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Abstract

Free vibrations of non-uniform cross-section and axially functionally graded

(AFG) Euler-Bernoulli beams with various boundary conditions were studied

using the differential transform method. The method was applied to a variety

of beam configurations that are either axially non-homogeneous or geometri-

cally non-uniform along the beam length or both. The governing equation

of an Euler-Bernoulli beam with variable coefficients was reduced to a set of

simpler algebraic recurrent equations by means of the differential transforma-

tions. Then, transverse natural frequencies were determined by requiring the

non-trivial solution of the eigenvalue problem stated for a transformed function

of the transverse displacement with appropriately transformed its high deriva-

tives and boundary conditions. To show the generality and effectiveness of

this approach, natural frequencies of various beams with variable cross-section

and functionally graded non-homogeneity profiles were calculated and compared

with analytical and numerical results available in the literature. The benefit of

the differential transform method to solve eigenvalue problems for beams with
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arbitrary axial geometrical non-uniformities and axial material gradient profiles

is clearly demonstrated.

Keywords: free vibrations, non-uniform cross-section beam, functionally

graded material, differential transform method

1. Introduction

Natural frequencies are fundamental to the understanding of the dynamics of

mechanical systems. Their knowledge is required for analysing and designing a

structure in dynamic environment. Contemporary in-service conditions impose

additional requirements on the properties of materials used in structures. This

is particularly true for structures that have to perform under extremely severe

thermal loading and adverse environment. In this regard, functionally graded

materials (FGM), a type of composite materials, are able to withstand high

temperatures, thermal fracture and corrosion [1–4]. Therefore, the vibration

analysis of FGM structures is of critical importance from the standpoint of

their safety and effective exploitation.

Because beams are the basic structural elements in engineering construc-

tions on the one hand and the simplest models for theoretical research on the

other hand, free vibration analysis of FGM beams has been extensively studied

and continues to receive much attention in the literature. Many studies have

been carried out on vibrations of beams containing a material gradient in the

thickness direction. Various assumptions on deformation of beams and differ-

ent approaches used for obtaining exact analytical and approximate numerical

solutions have been reported. The comparison between different beam theories

being exploited for natural frequency analysis of FGM beams is given in [5].

Analytical solutions for FGM beams with axially graded material properties

are difficult to obtain. The complexity of the analysis lies in the presence of

variable coefficients in the governing beam equation caused by the dependence

of material parameters on the axial coordinate. From the mathematical point of

view this issue is similar to the problem, in which the terms of governing beam
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equation are functions of the axial coordinate due to variable cross-sectional area

and flexural rigidity along the beam length. In the past this problem received

a wide consideration among many researchers; see e.g. [6]. It is well-known

that exact solutions of this problem can be obtained only for a few special

cross-sectional profiles and boundary conditions. Free vibration analysis solved

for beams with continuously and stepped varying cross-sectional parameters

has been reviewed in recent publications, e.g. [7–9]. Both analytical solutions

in terms of special functions including Bessel functions, hypergeometric series,

power series, Bernstein polynomials and approximate solutions obtained by us-

ing Rayleigh-Ritz approach, finite element method, dynamic stiffness method,

differential quadrature method, differential transform method have been re-

ported there. A series of analytical solutions for prismatic beams with inho-

mogeneous material parameters prescribed in the form of certain polynomials

has been obtained in [10, 11]. Li [12] was able to derive an analytical solution

in terms of Bessel functions for the free vibration problem of beams containing

determined both an axial geometrical non-uniformity and axial mass and shear

stiffness distributions. Another analytical solution for natural frequencies of

FGM beams is shown in [13], where the authors have considered exponential

material gradient in the beam thickness direction and arbitrary variable cross-

section along the beam length. Exact solutions of the free vibration problem

for FGM beams with material profiles and cross-sectional parameters varying

exponentially in the axial direction have been deduced in [14, 15], where as-

sumptions of Euler-Bernoulli and Timoshenko beam theories have been applied

respectively.

Apart from analytical solutions for analysing limited classes of beams satisfy-

ing defined assumptions of inhomogeneity and non-uniformity, many numerical

approaches have been developed. Some of researchers have used the finite el-

ement method (FEM) for AFGM beams with arbitrary varying cross-section

using appropriate homogeneous finite elements, e.g. in [16, 17] or developing

special graded finite elements, e.g. in [18]. In [19] the authors studied the free

vibration of beams with axial material gradation and non-uniform cross-section
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by transforming the governing differential equation with variable coefficients

into Fredholm integral equations. The natural frequencies were determined by

requiring that the resulting Fredholm equation has non-trivial solutions. The

natural frequencies of non-uniform and AFGM beams with various boundary

conditions and cross-sectional parameters have been calculated by using Haar

wavelets in [20]. The differential quadrature method has been employed for

studying free vibrations of tapered homogeneous and AFGM rotating cantilever

beams in [21, 22], respectively. In the latter paper, for the sake of comparison

the author has also used the differential transform method (DTM). However,

only beams with polynomial forms of non-uniform cross-sectional parameters

and material inhomogeneities were considered there.

Differential transformations as an approach for solving variety types of dif-

ferential equations were firstly proposed by G.E. Pukhov [23] in 1976. In the

beginning, the method invented by him was applied for investigation of electri-

cal circuits [24–26] and thereafter he published a series of books [27–30], where

foundations of differential transformations and their application to various pure

mathematical and engineering problems were laid out and developed in detail.

Recently, Bervillier [31] presented the state-of-the-art of the differential trans-

form method in modern science, but there appear to be notable exclusions. In

particular, the book of Simonyan and Avetisyan [32], where problems such as

finding invariants (eigenvalue, determinant, inverse and pseudo-inverse) of non-

autonomous matrices, solving linear and non-linear non-autonomous systems of

finite equations have been considered and solved. Also, optimal control prob-

lems and non-autonomous matrix equations have been studied and methods of

their solutions based on DTM have been proposed in [33, 34].

The differential transform method has already been applied to the vibration

analysis of non-uniform cross-section and inhomogeneous beams. In [35] and [36]

the authors have utilized the differential transformations to analyse free lateral

vibrations of rotating tapered Euler-Bernoulli beams. Abdelghany et al. in

[37] have used the DTM to compute natural frequencies and appropriate mode

shapes of homogeneous beams with smooth and continuous variations of non-
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uniform cross-sections. Free vibrations of stepped FGM beams having abrupt

changes of geometrical characteristics have been studied by means the DTM

as well. However, it should be noticed that since cross-section and moment of

inertia of the stepped beam are no longer continuous functions along the beam

length in the governing differential equations, the stepped beam is analysed

as an assemblage of several piecewise continuous segments and the differential

transformations are applied to each of the segments accounting additionally for

continuous conditions between the segments. Thus, the computational cost of

the DTM increases with increasing the number of the beam sections, because

more recurrent equations have to be solved. In [38] the DTM has been exploited

to the free vibration analysis of FGM two-section-beams with thickwise material

gradients. Natural frequencies of similar stepped FGM two-section-beams with

elastically constrained ends have been calculated with the DTM in [39]. In [40]

and [41], the authors have proposed a differential transform element method

(DTEM) improving the convergence of the DTM to examine free vibrations

and stability of axially FGM tapered Euler-Bernoulli and Timoshenko beams,

respectively. A vibration analysis of spinning exponentially functionally graded

Timoshenko beams has been carried out with the DTM in [42].

The literature search has reveals that studies on free vibrations of axially

FGM beams with varying cross-sectional parameters has been a subject of ac-

tive recent research. To the best of our knowledge, DTM has not been applied

to the study of free vibrations of FGM beams with arbitrary axial material

gradation and cross-sectional non-uniformities varying along the beam length.

Existing works are limited in the consideration to the choice of material gra-

dients, cross-sectional parameters and boundary conditions. Having identified

the gap in the literature, the objective of this paper is to present a novel ap-

proach based on the DTM for analysing free vibrations of axially functionally

graded and non-uniform cross-section beams. The differential transformations

will be used as a primary mathematical tool for finding natural frequencies of

those beams. We transform the governing differential beam equation with arbi-

trary variable coefficients in connection with appropriate end supports to a set
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of recurrent algebraic equations with respect to unknown coefficients. Natural

frequencies are determined from the existence condition of a non-trivial solu-

tion in the resulting system of algebraic equations. The results obtained are

compared with those solutions available in the literature. In this regard, the

convergence of DTM is also evaluated in the paper. A high accuracy, efficiency

and versatility of the DTM is demonstrated by various examples. The exam-

ples considered are supplemented by results concerning the convergence of the

DTM solutions. Finally, we analyse natural frequencies of axially FGM beams

made of Aluminium Zirconia alloy (AlZrO2) subjected to different end supports,

material gradation profiles and cross-sectional parameters. The effects of the

gradation parameter and the degree of non-uniformity on the natural frequen-

cies are shown. Some computational issues being arisen in those calculations

with the DTM are discussed in detail.

This paper is organize as follows. Differential transforms are introduced and

their best known properties are discussed in the next section. A mathematical

solution of the differential beam equation with variable coefficients arising from

the free vibration of axially functionally graded beams with non-uniform cross-

section along the beam length is formulated in Section 3. Numerical results

are presented and compared with existing results, where possible, in Section 4.

Finally, concluding remarks are presented in Section 5.

