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ABSTRACT

Theory and modelling for turbulent reacting flows is presented in the framework of
the presumed-probability density function (pdf) approach. The presumed-pdf method
accounts for the stochastic nature of composition fluctuations in a turbulent flow by
relating the composition to the statistical distribution of a small number of reference
variables. Partially-premixed combustion is most commonly modelled with reference to
the distribution of two variables: the mixture fraction is used to describe the fuel-air ra-
tio, and the progress variable is used to describe the extent of reaction. However, the use
of alternative reference variables is also investigated in this thesis — the scalar dissipation
rate, in order to account for the effect of turbulent mixing on combustion, and residence
time-based variables, in order to numerically resolve slow chemical processes for which
the progress variable is ill-conditioned. It is common to assume that mixture fraction
and progress variable are statistically independent, however there is previous evidence
that this assumption gives poor predictions in some important partially-premixed applic-
ations involving flame stabilisation. In order to account for the possibility of statistical
dependence between reference variables, this thesis focusses on the use of copulas in or-
der to construct joint-pdfs from the marginal pdfs of reference variables, and a numerical

implementation for presumed-pdf modelling using copulas is developed in this thesis.

The presumed-pdf approach relies upon models for the shape of the pdf of the reference
variables as a function of their statistical moments, which must themselves be modelled.
Transport equations for the statistical moments involve unclosed source terms, however,
integration of the presumed-pdf provides a means to obtain closure for these source
terms. Similarly, unclosed terms appear in the models for momentum exchange and
evaporation of the liquid fuel spray, and the presumed-pdf can provide the necessary
information about the state of the fluid seen by the droplets. The novel aspects of
the modelling developed include a method for modelling the temperature and velocity
fluctuations experienced by individual fuel droplets; alternative reference variables based
on fluid residence time that may improve modelling of autoigniting flow; and rigorous

and robust numerical procedures for handling the copulas in combustion simulations.

The first results chapter examines the form of the joint-pdf of normalised progress vari-
able and mixture fraction in three different partially premixed flows: a direct numerical
simulation (DNS) of fuel air ratio-stratified flame propagation; a series of non-premixed
laboratory flames featuring significant extinction and reignition; and an lifted autoignit-
ing jet lame DNS. This confirms that the dependence between progress variable and
mixture fraction is most important in lifted flame structures, and the second and third
results chapters go on to investigate the performance of the presumed-pdf modelling
formulation in the autoigniting lifted jet flame DNS and an autoigniting spray flame

experiment.
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Chapter 1

Introduction

1.1 Motivation

Conflicting demands for increased energy supply and reduced environmental impact
present important challenges for energy technologies based on fossil fuel combustion.
Fossil fuel combustion currently supplies 85% of world primary energy (BP Statistical
Review of World Energy June 2015 2015) and more than 75% of anthropogenic green-
house gas emissions (Climate Analysis Indicators Tool 2009). Both the vast scale of
pollutant emission from current fossil fuel use and diminishing reserves of fossil fuels

motivate the development of more efficient and less-polluting combustion technology.

Two modes of pollution need to be distinguished: greenhouse gas emissions (mostly
CO2) which contribute to global climate change; and air-quality pollutants (e.g. ox-
ides of nitrogen (NO, ), CO, unburned-hydrocarbons (UHC), and particulates) which
are harmful to human health in the region of emission and harmful to the ozone layer
if emitted high in the atmosphere by aircraft. CO, emissions are tied to the amount of
hydrocarbon fuel consumed which depends on thermal efficiency of combustion devices.
Emissions of air-quality pollutants, in contrast, depend on how the fuel is burned. Form-
ation of NO,, for example, can be greatly reduced by burning fuel at low-temperature
(less than 1800K). NO, emissions are important as the UK is failing to meet EU air
quality standards for nitrogen dioxide (NO,) (McGrath 2014).

Technology for reducing emissions of air-quality pollutants, however, frequently acts to
increase fuel consumption and life-cycle emission of CO,: this is the case with popular
exhaust after-treatment systems such as catalytic converters, diesel particle filters, and
selective catalytic reduction. Indeed, the performance penalties associated with after-
treatment systems entirely rule them out from consideration for aircraft applications.
Instead of costly after-treatment, a preferable approach would be to burn fuel without

producing the air-quality pollutants in the first place. However, practical application of
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low-emission combustion technology has so far eluded engineers. For example, in urban
driving conditions the NO, performance of diesel passenger cars has been shown to have
changed little in the past 20 years (Carslaw et al. 2011).

Prospective technologies for low-emission power and propulsion systems rely on highly
dilute, low-temperature combustion. Low temperature combustion prevents thermal
formation of oxides of nitrogen and, with careful control of the combustion process, it is
possible to achieve very low levels of particulates, CO and UHC at the same time (Opat
et al. 2007). This mode of combustion requires high levels of dilution (for example with
cool exhaust gas or with excess air) that can cause the fuel to burn slowly making it
difficult to ignite and stabilise the combustion process (Arghode and Gupta 2010). In in-
stances of extreme dilution, the fuel may even burn in a distributed manner without any
visible flame. Low temperature combustion technologies researched increasingly since
the 1990s include lean-burn gas turbine technologies, the Homogeneous Charge Compres-
sion Ignition (HCCI) engine (Yao et al. 2009) and a number of concepts for sustaining
flameless-oxidation in industrial furnaces (Cavaliere and Joannon 2004). Implementation

of these concepts continues to present significant technical challenges however.

In addition to utilisation of traditional fossil fuels, combustion technology needs to be
developed in order to fully exploit emerging low-carbon fuels, and in order to work
in conjunction with prospective carbon capture technologies. In one example, both
coal and solid bio-fuels may be gassified for use in more efficient or carbon capture-
compatible power plants. The gas produced has a low calorific value and is rich in
hydrogen and carbon monoxide, and these fuel properties affect how combustion systems
should be designed (Prins et al. 2007). In a second example, oxy-fuel combustion involves
combustion in the absence of nitrogen, in order to facilitate post-combustion capture of
carbon dioxide, again leading to very different design requirements for the combustion
system (Wall 2007).

The high energy density and low specific costs of liquid hydrocarbon fuels, in comparison
with electrochemical, thermal and mechanical means of energy storage, suggests that
liquid fuels will remain an important energy source in the transport sector. This is
particularly true in aviation where the weight and volume of the fuel or alternative energy
storage media has a large knock-on impact on the overall energy consumption (Epstein
2012). Supply of fuel in liquid form is a further complicating factor in the understanding,
modelling and design of combustion systems. Methods that facilitate better design of
liquid-fuelled combustion systems in particular will therefore continue to have significant

value.

Despite the long history of combustion technology, and the pressing need to move beyond
global reliance on fossil fuels, there remains a requirement for very substantial further
development of combustion technology in order to support anticipated changes in fuel

types, energy usage and energy technology, some of which have been introduced above.
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In particular, the drive to utilise new fuels in new energy technologies may lead to
exploitation of alternative modes of combustion that are neither fully understood nor

well modelled by established engineering design tools.

1.2 Combustion processes

Combustion systems are classically described in terms of two limits: fully premixed
flames and non-premixed or diffusion flames (Bilger et al. 2005). The former assumes
perfect mixing of fuel and air prior to combustion while the latter assumes that combus-
tion occurs at the interface where the fuel and oxidiser first meet. Neither limit holds
strictly in modern combustion devices for propulsion and power generation. A broad
spectrum of flame structures arise in practice, including edge flames (Buckmaster 1996),
triple flames (Domingo and Vervisch 1996) and fuel air ratio-stratified flames (Masri
2015). Such flames exhibit features of both premixed and non-premixed flames, lead-
ing to complex interactions between multiple combustion modes. These intermediate
partially-premized combustion modes arise in particular when a combustion system un-
dergoes ignition (Mastorakos 2009) and extinction (Barlow and Frank 1998) processes,
during unsteady operation, and in spray-fuelled combustion. Combustion may also pro-
ceed, wholly or in part, without the occurrence of a flame: autoignition and so-called
flameless combustion being key examples in which chemical reaction proceeds relatively
slowly compared to relevant mixing processes such that combustion is not limited by

diffusion or propagation (i.e. coupled reaction-diffusion) processes.

The diesel engine provides an illustrative example of the many competing combustion
modes that can co-exist in a single, nominally non-premixed, combustion application.
Following compression of air and residual exhaust gas to a temperature of the order
of 1000K, liquid diesel fuel is injected in one or more injection pulses. Jets of the
liquid fuel break up into small droplets as they leave the injector and penetrate into
the compressed oxidiser, and start to evaporate. The relatively cold evaporated fuel
begins to mix with the hot oxidiser and spontaneous chemical reactions, that are the first
stages of autoignition, occur between the oxidiser and the fuel within the inhomogeneous
mixture of gas and spray. Because the oxidiser is substantially hotter than the fuel, the
combustion process progresses more rapidly in fuel-lean mixtures. After an ignition
delay during which sufficient concentrations of radicals and of heat are generated by the
pre-ignition chemical reactions, the combustion proceeds rapidly to produce an ignition
kernel (Glassman et al. 2014). Given the variation of temperature with fuel-air ratio,
the composition that requires the shortest ignition delay time in order to autoignite
under quiescent conditions is described as the most reactive mixture (Mastorakos 2009).
In a subsequent period that is conventionally described as the premixed phase of diesel
combustion, the region of burnt fuel expands through the generation of further ignition

kernels by autoignition and through partially-premixed flame propagation. The progress
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of the reaction front towards the injector is inhibited by the convection of flow away from
the injector, the lack of fully-evaporated fuel, the shorter residence time and therefore less
reacted fuel, and by higher mixing rates near the injector that tend to quench combustion
processes, so that the reaction front appears to stabilise as a lifted flame some distance
away from the injector (L. Pickett 2005). Upstream of the lifted flame base there is
some pre-mixing of fuel and oxidiser leading to partially-reacted autoigniting mixture.
Downstream of the flame base there are reaction fronts extending through both fuel-
rich and fuel-lean mixture that may resemble either fuel air ratio-stratified flames or
ignition fronts, depending on the operating conditions, and also diffusion flame fronts
aligned with the surface of stoichiometric fuel-air ratio, where stoichiometric describes
the condition where fuel and oxidiser are mixed in exact proportions needed to achieve

complete combustion.

The combustion processes in the diesel engine are also affected by the turbulent flow
in which they take place, adding further complexity. A key feature of turbulent flow is
that it strains the fluid in which combustion is taking place. The laminar counterflow
has been used in numerous combustion studies as a simple model in which to examine
how combustion phenomena respond to strain. Along the symmetry axis of the coun-
terflow the property variation is one-dimensional, making the counterflow configuration
relatively straightforward to characterise using either laboratory measurements or nu-
merical simulations. In the case of non-premixed counterflow flames, involving opposed
flows of fuel and oxidiser, there is a critical strain rate above which the counterflow
will not autoignite, and a second, higher critical strain rate above which an initially
burning flame will extinguish, depending on the temperatures and compositions of the
two streams (Linan 1974; Seiser et al. 2000). The strain has the effect of compressing
the mixing layer which separates the fuel and oxidiser and thereby increasing the rate
of molecular transport. In combustion theory and modelling it is common to refer to
the scalar dissipation rate y = 22|V(£)|? which is related to the square of the mix-
ture fraction gradient magnitude |V (§)| and diffusivity 2 of the mixture fraction, and
provides a more direct measure of the mixing rate resulting from a given flow. The
critical strain rates for a given fuel-oxidiser pair therefore correspond to critical scalar
dissipation rates. High scalar dissipation rates imply fast diffusive mixing so that heat,
products or intermediate species produced within the reactive mixing layer are rapidly
dissipated. Below the critical dissipation rate for autoignition, high scalar dissipation
rates tend to retard the onset of ignition, and hence in a turbulent flow featuring a range
of scalar dissipation rates autoignition is most likely to occur in regions of low scalar
dissipation rate. The preference for autoignition to occur in fluid with relatively low
scalar dissipation rate and in lean mixtures of relatively high temperature is confirmed
by numerical simulations of turbulent flows involving either simple (Mastorakos et al.
1997) or detailed (Yoo, Richardson, et al. 2011) chemistry models, and in turbulent fuel
plumes (Markides and Mastorakos 2010).
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The species profiles in non-premixed and premixed laminar counterflow provide a simple
model for the thermochemical states encountered in a wide range of turbulent flows.
This model both provides insight into mechanisms that are at play in turbulent flames
and, in the context of flamelet modelling approaches, can be used to model both com-
position and reaction rates in turbulent flames. Gopalakrishnan and Abraham (2004)
used non-premixed laminar counterflow simulations to demonstrate the significant role
of preferential transport on ignition delay times. Knudsen, Richardson, Chen, et al.
(2011) show that in Large Eddy Simulations with the flamelet modelling approach it
is necessary to include preferential transport effects in Large Eddy Simulations based
on the flamelet modelling approach in order to achieve satisfactory predictions of the

ignition location in an autoigniting lifted turbulent jet flame.

Investigation of turbulent autoignition using either computational simulations or ex-
perimental measurements presents considerable practical challenges, however the few
studies reported provide valuable insight. Yoo et al. have done several numerical stud-
ies of autoigniting turbulent jets, including a hydrogen flame (Yoo, Sankaran, et al. 2009)
and an ethylene flame (Yoo, Richardson, et al. 2011), in order to investigate the stabil-
isation mechanism. There is also Kerkemeier et al. (2009) which is a numerical study
of an autoigniting fuel plume experiment (Markides and Mastorakos 2010). In each of
these studies autoignition points are observed upstream from the main flame and then
propagate. This continual statistical process forms the stabilisation mechanism that
holds the flame at its lift-off height. It also explains the fluctuation of the lift-off height
around its mean value. This implies that height of the flame base is strongly linked to
the autoignition time and the upstream conditions, particularly the scalar dissipation
rate distribution and the convective time of the fluid mixture between the fuel nozzle
and the ignition location. For relatively higher coflow temperatures the flame base fluc-
tuations caused by independent ignition kernels forming tend to reduce but the flame is
still predominantly stabilised by autoignition, as shown by the presence of autoignition
precursors (HO2 for hydrogen and H202 or formaldehyde for hydrocarbons) and dis-
placement speeds of the reaction front orders of magnitude greater than relevant laminar
flame speeds (Yoo, Sankaran, et al. 2009; Yoo, Richardson, et al. 2011).

A second valuable contribution of the full resolution numerical studies of turbulent
autoigniting jets contributed by Yoo et al. has been that they can serve as numerical
experiments against which less costly engineering models may be tested and developed,
as in Knudsen et al. (Knudsen, Richardson, Chen, et al. 2011) Numerical experiments
offer several advantages for model development, such as exact knowledge of the ex-
perimental conditions that were simulated. In the case of autoigniting flows, in which
an O(10K) difference in the flow temperature can lead to a @(100%) difference in the
location of ignition, there may be an O(10K) experimental uncertainty in laboratory

measurements of temperature (Cabra et al. 2005).
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1.3 Simulation in design

The development of technology that exploits the complex physics of combustion in or-
der to meet the challenges introduced above can be greatly facilitated by simulation.
Simulations can provide insight into detailed mechanisms as well as overall behaviour of
practical devices. This enables evaluation and refinement of innovative design concepts.
Without these tools the development of these advanced combustion systems will depend
on many more expensive rig tests, which both reduces the pace at which new designs

may be evaluated and provides less information about the flow field.

For a physical system where the governing equations are known exactly and accurate
numerical methods are available, it is possible to conduct Direct Numerical Simulation
(DNS) of the system. In this situation, the simulation results involve no modelling
and they may be considered exact observations in a numerical experiment. While full
resolution DNS of spray combustion has been demonstrated in very simple (laminar)
configurations (Sirignano 2010), the computational cost of the technique prevents its
application in the design process of practical combustion systems. The fundamental
reason for the high computational cost of directly simulating sprays and spray combus-
tion is the wide range of length-scales which must be considered and the large number of
droplets involved. Noting that full-resolution simulation of turbulent and reactive multi-
phase flows found in most engineering applications is considerably beyond the computing

resources anticipated for the coming decades, alternative modelling strategies are sought.

The turbulent flow field may be partially-resolved using Large Eddy Simulation (LES),
where the large energy-containing scales of turbulent motion are resolved and smal-
ler scale processes, including viscous dissipation and most combustion phenomena, are
modelled. Alternatively the turbulent flow field may be ensemble averaged and modelled
through the Reynolds-Averaged Navier Stokes approach, in which only selected fields of
ensemble statistics are resolved and higher-order statistics affecting these statistical mo-
ments are modelled. In both LES and RANS, moments of the chemical reaction rates
must be modelled and the irregular nature of turbulent flow lends itself to a statistical
modelling approach (Pope 2000) and several statistical approaches have been proposed.
Broadly these approaches may be described as either presumed probability density func-
tion (pdf) approaches or transported-pdf approaches. In the presumed-pdf approach, the
properties of the fluid are related to a smaller number of reference variables, for example
using flamelet (Peters 1984a) or Conditional Moment Closure approaches (Klimenko and
Bilger 1999), and then the shape of the reference variables’ probability density function
is modelled based on modelled values for a number of its moments. In transported-pdf
methods (Pope 1985; Pope 1994) a transport equation for the pdf is solved, typically
with a Monte Carlo-type numerical method. Although chemical source terms appear in

closed form once the joint-pdf of composition is determined, diffusive fluxes appearing
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in the pdf transport equation must still be modelled. Simulation using the transpor-
ted pdf approach demands greater computational resources than presumed-pdf methods

typically.

Transport equations for the statistical moments required in the presumed-pdf approach
involve unclosed source terms, however, integration of the presumed-pdf provides a
means to obtain closure for these source terms. Similarly, unclosed terms appear in
the models for momentum exchange and evaporation of the liquid fuel spray, and the
presumed-pdf can provide the necessary information about the state of the fluid seen by
the droplets. Partially-premixed combustion is most commonly modelled with reference
to the distribution of two variables: the mixture fraction is used to describe the fuel-air
ratio, and the progress variable is used to describe the extent of reaction. However, the
use of alternative reference variables has also been investigated, such as the scalar dissip-
ation rate (Bushe 1996; Grout 2009), in order to account for the effect of turbulent mixing
on combustion. It is common to assume that mixture fraction and progress variable or
scalar dissipation rate are statistically independent, however there is previous evidence
that this assumption gives poor predictions in some important partially-premixed ap-
plications involving flame stabilisation, and presumed-pdf modelling accounting for such

dependence of the reference variables requires further investigation.

1.4 OQOutline

This thesis is motivated by the important role of numerical simulation in the devel-
opment of future combustion technology, and the need for computational simulation
methods with high predictive accuracy and low computational cost across a wide range
of combustion phenomena. The thesis contributes to statistical modelling of turbu-
lent combustion using the presumed-pdf approach, and focusses on its application to
partially-premixed combustion modes, and autoignition and fuel spray effects in partic-
ular. The central modelling aspect developed in this work is the application of models
for the presumed joint-pdf in order to obtain improved modelling of chemical reaction

and spray effects.

In Chapter 2, theory and modelling for turbulent reacting flows is presented in the frame-
work of presumed-pdf modelling. In Chapter 3, modelling for the presumed joint-pdf of
reference variables used in combustion modelling is introduced, focussing on the copula
approach introduced to combustion modelling by Darbyshire and Swaminathan (Darby-
shire and Swaminathan 2012). Chapter 4 sets out methods that address challenges
concerning the numerical implementation of presumed-pdf modelling employing joint-
pdfs based on copulas. The novel aspects of the modelling developed include a method
for modelling the temperature and velocity fluctuations experienced by individual fuel

droplets; alternative reference variables based on fluid residence time that may improve
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modelling of autoigniting flow; and rigorous and robust numerical procedures for hand-

ling the copulas in combustion simulations.

Chapter 5 examines the form of the joint-pdf of reaction progress variable and mixture
fraction in three archetypal partially premixed flows: in a DNS of fuel air ratio-stratified
flame propagation (Richardson and Chen 2016); in a laboratory experiment involving
extinction and reignition of a nominally non-premixed flame (Barlow and Frank 1998);
and in an autoigniting lifted jet flame (Yoo, Richardson, et al. 2011). This confirms
that the dependence between progress variable and mixture fraction is most important
in lifted flame structures, and Chapters 6 and 7 go on to investigate the performance of
the presumed-pdf modelling formulation in the autoigniting lifted jet flame case (Yoo,
Richardson, et al. 2011) and autoigniting spray flame (Idicheria and Pickett 2007a; M.
Pickett 2016).



Chapter 2
Theory and Model Development

Combustion usually occurs in a turbulent mixing field in practical devices. Turbulence
can have a beneficial effect of enhancing the rate of mixing between fuel and oxidiser, and
between reactants and products. The interaction between turbulence and combustion is

integral to modelling of combustion systems.

In this chapter, the governing equations describing reacting flow will be presented. Since
it is generally not possible to resolve these equations fully in numerical simulations,
ensemble averaged equations with closure models will be introduced. Modelling for a

dilute fuel spray, and its interactions with the turbulent flow are then introduced.

The modelling approach that is presented characterises the thermochemical state of the
fluid in terms of a limited number of reference variables, and accounts for the statistics
of the fluctuations of composition in the turbulent flow by presuming a particular func-
tional form for the (joint-) probability density functions (pdfs) of the reference variables.
Methods for modelling the relationship between the thermochemical state and the ref-
erence variables through an analogy between turbulent flames and laminar flamelets are
presented, and approaches for modelling joint-pdfs of reference variables using copulas

are presented in the subsequent chapter.

2.1 Governing equations

The dynamics of a viscous, continuum fluid, are governed by coupled set of partial
differential equations. Conservation of mass can be stated by the continuity equation

given by
dp  Opu, .
— = 2.1
ot tom, 0 21

where p is the gas phase density, u,; is the velocity along the co-ordinate z,, and S

(2

represents a source term which can be used to represent the change in the mass of gas,

9
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for example due to evaporation of a fuel spray. The conservation of momentum can be

stated as

d = —— ' 2.2
ot | ox, or, oz, TP (2:2)

J % J

in which p is the pressure, f; are the body forces, and 7, is the viscous stress tensor.

For a Newtonian fluid, the viscous stress tensor can be expressed as

o,
_ 2 Oukg +u<8ul uﬁ) (2.3)

Tig _§M8xk R Oz Oz,

where p is the dynamic viscosity of the mixture. The momentum equations solved in
the principle coordiate diections are know as the Navier-Stokes equations. Together,

Equation 2.1 and Equation 2.2 fully describe flow of a Newtonian fluid.

In addition to the mass, momentum equations, the transport of a generic passive scalar

can be expressed as,

dpp  Opu;o 0 1)) :

J J

where D, is the diffusivity of the scalar and S » is the source term of the scalar due, for

example, to evaporation.

In the case of chemically reactive systems, additional transport equations are required

for each chemical species. The temporal evolution of the mass fraction Y of species « is

opY, Opu,;Y, 0
pa+ pu’LOt

A

where w,, is the reaction rate of Y, with units kg/m3 /s representing the net production
and consumption of a species due to chemical reaction, and V,, is the diffusion velocity.
Using the Hirschfelder and Curtis (Poinsot and Veynante 2005) approximation, the

diffusion flux YV, can be approximated as

oY,

 Ox,

Y, V., =—pD

(%

(2.6)

where D, is the diffusion coefficient of species a. This approximation would normally
not satisfy global mass conservation in the case of unequal species diffusivities, and
correction velocity would need to be introduced to Equation 2.5, however, in this thesis
equal species diffusivities is assumed and global mass conservation is conserved. The

final form of the species transport equation is

opY,  Opu,;Y, d ( Y,
+ = |r
ox;

7
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In non-isothermal flows, the energy of the flow must be accounted for using a relevant
thermodynamic variable. In this thesis, static enthalpy is used. The entalpy of the
mixture is the sum of the individual enthalpies of all N chemical species present in the

mixture.

T
Ah}(T,,,ef) +/ CpadT
Tref

(2.8)

N N
h= ;Yaha: ;Y

where Ah°f is the enthalpy of formation at a reference temperature 7.,  and c,, ., 18 the

isobaric specific heat capacity of the species. The energy balance equation is given by
Oph  Opush _ Dp Ou; 04,

ot " om; Dt oz T ow

—q (2.9)

where the second term on the RHS represnets viscous heating and ¢ is any source term
associate with heat exchange into the gas, for example from a spray or from radiation.

