∣∣H(2)
n−l(krb)

∣∣∣ ∝ lim
n→∞

j

√
2

π(n− l)

(
ekrb

2(n− l)

)l−n
= 0. (5.2.3)

It is more difficult to explain why the denominator in Equation (5.1.22) either grows

or at least remains finite because it depends on the result of the ODE solver.

A numerical example of convergence is presented. The Fourier series (5.1.24) is trun-

cated at the n = Nth term, once it has been verified that inclusion of further terms add

a negligibly small contribution to the result. The value of N is not fixed, because it will

depend on the parameters of each specific calculation (see the asymptotic approxima-

tion above, the ratio of kr and b is clearly important). To verify the convergence of the

Fourier series, the average root-mean-square (rms) relative error, εt, which is defined by

εt(N
′) =

√√√√ 1

M]

M]∑∣∣∣∣ptN ′ − ptNptN

∣∣∣∣2 , (5.2.4)

is computed, where the subscript N ′ denotes the pressure field calculated by truncating

at the n = N ′th term. The squared relative error is then averaged over all the grid points

on the surface of the cylinder (total number of points equals M]). A typical example of

the relative error is plotted in Figure (5.4). As N ′ increases, the error εt decreases until

it is very small. In this example convergence is not achieved until the number of terms

in the Fourier series has exceeded thirty.

80



Figure 5.4: Example of convergence for the boundary-layer refraction cylinder
scattering code as the number of harmonics in the Fourier series are increased to the

final solution. The relevant parameters in this example are: k0a = 10, a = 0.5,
(l, q) = (4, 1), b = 3, δ = 0.1 and M∞ = 0.75.

Comparison to Fuller (1989)

The best way to validate the theory and method is to reproduce and compare against

similar, published results. As the spinning mode source has not been formulated in pre-

vious work of this type of installation problem, it is difficult to find an exact comparison.

A good paper would be Dierke et al. (2013) but the thickness of the boundary layer is not

constant and never explicitly stated. Therefore the monopole approximation discussed

in the previous chapter is used (Equation (3.2.2), page 38). Fuller (1989) published a

solution for a monopole impinging on a rigid, infinite cylinder. He defined a coefficient

αc [dB] = 20 log10

(
pt
pi

)
, (5.2.5)

and is plotted around half a rigid cylinder.

Figure (5.5) is the plane wave mode αc predictions of radius a = 0.01, as discussed

in the previous chapter, with no flow at several low values of wavenumbers. Under these

conditions the two models may be compared. Figure (5.5) shows good agreement be-

tween the two methods and thus validates the new method under the limiting conditions

described.
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Figure 5.5: A reproduction of the scattering case in quiescent flow and the same
variables given in Fuller (1989). The new code (solid lines) and; k0a0 = 0.5 (◦),
k0a0 = 1 (4), k0a0 = 2 (�) and k0a0 = 4 (×). The other variables are: a = 0.01,

(l, q) = (0, 1), b = 3 and M∞ = 0.

These results were chosen as a validation example because at the low frequencies the

majority of the inverse Fourier transform is in the evanescent part of the spectrum. The

critical layer is in this part of the spectrum (I1). The agreement between Fuller and the

new method shows that the modified Bessel functions are implemented correctly.

Comparison to Uniform Flow Solutions

A standard Runge–Kutta numerical integration routine is used to solve the Pridmore-

Brown equation in the boundary-layer region. The solver can be checked by comparison

with an analytic solution for the special case M(r̄) = M∞. In this case, the Pridmore-

Brown equation (Eq (5.1.13)), reduces to Bessel’s differential equation. Hence, the

normalised pressure can be expressed in terms of Bessel functions, in the form

f̃n = An(kz)Jn(krr̄) +Bn(kz)Yn(krr̄) . (5.2.6)

The amplitude coefficients are determined by the boundary conditions:{
An(kz)

Bn(kz)

}
=

{
1

0

}[
Jn(kra0) Yn(kra0)

krJ
′
n(kra0) krY

′
n(kra0)

]−1

. (5.2.7)
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These results are shown in Figure (5.6). The ODE solver gives extremely similar re-

sults, so close they are practically identical. This demonstrates that the ODE solver is

implemented correctly.

Figure 5.6: Solutions for f̃ ODE solver (solid line) and theoretical (×) and f̃ ′ ODE
solver (dashes) and theoretical (◦). Parameters are: k0a = 20, a = 0.5, (l, q) = (16, 1),

kz = 95, b = 3, M∞ = 0.75 and n = 0.

Comparison to SYMPHONY methods

Having verified the accuracy of the numerical integration solver, the new method is

compared against an in-house code. A code developed for the SYMPHONY project

(McAlpine, 2013) includes the distributed source with a cylinder in uniform flow. By

comparing the refraction with an infinitesimal boundary layer (δ = 0) or of a finite

boundary layer but on setting M(r̄) = M∞, the two codes can be compared.

The SYMPHONY code is for uniform flow only. Verification of this code is pub-

lished in McAlpine, Gaffney and Kingan McAlpine et al. (2015). Accordingly, all the

verification results have been obtained by setting M(r̄) = M∞, i.e. a finite thickness

boundary-layer region is specified, but in this region, the flow velocity is set equal to

the free stream velocity outside the boundary layer. This means that the term involving

M ′ in Equation (5.1.18) is zero; otherwise, implementation of the boundary-layer refrac-

tion cylinder scattering code is identical to simulations when M(r̄) is not set equal to a

constant.

Figure (5.7) shows the normalised total pressure on the unfurled cylinder (in Sound
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Pressure Level), calculated using the boundary-layer refraction cylinder scattering code.

The SYMPHONY code was used as the reference result to calculate the relative error

shown in Figures (5.8.a) and (5.8.b). The pressure field has been calculated in the axial

region from z̄ = 0 (source plane) to z̄ = 5. Numerical results from the two methods

show excellent agreement. For either of the boundary-layer thicknesses the relative error

is significantly less than 1 % over the whole domain.

Figure 5.7: Normalised SPL using the uniform scattering code. The relevant
parameters in this example are: k0a = 20, a = 0.6, (l, q) = (16, 1), b = 6 and M∞ = 0.7.
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(a) Relative error (%) of the total pressure field calculated using the
boundary-layer refraction cylinder scattering code with δ = 0.01.

(b) Relative error (%) of the total pressure field calculated using the
boundary-layer refraction cylinder scattering code with δ = 0.1.

Figure 5.8: Comparison of the boundary-layer refraction and uniform flow cylinder
scattering codes (SPL shown in Figure (5.7)). The relevant parameters in this example

are: k0a = 20, a = 0.6, (l, q) = (16, 1), b = 6 and M∞ = 0.7.
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Comparison to Lu (1990)

Lu (1990) examined a point monopole source located adjacent to a rigid cylinder, and

calculated the pressure on the cylinder including the effect of boundary-layer refraction.

In Lu (1990), Figure (6), he plots predictions of the difference between the SPL on the

cylindrical fuselage at φ̄ = 0 and the corresponding value of the SPL in the free field (in

the absence of the cylinder). Negative values indicate shielding.

The comparison is shown here in Figure (5.9). The two predictions show similar

agreement downstream of the source. However, upstream of the source, the two predic-

tions do not compare well. Slightly upstream of the source, the prediction by Lu has an

extremely rapid roll off, indicating extremely high shielding upstream. The prediction

for the compact disc source has a lesser roll off rate, indicating less shielding. However,

the shielding is still substantial with increasing axial distance upstream of the source.

Lu’s predictions for shielding decrease with increasing positive z̄, this is physically un-

realistic. It is difficult to draw a definitive conclusion from this result because there is

only one example to compare against.

Figure 5.9: Difference in the predicted SPL between the installed fuselage pressure and
the incident field pressure at φ̄ = 0. Boundary-layer refraction cylinder scattering code

(solid line) and prediction by Lu (1990) (◦). The relevant parameters are:
k0a = 0.0523, (l, q) = (0, 1), a = 0.01, b = 1.5, δ = 0.125 and M∞ = 0.7.

Critical layer and Interpolation

The last part of the code to validate is the special attention paid to the critical layer; a

Frobenius series is required when integrating along the real line. The implementation is
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tested by varying the width of the series and inspecting the effect on the results. The

correct value is taken when in a region where ε does not affect the results. To decrease

computational time the integrand can be reused for each axial location. The following

part discusses the optimisation by interpolation.

Figures (5.10) and (5.11) show the effect of evaluating integral I1 while taking dif-

ferent widths of the critical layer Frobenius solution – the series is used in place of

the numerical integration. The critical layer, where k0 + kzM(r̄c) = 0, will occur at

kz < −M/k0, which lies in the region kz ∈ (−∞, k−z ]. Thus, the critical layer will only

affect integral I1. As well as altering the width of the critical layer, the number of

interpolation points used to evaluate α̃n also will affect the evaluation of I1 (page 30).

The Frobenius series solution has been truncated at O(ς3), Equation (5.1.57) on page

77. Although it is required that the width of the critical layer is small, if ε is too small

the ODE solver will lose accuracy. To establish an appropriate value for ε, the width

of the Frobenius solution was varied whilst calculating the value of the integral I1 for

the zero-th Fourier harmonic. In Figure (5.10) it is seen that at a low frequency, the

width of the critical layer series solution has little effect on the value of I1. The results

for ε = 0.001 and 0.002 are almost exactly the same. Therefore the value used for the

reference solution was selected as ε = 0.002.

At a higher frequency, as shown in Figure (5.11), it is seen that the width of the crit-

ical layer does not change the value of I1 significantly. This is because the contribution

of the critical layer decreases as the frequency increases (Brambley et al., 2012). Also,

this is further compounded by the increased rate of decay of α̃n(kz) outside the region

kz ∈ (k−z , k
+
z ) at higher frequencies.

The convergence results show that the ideal width of the critical layer, where the

Frobenius series solution is applied, is between ε = 0.001 to 0.00”. The reference value

for all the results selected was ε = 0.0015.

The inverse Fourier transform integral Equation (5.1.24) is computationally expen-

sive, and has to be evaluated at each axial position. However, the function α̃n(kz) does

not depend on z̄, therefore α̃n may be pre-calculated for each harmonic order n. A spline

interpolation routine is implemented to evaluate α̃n(kz) at any value of kz required by

the adaptive numerical integration solver.

Since the function α̃n(kz) can be highly oscillatory, the number of interpolation points

must be sufficient to ensure accurate interpolation, and thus accurate evaluation of

the inverse Fourier transform. Figures (5.10) and (5.11) show convergence results for

two different frequencies. As the number of interpolation points of α̃n(kz) is increased,

convergence is achieved reasonably quickly. In an effort to normalise the number of

interpolation points (N) of the function α̃n(kz) by the axial wavenumber, we divide N

by k+
z − k−z (denoted by k∆

z ). It is seen that convergence is achieved at a higher rate

for the higher frequency, compare Figure (5.11) with Figure (5.10). The two frequencies
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have a similar integration range, due to the slower decay rate of α̃(kz) as kz → ±∞ for

the lower frequency case. Yet, because there are fewer interpolation points, thanks to

the reference value k∆
z , convergence is achieved at a slower rate for the lower frequency.

These results show that the integral has converged by N ≈ 10 k∆
z . This reference

value was selected for all the results in the thesis.
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(a) Value of I1.

(b) Relative error of I1.

Figure 5.10: Effect of width of the critical layer (Frobenius solution) and number of
interpolation points used to evaluate I1. Key: ε = 0.0002 (orange dashes), 0.001

(yellow dots), 0.002 (purple dash dots), 0.003 (green, �), 0.005 (cyan, ∇) and 0.01
(maroon, 4). The relevant parameters in this example are: k0a = 0.0524,

(l, q) = (0, 1), a = 0.01, b = 1.5, δ = 0.125 and M∞ = 0.7.
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(a) Value of I1.

(b) Relative error of I1.

Figure 5.11: Effect of width of the critical layer (Frobenius solution) and number of
interpolation points used to evaluate I1. Key: ε = 0.0002 (orange dashes), 0.001

(yellow dots), 0.002 (purple dash dots), 0.003 (green, �), 0.005 (cyan, ∇) and 0.01
(maroon, 4). The relevant parameters in this example are: k0a = 10, a = 0.5,

(l, q) = (0, 1), b = 3, δ = 0.1 and M∞ = 0.75.

A common test for numerical solvers is to integrate in one direction, then, using the

end results as initial conditions, reverse the direction of integration back to the initial

point. If the ODE solver is working correctly, the initial conditions of f̃(1) = 1 and
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f̃ ′(1) = 0 should be recovered. This test is shown in Figure (5.12). The integration

follows the same path and the end result of f̃(1) = 1 and f̃ ′(1) = −1.3536 × 10−4 +

j1.4654−19. This is excellent considering the solution range is very large. It also shows

that the Frobenius solution is implemented correctly.
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(a) f̃ .

(b) f̃ ′.

Figure 5.12: The ODE solver results for a quarter-sine boundary-layer profile of
thickness 0.1. The outwards results are shown in the solid (real) and dashed

(imaginary) lines, the inwards results are shown with added symbols of × (real) and 4
(imaginary). The relevant parameters are k0a = 20, a = 0.5, (l, q) = (16, 1), b = 3 and

M∞ = 0.75.
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Validation of Wiener–Hopf Code

In the last section of this chapter, the installed Wiener–Hopf method is validated. This

must be validated separately because the installation method (Graf’s Addition theorem,

cylinder and the ODE solver) is added to an established incident field method (GXMunt).

The Wiener–Hopf solution for the mode radiating from a cylindrical duct in the free-

field has been implemented in a code called GXMunt. To implement the installation

method for the Wiener–Hopf incident field the GXMunt code is modified. This is done

because it calculates the numerically complicated F+ function – it is easier to adapt the

existing method than calculate this function from scratch. The installed Wiener–Hopf

method is compared to the disc source method with uniform flow in order to validate

it. To validate the boundary layer component, the Wiener–Hopf source is compared

against uniform flow predictions to those with a boundary layer of constant velocity.

Lastly, to validate the whole code, refraction predictions for the disc and Wiener–Hopf

are compared. These successful comparisons demonstrate that the installed Wiener–

Hopf theory is implemented correctly.

The incident field model includes diffraction and is thus too complex for the simple

monopole comparison of the previous section.

The incident code is different to the disc method in several ways;

� the non-dimensional geometry is referenced to the duct radius,

� the axial wavenumbers are complex and normalised and the integration contour is

deformed from the real axis

� and the time dependency is opposite to the disc method.