2. A brief description of differential transformations

Basic mathematical aspects of the DTM were presented in the original pub-

lications of the inventor of differential transformations [27–30], to which we refer

for more details of this method. Throughout this paper, we use definitions and

denotations introduced in those books.

Let us consider a function A(x) and suppose that A(x) and its all derivatives

are smooth functions in a given interval (x0, x1). The Kth derivative of A(x) in a

certain xυ point can be considered as an A(K) image (or discrete) of the original

function A(x). The totality of A(K) images when the index goes K = [0,∞)
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will be a differential spectrum of the A(x) function. Then, the basic expression

to get images for a given original is the following:

A(K) =
HK

K!

dKA(x)

dxK

∣∣∣∣
x=xυ

, (1)

where A(K) are images of A(x), H is a given constant (or so-called the scale

factor), xυ is a centre of approximation.

If a spectrum of A(K) images of the original A(x) is known, the original

A(x) may be reconstructed. This can be achieved by various ways, depending

on what type of series could be used to recover the original function. In par-

ticular, using the Taylor series, the Taylor differential transformations or the

T-transformations, called so by G.E. Pukhov, take the following form:

A(x) =

∞∑
K=0

(
x− xυ
H

)K
A(K). (2)

The basic operations in the domain of differential transformations (DT) and

some their properties as those in [27–30] are listed in Table 1. It is assumed

that the originals u(x) and v(x) have appropriate U(K) and V (K) differential

spectra. Then, for given U(K) and V (K) discretes we calculate the discrete

Z(K), which is a differential spectrum of an z(x) original. The latter is a result of

algebraic manipulations between the originals u(x) and v(x) and differentiation

of u(x). It should be noted that the scale factor H is taken equal to one there.

3. DTM applied to free vibrations of inhomogeneous and non-uniform

beams

The partial differential equation that governs free vibrations of beams of

length L, which are axially inhomogeneous and/or have a continuously variable

cross-section area along the beam axis is given by [43]:

∂2

∂x2

[
D(x)

∂2w

∂x2

]
+m(x)

∂2w

∂t2
= 0, 0 ≤ x ≤ L, (3)

where x is the axial coordinate, w is the transverse beam displacement, D(x) =

E(x)I(x) is the flexural rigidity presented as a function of the axial coordinate
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Table 1: Main operations of differential transformations

Original domain DT domain

z(x) = u(x) + v(x) Z(K) = U(K) + V (K)

z(x) = cu(x) Z(K) = cU(K)

z(x) = u(x)v(x) Z(K) =

K∑
p=0

U(p)V (K − p)

z(x) =
u(x)

v(x)
Z(K) =

U(K)−
∑K
p=0 U(p)V (K − p)
V (0)

z(x) =
du(x)

dx
Z(K) = (K + 1)U(K + 1)

z(x) =
d2u(x)

dx2
Z(K) = (K + 1)(K + 2)U(K + 2)

z(x) =
dmu(x)

dxm
Z(K) =

(K +m)!

m!
U(K +m)

z(x) = xn Z(K) = δ(K − n) =

{
1 K = n

0 K 6= n

x and depends on both Youngs modulus E(x) and second moment of the cross-

section area I(x), m(x) = ρ(x)A(x) is the mass of the beam per unit length

depending upon variable cross-sectional area A(x) and mass density ρ(x).

It is well-known that to solve (3) it is necessary to seek a temporally harmonic

solution for the deflection in the form:

w(x, t) = w̄(x)eiωt, (4)

where w̄(x) is the amplitude of the beam deflection, ω is the angular frequency

and i is the imaginary unit. Substituting (4) into (3) reduces the initially partial

differential equation (3) into an ordinary differential equation of the beam:

d2

dx2

[
D(x)

d2w̄(x)

dx2

]
−m(x)ω2w̄(x) = 0, 0 ≤ x ≤ L. (5)

Thus, in the present study, a beam with inhomogeneous material properties

and non-uniform cross-sectional parameters varying continuously along the axial

direction is completely determined by the ordinary differential equation (5).

In order to find a solution of 5 using the differential transformations, it is
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convenient to rewrite it as:

d4w̄

dx4
+ D̄1(x)

d3w̄

dx3
+ D̄2(x)

d2w̄

dx2
− M̄(x)ω2w̄ = 0, (6)

where the variable coefficients will be denoted as D̄1(x) = 2D′(x)/D(x), D̄2(x) =

D′′(x)/D(x) and M̄(x) = m(x)/D(x). Here, and in what follows, the prime de-

notes a derivative with respect to the x-coordinate.

Applying the differential transformations defined in Table 1 to Eq. (6), the

latter in the differential transformation domain takes a form of a set of recurrent

algebraic equations:

W (K + 4) =
1

(K + 1)(K + 2)(K + 3)(K + 4)
·[

ω2
K∑
p=0

W (p)M(K − p)−

K∑
p=0

(p+ 1)(p+ 2)(p+ 3)W (p+ 3)D1(K − p)−

K∑
p=0

(p+ 1)(p+ 2)W (p+ 2)D2(K − p)

]
,

(7)

where W (K) and D1(K), D2(K) and M(K) are the discretes of originals of

the unknown function w̄(x) and the given expressions D̄1(x), D̄2(x) and M̄(x),

respectively. The last discretes are calculated using appropriate transformation

rules presented in Table 1. Note that each recurrent equation of the system (7)

is obtained by sequentially changing the K index.

The system (7) can be reduced to a matrix equation as follows:

W (K + 4) = BKW (0) + CKW (1) +GKW (2) +HKW (3), (8)

where the recurrent expressions for the coefficients BK(ω), CK(ω), GK(ω) and

HK(ω) are presented in Appendix A.

In (8), the discretes W (0), W (1), W (2) and W (3) are taken as unknown

variables because their actual values in the differential spectrum cannot be cal-

culated from the system of recurrent equations (7).
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If all W (K) images are computed, the original function w̄(x) can be recon-

structed according to Eq. (2) as

w̄(x, ω) = W (0) +W (1)(x− xυ) +W (2)(x− xυ)2 +W (3)(x− xυ)3+

W (4)(x− xυ)4 + · · ·+W (K)(x− xυ)K ,
(9)

where the discretes W (K) at K > 4 can be expressed via the unknown discretes

W (0), W (1), W (2) and W (3). Hence, one can get the original function in the

form:

w̄(x, ω) = W (0) +W (1)(x− xυ) +W (2)(x− xυ)2 +W (3)(x− xυ)3+

[B0W (0) + C0W (1) +G0W (2) +H0W (3)](x− xυ)4+

[B1W (0) + C1W (1) +G1W (2) +H1W (3)](x− xυ)5 + · · ·+ [BK−4+

W (0) + CK−4W (1) +GK−4W (2) +HK−4W (3)](x− xυ)K .

(10)

Substituting the expressions for the coefficients (A.1) to (A.4) into (10) and

collecting common terms with respect to the unknown discretes, the original

function becomes as

w̄(x, ω) = (1 +B0(x− xυ)4 +B1(x− xυ)5 + · · ·+BK−4(x− xυ)K)W (0)+

((x− xυ) + C0(x− xυ)4 + C1(x− xυ)5 + · · ·+ CK−4(x− xυ)K)W (1)+

((x− xυ)2 +G0(x− xυ)4 +G1(x− xυ)5 + · · ·+GK−4(x− xυ)K)W (2)+

((x− xυ)3 +H0(x− xυ)4 +H1(x− xυ)5 + · · ·+HK−4(x− xυ)K)W (3).

(11)

Boundary conditions imposed on the beam should be taken into account to

calculate its natural frequencies. Hence, physical quantities such as rotation

angle θ, bending moment M and shear force Q involved in Eq. (3) should be

defined in their explicit forms, i.e.

θ =
dw̄

dx
, M = −D(x)

d2w̄

dx2
and Q = − d

dx

[
D(x)

d2w̄

dx2

]
. (12)

In the present paper, the following end supports of the beam are considered:

• Cantilever (clamped-free) beam (C-F):

w̄(0) = 0, θ(0) = 0, M(L) = 0 and Q(L) = 0;

10



• Simply supported beam (S-S):

w̄(0) = 0, M(0) = 0, w̄(L) = 0 and M(L) = 0;

• Clamped-pinned beam (C-P):

w̄(0) = 0, θ(0) = 0, w̄(L) = 0 and M(L) = 0;

• Clamped-clamped beam (C-C):

w̄(0) = 0, θ(0) = 0, w̄(L) = 0 and θ(L) = 0;

• Clamped-guided beam (C-G):

w̄(0) = 0, θ(0) = 0, θ(L) = 0 and Q(L) = 0.

Using the direct differentiation of Eq. (11) with respect to the x coordinate,

we are able to compute any of the first three derivatives of the reconstructed

original to provide the boundary conditions mentioned above. Therefore, using

Eq. (8) for w̄ in the DT domain together with appropriately transformed into the

DT domain boundary conditions, which are expressed via w̄ and its derivatives,

we arrive at an eigenvalue problem for each case in the following form:
f11(ω) f12(ω) f13(ω) f14(ω)

f21(ω) f22(ω) f23(ω) f24(ω)

f31(ω) f32(ω) f33(ω) f34(ω)

f41(ω) f42(ω) f43(ω) f44(ω)




W (0)

W (1)

W (2)

W (3)

 = 0, (13)

where the functions fij(ω) are polynomials of ω.

