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Abstract 

The torus involute gear drive originates from the involute spur gear drive, which is 

composed of a gear with convex teeth and the one with concave teeth. Previous researches of 

its mesh principle indicate that the torus involute gear can compensate large axial 

misalignments in parallel-shaft transmission, while its dynamic behavior has not been 

investigated comprehensively, or compared with that of the standard involute gear. This paper 

focuses on the dynamic performance of this type of gear. Considering the time variation of 

meshing stiffness, a 6-degree-of-freedom dynamics model of the torus involute gear pair is 

established, which counts in the effect of alternate meshing of single-double tooth pairs. 

Sliding friction in elastohydrodynamic lubrication is also included in the model. The 

numerical analysis for six cases is conducted, and the dynamic characteristics such as the 

dynamic transmission error, mechanical efficiency, sliding friction forces and minimum 

oil-film thickness are compared with those of the standard involute gear. The results show that, 

the torus involute gear drive exhibits good performances as the standard involute gear drive in 

transmission accuracy and mechanical efficiency, while, it has a better performance in 

lubrication condition. The study in this paper may lay theoretical foundations for practical 

application of the torus involute gears. 

Nomenclature 

pT   driving moment on pinion 

gT  resisting moment on gear 

p  nominal pinion speed 

bpr  radius of base circle of pinion 

  base pitch 

gCt , ct  duration for one mesh cycle 

pCt  duration from start point to lowest point of single tooth contact  



Pt  duration from start point to pitch point 

niF  normal contact force of ith tooth pair  

ni  comprehensive elastic deflection of ith tooth pair 

  contact ratio 

ik  mesh stiffness of ith tooth pair 

fiF  friction force of ith tooth pair 

i  friction coefficient of ith tooth pair  

g  nominal gear speed 

bgr  radius of base circle of gear 

fpiF  friction force of pinion acting on ith tooth pair 

fgiF  friction force of gear acting on ith tooth pair 

 piX t  moment arm of fpiF  

 giX t  moment arm of fgiF  

 ic t  mesh damping coefficient 

mi  damping ratio 

pI  moments of inertia of pinion 

gI  moments of inertia of gear 

eI  effective moment of inertia of gear pair 

 pniF t  normal contact force of pinion acting on ith tooth pair 

 gniF t  normal contact force of gear acting on ith tooth pair 

 t  relative displacement of pinion and gear along the LOA direction 

p   angular displacement of pinion 

g  angular displacement of gear 

px  translational displacement of pinion along LOA 

gx  translational displacement of gear along LOA 

py  translational displacement of pinion along OLOA 

gy  translational displacement of gear along OLOA 

  mesh frequency of gear pair 

0  initial phrase 

pZ  tooth number of pinion 

d   dynamic transmission error (DTE) 



pBxK  shaft-bearing stiffness for pinion in LOA direction  

gBxK  shaft-bearing stiffness for gear in LOA direction 

pByK  shaft-bearing stiffness for pinion in OLOA direction 

gByK  shaft-bearing stiffness for gear in OLOA direction 

pBx  damping ratio for pinion in LOA direction  

gBx  damping ratio for gear in LOA direction 

pBy  damping ratio for pinion in OLOA direction 

gBy  damping ratio for gear in OLOA direction 

hP  Maximum Hertzian contact pressure in GPa 

ev  entraining velocity in m/s 

sv  sliding velocity in m/s 

sr  slide-to-roll ratio  

0  absolute viscosity at oil inlet temperature in cPs 

S  RMS composite surface roughness in µm 

R  effective radius of curvature in m 

  mechanical efficiency 

pv , gv  sliding velocity of pinion and gear 

priF  rolling friction force of pinion 

  viscosity pressure coefficient 

E  reduced elastic modulus 

G  dimensionless materials parameter  G E   

U  dimensionless parameter related to velocity parameters   0 eU v E R    

W  dimensionless parameter related to load parameters   2
nW F E R   

minh  minimum film thickness of lubrication oil 

  ellipticity for contact ellipse 

                                      

1. Introduction 

The torus involute gear drive [1] is composed of a gear with convex teeth and the one with 

concave teeth, which can compensate large axial misalignments in parallel-shaft transmission 

(See Fig.1). Although studies of mathematical models and tooth contact analysis (TCA) have 

been implemented [2], more sufficient proofs, especially dynamic performance, are needed to 



validate good meshing characteristics of the torus involute gear (TIG) transmission. 