The most significant change is the complex wavenumbers and the deformed integra-

tion contour. The ODE solver is unchanged by the complex frequency. Serendipitously,

the deformed contour avoids the branch cut due to the radial wavenumber and the

branch cut along the real axis associated to the critical layer. This means the Frobenius

series is largely unneeded. By integrating along a contour displaced from the real axis

the singularities at k±z are avoided. Therefore a quicker, less computationally expensive,

but ultimately simpler, integration routine may be used to calculate the inverse Fourier

transform. This means that the vastly more complex installed Wiener–Hopf code based

on GXMunt is significantly quicker than the simpler installed disc source. This is mainly

due to abandoning quadgk.

The rest of the section demonstrates for some cases the installed Wiener–Hopf field

is working correctly.
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(a) Relative error.

(b) SPL down cylinder at φ̄ = 0. Disc source (solid line) and
Wiener–Hopf (solid line, ×).

Figure 5.13: Relative error for the thick boundary layer for the installed radiating
mode. The variables are: k0a = 10, a = 0.4, (l, q) = (4, 1), δ = 0.1, b = 3 and

M∞ = 0.75.

To ensure that the method (apart from the boundary layer) is implemented correctly,

the predictions in uniform flow are compared between the Wiener–Hopf source and the

disc source. By evaluating the relative error, shown in Figure (5.13.a), the codes agree

well for axial positions greater than about –3.5 cylinder radii. The error is relative, so
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on the far-side the reference values are very small which leads to an increase in error.

These errors are small enough to have no effect on an SPL scale, Figure (5.13.b), and

are therefore negligible.

The magnitude of error increases for axial distances less than –3.5. This is not

error. At these small axial values the diffraction effect becomes significant and differ-

ences between the models is expected. Note that 3.5 corresponds to a polar angle of

approximately 65o, above this polar angle the previous chapter demonstrated that the

diffraction becomes significant. The differences between the models are approximately

twice the differences in the incident field.

Following is the implementation of the boundary layer. Note that no critical layer

is present for this case so this section does not validate any special treatment to the

critical layer.

Figure (5.14.a) shows the relative error for the high frequency case for uniform flow

and constant shear layer (Mz = M∞) to the uniform flow for the very cut-on mode of

(l, q) = (4, 1). The thickness of the boundary layer is 0.1, which led to marginally more

error in the disc source validation.

The relative error of complex pressure shown in Figure (5.14.a) shows that the error

is negligible apart from at the extreme end of the cylinder on the far-side. The relatively

small errors do not affect the SPL values shown in Figure (5.14.b).

The same process is repeated for the barely cut-on case of (l, q) = (24, 1) shown

in Figure (5.15). In this case significantly more error occurs. So much so that the

predictions on the logarithmic scale are very different at large axial positions. However,

as very little sound radiates to the far end of the cylinder, for this high mode orders this

error is not significant. The scale on Figure (5.15.b) descends to –400 dB. The noise

floor for the Wiener–Hopf code is 10−9 but the numerical noise for the disc source is

higher.
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(a) Relative error.

(b) SPL down cylinder at φ̄ = 0. Both lines are shown, δ = 0
(solid line) and δ = 0.1 (dashes, ×).

Figure 5.14: Relative error for the thick boundary layer for the installed radiating
mode. The variables are: k0a = 20, a = 0.5, (l, q) = (4, 1), δ = 0.1, b = 3 and

M∞ = 0.75.
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(a) Relative error.

(b) SPL along cylinder at φ̄ = 0. Uniform flow (solid line) and
Wiener–hopf (solid line, ×).

Figure 5.15: Relative error and SPL on the cylinder for the uniform flow case and the
thick boundary layer. Note the y−axis scale. The variables are: k0a = 20, a = 0.5,

(l, q) = (24, 1), δ = 0.1, b = 3 and M∞ = 0.75.
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(a) Disc source. Reproduced from Gaffney et al. (2016) with S’s added
to the graph.

(b) Wiener–Hopf solution.

Figure 5.16: ∆ along the cylinder at φ̄ = 0 for the disc source (a) and the Wiener–Hopf
solution (b) for three frequencies of k0a = 5 (solid line), 10 (solid line, ◦) and 20 (solid
line. ×). The quarter-sine profile was δ = 0.01 or 0.1. The other variables are: a = 0.5,

(l, q) = (4, 1), b = 3 and M∞ = 0.75.

The last step is to compare simulations of the difference between predictions with

and without the boundary layer (∆) for the two different source methods. Comparing

this difference is apt for validation because it is largely a measure of the boundary layer
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effect. Figure (5.16) shows the ∆ predictions of the disc and the Wiener–Hopf source.

Figure (5.16.a) is taken from Gaffney et al (2016).

The figure shows that the difference is the same for either sources; except for k0a = 20

and δ = 0.1. This is because the disc source method has a larger numerical floor value

than the Wiener–Hopf method. The excellent agreement between the differences implies

that the installed Wiener–Hopf method is implemented correctly, or at least as correctly

as the disc source. The method was interrogated for the disc source, as the results have

been recreated with the Wiener–Hopf method, this is deemed sufficient.

This validation has shown that, by comparing the new Wiener–Hopf source to the

validated disc source method, in uniform flow, the method gives accurate predictions.

By including the boundary layer code for a boundary layer of constant gradient the

method was demonstrated to be implemented correctly. Furthermore, with shear the

disc and Wiener–Hopf methods give very similar predictions.

5.3 Chapter Summary

Prior to this chapter, the new disc source for the radiating mode from a circular duct

and a mode exciting a circular duct had been defined. This chapter included in the

theoretical model an infinitely long cylinder to model the scattering effect of a fuselage.

The refraction effect of an constant thickness boundary layer was included by solving

the Pridmore-Brown equation. To do this the following steps were undertaken;

� the source coordinates were translated via Graf’s addition theorem,

� new coordinates were introduced at the centre of an infinitely long cylinder,

� the sound propagation through a monotonically increasing, constant thickness

boundary layer was modelled using the Pridmore-Brown equation,

� the scattering effect of a cylinder, with slip and impedance boundary conditions,

was included in the model,

� the boundary conditions were then simplified to rigid and no slip,

� the singularity that occurs in the Pridmore-Brown equation was bridged using a

Frobenius solution,

� the Frobenius solution was derived for a general (monotonically increasing) func-

tion,

� with a boundary layer of infinitesimal thickness the scattered field in uniform flow

was recovered from the total field.
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Type of Source Subscript, i = Complex amplitude, η̃i

Single monopole σ
(π/2) (k0 + kzMz)Qσ(−1)n

H
(2)
l−n(krb)

Ring (order l) l
π2ξl(−1)l+n (k0 + kzMz)

Jl(krη)Jl(κlη)H
(2)
l−n(krb)

Mode (l, q) lq
π2ξlq(−1)l+n (k0 + kzMz) Ψlq

H
(2)
l−n(krb)

Diffracted (l, q) d, lq
ξlq(−1)l+n(k0 + kzMz)

F+

krH
(2)′
l (kra)

H
(2)
l−n(krb)

Table 5.2: Abridged version of Table (5.1) with β = 0 and P ’s = 1.

The solution to the Pridmore-Brown equation must be solved by numerical integra-

tion of the ODE in Fourier space. The final solution is of the form

pt(a0, φ̄, z̄) =
1

(2π)2

∞∑
n=−∞

(∫ ∞
−∞

α̃n(kz) e−jkz z̄dkz

)
e−jnφ̄ , (5.3.1)

with

α̃n(kz) = −
(

2j

π[1 + δ]

)(
η̃n

f̃n

∣∣∣
1+δ

krH
(2) ′
n (kr[1 + δ])− f̃ ′n

∣∣∣
1+δ

H
(2)
n (kr[1 + δ])

)
, (5.3.2)

where the source complex amplitudes η̃n are given in Table (5.2). This new model

completes Objective 6.

The new theory was implemented in a MATLAB code. The second part of this

chapter discussed the implementation and validated the code. This aim was achieved

by

� demonstrating convergence of the Fourier sum with increasing harmonic orders,

� recreating Fuller’s (1989) results for a monopole adjacent to a rigid cylinder in still

flow,

� comparing the distributed source against the scattering case,

� the interpolation used in the method was shown to be implemented correctly,

� the critical layer was shown to be implemented correctly by successful integration

through the boundary layer in both directions.

The Wiener–Hopf method differs to the other source methods. Therefore, the Wiener–

Hopf source was validated separately by recreating the shielding due to the boundary

layer for the different sources.
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Chapter 6

Near-Field Installed Results

The SPL on the surface of the fuselage has a direct effect on the levels of cabin noise. To

reduce the amplitude of the cabin noise acoustic lagging is installed in the fuselage. The

SPL on the surface of the fuselage has implications on the distribution and quantity

of acoustic lagging. This, in turn, can have an effect on the weight of the aeroplane

and, over an operation, a very significant effect on fuel consumption. For cost and

emission considerations, reduction of weight is very important. To avoid placing lagging

in unnecessary places accurate SPL predictions are required (Wilby and Scharton, 1973).

This chapter presents accurate predictions for the SPL on the surface of a cylinder

for sound radiating from the inlet of a turbofan. Initially in uniform flow, the effect

of changing source characteristics on the surface SPL are quantified. The SPL is then

investigated with a boundary layer.

The boundary layer effect on the surface SPL is quantified by evaluating the difference

in SPL with and without the boundary layer, and the average area mean square pressure.

The following variables are changed; frequency, azimuthal order, ambient flow velocity,

boundary layer profile and thickness. The boundary layer is a function of these variables,

except azimuthal mode; the effect of the azimuthal mode is investigated because it

can be engineered by altering the number of blades and stators. This chapter aims

to consider practical applications, therefore discussion focuses on the physical reasons

for the acoustic effects; the following chapter discusses the mathematics behind the

acoustics.

The majority of the chapter presents the installed predictions for the Wiener–Hopf

source. Therefore all results are new. The installed disc source results be found in

Gaffney et al. (2016).
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6.1 Geometry and Parameters

The dimensions of the geometry used throughout the results section are shown in Table

(6.1). The dimensions were chosen to approximately resemble a twin engined aircraft

used for medium haul flights. The diagram for this is shown in Figure (5.2), page 69.

All results are for a single source on the right-hand-side of the cylinder.

Variable Value/Range

a 0.5

z̄ [–5,5]

b 3

β 0o

Table 6.1: Dimensions for the parametric study presented in the chapter. The length
values are non-dimensional with reference to the fuselage radius, a0

The locations that SPL is evaluated are shown in Figure (6.1). The points II.a− e
are at φ̄ = 0o and z̄ = {5, 2.5, 0,−2.5 and − 5} respectively.

x̄

z̄

M∞

β = 0

a0 = 1

a
b

δ

II.a

II.b

II.c

II.d
II.e

I.a

I.b

Figure 6.1: Schematic showing the locations where SPL is evaluated.

For each result, SPL is evaluated at 361 points in the azimuthal direction and 1001

points in the axial direction. The high frequency result took approximately 3 hours on

a desktop, the lower frequency cases took much less time. The calculation of f and f ′,

Equation (5.1.18), were parallelised over 4 cores.
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6.2 Uniform Flow Results

Initially, the simple case of uniform flow is considered. This work can be found in

McAlpine et al. (2015) and Gaffney et al. (2016) in full. The main conclusions are quoted

in Table 6.2. The table succinctly details what effect changing a given variable has on

the axial location of the maximum SPL on the cylinder. For a reasonably cut-on mode,

the maximum SPL on the cylinder roughly occurs where the principal lobe intersects

with the cylinder – proof of this can be found in Gaffney et al. (2016). Therefore to

identify broad trends, the far-field angle of the principal lobe (ψlq – measured from the

engine axis) can be useful in roughly predicting the location of largest SPL (the ‘hot

spot’).

Variable z̄max Comment

k0

Increase Increase
The mode becomes increasingly cut-on,

ψlq decreases.

Decrease Decrease
The mode becomes decreasingly cut-on

such that ψlq increases.

a

Increase Increase
As a increases the mode becomes increasingly

cut-on, therefore ψlq decreases.

Decrease Decrease
The mode becomes increasingly cut-off,

therefore ψlq increases.

l

Increase Decrease

As l increases the mode becomes

decreasingly cut-on up to cut-off.

ψlq changes accordingly.

Decrease Increase
The principal lobe for l = 0 radiates on axis

so does not intersect with cylinder.

b

Increase Decrease This is simply due to geometry of the problem.

Decrease Increase Again, this is due to geometry of the problem.

M∞

Increase Increase

The directivity changes as the velocity increases,

the effective wavelengths decreases which

corresponds to a effective increase in k0a.

Decrease Decrease
The same as above but with a decrease

in effective k0a.

Table 6.2: The effect of changing variables on the axial position of maximum SPL,
called z̄max, on the cylinder in uniform flow.

To briefly take an example: if a were to increase, k0a increases, so the principal
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lobe angle decreases because the mode is more cut-on. Due to the decrease in ψlq, the

maximum SPL would be pushed up the cylinder.

The new Wiener–Hopf source adjacent to a rigid cylinder is new. The more complex

source extends the range to the rear arc. Therefore, some example cases SPL on the

cylinder are shown in Figures (6.2) and (6.3).

The first set of results show the effect of frequency by plotting ka = {5, 10 and 20}.
The mode is (l, q) = (4, 1). For the low frequency case k0a is only slightly larger than

the azimuthal order, l. Therefore the mode is barely cut-on which results in only a

single lobe. The ‘hot spot’ occurs at an axial location of about one cylinder radius.

Downstream of the source the SPL value is slightly lower and is evenly distributed.

Figure (6.2.c) shows a very cut-on mode for a frequency of k0a = 20. Upstream

of the source the directivity leads to bands of high amplitude sound pressure. These

correspond to the side lobes of the source directivity. The principal lobe is not in the

range computed; unlike k0a = 10 where it is in the middle of the domain, see Figure

(6.2.b). Engineering the principal lobe out the front of the fuselage is ideal for cabin

noise purposes. Downstream of the source, the amplitude decreases at a quicker rate

than the lower frequency cases.

Figure (6.3) shows the effect of changing the azimuthal order for the high frequency

k0a = 20 with three different mode orders; (l, q) = {(4, 1), (16, 1) and (24, 1)}. This

frequency corresponds to roughly BPF. The very cut-on mode (Figure (6.3.a)) is the

same figure as (6.2.c) so the same observations hold.

In future state-of-the-art turbofan engines the number of fan blades will be reduced.

This would lead to a reduced rotor-locked mode order such as (l, q) = (16, 1), shown

in Figure (6.3.b). For this mode the principal lobe intersects the cylinder at roughly

z̄ = 2. At z̄ = 5, on the near-side the pressure is less than 90 dB than compared to the

maximum value. Downstream the sound is more localised than the very cut-on mode.

For the barely cut-on mode (l, q) = (24, 1) the sound is very localised. The levels at

approximately z̄ = ±2.5 along the cylinder are less than 100 dB than at the maximum.

