Optical plasmonic response of niobium around the superconducting transition temperature C. Y. Liao^{1,2}, H. N. S. Krishnamoorthy³, V. Savinov¹, J. Y. Ou¹, K. Delfanazari¹, C. Huang³, G. Adamo³, E. Plum¹, K. F. MacDonald¹, Y. D. Chong³, C. Soci³, F. V. Kusmartsev⁴, D. P. Tsai^{2,5}, N. I. Zheludev^{1,3} - 1. Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton, SO17 1BJ, UK - 2. Department of Physics, National Taiwan University, Taipei 10617, Taiwan - 3. Centre for Disruptive Photonic Technologies, TPI, SPMS, Nanyang Technological University, Singapore 637371 - 4. Department of Physics, Loughborough University, Loughborough, LE11 3TU, UK - 5. Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan Correspondence: harish.k@ntu.edu.sg We present the first experimental evidence of a direct link between the optical properties of a material and onset of superconductivity. By measuring the dielectric constants of an unpatterned niobium film as well as the reflectivity of a nanostructured niobium metamaterial, we demonstrate a critical dependence of niobium optical response on temperature near its superconducting transition at 9K. Our studies point to a hitherto unknown connection between superconductivity and optical range plasmonics. We explain the experimentally observed critical dependence of the metamaterial resonance position on the transition temperature of niobium by means of a thermodynamics-based model that takes into account the change in the free energy of the metamaterial resonator between the normal and superconducting states. We argue that this is a signature of the transition to the superconducting state, which is detected by infrared photons.