Theoretically, a precise and appropriate mathematical model is needed to analyze dynamic 

behaviors of a gear pair. The inner excitation source of gear systems includes time-varying 

mesh stiffness, transmission error and mesh impact. As the main excitation of motion along 

the off-line-of-action (OLOA), friction forces usually couple with backlash and time-varying 

mesh stiffness to make gear pairs act as nonlinear and time-varying systems. Additionally, 

power dissipation due to viscous shearing of the lubrication oil film along the tooth contact 

interfaces forms the main source of mesh viscous damping [3]. Houser [4] experimentally 

demonstrated that the friction forces play a pivotal role in determining the load transmitted to 

the bearings and housing in the OLOA direction. Velex [5] evaluated the effects of sliding 

friction, teeth shape deviations and time-varying mesh stiffness on spur and helical gears. He 

disclosed the potentially significant contribution of tooth friction to gear vibration and noise. 

Vaishya [6] proposed a spur gear pair model with periodic tooth stiffness variations and sliding 

friction based on the assumption of equal load sharing among the teeth in contact. Song [7,8] 

calculated the friction coefficient utilizing the empirical expression by Kelley [9] and 

incorporated the sliding friction and realistic time-varying tooth stiffness into analytical spur 

and helical gear models. This work revealed that sliding friction has marginal effects on the 

dynamic transmission error of helical gears, as compared with spur gears. Feng [10] established 

a time-varying friction coefficient model including the effect of mixed elastohydrodynamic 

lubrication and incorporated it into a time-varying dynamic model for right-angle hypoid and 

spiral bevel gears. Wang [11] built a dynamic model of helical gear pair considering friction 

and multiple backlashes, and calculated the meshing efficiency with the formula of sliding 

friction coefficient by Xu [12].  

As the number of tooth pairs in mesh varies periodically in gearing, dynamic behavior of 

simultaneous meshing pairs are different. Although time variation of mesh stiffness or sliding 

friction is considered, most of the torsional vibration models[4~6] [10][11] above cannot provide 

dynamic characteristics of each meshing tooth pair, especially friction force and normal mesh 

force.  

In view of tooth shape's complexity of the TIG and point-contact pattern, an efficient and 

accurate dynamic model is in great request, which can account for the effects of sliding 

friction, time-varying mesh stiffness, static transmission error and continuous alternate 

meshing. Therefore, the main motivation of this paper is to set up an accurate 

multi-degree-of-freedom analytical model in elastohydrodynamic lubrication to comprehend 

dynamic characteristics of the TIG.  

2. Review of torus involute gears 



      

a. Convex gear                                b. Concave gear 

Fig. 1. Torus involute gears 

As shown in Fig.1, each tooth of the TIG is symmetrical about the middle plane of face 

width. The tip surface or root surface is respectively an outer or inner torus generated by a 

circle centering at the intersection of the line parallel to the gear axis and the middle plane. 

Each flank of the cross-section along face width is still an involute profile generated from the 

same base circle. For the convex gear, tooth thickness on the reference circle gradually 

decreases from the middle to both ends of face width, whereas tooth thickness on the tip circle 

gradually increases. On the contrary, tooth thickness of the concave gear varies reversely. 

Whether the concave or convex gear, the flank on the middle section is still a standard spur 

gear profile. Essentially, the TIG is the spur gear with continuous shifting in the second order.  

According to TCA of a TIG pair [2], the concave and convex gears mesh in point contact, 

and all the contact points exist in the middle section if there is no installation error. As 

depicted in Fig. 2, either of the engaged tooth surfaces contacts tangentially with the 

imaginary rack cutter surface. At a generic meshing point, the normal vector of imaginary 

cutter surface, (also the common normal of engaged tooth surfaces) is in the middle section 

plane of engaged TIG surfaces. Thus the gearing of TIGs in the middle section can be viewed 

as the meshing of two standard involute spur gears. The difference lies in the contact area and 

contact pattern. Specifically, the TIGs mesh in point-contact, forming elliptical contacting 

regions. 