The maximum is located at 0.5 in front of the source plane. For this mode at this

frequency it would be unnecessary to place lots of acoustic lagging at the tips of the

fuselage.
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(a) k0a = 5.

(b) k0a = 10.

(c) k0a = 20.

Figure 6.2: SPL on the cylinder in uniform flow for three frequencies. The other
parameters are: (l, q) = (4, 1), a = 0.5, b = 3 and M∞ = 0.75. All cylinder plots may

be found unfurled in the appendix.
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(a) (l, q) = (4, 1).

(b) (l, q) = (16, 1).

(c) (l, q) = (24, 1).

Figure 6.3: SPL on the cylinder in uniform flow for three modes. The other parameters
are: k0a = 20, a = 0.5, b = 3 and M∞ = 0.75.
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Lastly for the uniform flow section, the levels for the very cut-on mode at the high

frequency are evaluated along the cylinder at φ̄ = 0o, 90o and 180o. For this relevant

frequency it is clear that the shielding effect of the cylinder is very significant. On

the far side, the physical presence of the cylinder reduces the amplitude by up to 70

dB. Downstream the shielding is less effective, around 50 dB, because the convective

effects of the flow increases the wavelengths. With longer acoustic wavelengths the ratio

between the wavelengths and the radius of the cylinder decreases.

Figure 6.4: SPL along the cylinder at φ̄ = 0o (solid line, contour I.a), φ̄ = 90o (dashed
line) and φ̄ = 180o (dot-dashed line, contour I.b). The parameters are: k0a = 20,

(l, q) = (4, 1), b = 3, a = 0.5 and M∞ = 0.75.

Although not shown here, Gaffney et al. (2016) demonstrated that the free-field

directivity of the source cannot be used to predict the maximum SPL on the cylinder.

The idea was that the principal lobe would correspond to location of the maximum SPL

on the cylinder. However this simple model does not work, the geometric reduction is

stronger than the level difference between side and principal lobes. To obtain accurate

installed results the total field must be calculated.

This section has presented new results for the SPL on a cylinder in uniform flow due

to a mode exiting a duct. As k0a increases, the axial location of the maximum SPL on

the cylinder increases. As k0a becomes much larger than l, more and more side lobes

are present, these are clearly visible in the SPL predictions on the cylinder. For a given

frequency, as mode order increases the sound becomes more localised both upstream

and downstream of the source. It was demonstrated that the cylinder has a significant
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shielding effect on the far side. However these predictions do not include the refraction

effect of the boundary layer. The boundary layer effect is examined in the subsequent

sections in the chapter.

6.3 Boundary Layer Effect

The effect of the boundary layer is quantified in this section. The effect is quantified by

two metrics, one of which was introduced in Gaffney et al. (2016).

Again, the installed Wiener–Hopf source is prioritised in this discussion so the down-

stream effects are also considered. Consequentially all the results are new. For reference,

the disc source effects on the SPL on the cylinder results can be found in Gaffney et al.

(2016).

6.3.1 ∆bl and S

Two metrics are used to evaluate the effect of the boundary layer on the levels on the

cylinder. First, we examine the difference in the predicted SPL on the cylinder with and

without the boundary layer, i.e.

∆bl [dB] = SPLbl − SPL. (6.3.1)

The difference ∆bl is useful for predicting the reduction in levels at the ‘hot spot’

(region where the SPL is a maximum). However, examining ∆bl in isolation can be

misleading. For example, a large difference predicted on the far side of the cylinder

will not be significant because, as shown in Figure (6.4), in uniform flow, i.e. with no

boundary-layer shielding, the levels on the far-side of the cylinder are less than 100 dB

compared to the maximum on the near side. A large reduction in these levels is not

important to cabin noise.

Next, to obtain a more overall view of the boundary-layer effect we introduce a

simple ‘shielding’ coefficient denoted by S. This ratio is the spatially averaged mean-

square pressure on the cylinder with and without the boundary layer. This, in turn, is

roughly proportional to the amount of energy of the incident wave refracted away by

the cylinder. Accordingly, we define S by

S =
(1/A)

∫
A
p2
bldA

(1/A)
∫
A
p2dA

≈
∑M]

p2
bl∑M]

p2
, (6.3.2)

where, for equal areas, in practice it is sufficient to evaluate S via a sum of the predicted

mean-square pressures over the M] grid points distributed over the cylinder’s surface.

To examine the effects of flow upstream and downstream the shielding ratio will be

109



split where

S− =

∑M]
− p2

bl∑M]
− p2

∣∣∣∣∣
z̄<0

and S+ =

∑M]
+ p2

bl∑M]
+ p2

∣∣∣∣∣
z̄>0

. (6.3.3)

An S value of unity represents no shielding, zero corresponds to total shielding and

above one would lead to waves refracting towards the cylinder.

The relevant equation governing the effect of the boundary layer is

BL(k0, kz,Mz, δ) = −
(

2j

π[1 + δ]

)(
1

f̃n

∣∣∣
1+δ

krH
(2) ′
n (kr[1 + δ])− f̃ ′n

∣∣∣
1+δ

H
(2)
n (kr[1 + δ])

)
.

(6.3.4)

The parameters affecting the function BL are: the forcing frequency, the flow velocity,

the boundary-layer thickness and its profile. The profile effect is manifest by the results

of the ODE solver. The forcing frequency is a source characteristic, however, the other

parameters are flow characteristics. The subsequent analysis is split between source and

flow characteristics.

Note the radial mode number and the radial distance to the source, b, are omitted

from the analysis. The likely application of the method is fan tones. In this context, the

radial mode is less important. Moving the source away from the cylinder has a trivial

effect on the predictions.

6.3.2 Source Characteristics

In this section the effect of the boundary layer is quantified as the source variables

are changed. Initially the frequency, k0a, is varied, followed by the mode order. The

boundary layer is a quarter-sine profile

M = M∞ sin
( π

2δ
r̄
)
. (6.3.5)

of thin (δ = 0.01) and thick (δ = 0.1) thickness (Dierke et al., 2013). The thicker value

is approximately the actual value of the boundary layer thickness in the plane of the

source. The thinner boundary value was chosen arbitrarily.

Frequency − k0a

While the mode of the source is kept constant at (l, q) = (4, 1), the frequency is varied;

k0a = {5, 10 and 20}, and the metrics are evaluated. The ratio of the boundary-layer

thicknesses to wavelengths are shown in Table (6.3). For all frequencies the thickness of

the boundary layer is significantly less than the acoustic wavelength.
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(a) δ = 0.

(b) δ = 0.01.

(c) δ = 0.1.

Figure 6.5: SPL on the cylinder in uniform flow for three boundary-layer thicknesses.
The other parameters are: k0a = 5, (l, q) = (4, 1), a = 0.5, b = 3 and M∞ = 0.75.
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(a) δ = 0.

(b) δ = 0.01.

(c) δ = 0.1.

Figure 6.6: SPL on the cylinder in uniform flow for three boundary-layer thicknesses.
The other parameters are: k0a = 20, (l, q) = (4, 1), a = 0.5, b = 3 and M∞ = 0.75.
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Some examples of the SPL on the cylinder are shown in Figures (6.5) and (6.6), with

k0a = 5 and k0a = 20 respectively, in: uniform flow, and then with a thin and thick

boundary layer. The uniform flow results are the same as those shown in Figure (6.2.a)

and (6.2.c). The figures show that upstream of the source the boundary layer causes

the sound to be refracted away from the cylinder. For the thin boundary layer, the

directivity of the source is still clearly visible. However, for the thick boundary-layer

causes a reduction in amplitude of more than 100 dB. Downstream of the source the

uniform flow predictions are not significantly affected by the boundary layer. On the far-

side of the cylinder, the amplitude of the destructive interference pattern is significantly

reduced.

Let us step back from the problem for a moment. For all wave problems, the ratio of

the wavelength to the characteristic length of the object is important. For example, for a

radiation problem the ratio k0a (where a is the characteristic length of the source) gives

an indication to the directivity; for scattering problems the Helmholtz ratio k0a0 (a0 is

the characteristic length of the scattering object) is relevant. The refraction problem is

no different. Here, the ratio of the thickness of the boundary layer (δ) to the acoustic

wavelength (λ) is pertinent.

δ
k0a

5 10 20

0.01 0.0159 0.0318 0.0637

0.1 0.1592 0.3183 0.6366

Table 6.3: Ratio of δ/λ0 for the two boundary layer thickensses for the three
frequencies. The variables are: a = 0.5, (l, q) = (4, 1), b = 3 and M∞ = 0.75

This ratio of the source wavelength (λ0) is given in Table (6.3). However, when flow

is present the wavelengths are affected. Downstream of the source the wavelengths are

extended, and upstream the wavelengths are shortened. As a very rough approximation,

assuming plane waves, at cylinder point II.e the wavelength extends from λ0 = 0.1571

to λII.e = 0.2665. The wavelengths were calculated via λ = k0/1 ±M∞ cos Θ, where

Θ is the angle between the plane-wave front and the flow at 0.75 M. Therefore at the

downstream point (II.e) of the cylinder δ/λII.e = 0.3752. At the upstream point (II.a)

this ratio is δ/λII.a = 2.094. This means that the boundary layer depth is twice the

length of the acoustic wavelength upstream and the boundary layer thickness is much

shorter than the acoustic wavelength downstream. The significance of these ratios is

that we would expect the boundary layer to have little effect downstream of the source

and will have a large effect upstream.

The discussion now focuses on the ∆bl predictions shown in Figure (6.7). It is clear
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that upstream of the source the boundary layer changes the levels significantly from the

uniform flow predictions. Downstream of the source the boundary layer will refract the

wave towards the cylinder. For the thick boundary layer there is a very slight increase

in amplitude in downstream axial locations of −1 to −4. Conversely upstream, the high

frequency shielding at II.a is approximately 100 dB for the thick boundary layer and

downstream the effect is negligibly (∆bl ≈ 0), this supports the δ/λ argument of the

previous paragraph.

At the plane of the engine, at z̄ = 0, ∆bl is slightly negative for the thin boundary

layer and between −5 and −8 dB for the thick boundary layer. This result is interesting

because the sound wave does not propagate into or with the flow. The reduction is due

to the shear in the azimuthal direction. This would not be present at this location for

a shear layer over a flat plate. Again, the shear is larger for the high frequency waves

than the longer wavelengths of low frequencies.

Figure 6.7: ∆bl along the cylinder at φ̄ = 0o for three frequencies. The variables are
k0a = 5 (no symbols), k0a = 10 (×) and k0a = 20 (◦) for a boundary layer thickness of

δ = 0.01 (solid lines) and δ = 0.1 (dashed lines). The other parameters are:
(l, q) = (4, 1), a = 0.5, b = 3 and M∞ = 0.75 (the same as Table (6.3.2).

Upstream of the source the boundary layer leads to significant amounts of shielding.

Even for the relatively low frequency and thin thickness the shielding at the tip of the

cylinder is around 18 dB. For the thick boundary layer and high frequency the shielding

is predicted to be 100 dB. When the sound propagates into the flow the wavelengths are

effectively shortened, as discussed previously.

114



The value of ∆bl becomes more negative as z̄ increases, the rate of increase is nonlinear

and the rate of change is at a maximum between zero and z̄ = 3. At z̄ > 3 the shielding

begins to flatten out. If the location of the principal lobe can be increased from z̄ = 1

to 2, a large reduction would be measured. Whereas if it were to increase from z̄ = 3 to

4, the reduction would not be so great.

The middle and high frequencies show notches in the ∆bl. All the sound is refracted

including the location of the nulls. These notches are showing the location of the nulls

have changed slightly.

Figure 6.8: ∆bl at the points for increasing k0a for a boundary-layer thickness of 0.1.
Point II.a (solid line, no symbols), II.b (solid line, ×), II.c (dot-dashed line, no

symbols), II.d (dashed line, 4) and II.e (dashed line, ◦). The other parameters are:
(l, q) = (4, 1), a = 0.5, b = 3 and M∞ = 0.75.

As z̄ increases, the angle of incidence to the boundary layer of the incident wave

decreases. The angle of incidence to the boundary layer is important because the re-

fraction problem is, in essence, an extended application of Snell’s Law1. Furthermore,

the wave spends longer in the shear layer than near the source. Therefore the wave is

subject to more shear and thus more refraction.

The difference between the uniform flow and the thick boundary layer predictions

at various positions are shown in Figure (6.8). The figure shows that the shielding

does not significantly change with frequency at locations in the plane of the source and

1In 2D Cartesian coordinates Snell’s law is u01 + c01/ cosα = u02 + c01/ cos θ where θ is the incident
angle and α is the transmitted angle. This is implemented in Section 7.4.
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downstream of the source. In the plane of the source the shielding slightly increases

from –5 dB to –10 dB.

Upstream of the source, the shielding is very dependent on frequency. At the tip of

the cylinder (II.a) the shielding increases from about –43 dB to nearly –100 dB. The

increase between these two frequencies is roughly linear. Halfway up the cylinder the

shielding increases linearly from k0a = 5 to 13, at a slightly lesser rate than at the tip of

the cylinder. Above k0a = 13 notches are present. This is because two side lobes pass

through.

Now attention is paid to the spatially averaged mean-square pressure ratio, Figure

(6.9). Over the whole domain, S, the ratio inversely drops with increasing frequency,

Figure (6.9.a). For the thick boundary the shielding ratio for k0a = 5 is approximately

0.01. This means that roughly 99% of the energy is refracted away from the cylinder

by the boundary layer. For the thin boundary layer, S = 0.005 for the high frequency

of k0a = 20. This means that the boundary-layer effect averaged over the cylinder is

approximately equivalent for the two values just stated. The associated δ/λ ratio is

0.0063 and 0.0007.

Figure (6.9.b) demonstrates that the shielding ratio downstream of the engine S−

does not change massively with increasing frequency. The values are around 0.75 and

0.5 for the thin and thick profiles. These values are less than unity which indicates

shielding. Shielding also occurs on the far-side of the cylinder at axial values of z̄ = −1

to −3, not shown.

Upstream, the shielding ratio (S+) follows the same trend as S. At frequencies above

k0a = 6.5 approximately 99% of the energy of the incident wave will be refracted away

from the cylinder for a quarter-sine profile of thickness 0.01. For the thick boudnary

layer the value of S+ is barely above zero for the whole range.

In summary, the boundary layer leads to significant shielding upstream of the source.

The convective effect of the flow alters the effective acoustic wavelength which changes

the ratio of δ/λ. The boundary layer has a modest effect downstream of the source on

the acoustic levels measured in decibels. However, the shielding coefficient showed that

the boundary layer does have a shielding effect downstream, but it was not significantly

affected by changes in the frequency. Even for low frequencies significant shielding is

predicted upstream. This is due to a combination of shorten wavelengths and a shallow

angle of incidence to the boundary layer.
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(a) S− note the y−axis scale.