The enthalpy flux g, is given by

:—)\7+th0‘ o a (210)

where A is the thermal conductivity of the mixture. The first term represents heat
diffusion by Fourier’s Law and the second term represents the enthalpy flux generated

by diffusion of species.

dph  Opu;h  Dp ou; O
ot =0 TTig, T\ e h 2.11
ot + axj Dt REY Ox ox P Z aYaVa ( )

2.1.1 Turbulence

Turbulent flows governed by Equations 2.1 and 2.2 are characterised by unsteady and
irregular three-dimensional rotational motions across a wide range of scales. The largest
length scales of the turbulent motions is often denoted as the integral length scale, L,
and may have a similar order of magnitude to the main geometric features driving the
flow. These structures are said to be within the energy containing range and contain
most of the kinetic energy k of the turbulence of order u’ 2. Here v is the root mean
square (rms) of the turbulent velocity fluctuations. If no energy is added to the flow,
these structures will eventually begin to break down into smaller structures, transferring
their kinetic energy in the process. This range of scales is known as the inertial range.
The rate of kinetic energy transfer to the smaller scales is determined by the kinetic

energy dissipation rate

en — (2.12)
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and is assumed to be constant in the inertial range. The dissipation of larger scale
kinetic energy to the smaller structures is known as the turbulence cascade (Pope 2000).
This process continues until all the kinetic energy is dissipated by the smallest scales

into heat in the dissipation range.

The turbulent Reynolds number (which represents the ratio of inertial to viscous forces)

is defined as: '
Re, = - L (2.13)

where v is the kinematic viscosity. The smallest length scale of the turbulence is known
as the Kolmogorov length scale (Kolmogorov 1991). Using dimensional analysis, the

length scale can be approximated as

n= (”3>1/4 (2.14)

3

With the assumption of constant kinetic energy dissipation to the smallest scales, the
ratio between the smallest and largest length scales in the flow can be approximated as

a function of the turbulent Reynolds number Re, according to

Lo/ ~Re2/*, (2.15)

2.1.2 Turbulence Modelling

The scaling argument for L../n above indicates that the range of scales in a turbulent
flow increases with Reynolds number. Since the turbulent Reynolds number in practical
combustion systems is large (estimated as @(10%)-0(107) in gas turbine combustors) it
can become impractical to solve the governing equations for the entire range of scales.
The high computational cost of fully-resolved turbulence simulations, called Direct Nu-
merical Simulations (DNS), means that DNS is restricted to relatively low turbulent
Reynolds number flows. DNS is used mostly as a research tool in order to investigate
in detail the physical processes arising in turbulent flows, rather than to obtain prac-
tical predictions. In order to obtain useful predictions at a lower computational cost, a
portion of the flow dynamics must be modelled. There are two methods to achieve this:
Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes (RANS).

LES is an intermediate modelling approach between RANS and full-resolution DNS. In
LES, the governing equations are spatially filtered at a specified filter width, with a
scale lying somewhere within the inertial range. The filter operates as a low-pass filter
removing the small scales, eliminating the necessity to resolve them. Consequently,
the smallest scales are modelled with models known as sub-grid scale (SGS) models.
Since LES models the scales below the filter width, it allows the spatial resolution of the
discritized governing equations to be more coarse than with DNS, allowing the simulation

of more complex, higher Reynolds number flows.
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The RANS approach is the opposite extreme of DNS. It considers an ensemble average
of the governing equations, such that it is only necessary to resolve gradients of the
ensemble averaged flow quantities, and to completly model the unresolved physical pro-
cesses. Since the ensemble-averaged flow features typically exhibit length scales on the
order of L, rather than 7, the computational cost of simulating high Reynolds number
turbulent flow is vastly reduced. The draw back is that the validity of the predictions is

dependent on the accuracy of the modelling for the unresolved processes.

Both RANS and LES are used by engineers in industry and the use of either depends on
the application and the level of fidelity required from the solution. In terms of turbulent
(spray) combustion modelling, RANS and LES present similar challenges concerning
modelling of unresolved processes, and some modelling approaches may be applied in
either the RANS and LES contexts. The burden of modelling is generally greater in
RANS, since a greater range of processes must be modelled, and this thesis focusses
exclusively on RANS modelling, however it may be noted that many of the approaches

developed are equally applicable in the LES context.

2.1.3 Reynolds-Averaged Governing Equations

Ensemble averaging of the governing equations is achieved by decomposing the flow

properties into two components

b=+ (2.16)

where ¢ and ¢’ are the ensemble average and fluctuating components respectively. Due
to the substantial density variation in combusting flows, density-weighted averaging is

used more commonly,

po=pd+ (pg)". (2.17)
Defining Favre variables as
- po 0)’
¢ — pf,@b” — (p,) (218)
p P
gives the decomposition as
pqu =d+9". (2.19)

The Favre averaged mass conservation equation may be written

op _ opw;

o T oy = PO (2.20)

J

The Favre averaged momentum equation (neglecting body forces) may be written

(2.21)

—~ v and — fond V4
opu, N opuu; op 0 (7/77/) N ory; 0t

at By oz, 0x oz, | oz

J % J J
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where 7, is the viscous stress tensor as a function of the Favre filtered quantities, and

j
following Vreman et al. (1995), 7/ is often neglected. The Reynolds stresses puju’j are

modelled using an eddy viscosity model:

— 2( 0
— pujuf ~ 2,8, — (,ut auk + pko, ) (2.22)
Ty

where (1, is a turbulent viscosity, .S, ; is the mean rate of strain tensor, 4, is the Kro-

ij
necker delta, and k is the turbulent kinetic energy:
_ V4

k= Uj U (2.23)
To obtain the turbulent viscosity in a RANS simulation, the k-¢ model is commonly
employed, in which additional transport equations for the turbulent kinetic energy k
and the turbulent dissipation rate e are solved. In this thesis, the realisable form of the
k — € equations are used (Shih et al. 1995).

dpk  Opku, 0 (py Ok Ou; 2 Ou; Ou;
( >_:U'tS (Mta$] pk>8mj (2.24)

o i
ot Ox; Ox; \ oy, Ox; 70z 3
dpe  Opeu; 0 (,ut Oe ) du,;
-+ — — = pC,8¢ — pCy——= ps— (2.25)
ot Ox; Ox; \ o, 0z k+ \/7 Ce, dx
where the constants are Cy, = 1.9, C, = —0.33 and
C; = max <0.43, 77_7_5>, where (2.26)
k
=5- 2.27
n=>5- (2.27)
= 1/25:;5:; (2.28)

and buoyancy terms and laminar viscosity have been neglected. This modification of
the standard k& — ¢ equations provides better predictions for the spread rate of planar
jets that are studied in this work. Aside from a slight modification of the € equation, the
primary difference between the Realizable and standard k—e are in the calculation of the
turbulent viscosity p,, specifically that the coefficient C', is no longer constant but vari-
able, which avoids the problem of non-realisable values of the Reynolds stresses (StarCD
4.20 Methodology Manual 2013):
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The turbulent viscosity p, is given in terms of a variable C, as:

2
Ly = pC’H?, where (2.29)
k -1

C, = (AO + ASU*E> (2.30)
Ay = 4.0 (2.32)
Ag = V6cos(¢) (2.33)

1 S8 Sk
¢ = — arccos | V6—LIE"kL (2.34)

3 5.9,

ij°4]

The turbulent Schmidt numbers are taken as o, = 1.0 and o_ = 1.2. The mean rate of

strain tensor S, ; and vorticity tensor 2, ; are given by

i =5 (axj + ax) (235)
173 (amj - ax) (2:36)

The Favre averaged equation for a generic scalar, as described by Equation 2.4, may be

written

ops  opu;6 o (. 98 PR —
ot | oz, Oz, PD¢37j mj(pujcﬁ )+pS¢, (2.37)

J

where ﬁu;’ @” is the scalar flux commonly modelled through a gradient transport as-

sumption by

oty 09

pu’ ¢” = 2.38
pusd" =P ou, (2.38)

where o is the turbulent Schmidt number, and p, is the turbulent viscosity given by
Equation 2.29. The final transport equation for a passive scalar is given by
opb  O0pi;6 D 06\ —=
po  0PT6 _ (pﬂ ¢)

— ; 2.
ot T ow, ~ow Mo, ) TP (2:39)

where D, is the effective diffusion coefficient given by

n
D,=D,+ (2.40)

2.1.4 Reference variables

In a typical chemically reacting system with complex hydrocarbon fuels, there may be

hundreds or thousands of species present. In DNS, each of these requires the solution
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of a transport equation which imposes a substantial computational cost on finding the
solution. If the thermochemical state of the system is described by a set of species mass
fractions Y,, and enthalpy h, the full set of states is embedded in (a + 1)-dimensional
space. However, not every point in thermochemical space is realisable — due to the
physical properties of the system, additional restrictions are placed on the state and
hence the total number of degrees of freedom is less than « + 1. Firstly, the mass

fractions are subject to the restriction
Yy, =1, (2.41)
(o2

which restricts the set of realisable states to an a-dimensional manifold embedded in
« + 1-dimensional space. The elemental masses must be conserved, and therefore the

initial composition restricts the composition to those that meet this criteria.

More specifically, in most combustion applications the range of realisable states forms
a thin manifold in thermochemical space (Pope 2013), and by approximating this thin
manifold by a similar low dimensional manifold the realisable states may be be de-
scribed using a coordinate system of much lower dimension. A set of n such coordinates
are referred to as reference variables. Techniques exist, such as Principal Component
Analysis (Sutherland and Parente 2009), to automatically determine the optimal n-
dimensional coordinate system (the principal components) for a given set of observations
either from DNS or experiment, where n may be chosen based on the acceptable error in
the approximation. This approach however relies on having sufficient data a-priori to ap-
ply the analysis to. Alternatively, reference variables based on physical arguments about
turbulent combustion processes have been defined, and then a corresponding manifold
in thermochemical space is generated either by physical considerations (for example, the
Burke-Schumann limit (Burke and Schumann 1948)) or from the solution to canonical

combustion problems such as premixed or diffusion flames.

Examples of reference variables used in turbulent combustion include the mixture frac-
tion, progress variable, scalar dissipation rate, enthalpy, temperature, entropy, residence
time or age, and many others. In this thesis, the two main reference variables that will
be considered are the mixture fraction, which describes the degree of mixing between fuel
and oxidiser streams, and the normalised progress variable, which describes the progress
of the reaction from unburned to fully burned. In addition, two new reference quantities
based on residence time will be introduced. Mixture fraction and progress variable are
an appropriate choice for partially-premixed systems which exhibit varying degrees of
reactedness and variations in local equivalence ratio. Their combination is appropriate
as the effects of inert mixing and reaction are typically orthogonal in thermochemical
space and therefore provide a useful set of coordinates to parametrise the a wide range

of possible states.
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This thesis will focus on methods in which a series of solutions of premixed or non-
premixed laminar flamelets are used to populate the thermochemical state in composition

space.

2.1.4.1 Reference variables for partially-premixed flames

In non-premixed combustion the fuel and oxidiser are initially separated in different
streams and must mix at the molecular level in order to react. In order to characterise
the degree of mixing that has occurred, the concept of a mizture fraction was intro-
duced (Bilger 1977). The mixture fraction may be defined as the fraction of mass that
originated from the fuel stream. In the limits of infinitely fast chemistry or equilibrium
chemistry, the thermochemical state in an adiabatic non-premixed combustion system is
uniquely defined by the mixture fraction. Experimental measurements of non-premixed
flames commonly exhibit a strong dependence of the thermochemical state on mixture
fraction, and this motivates the use of mixture fraction as a reference variable for non-
premixed combustion (Barlow and Frank 1998; Klimenko and Bilger 1999; Peters 2000).

In premixed combustion flame fronts propagate through unburned mixture due to the
combined effects of reaction and diffusion. In the flamelet combustion regime, the
composition through the reaction-diffusion layer approaches a one-dimensional manifold
in composition space, and a reaction progress variable can be used to describe the
extent of the reaction process along this trajectory through composition space (Knudsen,
Kim, et al. 2010). Furthermore, in partially-premixed combustion involving variation of
reaction progress and equivalence ratio, a progress variable may be used in combination

with a mixture fraction to characterise the thermochemical state.

Mixture fraction and progress variable are both thermochemical properties of the flow,
and provide a useful basis for modelling the thermochemical state of a range of tur-
bulent reacting flows. However, there is not necessarily a unique mapping between a
pair of mixture fraction and progress variable values and the thermochemical state: for
example, the same mixture fraction/progress variable pair may be realised during either
an extinction or an ignition event, between which there are differences in composition.
In terms of realisable thermochemical state, mixture fraction and progress variable are
no longer sufficient coordinate system to describe the thin composition manifold in ther-
mochemical space, which now requires at least 3 coordinates to closely approximate.
In this example it is useful to refer to information that can indicate the direction of
the trajectory through this mixture fraction/progress variable state. Mixture fraction
dissipation rate in particular is a useful measure of how the flow affects extinction and
ignition processes, and it has been used as a reference variable in a number of modelling
approaches (Bushe 1996; Knudsen, Richardson, Doran, et al. 2012).
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For kinetically-limited processes such as autoignition or post-combustion NOx formation,
measures of the flow residence time have been used as reference variables (Shin et al.
2016). Therefore it is relevant to consider how variables providing information about
the flow and mixing dynamics can supplement the use of variables describing the fuel-

oxidiser ratio and extent of reaction.

This thesis focusses in large part on the application of mixture fraction and progress
variable to autoigniting combustion problems. In the following Sections, the definitions
of mixture fraction and progress variable used in this thesis will be formalised, and two
new residence time-based reference variable for autoigniting problems are defined and

the motivation for its application explained.

2.1.4.2 Definitions of the mixture fraction

For the purposes of modelling, it is convenient to define mixture fraction Z based on its

transport equation

0pZ N opu;Z 0 < 32) (2.42)

ot T ox, o5, \"P%ou,
setting the initial/boundary value of mixture fraction equal to unity in the fuel stream
and equal to zero in the oxidiser stream. However Z is a fictitious fluid property which
can be simulated numerically but cannot be measured directly. In order to evaluate
the mixture fraction from experimental data it is necessary to provide a definition of

mixture fraction as a function of the thermochemical state.

Since elemental mass fractions are conserved during chemical reaction, mixture fraction
may be evaluated by considering the elemental mass fractions in a mixture. Hydrocarbon
combustion in air involves predominantly carbon, hydrogen, oxygen and nitrogen atoms
and, assuming that all chemical species have equal diffusivities, the mixture fraction can
be evaluated equivalently from the elemental mass fraction of any of these elements, or
from a linear combination of them. It can be shown that, given the assumption of equal
thermal and species diffusivities, the mixture fraction based on any linear combination
of elemental mass fractions and enthalpy is consistent with Equation 2.42. In general
however, chemical species do have different diffusivities and, in particular, atomic and
molecular hydrogen have substantially higher diffusivities than other species in hydro-
carbon flames. Therefore a particular linear combination of elemental mass fractions
must be specified in order to define mixture fraction. Following (Bilger 1989a), it is
conventional to specify the weighting of the carbon, hydrogen and oxygen based on the
elemental ratios in a stoichiometric global chemical equation between the fuel (F') and

oxidiser (O) streams, yielding a product mixture (P),

prYp +poYo = 1pYp (2.43)
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where p are stoichiometric coefficients. The mixture fraction is given by

Yip— (Yo — Yo,2>(NFWF/MOWo>

Z =
YF,l —Yo,2(ﬂFWF/MoWo)

(2.44)

where W, are the molar masses and the indices 1 and 2 indicate the fuel and oxid-
iser streams, respectively. It should be noted that mixture fractions defined based on
elemental mass fractions are not strictly conserved scalars when considering differential

diffusion.

The mixture fraction is a measure of the fuel-oxidiser ratio and, assuming equal dif-
fusivities, there is a simple relationship between the mixture fraction and the fuel-air
equivalence ratio. The fuel-air equivalence ratio is the gravimetric fuel-air ratio norm-
alised so that it is equal to unity in stoichiometric mixtures. It can be related to the

mixture fraction by,
Z (]‘ — Zst)

=127 Z.,

(2.45)
where Z_, is the stoichiometric mixture fraction.

The mixture fraction turbulent dissipation rate is a measure of the rate of decay of

mixture fraction variance due to molecular diffusion, given by

YA 2
(9xj> ‘

X= 22?( (2.46)
X is potentially useful as a reference variable since its magnitude characterises the effect

of turbulent mixing on non-premixed flames.

2.1.4.3 Definitions of the progress variable

We require a definition that gives a monotonic variation of progress variable from the re-
actant mixture composition through to the product composition. In this study we focus
on species-based progress variable definitions rather than considering equally-valid tem-
perature or sensible enthalpy-based definitions. The non-normalised progress variable

Y, is defined as a linear combination of a the reactive species,

Y, =) a,Y, (2.47)

where a,, are constant weighting applied to each of the N species in the mixture. Due
to the fact that there is often a significant quantity of hydrogen and carbon monoxide
in the products of fuel-rich flames, a common definition for non-normalised progress
Variable is YC = Ycoz + YH2O + YH2 + YCO
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Conventionally progress variable in premixed flames is normalised using the fully burnt
value of Y, in order to obtain a parameter varying between zero in the reactants and
unity in the products. In flows involving variation of the fuel-oxidiser ratio, there is not
a unique product composition, and the normalising value is taken as a function of the

mixture fraction,

c = Yc_Yc,u<Z) (2 48)
Yc,b(Z)_YC,’LL<Z> ‘

where subscripts u and b denote the unburnt and burnt conditions for a given value of
mixture fraction. The transport equation for ¢ may be derived from Equation 2.7 (Bray,
Domingo, et al. 2005):

dpc  Opu;ec 0 dc )

7

where w, is the reaction rate of normalised progress variable. The mixture fraction
progress variable cross-dissipation terms have been neglected (Bray, Domingo, et al.
2005).

2.1.4.4 Residence time-based reference variables

It is noted that the rapid change of a progress variable ¢ through a premixed flame
or autoignition implies that the variation of thermochemical state is well resolved in
progress variable space during this process, but poorly resolved around ¢ = 0 or 1. Hence
modelling using progress variables based on the major species may be ill-conditioned and
sensitive to numerical integration. Close to the fully burned state, this limits the ability
of the progress variable approach to predict slow processes such as NO_ formation.
The present work addresses autoigniting flows, in which there is a very limited increase
in progress variables based on major reactants or products during the early stages of
the ignition delay. In Section 6.2, it is demonstrated that this causes problems for
the accurate time integration of the progress variable. The use of residence time-based

quantities as reference variables is investigated and shown to avoid this problem.

The fluid-age (a,,) is a continuum property of a fluid that is defined by a transport
equation in the form proposed by Sandberg (1981) which was later generalised by Ghirelli
and Leckner (2004) and Shin et al. (2016) to variable property flow. For flow of a fluid

consisting of one or more chemical species with equal diffusivities, the fluid-age transport

oa da 10 da
Doy, =2 2 (D, ) +1 2.
ot + oz, pox, ( a@@) * (2:50)

equation is given by

The first term in Equation 2.50 represents unsteadiness of the local fluid-age, the second
term represents advection by the convective velocity u,, the third term represents the
effects of diffusive flux of material between regions with different values of fluid-age, and

the final source term represents the process of age increasing due to the passage of time.
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Note that the fluid-age may be interpreted as an instantaneous mass-weighted average
of the elementary-age of atoms in an infinitesimal volume within the flow (Shin et al.
2016). The fluid-age a,, is not a convenient reference variable for use as a tabulated
reference variable because it is not bounded, and may tend to infinity with increasing
time, such as in a recirculation zone. This differs from the case of scalar dissipation rate,
for example, for which an arbitrary upper bound may be chosen to represent a value
unlikely to be achieved in the flow field of interest. Therefore an alternative approach

is developed in this work.

In order to obtain a bounded scalar a that is age-dependent, the source term in Equa-
tion 2.50 is substituted for a non-linear source term. The transport equation for a is

given by

Opa , Opuia _ 9 ([ 5 Da 2 A=
WJF oxr;,  Ox, ( D“ax) +ptl\/ﬁ (251)

where ¢, is a characteristic timescale that can be related to the fully burned thermo-
chemical state. Provided that the initial and boundary conditions are restricted to
a € [0,1], the source term on the right hand side of Equation 2.51 has the desirable
property that as @ — 0, v/1 —a ~ 1 and hence a increases linearly with time; and as
a — 1 then /1 —a — 0 so that a will not exceed 1 (given initial conditions a € [0, 1]).
Hence, in the limit of zero advection and diffusion, the variable a essentially constitutes
a remapping of a,, from R™ — [0, 1]. The plot of a(t) over time is quadratic, as seen by

the integration of the source term over time while neglecting convection and assuming

constant p:
t t2
t)=2—-— — 2.52
alt) = 2= — = (2:52)
t t
Oda 2 t
—=—(1—-- 2.54
ETE Sl (2.54)

_ 2\/1 ~a (2.55)

where V1 —a=1— 1% is chosen for consistency.

C

Alternatively this could be interpreted as a remapping from normalised progress variable
¢ to a. Over the course of a homogeneous ignition event, ¢, = ¢(t) and a, = a(t), and
therefore we may write

a, = a(ct(cy))) (2.56)

where the inverse function ¢~1(¢) is guaranteed to exist due to the requirement that c

is strictly monotonic in time.

Therefore, in the homogeneous reactor case, a may be considered an equivalent reference

quantity to c. It will however have different mixing characteristics: whereas ¢ is based
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on normalised mass fractions and therefore has the same linear mixing behaviour as Y,

a has a non-linear source term and will exhibit different mixing.

One advantage of a progress variable over a in its current form is that species mass
fraction profiles may change rapidly through a flame. The gradient of the progress
variable varies most strongly through the flame and therefore there intermediate species
are well resolved in progress variable space (i.e. % is small). In order to maintain
adequate resolution in reference variable space to describe intermediate species, the
reference variable a is combined with the progress variable to give a new reference

variable, b = (a + ¢)/2, with transport equation

opb  dpu,b 0 ab 1 1.
9p0 i~ 9 (D, ) p Tt e 2.
ot 0w, o, (” bax)“’tl @ F Py (2:57)
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that can achieve both accurate ignition delay times (22 — 1 as b — 0) and sufficient

ot
8831’;, remains small through flame). Here, D, is

the laminar diffusivity of the scalar b and may be a function of  and scalar gradients

resolution in reference variable space (
da Oc
22 and g<.

In the Section 4.6, the reference variables a and b are shown to successfully avoid the
problems discussed above which are inherent in using a progress variable approach for

autoigniting flows.

2.1.4.5 Mapping reference variables to quantities of interest

Once the instantaneous reference variables described above are solved for, the problem
remains of linking these reference variables to quantities of interest such as species mass
fractions. In this thesis, the approach taken is to tabulate the quantities of interest as
a function of chosen reference variables using a laminar flamelet table. Quantities such
as mass fractions or temperature are determined from the values of reference variables

through the flamelet function. For two reference variables n and (, this has the form

¢($,t> = ¢*(77($7t)aC($vt))v (2'58)

which links the value of the instantaneous quantity ¢(x,t) at point z and time ¢ with
the values from the flamelet table ¢*(n, () which correspond to the values of 7 and ¢ at
the space-time point (z,t). The choice of reference variables will depend on the type of
flamelet to be stored in the table.

Such a laminar flamelet table may be populated using existing combustion codes. Sev-
eral such codes were used throughout this thesis, depending on the application of the
flamelet table. In addition, for the turbulent autoigniting flamelet solutions required for
tabulation in Chapter 6, a singly-conditioned Conditional Moment Closure (CMC) code

was written to provide the solutions.
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CMC (Klimenko and Bilger 1999) is a combustion model which solves a transport equa-
tion for the evolution of composition as a function of mixture fraction. In the zero-
dimensional formulation, the following transport equations are solved for the conditional

species mass fractions (Q|n):

Qxln)

_ 9*(Qy,
ot <X|77>87772

%) 4 ol (2.59)
Here, (x|n) is the conditional scalar dissipation rate and (w;|n) is the conditional reaction
rate of species k. In the current implementation, no conditional energy equation is solved,
since the conditional averaged enthalpy equation is conserved by chemical reaction, and
the profile remains linear and unchanged under the diffusion operator in Equation 2.59;
instead, temperature is calculated from fixed conditional enthalpy by means of a Newton-

Raphson iteration.