 



Fig. 2. Mesh of engaged TIG surfaces 

3. Mathematical model 

Generally speaking, the contact ratio of a gear transmission is not integer. The number of 

meshing pairs changes periodically. Consequently, the mesh stiffness also makes a cyclic 

change. Besides, the status of meshing pair varies with contact point, especially when the 

engaged tooth profiles pass through the pitch point. Hence transitions in key meshing events 

within a mesh cycle need to be determined for the construction of the stiffness function as 

well as calculation of sliding friction forces. Most of models in previous researches just treat 

the gear drive as a pair of wheels connected by a torsional spring without considering forces 

on each pair separately. Song [7] analyzed the timing of key meshing events for a generic spur 

gear pair with non-integer contact ratio. Similarly, the contribution of Song applies to the TIG 

drive. 

  

 

Fig. 3. Snap short of contact pattern (at t =0) in middle section of TIGs 

As shown in Fig. 3, the driving moment pT and resisting moment gT are respectively 

applied to the pinion and gear, and p  and g  are their nominal angular velocity. The line of 

action (LOA) of gearing is p gN N , which is the common tangent of base circles. The 

intersection of tip circle of the gear and the LOA is point Bg, the start point of meshing. Point 

Bp, the intersection of tip circle of the pinion and the LOA, is the end point of meshing. 

Suppose at one moment tooth pair #1 just comes into mesh at point Bg, and meanwhile the 

previous one, pair #0 is contacting at point Cg, the highest point of single tooth contact 



(HPSTC). As the gears rotate, when pair #1 arrives at the lowest point of single tooth contact 

(LPSTC) of point Cp at 
pCt t , pair #0 separates at Bp. At Pt t , pair #1 passes through the 

pitch point P, and the relative sliding velocity of engaged profiles is reversed, resulting in a 

reversal of the friction force, which incurs an impulse excitation to the system. Finally, pair 

#1 goes through point Cg at 
gC ct t t  , finishing one mesh cycle (

gCt ). These key durations are 

defined as follows 
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3.1 Time varying mesh stiffness  

Due to complexity of tooth shape, it is difficult to calculate mesh stiffness of the TIG pair 

via the analytical method. So an 8-9-tooth finite element model (FEM) is created to compute 

the mesh stiffness. As depicted in Fig. 4, the preprocessing of the FEM is completed in 

commercial code Hypermesh according to the 3-D models. 

                 

Fig. 4. 8-9-tooth finite model of TIG 

In this FEM[13], either of the engaged gears can only rotate about its own axis; Teeth are 

connected to a central node by massless rigid elements; The pinion has a constant angular 

velocity, and the braking torque Tg is applied to the gear. The contact algorithm is set to 

explicit and surface-surface contact. The dynamic finite element analysis is performed in 

commercial code Abaqus to obtain normal contact forces and comprehensive elastic 

deflection of the pinion. The results were verified by the analytical ones in reference [13]. 

Then the stiffness function of the ith meshing tooth pair is given by Eq. (4), where the ‘‘floor’’ 

function rounds the contact ratio down to the nearest integer value. For a generic tooth pair, 



its mesh stiffness is as follows 
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
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For example, if  1,2  , for pair #1, twenty contact points on the LOA are chosen to 

compute mesh stiffness with (4). The corresponding results are shown in Tab.1. 

Tab. 1  Mesh 

stiffness for 

contact point at 

g 100N mT    

 

 

 

 

 

 

 

 

 

Based on the data in above table, the mesh stiffness can be expressed as the function of 

time by polynomial fitting. Considering the periodicity of the system, the expanded stiffness 

function of the ith meshing tooth pair is calculated at any time instant t as  

        c c ,                floor mod , 0,1, , floorik t k i t t t i                                (5)      

The calculated k0(t) and k1(t) functions and their combined stiffness are shown in Fig. 5. It 

is noteworthy that k0(t) and k1(t) are, actually, different portions of k(t) as described in Eq. (5). 
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Fig. 5 Mesh stiffness of TIGs
 

3.2 Six degree-of-freedom model with friction 

A six-degree-of-freedom (6-DOF) model is established as displayed in Fig. 6.  