(b) S+ (no symbols) and S− (×). Note the y−axis scale.

Figure 6.9: The three S’s for increasing k0a with δ = 0.01 (solid line) and δ = 0.1
(dashed line). The other parameters are: (l, q) = (4, 1), a = 0.5, b = 3 and M∞ = 0.75.

The y–axis scales are different on (a) and (b).
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Azimuthal Order − l

Now attention is shifted to the effect of azimuthal order on boundary layer shielding.

The azimuthal mode is increased from the plane wave mode to the 24th (the highest

cut-on mode) while keeping the source frequency constant at k0a = 20. As previously

stated; in theory the boundary layer transfer function does not depend on the azimuthal

order. However, it is shown that the difference in pressure does change with azimuthal

order.

Figure (6.10) shows ∆bl along the cylinder. For most of the axial positions for the

thin boundary layer ∆bl values are similar. For the (l, q) = (4, 1) mode the notches are

due to side-lobe refraction. The maximum shielding is about −30 dB and −100 dB for

(l, q) = (4, 1) and (24, 1) at the tip of the cylinder (II.a) respectively

Figure 6.10: ∆bl down the cylinder at φ̄ = 0o for three azimuthal modes; (l, q) = (4, 1)
(no symbol) (l, q) = (16, 1)(×) (l, q) = (24, 1)(◦). Shown with two boundary layer

thickenesses; δ = 0.01 (solid lines) and δ = 0.1 (dashed lines). The other parameters
are: k0a = 20, a = 0.5, b = 3 and M∞ = 0.75.

The predictions for ∆bl for a barely cut-on mode are significantly different, especially

for the thick boundary layer at large axial positions. This discrepancy is because the

metric is a difference, not absolute values. For this mode, the amplitude predicted with

uniform flow at the end of the cylinder is very small. Figure (6.3.c) shows that the ends

are more than 100 dB less than the maximum. Once the boundary layer is introduced

these very low amplitudes are then further reduced by the presence of the boundary
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layer. These values are sufficiently low that the reductions (of up to 100 dB) are in the

computational noise floor. Once this happens, the difference between the uniform flow

and boundary layer decreases.

This is also shown in Figure (6.11). The azimuthal order does not change the differ-

ence much – except from at z̄ = 5. The difference increases to above 100 dB at l = 8

and reduces for modes higher than l = 15. This is because at the tip of the cylinder for

l = 8 to 15 the principal lobe is present. For azimuthal orders below eight, the principal

lobe is in front of the cylinder. Above sixteen the principal lobe intersection is slightly

in front of the source plane.

Figure 6.11: ∆bl at the points for increasing azimuthal order. Key: II.a (×), II.b (◦),
II.c (�), II.d (4) and II.e (+). The other parameters are: k0a = 20, a = 0.5, b = 3,

δ = 0.1 and M∞ = 0.75.

The overall amplitude ratio, S, is very small over all modes, shown in Figure (6.12).

As before, for small azimuthal orders the principal lobe does not intersect with the

cylinder. As the azimuthal order increases to 5 the principal mode enters the domain

and this reduces S from 0.0075 to 0.002. For the thinner boundary layer, S increases as

the mode approaches cut-off, this corresponds to less shielding. As the mode approaches

cut-off the angle of incidence to the boundary layer increases. As alluded to before, a

steeper grazing angle corresponds to less shielding. Overall, the values of S are very low,

which suggests the boundary layer refracts most of the energy away from the cylinder.

The principal lobe seems to dominate S predictions.
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Figure 6.12: S for increasing azimuthal mode for the thin (δ = 0.01−×) and thick
(δ = 0.1− ◦) boundary layer thicknesses. The other parameters are: k0a = 20, a = 0.5,

b = 3 and M∞ = 0.75.

The ratio evaluated downstream of the source shows a similar trend when plotted

against k0a. A slight decrease is observed in Figure (6.13.a). However Figure (6.13.b)

shows that upstream the trend for S+ follows that of S.

This section has shown that although the boundary layer effect does not directly

depend on the azimuthal order of the source, the azimuthal order does affect the total

amount of shielding. It has been demonstrated that the most reduction occurs when the

principal lobe grazes the boundary layer at a shallow angle. The maximum reduction

due to the boundary layer could be engineered by reducing the azimuthal mode. The ∆bl

is affected by computational noise and S moderately affected by the larger amplitudes

of the principal lobe.
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(a) S−− note the y−axis scale.

(b) S+ note the y−axis scale.

Figure 6.13: S+/− for increasing azimuthal mode for the thin (δ = 0.01−×) and thick
(δ = 0.1− ◦) boundary layer thicknesses. The other parameters are: k0a = 20, a = 0.5,

b = 3 and M∞ = 0.75.
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6.3.3 Flow Characteristics

In this section the flow characteristics effects on the surface acoustic pressure are quanti-

fied. This is achieved by changing the ambient flow velocity, boundary layer profile and

boundary layer thickness. While these are changed the source characteristics are kept

at k0a = 20 and (l, q) = (4, 1). The frequency is realistic for BPF whereas the mode

is low. This low order could be an interaction tone. This mode was chosen because in

uniform flow the SPL is well distributed over the whole cylinder.

Bear in mind that the ambient flow velocity changes the directivity of the source.

Initially the effect of the ambient flow is quantified, this is followed by examining the

boundary layer thickness and then the profile shape.

Ambient Flow Velocity −M∞

As the ambient flow velocity is increased the profile is kept constant as the quarter-sine.

The velocity is increased from 0 to 0.75 M and, as in the previous section, two thicknesses

are evaluated, thin – δ = 0.01, and thick – δ = 0.1.

Figure 6.14: ∆bl down the cylinder at φ̄ = 0o for the three ambient flow velocities. The
variables are: M∞ = 0.25 (no symbols), M∞ = 0.5 (×) and M∞ = 0.75 (◦) for a

boundary layer thickness of δ = 0.01 (solid lines) and δ = 0.1 (dashed lines). The other
parameters are: k0a = 20, (l, q) = (4, 1), a = 0.5 and b = 3.

The difference between the uniform and boundary layer (∆bl) is shown in Figure

(6.14). The effect of the flow velocity is modest downstream of the source. Similarly,
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upstream of the source the thin boundary layer leads to very little shielding (<2 dB) for

flow values less than 0.25 M.

However, as the flow velocity is increased to 0.5 M shielding increases. Infact, the

thick boundary layer at 0.25 M gives roughly equivalent shielding as the thin boundary

layer at 0.5 M.

The notches in the shielding predictions change in position and quantity with flow

velocity because the flow affects the source directivity. As the flow increases the effective

wavelengths propagating upstream decrease which leads to more side-lobes to become

present in the source directivity.

Figure 6.15: ∆bl at the points for increasing M∞. Point II.a (solid line, no symbols),
II.b (solid line, ×), II.c (dashed line, no symbols), II.d (dashed line, 4) and II.e

(dashed line, ◦). The other parameters are: k0a = 20, (l, q) = (4, 1), a = 0.5 and b = 3.

Figure (6.15) demonstrates that the relationship between the ambient flow and the

shielding is nonlinear. For the thick boundary layer, as the velocity is increased from

zero to 0.15 M, at the tip of the cylinder the shielding increases from zero to 5 dB.

However, if the flow were to increase by the same amount, for example from 0.6 M to

0.75 M, the increase in shielding due to the flow would be in the region of 40 dB.

The shielding coefficient S shows a similar trend, see Figure (6.16.a). At low veloc-

ities, the large values of S indicates that little shielding occurs, however for the thick

boundary layer the value of S is less than 0.01 for flow speeds above 0.5 M. For S−

at low ambient flow values, the ratio is greater than unity. This infers an increase in
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the average amplitude downstream of the source at these velocities. However, at higher

velocities S− reduces to below unity.

(a) S.

(b) S+ (no symbols) and S− (×). Note the y axis scale.

Figure 6.16: The three S’s for increasing M∞ with δ = 0.01 (solid line) and δ = 0.1
(dashed line). The other parameters are: k0a = 20, (l, q) = (4, 1), a = 0.5 and b = 3.

To quickly summarise, at low velocities the boundary layer does not cause significant

amounts of shielding. However, flow velocities above 0.5 M lead to very significant shield-

ing upstream of the source and the rate increases with at higher velocities. Above 0.5 M

also leads to a slight reduction in the spatial average mean-square pressure downstream

of the source.
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Thickness − δ

The effect of varying the thickness of the boundary layer is examined in this section.

By increasing the thickness from 0 to 0.1 the effect on the surface SPL is quantified.

As before the source is unchanged, the flow velocity is 0.75 M and the boundary layer

profile is the quarter-sine function.

Figure (6.17) shows ∆bl at φ̄ = 0o for six different thicknesses. The thinnest boundary

layer is 0.0025 (δ/λ0 = 0.0159) which is very thin. Remarkably, even with this very

thin boundary layer a significant amount of shielding is predicted. At the tip of the

cylinder the boundary layer causes a reduction of 19 dB. The boundary layer thickness

is approximately 1.5% of the wavelength.

The example just given has a similar δ/λ0 ratio to the k0a = 5 and δ = 0.01 case

presented earlier in Section 6.3.2. The shielding values (excluding the notches in the

high frequency case) are very similar down the cylinder. Both shielding values at the

tip of the cylinder are about −18 dB. This result suggests that the important factor on

the shielding is the ratio δ/λ0.

Figure 6.17: ∆bl down the cylinder at φ̄ = 0o for the six boundary layer thicknesses.
The variables are δ = 0.0025 (solid line, no symbols), δ = 0.01 (solid line, ×), δ = 0.025
(solid line, ◦), δ = 0.05 (dashed line, no symbols), δ = 0.075 (dashed line, ×), δ = 0.1
(dashed line, ◦) The other parameters are: k0a = 20, a = 0.5, (l, q) = (4, 1), b = 3 and

M∞ = 0.75.
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Figure 6.18: ∆bl at the points for increasing δ. Point II.a (solid line, no symbols), II.b
(solid line, ×), II.c (dot-dashed line, no symbols), II.d (dashed line, 4) and II.e

(dashed line, ◦). The other parameters are: k0a = 20, a = 0.5, (l, q) = (4, 1), b = 3 and
M∞ = 0.75.

The shielding at the tip of the cylinder (II.a) as the boundary-layer thickness is

increased is shown in Figure (6.18). For values of δ < 0.01 the rate of increase is very

sharp and nonlinear. For thicker boundary layers the increase is roughly linear. At

the tip (II.a) the linear increase is at a slightly greater rate compared with half way

down the cylinder (II.b). However, the main difference is observed with the very thin

boundary layers.

The model is for a constant thickness boundary layer. This assumption is not re-

alistic. This linear increase could be useful to compare predictions at different axial

locations and will be exploited further in the next chapter.

The value of the shielding coefficient, S, is shown in Figure (6.19.a) as the boundary

layer thickness is increased. The ratio quickly reduces to below 0.1 at around δ = 0.0075.

At thicker values the line flattens out to less than 0.02.

The downstream value of the shielding ratio is much larger. Above about δ = 0.03

S+ decreases linearly.

The main result of this section is that a linear increase in boundary-layer thickness

leads to a linear increase in shielding. The linear increase is for a reasonably thick

boundary layer. These results are based on the quarter-sine profile. This discussion is

continued in Chapter 7, Sections 7.5 and 7.6.
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(a) S− note the y−axis scale.

(b) S+ (dashed line) and S− (solid line). Note the y−axis scale.

Figure 6.19: The three S’s for increasing δ. The other parameters are: k0a = 20,
a = 0.5, (l, q) = (4, 1) and b = 3

Profiles – Mz

Throughout the analysis the boundary-layer profile has been a quarter-sine boundary

layer. The effect of different boundary layers are briefly quantified in this section. Also
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examined, are the linear and power-law profiles:

ML =
M∞
δL

r̄ and MPL = M∞

(
r̄

δt

) 1
7

. (6.3.6)

The power-law profile has a linear sub-layer of thickness δPL/5000. The linear profile is

simple to implement and the power-law resembles a turbulent boundary layer. For all

three profiles the location of the critical layer may be found analytically. Any analytic

function describing the profile may be used, however it is more time intensive to locate

the critical layer numerically. As before, the profiles are evaluated at a thin and thick

thickness (δ = 0.01 and 0.1) for the same source.

Figure (6.20) shows the shielding along the cylinder. Upstream of the source the

turbulent boundary layer gives significantly less shielding compared with the other two

profiles. For the thin boundary layer the difference between the power-law and quarter-

sine profile at the tip of the cylinder is more than 15 dB. And for the thick boundary

layer the difference is nearly 40 dB.

b

Figure 6.20: ∆bl down the cylinder at φ̄ = 0o for the quarter-sine (no symbol), linear
(×) and power-law (◦) profiles for a boundary layer thickness of δ = 0.01 (solid lines)

and δ = 0.1 (dashed lines). The other parameters are: k0a = 20, a = 0.5, (l, q) = (4, 1),
b = 3 and M∞ = 0.75.

It is clear that the shielding due to the linear and quarter-sine profiles are similar.

The thin boundary-layer predictions at the tip of the cylinder are only approximately

5 dB different. The overall shape of ∆bl is very similar i.e. the curve is scaled and the

128



notches in ∆bl are at roughly the same position. A similar result can be found for the

boundary-layer attenuation inside ducts in Nayfeh et al. (1974).

The shielding ratio in Table (6.4) for the various profiles show similar results to the

previous graph. They show that the power-law profile gives significantly less shielding

compared with the linear and quarter-sine profiles.

Profile
S

0.01 0.1

Quarter-sine 0.0668 0.0165

Linear 0.0506 0.0157

Power Law 0.2885 0.0364

Table 6.4: The value of S for the three profiles for the two different thicknesses. The
variables are the same as in Figure (6.20).

The profile effect is further discussed in Section 7.14 (on page 153).

6.4 Chapter Summary

In this chapter the fuselage installation effects on a spinning mode radiating from the

inlet of a circular duct have been quantified. Initially the results with uniform flow were

presented. It was demonstrated that the presence of the cylinder causes a reduction of

more than 70 dB in the SPL on the far-side surface of the cylinder.

Then the effect of the boundary layer on the SPL on the surface of the cylinder was

quantified. The relevant equation is

BL(k0, kz,Mz, δ) = −
(

2j

π[1 + δ]

)(
1

f̃n

∣∣∣
1+δ

krH
(2) ′
n (kr[1 + δ])− f̃ ′n

∣∣∣
1+δ

H
(2)
n (kr[1 + δ])

)
.