The conditional scalar dissipation rate (x|n) is given by the AMC model (O’Brien and

Jiang 1991) as a constant function of mixture fraction:

2
XM = Xmaz exp (—2 [exf ™ (27— 1)] ) (2.60)
where X,,, ., 15 the peak scalar dissipation rate.

Equation 2.59 is solved in mixture fraction space over time, starting from an initial con-
dition in which linear mixing of species and enthalpy is assumed between the boundary
conditions, and with appropriate conditions produces a solution ¢(n,t) for an autoignit-
ing flamelet. To create a two dimensional laminar flamelet table, the time coordinate
is then mapped to the appropriate second reference variable. In the case of progress
variable, ¢(n, t) is calculated for each point in mixture fraction space and time, and then
the solution interpolated onto a mixture fraction-progress variable grid. In the CMC
calculations both a and ¢ are known and therefore b is known, and the same interpola-
tion process can be applied in order to generate a laminar flamelet table parametrised by
either of these two reference variables. Any relevant source terms in the reference vari-
able transport equations may also be tabulated and therefore be available when solving

the transport equation.

A requirement for the remapping from time to a reference variable is that the reference
variable is monotonically increasing in time in the CMC simulation for all mixture
fractions. This property is satisfied by both reference variables ¢ and ¢ and therefore is

automatically satisfied for b.

2.1.4.6 Reference variable moment equations

—_— —~—

. =5 o~ 2 2 . .
The Favre averaged transport equations for Z, ¢, Z”~, ¢”” are given here in the form

presented by Darbyshire and Swaminathan (2012):
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The first term in each of Equations 2.61-2.65 represents unsteadiness of the local Favre
averaged quantity, the second term represents advection by the convective velocity u;,
and the third term represents the combined effect of molecular diffusion and turbulent
transport. The turbulent fluxes may be modelled through the gradient approxima-
tion (Poinsot and Veynante 2005):

e 97
777 = —pt 2.66
pu; Py, ox, (2.66)
— 07"
7% = —pht 2.67
pu; o, or, (2.67)
(2.68)
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and similarly for & and ¢”?. Here o, is the turbulent Schmidt number for the scalar

and p, is the turbulent viscosity. The scalar dissipation rates in the Favre variance and
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covariance equations are modelled by the variance and the inverse turbulence timescale:

977077 | E—
Py = 2pD—— do o, = 2%2”2 (2.69)
- oc” oc” g~
PXo = 2pD8x‘ P Zp%c”Q (2.70)
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The transport equation for the Favre averaged scalars a and b are given by:
opp  Opu;¢ 0 9¢"* —
ot T 0w = ou \ PP g w9 | 05y (2:72)
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for ¢ € {a,b} with S, = V1 —a/t; and S, = V1 —a/t; +&,/2. The corresponding
variance transport equations are given by

ot ox;  Ox; ¢ ox,
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In each case, the same modelling steps as described for the mixture fraction and progress

variable moment transport equations are applied.

2.2 Liquid phase

Many combustion systems use liquid fuels, particularly internal combustion engines and
gas turbines in transport applications. Computational simulation of fuel injection and
atomisation is particularly challenging because liquid fuels have high density ratios com-
pared to the vapour and they are injected at high velocity, resulting in high Reynolds
and Weber numbers (We = pu?D /o, where D, is the droplet diameter and p and o
are the density and surface tension of the liquid, respectively) — implying impractically
fine-scale resolution is required. More commonly, heuristic models are used for spray
injection and atomisation, and the two-phase simulation is restricted to the dilute spray
processes after the contiguous liquid injected has broken into relatively small and widely

spaced droplets.

A number of alternative approaches have emerged for modelling the transport of dis-
persed liquid droplets in a gaseous carrier phase and these may be characterised broadly
by whether both the gaseous flow and the statistical moments of the liquid spray are

represented in an Eulerian sense, or whether a Lagrangian description of the dispersed
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liquid spray is combined with an Eulerian description of the gas. In this work a Lag-
rangian approximation is adopted for the spray. Since the number of physical droplets
in a computational cell can be very large, physical droplets with similar properties are
grouped into a parcel representing an ensemble of droplets. Another interpretation of the
Discrete Droplet Model is to consider that the ensemble of numerical parcels corresponds
to a Monte Carlo representation of the probability density function of spray properties,
or droplet distribution function (Williams 1958). In either case, the particle trajectories
are solved in a Lagrangian sense according to modelled momentum source terms rep-
resenting drag from movement through the gas, and the droplet mass and temperature
are modelled by source terms representing the exchange of mass and thermal energy
between phases. The counterparts of the spray mass, momentum and heat exchange
appear as source terms in the governing equations for the gas phase, Equations 2.1,
2.2, 2.11 and 2.4. The rate of mass, momentum and energy exchange depends on the
properties of both the droplet and of the gaseous fluid surrounding the droplet, and the
properties of the fluid seen by a given droplet vary over time as the droplet traverses a
turbulent flow. The dependence on the droplet source terms on seen gas properties is

illustrated in the case of droplet evaporation source terms in the following section.

2.2.1 Droplet evaporation

The droplet modelling in this thesis assumes that droplets may be accurately represented
by Lagrangian particles, an assumption that is widely made in RANS and DNS simula-
tions of a dispersed liquid phase. The governing equations for the position x,, velocity
u,, mass m, and temperature 7,; of a droplet are given by the following Lagrangian
equations (De and Kim 2013):

dxq
dt
dug  3Cp Pycen

—u, (2.74)

T4 i ; 2.
dt 4 Dd P |useen,1 ud|(useen,z ud) ( 75)
dm
Ttd = _ﬂ-Dd<pD>seenBMShd (276)
dTy _ Qq+ gL, -
dt mdcp’d .

Here, u is the gas phase velocity at the droplet position x;, P, iS the seen gas

seen

phase density, p; is the density of the liquid fuel, and C' is the drag coefficient which
is given by the model of Schiller and Naumann (1933) as

0.44 :Re, > 1000
= { ¢ (2.78)

2L (1+0.15Req®®") ;0 < Rey < 1000
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where Re, is the droplet Reynolds number defined as

Dlu

Seen

—uy

Re, = Jscen (2.79)

Mseen

The diameter of the droplet D, is determined by its mass m,, temperature T,; and p,.

With the assumption of a spherical droplet, the diameter is calculated as

3my 3
D,=2 2.80
¢ <47r/7d> ( )

In Equation 2.77, L, and ¢, 4 are the latent heat of vaporization and the specific heat
of the liquid fuel respectively, and Qd is the convective heat transfer rate at the droplet

surface, which is given by
Qd = pseendeseen<Tseen - Td)Nud' (281)

where, k..., and T, are the thermal conductivity and temperature of the surrounding

gas phase seen by the particle.

Nu, and Sh, present in the above equations are the Nusselt and Sherwood numbers
which represent the ratios of convective to conductive transfer of heat and mass respect-
ively. In their present form in the above equations, they represent the aforementioned
ratios for a stationary droplet. In the presence of a mean flow, the enhancement of
convective transfer must be accounted for through modification of these numbers. The
convective Nusselt, Nu§, and Sherwood, Shy, numbers are given by the empirical cor-
relations (Sazhin 2006)

Nug = (2 + 0.6Re, */2Pr,'/?) (2.82)
Sh¢ = (2 + 0.6Re,*/2Sc,;'/?) (2.83)
pr, — Hilmp,film (2.84)
)‘ﬁlm
Hfilm
Scy = ——m_ (2.85)
¢ (PD)im

Here, Pr; and Sc, are the Prandtl and Schmidt numbers. The subscript film denotes
thermophysical properties of the vapour film or boundary layer surrounding the droplet,

which are evaluated using the one-third rule (Sparrow and Gregg 1958):

1
I}ef = Tsurf + g (Eeen - Tsurf) (286)
1
Yf,ref = Yf,surf + 7<Yf,seen - Yf,surf)' (287)

3
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where Y7 is the fuel mass fraction and the surface fuel mass fraction Y7 ¢ is calculated
via the Clausius—Clapeyron rule. In this droplet formulation, infinite thermal conduct-
ivity is assumed and as a consequence, the entire droplet has a uniform temperature.
Therefore, the surface temperature 7, is assumed equal to the droplet temperature
T,.

In cases where there is strong evaporation, advection of the evaporated fuel away from
the droplet surface that is generated by the bulk motion of this vapour must be accounted
for in some manner. This phenomena is known as Stefan flow. Similar to convective
effects, the effects of Stefan flow are accounted for through additional modification of
the Sherwood and Nusselt numbers (Sazhin 2006)

c 10g (1 + BT)

Nuj = Nu (2.88)
d d BT
log (1 + B
She — she e (L+ Bar) (2.89)
BM
(2.90)

in which B,; and By are the Spalding mass and heat transfer numbers (Spalding 1953).

2.2.2 Droplet Boiling

For a droplet temperature lower than the boiling point of the fuel at a given pressure,
a droplet in hot surroundings will experience heat transfer from the surrounding gas
raising its temperature. The total amount of fuel evaporated from the droplet surface
will depend on how quickly the vapour is carried away from the surface. If the vapour
remains at the surface, the film surrounding the droplet will saturate, and evaporation
will cease. Therefore, the evaporation of a non-boiling droplet is limited by mass transfer
to the gas phase. When the droplet reaches its boiling temperature, the liquid is rapidly
converted to vapour, and the surrounding vapour film quickly becomes saturated. In
order to sustain boiling (and evaporation) the temperature of the droplet must remain
above its boiling temperature and sufficient heat must continue to be supplied though
the film to the droplet. Therefore, in the case of boiling droplets, the evaporation of

liquid fuel is governed by heat transfer.

In some cases we may wish to look at the steady state evaporation of the droplet, in
order to simplify analysis by removing the dependence on droplet temperature. To do
this, we may look at the steady-state boiling of a single component fuel droplet. Chin
and Lefebvre (1983) model the evaporation rate m, of a boiling droplet as

™

Mg == PaDaAst (2.91)
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where 1, is dependent on the the droplet liquid density p,, the droplet diameter D,
and a steady-state evaporation parameter A_,, which is dependent both the droplet
properties and on the seen properties of the surrounding flow. The liquid density is
approximately constant for a given fuel, therefore the droplet property with the main
influence on the evaporation rate is the diameter D ;. Chin and Lefebvre (1983) then

model the steady-state evaporation parameter A, for a boiling droplet as

_ 8log(1+ Br)

At (2.92)
DY s
where ¢, g, and kg, are vapour film values of heat capacity and thermal conductivity.

Since it is assumed that the droplet is at the boiling temperature T3, Bp is given by

Spalding (1953),
Cp film (Tseen - Tb)
L

v

BT:

(2.93)

where T}, is the boiling temperature of the liquid, and 7., is the far-field temperature

seen
seen by the droplet. This is based on a gas-phase Prandtl number Pr which is represent-
ative of the fluid properties in the boundary layer surrounding the droplet, where p..,
and [t represent instantaneous values of gas-phase density and viscosity outside the

droplet boundary layer and hence depend on the seen composition.

In this thesis, the full set of Lagrangian equations Equations 2.74-2.77 will be used for
CFD simulations of sprays, but a-priori analysis of the effect of stochastic fluctuations
of seen quantities on the evaporation rate will be studied directly through the effect on

the steady-state evaporation parameter given in Equation 2.92.

2.2.3 Droplets’ seen properties

In turbulent combustion the seen properties, such as the seen velocity and temperature,
fluctuate over time due to turbulent convection, the influence of flames, and the prox-
imity of other droplets. In Reynolds Averaged and Large Eddy Simulation (RANS and
LES) approaches, droplet-scale processes are not resolved and any effects of fluctuations

of the seen properties on evaporation should be modelled.

Therefore the evaporation rate of a boiling droplet depends on the instantaneous values
of the gas-phase properties seen by a given droplet, in addition to the droplet’s own
properties. Furthermore, the evaporation rate has a non-linear dependence on these
properties, implying that the effects of gas-phase property fluctuations in a turbulent

flow tend not to cancel over a droplet’s lifetime.

In the equations presented in Section 2.2.1, the seen velocity u appears in both the

seen
momentum equation (2.75) and in the droplet temperature and mass equations through

the Reynolds number (2.79). The seen velocity magnitude for a droplet fluctuates as
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the droplet traverses turbulent motions. Dukovicz (Dukowicz 1980) proposed modelling
for the fluctuating seen velocity vector in the form,

U, = U(xy) +u’ (2.94)

seen

where U(x,) is the mean gas phase velocity at the droplet location x,. The second
term, u’, represents turbulent fluctuations. Noting that the velocity fluctuations in
homogeneous isotropic turbulence decay towards a Gaussian distribution (Pope 2000),
Dukowicz (1980) modelled the instantaneous velocity components of u’ as Gaussian

random variables with zero mean and with variance given by
02, = Zk(z,) (2.95)

where k is the turbulent kinetic energy at the particle position. The Dukovicz model,
or similar Gaussian dispersion models, are implemented in many widely used Computa-

tional Fluid Dynamics codes.

Modelling for the effect of composition and temperature fluctuations on the evaporation
rate is less common, even though their effect on the evaporation rate may be greater
than the effect of velocity fluctuations (De, Lakshmisha, et al. 2011). Bilger (Bilger
2011) developed a mixture fraction framework for modelling of spray combustion which
is able to take account of temperature and composition fluctuations associated with
mixture fraction fluctuations. Mixture fraction is a conserved scalar, bounded by zero
and unity, which represents the local fraction of fluid mass which originated from the
fuel stream (Peters 2000). Bilger’s approach has been tested in turbulent spray flames
by De et al. (De, Lakshmisha, et al. 2011; De and H. 2013), showing that mixture
fraction fluctuations have a significant influence on the overall turbulent flame properties.
The mixture fraction fluctuations are simulated by sampling new values of mixture
fraction from a presumed beta distribution (Libby and Williams 2000). The approach
of De et al. (De, Lakshmisha, et al. 2011) carries an implicit assumption that mixture
fraction and velocity fluctuations are independent. In general the velocity and mixture
fraction will not be independent. Indeed the mixture fraction-velocity covariance (i.e. the
turbulent flux of mixture fraction) are more commonly modelled using a linear gradient
approximation (Poinsot and Veynante 2005),

u," 7" = —Dtg—f (2.96)
where D, is a turbulent or sub-grid-scale diffusivity (Peters 2000) — indicating that the
correlation is likely to be non-zero in the presence of mean mixture fraction gradients.
The correlation of the seen mixture fraction and velocity arises naturally in transported-
pdf simulations, provided that the seen mixture fraction and velocity are included in the

joint-pdf, for example Liu et al. (Z. Liu et al. 2002), however the author is not aware of
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prior spray combustion modelling which accounts for this correlation by sampling the

seen mixture fraction and velocity from a presumed bivariate-pdf.

This thesis will develop modelling for seen quantities that is compatible with the lookup
table approach for combustion modelling. Once an appropriate presumed joint pdf has
been chosen, the seen reference quantities will be sampled from this presumed distri-
bution. Specifically, in the case of the joint mixture fraction—velocity presumed pdf,
and Z

wen Will be generated; in the case of a joint progress variable—

and Z,

seen

samples of ug.,

mixture fraction presumed pdf, samples of ¢ will be generated. In each of

and Z will be used to

seen seen

seen

these cases, the sampled values of the reference quantities ¢

determine the seen quantities used in the evaporation model, such as T, and Y} jqp-

een

(The seen velocity u is not a reference quantity and the samples are therefore used

seen

directly.)

2.3 The presumed pdf approach

The RANS modelling approach considers transport equations for ensemble statistics of
the flow properties, such as velocity, enthalpy and composition. Turbulent reacting flows
exhibit irregular unsteady fluctuations of composition and temperature around their en-
semble average values. The reaction rates in combustion and evaporation rates in sprays
depend on composition and temperature in a non-linear way. In particular, the Arrhe-
nius equation indicates that reaction rate constants typically exhibit an exponential

dependence on the temperature,
k= Ae Fo/R.T (2.97)

where A is a pre-exponential factor, F_, is the molar activation energy and R, is the
Universal Gas Constant. This implies that the ensemble averaged reaction rate constant

is not necessarily well modelled as a function of the ensemble averaged temperature:
Ae—E./R,T) + Ae—Eo/R.T) (2.98)

The statistics of the gas-phase properties at one point in the flow are fully described
by their joint one-point pdf P()), where ) is the vector of sample space variables for
the gas-phase properties. Knowledge of the one-point joint-pdf of the relevant gas-
phase properties, in addition to algebraic expressions for the elementary reaction rates,
provides a closure for the ensemble-averaged reaction rates appearing in the Reynolds-
averaged species equations. For example, the ensemble-averaged reaction rate constants
can be evaluated by considering the probability-weighted contributions from all the

different temperatures in the turbulent flow,

A B R, T) — / Ael=Bu/RuT) P_(7)dr. (2.99)
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where Pp(7) is the marginal pdf of temperature and 7 is sample space variable for

temperature.

Two approaches for obtaining the joint-pdf of gas-phase properties are employed in the
context of RANS modelling: first the joint-pdf may be modelled and simulated through
the transported-pdf approach (Pope 2000) or, second, the shape of the pdf may be pre-
sumed in a manner that is consistent with a set of moments of the pdf (Veynante and
Vervisch 2002). Modelling or simulation of the full joint-pdf of composition, temperat-
ure, and potentially also velocity is challenging due to its high dimensionality (i.e. one
dimension for each fluid property). Fortunately, the compositions observed in turbu-
lent combusting flows tend to lie close to a relatively low-dimensional manifold (Pope
2013) on account of relatively short time scales of many chemical processes, and this
observation motivates attempts to relate the full joint-pdf of gas-phase properties to
the joint-pdf of a set of reference variables. The presumed-pdf approach is compat-
ible with several turbulent combustion modelling approaches such as flamelet methods
(Peters 2000) and conditional moment closure methods (Klimenko and Bilger 1999). In
its general form, the presumed-pdf approach is extremely powerful and in certain turbu-
lent combustion applications the presumed-pdf approach achieves acceptable predictions
with only a single well-chosen reference variable. Presumed-pdf modelling is adopted as
the general modelling approach pursued in this thesis. This section proceeds by intro-
ducing reference variables that can describe the thermochemical state in non-premixed,
premixed, and autoigniting flows; presenting transport equations for moments of these
reference variables; and flamelet approaches for mapping between the thermochemical

state and the reference variables.

2.4 Summary

The modelling approach taken in this thesis to predict mean quantities of interest may
be summarised as follows. First, Favre averaged transport equations (Section 2.1.3)
for the statistical moments of appropriate reference variables are solved. The connec-
tion between instantaneous reference variables and instantaneous quantities of interest
is given via a laminar flamelet table (Section 2.1.4.5). The unresolved distribution of
reference variables is modelled using a presumed pdf (Section 2.3), based on the trans-
ported moments. The flamelet table is then applied to this modelled distribution of
reference variables, to calculate mean quantities of interest. In the case of turbulent
combusting sprays, the spray is solved using a Lagrangian approach (Section 2.2.1) and
the distribution of seen reference variables is modelled using the same presumed pdf
as the gas phase. Individual realisations of the seen quantities are sampled from the
presumed pdf on an appropriate timescale. Seen quantities such as fuel mass fraction

and gas phase temperature are then obtained from the laminar flamelet as functions of
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the seen reference variables. Further details on this sampling process will be given in

Chapter 3, which elaborates on the modelling of the presumed pdf.






Chapter 3

Modelling joint-probability

density functions

Due to restrictions in computational cost, it is not possible to solve the fully resolved
set of instantaneous equations for momentum, mass conservation, and thermochemical
transport in a reasonable time-frame. Therefore, in industrial contexts, turbulent react-
ing flows are only partially resolved and the physical phenomena in the unresolved scales
is modelled. Since the unresolved chemical state is not available, it must be modelled.
Due to the statistical nature of turbulent flows, one potential approach to this problem
is modelling of the distribution of unresolved quantities. This is referred to generally as
pdf modelling. Once a model for the distribution is chosen (for example, transported pdf
or presumed pdf), the effect on mean reaction rates or evaporation may be determined.
For mean reaction rates, this takes the form of integration of conditional thermochemical
properties ¢(v)) together with the pdf p(1)):

o=/ o )p()d (3.1)

For the case of a stochastic evaporation model, the seen thermochemical quantities
Geen(¥) are determined from samples of the reference variables 1, which are drawn
from the pdf:

¥; ~ p(¥) (3.2)

This chapter will introduce the relevant nomenclature and theoretical background on
random variables and stochastic processes that will be used to formulate the stochastic

evaporation model based on a presumed pdf model.

The irregular and seemingly random nature of the fluctuations in turbulent reacting
flows lends itself to a statistical description of the fluid state in terms of probability

density functions (pdfs). The pdf may be used either in order to evaluate statistical

35
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moments such as means, by integration of relevant state variables such as reaction rates
over the domain of the pdf or, in stochastic models, in order to sample individual states
from the pdf.

The pdf of fluid properties in a turbulent reacting flow may evolve in both time and
space, and it becomes necessary to model the evolution of the pdf in some way. Two
main approaches may be distinguished: (1) transported-pdf methods involving integra-
tion of the equation governing the transport of the pdf; and (2) presumed-pdf methods
involving integration of transport equations for moments of the pdf along with suffi-
cient assumptions about the form of the distribution in order to evaluate a pdf that is

consistent with the transported moments.

The first method involving transport of a joint-pdf equation presents numerical chal-
lenges. The number of dimensions in the pdf is equal to the number of properties whose
distribution it describes. In a simple Cartesian discretisation of the Eulerian joint-pdf
transport equation, the number of grid points required to represent state-space would
increase exponentially with the number of properties. Since the numbers of properties
needed to characterise either turbulent evaporating sprays or chemically-reacting turbu-
lent flow fully are typically large, the evolution of the pdf transport equation is usually
simulated in a Lagrangian manner using stochastic differential equations. In order to
introduce the modelling of turbulent sprays developed in this thesis that involves the
use of stochastic processes, this Chapter starts by introducing necessary mathematics of

stochastic processes and stochastic differential equations.

The second method involving presumed pdfs relies upon assumptions about the form
of the pdf that provide a reasonably close approximation to the physical behaviour
of the actual pdf. This requires both an adequate description for the distribution of
the individual properties or reference variables used to describe the fluid state, and
for the statistical dependence between these parameters. This Chapter discusses how
univariate-pdfs may be presumed both for individual reference variables introduced in
Chapter 2 (mixture fraction, progress variable, residence time parameters, and dissip-
ation rate), and how multi-variate pdfs may be constructed in order to account for
their dependence. The Chapter concludes with a summary of how presumed-pdfs and

stochastic processes will be used in turbulent spray combustion modelling in this thesis.

3.1 Background

This section outlines the mathematical background for the discussion joint probability
density functions, by introducing concepts such as random variables, joint distributions,
statistical moments and marginal distributions. These concepts will be referenced in

Section 3.2 when the notion of presumed probability density functions is introduced.
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3.1.1 Random variables and vectors

A random variable is a mathematical object which consists of a set S of possible values
together with a probability density function f(z), € S describing the probability of
each value (Kampen 1992). This definition is general enough to encompass both discrete
and continuous random variables, where the set S is naturally a discrete or continuous
set, respectively. The probability density function (pdf) f(x) associated with such a

random variable may be defined as having the property
Prjz < X <z +dzx] = f(z)dx (3.3)

where dz is a small increment and Pr[Q] denotes the probability of event (). This is
the probability that the value will lie in the range [z, z + dz]. Similarly, the probability
X taking a value lying below a given point determines the cumulative density function
(cdf) of the distribution, denoted F":

Pr[X <z] = F(x) (3.4)

We have that dF'/dx = f(x). From the cdf we may define the moments of a probability

distribution. The nth raw moment of X is given by
X / s dF (z) (3.5)
s

Note that expressing the moments as Riemann-Stieltjes integrals avoids a restriction to
continuous distributions. The first raw moment of a random variable is its mean or

expected value:

X = /SxdF(x) (3.6)

We may also define the central moments of the distribution, of which the second (n = 2)

is the variance:

(X_x)" = / (¢ — X)"dF(2) (3.7)

s
The idea of a random variable may be extended to include multiple components in
a random vector (Xj,...,X,.) where the components are random variables governed
by a joint probability distribution and hence may include some dependence between

components. In this case the moments are defined element-wise and are themselves

vector quantities.
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3.1.2 Types of pdf

The marginal probability of a subset of random variables (X4,..., X ) where s < r is
found by integrating over the variables X ,,..., X, as per
flzy, .., zy) —/f(a;l,...,xr)dwsﬂ...d:cr (3.8)

Here we have assumed that the cdf is well behaved.