It should be noticed that the system (13) is composed of the original and

its derivatives regardless boundary conditions subjected, while a discrete of the

original substituted into equations of defined boundary conditions is used to

formulate a similar matrix equation within a traditional application of the DTM

to the eigenvalue problem, e.g. [36]. This proposed novelty will further allow

us more efficiently to handle different types of constraints, and geometrical and

mechanical parameters of beams without implementation of a new code for each

problem.
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For the non-trivial solutions of the system (13), the determinant of the ma-

trix [fij(ω)] is set to zero, i.e.

det[fij(ω)] = 0. (14)

The eigenvalue problem in (14) is a polynomial root finding task, where the

ith estimated eigenvalue is determined using an iterative scheme with a total

number of iterations related to the accuracy of calculations. In the present work,

a computational program implementing DTM for solving the free vibration

problem of inhomogeneous and non-uniform beams has been developed within

the Matlab environment. The eigenvalue problem is solved by the standard algo-

rithm provided by the Matlab code with a computer using IntelTMCore R©i7-4770

Quad-Core Desktop Processor 3.4 GHz with 16Gb RAM. In the calculations,

the tolerance parameter between the (n−1)th and nth iterations corresponding

to four-digit precision in the calculated eigenvalues has been utilized.

It is well-known that the accuracy of solutions, obtained using the DTM, es-

sentially depends on a number of discretes used in the Taylor series for restoring

the original. The bigger number of discretes would be involved, the more accu-

rate the approximate solution would be achieved [23]. However, in practice, the

maximum numbers of discretes are always restricted by computational power

and memory capacity due to quickly growing calculations needed for recurrent

type equations. This fact results in increasing an error in simulations. On the

other hand, the value at which the T-transformations is to be evaluated affect

the accuracy of the solution as well. Therefore, to accomplish higher accuracy

of the approximate solution, we will reconstruct the original (2) through the dis-

crete spectrum found at a non-zero centre of approximation in a given solution

interval. This is in contrast to the traditional approach, where a zero centre of

approximation is usually used for restoring the original, e.g. [36–42].

4. Numerical results and discussions

To demonstrate the general applicability and effectiveness of DTM for solv-

ing the free vibration problem for axially functionally graded and non-uniform

12



Table 2: Non-dimensional natural frequencies Ωn of a tapered cantilever

beam with A/A0 = I/I0 = 1 − 0.5x

Mode Present Abrate[6] Huang&Li[19] (N=10)

1 4.315170 4.315170 4.315170

2 23.51926 23.51926 23.51926

3 63.19919 63.19919 63.19919

4 122.4377 122.4396

cross-section beams, we consider a variety of specific problems and compare the

results obtained using the DTM with those available in the literature when pos-

sible. A general case, where there is a full arbitrariness in choosing both an axial

material non-homogeneity and a cross-sectional non-uniformity simultaneously

is also considered here.

4.1. Homogeneous beams with non-uniform cross-sections

First, a homogeneous tapered cantilever beam with cross-sectional param-

eters varying linearly along the beam length as functions A/A0 = I/I0 =

1 − 0.5x is considered. The first four non-dimensional natural frequencies

Ωn = ωn

√
ρA0L4

EJ0
calculated with the DTM are compared with those obtained

by the Rayleigh-Ritz method in [6] and using the Fredholm integral equation

in [19] are presented in Table 2. As seen from Table the present results are

practically coincide with those given in the literature including higher vibration

modes also.

The rate of convergence of the DTM used for calculating first four natural

frequencies of the tapered cantilever beam and its dependence on the centre

of approximation chosen are presented in Fig. 1. One can see that the higher

frequencies require more number of discretes than lower ones to reach the exact

solution. Moreover, the fastest convergence of the solution is at the central point

of the given interval, while as one calculates at the zero point, the rate of con-

vergence slows down and dramatically decelerate for the high fourth frequency.
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Figure 1: Convergence of the first four normalized natural frequencies of the tapered cantilever

beam with A/A0 = I/I0 = 1 − 0.5x found: (a) at xυ = 0; and (b) at xυ = 0.5.

This choice among the other points of the solution interval appeared the best

from the standpoint of reducing the solution error. Thereby, in what follows

the calculations have been carried out in the middle of given interval xυ = 0.5,

until another is said.

A homogeneous non-uniform beam with linearly variable cross-section area

A(x) = A0(1 + αx), but with a cubic variation of the moment of inertia I(x) =

I0(1+αx)3 is studied next. The natural frequencies of such homogeneous beam

subjected to different boundary conditions have been found depending on the

non-uniformity parameter α in [6] and [19], where the Rayleigh-Ritz method,

and the Fredholm integral method and the FEM have been used, respectively.

In Table 3, we present comparisons for clamped-pinned and clamped-clamped

beams between the non-dimensional frequencies Ωn obtained with the DTM and

those results that are available in the mentioned papers.

The natural frequencies computed with the DTM coincide to those found by

the other methods for the beams with the both types of boundary conditions

and a variety of the non-uniformity parameter α used in the calculations. The

dependence of the rate of convergence of the approximate fundamental frequency

of the C-P beam on the non-uniformity parameter is shown in Fig. 2. It is

obvious that the convergence rate of the solution practically is not sensitive

14



Table 3: Non-dimensional natural frequencies Ωn of beams with A(x) = A0(1 + αx) and

I(x) = I0(1 + αx)3

BC α Mode Present Huang&Li [19] Abrate[6] FEM [19]

C - P -0.1 1 14.848896 14.848896 14.848896 14.92

2 47.637037 47.637037 47.637037

3 99.171635 99.171653 99.171635

0 1 15.418206 15.418206

2 49.964862

3 104.247696

0.1 1 15.9687099 15.9687099 15.9687099 15.997

2 52.237227 52.237227 52.237227

3 109.20235 109.20235 109.20235

0.2 1 16.502899 16.502899 16.502899 16.561

2 54.4614625 54.4614625 54.4614625

3 114.051623 114.051631 114.051623

1.0 1 20.3666 20.3666

2 71.04797 71.04797

3 150.20086 150.20086

2.0 1 24.5826 24.5826

2 89.98368 89.98368

3 191.44814 191.44814

C - C -0.1 1 21.240978 21.240978

2 58.550055 58.550055

3 114.780242 114.780278

0 1 22.373285 22.373285 22.3732854 22.373

2 61.672823 61.672823 61.672823

3 120.903392 120.90340 120.90339

0.1 1 23.479607 23.479607 23.479607 23.521

2 64.721068 64.721068 64.721086

3 126.87802 126.87805 126.87804

0.2 1 24.563418 24.563418 24.563418 24.647

2 67.704755 67.704755 67.704755

3 132.72398 132.72407 132.7239815



to small variations of the non-uniformity parameter (Fig. 2a), while it changes

more clearly with increasing the parameter value (Fig. 2b). Also, it should be

noticed that this tendency holds for the higher frequencies as well.
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Figure 2: Convergence of the normalized fundamental frequency depending on the parameter

α for the C - P beam with A(x) = A0(1 + αx) and I(x) = I0(1 + αx)3 if: (a) α varies from

-0.1 to 0.2; (b) α varies from 0.0 to 2.0.

4.2. Inhomogeneous uniform cross-section beams

Further, we use the proposed approach implementing the DTM to compute

natural frequencies of a series of uniform inhomogeneous beams, containing

Young modulus E(x) and mass density ρ(x) that are arbitrary variable along

the beam length. In the calculations we adopt there parameters in the following

forms:

ρ(x) = ρ0

J∑
j=0

ajx
j , E(x) = E0

R∑
r=0

brx
r, (15)

where J and R are any positive integers, and aj with (0 ≤ j ≤ J) and br with

(0 ≤ r ≤ R) are constants satisfying to requirements ρ(x) > 0, E(x) > 0 for

all x ∈ [0, L]. Closed-form and approximate solutions for such inhomogeneous

cantilever beam are known in [10] and [19], respectively.

Three types of beam’s mass density such as: (1) constant ρ(x)/ρ0 = 1, (2)

linearly changing ρ(x)/ρ0 = 1 + x, and (3) varying as a quadratic function

ρ(x)/ρ0 = 1.5954 + 0.04x + x2 are considered in the calculations. Each of Ta-

bles 4 to 6 represents the first five non-dimensional frequencies kn = ωn(ρA0L
4

EJ0
)
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Table 4: Non-dimensional natural frequencies kn of the cantilever beam with ρ(x)/ρ0 = 1

and D(x)/E0I =
∑R
r=0 b0rx

r

R Source 1st 2nd 3rd 4th 5th

0 Present 17.928230 112.354302 314.595300 616.481229 1019.087644

Huang&Li [19] 17.928232 112.355863

Weaver[43] 17.928232 112.354350

1 Present 18.899661 124.961973 355.014816 698.216086 1155.920215

Huang&Li [19] 18.899664 124.961794

2 Present 18.994321 127.178034 363.037901 714.808453 1183.929860

Huang&Li [19] 18.994320 127.177553

3 Present 18.971053 126.344324 359.531108 707.281060 1171.009309

Huang&Li [19] 18.971054 126.343737

4 Present 18.973666 126.471840 360.156611 708.689040 1173.480918

Huang&Li [19] 18.973666 126.471301

Elishakoff[10] 18.973666

for each of the mass density and flexural rigidity relations. For the latter, ap-

propriate coefficients can be found in Appendix B. In Tables the first two of

the frequencies are compared with those available for the same cases of inhomo-

geneity in [10], [19] and [43]. The compared results are in very good agreement

with each other for all cases of inhomogeneity adopted in the calculations.