(6.4.1)

The effects can be split into source frequency (k0) and azimuthal order (l) and the flow

characteristics (δ and profile shape) and also the ambient flow velocity which affects

both.

The following conclusions were found:

� Due to refraction towards the cylinder and an unfavourable δ/λ ratio, the shielding

effect was not strong downstream of the source. At the furthest upstream position

evaluated a minimum of 20 dB reduction is predicted.

� The azimuthal order of the mode does not affect ∆bl at a practical level, however

S was slightly affected by l.
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� A linear relationship between the thickness of the boundary layer and ∆bl was

observed for δ > 0.01.

� Furthermore, the turbulent boundary-layer profile had a significantly less effect on

the surface SPL compared with the quarter-sine and linear profile.

From the evidence presented in this chapter, the best way of reducing noise on the

surface of the cylinder is to increase the forcing frequency and decrease the azimuthal

mode in the duct.

In presenting these results Objective 7 has been met.
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Chapter 7

Near-Field Installed Discussion

The previous chapter examined the effect of changing the source and the boundary layer

characteristics. The effects were discussed in terms of physical acoustics. This chapter

probes the mathematics underpinning the physical acoustics. Initially the model itself

is critiqued by examining the pros and cons and the scope of the model. Then an

alternative way of modelling the refraction inspired by the results is presented. The

critical layer is then analysed in the context of installation acoustics. A relationship

between the asymmetry and the direction of spin of the mode is then mathematically

proved. Lastly, the boundary layer thickness for different profiles is investigated. The

purpose of these investigations is two fold; to glean insight but also explore ways to

radically optimise the method.

This chapter fulfils Objective 7.

7.1 The Model

Before the main discussion, a critique of the model is necessary in order to establish the

accuracy of the predictions. This section will briefly remind the reader what the model

does and the method to implement it. The advantages are outlined, then, the important

aspects of scope and limitations of the model, and method, are discussed with limiting

cases given where appropriate.

The model is a simple mathematical model to predict radiating inlet engine fan tones

adjacent to a cylindrical fuselage with a boundary layer. The disc source is a canonical

model, however the Wiener–Hopf source is too complex for this label. The geometry is

simplified in order that the problem may be solved using Fourier methods. To model

the refraction effect, due to the shear layer running down the cylinder, the Pridmore-

Brown equation was solved in this region. This can be solved using an ODE solver in

the Fourier domain.

The major advantage of formulating the method analytically is computational effi-
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ciency. The computational cost is small compared to an equivalent finite element code.

The method is fully 3 dimensional, a CAA code implementing diffraction from an in-

let of a duct over a large 3D domain including a large scattering object and refraction

would take many cores a very long time to compute. For example Dierke et al. (2013)

calculated an installation problem using 4 CPU and took a full week to calculate. Par-

allelised over four cores, the method implemented in this thesis takes only about 2/3

hours on a desktop. Furthermore, the method lends itself to parallelisation; the total

computational time is roughly inversely proportional to the number of cores available.

The decrease in computational time is traded against simplifications in geometry.

The fuselage is approximated as an infinitely long cylinder. Initially this seems ludicrous,

however Figure (7.1) shows the surface SPL of the dominant rotor locked tone at k0a = 20

with 16 blades (typical for a state-of-the-art engine) in uniform flow. The figure shows

the principal lobe intersects at approximately z̄ = 2, i.e. two cylinder radii, in front of

the source plane. Less than ∼100 dB (relative to the maximum value on the cylinder)

is radiated to z̄ = 5, equivalent to the nose of the fuselage, due to the source directivity

alone. Furthermore, the previous chapter showed that at these high frequencies the thin

turbulent boundary layer profile causes around 20 dB of shielding. If any significant noise

were radiating to the tip of the cylinder it would be refracted away by the boundary

layer. Therefore, the cylinder approximation does not curtail the validity of the model.

Figure 7.1: SPL on cylinder for k0a = 20 and (l, q) = (16, 1). This source is reasonably
realstic of future generations of turbofan engines. With no boundary layer, very little

sound reaches the tip of the cylinder at z̄ = 5 in this simulation.
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An infinite cylinder does neglect the diffraction of any noise reaching the nose of the

fuselage. Of what little noise that does reach the tip of the cylinder (perhaps a low

frequency and flow velocity) nose diffraction could be added in the scattering model.

Bowman and Uslenghi (1969) lists analytic expressions for scattering due to a cone. It

was neglected here under the assumption that the gradual change in shape has little

effect on the relatively short wavelengths and does not affect the results. Including the

boundary layer over this shape is beyond the scope of analytical modelling.

The geometry of the engine inlet is simplified to a semi-infinite circular duct. This

was allowed to let the mode shapes be integrated analytically when forming the disc

source (the important part of McAlpine, Gaffney and Kingan, 2015). Real engine inlets

are not perfectly circular, a squashed circle changes the directivity slightly. In Tyler and

Sofrin (1962), the rectangular duct had a directivity which was remarkably similar to

the circular duct. The circular duct approximation allows for analytic formulation for a

modest drop in accuracy of the directivity predictions.

Furthermore, the infinitesimal engine duct wall thickness is unavoidable in theoretical

models. The effect of walls with finite thickness may be significant, especially for short

wavelengths. Including finite wall thickness is well beyond the theoretical method’s

scope and thin walls are a good approximation at low frequencies.

Another issue with the source is the uniform flow assumption. In recent years the

effect of inlet flow distortion on radiation has been modelled, see Daroukh et al. (2016).

The effect on the blade passing frequency was affected by around 8 dB. Changes in the

flow velocity must be computed with a CAA method and is thus beyond the scope of

this project.

For aerodynamic reasons the highlight of the engine is normal to the flow. The

engine is slightly off axis, this means the duct termination is at an angle to the duct

axis. In quiescent flow, this angular offset has been analytically modelled in the free-field

and far-field by McAlpine et al. (2012). Adapting this and including it to the model

would be possible but the mathematics is very complex. This angular displacement

can be simulated, to a first approximation, by changing the frequency and altering the

boundary-layer thickness such that λ0/δ is constant.

Reflections between the fuselage and the engine cylinder are not modelled. Including

these reflections is unnecessary because they are both cylindrical diffusers and would

lead to negligible amplitudes of the reflected waves. No aeroacoustic references are

readily available to support this. However, cylindrical diffusers are commonly installed

in auditoria to induce a diffuse field. The benefits of convex surfaces are detailed in

Barron (2010).

The previous paragraphs have demonstrated that the geometry simplifications have

been shown to have little effect on the model. However the flow assumptions; parallel

flow and constant boundary layer thickness are more significant.
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The flow was modelled such that the time-average mean velocity was taken. This

assumption is appropriate in the uniform flow regime. In the boundary layer the tur-

bulence effect is explicitly neglected. For example, Powles et al. (2011) demonstrated

that turbulence cannot be neglected when modelling tones propagating through a shear

layer. Haystacking could result in a modest reduction in the amplitude of the tone on

the surface of the cylinder and leakage into other frequencies. That being said, the

boundary layer is thinner than the mixing region of a jet so the effects may not be so

strong.

In the model, the boundary layer has a constant thickness all along the cylinder.

This assumption is wrong; the boundary layer is zero at the nose and grows along the

fuselage. This omission is one of the weakest parts of the model because the refraction

changes with boundary layer thickness. The model starts by taking a Fourier transform

in the axial direction, this would not be appropriate for a growing boundary layer.

However, Rienstra (2003) has analytically modelled a duct with a cross section that

slowly changes. This analysis could be modified to boundary layer growth and included

in the model.

However, boundary layers grow slowly; this could be exploited when estimating

shielding at axial locations near to one another. However the calculation would have

to be repeated with different thicknesses to compare the shielding at axial positions far

apart from each other.

Lastly, the usual assumptions on the fluid were assumed; inviscid, compressible, isen-

tropic perfect gas. Inviscid flow in the boundary layer is an unavoidable contradiction.

These assumptions are common for all theoretical models (Rienstra and Hirschberg,

2013).

To sum up, as the model is theoretical, the method is very quick and computation-

ally cheap relative to an equivalent CAA method. This speed was traded off through

simplifications in geometry and flow characteristics e.g. a semi-infinite circular duct is

not a realistic approximation of an inlet. Further improvements correspond to a seri-

ous increase in complexity for a relatively modest increase in accuracy. Upstream, the

infinite cylinder approximation of a fuselage was also shown to be a fair approximation

owing to the directivity of the source and the refraction effect of the boundary layer.

The Wiener–Hopf solution assumes infinitesimal duct walls, this trade–off in simplicity

extends the solution to the rear arc. Finally, the flow simplifications are more significant

and may affect the accuracy of the predictions. The constant boundary layer thickness is

the main drawback with the model. The intended purpose of the method is for paramet-

ric studies to refine the design parameters. This would lead to a rough idea of shielding,

once the desired variables have been chosen, a detailed CAA method could be used.
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7.2 Spectra Inspection

The previous chapter presented many results via the parametric study. The reason

for differing amounts of shielding was described in terms of physical acoustics. In this

section, the effect of varying different variables on the mathematics is discussed. The

analysis is conducted in the Fourier domain, initially on the isolated ‘installation’ func-

tion BL, then the complex directivity for the Wiener–Hopf source is then included in the

analysis. Finally some simple observations lead to a wavenumber filter that simulates

refraction based on the uniform flow method.

7.2.1 The Installation Effect

As isolated before (page 72), the scattering effect of a rigid, infinitely long cylinder and

the refraction effect of the boundary layer running down the cylinder can be modelled

via the function

BL(k0, kz,Mz, δ) = −
(

2j

π[1 + δ]

)(
1

f̃n

∣∣∣
1+δ

krH
(2) ′
n (kr[1 + δ])− f̃ ′n

∣∣∣
1+δ

H
(2)
n (kr[1 + δ])

)
.

(7.2.1)

The function is dependent on frequency and flow velocity (manifest in kr), the boundary-

layer profile (shown in the result of the ODE solver, f̃ andf̃ ′, and kr) and the boundary-

layer thickness in all terms.

The flow is in the negative axial direction and for the following analysis is a reasonably

high Mach number of 0.75. Therefore, positive wavenumbers propagate against the flow

and negative wavenumbers propagate with the flow.

The function BL acts like a transfer function at each wavenumber. When dealing

with transfer functions the amplitude effect on the incident field is most pertinent.

The amplitude of BL in the Fourier domain is plotted in Figure (7.2.a). It is shown for

uniform flow (the rigid cylinder effect) and for the thick and thin quarter-sine boundary-

layer profile.

The uniform flow case shows the cylinder effect in isolation. The cylinder suppresses

wavenumbers in the middle of the spectrum and amplifies near the Doppler shifted

frequencies of k±z . The pattern is symmetrical about the mid-value between the Doppler

shifted frequencies of about –11 and 80.

Once a thin boundary layer (of 0.01) is introduced, the high positive wavenumber

content is massively suppressed. However, the low valued positve wavenumbers of less

than 30 and the wavenumbers travelling with the flow are unaffected.

A thick boundary layer leads to almost total reduction of the wavenumbers travelling

against the flow, above about 40 and below 20 a reduction is observed. Contrary to the

other cases, downstream the negative wavenumbers are slightly amplified.
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At slightly above kz = 20 all three transfer functions converge. The reason for this

is unknown but it occurs very close to kz = k0.

Not shown, but the rate of roll-off for high positive wavenumbers increases in a similar

manner (for a given boundary layer thickness). The most important factor for a transfer

function is not k0 nor δ but rather the ratio of λ0/δ.

The total effect of the boundary layer including the Wiener–Hopf source character-

istics, η̃d,lq, are shown in Figure (7.2.b) by plotting α̃ over the relevant domain. It shows

that the uniform flow case is dominated by large wavenumbers travelling with the flow.

With the addition of the thin boundary layer, the high frequency content is signifi-

cantly reduced to the same order of magnitude of the negative wavenumbers. However,

the thick boundary layer reduces the amplitude of α̃ at large positive values to zero. This

means that the integrand is now dominated by negative wavenumbers. The pressure is

now constituted by low valued wavenumbers propagating against the flow and the full

range of those travelling in the direction of the flow.

It is also worth noting that α̃ corresponds to the spectra of the pressure at z̄ = 0.

The additional effect of the axial location is plotted on Figure (7.3). It shows that the

axial location does affect the amplitude of the integrand, bare in mind kz is complex.

However, the reduction in amplitude alone cannot be the cause for the reduction of 100

dB in the SPL at either end of the cylinder.

Instead, the phase must also be a culprit. The inverse transform can be simplified

to the relevant parts and the exponent can be split

p ∝
∫
α̃ e−jkz z̄ dkz =

∫
α̃ (cos (kz z̄)− j sin (kz z̄)) dkz. (7.2.2)

The change in axial location is manifest only in the sine term. Therefore, the integral

can be written upstream as

p+ =

∫
α̃ (cos (kz z̄)− j sin (kz z̄)) dkz, z̄ > 0, (7.2.3)

and downstream

p− =

∫
α̃ (cos (kz z̄) + j sin (kz|z̄|)) dkz, z̄ < 0. (7.2.4)

Upstream of the source the shielding is very strong. Therefore, the value of the

inverse transform must be much less than downstream. The only possible way in which

this can happen is ∫
α̃ cos (kz z̄) dkz ≈ j

∫
α̃ sin (kz z̄) dkz. (7.2.5)

The composing functions of α̃ are too complex to be taken further analytically.

However a numerical example supports this theory. Downstream the absolute value of p−
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= 0.0013 whereas upstream p+ = 2.3× 10−6. So amplitude and phase are important for

the axial change. This, in part, causes the reductions in pressure that signify shielding.

(a) BL for the three boundary-layer thicknesses.

(b) α̃ for the boundary-layer thicknesses.

Figure 7.2: BL and α̃ (for the WH source) with δ = 0 (solid line), 0.01 (dashed line)
and 0.1 (dot-dashed line, ×) for n = 0. The other parameters are: k0a = 20, a = 0.5,

b = 3, (l, q) = (4, 1) and M∞ = 0.75.
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Figure 7.3: |α̃ e−jkz z̄| for z̄ = −5 (solid line), 0 (dashed line) and 5 (dot-dashed line, ×)
for n = 0. The other parameters are: k0a = 20, a = 0.5, b = 3, l = 4, M∞ = 0.75. Bare

in mind kz is complex.

7.2.2 Spectra Manipulation

The reduction of the wavenumbers is exploited in this section. As ascertained, the bound-

ary layer acts like a wavenumber filter, where the high valued wavenumbers propagating

into the flow are suppressed and the rest are unchanged. Therefore, as an alternative to

the relatively time intensive process of integrating through the boundary layer with the

ODE solver, a filter is applied to the uniform flow method. The most simple of filters

to crudely recreate the effect of BL is defined as

W (kz) =


1, kz 6 0,

1− kz/k+
z , 0 < kz 6 k+

z ,

0, kz > k+
z .