The conditional probability f(xq,...,x T4, 1,...,2,) of a subset of the random variables

(X1,...,X,) is the new probability distribution produced when a subset (X, {,...,X,.)

are assigned specific values (¢, q,...,2,.). For a simple joint-pdf of variables X and Y,
this is written )
L,y

fX =2y =y) = (3.9)
fy (@)

where fy-(z) denotes the marginal probability of f over Y. For a general pdf this becomes

the following relationship between marginal and conditional probability distributions:

f(xlv 7'%'7’) = f(xs+17 "'axr>f($17 ey g ‘ Loy1r-e 7377*) (3'10)

i.e. the full pdf is recovered by multiplying the conditional probability (the probability
of observing the values z,...,z) with the marginal pdf of X_ ,..., X (the pdf given

the values 4, ..., z,).

A substantial simplification arises in the special case where subsets of random variables
(Xq,...,X,)and (X, q,..., X,.) are statistically independent. In this instance the joint-
pdf for all r variables is given by the product of the marginal pdfs,

[y, xn) = f(@aprs 2 f(@g, 0, 2,) (3.11)

Density-weighted pdfs

The (thermodynamic) density-weighted pdf, or Favre pdf, is used in combustion model-
ling due to the large temperature and density variations in the flow (Yun et al. 2005).
The Favre pdf (Bilger 1975) is given by

p(4) = ’)(d’)pp(w) (3.12)
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where p(1)) is the unweighted pdf and 1) is the sample space vector. Reynolds and Favre

averages can then be evaluated from,

-

(¥) -

¢»=0p mp(lp)dlp (3.13)
o= [ oy (3.14)
and the mean density may be recovered via
1 p(e)
- [ B )

When transporting and tabulating Favre averaged quantities it is convenient to work

with the Favre averaged pdf p.

3.2 Presumed probability density functions

The use of presumed pdfs underpins a number of distinct turbulent combustion mod-
elling approaches, including flamelet (Peters 1984b) and conditional moment closure
(Klimenko and Bilger 1999) approaches. In simpler cases, one reference variable may
provide adequate predictions — usually mixture fraction in the case of non-premixed
combustion and progress-variable in the case of perfectly-premixed combustion. This
section starts by introducing approaches that have been used to model the marginal
pdfs of the main reference variables used in combustion modelling. This section then
proceeds to deal with modelling of joint-pdfs for more complex cases where more than

one reference variable may be needed.

3.2.1 Marginal distributions of reference variables

This thesis focusses on partially premixed combustion, and hence places emphasis on
the modelling of the joint mixture fraction — progress variable distribution. Due to the
simplicity of assuming independence between the two, there is extensive literature on the
marginal distributions of each, and this will be discussed below. Additionally, in both
diffusion flame and premixed flame structures the scalar dissipation rate is an important
parameter and hence it too is discussed. Finally, a summary of literature on marginal
distributions for residence time based parameters is presented, since the development
of new residence time based reference variables is also a focus of this thesis. The fact
that each reference variable represents a distinct physical quantity represented by each

reference variable requires that each be
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3.2.1.1 Mixture fraction distribution

In presumed-pdf modelling for combustion applications, the mixture fraction pdf p(n)

is most commonly presumed based on its mean 7 and variance Z”2 using the beta
distribution (Poinsot and Veynante 2005),

(1 —p)pft

Bn) =

") = B )
1

BE/ n* (1 —n)Ptdy
0
o 1_7 1-7Z

a=Zl——1]|;0=a—. (3.16)
Z//2 7

7 is positive and Z”? lies in the range 0 < 2(1 — 2) < 1. Prediction of the pdf of

conserved scalar variables is still an active subject of research.

The beta distribution provides a poor representation of the bimodal pdf shapes that
arise towards the edges of free shear flows due to external intermittency. Gampert et
al. (Gampert et al. 2013) achieve excellent agreement with the mixture fraction pdf
throughout a turbulent round jet using a hybrid model that combines the beta distribu-
tion with a model for the mixture distribution in the viscous layer at the turbulent/non-
turbulent interface. In the context of conditional moment closure modelling, Wright et
al. (Wright et al. 2005) switch between a beta distribution and a clipped Gaussian pdf in
order to account for instances of high variance, however this approach appears to be mo-
tivated by difficulties with the numerical implementation of the beta distribution-based

approach rather than any physical validation of the clipped Gaussian pdf.

Mortensen analyses the relationship between presumed pdfs that enforce an arbitrary
number of moments and conditional scalar dissipation rates (Mortensen 2005) and sets
out a methodology for achieving consistency between their modelling, but without show-
ing that general presumed pdfs ensure realisable (i.e. positive) conditional dissipation
rates. However the beta distribution does correspond to positive conditional scalar
dissipation rates in the results presented. With Andersson (Mortensen and Andersson
2006), Mortensen went on to present a presumed mapping function approach that relates
mixing to a Gaussian reference field, and implies a presumed pdf that performs well in
comparison to the beta distribution when considering single scalar mixing in DNS. The
presumed mapping function approach also provides advantages in that it allows de-
rivation of consistent conditional statistics models needed, for example, in conditional

moment closure modelling.

Evaporation of a liquid fuel spray also affects the form of the mixture fraction pdf. One of
the main observations (Demoulin and Borghi 2000; Réveillon and Vervisch 2000; Duret

et al. 2012) is that the peak mixture fraction in a spray-fuelled mixture fraction pdf can
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be substantially less than unity. The maximum value is generally less than the saturation
concentration, because the fuel mixes rapidly to a much lower concentration by the time
it leaves the droplet boundary layer. Hollmann and Gutheil (Hollmann and Gutheil
1996) extended the beta-pdf model for spray evaporation by scaling the presumed pdf
between the mixture fraction limits found in the spray, specifically the oxidizer conditions
and the saturation conditions of the fuel. Since the saturation mixture fraction depends
on temperature at the liquid-gas interface, and because this temperature can be different
on every droplet in the flow, and it is not defined in regions of the flow where there are no
droplets, it is not straightforward to apply the scaled beta distribution model. Demoulin
and Borghi (Demoulin and Borghi 2000) present a transport equation for the saturation
mixture fraction which does not account for the variation between droplets but does give
a representative value for the saturation conditions in a cell. In analysis of their resolved
spray DNS, Duret et al. (Duret et al. 2012) found that the beta distribution model
(effectively in its scaled form) performs badly for dense sprays. It is also unclear how
this model should be applied in the context of multi-component evaporation, because
the value of mixture fraction does not distinguish the range of compositions which are

evaporated during the droplet lifetime.

The difficulty of formulating a generally applicable algebraic model for the mixture
fraction pdf and corresponding models for its moment equations motivates the use of
numerical models, such as the transported-pdf approach, for the mixture fraction pdf
of the mixture fraction, or other reference variables. For example, Ge and Gutheil
(Ge and Gutheil 2008) used particle-based Monte Carlo integration for the transport
of the mixture fraction pdf in a spray-fuelled flow, relying upon the interaction by
exchange with the mean mixing model to account for molecular diffusion in the fluid. The
transported-pdf gives similar results to the rescaled beta pdf in that spray combustion
case. It must be appreciated that the transported-pdf approach itself relies upon models
for conditional diffusion fluxes (also described as micromixing effects) and conditional
evaporation rates, and the established models such as the exchange with the mean
mixing model and evaporation to the mean composition used by Ge and Gutheil (Ge
and Gutheil 2008) have clear deficiencies in terms of their ability to represent that actual
physics of turublent mixing and spray evaporation, some aspects of which are discussed
in Ref. (Subramaniam and Pope 1998).

In principle, realistic pdfs could be sampled from experimental measurements and DNS,
however if such data are available then RANS or LES modelling itself becomes redund-
ant. In its stead, the Linear Eddy Model (LEM) (Kerstein 1988; Kerstein 1991) is a
numerical simulation approach for idealised turbulent flow from which it is possible to
sample probability density functions for use in other presumed-pdf simulations. Indeed,
although the solution approach is quite different from the conventional particle-based
Monte Carlo solution methods, the LEM is itself a form of closure for the transported-

pdf in which information concerning spatial profiles is included (Pope 2013). The LEM
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approach considers a line passing through a turbulent flow, with full resolution of all
turbulence and scalar length scales, and represents the effects of turbulent mixing on
the scalar profile by stochastic application of multi-scale rearrangements of the one-
dimensional solution using so-called triplet mappings. The LEM can be used to sample
pdfs by performing many simulations for various input parameters and parametrising
the resultant pdfs based on a finite set of their lower moments (Goldin 1996; Goldin and
Menon 1997)). The initial distribution is taken as double-delta (half fuel, half oxidiser
in a slab configuration) thus making the model applicable to non-premixed combustion.
Goldin and Menon (Goldin 1996; Goldin and Menon 1998) show an improvement over
algebraic presumed-pdfs in comparison to experimental-pdfs when using a joint mixture

fraction-progress variable LEM distribution.

There is currently no consensus concerning what constitutes an acceptable model for
the mixture fraction pdf, since the accuracy of the pdf models, and the sensitivity of
the overall combustion predictions to the pdf models depends on the application. There
is also a trade off in terms of complexity and cost of execution versus the accuracy. In
particular, it is generally convenient to use a mixture fraction pdf model that can be
expressed algebraically, rather than as a discretised numerical solution, especially since
this facilitates the construction of some forms of joint-pdf, as discussed later in this sec-
tion. Due to its ubiquity in combustion modelling and its simple algebraic formulation,
the beta distribution is adopted as the default model for mixture fraction pdf in this
thesis. In order to test the sensitivity to the shape presumed for the mixture fraction
pdf in subsequent chapters, the simpler top-hat distribution (Borghi and Moreau 1977)

is used as a comparison.

3.2.1.2 Progress variable distribution

General modelling of reactive scalar pdfs is more challenging than for censored scalars
because, in addition to all of the factors influencing the pdfs of conserved scalars, chem-
ical reaction also contributes various effects, depending on the combustion regime. In
the distributed combustion regime, the form of the progress variable pdf may resemble
that of a passive scalar, whereas in the flamelet regime the flame fronts containing inter-
mediate progress variables become relatively thin, yielding bi-modal progress variable
pdfs containing high probabilities only for burnt and/or unburnt compositions. Bray et
al. (Bray, Champion, et al. 2006) assess three presumed pdf models through comparison
with DNS data representative of combustion in the flamelet regime: a beta distribution;
a twin J-function pdf; and a pdf based on unstrained laminar flame profiles. In this
comparison, the flamelet-based pdf performs best since it contains information about
the expected physical form of the flame structure that is absent in the other models,
however one may anticipate that the relative performance of the beta distribution would

improve moving towards a distributed combustion regime.
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In turbulent combustion dominated by autoignition it is important to model the evolu-
tion of the progress variable in the pre-ignition region, in which there is no flame at all.
In this situation the twin d-function pdf or the flamelet-based pdf models appear entirely
inappropriate and beta distribution (Cha and Pitsch 2002) or even single-¢ function pdfs
(Knudsen, Richardson, Chen, et al. 2011; Thme, Cha, et al. 2005) have been used.

The progress variable presumed-pdf approaches discussed so far rely upon some form
of information about the form of the pdf a priori. The maximum entropy pdf, or the
statistically most likely distribution (SMLD) (Pope 1979) is defined in a way that
approximates the true distribution from a reduced set of known (or assumed) higher
moments subject to the constraint that the resulting PDF, denoted by pgyp ;, contains
a minimum of statistical information. Here, the subscript ¢ indicates the number of

enforced moments. The SMLD produces a PDF of the following form:

PsmLp, i (¥) = Q) exp {Z ajl/ﬂ} (3.17)
3=0

where there are ¢ moments available and a is a vector of Lagrangian multipliers. The

corresponding Lagrangian constraints are
/ P, (E)d = 1
/ ¢PSMLD J(Y)dy = %Z
b
/ (6 — B Boniun, ()t = (16— 5.
The main draw back of the SMLD in comparison to other algebraic presumed pdf models

is the need for a non-linear root solve to find the coefficients in Eq. 3.17.

Thme and Pitsch (Ihme and Pitsch 2008a; IThme and Pitsch 2008b) use a SMLD for the
conditional progress variable pdf and conclude that use of more than two moments is
required in order to achieve adequate performance in cases where there is a lot of local
extinction and re-ignition, and similarly more than two moments are required in order

to model the mixture fraction distribution in free shear flows.

Given the additional challenges of modelling the progress variable pdf compared to
conserved scalars, the Linear Eddy Model is also a candidate for modelling of the progress

variable, and has proven successful in work by Tsui and Bushe (Tsui and Bushe 2014).

3.2.1.3 Dissipation rate distribution

It is well established that the correct functional form for the scalar dissipation rate pdf

for passive scalars is log-normal (Lentini 1994; Liew et al. 1984). The scalar dissipation
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rate distribution for progress variable in flamelet-regime combustion tends to show an
additional likelihood of dissipation rates scales on the order of those found in stretched

laminar flames.

Models for the mean scalar dissipation rate are presented by Sanders and Gokalp (1998).
The simplest model is based on the assumption of proportionality between mechanical
mixing and scalar mixing time scales,

3¢

Y = CXZ”?? (3.18)

Swaminathan and co-workers (Swaminathan and Bray 2005; Kolla et al. 2009) have
developed algebraic modelling for the mean progress variable dissipation rate that ac-
counts for effects of thermal expansion within the propagating flame fronts. Modelled
transport equations for the progress variable dissipation rate have also been developed,
as reviewed by Gao et al. (Gao et al. 2015).

Construction of the log-normal dissipation rate pdf also requires specification of a second
scale parameter o. Lentini (Lentini 1994) uses o = 2, while Liew et al. (Liew et al. 1984)
developed an algebraic model with geometry dependent coefficients. However the more
common approach in the combustion modelling literature is to neglect fluctuations of
the dissipation rate entirely and impose a d-function pdf for the dissipation rate, for

example in (Knudsen, Richardson, Chen, et al. 2011).

3.2.1.4 Residence time distribution

The distribution of residence time is widely used in process engineering to characterise
the state of fluid exiting a vessel (Levenspiel 1999), and a wide range of distributions may
arise depending on the flow configuration, and also depending on the measure of residence
time used. There is also a lack of published information concerning the distribution of
the residence time at a specific point within a turbulent flow, rather than at the exit of
the vessel. Shin et al. (Shin et al. 2016) provide one such investigation, demonstrating
that certain measures of residence time exhibit statistically stationary and self-similar
statistics in turbulent round jets which suggests that presumed-pdf modelling may be
applicable, however the probability density functions observed do not correspond to
shapes that are readily modelled by any of the common functions used for presumed pdf

modelling (e.g. 3, §, Gaussian, top hat, log-normal).

3.2.2 Joint distributions of reference variables

The special case where the reference variables used for combustion modelling are statist-

ically independent leads to a particularly simple model for their joint-pdf, given by the
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product of the variables’ marginal pdfs. Possibly due to the lack of simple models for the
statistical interdependence of mixture fraction and progress variable, rather than strong
evidence that there is absence of dependence between mixture fraction and progress
variable, the assumption that progress variable and mixture fraction are independent
is very common in published modelling for partially-premixed flames. The assumption
of statistical independence between mixture fraction and normalised progress variable
appears to give adequate performance in a number of partially-premixed modelling at-
tempts however Ruan et al. (Ruan et al. 2014) show that the statistical interdependence
has a substantial influence on modelling around the stabilisation point in lifted flames,
which is a situation in which there are strong variations of mixture fraction and progress

variable in the same region.

The statistically most likely distribution can be applied to the joint distribution of
any number of reference variables. Calculation of the bivariate SMLD based on first
and second moments requires evaluation of the roots of six non-linear equations (five

moments and the condition that the pdf integrates to unity), as in (Doran 2012).

The most basic representation of the pdf is given by one or more delta functions but
unless a large number of delta functions, and hence moments, are used this typically
provides a poor model for pdfs that in reality are continuous. The use of delta-functions
has found use as a means to achieve a crude modelling of multi-variate distributions
(Marchisio et al. 2003; Fox 2003; Raman et al. 2005), and such a representation is the
basis of the direct quadrature method of moments (DQMOM) approach.

Although the SMLD provides the maximum entropy for a given set of moments, imply-
ing that any other form of pdf imposes incorrect information about higher moments, it
is found in practice that the beta distribution distribution performs better as a mar-
ginal distribution for mixture fraction, given the first two moments. This is because the
higher moments implicit in specification of the beta distribution distribution happen
to add some useful information concerning the physical distribution. The simplest ex-
tensions of the beta distribution to bivariate distributions is the Dirichlet distribution,
involving three parameters, as used by Girmiaji (Girimaji 1991). However three para-
meters are not sufficient even to enforce the means and variances of the two reference
variables. Doran presents a five parameter bi-variate beta distribution distribution that
enforces all of the first and second moments (Doran 2012). Since Doran considers mixing
in terms of multiple mixture fractions, the proposed bi-variate beta distribution distri-
bution is supported on a domain on which reference variables sum to unity. Whereas
the mixture fraction-progress variable distribution is not subject to the same constraint,
making the model by Doran unsuitable for describing the mixture fraction-progress vari-
able joint-pdf. Following Cha and Pitsch (Cha and Pitsch 2002), De Paola (Paola 2007)
used the beta distribution to model the conditional progress variable pdf conditioned
on mixture fraction within the framework of second-order conditional moment closure

modelling, in which conditional means and conditional variances of progress variable
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are both provided. The second-order conditional moment closure approach provides
many advantages in general although it is rather specialised and has seen limited up-
take, and for this reason the present focus is on pdfs presumed in terms of unconditional
moments. Finally, Darbyshire and Swaminathan (Darbyshire and Swaminathan 2012)
proposed the use of copulas for combining mixture fraction and progress variable mar-
ginal distributions in a manner that imposes a particular co-dependence. Darbyshire
and Swaminathan solve transport equations for the mixture fraction, reaction progress
variable and their variances, and the covariance pc’’Z’’. The marginal pdfs of mix-
ture fraction and progress variable are assumed to be beta-distributed with mean and
variances provided by the corresponding transport equations. Together with the trans-
ported covariance, these marginal PDFs are used to construct a joint-PDF for mixture
fraction and progress variable by using the Plackett family of copulas. In general the
copula approach has the ability to combine any combination of marginal distributions
and to impose a range of different dependence structures, and it is not yet clear that the
Plackett copula is the most appropriate structure. Due to these properties, the copula
approach is adopted for further investigation in this thesis and details of the copula

approach are set out below.

3.2.3 Copulas
3.2.3.1 Mathematical description of copulas

For a bivariate distribution with cumulative density function cdf P(z,y), the marginal

distribution functions are defined as
Py(z) = / P(z,y)dy (3.19)
P = [ Pz (3.20)

The marginal cdf P, (z) is thus the cumulative probability that the random variable z
will take the value &, regardless of the value of y. For a given distribution function P,
the copula C is defined (Nelsen 1999) such that

P(z,y) = C(P,(z), P,(y)) (3.21)

Y

This illustrates how the copula relates to the joint distribution function, but the restric-
tions on the form of the copula remain unspecified. The general form is quite broad in
scope. By definition (Nelsen 1999), a two-dimensional copula C' is a two dimensional

function with domain [0,1]? and the following properties:

e (Cis grounded:
C(u,0) = C(0,v) =0 Yu,v € [0,1] (3.22)
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e The limits of C reproduce the marginal distributions:

C(u,1) =u and C(1,v) =v Yu,v € [0,1] (3.23)

o (' is two increasing:

C(ug,vy) — Clug,vy) — C(uy,vy) + C(ug,vy) >0 (3.24)

v{uhuQ?vl?vQ € [O’ 1] FlUg 2 Uy, V2 2 Ul}'

This definition is easily extended to higher dimensional copulas. However, this thesis
considers only two dimensional copulas. Essentially, the copula provides a direct connec-
tion between the two marginal distribution functions u = P, (z) and v = P, (y) (where
x and y are the sample space variables of the underlying distribution P(z,y)) and the

full joint distribution, P(x,y), through Equation 3.21.

In other words, the copula relates the values of the marginal cumulative distribution
functions to the joint cumulative distribution function. Such a copula is not uniquely
determined for all joint distributions, however its existence is guaranteed by Sklar’s the-
orem (Sklar 1959). When constructing a multivariate PDF from several known marginal
PDFs, the choice of copula determines the type of dependence between the random vari-
ables. Looking at the underlying copula of a distribution is a convenient way to study

the dependence of two parameters without the marginal distributions clouding the issue.

3.2.3.2 Plackett copula

Since the Plackett copula (Plackett 1965) has been used previously in the literat-
ure (Darbyshire and Swaminathan 2012), a brief description is given here. The Plackett
copula was originally designed to replace bivariate normal distribution for statistical
tables. The Plackett family of copulas (Plackett 1965) provide both joint cdf and pdf
as algebraic functions of the marginal distributions. The co-dependence between vari-
ables is specified by an odds parameter #. The pdf and cdf of a Plackett copula with
given marginal pdfs f and g and marginal cdfs F' and G are given by

S—V82-40(6-1)FG g L q

CDF = 2(6-1) 7 (3.25)
FG =1
9fg{1+(9—1)[F+G—13~"G]} 0 75 1

PDF — (52-46(6-1)FG)2 (3.26)
fg =1

where 0 is the “odds-parameter” which specifies the degree of dependence between the
two random variables, and where S = 1+ (0 — 1) (F (z) + G (y)). The relationship
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Figure 3.1: Contingency diagram for a set of random samples on [0, 1]2. Here,
A=13,B=3,C=3and D=1 (with z5 = 0.7 and y, = 0.3) and hence the
odds parameter is 0 = 1.44.

between the odds parameter and the covariance is discussed in Section 4.4. The odds

parameter is defined for a point (z,yo) as the ratio § = AD/BC, where

A=Pr(z<z0,y>9Y0) (3.27)
Pr(z>z06,y > yo) (3.28)
Pr(z <zp,y <yo) (3.29)
D=Pr(z>z0,y<yo) (3.30)

where Pr denotes the probability of an event occurring. This is illustrated in Figure 3.1.
Since the choice of (x5, yo) is arbitrary, the odds parameter is not uniquely determined
by a given bivariate distribution, because different choices of (x5, yo) will lead to dif-
ferent values of 8 in the general case. The Plackett family of copulas is the set of copulas
for which the odds parameter € is independent of the choice of (z 4,y ). This restriction
is sufficient to uniquely determine the copula. When the data about the distribution to
be modelled is presented in the form of a contingency table, the odds parameter is a
convenient estimator. However, when the data about the distribution to be modelled is
in the form of moments of the distribution, this estimator is less useful as samples must
be generated with the desired correlation and then the odds ratio calculated manually.
Additionally, this imposes an arbitrary restriction on the structure of the copula, which

holds no obvious physical meaning when applied to modelling of the Z — ¢ distribution.

3.2.4 Summary

For presumed pdf modelling in more advanced combustion systems that have multidi-
mensional state space, we need presumed joint pdfs. The available multidimensional pdf
models are restrictive and may perform poorly for a limited number of moments, or fail
to respect other physical constants. The copula approach is attractive as it can combine

arbitrary marginals that respect relevant constraints and that use appropriate numbers
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of moments. The Plackett copula has been previously applied (Darbyshire and Swam-
inathan 2012) to the problem of constructing from two marginal distributions a joint
distribution with the specified correlation; this correlation may be controlled through
the free parameter 6 in the Plackett copula’s definition and supplied via a transport
equation. However, the choice of the Plackett copula to model the dependence between
mixture fraction and progress variable imposes a very particular dependence structure

on the joint distribution, which is not based on physical reasoning.