The convergence analysis showed us that the higher is the degree of the

polynomial of Young’s modulus used in (15), the lower is the difference between

the known results and the results obtained with DTM, and the faster the DTM

is able to approximate the exact solution as seen in Fig. 3. This conclusion

is valid for all calculated frequencies regardless the degree of a polynomial of

the density function. However, the higher frequencies require more number of

discretes in the approximate solution than in the case of lower ones.

To demonstrate the generality of the DTM approach for modelling com-

pletely arbitrary forms of the material inhomogeneity in the vibration analysis

of FGM beams, we consider the flexural rigidity and mass density as a trigono-
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Table 5: Non-dimensional natural frequencies kn of the cantilever beam with ρ(x)/ρ0 = 1 +x

and D(x)/E0I =
∑R
r=0 b1rx

r

R Source 1st 2nd 3rd 4th 5th

0 Present 21.055898 140.928477 403.479493 795.279422 1317.894448

Huang&Li [19] 21.055897 140.930444

1 Present 22.298672 158.371332 460.631754 911.241917 1512.256542

Huang&Li [19] 22.298670 158.372567

2 Present 22.455308 162.368406 475.380847 941.746354 1563.727521

Huang&Li [19] 22.455309 162.369548

3 Present 22.452019 162.239233 474.830118 940.570801 1561.716527

Huang&Li [19] 22.452020 162.240346

4 Present 22.449333 162.094285 474.110529 938.967473 1558.918394

Huang&Li [19] 22.449332 162.095281

5 Present 22.449944 162.136198 474.350328 939.528605 1559.920652

Huang&Li [19] 22.449944 162.137195

Elishakoff[10] 22.449944
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Figure 3: Convergence of normalized natural frequencies of the cantilever beam with ρ(x)/ρ0 =

1.5954 + 0.04x + x2 depending on the degree R of the polynomial D(x)/E0I =
∑R
r=0 b2rx

r

for: (a) the fundamental frequency; (b) the 2nd natural frequency.

metric functions of the axial coordinate in the calculations as follows:

D(x) = D0[1 + α cos(πx)], ρ(x) = ρ0[1 + β cos(πx)], (16)
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Table 6: Non-dimensional natural frequencies kn of the cantilever beam with ρ(x)/ρ0 =

1.5954 + 0.04x+ x2 and D(x)/E0I =
∑R
r=0 b2rx

r

R Source 1st 2d 3rd 4th 5th

0 Present 24.294479 162.797108 462.716163 909.677354 1505.583556

Huang&Li [19] 24.294444 162.797574

1 Present 25.737129 182.906725 527.889460 1041.632735 1726.572091

Huang&Li [19] 25.737133 182.906151

2 Present 25.921234 187.554244 544.822636 1076.596904 1785.535421

Huang&Li [19] 25.921235 187.553379

3 Present 25.918839 187.461469 544.432450 1075.764990 1784.112810

Huang&Li [19] 25.918839 187.460556

4 Present 25.924098 187.739992 545.793135 1078.791133 1789.389455

Huang&Li [19] 25.924097 187.739261

5 Present 25.922736 187.648647 545.279363 1077.591252 1787.248519

Huang&Li [19] 25.922735 187.647888

6 Present 25.922963 187.666960 545.396356 1077.879518 1787.776220

Huang&Li [19] 25.922963 187.666166

Elishakoff[10] 25.922963
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where |α| < 1, |β| < 1 are some parameters.

Tables 7 and 8 show the first six non-dimensional natural frequencies Ωn =

ωn

√
ρA0L4

D0
for the two cases of parameters β = 4α and β = α, respectively, de-

pending on the inhomogeneity parameter α and boundary conditions imposed.

The first tree of the frequencies computed with DTM are compared with those

presented in [19, 20] for the same cases of material inhomogeneity and bound-

ary conditions. The results match extremely well for the first two frequencies

for all cases of the boundary conditions and the inhomogeneity parameter. For

the third frequency the differences are moderate with the maximum distinction

up to 7% in the comparisons, as seen in Fig. 4. This discrepancy results from

the difference between the techniques employed for finding the approximate so-

lutions. It is worth to notice that the DTM did not experience convergence

difficulties. Though the rate of convergence depended on the boundary condi-

tions imposed and the parameter α used. Moreover, the rate of convergence

was slightly quicker and the computational time was somewhat lesser in the

case of β = α than those in the case of β = 4α. It means that increasing in-
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Figure 4: Convergence of approximate solutions of normalized natural frequencies of the C

- C beam with D(x) = D0[1 + α cos(πx)] and ρ(x) = ρ0[1 + β cos(πx)], and α = 0.2 if: (a)

β = α; (b) β = 4α.

homogeneity of the mechanical parameter along the beam length increases the

computational cost of the DTM needed for restoring an exact solution. Also

we revealed that unlike the method used in [19] all natural frequencies obtained
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Table 7: Non-dimensional natural frequencies Ωn of beams with D(x) = D0[1 + α cos(πx)]

and ρ(x) = ρ0[1 + β cos(πx)], if β = 4α

BC n Source α

-0.2 -0.15 -0.1 0 0.1 0.15 0.2

C - F 1 Present 2.56899 2.75721 2.97143 3.51602 4.34283 4.96987 5.89084

Huang&Li [19] 2.5690 2.7572 2.9714 3.5160 4.3428 4.9699 5.8908

2 Present 20.54575 20.84940 21.18732 22.03449 23.40750 24.64429 27.05785

Huang&Li [19] 20.5462 20.8498 21.1877 22.0345 23.4080 24.6452 27.0597

3 Present 64.03571 62.80216 61.99739 61.69721 63.47331 65.61956 69.88894

Huang&Li [19] 64.1287 62.8517 62.0246 61.7151 63.5303 65.7357 70.1756

4 Present 128.86866 124.88568 122.43363 120.90192 123.54569 127.15568 134.15760

5 Present 215.28680 207.44420 202.86979 199.85950 203.75458 209.32144 220.05414

6 Present 324.69770 311.43252 303.79480 298.55314 303.94195 312.28903 333.53432

S - S 1 Present 9.86960 9.86960 9.86960 9.86960 9.86960 9.86960 9.86960

Huang&Li [19] 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696

2 Present 42.53832 41.13895 40.19695 39.47842 40.19695 41.13895 42.53832

Huang&Li [19] 42.5405 41.1404 40.1979 39.4791 40.1979 41.1404 42.5522

3 Present 96.74878 92.75051 90.42512 88.82644 90.42512 92.7505 96.74878

Huang&Li [19] 98.9439 92.4350 90.4469 88.8481 90.3370 92.4350 98.6659

4 Present 172.31388 164.80929 160.69538 157.91367 160.69538 164.80929 172.31388

5 Present 269.24338 257.39772 251.03594 246.74011 251.03594 257.39772 269.24338

6 Present 387.46288 370.51003 361.43981 355.30580 361.43981 370.51003 387.46288

C - P 1 Present 14.21170 14.49167 14.78504 15.41821 16.12346 16.50640 16.91055

Huang&Li [19] 14.2117 14.4917 14.7850 15.4182 16.1235 16.5065 16.9107

2 Present 51.51352 50.72796 50.19312 49.96486 51.14342 52.46453 54.46396

Huang&Li [19] 51.5819 50.7722 50.2210 49.9742 51.1459 52.4695 54.4812

3 Present 110.84949 107.62986 105.59270 104.24770 106.29373 109.07530 113.90842

Huang&Li [19] 112.9319 110.0300 108.2707 107.4485 110.4157 113.7307 119.2732

4 Present 191.82757 185.02266 180.99163 178.26973 181.53790 186.20726 194.74699

5 Present 294.30289 282.91292 276.42480 272.03097 276.87027 283.89975 296.98341

6 Present 418.41898 401.33012 391.90015 385.53145 392.27584 402.09670 420.24635

C - C 1 Present 22.36955 22.37119 22.37235 22.37329 22.37235 22.37119 22.36955

Huang&Li [19] 22.3700 22.3715 22.3726 22.3735 22.3726 22.3715 22.3700

2 Present 64.64605 63.32288 62.39804 61.67282 62.39804 63.32288 64.64605

Huang&Li [19] 64.7658 63.3937 62.4327 61.6883 62.4330 63.3897 64.7668

3 Present 129.32930 125.27614 122.73650 120.90339 122.73650 125.27614 129.32930

Huang&Li [19] 138.6441 132.6284 131.3240 129.2174 131.2343 132.3560 137.759

4 Present 215.63076 207.74116 203.10268 199.85945 203.10268 207.74116 215.63076

5 Present 323.43250 310.72825 303.52343 298.55554 303.52343 310.72825 323.43250

6 Present 452.43908 434.13230 423.96477 416.99101 423.96477 434.13230 452.43908
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Table 8: Non-dimensional natural frequencies Ωn of beams with D(x) = D0[1 + α cos(πx)]