 

Fig. 6. 6-DOF model of TIGs 

In the light of the Coulomb friction law, the magnitude of friction force is proportional to 

the normal tooth load as follows 

f ni i iF F                                                                  

(6) 



The direction of fiF  depends on the sign of nominal relative sliding velocity. The moment 

arm for the friction force of pinion acting on the ith meshing tooth pair is given by 

        p p g p bpN B floor mod , ,   0,1, , flooriX t i r t i                              

(7)                       

The corresponding moment arm for the friction force of the gear is 

     g g g g bgN C mod , ,   0,1, , flooriX t i r t i                                       

(8)                               

Where ‘‘mod’’ is the modulus function defined as    mod , floor ,     if 0x y x y x y y    .  

Assume that the mesh damping coefficient  ic t , related to mesh stiffness  ik t  by a 

time-invariant damping ratio mi  as follows 

     m e2 ,    0,1, , floori i ic t k t I i                                           

(9) 

where  2 2
e p g p bg g bpI I I I r I r  . 

The normal load acting on the tooth are 

             pn gn       0,1, , floori i i iF t F t k t t c t t i                                 

(10)                          

where  

  bp p bg g p g st r r x x                                                          (11) 

where    s s 0cost e t    ; p p 2Z   . 

The dynamic transmission error (DTE) is defined as follows 

d bp p bg g p gr r x x                                                            

(12) 

For a generic gear whose jth meshing pair passes through the pitch point within the mesh 

cycle, the friction forces in the ith meshing pair are formulated as follows: 
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(14)          

The governing equations for the translational degree of freedoms (DOFs) in the LOA and 



OLOA direction are respectively 
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The governing equations for the torsional DOFs are 
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3.3. Friction coefficient in elastohydrodynamic lubrication  

Normally gear transmissions work in the condition of mixed elastohydrodynamic 

lubrication (EHL). To simply the problem, the friction is only considered in the pure EHL. 

The friction coefficient varies as the gear teeth mesh, owning to continually changing 

lubrication conditions between the contacting teeth. Xu[12] predicted the values of friction 

coefficient in EHL for about 10,000 cases for each lubricant of interest. These cases cover 

various combinations of parameters to implement a multiple linear regression analysis to 

yield a new friction coefficient formula as follows 

  30 6 7 82, , ,
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(21)                                                        
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Where h ' 2 'nP F E R ; s

e

vsr v  

Here    1,2, ,9ib i    are constant coefficients that depend on the lubricant type. For the 

lubricant used in this study, a typical gear oil, 

8.92,  1.03,  1.04,  0.35,  2.81,  0.10,  0.75,  0.39ib       and 0.62 for 1 9i   , respectively. The 

effective radius of curvature Rneeds to be calculated according to the results of TCA. 

4. Model validation 

To verify the above 6-DOF model of TIG, the results of normal contact loads and angular 

velocity are compared with those using the approach of multi-body dynamics (MBD). In 

reference [13] the multi-body model of the TIG was verified indirectly by an impact 



experiment. So we use it to verify the 6-DOF model here. The parameters of a TIG set are 

shown in Tab.2. The constant angular velocity of pinion is 2  rad/s , and the resisting moment 

is 20 N m . The governing equations of 6-DOF system model are numerically integrated 

through a 4th-5th order Runge–Kutta algorithm with a fixed time step.  
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Fig.7. Normal contact force of two models 

 

0 1 2 3 4
0

2

4

6

8

10

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
4.7

4.8

4.9

5.0

5.1

5.2

5.3

5.4

5.5


p / 

ra
d

/s

t
g
 / t

c


p
 / 

ra
d

/s

t
g
 / t

c

 MBD            av=5.1278rad/s
 6-DOF M     av=5.1294rad/s

 

Fig.8. Angular velocity of gear 

Fig. 7 shows the normal contact load of two models. Without friction forces, the normal 

contact force is n 2 b2 20 0.05756 347.49 NF T r   , and the average value of our model is 

349.63N. The increase in average normal contact force is induced by impacts during meshing 

in and out as well as friction forces. Besides, at points Bg, Cp, Cg and Bp, corner contacts are 

observed for Fn, corresponding to the time instants when meshing tooth pairs come into or out 

of contact. Fig.8. displays the angular velocity of gear. The theoretical angular velocity is 

g 2 40 49 5.1291 rad/s    . In spite of fluctuation, the average value of our model is very 



close to the theoretical one. 
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Fig.9. Frequency Analysis of normal contact force 
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Fig.10. Sliding friction forces over meshing 

Frequency-domain analysis for normal contact force is shown in Fig. 9. From the figure 

the primary resonances is found at 40.28 Hz, nearly equal to gear mesh frequency ( p p2 Z  ), 

which is associated with a mode having the LOA transverse motions and the torsional 

motions of the wheels. Fig.10 shows the sliding friction forces for pair #0, pair #1 and the 

combined one. The figure can reflect all of the key meshing events. 

