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We present the use of digital micromirror devices as variable illumination masks for pitch-splitting 
multiple exposures to laser machine the surfaces of materials. Ultrafast laser pulses of length 150 fs 
and 800 nm central wavelength were used for the sequential machining of contiguous patterns on the 
surface of samples in order to build up complex structures with sub-diffraction limit features. 
Machined patterns of tens to hundreds of microns in lateral dimensions with feature separations as 
low as 270 nm were produced in electroless nickel on an optical setup diffraction-limited to 727 nm, 
showing a reduction factor below the Abbe diffraction limit of ~2.7x. This was compared to similar 
patterns in a photoresist optimised for two-photon absorption, which showed a reduction factor of 
only 2x, demonstrating that multiple exposures via ablation can produce a greater resolution 
enhancement than via two-photon polymerisation. 
OCIS codes: (140.3300) Laser beam shaping, (230.6120) Spatial light modulators, (220.4000) Microstructure fabrication, 
(190.4180) Multiphoton processes, (220.1140) Alignment. 
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1. Introduction The increase in feature density achievable via laser machining is an ever-present goal in optics. The well-known Abbe diffraction limit, R = λ/(2NA), defines the finest resolution, R, feasible in a single optical projection, where λ is wavelength and NA is the numerical aperture of the imaging system. The use of shorter wavelengths has achieved much progress, with 13.5 nm wavelength EUV techniques able to machine structures on the ~10 nm scale [1]. These technologies require short wavelength lenses, or all-reflective optical systems for EUV lithography; multiple material improvements and image-formation methods have also aided the attainment of increasingly fine resolution produced by optical techniques [2]. Alternative techniques increase final feature density without addressing the factors of the Abbe diffraction limit. Double patterning [3–5], also often referred to as multiple exposures [6,7], are one such class of techniques. In this work, a given intensity mask to produce a final desired pattern is broken down into several masks of reduced pitch to be exposed sequentially, which will be referred to as pitch-splitting multiple exposures (PSME). A spatial light modulator, namely a digital micromirror device (DMD), is 

used to rapidly switch between these different masks between femtosecond pulse exposures. Further, the potential of PSME when applied to the ablation of metal is compared to the well-reported exposure of photo-resist. Via ablation in nickel, a reduction factor of ~2.7x in final feature spacing as compared to the Abbe diffraction limit is demonstrated, while a factor of 2x is shown via polymerisation in photo-resist. The reduction factor of ~2.7x is observed in nickel when the process is performed on two different optical systems with numerical apertures of 0.55 and 0.40, indicating that this may be a material-dependent limit. 
2. Experimental setup The DMDs used in this work were Texas Instruments DLP3000 [8] and DLP7000 [9]. The DLP3000 consists of an array of 608 by 684 individually controllable, 7.6 µm wide mirrors, arranged in a diagonal-square lattice such that the display aspect ratio is 854:480. The centre-to-centre distance between adjacent mirrors in the horizontal and vertical planes was 10.8 µm. The direction of the diffraction order of maximum intensity observed from a DMD surface will depend on the direction of mirror tilt, which in this case was along the diagonal of each square mirror. The DLP7000 surface was thus rotated by 45° about the axis of the chosen 
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with respect to time, t, is proportional to the square of the incident intensity for a two-photon resist [15]. By integrating w.r.t. time, this means that after 1 exposure to intensity I1 the new initiator density J1 is given by Equation 1. ܬଵሺݐሻ = ଴ܬ  ሻ (1) Here, c2P is a constant of integration, and the intensity was  assumed constant during the exposure time, though this was purely to simplify the expression. The squared intensity-time product would be replaced by a squared intensity integral with respect to time in a more detailed analysis, but this would not alter the order of the polynomial dependence on intensity, and hence the possible resolution reduction factor, as will be explained below. Explicit dependence on lateral dimensions x and y have been omitted from initiator densities and intensities, to ease notation. If the exposure time for theݐଵଶܫሺ−ܿଶ௉݌ݔ݁
nth exposure is Tn, with intensity distribution In, then the initiator density after N exposures is given by Equation 2. ܬேሺ ேܶሻ = ேିଵܬ ேଶܫሺ−ܿଶ௉݌ݔ݁ ேܶሻ = ሺ−ܿଶ௉ ݌ݔ଴݁ܬ ∑ ௡ଶܫ ௡ܶே௡ୀଵ ሻ