The copula approach (that is, using a copula together with two predefined marginal dis-
tributions) is an attractive approach to joint pdf modelling for several reasons. Firstly,
it may build upon the established literature on marginal distributions and elegantly ex-
tend them to the multidimensional case. Secondly, it isolates the dependence structure
of the joint distribution and therefore allows development of dependence modelling to
proceed disconnected from marginal distribution model development. Finally, it allows
the full range of potential distribution structures to be captured. In contrast, the use of
existing analytical bivariate or multivariate distributions for modelling the joint distri-
bution is often overly restrictive: the choice of marginal distribution can not be easily
changed; the marginal distributions depend on the specified joint distribution are are
thus inherently linked; and the realisable dependence structures are usually limited to a
small subset of what is possible. It should be noted, however, that the two approaches
are mathematically equivalent; any given analytical joint distribution may be separated

into its component parts of marginal distributions and copula.

In the following chapter, the numerical implementation of applying a presumed copula
in conjunction with two presumed marginal distributions will be discussed, including
the application to both calculation of mean quantities and stochastic modelling of seen
quantities for fuel droplet evaporation. Then, the separate issue of how appropriate the
choice of Plackett copula is for modelling the dependence between mixture fraction and
progress variable will be investigated in the following chapters, by analysing data from

experiments and DNS simulations of partially premixed flames.






Chapter 4

Numerical details of the copula
method

4.1 Introduction

In order to calculate a table of mean values of scalars which depend on the sub-grid
distribution of mixture fraction and progress variable, an integration over the joint-pdf
must be performed. Here methods are considered for the numerical evaluation of the

integral

¢=//¢(n7<)p(77,0dndc (4.1)

where ¢ = (n, () is a scalar, p(n, () is a joint pdf and 1 and ( are sample space variables.

In Chapter 3, the mathematical framework for a copula based presumed joint-pdf model
was described. However, details of the numerical algorithms for integration and sampling
from the resultant joint-pdf were not discussed. There are several subtleties involved in
the calculation of the joint-pdfs, and in the integration of the pdf with and without a

scalar.

It was noted that the transport equation for Z7¢” can be used to provide a measure of
the dependence between ¢ and Z, but how to actually apply this in the presumed pdf was
not discussed. Many copulas, particularly the single parameter copulas of interest for
this application, take a parameter 6 which determines the strength of the dependence.

Typically there is no analytical expression for the mapping from Z”¢” to 6.

Additionally, there is the difficulty of using a quantity such as Z”¢” as a tabulation
parameter, since (unlike the mean or variance) has no clear upper and lower bounds. It
is necessary to establish the upper and lower bounds for Z”¢” in order to ensure that

control parameter space covered by the look up table corresponds to realisable pdfs.

51



52 Chapter 4 Numerical details of the copula method

The upper bound of the variance is a well known function of the mean:

o <p—p? (4.2)
This is often used as a realisability check for the transport equation for the variance,
which due to modelling assumptions and numerical accuracy is does not enforce this
limit. The same issue is found with the covariance transport equation; therefore, know-
ledge of the upper and lower bounds of covariance are required for the equivalent real-

isability check on the convergence.

In turbulent combustion applications where the integration of a pdf is a requirement,
the pdf may be obtained in a variety of different forms. For example, empirical distribu-
tions from DNS or experimental results, or via a parametrised analytical function. Such
analytical functions may contain singularities which can be difficult for numerical integ-
ration schemes to handle. Additionally, sampling from an arbitrary joint distribution

poses a difficult problem, and no generally applicable efficient algorithm is available.

In this chapter, a discussion of the above considerations is given, and a full description
of the algorithms used in the accurate implementation of these statistical models is
presented. A robust, accurate and efficient integration of arbitrary distributions with
analytical expressions for the cdf is presented as an alternative to simple integration
or advanced quadrature methods. The method for calculating the upper and lower
bounds of covariance and the tabulation scheme used are explained. And finally, the
issue of mapping a statistical moment such as the covariance to a copula parameter 6 is

elaborated on and a solution proposed.

4.2 Numerical integration of distribution functions

Liu et al. (F. Liu et al. 2002) discuss the “robust and accurate” integration of the beta pdf
with respect to gas turbine combustion, using the work of Chen et al. (Chen et al. 1994)
as a starting point. They consider two problems simultaneously: the correct evaluation
of the beta pdf, avoiding floating point underflow; and the integration of the pdf with a
scalar, assuming the pdf is known. The present work does not concern the correct calcu-
lation of the beta pdf, as this has been discussed in statistical literature (Majumder and
Bhattacharjee 1973; Cran et al. 1977) and several robust libraries are available (Lozier

and Olver 1994). A summary of the integration method they propose is as follows:
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1. The beta distribution integral is split into three parts as
! a1 ) a1
/ (>t —=n)" "dn —/ p(mn>~ (1 —n)"" "dn
0 0
1—e 51
w0 ety
£ L 1
+/ d(mn=(1—n)" tdn (4.3)
1—€

where n®~ (1 — )" /B(a, B) is the beta pdf (the constant normalisation factor
B(a, B) has been omitted in the above integrals).

2. The outer integrals, where there are potentially singularities depending on the

values of « and 3, are replaced with the approximations

/ ¢(77)77a_1(1 - U)Bildﬁ ~ ¢ow% (44)
0
1 51 B
dmn*t (1 —n)" Tdn ~ ¢fu§ (4.5)
1—e

For two- or higher-dimensional joint-pdfs, particularly if specified by a presumed copula
with strong dependence, there may be sharp gradients of the pdf inside the domain
which can introduce errors if the integration grid is not appropriately refined around

these points. Such points can appear anywhere in the domain.

Even in the 1D case, the two limits of the variance must also be treated specially. In
the limit as the variance approaches 0 or (1 — p)u, the beta distribution approaches
a delta distribution or double delta distribution, respectively. Particularly for the two
delta distribution case, there is the problem of estimating the weights of each of the delta
distributions in such a way that the integration remains continuous in («, 3) space. When
applying alternative marginal pdfs, such as the top-hat pdf considered in this work, the
special cases are different and must be implemented separately. For higher dimensional
cases, the number of special cases increases with the number of dimensions. Even for
a two dimensional case, the use one beta pdf marginal and one top-hat pdf marginal
together with a presumed copula is desirable, the number of special cases is huge. Using
the pdf based approach, each these cases must be specially handled in a separate code
path, complicating the implementation details and expanding the potential for coding

errors.

There exist well established, general purpose, well tested quadrature/cubature integra-
tion algorithms that can handle singularities in the integrand (see Dooren and Ridder
(1976) and Berntsen et al. (1991) for example). In the focus of this work, the integration
of a scalar with the pdf is decoupled from the solution of the flow field and therefore

the computational cost of this integration is not a major concern. However, if these
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techniques are to be applied in other contexts where the integration is coupled to the
flow field calculation (such as the RIF or CMC models) the computational cost becomes
important. For this reason, general purpose quadrature algorithms are avoided in favour

of a more efficient algorithm.

The remainder of this section presents a new algorithm for the integration of numerical
pdfs. This method depends on the existence of an expression for the cumulative density
function for the distribution in question. For most of the presumed pdfs considered
in combustion and fluid dynamics (such as the beta, Normal, maximum entropy, and
top-hat distributions), these are available. The proposed algorithm has the following

desirable properties:

o Applicable to both analytical cdfs and discretely computed distributions (from
Lagrangian methods or DNS data)

o Integrates well with the mathematical formulation of copulas
o Easily extendible to N dimensions

« Computation time is predictable and O(n?Y), where n is the resolution of state

space
o Identically preserves the relation [ p(n)dn =1

e Does not depend on any parameters such as €

The 1D implementation is described first, followed by the extension to 2D.

4.2.1 One dimensional case

The simplest approach to this problem of integrating the pdf numerically is to apply the
trapezoidal rule of integration. Here, the 1 dimensional case is demonstrated for ease of

illustration:

b n _
/ f(n)dn ~ Z(nk+1 —g) (f(nk“)2 7)) (4.6)

where the interval [a, b] is divided up into n equal length segments where the kth segment

is [1, Mo 1)- This is illustrated graphically by the red segment in Figure 4.1.

For the applications listed above, the function will be f(n) = ¢(n)p(n) where p(n) is a
univariate pdf and ¢(n) is an arbitrary scalar. The algorithm for finding the mean of
scalar ¢ based on the trapezoidal rule is then to find p,, = p(n,) and ¢, = ¢(n,,) and
let

3w i (oss —2) (f(ry1) — F(nx)) (4.7)

k=1 2
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F(a)=/f(n) dn
b

-00
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Figure 4.1: Equivalence of integration of pdf over interval and difference in cdf

However, the accuracy of this approach depends on the behaviour of the function f(7).
Since the marginal distributions in consideration can potentially contain singularities,

this causes several problems for the trapezoidal rule:

o It is impossible to make use of the value of the pdf at the singularity in the

trapezoidal rule, because it is undefined.

e Avoiding this problem might be attempted by taking a value close to the singularly
point but not actually on it. However, the value of the pdf sampled there will vary

rapidly depending on how exactly how close.

e Furthermore, the high value of the pdf “close” to the singularity will then be
applied by the trapezoidal rule to the whole interval, resulting in a large integration

error.

o These errors will be high enough that the after generation of the discretised pdf, the
integration of this pdf will not be 1. This problem is usually solved by normalising
the pdf by dividing by its own numerical integral, producing a new “pdf” which
integrates to 1. However, now the error from the boundaries has been spread

throughout the entire discretised pdf.

Note that all of the scalars of relevance in practice come from laminar flamelet calcula-
tions and are well behaved near the boundaries. The difficulties stem from the evaluation
of the pdf p. To avoid these problems, rather than integrating the pdf directly, the cdf
P(n) is employed to find an approximation. The cdf has a number of desirable properties

for this purpose:

e It is monotonically increasing

e It is bounded between 0 and 1
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o Its values at the limits of the domain are known (P(—o0) =0 and P(c0) = 1)

e For many marginal distributions, it can be evaluated analytically

This approach depends on the availability of the cdf function. Again, accurate numerical
evaluation of cdfs is not the focus of the current work, as many existing statistical
libraries already implement these for standard distributions (e.g. (Brown et al. 2002)).
For a pdf in which no functional form of the cdf is available this technique cannot be
applied, because in order to find the cdf P(n f " p(n’)dn’ a numerical integration
needs to be performed. By considering only dlstrlbutlons where both the pdf and the
cdf are known, the cdf based approach can be applied.

The integral of the pdf over a small interval € can be written in terms of the cdf:

/ " o)’ = P(n) (4.8)

[ " oy = P+ o) (49)
/n

n")dn" = P(n+¢) — P(n) (4.10)

This is illustrated by the grey area in Figure 4.1. For a grid n,, this provides a simple way
to evaluate the value of the integral of the pdf over each interval using the analytical
expressions for the cdf. This expression is exact and contains no error, even at the
intervals on the boundary where the pdf has a singularity. Therefore there is no need to
normalise the discretised pdf generated in this way, because (to machine precision) the

values of the integrals found in this way will sum to 1.

Assuming that the values of ¢(n) are available at each 7, define a set of n intervals I;, on
which to perform the integration, defined by the midpoints between the grid coordinates

71 as shown in Figure 4.2:

I = [771a771+%] (4.11)
In = [nnf%ﬁnn] (413)

where grid half-points which form the endpoints of these intervals are given by

Nk—1 = 5k = Mk—1) (4.14)

— N =

Mg+l = 5(77k+1 - 77k) (4.15)

2

Note that the intervals around k = 1 and k& = n are treated specially.
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Two simple approaches are to take the value of the scalar for the interval as either the
mean of the two end values, or the value of the scalar at the midpoint. The former was

chosen over the alternative, namely

Tg

" smpmdn =S 601ry) (Plss) — Pny) (4.16)
M1 k=1

because in typically in the generation of flamelet tables, scalar values are available from
the laminar flamelet simulations on a grid which includes the boundary points. The
values of the scalar on these grid points were chosen to represent the value of the scalar
on the interval associated with that point. Therefore our integration grid is such that
the intervals at the boundaries are half of the size of the other intervals (assuming a
uniform grid). In comparison, the cdf may be easily evaluated at any point without

approximation or interpolation.

e Scalar values Integration interval

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=... k=n-2 k=n-1 k=n

Figure 4.2: Location of scalar values and integration intervals used in the
integration of a scalar with a pdf. Boundary intervals are half of the size of the
central domain intervals.

Therefore the integral of ¢(n)p(n) over this interval is approximated by the mean value

of ¢ in each of these intervals and multiplied by the integral of the pdf:

/ S(mp(n)dn = $(ny) / p(n)dn (4.17)

I I,

This is illustrated graphically in Figure 4.3. Though the pdf has a strong gradient
near the boundary, the scalar is assumed to vary gradually for all 7. The value of the
integration for the interval shown is approximated by p(n)dn (the grey area) multiplied
by the approximate value of the scalar over that interval. This value is obtained using

the values of the cdf at the endpoints of the intervals:

Wy = [ s )n’ = Pl y) = Pl (4.18)
I,

Wi = [ plo)d = Plig,y) = Pl ) b€ (2in=1)  (419)
I

W, = [ o)’ = Pla) — P, ) (4.20)
I

n

In the particular case where integration is performed at a boundary with a singularity,
suggests that there will be a large error resulting from the fact that the values of ¢ very

close to a should be weighted much higher by the pdf than values close to b. Hence the
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Figure 4.3: Integration of ¢(n)p(n) over a small interval.

underlying assumption of this approach is that the values of ¢ vary slowly enough to be
considered constant across the interval [a,b]. This is a reasonable assumption; if it does

not hold then it is implied that the grid is not refined enough to capture the profile of
¢.

To summarise, the process for the one-dimensional case is as follows:

o A grid n, of size n, over the domain [nl,nng] of the distribution

g
o A corresponding set of intervals I;, defined in Equation 4.11

o Scalar values ¢;, = ¢(n;,) which are known at each point 7, either directly or by

interpolation
o The values of the cdf calculated at P(n,, 3 )
o The value of the integral of the pdf over the interval I, is given by Equation 4.18

e The value of the mean scalar is approximated as

o~ Z oWy (4.21)
k=1

4.2.2 Two-dimensional case

This approach easily translates to the n-dimensional case. In this section, the extension
of integration method for a bivariate pdf p(n, ¢) is described. The two dimensional grid,
the location of the scalar values and the areas integrated over are shown in Figure 4.4.

For this section, it is assumed that the joint-pdf has domain (n,{) € [ny,1,,] X [C1, ]
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which is discretised by an n x m Cartesian grid (n;,(;) where

Nk € {7717 7nn}7 (422)
Cl € {Cl?"'?Cm} (423)

e | ocation of scalar values
Integration area

cm_‘ °
Ck+1/2_
Ck“' ° ° °
Ck-15
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Figure 4.4: Location of scalar values and integration areas used in the integra-
tion of a scalar with a joint-pdf.

In comparison with the 1D version, the intervals on which integration is done are now
areas, and there are three different sizes and 4 different shapes to consider: each area
on a boundary is half of the size of a full area and each area at a corner is quarter of a

full size, i.e.:
A = Mg Moy 3] ¥ [Goys Gyl (4.24)

2

where the grid points are given by

Moy =m (4.25) Gy =G (4.28)
1 1
Met+t = i(nkJrl + ) (4.26) ey = §<Cz+1 +G) (4.29)

The value of the integral [ 4, p(n, ¢)dnd¢ over the area A;,; can be calculated by using
the values of the joint cdf at each of the four corners, as shown in Figure 4.5. The value
of P(a) is the integral foap(n, ¢)dnd¢, from the origin to that point, and similarly for
the other points. Therefore the integral of the joint-pdf over the area defined by the
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Figure 4.5: Calculation of [ p(n, {)dnd(¢ using values of the joint cdf P at points
a, b, c and d.

points a, b, ¢, d can be calculated by the differences of such integrals:

Wy = / p(n, O)dnd¢ (4.31)
A

kl

= P(d) — P(c) — P(b) + P(a) (4.32)
This is equivalent to the H-volume of the integration area (Nelsen 1999):
Vi(B) = H(wg,y2) — H(z1,y5) — H(wa,y1) + H(z1,91) (4.33)

where B = [21,y1]X[Z4, Y5]. One of the requirements of a copula is that it is 2-increasing,
defined as having a positive H-volume for all rectangular subsets of the domain. Hence
it is possible to show analytically that this quantity W}, cannot be negative, and this
forms a simple validation that there are no problems with the numerical evaluation of
the cdf at these points. As with the 1D case, this equation is exact and contains no

approximations.

To summarise, the two dimensional algorithm is as follows:

o A Cartesian grid (1, (;) of size n x m over the domain [1y,7,,] X [(1,(,,.]-
e A corresponding staggered grid as defined in Equations 4.25-4.30

A corresponding set of areas A; as defined in Equation 4.24, which are half-sized

at the boundary and quarter sized at the corners

o The scalar values ¢,,; = ¢(n;,, (;) which are known at each point (1, (;)
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o The value of the integral of the pdf over the area A, is calculated exactly as
Wi = [ o0, an¢ (4.34)
Akl
:P<nk+%7Cl+%) - P(nk+%7<l7%) 4.35)
—P(_3:Gry) + Py, Gy) (4.36)
e The value of the mean scalar is approximated as
Cm  [Tn
o= [ [ ot uptn oandc (437)
¢1 m
~Y Z 1 Wi (4.38)

=1 k=1

From the above formulations, it is possible to find several important quantities from the

pdf by choosing different ¢:

The marginal mean and variances are approximated by ({ version omitted for brevity)

Cm  [Mn
/ / np(n, ¢)dnd¢

~ Z Z MWt

=1 k=1

/ ” / " w2, Odndc — 2

1 M

L

~

2
In

S

%
hgE
[M]=

nl%Wkl - M%
l=

-

k=1

The covariance can be recovered via

Cm  [Tn
Ope = / n¢p(n, C)dnd¢ — puppie
<1 s

~ Z Z NG Wrt — Moyt

=1 k=1

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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One can even calculate the odds parameter numerically for an arbitrary cross-point

(M5 Cy):

6 = AD/BC (4.45)
_ L e plon ] [f et Odnd(} (4.46)
[féy NS g)dndc] [fcym I, C)dndé} |
5 > Y Wi [Zfly s W’“} (4.47)
S, S, Wl [S0, S, Wil

4.3 Upper and lower bounds of covariance

The upper and lower bounds of the covariance of a bivariate distribution H (7, () with
known marginal distributions F'(n) and G(() are given by the Hoeffding-Frechet bounds (Nelsen
1999; Hoeffding 1940; Fréchet 1951):

H™ = max(F(n) —G(() —1,0) (4.48)
H* =min(F(n),G(Q)) (4.49)

where + and — denote the upper and lower bounds, respectively.

H™(n,¢) < H(n,¢) < H(1,() (4.50)

As discussed in (Avellana 2006), Hoeffding (Hoeffding 1940) derived an expression for

the covariance and then showed that the correlation coefficient r;; was bounded by
rm<rg<rt (4.51)

where r~ and r* correspond to H~ and H" above. These are only equal to —1 and 1,

respectively, when

H(n,¢) = H™(n,¢) = F(n) =1—-G(() (4.52)
H(n,¢) = H"(n,¢) = F(n) = G(() (4.53)

i.e. that the two marginals are either equal to each other or reflections of each other. This
can be demonstrated (Demirtas and Hedeker 2011) through considering the Wasserstein

metric for two random variables i and (:

W(F,G) = E[(n—¢)’] (4.54)
= En?] + E[¢?] — 2E[n(] (4.55)
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Figure 4.6: Upper and lower bounds of covariance for a full range of marginal
beta distributions.

This gives a measure of the difference between the distributions of the two random
variables  and (. Since the first two terms on the right hand side of Equation 4.55
depend only on the marginal distributions, the term E[n¢] (and hence the covariance) is
maximised when W (F, @) is minimised, which occurs when n = F~1(¢) and { = G~1(¢#)
for a uniform random variable ¢t. Conversely the covariance will be minimised when
W(F,G) is maximised, which is done by taking n = F~1(t) and ¢ = G 1(1 —¢).
Equations 4.52 and 4.53 follow from these observations. Note that in the case of equally
distributed marginals, the upper limit on correlation is always 1, while the lower limit

needs to be determined.

For two marginal distributions which are not mathematically related as above, the cor-
relation coeflicient cannot reach 1 or —1. Such upper and lower bounds are shown
in Figure 4.6. Discrete values of the four marginal distribution parameters (two means,
two variances) were taken at regular intervals over their valid ranges. For each set of
parameters, the minimum and maximum covariance were plotted. Only in particu-
lar cases is the upper bound equal to the negation of the lower bound. However, these
bounds are difficult to evaluate for arbitrary distributions. For the case of two identically
distributed marginals, Dukic et al. (Dukic and Marié¢ 2013) present analytical limits for
a very restricted subset of distributions with beta marginals, and numerically obtained
limits for slightly less restrictive conditions (but still assuming identically distributed

marginals). They also present an algorithm for sampling from such joint distributions.
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Demirtas and Hedeker (Demirtas and Hedeker 2011) discuss the problems associated

with obtaining the upper and lower bounds of correlation or covariance.

The Hoeffding representation of covariance (Lin et al. 2014) is

On¢ = /: /: H(n,¢) — F(n)G(¢)dndg (4.56)

and with the above observations the maximum and minimum covariance are given by

1
FY( Y(t)dt — (4.57)

3+

1
F=Y( YA —t)dt — (4.58)

=)
=)

The corresponding correlations reach the values of 1 and -1 only in the case of F(x) =
G(az + b) for some a and b. For beta distributed marginals with shape parameters
{aq, 51} and {as, B5}, these become

1
02<=/ I Moy, BTy Hag, Ba)dt — pup o, (4.59)
0
1
UncZ/ I Moy, BT (g, By )dt — pay (4.60)
0

where here I,(a, ) is the regularised incomplete beta function (the cdf of a beta dis-
tribution). These may be integrated using a numerical integration scheme such as the

Gauss—Kronrod quadrature method (Laurie 1997).

In Appendix A, some upper and lower bounds on the covariance are derived for a some
special cases. However, based on numerical evaluation of the covariance from Plackett
copulas using the methods described in Section 4.2 (specifically, Equation 4.43), these
bounds are not sufficiently strict. The numerical integration of the Hoeffding-Frechet
bounds (Equation 4.50) was found to match the values found by integrating the Plackett
copula directly. However, in certain cases the numerical integration of Equation 4.50
failed, and producing an anomalous result that did not fit the trend. The direct integ-
ration using Equation 4.43 had no such problems, and was therefore the chosen method
for calculating the upper and lower bounds, both because it proved the more robust
method and because it is consistent with the method used to generate the copula during
the application. The agreement between this method and the direct integration of the
Hoeffding-Frechet bounds, in the cases where that method worked, gives confidence that

the results are accurate.
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4.3.1 Scaled covariance as tabulation parameter

As seen in the preceding section, for the purposes of tabulation, the correlation is a
poor choice of tabulation parameter because the limits [—1,1] are not always realis-

able. Therefore new quantity o}, is defined which is normalised by the minimum and

Y
maximum covariances for a given set of marginal distributions:

g — 0,
ot = 28 1¢ (4.61)
In¢ ™ Tnc

4.4 Linking odds parameter to covariance

The covariance of two random variables Z and ¢ with marginal distribution functions

F(n) and G((), respectively, may be written in terms of their joint distribution function

P(n,Q) as
7ze= [ [ P00~ F)G(dnac (4.62)
= [ [ etr. @) - FaGcan (4.63)

where C' is the copula for the joint-cdf P with marginals F' and G. For the Plackett

copula, this becomes

/ / o 949(§_1) C  Fm)G(Q)dndC (4.64)

S=1+(0-1)(F0n) +G(©Q) (4.65)

This integration depends on the choice of 6 as well as the two marginal distribution

functions F' and G. Presuming beta distributions for the marginals, i.e.

where I, (), 3,) is the regularised incomplete beta function. Then

S — 82_40<9_1>In(an’ﬁn)IC(O‘C’BC>
On¢ = // \/ 200—1) — I, (o, B,) (e, Be)dnd(
(4.68)

S(0) =1+ (0 — 1), (e, B,) + Icag, Be)) (4.69)

where a,, B,, a¢, B, are determined by the marginal distributions and hence known

constants. This can be integrated to find an expression for the covariance. However,
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inverting this relation to obtain an expression for 6 in terms of o, is difficult due to

the inability to find an analytical solution to the integral.