(7.2.6)

This filter leaves negative wavenumbers unchanged and linearly reduces high valued

wavenmubers to zero at the upper shifted wavenumber. This filter alters the uniform

flow expression for pressure to

pt(a0, φ̄, z̄) =
1

(2π)2

∞∑
n=−∞

(∫ ∞
−∞

α̃n(kz)W (kz) e−jkz z̄dkz

)
e−jnφ̄ , (7.2.7)
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where α̃ is defined as before with δ = 0. An example of the integrand is shown in Figure

(7.4).

Figure 7.4: The function α̃n for the zeroth azimuthal mode with (dashed line, �) and
without W (solid line). The parameters are: k0a = 10, a = 0.5, (l, q) = (4, 1), b = 3

and M∞ = 0.75.

Since shielding is pertinent upstream the simpler disc source is used in this analysis.

An example of the uniform flow case and the uniform flow with the filter is shown in

Figure (7.5). The result with the window applied does seem to simulate the refraction

effect reasonably closely to that of implementing the full solution (including BL).

The difference between the two methods (∆W ) on the near side of the cylinder is

shown in Figure (7.6). The difference is similar to the ∆bl for k0a = 20 and δ =

0.01, Figure (6.7), however this is serendipitous. At the tip of the cylinder the window

method over predicts by approximately 2 dB. The method does not predict the shielding

accurately at low axial values. At the source plane the model with W over predicts by

about 5 dB. This difference in shielding is small, but problematically, the shape of the

curve in ∆W is not identical to the full model.
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(a) Uniform flow.

(b) With filter W .

Figure 7.5: Uniform flow and simulated shielding with W . The relevant parameters
are: k0a = 20, a = 0.5, (l, q) = (4, 1), b = 3 and M∞ = 0.75.
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Figure 7.6: Difference between the two models in Figure (7.5) at φ̄ = 0.

In summary, shielding has been simulated by approximating the function BL as a

very simple window on the uniform flow wavenumbers. The shielding was roughly similar

to that due to a quarter-sine profile boundary layer of wavelength ratio λ0/δ = 0.637.

The method is very quick, however it is too crude to give accurate values of shielding

for a given parameter. After refinements (exponential or polynomial decay and change

the of rate of roll-off) it may be accurate but this has not been pursued because the full

method (that implements BL) is relatively quick anyway.

7.3 (Not so) Critical layer

Previously, authors modelling sound propagation through a shear layer have devoted

significant amounts of time to the critical layer. This section will discuss the critical

layer specifically in installation acoustics.

The textbook definition of the critical layer is a point where the ambient flow velocity

equals the phase velocity of the wave. Physically this means that the perturbation in

pressure travels at the same velocity as the flow and is, in effect, hydrodynamic. This

leads to the often quoted full hydrodynamic spectrum.

Mathematically, this occurs as a regular singularity in the transformed Pridmore-

Brown equation, given the full treatment in Section 5.1.3 (page 72). The singularity

occurs thanks to the transform of the material derivative. Therefore the critical layer

occurs when

kz = − k0

Mz(r̄c)
, (7.3.1)
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for

kz 6 −
k0

M∞
. (7.3.2)

These wavenumbers occur in the evanescent part of the wavenumber spectrum for waves

travelling with the flow.

If the forcing frequency and profile function are real then the critical layer is always

at a real wavenumber. This becomes an issue in assembling the inverse Fourier transform

integrand. For a given frequency and profile the ODE solver must cross the singularity.

The singularity can either be bridged by the Frobenius series (favoured in installation

acoustics) or avoided all together by letting the axial wavenumber be complex.

The critical layer is a regular singularity. Therefore a finite valued solution to the

Pridmore-Brown equation is found by the Frobenius series, see for example Figure (5.12).

This form of the Frobenius series is only valid away from turning points. This limits

the profile choice such that no flow separation can be modelled along a cylinder – this

would occur at stall, so noise propagation is not a priority.

Brambley et al. (2012) reports that the critical layer caused accuracy issues when

calculating duct modes as long ago as Swinbanks (1975). Brambley shows that the

Froebnius series leads to much more accurate mode predictions for the numerical calcu-

lation of sound fields in a duct. However, the fuselage installation problem is an exterior

problem and there are no modes.

He also demonstrates that the critical layer must be included when the source is

located inside the shear region. Again, for the problem at hand, the source is always in

the uniform flow, well away from the boundary layer.

Brambley reports that the critical layer does contribute to the total solution in the

duct when the source is in uniform flow. The method in this thesis calculated the limits

of the inverse Fourier transform integration by converging from very large values of kz.

If the critical layer had contributed significantly to the integral this process would have

ensured that it would be included in the solution. As it was, for the forcing frequencies

considered in this thesis, the limits of integration were often inside the cut-on region

(I2).

Therefore, for installation problems, it would seem the critical layer does not sig-

nificantly contribute to the overall solution. This conclusion is evidence based and not

watertight. A point mass for the convected wave euquation was the starting position,

and not the Green’s function for the Pridmore-Brown equation. Therefore hyrodynamic

perturbations, such as vortices from monopoles in the shear layer, are not included in

the method. Furthermore, if haystacking were to be included in the problem, then the

interaction between the hydrodynamic and acoustic fields may cause the critical layer

to be important.

An alternative to the Frobenius solution is to let the axial wavenumbers be complex.
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This method was suggested by Kopiev et al. (1992). By using complex wavenumbers

the critical layer is avoided. This is a benefit because no special treatment is required,

no restrictions on the profile are imposed, and the method is quicker because it does not

require switching to the series solution. It also avoids the singularities at k±z .

It is worth noting, of course, that including viscosity in the shear layer would render

this discussion void.

7.4 Ray Approximation to Predict Trapped Sound

It was noted in the previous chapter that downstream of the source, the boundary layer

is responsible for a slight increase in amplitude with increasing axial distance, see Figure

(6.7). Due to the high forcing frequency, a possible cause for the pressure increase could

be ‘trapped’ sound. The sound enters the boundary layer and after a reflection, cannot

leave due the shear refracting the ray back to the rigid boundary. To test this theory, an

in-house code used to implement ray equations in Pierce (1981) (page 375) was adapted

to include the rigid reflections at the boundary. The code is in 2D Cartesian coordinates

but the characteristics of the boundary layer are similar.

As Figure (7.7) shows, upstream of the source the rays are strongly refracted away

from the rigid boundary and downstream they refract towards the plate. In the relevant

axial range none of the rays are refracted back into the boundary layer. Therefore it is

unlikely that channelling is the mechanism for the increase in amplitude.

Figure 7.7: The ray tracing code with the quarter-sine profile of δ = 0.1 and
M∞ = 0.75.

Upstream, the high frequency of the source and the convective effect of the flow is high

enough enough for the ray approximation, downstream the results may be specious. The

flow elongates the wavelengths, as discussed previously the ratio between wavelength and

boundary layer thickness is comparable. The results have been included in the analysis

because it helps the conclusion: if high frequencies are not channelled then the realistic

lower frequencies will certainly not be.
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A possible alternative mechanism could be creeping waves spiralling around the cylin-

der back to the near-side. This would be more difficult to test.

7.5 Instantaneous Pressure on the Cylinder

Cabin noise is prioritised in this thesis. Panel resonance is forced by the incident pressure

field (Sas et al., 1993). It is sound transmitted through the panel in the sidewall of the

aircraft that is largely responsible for cabin noise. This means for cabin noise applications

the instantaneous pressure is very important.

Figure (7.8) shows examples of the real (a) and imaginary (b) components of the

normalised pressure on the cylinder for the low frequency example (k0a0 = 5) with a

thin quarter-sine boundary-layer profile. They show that upstream of the source the flow

effects cause the wavelengths to decrease. Downstream of the source the flow stretches

the waves such that they have very long wavelengths. Examples of the unfurled pressure

in still flow can be found in Figure (7.10.a) on page 149.

These predictions may not match fuselage measurements; in reality the panel has

some flexibility (which is not accounted for on the rigid cylinder) and this will couple,

to some extent, to the pressure field.
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(a) Real.

(b) Imaginary

Figure 7.8: Normalised instantaneous pressures (real (a) and imaginary (b)) on the
unfurled cylinder. The relevant parameters are: k0a = 5, (l, q) = (4, 1), a = 0.5, b = 3,

δ = 0.01 and M∞ = 0.75.
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7.6 Asymmetry on the Cylinder

Measured in decibels, the incident field is axisymmetric because it has an ejlφ depen-

dency. However, the SPL on the surface of the cylinder is slightly asymmetric. This

was observed when analysing the results. The difference between the SPL is shown to

be dependent on the direction of the mode. The difference is also frequency and mode

dependent and is shown to behave in the opposite manner to a propeller type source.

The analysis is conducted on the uniform flow model to avoid requiring the numerical

solutions gained via the ODE solver.

7.6.1 Direction of Spin

The difference between the SPL on one side of the cylinder to the other is defined by

∆φ̄ = SPL|φ̄ − SPL|−φ̄. (7.6.1)

This difference is shown in Figure (7.9). The figure shows the difference for a low

frequency of k0a = 5 and for the same mode spinning in both directions. This leads to

a reflection in SPL in the x̄-axis, or SPL (−l, φ̄) = SPL (l,−φ̄). This result is consistent

with propeller type sources, where the direction of spin of the source changes.

This relationship can be proved mathematically. If the direction of spin is reversed

the pressure on the cylinder is reflected about φ̄ = 0. This is expressed as

∣∣pt(−l, φ̄)
∣∣ =

∣∣pt(l,−φ̄)
∣∣ . (7.6.2)

However, the mathematics reveals more to this relationship.

First, for brevity extract the parts of the total equation which concern l and φ

pt(l, φ̄) ∼
∑
n

(−1)l+n
∫

H
(2)
l−n(krb)

H
(2)
n (kr)

e−jkz̄ dkz e−jnφ̄. (7.6.3)

Splitting the azimuthal Fourier term gives

pt(l, φ̄) ∼
∑
n

(−1)l+n
∫

H
(2)
l−n(krb)

H
(2)
n (kr)

e−jkz z̄ dkz
(
cos(nφ̄)− j sin(nφ̄)

)
, (7.6.4)

and for negative φ̄

pt(l,−φ̄) ∼
∑
n

(−1)l+n
∫

H
(2)
l−n(krb)

H
(2)
n (kr)

e−jkz z̄ dkz
(
cos(n|φ̄|) + j sin(n|φ̄|)

)
. (7.6.5)

It is clear that for positive and negative φ̄ the pressures will not necessarily be equal due
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to the ±j sin(n|φ̄|) term.

Figure 7.9: The difference, ∆φ̄ at z̄ = 4. The top line is for mode order (l, q) = (4, 1)
and the bottom line (with ×) is for (l, q) = (−4, 1). The other variables are: k0a = 5,

a = 0.5, b = 3 and M∞ = 0.75.

Now the analysis is repeated but the source azimuthal order is changed from l to −l

pt(−l, φ̄) ∼
∑
n

(−1)−l+n
∫

H
(2)
−l−n(krb)

H
(2)
n (kr)

e−jkz z̄ dkz e−jnφ̄, (7.6.6)

using B−` = (−1)`B`, the Hankel function on the numerator can be written

pt(−l, φ̄) ∼
∑
n

(−1)2n

∫
H

(2)
l+n(krb)

H
(2)
n (kr)

e−jkz z̄ dkz e−jnφ̄. (7.6.7)

Lastly, replace n for −n

pt(−l, φ̄) ∼
∑
n

(−1)n
∫

H
(2)
l−n(krb)

H
(2)
n (kr)

e−jkz z̄ dkz ejnφ̄. (7.6.8)

The expression for negative order is similar to positive l, to make them identical

multiply by (−1)l

pt(l,−φ̄) = (−1)l pt(−l, φ̄), (7.6.9)

for even orders the pressure is identical1. Evidence of this phase change is shown in

1Note that this is very similar to the result as the in-duct relationship in Equation (3.1.9) on page
28.
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Figure (7.10) for a low frequency and flow velocity values which gives long wavelengths

and clearly visible wavefronts. When comparing SPL the pressure is squared so all orders

are identical

20 log10

∣∣pt(l,−φ̄)
∣∣ = 20 log10

∣∣pt(−l, φ̄)
∣∣ . (7.6.10)

148



(a) Even l; upper l = 4 and lower l = −4.

(b) Odd l; upper l = 3 and lower l = −3.

Figure 7.10: Normalised pressure on the unfurled cylinder for even and odd source
modes in opposite spin directions. The relevant parameters are: k0a = 5, a = 0.5, b = 3

and M∞ = 0.
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7.6.2 Propeller Analogy

As suggested in the previous section, if the spinning mode were indeed spinning, then

an increase in frequency would lead to a faster rate of ‘spin’ and thus more convective

amplification. One way to increase the circumferential phase velocity is to increase the

frequency, k0. The other way is to decrease the source azimuthal mode, l. By changing

these and inspecting the differences between the upper and lower side of the cylinder it

is shown the source behaves in the opposite manner to that of a moving source.

The pressure on either side of the cylinder is shown in Figure (7.11.a) for the three

frequencies and mode (l, q) = (4, 1) at the axial location z̄ = 4. This figure shows

that the difference is greatest for the low frequency. The difference between the lines is

plotted in Figure (7.11.b). This figure shows clearly that the asymmetry effect is least

effective for highest frequencies than lower ones. This behaviour is directly contrary to

the way in which a moving source would behave.

In Figure (7.12) the mode is changed for the frequency k0a = 20. The axial location

is changed to 0.1, because for l = 24 the mode is barely cut-on. The mode (l, q) = (4, 1)

spins five times faster than (24, 1). Yet, as before, the difference ∆φ̄ behaves in the

opposite manner to a moving source; with increasing mode order the difference between

the two sides increases.

The results shown in this section demonstrate that the spinning modes cannot be

thought of as analogous to a rotating source. Perhaps they should be renamed, aro-

tational spinning modes. For inlet turbofan applications, the asymmetry result can be

treated as spurious. The inlet of a turbofan is not perfectly circular and as such the

modes of a slightly elliptical cylinder cannot be interpreted as spinning modes.
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(a) Solid line 0→ 180o and dashed line 0→ −180o.

(b) ∆φ̄.

Figure 7.11: The SPL on the cylinder (a) and ∆φ̄ (b) at z̄ = 4 for k0a = 5 (no symbol),
10 (×) and 20 (◦). The other parameters are: a = 0.5, b = 3, (l, q) = (4, 1) and

M∞ = 0.75.
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(a) SPL on either side of the duct for the three modes.

(b) ∆φ̄ for the three modes.