and ρ(x) = ρ0[1 + β cos(πx)], if β = α

BC n Source α

-0.2 -0.15 -0.1 0 0.1 0.15 0.2

C - F 1 Present 3.02240 3.14158 3.26323 3.51602 3.78526 3.92769 4.07635

Huang&Li [19] 3.0024 3.1416 3.2632 3.5160 3.7853 3.9277 4.0763

2 Present 21.20726 21.41809 21.62542 22.03449 22.44457 22.65349 22.86721

Huang&Li [19] 21.2069 21.4179 21.6255 22.0345 22.4447 22.6534 22.8668

3 Present 61.22461 61.33987 61.45613 61.69721 61.95882 62.10089 62.25261

Huang&Li [19] 61.2666 61.3741 61.4838 61.7151 61.9758 62.1192 62.2737

4 Present 120.57744 120.65392 120.73270 120.90192 121.09441 121.20274 121.32110

5 Present 199.61965 199.67285 199.73064 199.85953 200.01244 200.10102 200.19772

6 Present 298.35875 298.40832 298.45270 298.55552 298.68294 298.76147 298.83443

S - S 1 Present 9.83953 9.85280 9.86217 9.86960 9.86217 9.85280 9.83953

Huang&Li [19] 9.8395 9.8528 9.8622 9.8696 9.8622 9.8528 9.8395

2 Present 39.52073 39.50227 39.48903 39.47842 39.48903 39.50227 39.52073

Huang&Li [19] 39.5239 39.4045 39.4905 39.4791 39.4905 39.4045 39.5239

3 Present 88.87424 88.85299 88.83814 88.82644 88.83814 88.85299 88.87424

Huang&Li [19] 90.2491 90.2874 90.3149 88.8481 90.3149 90.2874 90.2491

4 Present 157.96291 157.94097 157.92570 157.91367 157.92570 157.94097 157.96291

5 Present 246.79126 246.76778 246.75224 246.74011 246.75224 246.76778 246.79126

6 Present 355.36156 355.33150 355.31812 355.30580 355.31812 355.33150 355.36156

C - P 1 Present 14.91970 15.05273 15.17990 15.41821 15.63677 15.73901 15.83660

Huang&Li [19] 14.9196 15.0527 15.1799 15.4182 15.6367 15.7389 15.8365

2 Present 49.67240 49.74997 49.82387 49.96486 50.10256 50.17204 50.24281

Huang&Li [19] 49.6719 49.7506 49.8265 49.9742 50.1206 50.1944 50.2691

3 Present 104.05672 104.10517 104.15266 104.24770 104.34732 104.40054 104.45702

Huang&Li [19] 107.5159 107.5407 107.5357 107.4485 107.2753 107.1613 107.0311

4 Present 178.13492 178.16704 178.19982 178.26973 178.34898 178.39352 178.44241

5 Present 271.93307 271.95304 271.97670 272.03097 272.09750 272.13663 272.18249

6 Present 385.44723 385.47001 385.48867 385.53145 385.58880 385.62228 385.68087

C - C 1 Present 22.29882 22.33172 22.35491 22.37329 22.35491 22.33172 22.29882

Huang&Li [19] 22.2984 22.3316 22.3549 22.3735 22.3549 22.3316 22.2984

2 Present 61.62357 61.64563 61.66089 61.67282 61.66089 61.64563 61.62357

Huang&Li [19] 61.6542 61.6699 61.6804 61.6883 61.6804 61.6699 61.6542

3 Present 120.87930 120.89014 120.89759 120.90339 120.89759 120.89014 120.87930

Huang&Li [19] 128.7765 128.9739 129.1098 129.2174 129.1098 128.9739 128.7780

4 Present 199.85145 199.85512 199.85759 199.85945 199.85759 199.85512 199.85145

5 Present 298.55941 298.55688 298.55625 298.55554 298.55625 298.55688 298.55941

6 Present 417.00069 416.99397 416.99399 416.99101 416.99399 416.99397 417.00069
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using the DTM are exactly even functions of the parameter α in the case of the

symmetric boundary conditions S-S and C-C, while in the compared method,

the results are symmetrical with respect to the sign of α only if β = α.

4.3. Axially functionally graded beams with uniform and non-uniform cross-

sections

We illustrate now an application of DTM to the free vibration analysis of

beams made of functionally graded materials with any sophisticated axial grada-

tion profiles. At the beginning, let us consider a beam with uniform cross section

area A0 and second moment of area I0, but with variable Young modulus E(x)

and mass density ρ(x) as the following functions of the x-coordinate:

{
E(x) = E1

(
1− eαx − 1

eα − 1

)
+ E2

eαx − 1

eα − 1
, α 6= 0

E(x) = E1 (1− x) + E2x, α = 0

(17)

and {
ρ(x) = ρ1

(
1− eαx − 1

eα − 1

)
+ ρ2

eαx − 1

eα − 1
, α 6= 0

ρ(x) = ρ1 (1− x) + ρ2x, α = 0,

(18)

where E1, ρ1 and E2, ρ2 are corresponding Young modulus and mass density

of material at the ends x = 0 and x = L, respectively, and α is the gradation

parameter describing the volume fraction change along the beam length.

For the sake of comparison, in the calculations we accept functionally graded

metal/ceramic Aluminium Zirconia alloy (AlZrO2), the material properties of

which are presented in [19] and are given as follows:

Al : Ea = 70 GPa, ρa = 2702 kg/m3

ZrO2 : Ez = 200 GPa, ρz = 5700 kg/m3

The results of the free vibration analysis of axially functionally graded beams

with two types of gradation profiles, when the metal phase Al is rich near the

end x = 0 and the ceramic phase ZrO2 is rich near the end x = L (case 1), and

the metal phase Al is rich near the end x = L and the ceramic phase ZrO2 is
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Table 9: Non-dimensional fundamental frequencies Ωn of axially graded AlZrO2 beams

α C - F S - S C - P C - C

Source Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

-10 Present 3.47486 4.05056 11.46179 9.93313 16.40307 17.31412 24.06385 24.79734

Huang&Li [19] 3.5656 4.1800 11.4532 9.9358 16.4775 17.2993 24.0576 24.7949

Hein&Feklistova [20] 11.4481 16.3837 24.0269

Error, % 2.545 3.097 0.095 0.027 0.452 0.086 0.0260 0.056

-3 Present 3.14088 4.83168 11.24428 10.36686 16.02546 17.86998 23.94328 24.93636

Huang&Li [19] 3.1421 4.8317 11.2443 10.3669 16.0307 17.8701 23.9456 24.9375

Hein&Feklistova [20] 11.2422 16.0307 23.9384

Error, % 0.0401 0.0004 0.0002 0.0004 0.0326 0.0007 0.0097 0.0046

0 Present 2.92561 5.01564 10.86634 10.86634 15.87338 17.91475 24.37535 24.37535

Huang&Li [19] 2.9256 5.0156 10.8663 10.8663 15.8734 17.9147 24.3752 24.3752

Hein&Feklistova [20] 10.8660 15.8729 24.3749

Error, % 0.0003 0.0008 0.0004 0.0004 0.0001 0.0003 0.0006 0.0138

3 Present 2.85446 4.84663 10.36686 11.24428 15.71686 17.88728 24.93636 23.94329

Huang&Li [19] 2.8544 4.8466 10.3669 11.2443 15.7171 17.8867 24.9375 23.9456

Hein&Feklistova [20] 10.3670 15.7171 24.9371

Error, % 0.0021 0.0006 0.0286 0.0002 0.0015 0.0032 0.0046 0.0097

10 Present 3.09642 4.46502 9.93277 11.4582 15.47935 17.91852 24.81462 24.05657

Huang&Li [19] 3.0431 4.4629 9.9358 11.4532 15.4930 17.9050 24.7949 24.0576

Hein&Feklistova [20] 9.9366 15.4930 24.8080

Error, % 1.752 0.048 0.031 0.044 0.088 0.076 0.080 0.004

HB1 3.5160 9.8696 15.4182 22.3733

1 HB is a homogeneous beam

rich near the end x = 0 (case 2), subjected to different boundary conditions are

collected in Tables 9 and 10. Table 9 demonstrates non-dimensional fundamen-

tal frequencies Ωn = ωn

√
ρaA0L4

EaI0
of the beams compared the present results

with those available in the literature. Table 10 shows the other first five non-

dimensional frequencies Ωn depending on the gradation parameter α and the

boundary conditions.

One can see in Table 9 that the frequencies calculated with DTM are mainly

in a good agreement with those obtained by the other methods in [19, 20]. The

maximum relative differences between the results vary from 1.7% to 3% in the

case of the cantilever beam with the highest material parameter α = ±10, but

they are hundredths and thousandths of a percent for the smaller values of this

parameter and more restrained boundary conditions.