Hence there is no direct relationship between the odds parameter and the correlation, be-
cause the correlation depends on the marginal distributions whereas the odds parameter
is purely a function of the copula. To determine the odds parameter for a distribu-
tion with Normal marginal distributions, Nelsen (Nelsen 1999) suggests the following

procedure:

1. Generate two sets of correlated Gaussian random numbers (X,Y’)

2. Transform these Gaussian random numbers into uniform random numbers through
U, = ¢ 1(X,;) and V;, = ¢ 1(X,) where ¢~ is the Gaussian inverse cumulative

distribution function
3. Plot these correlated uniform random numbers on a contingency diagram

4. Calculate the odds parameter as 6 = ad/bc, where a, b, ¢ and d are the number of
points found in the upper left, upper right, lower left and lower right quadrants of

the plane, respectively

This method is only valid for Normal marginals, as it relies on the known result that
transforming marginals from uniform distributions to Normal distributions (and vice

versa) does not significantly change the correlation.
The following method proposed by Johnson (Johnson 2013; Nelsen 1999) generates two
samples (u,v) of the joint cdfs from a Plackett distribution:
1. Generate two independent uniform (0, 1) variates u, t.
2. Set
a=1t(1-1t)

b=0+a(0—1)°
c=2a(ub?+1—u)+60(1 —2a)

d= \/é\/e + dau(l —u)(1 —0)?
[c — (1—2t)d]
2b

v =
3. The desired pair is (u,v)

These samples of the cdf (u,v) can then be transformed via the desired inverse marginal
pdfs to obtain samples from the joint distribution. This is correct and a viable approach

for generating samples, but it relies on knowing the odds parameter in advance.
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Darbyshire and Swaminathan (Darbyshire and Swaminathan 2012) use the following

procedure to find the odds parameter from covariance:

1. The desired RMSs and covariance o,, 0, and o, are known (from CFD)
2. The desired Pearson correlation coefficient r, . = 0, ./(0,0) is therefore known

3. The Pearson correlation coefficient r, . of the required distribution (n,() can be
related to the Pearson correlation coefficient r xy- of a pair of Normally distributed
variables (X,Y’) through

— 9 ™n¢ 4.70
Txy = 2sin( 6 )s (4.70)

4. A set of correlated Normally distributed random variables (X,Y’) are generated

with Pearson correlation coefficient r xy-

5. A pair of random variates (n,() are then calculated using the standard Normal
distribution cdf n = ¢(X), ¢ = ¢(Y)

6. The odds parameter 6 is then calculated based on (7, ()
However, step 3 above is not generally valid. In step 3, Equation 4.70 is actually the rela-

tionship between the Pearson correlation r, . and Spearman’s rank correlation coefficient

pn¢ and is only correct for the Gaussian copula:

6

Pnc = arcsm(T) (4.71)
vy

rpe = 2sin( %’74 ) (4.72)

This relationship will not be correct for any marginal pdfs besides the normal distribu-
tion, and is not correct for the Plackett copula used in (Darbyshire and Swaminathan
2012; Ruan et al. 2014) which is not a Normal copula (the copula of a multivariate

normal distribution).

To summarise, there are two issues with the approach in (Darbyshire and Swaminathan
2012): the conflation of Spearman’s p and the Pearson correlation coefficient (step 3);
and the assumption that the correlation coefficient will be unchanged by a change of
marginals (step 6). The final samples (n,{) will indeed have uniform marginals, and

they will have Pearson correlation coefficient 7y .

In the context of stochastic evaporation modelling for sprays, a further consideration
with methods that rely on sampling to obtain the odds parameter is that they are
typically inefficient when large numbers of samples are required. As the correlation
between the two variables approaches its extremes, large numbers of samples are required
to avoid insufficient numbers of samples in the less populated diagonal quadrants of the

contingency diagram. Ruan et al. (Ruan et al. 2014) suggest 5000 samples to achieve
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Figure 4.7: Left: Odds-parameter as a function of correlation (-) as predicted

by the method outlined above. The piecewise linear fit (x) which is used in

the code is illustrated. Right: The reproduction of the correlation between

pairs of random variates generated using the copula method. There is a slight
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Figure 4.8: Left: Original joint-pdf, Right: Pdf reconstructed from random
multivariate samples. The marginal distributions are both beta in this case and
the correlation is 0.7.

1

around 1% error. If the objective is to randomly sample values from the presumed
droplet or particle in a turbulent flow, a new joint distribution must be constructed at
every timestep in every CFD cell. Therefore a more efficient approach for constructing
and sampling from the joint distribution is desired. A lookup table approach is developed
in this work, in which the odds ratio has been pre-calculated for a range of values of
correlation (see Figure 4.7) and a piecewise linear interpolation is performed to obtain

the odds parameter from the correlation.

The implementation of the Plackett copula has been verified by confirming that it pro-
duces the requested correlation, and marginal pdfs. The sampling procedure has been
validated by demonstrating its convergence towards the appropriate analytical joint and

marginal pdfs, as illustrated in Figures 4.8 and 4.9.
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Figure 4.9: Comparison of the analytical marginal CDFs (solid line) and the
numerically reconstructed CDFs produced by the copula method (bars).

4.4.1 Copula-invariant approaches

The numerical approach described in the preceding chapter involves a costly interpola-
tion to find the odds parameter from a given covariance. This section briefly explores

the potential alternative approaches to obtaining the odds parameter.

The covariance of a joint distribution h(n, ) may be written as

tuc= [ (1= 1g)(C = b Ondc (1.73)
an

— B0 1) (€ — 1) (4.74)

= EnC] — pntie (4.75)

where h(n, () is the joint-pdf of n and ¢ defined on the domain Q¢ phe and e are the

mean values of these scalars and F indicates the expected value of a random variable.

The quantity o, . cannot be expressed solely as a function of the copula C(u,v). This
is because o, also depends on the marginal distributions. Recall that the copula binds

the two marginal cdfs u = F(n) and v = G({) to form the joint cdf according to

C(u,v) = H(n,() (4.76)
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where H is the joint cdf corresponding to the joint-pdf h. Then the dependence of the

covariance on the choice of marginal distributions can be observed:

Tpe = /Q nCh(n, Q)dndC — piy pie (4.77)
n¢
B 02C (u,v)
_ /Q ) I 2l — g (4.78)
= [ F ' (u)G N (v)dC(u,v) — i, pie (4.79)
72
(4.80)

Alternative measures of dependence, such as Spearman’s rank correlation coefficient or
Kendal’s tau, depend only on the copula and not on the joint distribution function.
Hence, finding a mapping between them and the odds ratio may be easier. The popula-

tion version of Spearman’s rank correlation coefficient is (Nelsen 1999)

Pne = 12/ uvdC(u,v) — 3 (4.81)
12

=12 | C(u,v)dudv—3 (4.82)
I2

Fredricks and Nelsen (Fredricks and Nelsen 2007) give Spearman’s p for the Plackett

copula (6 # 0) as

S(0) = 20+0 —2(9942r 1)log(6 + 1) (459

This is arrived at by noting that C' is defined implicitly by the quadratic (in C')

0C? —[1+0(F+G)|C+ O+ 1)FG=0 (4.84)

If the error (discussed in Section 4.4) associated with assuming Pnc = T'n¢ 18 acceptable
for a given application, then the inversion of Equation 4.83 provides an attractive al-
ternative to the sampling approach of linking o, - and 6. One could attempt to derive an
analytical expression for o, . as a function of 0, beginning by substituting the expression
for the Plackett pdf into the definition of covariance and solve for 6. This quickly be-
comes intractable due to the combined complexity of the Plackett distribution and the
beta pdf marginals. Alternatively a transport equation could be derived for a quantity
which depends only on the copula, not on the marginal distributions. One example of
such a quantity is the odds parameter; another, more standard option is Spearman’s p.
However, the problem still remains of finding a transport equation for Spearman’s p,

since that depends on the marginal pdfs. Neither of these approaches seems viable.
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4.4.2 Numerical evaluation of the copula parameters

In order to avoid the use of sampling techniques for the generation of the copula para-
meter 0, the mapping between odds parameter and covariance is numerically tabulated.
This approach can be generalised to arbitrary table parameters and copula parameters.
Here, the process is outlined by the following steps to generate a mapping from mixture
fraction progress variable covariance o © 0 z7c to odds parameter 6 for a regular flamelet table
parametrised on © = {Z, Z” 72 , ¢, c” 2} and a fifth parameter, the min/max normalised

covariance O'ZCZ

1. For each combination of © in the table,

(a) find the two presumed marginal distributions from their moments,

(b) generate two joint distributions based on these marginals and the Hoeffding-
Frechet bounds (Equation 4.50) (equivalent to Plackett distributions with

odds parameters § = oo and 0 = —1),

(c) from these two joint distributions, numerically calculate the covariance via
Equation 4.43. These are the minimum and maximum possible covariances

for the given marginal moments.

(d) for an arbitrary set of odds parameters 6, spanning the full range [0, o] (see
Equation 4.86), numerically calculate the corresponding covariance o, A and
the min/max scaled covariance 0%, as defined in Section 4.3.1. This gives

a discrete mapping m such that o7, = m(f})

2. For each desired o7, on a regular grid, calculate the appropriate odds parameter

0 by a linear interpolation of the inverse of the mapping from step 1d,

6 =m (o) (4.85)

This process produces a set of odds parameters 6 given as a function of the table para-
meters O U {o%,_.}, which can then be used to generate the appropriate Plackett copula

for each set of table parameters.

The choice of the values of 8, must be made carefully in order to ensure that the mapping
m has sufficient resolution in o7, space to make the linear interpolation accurate. In

the present study, through trial and error it was found that n, = 31 values of ,, given
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by
0.0 ifk=1
0.0+¢ ifk=2
Ogep 7P =910—¢ if k=ny—1 (4.86)
e+ (1—2¢) 715;23 otherwise
1
O = ———guess — 1 (4.87)
1 _O_Zciuess

where ¢ = 1 x 1076 produced appropriate results. This mapping uses a 1/x shape
profile as a guess for 6 as a function of o7, ., with values placed very close to # = 0 and
0 = oo to ensure the full range is covered. The resulting table was tested by comparing
the numerically calculated o7, with the input o7, ., and the error was found to be

satisfactory.

Finally, it is noted that the expression for the Plackett copula (Equation 3.25) is sensitive
to numerical accuracy problems when the odds parameter is close to zero. This was

avoided in the present work by simply assuming independence for |§ — 1| < 10710,

4.5 Sampling from a joint-pdf

4.5.1 Sampling from joint distributions (application to spray)

To evaluate the droplet evaporation rate it is necessary to select a pair of seen fluid prop-
erties from their joint-probability distribution so that T, and Y} ., can be obtained.
Efficient sampling from multivariate distributions with specified correlations remains a
difficult problem (Gentle 2003). Several methods exist, but the methods are intended
for sampling large numbers of random values from a single distribution. The require-
ments for evaporation modelling are somewhat different: the mixture fraction — progress
variable distribution varies in space and time, so that a new joint distribution should be
constructed at every grid point and every time-step. The number of samples required
from each distribution is then equal to the number of particles in that cell at that time,
which may be as few as one. Established sampling schemes rely on Monte Carlo ap-
proaches, as in (Chang et al. 1994) or (Lurie and Goldberg 1998), which aim to find
the transformation from the multivariate normal correlation matrix to the correct cor-
relation matrix of the joint distribution after an inverse transform. These Monte Carlo
approaches are inefficient if only a few samples are required from each joint-distribution.
In this section, a new computational algorithm is developed, designed to efficiently gen-

erate a single sample from an arbitrary multi-variate probability distribution.
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Sampling from a univariate distribution where the inverse cdf is available is simple and

efficient using the inverse transform sampling method:

1. Generate uniformly distributed random variates X

2. Obtain arbitrarily distributed random variates as @ (X;), where @ is the distribu-

tion’s quantile function, the inverse of the cumulative distribution function.

However, for a multivariate distribution this approach is not possible as the cdf is a
function mapping a vector to a scalar (more specifically, it is not one-to-one) and hence
has no inverse. Algorithms exist for drawing from specific bivariate distributions; for
example, many algorithms are available for the bivariate Normal distribution and an

algorithm for sampling from the Plackett copula was described in Section 4.4.

In the case where the bivariate distribution is expressed as an empirical joint cdf, a
numerical approach can be taken to efficiently generate samples. Consider a distribution
with probability density function f(z,y) defined on the domain (z,y) € [0,1] x [0, 1].
Allow an n x n discretisation of this domain into cells of size n=! x n~! with centres at

points

/—0.5 j—05
! J ) (4.88)

(T5:9;) = ( )

n n

where 4,5 € {1,...,n}. Further, subdivide the central value f;; = f(z;,y;) of the pdf
in each of these cells into sections of length n~!, effectively discretising the integral

under the curve z = f(z,y) into equal volumes V;

ijk — 3. As n — o0, the total sum

of these volumes approaches 1, which is the integral of f(z,y) over the whole domain.
Selecting one of these volumes at random (each having equal probability) will give a pair
of random numbers — the domain coordinates (z;,y;) — which will exhibit the desired
joint distribution. This selection is done in practice by generating a uniform random
number § and stepping through the volumes V; ;. in a predefined order, summing them
until the total volume exceeds £&. The exact order of traversal is not important as long
as it is consistent between samples, because the traversal path is essentially a mapping
the discrete set of volumes to a one-dimensional set of integers, from which a random
selection is made. Thus a mapping from a univariate random number £ to a multivariate
random vector (x,y) with n x n discrete values is achieved. This procedure is possible
due to the discretisation — it is not possible to traverse a continuous two or three

dimensional field in this way.

A simple improvement to this sampling procedure is possible wherever the joint cdf is
available. For any point (X;,Y;) = (i/n,j/n), the cdf F;; = F(X,,Y;) is equal to the
integral of the pdf up to (X,,Y;):

X, Y,
F;; :/O /O f(z,y)dxdy (4.89)
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Figure 4.10: Algorithm for searching distribution space.

which is approximately equal to the sum of the value of the PDF at the centre of the
cells, multiplied by the area of the cells:

i J
Fi; ~ Z friArs (4.90)
U=0 J=0
Therefore the cost of searching for the point where accumulated probability exceeds &
can be reduced by traversing the diagonals (z,,y,) until two CDF values are found F, ,
and F{,1)(q+1) such that
Faa < 5 < F(a+1)(a+1) (4‘91)

Then, beginning from the lower value of the CDF, perimeter of the a x a square is
traversed, as indicated in Figure 4.10, accumulating probability from f(z,,y,;). When
the total probability exceeds & the coordinates (z,y) of the last point give the pair of

random variates.

It is possible that the joint-PDF will contain sharp gradients if it is numerically evalu-
ated from a joint cdf, rather than from observed empirical samples; for example when
the marginal beta-pdf contains a singularity at 0 as can happen with the beta distri-
bution with low mean and high variance. In this case a uniform grid is not sufficient
and numerical error leads to over prediction of the mean mixture fraction. A simple
refinement which has proven to be effective in avoiding this error is to discretise the grid
according to points G~1(y,) where y, are evenly spaced points on the interval [0, 1] and
G~ 1(y,) is the value of the inverse marginal beta-pdf at these points. Hence the point
G~1(0.01) is the point at which 1% of the distribution has been accumulated. This leads

to a refinement of the grid where the marginal distribution changes most rapidly.
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This efficient method of sampling from the joint distribution is necessary for applica-
tion of this evaporation model in the context of Eulerian-Lagrangian simulations, where
droplets will move through computational cells and the mean velocity and mixture frac-
tion seen by the droplet will vary rapidly over time. This motivates the need for a
computationally cheap method to generate random samples from each presumed joint
distribution encountered, as the next seen distribution is likely to be different. Using
only the pdf in the above sampling technique results in O(n?) computational cost, where
n is the resolution of the grid; making use of the cdf reduces this to O(n) computational
cost. In the case where multiple Lagrangian particles are present in the same Eulerian
cell further optimizations can be made by using an ordered list of uniform random num-
bers (see Bentley and Saxe (1980) for an example of an algorithm for generating such a

list) and starting the search location of each from the position where the last was found.

4.6 Time integration of reference variables

The Reynolds averaged simulations presented in this thesis employ lookup tables gen-
erated from an autoigniting laminar flamelet to provide thermochemical fluid properties
conditioned on the reference variables. The laminar table is then multiplied by a set
of presumed pdfs and integrated to give a turbulent lookup table which provides Favre
averaged quantities such as composition, temperature and density to the CFD code as
functions of the Favre averaged reference variable moments. A simple test case to en-
sure that the lookup table is working correctly is to reproduce the flamelet solution by
integrating the lookup table in time using the CFD code. Here this test is performed
with the CFD code by setting up a 1-dimensional solution domain x € [0, 1], in which
the velocity field is held equal to zero so that the mixture fraction distribution given
in the initial condition (Z,&) = (z,0)Vx does not change over time. The variances and
covariance are initialised to zero and remain so, effectively making this a laminar calcu-
lation where ¢ = ¢ and Z = Z. The Favre averaged progress variable ¢ evolves according

to its reaction rate, as this is the only non-zero term in the transport equation:

= 0.(2) (4.92)

While the flamelet solution is calculated by considering the evolution of all species in the
chemical mechanism, the CFD solution with tabulated chemistry solves only for ¢. The
0D flamelet solution is a solution in conditional mass fraction space (plus enthalpy or
temperature, but here d(h|n)/0t = 0 and therefore temperature is uniquely determined
by mass fractions). The solution is a set of mass fractions at a given mixture fraction
and time: Y, = Y, (Z,t). Therefore the solution represents a two dimensional manifold
in k-dimensional composition space. Defining ¢ and Z as a reference variables implies

a coordinate system in [0, 1]? for this manifold. Another coordinate system is already
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Figure 4.12: Solution of Equation 4.92 for Z = 0.2 over time; red: CFD solution;
black: solution from CMC code. First panel: comparison of ¢(t) as calculated by
CFD and CMC code. Second panel: CFD solution time-shifted to show differ-
ence in profile of ¢(¢). Third panel: w, vs ¢, showing lookup table interpolation
error.

established: Z,t. Provided c¢(t) is monotonic there exists a bijection from (Z,t) space

to (Z,c) space.

Hence, the 1D CFD problem described above should be able to exactly reproduce the
laminar flamelet solution by directly integrating c(t) according to Equation 4.92. How-
ever, it was found to be unable to do so. Figure 4.11 shows a solution of Equation 4.92
as calculated by the CFD code. The fluctuations in ¢ exhibited in Figure 4.11 are due to
errors in the ignition delay time of a mixture at a given mixture fraction. To understand
why, Equation 4.92 is integrated directly for Z = 0.2. The figures show that there is a
large error (over 100%) in the ignition delay time as calculated from the integration of ¢
versus the flamelet solution. Once the ignition occurs, the two follow solutions the same
trajectory. The cause of this is the error in the interpolation of the reaction rates for
¢ < 0.1, which were stored in a table with only 11 points in progress variable space. The
calculation is highly sensitive to the reaction rates during the initial stages of ignition,
which were not captured well by the coarse table used here. Replacing the reaction rates

for ¢ < 0.1 with those from the flamelet solution, or performing the same integration
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using a table with 51 points in progress variable space, both resulted in an accurate
ignition delay time prediction. However, this highlights the sensitivity of the problem
to the progress variable in the early reaction phase. This sensitivity was found to be
lowest at around Z = 0.2, as shown here; for both leaner and richer mixture fractions,
the sensitivity was higher and increasing the resolution of the table (within reasonable
limits — up to 101 points in progress variable space) was insufficient to obtain accurate

ignition delay time estimates.

It should be noted that this does not pose a problem for the CMC code, as the use of full
chemistry to characterise the ignition mitigates the problem of numerical accuracy, since
radical concentrations are accurately accounted for. This also explains the behaviour
seen in Figure 4.11: the dissipation term in the CMC equations uses a second order
central difference scheme to calculate the second derivative in the diffusion term. This
scheme produces fluctuations in the source terms and therefore fluctuations in the spe-
cies mass fraction profiles. The employed scalar dissipation rate model amplifies these
fluctuations around Z = 0.5 and diminishes them towards the boundaries. During the
initial stages of the CMC solution, where the mass fraction profiles are close to linear,
the amplitude of the contribution from these fluctuations is relatively large, resulting
in small errors in the total RHS around Z = 0.5 which manifest as highly fluctuat-
ing ignition delay times in this region. This explains the almost correct behaviour for
Z < 0.3 in Figure 4.11, where the mixture ignites sooner and therefore these errors are

less important, and the incorrect behaviour around Z = 0.5.

A sensitivity study was performed by directly integrating Equation 4.92 for Z = 0.6.
The results are shown in Figure 4.13. The progress variable initial condition was set to
three different values close to zero. The ignition delay time is strongly affected by the
initial value: an error in the initial value of 0.01% (relative to ¢ = 1) produces roughly
a 125% error in ignition delay time; an error in the initial value of 0.0001% produces an

ignition delay time error of around 50%.

The sensitivity of the time integration of ¢ to small changes in initial conditions poses
a problem with using ¢ as a reference variable for an autoignition calculation. There
are many sources of both modelling and numerical error in CFD simulations, and the
inability to eliminate all error makes the sensitivity of the reaction rate of ¢ a concern.
Error in ignition delay time prediction will directly affect the prediction of lift-off height

in autoignition stabilised flames.

Fundamentally, this sensitivity stems from the slow rate of change of ¢ during the early
stages of autoignition. The progress variable is characterised by a very shallow gradient
initially, followed by a short period of rapid change before levelling off again. This
has the desirable property that the composition changes though the reaction are well
characterised in c-space. For premixed flames which are driven by the diffusion of heat

ahead of the flame (the preheat zone) this is not an issue as the premixed flame is
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Figure 4.13: Integration of reaction rate of progress variable over time, showing
sensitivity of homogeneous reactor to initial conditions of c.

captured by the diffusion of progress variable ahead of the flame front. However, for an
auto-igniting flame this is not the case: the reaction is driven by the accumulation of

radical species before ignition.

Thus it is desirable to make use of a reference variable that can account for the changes
in thermochemical state during the pre-ignition phase. One way to increase the gradient
of the progress variable near ¢ = 0 — and therefore reduce the sensitivity — would be
to choose a definition of progress variable including weighted mass fractions of species
which are present during this initial phase. Species such as HO, and H,0O, are import-
ant precursors to ignition. However their mass fractions are strongly non-monotonic
though the reaction, unlike the mass fractions of products CO, and H,O, which makes

preservation of monotonicity of the progress variable troublesome.

The residence time-based reference parameter a presented in Chapter 2 was developed
in order to avoid this problem. The direct integration of the case described above and
shown in Figure 4.13 was performed using reference variables a and b. The results are
shown in Figure 4.14. It is seen that the use of either a or b as a reference parameter
successfully removed the sensitivity to initial conditions which is inherent in using a

progress variable based on species mass fractions.
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Figure 4.14: Integration of reference variables a, b and ¢ over time. Use of ¢
as a reference variable shows strong sensitivity of ignition delay time to initial
conditions, whereas both a and b remain insensitive to the initial condition.