Figure 7.12: The SPL (a) and ∆φ̄ (b) at z̄ = 0.1 for modes (l, q) = (4, 1) (no symbol),
(16,1) (×) and (24,1) (◦). The other parameters are: k0a = 20, a = 0.5, b = 3 and

M∞ = 0.75.

7.7 Further Boundary Layer Discussion

In the previous chapter (Section 6.3.3) the effect of boundary-layer thickness and profile

on shielding was quantified. It was noted that as the boundary layer thickness increased

there was a nonlinear increase at small δ values, at higher values the increase was linear.

This is further investigated, but initially the effect of the profile is examined for the
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purposes of method optimisation.

7.7.1 Displacement Thickness Normalisation

The parametric study in the previous chapter showed that two different boundary-layer

profiles of the same thickness lead to very different amounts of shielding, Figure (6.20)

Section 6.3.3 on page 128. This result is not surprising because the power-law profile

has a very different distribution of shear compared to a linear profile. However, of the

profiles tested, it was noted that the overall shape of the shielding was similar. The

previous chapter also demonstrated a linear relationship between ∆bl and increasing

boundary layer thickness. This, and the profile observation, suggests that the different

profiles can be made equivalent by altering the thicknesses. This section shows that

three profiles of identical displacement thickness lead to similar shielding in two of the

cases. The displacement thickness of a profile is given by

δ∗ =

∫ δ

0

(
1− Mz(r̄)

M∞

)
dr̄. (7.7.1)

The displacement thicknesses are referenced to the power-law profile by changing the

thickness of the laminar and quarter-sine profiles.

Using a linear or quarter-sine profile is of benefit because the power-law profile has

a switch to implement the viscous sub layer. This switch means that the predictions

take longer to compute than the other profiles. Furthermore, the linear and quarter-

sine profiles have a smaller δ for the same displacement thickness. It takes less time to

integrate a thin boundary than a thick one. Therefore, for two reasons it is significantly

quicker to implement a scaled quarter-sine or linear boundary for turbulent boundary

layer predictions.
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Figure 7.13: The linear (solid line), quarter-sine (solid line, ◦) and seventh-power-law
(solid line, ×) profiles. The Polhousen profile was used in the validation.

The profiles are shown in Figure (7.13) and the displacement thickness of the tested

profiles are shown in Table (7.1).

Profile δ∗

Linear δL/2

Quarter Sine (1− 2/π) δQS

Seventh-Power Law δPL/8

Table 7.1: Displacement thicknesses for linear, quarter-sine and power-law profiles.

The quarter-sine and linear profile thicknesses (δ) are changed as such. The dis-

placement thicknesses are all equal δ∗PL = δ∗QS = δ∗L. The quarter-sine and linear profile

thickness are thus adjusted to

δQS =
1

1− 2/π

δPL
8

and δL = 2
δPL
8
, (7.7.2)

where δPL will be varied from 0 to 0.1.

Nayfeh et al. (1974) showed that for ducted flow, for all but one of the profiles the

attenuation predictions ‘collapsed’ to the same values when displacement thicknesses

were used. The only profile that did not conform was the power-law profile. This was

confirmed for flow over a plate with an impedance boundary condition (Gabard, 2013)

for incident plane waves.
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The singular profile is the power-law profile and cannot be scaled to match the other

boundary layers. The scaling cannot be done because the nonlinear increase, at very

small values of δ, is less than the gradient of the linear regime. No simple scaling will

fix this. The key to the success is the shape of the shielding curve is similar for the

quarter-sine and linear profiles and different to the power-law profile.

Figure (7.14) shows that the result of Nayfeh et al. (1974) is applicable to the exterior

problem; where the boundary layer running down a cylinder shields sound waves from

the surface.

Figure 7.14: ∆bl of the power-law (4), scaled linear (no symbols) and quarter-sine (◦)
profiles, all with identical displacement thicknesses. The other parameters are:

k0a = 20, a = 0.5, b = 3 and M∞ = 0.75.

7.7.2 Step Profile

The previous section demonstrated that different profiles of different thicknesses can lead

to similar shielding. If profile is unimportant, the logical step is to try and normalise

the simplest of boundary layers, the step profile, to the physically realistic profiles. The

reason this is a good idea is that the step change boundary layer can be implemented

using the wave equation and the convected wave equation only. Thus no numerical inte-

gration of the Pridmore-Brown equation is required. This can lead to a very significant

reduction in computation time since only the analytic solutions of the wave equation are

required. In doing this, the method would take only slightly longer than the uniform

flow method – a few minutes on a desktop.
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Figure 7.15: Power-law (×) and the step-change (no symbol) profiles shielding at point
I.a (solid lines), I.c (dashed lines) and I.e (dot-dashed lines). The value of Λ = 1/3.

The other parameters are: k0a = 20, a = 0.5, b = 3 and M∞ = 0.75.

Not shown, but when the displacement thicknesses were identical the shielding was

not similar. However the overall shape of the curve ∆bl was similar when plotted against

δ. To equivalent the two an empirical method was used to obtain a scaling factor.

The shielding due to the different profiles, one of which is scaled, is equivalent when

δPL = Λδstep, (7.7.3)

where Λ is to be found empirically from the results.

Using this method leads to similar shielding when Λ ≈ 1/3. With this value, the

shielding is shown in Figure (7.15).

Considering the simplicity of the method, the scaled step-change profile gives ex-

tremely good predictions upstream of the source. Downstream of the source the power-

law profile leads to a very slight increase in amplitude. Downstream of the source the

step-change leads to significant shielding. Therefore it is accurate only in the forward

arc. This is fine because the power-law profile has no significant effect on the downstream

predictions.

156



7.7.3 ∆bl against δ/λ0

The nonlinear to linear increase in shielding with increasing δ was shown in Section 6.3.3.

This relationship was demonstrated for non-dimensional units, however the relevant

length scale is the acoustic wavelength. For the forcing frequency λ0 = 0.157.

Figure (7.16) shows the shielding at point II.a for increasing δ for the four boundary

layer examined in this thesis. The thickness of the boundary layer is shown as a percent

of the acoustic wave (λ0). For all the profiles it shows that the nonlinear regime is for

δ < 10% of λ0. Above this values all the profiles have a linear relationship.

If the linear relationship were to be applied to predictions, care would need to be

taken to ensure that δ > λ0/10.

Figure 7.16: ∆bl for the quarter-sine (solid line), linear (solid line, ◦), power-law (solid
line, ×) and step-change (dashed line) profiles against percent of wavelength at location
II.a. The parameters are: k0a = 20, a = 0.5, (l, q) = (4, 1), b = 3 and M∞ = 0.75.

7.8 Multimode Source

The results presented so far are for a single mode. This, of course, is unrealistic of

any noise field in a duct, never-mind a turbofan engine. Thankfully, the boundary layer

effects function BL (Equation (7.2.1)) is dependent on; source frequency, boundary-layer

thickness and boundary-layer profile. However it does not depend on the azimuthal

mode order. Therefore, the multimode simulations can be computed relatively quickly.
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Obtaining the correct amplitudes for each mode is notoriously difficult since information

about the source is required. The analysis presented here is intentionally over simplified.

An example result is shown in Figure (7.17). The results are for k0a = 20 which

has cut-on modes (l, q) = ({−24,−23, . . . ,−2,−1, 0, 1, 2, . . . , 23, 24} , 1). The three

cases are; equal amplitude, equal amplitude with mode protrusion of 20 dB and 45 dB.

The mode is with the protrusion is (l, q) = (−16, 1). This corresponds to a realistic

rotor-locked mode for a future state-of-the-art engine with and without an optimised

inlet liner (which reduces the tone amplitude).

Although the function BL can be recycled for each mode, the incident field is com-

puted for each azimuthal order l. The pressure for each mode is summed incoherently.

For a single mode, the SPL on the cylinder is very clearly the source directivity

extended over the surface. However, as Figure (7.17.a) demonstrates, for multimode

predictions the lobes and nulls definition is lost. The pressure is fairly equally distributed

over the near-side of the cylinder. The far-side of the cylinder has also lost the clear

destructive interference pattern of a single mode.

The 20 dB protrusion shown in Figure (7.17.b) leads to slightly higher SPL levels

near the cylinder, however the difference is not massive. The 45 dB amplitude protrusion

is significantly large enough to dominate the prediction. On the near-side the cylinder

the directivity of the source at this mode is clearly seen. For compariseon, this single

mode prediction can be seen in Figure (6.3.b), on page 107.

This short section was included to demonstrate that multimode results can be cal-

culated quickly; this example with 49 modes only took 1 hour more (on a single core)

than the single mode result.
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(a) Equal amplitude modes.

(b) Equal amplitude modes with a 20 dB protrusion.

(c) Equal amplitude modes with a 45 dB protrusion.

Figure 7.17: Multimode SPL on the cylinder for modes; (l, q) = (−24 : 24, 1); with a
quarter-sine profile of thickness δ = 0.01. The other parameters are: k0a = 20, a = 0.5,

b = 3 and M∞ = 0.75.
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7.9 Chapter Summary

The aim of this chapter was to obtain more insight into the problem. To achieve this, a

discussion of the model highlighted its scope. It was reasoned that the predictions are

good at a point, but due to the constant boundary-layer thickness, predictions at large

axial distances cannot be trusted without recalculating the boundary-layer thickness.

The rest of the chapter showed:

� Investigations into the characteristics of the boundary layer in Fourier space led to a

method of manipulating the amplitudes of the inverse Fourier transform integrand

to simulate refraction for the uniform flow model. The benefit is this modification

can significantly increase the computational run-time of the method.

� The critical layer was demonstrated to be of limited importance to the installation

problem at relevant parameters considered here.

� A simple model based on ray theory showed that no channelling occurs in the

boundary layer downstream of the source.

� The symmetric incident field gave rise to asymmetric results on the cylinder sur-

face. The mathematics predicts this and a phase change for odd azimuthal orders

radiated from the inlet duct.

� Boundary layer characteristics reported in the literature for interior duct problems

was shown to be consistent for exterior refraction along a cylinder.

� Upstream of the source, for well chosen thicknesses, the step-change profile was

shown to give similar shielding as the power law. By using this approach the

method can be greatly optimised for a modest decrease in accuracy.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The aim of the thesis was to present the development of a theoretical model to predict

the fuselage installation effects of engine fan tones. The aim was achieved by combining

the most sophisticated free-field analytical model for modes radiating from a duct and

theoretical models for fuselage installation effects.

A simplified inlet duct model using the Wiener–Hopf method was derived in Chapter

4. The following chapter demonstrated how to install the source. The scattering effect

of the cylinder and the refraction effect of the boundary layer was included in the model

and solutions were found by using Fourier methods.

The model predicts very large amounts of boundary-layer shielding upstream of the

source. The noise radiating with the flow was not significantly affected to the extent

that uniform flow predictions are sufficient. A shielding coefficient was introduced to

give an overall measure of the shielding.

In the discussion in Chapter 7 the wavenumber spectrum was inspected. By isolating

the installation effects in the mathematics, the effect was examined in terms of a trans-

fer function. It was shown that refraction can be simulated by altering the wavenumber

content in the Fourier domain. Furthermore, it was demonstrated that the axisym-

metric source (in SPL) leads to slight asymmetry in SPL once installed. Yet, the SPL

trends were the opposite of how a rotating source would typically behave. An appro-

priately scaled step-change boundary layer profile gave very similar shielding values as

the physically relevant power-law profile. This observation could lead to an optimised

method requiring only the analytic wave and convected wave equation solutions. Fast

computational times is one of the principal benefits of this range of theoretical methods.

This model contains a realistic source; it is unlikely that the source model can be

improved significantly using theoretical methods. The limiting factor is the boundary

layer. The boundary layer is modelled with a constant thickness. This is appropriate
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when comparing local axial values; however comparing two axial locations far apart

would need to be calculated twice for different thicknesses.

Any numerical model must be carefully appraised when compared to measurements.

Therefore, one of the intended uses of the method is to obtain a rough idea of shielding

at the early design phase. Owing to the speed of the model, a parametric study can be

done quickly (especially if parallelised, which scales inversely with the number of cores

available) before a detailed CAA method would include the nuances of the geometry,

turbulent flow and a growing boundary layer. This is the scope of the model.

The objectives listed in the introduction have been referred to in the text when

completed; so will not be listed again. In summary, the main contribution to knowledge

presented in this thesis is

� to have developed a source, representative of a radiating turbofan tone, adjacent

to a rigid cylinder with a boundary layer running down its length. The model can

be used to predict and reduce SPL on the surface of an aeroplane fuselage with a

turbofan engine. Reducing SPL on the fuselage could lead to reductions in cabin

noise and possibly reduce the amount of acoustic lagging required, hence reducing

weight.

Furthermore, the following has been accomplished:

� The near-field behaviour of the diffracted field was quantified.

� The refraction effect of the boundary layer on acoustic pressure on the surface of

the cylinder was quantified:

– upstream of the source, the boundary layer refracts sound away from the

cylinder and downstream causes refraction towards the cylinder,

– even for a low frequency, roughly a quarter of blade-passing frequency, and a

thin boundary layer leads to up to 20 dB of shielding at large axial values,

– shielding increases linearly with increasing boundary layer thickness greater

than approximately 10% of the acoustic wavelength,

– the boundary-layer profile has a significant effect on shielding predictions,

– reduction of the sound due to the principal lobe can be reduced by increasing

frequency and reducing the azimuthal mode.

� The SPL directivity of the axisymmetric source leads to asymmetric SPL on the

cylinder.

� Refraction can be simulated by altering the uniform flow wavenumber spectra.
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� A step-change profile gives similar refraction predictions to that of the power-law

profile.

� Interior duct attenuation refraction characteristics due to a boundary layer applies

to the exterior problem presented here.

The simpler case of the disc source model has been published in uniform flow (McAlpine

et al., 2015), with a boundary layer (Gaffney et al., 2016) and a journal paper on this

model is currently under review. Furthermore, a journal paper is currently being written

that is focusing on the installed Weiner–Hopf source presented and interrogated in this

thesis. A further paper may be written to investigate the multimode source and far-field

effects.

8.2 Future Work

The following are improvements that could be made to the model.

8.2.1 Far-Field Predictions

Generally the far-field solution is a simpler form than the near field. The approximate

far-field solution is formed by converting to spherical polar coordinates and replacing

the distance function, the Hankel function of the second kind, by its large argument

asymptotic approximation. By doing this, the integral over axial wavenumber can be

evaluated using the method of stationary phase. Then the predictions are very quick.

This method can be used for community noise.