The convergence analysis of these solutions with respect to the gradation

parameter α and boundary conditions has been performed and revealed some
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computational issues. It was found out that in the case of α = −10, the approx-

imate solution of the FGM beam with the loosest C-F constraints for the both

gradation patterns case 1 and case 2 exhibits oscillations and grows rapidly with

slow increasing N , when the number of discretes surpasses a certain threshold as

shown in Fig. 5a. This limit value was equal to N = 53 in the calculations. The

DTM solutions for that beam under more restrained boundary conditions than

the C-F constraints do not show a strong oscillatory behaviour, but they feature

a divergence phenomenon after N = 53 as seen in Fig. 6a. In the presence of
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Figure 5: Convergence of the fundamental frequency normalized with respect to the solution

in [19], Ω1
Ω∗

1
for the C-F beam in the case 1: (a) α = −10; and (b) α = 10.

such computational issues the accuracy of the DTM deteriorates. This is due to

the well known phenomenon for the higher order polynomial terms which could

lead to round-off errors and ill-conditioning for finding the roots of a polynomial

in the eigenvalue problem [44]. This computational instability cannot be merely

overcome by increasing a number of discretes. Perhaps, a multistep approach

within the DTM [22, 27, 40] is more suitable for solving problems involving high

material gradients in FGM structures. Nevertheless, one can see in Table 10

that the frequencies averaged over a range, where spurious oscillations occur,

are of a good compliance with the results in the literature, and the differential

transform of 50 discretes is an reasonable quantity to achieve a demand for high

accuracy of the solutions as well.
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In the case of α = 10, the DTM solutions are less sensitive to rounding

errors. The approximate solution of the C-F beam oscillates near an averaged

value and tends to it with increasing N , Fig. 5b. The approximate solutions

for beams subjected to the other boundary conditions are non-oscillatory and

show the convergence, but the rate of convergence slows down remarkably in

compared with the examples previously mentioned in the paper as illustrated

in Fig. 6b. In the cases of α = 0 and ±3, the convergence of DTM solutions
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Figure 6: Convergence of the fundamental frequencies normalized with respect to the solutions

in [19] for the beams under S-S, C-P and C-C constraints in the case 1: (a) α = −10; and (b)

α = 10.

does not demonstrate any computational issues and possesses a fast rate of

convergence regardless boundary conditions applied to the FGM beam.

The results listed in Table 10 present higher mode frequencies of the con-

sidered FGM beam. It is worth to notice that the DTM solutions of the higher

frequencies have the same convergence behaviour as those described above for

the fundamental frequency. Therefore, in the cases of C-F beam with α = ±10

the averaging and truncation techniques mentioned above were applied for re-

covering the results. As seen in Table, the higher frequencies of the beams

under symmetric boundary conditions in the case 1 are identical to ones in the

case 2 for the equal, but opposite sign inhomogeneity parameter α. Moreover,

the calculated frequencies indicate a complex variation tendency depending on

that parameter. This fact proves a strong dependence of free vibrations on FGM
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Table 10: Non-dimensional natural frequencies Ωn of axially graded AlZrO2 beams

α C - F S - S C - P C - C

Mode Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

-10 2 23.75440 24.29463 45.70803 40.01590 54.92971 54.01091 68.11671 66.33548

3 68.13491 66.30623 102.72185 90.70289 116.42524 111.04684 135.35756 128.25552

4 135.43341 128.78960 182.41317 160.67124 200.98782 186.87381 225.52083 210.67467

5 225.49512 210.07984 284.85677 254.31263 308.11954 290.92369 338.63110 311.36029

6 338.79814 334.51364 410.13045 354.47104 438.49036 409.84991 474.60218 448.14160

-3 2 23.05185 25.49215 44.85368 41.96811 54.46761 54.92984 67.75525 67.10406

3 67.47564 67.78661 100.81154 94.50370 115.51745 112.79363 134.43877 130.22820

4 134.15354 130.83415 179.10915 167.99936 199.05597 191.57750 223.57897 214.26212

5 223.31328 214.83999 279.74462 262.46802 305.02380 291.31830 335.14367 319.25327

6 334.88852 319.81271 402.71983 377.91596 433.39133 412.03012 469.10471 445.21482

0 2 22.35382 26.46480 43.66381 43.66381 53.95855 55.97100 67.58746 67.58746

3 66.16920 70.26689 98.11772 98.11772 113.77010 115.83950 132.83907 132.83907

4 131.42546 135.61105 174.30881 174.30881 195.35569 197.45609 219.85463 219.85463

5 218.46231 222.69830 272.24998 272.24998 298.70768 300.82891 328.64103 328.64103

6 327.26046 331.53089 391.94625 391.94625 423.82371 425.95976 459.19322 459.19322

3 2 21.49489 27.14143 41.96811 44.85372 52.80201 56.89965 67.10406 67.75527

3 63.67157 72.77856 94.50370 100.81159 110.60535 118.43481 130.22820 134.43881

4 126.57717 140.33777 167.99936 179.10929 189.36052 202.30712 214.26212 223.57908

5 210.50632 230.10699 262.46802 279.74473 289.08361 308.52179 319.25327 335.14381

6 315.42943 342.13279 377.91596 402.72007 409.78356 437.07867 445.21482 469.10516

10 2 21.06942 27.07263 39.98589 45.69440 50.75565 57.79663 66.26926 68.09948

3 60.59987 74.40182 90.72143 102.66569 106.34852 120.46246 127.89884 135.31837

4 123.75115 144.11101 160.71032 182.38506 182.12175 205.87632 209.61761 225.46878

5 208.28604 236.40866 254.25563 284.88178 278.30040 314.05743 311.40310 338.61609

6 332.59071 351.30339 354.46540 410.12223 386.07054 444.99713 447.88063 474.45889
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material parameters and the importance of their predictions at the design stage.

Finally, we consider functionally graded beams with axially graded mate-

rial properties defined by the relations (17) and (18) for the two gradation

patterns (case 1) and (case 2) mentioned in the previous simulations with non-

uniform cross-sectional parameters. The beams are assumed to have a vari-

able cross-section given by functions of x as follows: A(x) = A0(1 + βx)2 and

I(x) = I0(1 + βx)4. These geometry relations may correspond to, for instance,

a beam with a rectangular cross-section whose height and width vary linearly

with the same taper ratio or a beam with a circular cross-section and linearly

tapering diameter. Tables 11 to 14 contain non-dimensional natural frequen-

cies Ωn = ωn

√
ρaAL4

EaI
computed depending on values of inhomogeneity α and

non-uniformity β parameters at different boundary conditions.

The convergence analysis has been performed for each case study. Analo-

gously to the previous calculations, the oscillations and divergence behaviour

of the DTM solutions in the regions of high material gradients α = ±10 occur.

Herewith, these phenomena become stronger with extending the cross-sectional

taper towards the free end of C-F beam as seen in Fig. 7. To recover the natural

frequencies from the results suffered from the computational instabilities, the

averaging and truncation techniques mentioned above have been used in the

post-processing stage. In the other examples, where computational issues did

not arise, we have observed only a slight slowing down the convergence rate with

increasing the taper ratio towards unity, for instance, in the case of C-C beam as

shown in Fig. 8. The DTM solutions of frequencies of beams with low material

gradients α = 0 and α = ±3 have had no any computational difficulties and

have featured fast enough convergence rate and relatively low computational

cost at the variety of taper ratios and boundary conditions.

The results in Tables 11 to 14 indicate that for axially functionally graded

beams, the natural frequencies show a complex variation behaviour with respect

to the both material inhomogeneity and geometrical non-uniformity and they

differ significantly from beams having only material inhomogeneity or only non-

uniform cross-section at the same boundary conditions. In doing so, the higher

28



Table 11: Non-dimensional natural frequencies Ωn of an axially functionally graded and non-

uniform cross-section cantilever beam with A(x) = (1 +βx)2 and I(x) = (1 +βx)4, and E(x)

and ρ(x) changing in accordance with (17) and (18)

α

β Mode -10 -3 0 3 10

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

C - F -0.6 1 5.24863 5.66395 4.71243 6.50997 4.37675 6.86693 4.22066 6.72950 4.42416 6.26775

2 20.6782 21.0110 20.0040 21.9602 19.4586 22.7719 22.7719 23.4807 17.8584 23.5657

3 50.3367 49.2191 49.8027 50.4430 48.8317 52.1948 47.1362 54.0286 44.5712 55.3852

4 94.8355 90.4947 94.4329 92.4857 92.6090 95.7134 89.4361 98.9904 85.1080 101.883

5 156.055 145.153 154.034 148.298 150.930 153.537 145.763 158.611 140.205 163.268

-0.4 1 4.47769 4.99796 3.98421 5.73764 3.69879 6.02308 3.57797 5.87318 3.86578 5.4441

2 21.8076 22.0237 21.0035 23.1441 20.4178 23.9995 19.6468 24.6895 19.9372 24.7168

3 56.5137 55.3678 55.9637 56.5601 54.8844 58.5515 52.9266 60.6072 57.3247 62.0384

4 108.434 104.582 108.535 106.177 106.403 109.940 102.654 113.718 105.458 116.900

5 180.932 168.481 178.831 172.181 175.119 178.346 168.971 184.244 166.759 189.462

-0.2 1 3.96618 4.56252 3.49561 5.21665 3.24952 5.44536 3.15675 5.28434 3.51417 4.88086

2 22.8699 23.3752 22.0423 24.3356 21.4026 25.2486 20.5870 25.9309 21.6115 25.9061

3 62.8528 61.0208 61.8333 62.3096 60.6416 64.5452 58.4149 66.8288 62.9876 68.3468

4 121.556 116.251 121.676 118.852 119.243 123.129 114.938 127.389 130.355 130.857

5 202.072 189.284 201.711 194.147 197.421 201.178 190.349 207.850 225.875 213.596

0.0 1 3.63209 4.23374 3.14051 4.83168 2.92561 5.01564 2.85446 4.84663 3.10906 4.46439

2 23.6312 24.7248 23.0523 25.4922 22.3538 26.4648 21.4949 27.1414 22.2552 27.0680

3 68.2915 66.1484 67.4751 67.7866 66.1692 70.2669 63.6716 72.7786 66.7292 74.387

4 135.212 128.603 134.154 130.834 131.425 135.611 126.577 140.338 137.669 144.080