4.7 Summary and Application

This chapter has developed the numerical implementation and the application of the
concepts developed in Chapter 3. A robust and accurate framework for integration of
scalars over a given joint-pdf was developed, which is capable of handling presumed
distributions including analytical joint distributions, presumed marginal distributions
combined with presumed copulas, or empirical distributions. This method was then
applied to the calculation of the upper and lower bounds of covariance, an important
step in the population of a regular turbulent flamelet table where covariance or an
equivalent quantity is a parameter. Such a parameter was developed, referred to as the
min/max scaled covariance and given the notation o’ for random variables X and
Y. The numerical implementation of this method draws on the previously developed
numerical integration techniques. Some specifics of the Plackett copula, in particular
sampling methods and the determination of the odds parameter, were explored, and
a new approach to linking odds parameter with covariance was presented. Finally, a
sampling method appropriate for application to sprays was given which is applicable
to both analytical distributions and empirical distributions. The numerical methods

developed here will be used in the implementation in proceeding chapters.






Chapter 5

Results I: A-priori analysis of
one-point pdfs in

partially-premixed flames

Chapters 2 and 3 described a modelling approach for joint distributions of reference
variables. This took the form of combining established presumed marginal distributions
for each reference variable and then modelling the dependence between the two by using
a presumed copula. Previous work (Darbyshire and Swaminathan 2012; Ruan et al.
2014) has studied the mixture fraction—progress variable joint distribution and modelled
dependence using a Plackett copula. It remains to be seen whether this form of the
presumed copula is capable of capturing accurately the dependence between these two
variables in a wide variety of partially premixed flames. In this chapter, joint distribu-
tions extracted from a variety of direct numerical simulations (DNS) and experimental
datasets are examined, and a new technique for studying the copula in isolation is de-
veloped to assess the suitability of a particular presumed copula for modelling the given

joint distribution.

The focus here is on the joint distribution of mixture fraction and progress variable from
a selection of direct numerical simulations (DNS) and laboratory experiments spanning
a range of partially-premixed combustion regimes However, the techniques developed for
the a-priori analysis of presumed pdfs are applicable to any set of reference variables.
The dependence between mixture fraction and progress variable in DNS data is revealed
by considering the underlying copula, which gives more insight into the dependence
structure than the correlation alone would allow. Where appropriate, the presumed pdf
and the Plackett copula model performance is evaluated against the DNS data, both
in terms of goodness of fit metrics on the distributions, and in terms of accuracy of

the prediction of statistical quantities that appear in turbulent reacting flow models

81
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(especially the temperature 7' and mean reaction rate w). It is found that the efficacy

of the improved presumed joint-pdf depends strongly on the flame type.

It was suggested in (Darbyshire and Swaminathan 2012) that deviation from independ-
ence was strongest in regions of high equivalence ratio stratification. Here, two DNS
cases are investigated: one with an equivalence ratio stratified slot Bunsen configura-
tion, involving combustion mostly by flame propagation; and a lifted autoigniting jet
flame which exhibits strong stratification near the flame base. In addition, experimental
data from the Sandia flame series is examined, exhibiting extinction and reignition phe-

nomenon within a nominally non-premixed jet flame.

5.1 Methodology

The modelling approach taken here is to presume the marginal distributions are known
and focus on modelling the copula. Both the marginal pdfs and the joint distribution
are obtained from the DNS or experimental data. The aim of this study is to look for
and quantify dependence between mixture fraction and progress variable in partially-

premixed combustion.

5.1.1 Removal of marginals via the inversion method

Bivariate dependence can be isolated and investigated by removing the influence of the
marginal distributions from the bivariate distribution. This is done by transforming
the marginal distributions P, and P, into uniform distributions U, and U, , while
preserving the copula C' which relates them. For reference, see (Nelsen 1999, p50).
A given bivariate distribution function P,. can be expressed in terms of its marginal

distributions P, and P, and the copula C' which joins them:

Pze(n, ) = C[Pz(n), P.(¢)] (5.1)

It is possible to invert this relationship to study the copula in isolation:

C(u,v) = Pgo(Pz' (u), P 1 (v)) (5.2)
where
u = Pg(n)
v=P,(¢) (5.3)

are the values of the marginal distributions. By replacing the marginal distributions with

uniform distributions denoted U, and U, a new bivariate distribution U, is obtained
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having the same copula as P, but with uniform marginal distributions:

= C[Py(Pz'(n)), Po(PZ1(Q))] (5.5)

In this study, the distribution functions P,., P,, and P, and their inverses, are es-
timated by their empirical counterparts E,., E,, and E_, calculated from DNS or

experimental data.

The process of transforming the marginal distributions into uniform random variates is
essentially the reverse of the inversion method for the generation of random numbers
with a given distribution. The key steps for the inversion method for random number

generation using the inversion method are as follows:

1. Take the CDF P(x) and its inverse P~1(y) of the desired distribution,
2. Generate a set of n uniform random variates y;,,

Following this procedure, the random variates x; are distributed with the CFD F(z).
The de-marginalisation process is the reverse of this algorithm. It has the following

steps:

1. Take samples x,; from the physical system,
2. Calculate the empirical CDF E(z) from the samples,

3. Let y; = E(z;).

The resulting values y, will be uniformly distributed. For a pair of scalars ¢, and ¢,,
pairs of samples of these scalars may be denoted (¢, ;, ¢, ;) where i indicates the ith
sample. Performing the above process simultaneously on these pairs will give a set of

pairs (1 ;,%4 ;) where each random variable 9); or v, is uniformly distributed:

¢1,i = E¢1(¢1,i) (5-6)
¢2,i = E¢2(¢2,i> (5-7)

For example, taking the distribution of H mass fraction versus OH mass fraction in
Figure 5.1 for the stratified flame introduced in Section 5.2, which is strongly correlated,
it is difficult to discern how much of the structure is due to the dependence between
variables and how much is solely due to the marginal pdfs. By removing the influence

of the marginal pdfs, the underlying copula may be visualised and it is seen that there
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Figure 5.1: Left: H mass fraction versus OH mass fraction in the stratified
flame. Right: H mass fraction versus OH mass fraction in the stratified flame
after being normalised by their respective marginal distributions.
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Figure 5.2: Showing the bivariate distributions (scatter plots) and marginal
pdfs (histograms) of mixture fraction and progress variable before (left) and
after (right) the process of de-marginalisation. Data are for the stratified flame
introduced in Section 5.2.

is indeed a strong dependence in this case. This is illustrated in the second panel of
Figure 5.1. With the influence of the marginals removed, only the dependence structure
remains, showing strong tail dependence — samples are more correlated at the lower

end of the distribution and less correlated towards the upper end.

While Figure 5.1 demonstrates this process for two strongly dependent quantities (H and

OH mass fractions), Figure 5.2 illustrates this process for mixture fraction and progress
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Figure 5.3: Examples of distributions with uniform marginal distributions and
a Plackett copula with the given odds parameter 6. Plots range from perfectly
negatively correlated (far left) through independent (centre) to perfectly posit-
ively correlated (far right).

variable at the same location. Plots of the marginal pdfs of each variable are included for
clarification, before and after the above process is applied. The left hand side (scatter
plot of the original data) shows some coherent clustering of data points. When the
influence of the marginals is removed while preserving the dependence structure, the
distribution U, (scatter plot on the right hand side) reveals that very little of this
coherence is due to dependence between the two variables. At this point in the flow
the dependence between mixture fraction and progress variable is very weak, and the

sample plot of U, looks very close to that of an independent distribution.

This can be seen by comparison to Figure 5.3, which demonstrates the appearance
of a range of Plackett copulas ranging from perfectly negatively correlated to perfectly
positively correlated. Each scatter plot in Figure 5.3 has uniform marginal distributions.
Depicted centrally is a set of samples from the independent distribution, which exhibits

no inherent pattern, unlike the other examples which are partially and fully dependent.

5.1.2 FError measurement

To assess the suitability of a copula for modelling the joint distribution of ¢, Z, a meas-
urement of error is needed. Two such measures are presented here. The first is the

Ls-norm of the error between the presumed pdf and the empirical pdf from experiment

or DNS. The Ly-norm is defined as
1], : /Z a2 (5.8)

where x is a vector to which the norm is applied and ¢ is the vector component index.

The metric referred to from here on as the “L,-norm of the pdf” is defined as

| |pempirical(77i’ Cz) - ppresumed ("77,7 Cz) | ’2 (59)

where (n;,(;) is the ith sample (typically from the empirical distribution, i.e. the ob-

served quantities from the DNS or experiment). Hence, pypirica(1;,¢;) = 1/N where
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N is the number of samples and the presumed pdf pp esumea(7:,¢;) is evaluated at the
points observed in the DNS.

Another appropriate assessment of presumed pdf performance is the ability to predict
mean quantities. Such mean quantities are available from the experimental or DNS for

comparison. For a scalar ¢, the mean value ¢ can be calculated as
¢—/¢@MW® (5.10)
Q

where Q is the domain of the pdf p(n), and 7 is the state vector. Additionally, given a

finite set of samples ¢, the mean ¢ can be calculated though:
- 1 Y
= — . 5.11
¢ Ng;% (5.11)

The same averaging procedure can be done for samples generated from a presumed
distribution. However, samples generated from a bivariate Z, ¢ distribution do not
directly specify ¢, and hence the reaction rate cannot be calculated. This poses a
problem for calculation of both mean mass fractions and mean reaction rates. Instead, a
relationship must be found for the scalar ¢ as a function of mixture fraction and progress

variable:

¢=9¢(Z,c) (5.12)
This relationship is provided by a flamelet library appropriate for each case.

The same definition of progress variable is used in all of the studies presented in this
chapter, so it is presented here. The progress variable c is based on the mass fractions

of products:

Y.=Yco, *Yu,0+Yco + Y, (5.13)
YC
= e (5.14)
anax(Z)

The maximum value of the scalar Y, for a given mixture fraction, Y?#*(Z7), is calculated

in an appropriate way for each individual case.

5.1.3 0Odds parameter for DNS samples

The Plackett family of copulas, introduced in Section 3.2.3.2, is parametrised by a single
variable 8, which is loosely referred to as the odds parameter. The relationship between
the odds parameter and the correlation is discussed in Section 4.4. Due to the difficulty
in finding a correct mapping between the two, throughout this chapter the correlation

is not used as a means of determining the odds parameter when a Plackett copula is
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Figure 5.4: Overview of case C2. Left: A central (y = 0) span-wise slice showing
the variation in equivalence ratio (mixture fraction) along the inlet. Right:
An yx-plane slice at the point where the inlet is richest (z = 0, Z,,,;¢ = 1)
showing a contour plot of progress variable (unscaled). Sample locations (listed
in Table 5.1) are shown in red.

employed; rather, the odds parameter is calculated directly from the available DNS
samples. This has its own drawbacks in that one of the contingency diagram quadrants
(A, B, C or D) could potentially be zero depending on the choice of midpoint (z, yg)-
This is mitigated by choosing (x,y,) as the median values of x and y, which is the
optimal choice for reducing the asymptotic error in the parameter estimation (Mardia
1970). This ensures that there is always a finite odds parameter with the exception of

the trivial case where one of the marginal distributions is a delta distribution.

5.2 Stratified lame DNS

5.2.1 Description of DNS

The first two cases studied are from a series of direct numerical simulations of premixed
methane slot flames (Richardson and Chen 2016). Premixed fuel and air flow into the
domain through a slot surrounded by a coflow, which consists of hot burned products.

The inlet composition is taken from a 2D laminar stratified flame solution.

There are three flames in this series, referred to as C1, C2 and C3. Case C1 is completely
premixed with equivalence ratio ¢ = 0.7. Case C2 is weakly stratified; the equivalence

ratio varies from ¢ = 0.41 to ¢ = 1 along the direction parallel to the flame. The
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Span-wise Location A B C D E F G
y (mm) 0.317 0.651 0.986 1.320 1.654 1.988 2.323
Stream-wise Location 1 2 3 4 )
x (mm) 2 6 10 15 20

Table 5.1: Span-wise and stream-wise locations for case C2

composition of both the coflow (fully burned) and jet (fully unburned) vary in this
spanwise direction. Case C3 is similar to C2, but with stronger stratification and an
equivalence ratio which varies between ¢ = 0 and ¢ = 1.46. In all three cases the global
equivalence ratio is ¢ = 0.7. The original interest in these simulations was to investigate
the physics which govern the mixing and dissipation time-scales in “stratified” flames,

i.e. flames with a gradient of equivalence ratio.

Cold reactants are injected through the 1.8mm slot at 100m/s into a co-flow of burned
products at 25m/s, giving a jet Reynolds number of 2,100. The inlet equivalence ratio
is stratified along the z direction, ranging from richer at the outer edge to lean at the
centre. The simulation was performed on a 1200 x 600 x 360 grid, which is stretched in
the y direction to limit the influence of lateral boundary conditions and periodic in the
z direction. A subset of these locations is shown in Figure 5.4, in which every second

location in the y direction has been omitted for clarity.

Statistics were collected for a range of points across the domain for 120 time steps over
8 flow through times to ensure that statistics collected were not influenced by large scale
motions of the flow field. Sampling began after the flow had reached statistically steady
state. Since the stratified flames have reflective symmetry in two of their axes, each
set of statistics could be compiled from four self-similar points in each quadrant of the
domain, giving a total of 120 x 4 = 460 samples for each point. In each of the four similar
quarters of the domain, 7 locations in the span-wise direction were selected. In each of
these span-wise directions, 5 locations in the stream-wise direction were selected, giving
a total of 35 locations of interest, listed in Table 5.1. These sample locations were chosen
to capture a wide range of mean mixture fractions (along the cross-stream dimension)

and mean progress variables (in the stream-wise dimension).

Mixture fraction is transported as a conserved scalar in the DNS. The mixture fraction
at the inlet is normalised such that Z(¢ =1) =1 and Z(¢ = 0.41) = 0. The scaling of
the progress variable is between the unburned condition and the equilibrium condition
as determined by a series of laminar premixed flamelet calculations over the appropriate

range of equivalence ratios.

The flamelet table used for calculating mean quantities is based on premixed laminar
flamelets generated by the code PREMIX (Kee et al. 1985). There were 26 methane

flamelets run over the range of equivalence ratios found in the DNS, which were all within
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Figure 5.5: ¢ vs Z distributions from the C2 stratified flame DNS for spanwise
locations A-G and streamwise locations 1-5, as defined in Table 5.1 and shown
in Figure 5.4. Green lines indicate the mean values of Z and c.

the flammability limits (case C2). Due to adaptive mesh refinement, the resolution of

each flamelet varies between 100 and 140 points.

5.2.2 Results and Discussion

Figures 5.5 and 5.6 show the results of the analysis for case C2. The corresponding
transformed samples (illustrating the shape of the copula with uniform marginals) are
shown in Figure 5.6. For each of the individual plots, the horizontal and vertical axes
span the range [0, 1] and represent mixture fraction and progress variable, respectively.
For this case, Z = 0 and Z = 1 indicate lean (¢ = 0.41) and stoichiometric mixture,

respectively.

In the tables, each row and column heading refers to the location where the sample was
taken, illustrated on Figure 5.4. Therefore, leftmost columns correspond to locations
towards the centre of the of the DNS domain, where the inlet composition is lean;
rightmost columns are for locations at the outer edge of the DNS domain (z-axis) where
the inlet is stoichiometric. For each of the physical locations identified in Figure 5.4 there

is one scatter plot in Figure 5.5, showing the values of the DNS samples (Z,¢) at that
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Figure 5.6:  Transformed data (P,(Z),P.(c)) corresponding to the DNS
samples (Z, c) shown in Figure 5.5.

location, and another scatter plot in Figure 5.6 showing the corresponding transformed
values (P, (Z), P.(c)).

C

Close to the inlet (row 1, x = 0.2¢m) the pdf is initially completely independent, due
to the coflow being completely burned and the inlet being completely unburned. This is
illustrated by the DNS samples lying along the ¢ = 0 and Z = 1 axes, and is reflected in
the scatter plot of the empirical copula which exhibits no obvious dependence (compare
with Figure 5.3).

In the intermediate downstream locations (rows 2 and 3, z = 0.6¢m, 1.0cm) the pdf
becomes less singular as mixing and combustion begin to effect significant proportions of
the sampled states, broadening the marginal distributions in Z and ¢ space respectively
and the movement of each mean Z and ¢ away from the origin. However, this process
happens without introducing any obvious dependence appearing in the copula plots at
those locations. The plots of the copula still appear to indicate complete independence

of the two parameters by exhibiting no apparent structure in the scatter.

In the final downstream location (row 5, x = 2.0¢m) there is some weak dependence
exhibited in the copula structure, indicated by the absence of samples around the corners
(P4(Z),P.(c)) =(0,1) (top left of scatter plot) and (P,(Z), P.(c)) = (1,1) (top right)

corresponding to fully burned gas which is either very lean or very close to stoichiometric.
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Note that these locations on the copula plot should not be interpreted as (Z,¢) = (0,1)
and (Z,c) = (1,1) i.e. fully burned mixture at Z = 0 and Z = 1, respectively. Rather,
(P;(Z),P.(c)) = (0,1) indicates the highest value of ¢ paired with the highest value of Z
observed at this location. The absence of samples around (P4(Z), P.(c)) = (0,1) would
then indicate that the leanest samples observed were never fully burned. Similarly, the
lack of samples around P, (Z), (P.(c)) = (1,1) would indicate that the richest samples

observed never reach maximum ¢ observed at this location.

In the copula plots for locations G3, G4 and G5, the region around (P, (Z), P.(c)) =
(0,1) (top left corner of each scatter plot) is weakly populated. Moving from each of these
locations towards the coflow (horizontal towards column A), this feature is slowly lost as
very few samples in column A are approaching the lean flammability limit. The leanest
samples never reach the value of Y, given by the normalisation curve for progress variable
qu(Z ). Therefore this observed dependence structure — unpopulated upper left corner
— is a result of the chosen normalisation of progress variable. This serves to illustrate
that the dependence seen is a function of the chosen progress variable normalisation; the
same analysis based on a different choice of equilibrium curve would produce different

results.

The dependence exhibited in the copulas above are not particularly strong, at any loca-
tion. As expected, it was found that the mean values calculated from the flamelet table
did not depend strongly on the choice of copula (Plackett, independent and Clayton
copulas (Nelsen 1999; Clayton 1978) were tested). As such, the results are not presen-
ted here, save the mention that there was no observable difference (beyond statistical
error) between the means calculated using Plackett copula and the means calculated

assuming independence.

5.3 Sandia flame series (experiment)

5.3.1 Description of experiment

Sandia flames C, D, E and F are piloted methane air flames characterised at Sandia
National Laboratories using a burner developed by University of Sydney (Barlow and
Frank 1998). All flames in the series are partially-premixed methane flames in which
the fuel stream is rich (25% CH,, 75% Air) and the jet velocity is varied between cases,
producing a range of Damkdhler numbers. The level of local extinction and re-ignition
increases from case C up to F, which is very close to blow-off. Local extinction provides
a mechanism that can potentially affect the dependence between Z and ¢, as apparent
in the comparison between Figure 5.7 and Figure 5.8, which show the non-normalised

progress variable Y, vs mixture fraction Z for flames D and F, respectively.
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y4

Figure 5.7: Scatter plot of Sandia D, unscaled progress variable vs. mixture
fraction. The green line shows the curve Y, Z) used to normalise the
progress variable.

,max(

Figure 5.8: Scatter plot of Sandia F, unscaled progress variable vs. mixture

fraction. The green line shows the curve Y,

. max(Z) used to normalise the
progress variable.
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Mixture fraction is experimentally measured (Barlow and Frank 1998) and based on
Bilger’s definition of mixture fraction (Bilger 1989b). The normalisation of progress
Z) is

based on the convex hull of the experimental data, with significant outliers removed,

variables is shown in Figure 5.7 and Figure 5.8. The maximum value of Y, ;.. (
and the same curve is used for all Sandia flame cases. The flamelet table for this case
was generated from a series of opposed diffusion flamelets in mixture fraction space,
generated by FlameMaster (Pitsch 1998) using the GRI 3.0 mechanism (Smith et al.
1999) over a range of equivalence ratios. The solutions were then interpolated onto a
mixture fraction progress variable grid. The use of non-premixed flamelets was required

to accurately predict scalars outside of the flammability limits of premixed flames.

5.3.2 Results and Discussion
5.3.2.1 Sandia D

Figure 5.9 includes scatter plots showing data (Z, ¢) sampled at selected radial locations
and at the axial positions /D = 30 through x/D = 75, where D is the jet diameter.
Each plot shows mixture fraction on the horizontal axis and normalised progress variable
on the vertical axis. The radial positions, denoted r; for the i¢th radial location, are
determined by the experimental setup. Higher row number ¢ indicates greater radial
position. However, radial positions vary depending on axial position and therefore figures
on the same row are not directly comparable. The exact radial locations for flames D

and F are shown in Table 5.2.

One notable feature of the experimental samples is that there is very little variation
in Z-c space at /D = 60 and /D = 75, because the mixture is by that point very
lean and nearly fully burned. At x/D = 30 a little more variance is shown. Figure 5.10
shows the corresponding transformed data U, .(Z,¢) = ClU,(Z),U,(c)] (Equation 5.4),
illustrating the underlying copulas. Mean quantities Z and ¢ are marked on each plot,

to give a sense of the marginal distributions through their first moment.

Radial locations towards the coflow (rg and 7y, and r; at /D = 75) exhibit tail
dependence in the distribution, manifesting as a higher correlation in samples at one of
the extremes of the distribution. However, there is very little fuel present at each of these
locations and therefore the mean mixture fraction is close to zero. These structures are
again artefacts of the progress variable normalisation curve close to Z = 0. On the copula
plots, the points P,(Z) = 0.5 and P_.(c) = 0.5 represent the median of the observed
sample values. The distribution of the samples above the median values (i.e. the scatter
observed in the region P,(Z) > 0.5, P.(c) > 0.5) appears largely independent. Only in
the leanest cases (for example, r1; at /D = 60) does this region of distribution space

display noticeable correlation.
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Figure 5.9: Empirical samples of (Z, ¢) for Sandia D at a selection of axial and
radial positions. The mean values Z and ¢ are marked in each plot.

Moving away from the locations where the mean mixture fraction is extremely low, the
downstream locations z/D = 60 and z/D = 70 are essentially independent across rq,
r5 and ry5. The region of interest, in which there is significant variance of both mixture
fraction and progress variable, lie between r; and 5 at /D = 30. Here there is a devi-
ation from independence, shown by the non-uniform distribution of points in the scatter
plot. Location 75 at /D = 30 (and also ry at /D = 45) also exhibits tail depend-
ence. Furthermore, it does not appear that the structures exhibited at these locations
can be described by a Plackett copula, which has a particular form as demonstrated in

Figure 5.3.

At z/D = 30, there is a trend in the correlation with radial direction. Near the centreline
(rq), where the mixture is richer, the overall correlation appears to be negative. Further
out (rg), towards leaner mixture, the correlation becomes positive. This is reflective of

the general trend in correlation that might be expected looking at Figure 5.7.
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Figure 5.10: Transformed values (P4(Z), P,(c)) for Sandia D. The mean values
Z and ¢ are marked in each plot.

5.3.2.2 Sandia F

Scatter plots of (Z, ¢) for Sandia F are shown in Figure 5.11 and the corresponding copula
scatter plots in Figure 5.12. The axial locations chosen for Sandia F are the same as
those for Sandia D, but radial locations again differ by experiment and therefore do not

correspond directly to the locations analysed for Sandia D.

Overall, the trends observed in this flame are very similar to those observed for Sandia
D. There is significantly more local extinction evident in the progress variable scatter,
particularly at /D = 30 and z/D = 45 (see Figure 5.11). This results in a more
pronounced dependence between Z and c in the richer, upstream locations as seen in
the case of Sandia D (r;_5 at /D = 30 on both copula scatter figures): some areas of
(P4(Z), P.(c)) space are now totally unpopulated, whereas in Sandia D they were simply

less populated. The same structure of a bivariate progress variable distribution for the
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Figure 5.11: Empirical samples of (Z,¢) for Sandia F at a selection of axial
and radial positions. The mean values Z and ¢ are marked in each plot.

leanest samples and a univariate progress variable distribution for the richest samples, is
displayed here, manifesting as a ”>” shape in plots r; and r5 at /D = 30 in Figure 5.12.
Recall that the actual marginal distributions of these plots is a uniform distribution.

Again, this is a structure that the Plackett copula is not capable of describing.