  (2) The final photo-initiator density is thus in response to an 
effective squared intensity-time product given by the summation in Equation 2. The upper limit to the spatial frequencies present in the final structure produced via 2PP can be inferred from the spatial Fourier transform of this summation. An intensity pattern containing a maximum spatial frequency of kmax may produce a material response in two-photon resist proportional to the square of the intensity pattern, hence the maximum spatial frequency present in this response is then 2kmax. As the Fourier transform is distributive, the number of exposures N does not affect this limit; the maximum frequency present in the transform of the sum of multiple functions cannot be greater than the maximum frequency present in the transforms of the functions individually. This is key to understanding why the same limits to resolution reduction factor are seen when differing numbers of exposures are used in Section 4.A. While 2PP has been used to produce structures with resolutions below this limit, additional methods to alter the material response must be used [15]. One such technique relies on the diffusion of a “quenching” molecule and a slow laser scanning speed [16], which effectively decays the material response over time in regions not completely polymerised, such that 2PP is closer to a ‘threshold’ process, as discussed in the next section. 
B. PSME via ablation The material response to incident intensity as a result of ablation is a different mathematical form to that of 2PP. As a simple model, assume that the depth profile after exposure n, 
Dn, is given by Equation 3. ܦ௡ = ௡ିଵܦ +  ௡  (3) Where explicit dependencies on lateral coordinates have again been dropped for brevity. Here, ΔDn is the change in depth caused by exposure n, and Dn-1 is the depth profile after the previous exposure. Ablation is often considered a thresholded process [17,18], and so to a first order approximation ablation may be assumed to only occur above some threshold intensity Ith. While this is not strictly true, and some polynomial reflecting a sharp, but finite gradientܦ∆

rise in material removal probability around the threshold intensity would be more accurate, a true threshold approximation serves to illustrate the possibility of enhanced resolution using PSME via ablation. ΔDn may then take the first order approximate form in Equation 4, where the change in depth profile is proportional to intensity above threshold. ∆ܦ௡ ∝ ൜ሺܫ௡ − ௡ܫ ௧௛ሻ     Whereܫ > ௧௛0            Otherwiseܫ
  (4) 

Next consider, the lateral spatial frequency components present in ΔDn(x,y) to determine the maximum possible spatial frequency in an ablated structure, Dn, produced via PSME. Here, the sharp cut-off between affected and unaffected regions shown in Equation 4 would imply infinitely high spatial frequencies must be present, allowing a final structure to have arbitrarily high resolution. Of course, such a sharp cut-off is only an approximation, and the model is presented merely to demonstrate the impact of material response on final possible resolutions; the reduction factor limit in PSME via ablation is not necessarily limited to the same value as via 2PP. A more complete modelling of ablation depth with successive femtosecond exposures has been proposed by others [17,18], wherein a threshold is considered an acceptable approximation. It is possible that different materials would yield different nonlinearities in their responses to incident intensity, i.e. sharper ablation thresholds, and could return greater reductions in the resolution limit. Note that, while Equations (1) and (4) imply spatial frequencies above the Abbe diffraction limit may be present in the material response after a single exposure, it does not allow for the machining of patterns with individual feature spacing below this limit in a single exposure; to achieve this, multiple exposures must be made. A 1D example is given in Fig. 2, for the ablation case; special attention is given to this mechanism as low feature width structuring may only emerge after several exposures, while low feature width structures are typically produced in each exposure during 2PP, and has been described by others [15]. A Gaussian intensity (solid red line) and machined depth profile (solid black line after exposure, dashed blue line before exposure) are plotted on the same axes (arbitrary units), showing the material response (depth of ablation) before and after 1–9 exposures of mutually shifted Gaussian intensities. The threshold intensity level, Ith, is shown by a dashed cyan line.   
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 Objective Used  

 20x 50x 100x

Resolution limit 1.00 µm 952 nm 727 nm
Material Electroless nickel IP-G 780 Electroless nickel 
Resolution 
produced 364 nm 481 nm 267 nm
Number of 
exposures 

25 13 13 
Resolution 
reduction factor 

2.75 1.98 2.73
Process Ablation 2PP Ablation
5. Conclusion A DMD has been used for the PSME via ablation of features up to ~2.7x below the diffraction limit of two experimental setups. Material response has been shown to be key to understanding the difference in final feature resolution, and future work will focus on determining the mechanism of this material response to identify materials with different PSME via ablation resolution reduction factors. DMD intensity mask translation for PSME has been used to rapidly and precisely align successive masks with ~100 nm lateral translations per pixel shift on the DMDs, potentially allowing overall structures to be machined over a few millisecond timescale. PSME is an important tool in the ongoing miniaturisation of laser-machined patterns. We have extended the application of DMDs for laser machining by demonstrating their relevance to PSME, providing a rapid and low-cost alternative to the production and alignment of sequential intensity masks, as well as extending the application of PSME to ablation. 
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