5 225.468 208.583 223.312 214.840 218.462 222.698 210.506 230.107 238.091 236.355

0.2 1 3.36348 3.97340 2.86822 4.53043 2.67867 4.67861 2.62432 4.50426 2.79864 4.14012

2 24.4510 25.6833 24.0188 26.6073 23.2602 27.6376 22.3619 28.3074 22.8564 28.1876

3 75.2230 70.6983 72.9399 73.0562 71.5191 75.7805 68.7499 78.5189 70.6037 80.2199

4 149.469 146.281 146.146 142.308 143.123 147.574 137.742 152.755 145.524 156.764

5 239.044 302.382 243.985 234.611 238.588 243.269 229.776 251.387 249.979 258.115

0.4 1 3.11747 3.54799 2.65117 4.28528 2.48280 4.40441 2.44172 4.22666 2.55922 3.87825

2 25.9216 27.5856 24.9404 27.6825 24.1220 28.7669 23.1893 29.4278 23.4731 29.2636

3 80.4953 74.6903 78.2643 78.1623 76.7284 81.1298 73.6872 84.0933 74.5624 85.8872

4 156.165 260.079 157.761 153.390 154.444 159.137 148.540 164.761 153.999 169.029

5 263.324 370.126 263.946 253.675 258.011 263.111 248.365 271.917 263.455 279.107
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Table 12: Non-dimensional natural frequencies Ωn of an axially functionally graded and non-

uniform cross-section simply supported beam with A(x) = (1 + βx)2 and I(x) = (1 + βx)4,

and E(x) and ρ(x) changing in accordance with (17) and (18)

α

β Mode -10 -3 0 3 10

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

S - S -0.6 1 7.25496 6.27605 7.28940 6.21801 7.19290 6.45971 6.89874 6.77262 6.41542 7.10246

2 31.1844 27.5181 30.5010 28.6164 29.5438 29.8912 28.4334 30.5705 27.3279 30.9338

3 69.5049 61.8984 68.0843 63.8432 66.1358 66.4256 63.7265 68.1800 60.9766 69.1615

4 122.863 110.685 120.496 112.767 117.221 117.146 113.027 120.401 107.935 122.462

5 191.313 177.037 187.806 175.496 182.845 182.186 176.367 187.340 161.089 190.740

-0.4 1 8.89776 7.72741 8.85331 7.79734 8.65017 8.14671 8.26256 8.50296 7.78256 8.80140

2 36.3025 32.0805 35.5434 33.3036 34.5075 34.7140 33.2038 35.5687 31.7405 36.1189

3 81.3263 72.5706 79.7036 74.7443 77.4950 77.6798 74.6752 79.7541 71.5480 81.0578

4 144.172 129.806 141.463 132.538 137.649 137.598 132.713 141.392 125.297 143.879

5 224.884 209.699 220.842 206.745 214.979 214.543 207.324 220.528 194.146 224.549

-0.2 1 10.2669 8.95252 10.1383 9.15491 9.84220 9.58773 9.38966 9.96201 8.93653 10.2188

2 41.1055 36.2726 40.2920 37.7238 39.1778 39.2763 37.6780 40.3008 35.9936 41.0045

3 92.3162 82.2952 90.5167 84.8736 88.0613 88.1522 84.8407 90.5396 81.2987 92.1251

4 163.910 145.777 160.808 150.766 156.490 156.465 150.854 160.771 143.342 163.661

5 255.791 229.961 251.166 235.431 244.466 244.249 235.720 251.009 223.400 255.592

0.0 1 11.4625 10.0301 11.2443 10.3669 10.8663 10.8663 10.3669 11.2443 10.0322 11.4623

2 45.7174 40.2024 44.8537 41.9681 43.6638 43.6638 41.9681 44.8537 40.2049 45.7191

3 102.701 91.1871 100.811 94.5037 98.1177 98.1177 94.5037 100.812 91.1415 102.704

4 182.505 158.809 179.109 167.999 174.309 174.309 167.999 179.109 158.752 182.481

5 284.975 240.013 279.745 262.468 272.250 272.250 262.468 279.745 240.272 284.985

0.2 1 12.5243 11.0063 12.2236 11.4737 11.7727 12.0274 11.2388 12.3999 10.8700 12.5686

2 50.1747 43.9139 49.2845 46.0847 48.0217 47.9236 46.1301 49.2760 44.0152 50.2408

3 112.850 99.5920 110.739 103.777 107.812 107.721 103.810 110.716 99.4961 112.8049

4 200.535 170.229 196.668 184.525 191.399 191.425 184.437 196.705 176.742 200.338

5 312.533 252.314 307.082 288.332 298.821 299.038 288.043 307.240 276.450 312.856

0.4 1 13.4962 11.9115 13.1073 12.5001 12.5911 13.0984 12.0319 13.4592 11.7095 13.5845

2 54.5467 47.4764 53.6179 50.1028 52.2846 52.0848 50.1968 53.5980 47.8578 54.6819

3 122.512 107.629 120.389 112.780 117.233 117.050 112.847 120.341 108.144 122.664

4 217.773 181.455 213.664 200.514 207.939 207.990 200.338 213.738 192.316 217.721

5 339.974 268.653 333.480 313.308 324.473 324.908 312.729 333.794 300.969 339.895
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Table 13: Non-dimensional natural frequencies Ωn of an axially functionally graded and non-

uniform cross-section clamped-pinned beam with A(x) = (1 +βx)2 and I(x) = (1 +βx)4, and

E(x) and ρ(x) changing in accordance with (17) and (18)

α

β Mode -10 -3 0 3 10

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

C - P -0.6 1 12.9193 13.7797 12.4695 14.4721 12.4513 14.3477 12.5458 14.1075 12.4197 14.1012

2 38.9033 38.6426 38.3811 39.5267 37.9677 40.2060 37.3309 40.6393 36.0462 40.9910

3 80.0231 76.5424 79.2618 78.1420 78.0815 80.1744 76.1066 81.8057 72.3270 82.9396

4 136.370 127.832 135.110 130.501 132.743 134.420 128.905 137.656 120.597 139.957

5 207.966 192.950 205.936 196.686 201.968 203.020 195.752 208.260 177.064 212.038

-0.4 1 14.2144 15.1079 13.8179 15.7182 13.7694 15.6379 13.7661 15.4944 13.5657 15.5339

2 44.6125 44.1992 44.1116 45.0560 43.6753 45.8430 42.879 46.4377 41.2507 47.0013

3 93.0592 88.8644 92.2442 90.6095 90.8761 92.9839 88.5003 94.9406 84.1295 96.4028

4 159.556 149.551 158.106 152.519 155.278 157.126 150.687 160.925 140.008 163.682

5 243.998 227.280 241.665 230.845 236.872 238.315 229.445 244.426 204.932 248.841

-0.2 1 15.3578 16.2641 14.9846 16.8374 14.8876 16.8181 14.8008 16.7429 14.6032 16.7884

2 49.9003 49.2813 49.4237 50.1377 48.9538 51.0479 47.9790 51.8091 46.2008 52.5517

3 105.089 100.233 104.210 102.038 102.653 104.750 99.8803 107.029 95.5192 108.789

4 180.910 169.133 179.197 172.657 175.927 177.912 170.621 182.247 160.805 185.432

5 276.925 259.249 274.333 262.039 268.763 270.557 260.210 277.480 237.082 282.484

0.0 1 16.4002 17.3141 16.0255 17.8670 15.8734 17.9148 15.7169 17.8873 15.5435 17.9201

2 54.9317 54.0109 54.4677 54.9298 53.9586 55.9710 52.8020 56.8997 50.8730 57.8023

3 116.374 111.047 115.517 112.794 113.770 115.840 110.605 118.435 106.244 120.473

4 200.920 186.874 199.056 191.578 195.356 197.456 189.361 202.307 180.689 205.897

5 308.074 290.924 305.024 291.318 298.708 300.829 289.084 308.522 270.827 314.084

0.2 1 17.3490 18.3014 16.9720 18.8380 16.7634 18.9450 16.5486 18.9503 16.4064 18.9608

2 59.7676 58.4471 59.3224 59.5157 58.7708 60.6922 57.4282 61.7884 55.3210 62.8390

3 127.349 121.578 126.356 123.068 124.417 126.444 120.863 129.352 116.383 131.654

4 220.271 202.588 218.036 209.629 213.912 216.112 207.247 221.464 199.242 225.441

5 337.244 323.997 334.304 319.232 327.262 329.695 316.608 338.128 302.651 344.223

0.4 1 18.2423 19.2524 17.8444 19.7553 17.5798 19.9208 17.3166 19.9475 17.2087 19.9302

2 64.4810 62.6023 64.0353 63.9453 63.4388 65.2602 61.9070 66.5238 59.5994 67.7141

3 137.723 131.998 136.839 132.976 134.707 136.681 130.766 139.897 126.073 142.451

4 238.763 216.519 236.348 227.021 231.805 234.095 224.484 239.935 216.717 244.284

5 366.410 362.219 362.513 346.108 354.760 357.494 343.107 366.643 331.697 373.251

31



Table 14: Non-dimensional natural frequencies Ωn of an axially functionally graded and non-

uniform cross-section fully clamped beam with A(x) = (1 + βx)2 and I(x) = (1 + βx)4, and

E(x) and ρ(x) changing in accordance with (17) and (18)