5. Results and discussion  

A numerical example is provided according to parameters in Tab. 2. In order to study the 

dynamic performance of TIGs comprehensively, six operation conditions are set in Tab. 3, 

ranging from low-speed to high-speed, and from light-load to heavy-load. Also a model of a 

standard involute gear (SIG) pair is built with the same parameters. Specifically, normal 

module, pressure angle, tooth number and parameters of inertial properties are kept 



unchanged. 

 

Tab. 2. Parameters for a TIG set                       

Tab. 3. Operation conditions of a TIG set 

 

 

 

 

5.1 Dynamic transmission error 

The dynamic transmission error (DTE) is the important index used to characterize 

transmission accuracy of a gear drive. The DTE of two models are shown in Fig.11~13 and 

Tab.4. It can be seen from them that whether trend or magnitude, the results of two types of 

gear drive are almost the same. It is noteworthy that the resisting moment has a greater effect 

on the DTE than the angular velocity. To be specific, the amplitude of DTE increases along 

with the increase of the resisting moment. 
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Fig.11. DTE in condition #1 

 

condition p (rad/s) gT  (N·m) 

#1 10 49 

#2 10 245 

#3 100 49 

#4 100 245 

#5 300 49 

#6 300 245 

 pinion gear 

normal module (mm) 2.5 2.5 

pressure angle (deg) 20 20 

tooth number  40 49 

reference torus radius (mm) 35 55 

pitch circle radius (mm) 50 61.25 

face width (mm) 15 20 

deviation of torus center (mm) 15 116.25

Poisson ratio  0.3 

Young’s modulus (N/mm2) 2.06e5 

amplitude of STE (m) 1.0e-5 
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       Fig.12. DTE in condition #3 
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Fig.13. DTE in condition #6 

Tab. 4. Maximum and minimum of 

DTE 

 

 

 

 

 

 

5.2 Sliding friction forces 

Fig.14~16 display the sliding friction forces of pair #0 and pair #1. The average value of 

magnitude of combined sliding forces are given in Tab. 5. It can be seen from the figures that 

Max of d  (µm) Min of d  (µm) 
condition 

TIG SIG TIG SIG 

#1 28.7453 28.8583 -6.5421 -6.5824

#2 67.9565 68.5789 0.0000 0.0000 

#3 26.0776 26.1188 -12.9003 -13.0756

#4 61.9691 62.5844 -16.3022 -17.8649

#5 25.7425 25.7837 -15.0341 -14.9987

#6 57.6970 58.0223 -13.5303 -13.6643



the general trends of SIG and TIG are not identical. The possible reason is that the contact 

patterns of two types of gears are totally dissimilar, which makes the friction coefficient vary 

differently with contact point. Besides, the disparity of magnitude of sliding friction forces are 

mainly dependent on the resisting moment. According to Tab.5, under the light load, the TIG 

has a somewhat larger average sliding friction force than SIG. But in the case of heavy load, 

the situation reverses: the SIG has a much larger mean sliding friction force than does TIG. 
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b) Pair 1# 

Fig.14. Sliding friction force in condition #1 
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   b) Pair 1# 

Fig.15. Sliding friction force in condition #3 
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Fig.16. Sliding friction force in condition #6 

Tab. 5. Average value of combined sliding friction forces 

 

 

 

 

 

 

 

 

 

 

5.3 Mechanical efficiency of gear pair 

Efficiency losses in a gearbox originate from several sources: Gear mesh sliding friction, 

rolling friction, windage, oil churning, and bearing friction [14]. Once gears are loaded, the 

contact experiences combined sliding and rolling, both of which cause frictional losses. If 

only frictional losses are counted in, the instantaneous output power can be expressed as the 

difference between the input power and the frictional power losses. With this, the mechanical 

efficiency (ME) of gear pair can be determined using the approach by Xu [15] as follows 

   pf p g pr p g
1p p

1
1

n

i i
i

F v v F v v
T


 

                                            (23) 