The full derivation can be found in Appendix C. Briefly, if

Υ =
(
1−M2

∞ sin2 θ̄
)1/2

, (8.2.1)

then we define

Ξsin =
σ sin θ̄

Υ
, (8.2.2)

and

Ξcos =
cos θ̄

Υ
, (8.2.3)

where

σ =
(
1−M2

∞
)1/2

. (8.2.4)
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The far-field approximation gives the total field as

pt(R̄, θ̄, φ̄) =
1

4πR̄

2

σπΥΞ
1/2
sin

e−jR̄
k0
σ2 (M∞ cos θ̄+Υ)

∞∑
n=−∞

η̃n(Ξcos) (1 + Λn(Ξcos)) e−j(
π
2

+nφ̄),

(8.2.5)

where Λn is

Λn =
f̃n

∣∣∣
1+δ

p̃′in
∣∣
1+δ
− f̃ ′n

∣∣∣
1+δ

p̃in|1+δ

f̃n

∣∣∣
1+δ

p̃′sn
∣∣
1+δ
− f̃ ′n

∣∣∣
1+δ

p̃sn|1+δ

=
kr f̃n

∣∣∣
1+δ

J′n(kr [1 + δ])− f̃ ′n

∣∣∣
1+δ

Jn(kr [1 + δ])

kr f̃n

∣∣∣
1+δ

H
(2)
n

′
(kr [1 + δ])− f̃ ′n

∣∣∣
1+δ

H
(2)
n (kr [1 + δ])

,

(8.2.6)

and is found by eliminating αn from Equations (5.1.21) on page 71.

8.2.2 Slowly Growing Boundary Layer

As discussed, the assumption of a constant thickness boundary layer is a weakness in the

model. In Rienstra (1998), the sound propagation along a duct of varying radius was

modelled analytically and subsequently in Rienstra (2003), a duct of changing arbitrary

shape was modelled using the method of multiple scales.

A similar method could be used to model boundary layer growth. The Pridmore-

Brown equation would need to be re-derived using the method of multiple scales: δ

is replaced with δ(εz̄) (such that the thickness is a function of axial location) where

ε is required to be small, but not as small as the acoustic perturbation. This would

be ideal for modelling a growing boundary layer because the thickness increases at a

relatively small rate. The increase in the solution complexity would be significant, but

the solutions can be obtained without resorting to numerical methods.

8.2.3 Haystacking

Dierke et al. (2013) showed, using CAA methods, that haystacking affected the SPL

on the surface of a fuselage due to an engine tone. Powles et al. (2011) produced an

analytical model to predict spectral broadening. This model could be adapted to the

boundary layer running down the outside of a cylindrical fuselage.

8.2.4 Wings

This is not a fuselage issue, and thus beyond the scope of this project, but the installation

effects of the wings could be included in the model. Bowman and Uslenghi (1969) details

the analytic solution for the scattered field due to a semi-infinite half plane. Kingan and

Self (2012) analytically modelled half-plane scattering due to propeller type sources.
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Figure 8.1: Four engines with outlet field and a quarter-sine boundary layer profile of
δ = 0.1. Parameters are: k0a = 20, a = 0.5, ainner = 0.5a, (l, q) = (4, 1), b = 3 and 6,

β = 0o and 180o and M∞ = 0.75.

8.2.5 Outlet

In this thesis the results and discussion are limited to inlet noise, however, the model

is easily adapted to include annular ducts (Section 4.1.1, page 55). GXMunt calculates

the radiation from an annular duct with different flow in the annulus. And as laboured

over previously, the boundary-layer model accepts any incident field of the appropriate

form. Therefore the installation method can calculate both inlet and outlet radiation.

Academically this result is not significantly different to the hollow duct; the major

difference being the first radiation lobe does not have the largest amplitude. However

such a tool could be useful to industry.

For geometry based on a long haul aircraft, the SPL from the inlet and outlet of

four engines are shown in Figure (8.1). All the solutions are added incoherently. The

flow speed is 0.75 M all over and the inner radius of the outlet duct is 0.5a. This

prediction demonstrates that, under highly simplified circumstances, the noise radiating

downstream of the engine leads to relatively large levels of noise.
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Chapter 9

Appendices

9.1 Appendix A – Relevant Equations in Gabard

and Astley (2006) Notation

The incident field is

pi =
ω

2jπ

∞∑
v=−∞

(−1)n+v

∫
Γ

(1− uM0)

λ0ωH
(2)′
v (λ0ω)

H
(2)
n−v(λ0ωb)Jv(λ0ωr̄) ejωuz̄ du e−jnφ̄, (9.1.1)

where v has been introduced and the total field on the surface of the cylinder is

pt =
ω

2jπ

∞∑
v=−∞

∫
Γ

α̃v(u) ejωuz̄ du e−jvφ̄, (9.1.2)

where α̃v is essentially unchanged from α̃n.

Pridmore-Brown for flow in the positive direction is

D0

Dt

(
D2

0p

Dt2
−∇2p

)
+ 2M ′ ∂

2p

∂r̄∂z̄
= 0 . (9.1.3)

and using the Gabard notation the Pridmore-Brown equation transforms to[
d2

dr̄2
+

(
1

r̄
+

2uM ′

1− uM

)
d

dr̄
+

(
(ωλ(r̄))2 − v2

r̄2

)]
p̃n = 0 . (9.1.4)

The normalised dispersion relationship given as

λ2(r̄) = (1− uMz(r̄))
2 − u2. (9.1.5)
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9.2 Appendix B – Unfurled Cylinder Plots

The cylinder plots could perhaps be accused of being a little meretricious. So all cylinder

plots in the thesis are shown here unfurled. This is in order so one can see the far-side

of the cylinder. All the plots show normalised SPL between –100 and 0 dB.

Figure 9.1: Figure (6.2.a), page 106

Figure 9.2: Figure (6.2.b), page 106
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Figure 9.3: Figure (6.2.c) and (6.3.a), page 107

Figure 9.4: Figure (6.3.b), page 107
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Figure 9.5: Figure (6.5.b), page 111

Figure 9.6: Figure (6.5.c), page 111

169



Figure 9.7: Figure (6.6.b), page 112

Figure 9.8: Figure (6.6.c), page 112
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Figure 9.9: Figure (6.2.c), page 106

Figure 9.10: Figure (7.5.a), page 140
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Figure 9.11: Figure (7.5.b), page 140

Figure 9.12: Figure (7.17.a), page 159
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Figure 9.13: Figure (7.17.b), page 159

Figure 9.14: Figure (7.17.c), page 159
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Figure 9.15: Figure (8.1), page 165

9.3 Appendix C – Far-Field Theory

Far-field effects are useful for community predictions. This section derives the far-field

solutions using large argument asymptotic approximations.

The far-field version of Graf’s Addition theory is

H
(2)
l (krr) e−jlφ =

∞∑
n=−∞

(−1)(l+n)H
(2)
l−n(krr̄)Jn(krb)e

−jnφ̄e−j(l−n)β. (9.3.1)

Therefore the incident field expressed in the cylinder coordinate system is

pi(r̄, φ̄, z̄) =
1

(2π)2

∞∑
n=−∞

∫ ∞
−∞

p̃i,n e−jkz z̄ dkz e−jnφ̄, (9.3.2)

where the transformed pressure now takes the form

p̃i,n = η̃n H(2)
n (krr̄). (9.3.3)

The scattered field takes the form

p̃s = γ̃n(kz)H
(2)
n (krr̄), (9.3.4)

where the scattered field is proportional to the incident field and the effect of cylinder
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and the effect of the boundary layer, represented by Λn

γ̃n = η̃n(kz)Λn(kz), (9.3.5)

where Λn is found by eliminating α̃n from Equations (5.1.21), on page 71,

Λn =
f̃n

∣∣∣
1+δ

p̃′in
∣∣
1+δ
− f̃ ′n

∣∣∣
1+δ

p̃in|1+δ

f̃n

∣∣∣
1+δ

p̃′sn
∣∣
1+δ
− f̃ ′n

∣∣∣
1+δ

p̃sn|1+δ

=
kr f̃n

∣∣∣
1+δ

J′n(kr [1 + δ])− f̃ ′n

∣∣∣
1+δ

Jn(kr [1 + δ])

kr f̃n

∣∣∣
1+δ

H
(2)
n

′
(kr [1 + δ])− f̃ ′n

∣∣∣
1+δ

H
(2)
n (kr [1 + δ])

.

(9.3.6)

Both incident and scattered are of the same form so factorise the Hankel function to

form the transformed total field

p̃t = η̃n(kz) (1 + Λn(kz)) H(2)
n (krr̄), (9.3.7)

therefore the total field is given by

pt(r̄, φ̄, z̄) =
1

(2π)2

∞∑
n=−∞

∫ ∞
−∞

η̃n(kz) (1 + Λn(kz)) H(2)
n (krr̄) e−jkz z̄ dkz e−jnφ̄. (9.3.8)

Before the large argument asymptotic are applied, the coordinate system is change

to spherical polar coordinates. First, the radius is

R̄ =
(
z̄2 + r̄2

)1/2
, (9.3.9)

where

r̄ = R̄ sin θ̄ and z̄ = R̄ cos θ̄. (9.3.10)

However, due to the flow, these need to be transformed by the method of Chapman

(2000) in order to do a Lorenz type transform. This temporary variables are denoted

by a hat and are related to the cylinder variables by

R̂ =
R̄

σ

(
1−M2

∞ sin2 θ̄
)1/2

, (9.3.11)

and

cos θ̂ =
cos θ̄(

1−M2
∞ sin2 θ̄

)1/2
and sin θ̂ =

σ sin θ̄(
1−M2

∞ sin2 θ̄
)1/2

, (9.3.12)

where σ2 = 1−M2
∞. These results lead to

R̄ sin θ̄ = R̂ cos θ̂ and R̄ cos θ̄ = R̂σ cos θ̂. (9.3.13)
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From Rienstra (1984), the integration is most easily performed with a change in

variable

τ = σ2kz
k0

−M∞, (9.3.14)

where

kz =
k0

σ2
(τ +M∞) and kr =

k0

σ

(
1− τ 2

)1/2
, (9.3.15)

which leads to

dkz =
k0

σ2
dτ. (9.3.16)

Therefore in polar coordinates the total field is given by

pt =
1

(2π)2

∞∑
n=−∞

∫ ∞
−∞

k0

σ2
η̃n(τ) (1 + Λnη̃n(τ)) H(2)

n

(
k0

σ

(
1− τ 2

)1/2
R̂ sin θ̂

)
e−j

k0
σ

(τ+M∞)R̂ cos θ̂ dτe−jnφ̄.

(9.3.17)

As R̂ is very large replace the Hankel function with

H
(2)
` (�) =

(
2

π�

)1/2

e−j(�−
1
2
`π− 1

4
π), (9.3.18)

Therefore the pressure in the far-field is

pt =
1

(2π)2

∞∑
n=−∞

k0

σ2
e−j(

1
2
nπ− 1

4
π) e−jnφ̄

∫ ∞
−∞

η̃n(τ) (1 + Λn(τ))

(
2

π k0

σ
(1− τ 2)1/2 R̂ sin θ̂

)1/2

e−j
k0
σ (1−τ2)

1/2
R̂ sin θ̂ e−j

k0
σ

(τ+M∞)R̂ cos θ̂ dτ,

(9.3.19)

and rearranging gives

pt =
1

(2π)2

∞∑
n=−∞

k0

σ2
e−j(

1
2
nπ− 1

4
π)

(
2

π k0

σ
R̂ sin θ̂

)1/2

∫ ∞
−∞

η̃n(τ) (1 + Λn(τ))

(1− τ 2)1/2
e
−jR̂ k0

σ

(
(1−τ2)

1/2
sin θ̂+(τ+M∞) cos θ̂

)
dτ e−jnφ̄. (9.3.20)

Extracting the integrand and noting that the evanescent part of the spectrum does not

propagate to the far-field, the integration limits change to

In =

∫ k+
z

k−z

η̃n(τ) (1 + Λn(τ))

(1− τ 2)1/2
e
jR̂

k0
σ

(
−(1−τ2)

1/2
sin θ̂−(τ+M∞) cos θ̂

)
dτ, (9.3.21)
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which can be evaluated using the method of stationary phase

In(τ) =
η̃n(τ) (1 + Λn(τ))

(1− τ 2)1/2

(
2πσ(1− τ 2)3/2

k0R̂ sin θ̂

)1/2

e
jR̂

k0
σ

(
−(1−τ2)

1/2
sin θ̂−(τ+M∞) cos θ̂

)
+j π

4 ,

(9.3.22)

about the point τ = cos θ̂

In =
η̃n(cos θ̂)

(
1 + Λn(cos θ̂)

)
(

1− cos2 θ̂
)1/2

(
2πσ(1− cos2 θ̂)3/2

k0R̂ sin θ̂

)1/2

e
jR̂

k0
σ

(
−(1−cos2 θ̂)

1/2
sin θ̂−(cos θ̂+M∞) cos θ̂

)
+j π

4 .

(9.3.23)

After evaluation this is

In = η̃n(cos θ̂)
(

1 + Λn(cos θ̂)
)(2πσ

k0R̂

)1/2

e−jR̂
k0
σ (M∞ cos θ̂+1)+j π

4 , (9.3.24)

which is substituted back in to Equation (9.3.21) to give

pt =
1

(2π)2

2

σR̂ sin1/2 θ̂
∞∑

n=−∞

e−j
1
2
nπη̃n(cos θ̂)

(
1 + Λn(cos θ̂)

)
e−jR̂

k0
σ (M∞ cos θ̂+1) e−jnφ̄, (9.3.25)

which is equivalent to

pt(R̄, θ̄, φ̄) =
1

(2π)2

2

R̄
(
1−M2

∞ sin2 θ̄
)1/2

(
σ sin θ̄

(1−M2
∞ sin2 θ̄)

1/2

)1/2
×

∞∑
n=−∞

e−j
1
2
nπη̃n

(
cos θ̄(

1−M2
∞ sin2 θ̄

)1/2

)(
1 + Λn

(
cos θ̄(

1−M2
∞ sin2 θ̄

)1/2

))
×

e
−j R̄

σ2 k0

(
M∞ cos θ̄+(1−M2

∞ sin2 θ̄)
1/2
)
× e−jnφ̄, (9.3.26)

in the polar coordinates.

To simplify the expression let

Υ =
(
1−M2

∞ sin2 θ̄
)1/2

, (9.3.27)

with

Ξsin =
σ sin θ̄

Υ
, (9.3.28)

and

Ξcos =
cos θ̄

Υ
, (9.3.29)

177



such that the final expression is given by

pt(R̄, θ̄, φ̄) =
1

4πR̄

2

σπΥΞ
1/2
sin

∞∑
n=−∞

η̃n(Ξcos) (1 + Λn(Ξcos)) e−jR̄
k0
σ2 (M∞ cos θ̄+Υ)e−j(

π
2

+nφ̄).

(9.3.30)
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