α

β Mode -10 -3 0 3 10

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

C - C -0.6 1 16.0941 17.0724 15.7308 17.6020 15.9232 17.2096 16.3018 16.7718 16.4644 16.6712

2 45.5124 44.9199 45.0176 45.7723 44.7470 46.2067 44.3980 46.2577 43.8359 46.2752

3 90.3178 86.0362 89.5264 87.7129 88.3928 89.5854 86.6294 90.7248 84.8628 91.1810

4 150.404 140.630 149.050 143.462 146.630 147.324 142.906 150.019 135.297 151.435

5 225.756 209.349 223.574 213.069 219.455 219.458 213.244 224.146 195.689 226.694

-0.4 1 18.8783 19.8346 18.6189 20.1879 18.8965 19.7273 19.3310 19.3019 19.4258 19.2732

2 53.5683 52.6230 53.1176 53.4274 52.8930 53.8611 52.5145 53.9365 51.9323 54.0689

3 106.495 101.225 105.653 103.040 104.366 105.161 102.318 106.445 100.635 107.060

4 177.470 165.970 175.916 169.034 173.044 173.508 168.662 176.557 162.530 178.130

5 266.478 248.095 263.881 251.458 258.922 258.927 251.574 264.259 244.036 267.131

-0.2 1 21.5180 22.3963 21.3364 22.6145 21.6912 22.1015 22.1877 21.6759 22.1918 21.7179

2 61.0333 59.6901 60.6269 60.4651 60.4349 60.9180 60.0093 61.0350 59.3664 61.2832

3 121.353 115.127 120.468 117.056 119.025 119.423 116.695 120.863 114.858 121.628

4 202.253 189.014 200.485 192.367 197.180 197.413 192.181 200.804 187.796 202.566

5 303.693 283.659 300.647 286.446 294.900 294.903 286.504 300.836 284.301 304.007

0.0 1 24.0629 24.8279 23.9433 24.9364 24.3754 24.3754 24.9364 23.9433 24.8283 24.0629

2 68.1190 66.3359 67.7553 67.1041 67.5875 67.5875 67.1041 67.7553 66.3363 68.1192

3 135.351 128.158 134.439 130.228 132.839 132.839 130.228 134.439 128.152 135.352

4 225.540 210.309 223.579 214.262 219.855 219.855 214.262 223.579 210.300 225.536

5 338.605 317.091 335.144 319.253 328.641 328.641 319.253 335.144 317.100 338.604

0.2 1 26.5366 27.1668 26.4723 27.1827 26.9839 26.5740 27.6093 26.1329 27.3717 26.3381

2 74.9315 72.6668 74.6131 73.4587 74.4633 73.9802 73.9145 74.2051 72.9893 74.6847

3 148.777 140.559 147.811 142.801 146.051 145.654 143.162 147.416 140.813 148.475

4 247.821 230.039 245.625 235.136 241.489 241.256 235.322 245.306 231.192 247.457

5 371.844 347.994 368.027 350.510 360.791 360.788 350.453 367.838 347.282 371.580

0.4 1 28.9584 29.4358 28.9432 29.3711 29.5375 28.7138 30.2256 28.2631 29.8445 28.5613

2 81.5429 78.7483 81.2668 79.5978 81.1300 80.1633 80.5099 80.4498 79.4116 81.0453

3 161.708 152.446 160.729 154.919 158.807 158.013 155.641 159.938 153.010 161.143

4 269.260 248.332 266.878 255.235 262.334 261.869 255.607 266.239 251.098 268.583

5 404.054 375.904 399.688 380.593 391.736 391.730 380.477 399.310 376.170 403.327
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Figure 7: Convergence of the fundamental normalized frequencies for the C-F beam in the

case 1: (a) α = −10; and (b) α = 10.
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Figure 8: Convergence of the fundamental normalized frequencies for the C-C beam in the

case 2: (a) α = −10; and (b) α = 10.

mode frequencies of such AFGM non-uniform beams often do not follow the

variation tendency which is established for their fundamental frequencies and

each mode may have its own variation law. Moreover, the variations of frequen-

cies with changing α and β are different for the material gradation patterns

called as case 1 and case 2, and for symmetric boundary conditions the natural

frequencies, in general, show opposite trends in these two cases.

The results obtained by the proposed approach implementing the DTM

demonstrate its good versatility and efficiency for solving the free vibration

problem of beams for a variety of cross-sectional non-uniformity, axial mate-
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rial inhomogeneity and boundary conditions. Moreover, using the results of the

convergence analyses of the obtained DTM solutions, we have proven a high

enough accuracy of the developed algorithm as well as have established some

issues that may happen in the computations of the natural frequencies of axially

functionally graded beams with non-uniform cross-section subjected to differ-

ent end supports. Therefore, these results can be considered as benchmarks for

other researchers.

5. Conclusions

The differential transform method is effectively applied to the free vibration

problem of axially functionally graded non-uniform cross-section Euler-Bernoulli

beams with arbitrary gradation profiles and non-uniform cross-sectional param-

eters. The method provides an effective way for solving the governing differ-

ential beam equation with arbitrarily varying coefficients. For various beam

configurations and different boundary conditions, we have used the differential

transformations to reduce the differential beam equation to a set of recurrent

algebraic equations. This set of equations together with appropriately trans-

formed boundary conditions results in to a polynomial eigenvalue problem that

allows us to find required natural frequencies. By comparing the results of cal-

culations carried out with the DTM and those available in the literature for var-

ious axially graded and non-uniform cross-section beams subjected to different

end supports, effectiveness and versatility of the DTM has been demonstrated.

The superiority of the DTM to other numerical methods has been also shown

by its capability to treat any arbitrary gradation profiles and cross-sectional

non-uniformities. This has allowed us to demonstrate the influence of the in-

homogeneity and non-uniformity parameters on the natural frequencies of the

metal/ceramic AlZrO2 beams.

The accuracy of the method is proven by supplement studies concerning the

convergence of solutions. We have concluded that the fastest convergence of the

DTM is at the centre of approximation interval and as one moves away from the
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centre, the rate of convergence slows down dramatically. Furthermore, we have

observed that though the DTM provides very accurate results for most of cases

studied in the paper, some computational issues arise when the DTM is applied

to the problems which feature high material gradients. Hence, a convergence

analysis is always needed to ensure the reliability of the solution and to avoid

inaccuracy of results. Based on the revealed advantages and drawbacks of the

DTM solutions we would like to believe that the results presented in this paper

can be useful for other researchers and can be used by them as references to

validate their results.
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Appendix A

The coefficients BK(ω), CK(ω), GK(ω) and HK(ω) denoted in (8) are pre-

sented by the following recurrent expressions:

BK(ω) =
1

(K + 1)(K + 2)(K + 3)(K + 4)
·[

ω2
(K−4∑
p=0

BpM(K − 4− p) +M(K)
)
−

K−1∑
p=0

(p+ 2)(p+ 3)(p+ 4)BpD1(K − 1− p)−

K−2∑
p=0

(p+ 3)(p+ 4)BpD2(K − 2− p)
]
,

(A.1)
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CK(ω) =
1

(K + 1)(K + 2)(K + 3)(K + 4)
·[

ω2
(K−4∑
p=0

CpM(K − 4− p) +M(K − 1)
)
−

K−1∑
p=0

(p+ 2)(p+ 3)(p+ 4)CpD1(K − 1− p)−

K−2∑
p=0

(p+ 3)(p+ 4)CpD2(K − 2− p)
]
,

(A.2)

GK(ω) =
1

(K + 1)(K + 2)(K + 3)(K + 4)
·[

ω2
(K−4∑
p=0

GpM(K − 4− p) +M(K − 2)
)
−

K−1∑
p=0

(p+ 2)(p+ 3)(p+ 4)GpD1(K − 1− p)−

(K−2∑
p=0

(p+ 3)(p+ 4)GpD2(K − 2− p) + 2D2(K)
)]
,

(A.3)

HK(ω) =
1

(K + 1)(K + 2)(K + 3)(K + 4)
·[

ω2
(K−4∑
p=0

HpM(K − 4− p) +M(K − 3)
)
−

(K−1∑
p=0

(p+ 2)(p+ 3)(p+ 4)HpD1(K − 1− p) + 6D1(K)
)
−

(K−2∑
p=0

(p+ 3)(p+ 4)HpD2(K − 2− p) + 6D2(K − 1)
)]
.

(A.4)

Appendix B

The constants taken from [19] for calculations of the natural frequencies

presented in Tables 4-6 have been used in the following forms:
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b00 = 26a0, b01 = 16a0, b02 = 6a0, b03 = −4a0, b04 = a0, where a0 = 1 (B.1)

b10 =
2(71a1 + 91a0)

5
, b11 =

2(51a1 + 56a0)

5
, b12 =

2(31a1 + 21a0)

5
,

b13 =
2(11a1 − 14a0)

5
, b14 =

−18a1 + 7a0
5

, b15 = a1,

where a0 = 1, a1 = 1 (B.2)

b20 =
465a2 + 568a1 + 728a0

15
, b21 =

2(181a2 + 204a1 + 224a0)

15
,

b22 =
259a2 + 248a1 + 168a0

15
, b23 =

4(39a2 + 22a1 − 28a0)

15
,

b24 =
53a2 − 72a1 + 28a0

5
, b25 =

2(−5a2 + 2a1)

3
, b26 = a2,

where a0 = 1.5954, a1 = 0.04, a2 = 1 (B.3)
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