The rolling friction force of the pinion can be estimated by utilizing a published empirical 

formula [16] as 

 0.658 0.0126
pr 4.318iF GU W R                                                  (24) 

The results of ME for TIG and SIG are displayed in Fig.17~ 20 and Tab.6. From the 

Ave of combined sliding 

friction force (N) condition 

TIG SIG 

#1 4.8461 3.1853 

#2 9.0038 33.3825 

#3 3.6535 3.6369 

#4 5.6076 32.2601 

#5 3.6686 2.1687 

#6 7.1076 21.0416 



figures, the general trend of transient ME for two gear pairs are similar, and the increase in 

angular velocity tends to cause fluctuation of ME. It can be seen from the table, as the angular 

velocity increases, both of the ME decrease. But they increase with the increasing of resisting 

moment. When a light load is imposed on the gear, the ME of SIG is slightly higher than TIG. 

However, TIG has a higher ME than SIG when a heavy load is applied. The reason for this 

can be found in their sliding friction forces. 
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Fig. 17. ME in condition #1 
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Fig. 18. ME in condition #2 
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Fig. 19. ME in condition #3 

0 2 4 6 8 10
0.980

0.985

0.990

0.995

1.000

tg / tc



 TIG
 SIG

 

Fig. 20. ME in condition #4 

 

Tab. 6. Average value of ME  

 

 

 

 

 

 

 

 

5.4 Minimum film thickness of lubrication oil 

In order to get a preliminary understanding of the lubrication property, the minimum film 

thickness of SIG and TIG are computed employing Dowson & Higginson Formula[17]. Due to 

Ave of ME  
condition 

TIG SIG 

#1 0.9857 0.9865 

#2 0.9971 0.9935 

#3 0.9739 0.9744 

#4 0.9925 0.9913 

#5 0.9602 0.9608 

#6 0.9841 0.9824 



point contact, the formula for elliptical contact applies to TIG as follows 

 0.49 0.68 0.073 0.68
min 3.63 1h G U W e R                                               

(25)    

The minimum film thickness of SIG is given by 
0.6 0.7 0.13

min 1.6h G U W R                                                        

(26) 

The results of pair #0 and pair #1 are shown in Fig. 21~23 and Tab.7. From the figures and 

table we can see that the minimum film thickness of TIG is higher than that of SIG in all 

operation conditions. The variation trend of minh over a whole mesh cycle is also different 

from each other. Essentially, the differences in minh are incurred by the contact pattern of 

gears. Especially convex-concave contact makes the effective radius of curvature of TIG 

much larger than that of SIG. 
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                                    b) Pair #1 

Fig. 21. Minimum film thickness in condition #1 
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                                     b) Pair #1 

Fig. 22. Minimum film thickness in condition #3 
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Fig. 23. Minimum film thickness in condition #5 

 

Tab. 7. Average value of minimum film thickness 

 

 

 

 

 

 

 

 

 

6. Conclusion 

Based on the previous studies of mesh principle, a multi-degree-of-freedom dynamics 

model of the TIG pair with realistic time-varying stiffness is built, including effects of sliding 

friction and alternate meshing of single-double tooth pairs. In six cases, the DTE, ME, sliding 

friction forces and minimum oil-film thickness of TIG are calculated and compared with 

those of SIG. It can be concluded from above analysis as follows 

1. Although the complexity of tooth shape is increased, the TIG pair still nearly has the 

same transmission accuracy as SIG.  

2. Unlike the SIG, the TIG pair works on convex-concave-point-contact, which leads to the 

discrepancies in sliding friction forces and transient ME. However, there is little 

difference in average ME of two types of gear pairs. 

3. The contact pattern makes the TIG pair have a higher minimum oil-film thickness, which 

Ave of min film thickness 

of pair 0 (µm) 

Ave of min film 

thickness of pair 1 (µm) condition 

TIG SIG TIG SIG 

#1 0.07183 0.04927 0.05971 0.04575 

#2 0.06330 0.03942 0.05338 0.03732 

#3 0.34560 0.25644 0.29000 0.23957 

#4 0.30650 0.20857 0.26015 0.19709 

#5 0.72902 0.53948 0.60704 0.50160 

#6 0.64816 0.51400 0.54233 0.40909 



shows that it exhibits a better performance in lubrication condition.  
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