Weaker dependence is also observed at locations r, at /D = 45 and z/D = 60 in Fig-
ure 5.12, which was not seen at similar locations in Figure 5.10. Strong tail dependence

is again exhibited for most of the higher (very lean) radial locations.

To quantitatively compare the accuracy of the copula joint distribution model relative
to the distribution, the error metrics and mean quantities discussed in Section 5.1.2 were
calculated for Sandia D and F. The quantities considered are the L,-norm of the joint
pdf, and the Favre mean reaction rate, mass fraction of fuel, and temperature, and the

results are shown in Figures 7?7 and ?7. Four locations were chosen from each of Sandia
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Figure 5.12: Transformed values (P,(Z), P.(c)) for Sandia F at a selection of

Cc —
axial and radial positions corresponding to Figure 5.11. The mean values Z and

¢ are marked in each plot.

D and F, specifically ry, 75 and ry for /D = 30 and r; for /D = 45, which showed

the most complex dependence structures for copula modelling to capture.

The Favre averaged quantities were computed by integrating the instantaneous quant-
ities from the laminar flamelet table over the relevant joint distributions. In this way,
three different joint-distributions (the empirical joint-pdf from experimental observa-
tions; the independent copula combined with empirical marginal distributions; and the
Plackett copula combined with empirical marginal distributions) were used to calculate
the values of mean quantities and then compared. The integration was performed using
a Monte Carlo method, in which (Z, ¢) samples were generated from each distribution

and the corresponding laminar flamelet values averaged.

The Lo norm of the difference between the empirical pdf and the modelled pdf is a

direct comparison of the presumed pdf to experimental data, without considering the
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Figure 5.13: Comparison between predictive capability of Plackett and In-
dependent copulas from Sandia D flame at 4 selected locations. From top to
bottom: L,-norm of error in pdf; Mean reaction rate of progress variable; Mean
mass fraction YCH4; mean temperature T
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effect on mean quantities. For Sandia D (Figure 5.13), the Plackett copula shows strong
potential for reducing the error in the joint distribution. Use of the Plackett copula
resulted in lower error values at each of the four points of interest, the most significant

improvement over the independent copula being for r5, /D = 30.

However, this general trend of more accurate pdf modelling does always have a signific-
ant effect on mean quantities. At r5, /D = 30, which showed the highest reduction in
the Ly-norm of the error, the modelled mean reaction rate is significantly more accurate
when a Plackett copula is applied. However, there is only a marginal improvement in
fuel mass fraction and temperature improvements at this point. At each of the other
locations, the use of a Plackett copula has only a minor affect on the mean quantities
predicted, although in most instances it offers a marginal improvement over the inde-
pendent copula. This insensitivity to dependence in the joint distribution is likely due
to the fact that the one-point distributions are so compact in Z-c space that the scalar
values from the laminar flamelet table do not vary greatly within the region where most

of the probability lies.

The results for Sandia F (Figure ??) show similar trends. Despite significant reductions
in the Ly-norm of the error in the pdf for some locations (at 5, /D = 30 for example)
was significantly reduced relative to the use of independent Z-c. Location r5 at /D =
30 showed no improvement in modelling the joint pdf, since the distribution at that
location is close to independent. With regard to mean quantity calculations, there was
no significant improvement in accuracy at any of the locations shown for any of the

mean quantities considered.

Considering these results, it is concluded that while the joint distributions encountered
in the Sandia flame series can by modelled more accurately by the Plackett copula than
the independent copula (as shown by lower L,-norm of error), the importance of this

modelling improvement on the prediction of mean quantities of interest is small.
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Figure 5.14: Comparison between predictive capability of Plackett and In-
dependent copulas from Sandia F flame at 4 selected locations. From top to
bottom: L,-norm of error in pdf; Mean reaction rate of progress variable; Mean
mass fraction YCH4; mean temperature T
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Sandia D Sandia F
x 075 15 30 45 60 75 0.75 15 30 45 60 75

r_g -20
r_o -2 -4 -6 -4 -10 -10 -1 -4 -6

r_q -1 -2 3 8 -5 5 2 -2 -3 -5 -5 -10
To 0 0 0 O 0 0 0 0 0 0 O 0
Ty 1 2 3 4 5 5 12 3 4 5 10
To 2 4 6 8 10 10 2 4 6 8 10 20
T3 3 6 9 12 15 20 3 6 9 12 15 30
T4 4 8 12 16 20 30 4 8 12 16 20 40
Ts 5 10 15 20 25 40 5 10 15 20 30 50
Te 6 12 18 24 30 50 6 12 18 24 40 60
Ty 7 14 21 28 40 60 7 14 21 28 50 70
rs 8 16 24 32 50 70 8§ 16 27 32 60 80
Ty 9 18 27 40 60 80 9 18 33 40 70

T10 10 20 30 48 70 10 20 39 48

T11 11 22 36 56 11 22 56

T1o 12 42 12

13 14 14

T4 16 16

Table 5.2: Radial locations (mm) for Sandia D and F.
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Figure 5.15: A yx-plane cross section of the full DNS domain of the lifted
ethylene flame. The contour plot of mixture fraction is shown with sample
locations marked.

5.4 Autoignition stabilised lifted flame DNS

5.4.1 Description of DNS

This DNS case (Knudsen, Richardson, Chen, et al. 2011; Yoo, Richardson, et al. 2011),
shown in Figure 5.15, is of an auto-igniting ethylene slot jet flame surrounded by a
hot (1550K) air coflow. The bulk velocity of the jet is 204m/s, and the coflow velocity
20m/s. The composition of the slot jet is 82% N, and 18% CyH, by volume and the
temperature is 550K. Sample locations are marked in Figure 5.15 as black diamonds
(the corresponding reflections in the line y = 0 are not marked). Each sample location

has an axial and radial location identifier (e.g. “A4”).
Mixture fraction is based on the mass fraction of nitrogen:

co flow
Yy, — YR

= jet coflow
YN2 — YN2

(5.15)

such that Z = 1 in the jet and Z = 0 in the coflow, giving a stoichiometric mixture
fraction of Z_, = 0.27.
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5.4.2 Flamelet table and normalisation of progress variable

This flame is stabilised by autoignition promoted by the hot oxidiser stream, and there-
fore the flamelet table used for estimating the mean quantities is calculated from an
unsteady auto-igniting flamelet computed in mixture fraction space. This calculation
is done with the unsteady zero dimensional conditional moment closure (CMC) code
described in Section 2.1.4.5 on a uniform mixture fraction grid with 201 points, with
the same chemical mechanism as applied in the DNS (Yoo, Richardson, et al. 2011).
The AMC model (O’Brien and Jiang 1991) is used to describe the scalar dissipation
rate as a function of mixture fraction with the maximum value given as 2000s~1. This
corresponds to about 60% of the critical value at which autoignition is prevented and
representative of the peak conditional scalar dissipation rate seen in the DNS. The same
CMC code is used with a peak conditional scalar dissipation rate of 157! to calculate a
steady state fully-burned solution which is used as the burned limit in order to normalise

progress variable as a function of mixture fraction.

5.4.3 Results and Discussion

Figure 5.16 shows kernel density estimation plots of the mixture fraction progress vari-
able joint-pdf. In this plot, and all subsequent plots, only valid pdfs, where Z and ¢ are
within the range [0.01,0.99] are shown, to exclude pdfs which are delta functions in at
least one marginal and therefore essentially univariate. This removes locations close to
the inlet, where the fluid has not had time to mix. The leftmost plot corresponds to

locations along the centreline, while the rightmost is the outermost location.

The initial stages of an autoignition process may be observed at location E3, where the
composition around the most reactive mixture fraction has begun to ignite. Moving
downstream, the autoignition continues until it reaches the fully burned state at the
stoichiometric mixture fraction at E6. The majority of mixture never reaches its fully
burned state corresponding to ¢ = 1: fully burned mixture is almost always found close
to the stoichiometric mixture fraction Z = 0.27 for this case, as fluid with richer or
leaner equivalence ratios are slower to ignite and are convected out of the domain before

doing so.

At locations where the majority of the mixture is rich (e.g. columns A, B, and C), the Z-c
correlation is negative. In column F the mean mixture fraction is close to stoichiometric
and the pdf takes a triangular shape. In column G, featuring locations with the leanest
conditions, the correlation is positive. Further analysis of the covariance observed in
this DNS case is presented in the following section (5.5), which reveals that the sign of

Z-c correlation switches around the mean stoichiometric mixture fraction line.

Figure 5.17 shows the transformed distributions corresponding to the joint pdfs shown

in Figure 5.16. The locations with richer mixture, specifically columns A through D,
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Figure 5.16: Mixture fraction-progress variable joint-pdfs for the lifted flame.
Sample locations with singular pdfs have been omitted. Dark indicates high
probability, light low probability. Green line: stoichiometric mixture fraction;
Red line: approximate value of most reactive mixture fraction; blue line: Z =
0.5; yellow line: ¢ = 0.5.

indeed exhibit significant negative correlation between mixture fraction and progress
variable. Furthermore, they show simple dependence structures which could reason-
ably be expected to be well captured by a Plackett copula. Locations where most of
the samples are lean or stoichiometric (columns F and G), the distribution takes on a
trimodal shape, wherein there is a linear region of high probability which indicates that
Z and c will be correlated, but an additional region of high probability at an opposing
corner. For example, case F2 has a region of high probability spanning a linear stretch
in Py, P, space from (0,0) to around 1,0, indicating that for the approximate range
P, € [0,0.9] (i.e. the leaner 90% of observed samples) there is a positive correlation
between Z and c¢. However, there is also a region of high probability at (P, P,) = (0,1)
which indicates that for the richest observed samples (P, ~ 1) the distribution of ¢ is
bimodal, with a significant proportions of the observed values being very close to the
maximum and minimum observed values of ¢ at that sample location (P, € {0,1}. In
column E, where mean mixture fraction is slightly richer than stoichiometric, even more
intricate dependence structures are observed, sometimes showing up to 6 local maxima
of the transformed distribution. At location E5 for example, there is positive correlation

for the leaner samples (P, < P,(0.5)) but negative correlation for the richer samples
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Figure 5.17: Kernel density estimation plot of (P,(Z), P,(c)). Dark indic-

ates high probability, light low probability. Green line: P,(Z,,); Red line:
P,(Z,,,), where Z_ _ is the approximate value of the most reactive mixture
fraction; blue line: P,(0.5); yellow line: P,(0.5).

(P, > P,(0.5)) while also suggesting that the leaner samples tend to be the most burned
(P, > P,(0.5)) while the richer samples tend to be the least burned (P. < P,.(0.5)).
This results in the appearance of a “T” shaped distribution, rotated 45° anticlockwise,
in which the “top half” and “bottom half” of the “T” are enclosed by the lines P,(0.5)
and P,(0.5) (blue and yellow lines on the plot, respectively).

It is therefore apparent that the dependence structures exhibited in rows E through F
(where the mixture is typically lean or stoichiometric) can not be well captured by a

Plackett copula, due to the restricted form of the dependence it can describe.

This restriction on the form of the dependence is show in Figure 5.18, which shows
the presumed joint pdf constructed from uniform marginals and a Plackett copula with
the same odds parameter as the DNS data. In the majority of locations it appears
superficially to be a very good fit to the original transformed pdfs shown in Figure 5.17.
As expected, the trimodal shape of the pdf is not captured in columns F and G, where
the exact positioning and weighting of the three high probability regions of the joint
pdf effect the value of the calculated odds parameter. As a result, the Plackett copula
variously presents a band of positive or negative correlation in this region. At any

location in which the odds parameter is close to 1 (independence), there is no obvious
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Figure 5.18: Kernel density estimation plot produced by the Plackett copula.
For legend, see Figure 5.17.

large scale structure in the contours and only noise is observed. In particular, location
F6 looks close to independent, but from Figure 5.17 we see that it should not be. In
the richer region (columns A-E) the original transformed pdfs show slightly more tail
dependence than the Plackett copula distributions but are otherwise well modelled by
it.

For reference, both the Plackett copula and the empirical copula plots from Figures 5.17
and 5.18 are reproduced in Tables B.1 to B.5 in Appendix B, along with relevant stat-

istical quantities.

Figure 5.19 shows the values of mean temperature obtained by integrating the flamelet
table using the joint-pdf from the DNS, and using the marginal pdfs from the DNS
in conjunction with the Plackett copula or the independent copula. The error in the
predicted mean temperature is almost always lower in the case of the Placket copula
than in the independent pdf, indicating that the Plackett copula offers a significant
modelling improvement over the assumption of independence. This is even more evident
in the case of the reaction rate of progress variable (Figure 5.20). The Plackett copula
offers substantial improvement in the predictions for most of the samples in columns
A through D where the dependence structure is simple. In locations where it performs

more poorly than the assumption of independence, for example D6 and D7, this is due to
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Figure 5.21: L, norm of error between empirical and modelled pdfs for empir-
ical pdfs with a range of Pearson correlation coefficients. The error is shown
for independent and Plackett-based modelled pdfs. The trend lines shown are

quadratic curves for illustration purposes only.
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Figure 5.22: Pearson correlation coefficient r 5, versus Spearman’s p . for DNS
samples at labelled locations. The line p,. = r . is included for comparison.

as G4, where Spearman’s p,. is much higher than the Pearson correlation, indicate a
non-linear but still monotonic dependence between parameters. Substantial differences
between these two measures of dependence is an indication that the dependence between
the Z and ¢ is more complex than can be described by a single parameter, and the
modelling of such pdfs requires the use of joint distribution models with additional
reference variables. However, the Plackett copula provides an improvement across a
wide range of conditions encountered in Sections 5.2-5.4 and adding further complexity
to the joint-pdf model in the form of additional statistical reference variables is expected
to yield limited improvement in the predictions of pdf-integrated reaction rates, or other

required source terms.

5.5 Further details of ethylene, contour lines, FGC

The relationship of the observed Z-c¢ correlation to the stoichiometric mixture fraction
for the lifted ethylene case discussed in the previous section can be further explored by
considering the contours of mean mixture fraction and correlation Z-c¢ in the DNS. To
do so, quantities averaged in both time and the z-direction are calculated from the DNS

data for each point in the z-y plane. These averaged quantities are given by

400 150
560,000 Z; (z,9,2;,t5) (5.16)

=1

d(z,y) =

where over Z; is one of 400 locations in the z direction over the range [0,3H] and ¢; is

one of 150 timesteps over the same range as above, giving a total of 60,000 samples per



11@hapter 5 Results I: A-priori analysis of one-point pdfs in partially-premixed flames

grid point. The progress variable ¢, in the context of this analysis, is normalised by the

maximum value of Y, (Z) found in the entire domain.

a) Favre Mean Z Favre Variance Z
b) Correlation Odds Parameter
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Figure 5.23: z-y plane values of a) Mean (left) and variance (right) of mixture
fraction; b) Z-c correlation and odds parameter. Black line shows the contour
of stoichiometric mean mixture fraction.

Contours of Favre mean and variance of mixture fraction and progress variable are shown
in Figure ??. The Z-c¢ correlation (Figure 5.23b, left) has significant values all the
way back to the inlet, whereas the odds parameter (Figure 5.23b, right) has significant
values only around locations of high mixture fraction and progress variable variance.
The correlation is clearly separated into regions of positive and negative correlation on

either side of the stoichiometric mean mixture fraction line.

The strong correlations seen in the DNS can be explained using the CMC solution. Fig-
ure 5.24 shows the CMC solution values of (c|n) for several values of a, which represents
a non-linear function of the solution time. Initially it is seen that, in terms of normalised
progress variable ¢, the dependence between Z and c is negative for lean mixtures, as
lean values of de/dt are higher — this is due to the fact that the difference in Y, between
¢ = 0 and ¢ = 1 at these locations in Z-space is very small. Additionally, for rich
mixtures there is no strong dependence of (c|n) on mixture fraction. Thus, reaction is
happening around the most reactive mixture fraction and the stoichiometric mixture
fraction and the diffusion to the lean and rich regions to either side will receive roughly
the same diffusion source term, however it has considerably higher effect on the lean
region since the peak Y_ value is that much smaller. Hence the rapid increase of ¢ for

Z < 0.2 during the early stages of ignition.
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Figure 5.24: Plots of (c|n) from a 0D-CMC with x = 3000/s at selected times,
where t; is the final time of the CMC simulation.

However, as the reaction progresses the shape of (c|n) changes to convex-up, and the
peak value moves closer to Z,,. The lean side now shows a negative relationship between
Z and c while the rich side shows a positive one. Furthermore, since this effect is only
observed once ¢ achieves suitably large values, these values will have a stronger effect
on the covariance than the smaller positively correlated lean and negatively correlated

rich conditions found at earlier times.

This provides an explanation for the strong adherence of the sign of the correlation
to the stoichiometric mean mixture fraction contour. Lean mixtures are again seen to
be positively correlated, while rich mixtures are strongly negatively correlated. The
negative correlations in the rich region are the first to appear in terms of streamwise
location, suggesting that, although the ignition occurs at the most reactive mixture
fraction to the lean side of stoichiometry, and so we would expect the lean mixtures
to be more burnt at an earlier stage, the switching of the dependence of ¢ on Z from
negative to positive in this region results in strong correlations taking longer to develop,

unlike in the rich region where the dependence is always negative or neutral.

5.6 Flamelet Generated Copula

As seen in the previous section, the covariance of Z and ¢ found in the DNS of a lifted
autoigniting jet flame is partitioned into positive and negative regions by the mean
stoichiometric mixture fraction contour, with rich fluid regions tending to have negative
covariance and lean fluid regions tending to have positive covariance. This suggests that
fluid close to stoichiometric tends to be more reacted than either rich or lean mixtures,

resulting in the statistical dependence of ¢ on Z. This behaviour is also observed in an
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Figure 5.25: Lines of constant a,, vs mixture fraction Z in an autoigniting
ethylene flamelet with peak scalar dissipation rate 3000/s. Each line represents
a different time in the flamelet solution.

unsteady autoigniting laminar non-premixed flamelet, in which the ignition starts at the
most reactive mixture fraction and then quickly propagates towards the stoichiometric
mixture fraction. Regions around stoichiometry rapidly approach the peak progress
variable; points in mixture fraction space away from this region eventually reach the
fully burned solution though a combination of reaction and diffusion in mixture fraction
space, but at a slower rate. For a significant time, then, there is a positive gradient dc/dZ
for Z < Z, and a negative gradient for Z > Z_,. This is illustrated in Figure 5.25.

It is a common modelling assumption (Kostka et al. 2009) to relate the thermochemical
state in a turbulent autoigniting jet flame to the thermochemical state in an autoigniting
flamelet in terms of mixture fraction and progress variable. In the autoigniting flamelet
solution there is a unique mapping between progress variable at a given mixture fraction
and the solution time, referred to as fuel-age a,,. Properties of the distribution of fluid
age in a statistically-stationary turbulent jet are reported by Shin et al. (Shin et al. 2016)
indicating that a range of distribution shapes are possible. For purposes of illustration,
consider a hypothetical point in a turbulent flow with a delta-function pdf of fuel-age,
implying that the thermochemical state sampled in the turbulent flow is modelled by
the thermochemical states along one fuel-age line in Figure 5.25. In this situation, the
statistical dependence of Z and c is governed by the shape of fuel-age contour in Z-c
space in the flamelet solution. More generally, the fuel-age exhibits a finite variance and
the statistical dependence of Z and c inferred from the flamelet solution depends on the

joint-distribution of Z and fuel-age.

The temporal information represented by the contours in Figure 5.25 therefore contains

information resulting from physical mechanisms producing a dependence between Z and
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c. However, this temporal information is lost when the thermochemical state is tabulated
in terms of Z-c¢, and it is not contained in any presumed copula. This motivates the
concept of a Flamelet Generated Copula, in which dependence information is extracted

from the temporal evolution of a relevant autoigniting flamelet.

In order to construct a Flamelet Generated Copula, the joint age density function
a,.(Z,c) is defined based on the autoigniting flamelet solution data over the range

of times ¢ € [0, t.,q], given by,

1 0%a,,

Z,c)=— .
aZC( 70) tend azac

(5.17)
The cumulative age density function is given by integration of a(Z,¢) in Z-c space,

(Z,¢) // 626286 ) dzde. (5.18)

The copula of the joint age density function is evaluated numerically from the joint cdf.

First the marginal age cdfs for mixture fraction and progress variable are computed,

// 826Z8 ) zde (5.19)

¢ to2a,.(Z,c)
A (c) :/ / —=22 "~ dzdec. (5.20)
o o 0Z0c

Each of these quantities may be evaluated as a post processing step from transient

and

flamelet data, since a,, is known. Subsequently the Flamelet Generated Copula is given

by the inversion method described in Section 5.1.1.

Clu,v) = PE(Pg " (w), P£ (v) (5.21)

Plots of the age density function and the Flamelet Generated Copula obtained from an
autoigniting ethylene-air flamelet are shown in Figure 5.27. The corresponding marginal

age cdfs are shown in Figure 5.26.

The age density function is a deterministic function, rather than a probability density
function. However, based on similarity of the underlying physics driving the Z-c de-
pendence in the igniting flamelet and in an autoigniting non-premixed jet flame, it is
hypothesised that the Z-c dependence is similar in both, and therefore propose to model
the Z-c copula in the turbulent flame with the Flamelet Generated Copula. Implicit in
this modelling are two strong assumptions. First that the Z-c¢ dependence in an igniting
flamelet is the same as in the turbulent jet flame, thereby neglecting effects of phys-
ical mechanisms, such as flame propagation, that are not present in the autoigniting

flamelet. The second implicit assumption is that there is no dependence in the mixture
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Figure 5.27: Left; Empirical age cdf A, .(Z, ¢); Right: Empirical copula C(u,v).
Computed from a flamelet solution of ethylene autoignition with peak scalar
dissipation rate 3000/s.

fraction-age distribution in the turbulent flow, which is not generally true (Shin et al.
2016).

It may be possible to reduce the severity of these approximations, for example by using
two-dimensional flamelets including transport in progress variable space (Nguyen et al.
2010), or by also accounting for the dependence of mixture fraction and fuel-age (e.g.
based on the data of Shin et al. (2016)), however the basic Flamelet Generated Copula
described above serves as a starting point for evaluating how the underlying concept

performs.

The copula shown in Figure 5.27 was tested in a RANS simulation of the lifted ethylene
flame. It was found to produce the same trend in covariance through mixture fraction
space — positive covariance for lean mixtures and negative covariance for rich mixtures

— as displayed in the DNS. However, the strength of the dependence is much reduced.
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5.7 Conclusions

The importance of including dependence in the presumed pdf model was evaluated for
three different cases: a stratified flame DNS, a piloted flame experiment, and a lifted
auto-igniting flame DNS. For both the piloted experiment and the lifted auto-igniting
DNS the performance of the joint-pdf model was directly assessed in terms of the L,
error relative to the observed distribution, and in the calculation of mean quantities

using the pdf. The usefulness of the Plackett copula was assessed for each case.

For the stratified DNS, very little dependence between mixture fraction and progress
variable was observed. Therefore no improvement can be made by the use of more
advanced models for the one-point pdf for given marginal distributions, since the as-

sumption of independence is the most appropriate choice.

For the piloted jet flame experimental results, a variation of dependence structures
was observed. Downstream, strong dependence with positive correlation between mix-
ture fraction and progress variable was seen for increasing radial position; towards
the centreline the distribution tended towards independence. Further upstream (circa
x/D = 30), centreline pdfs showed weak dependence with negative correlation between
Z and c. Moving from centreline to increasing radius transitions the pdf from negative
correlation through independence to positive correlation. In many of the locations where
dependence is observed, it takes the form of tail dependence, a feature which cannot be
captured with the Plackett copula. The Plackett copula results in a greatly reduced
error in the presumed pdf. However, this improvement does not lead to an improvement
in the calculated mean quantities for this case. This is because the mean values of T'

and w, obtained depend also on the functional dependence of T" or w, on ¢ and Z.

For the lifted flame, strong dependence between Z and c¢ is observed in most sampled
locations. The observed copula is well approximated by the Plackett copula, which
greatly reduces the error in both the pdf and in the calculated mean quantities. The
importance of the Z-c¢ dependence in the auto-igniting lifted jet flame is attributed to
the significant Z-c¢ covariance generated in lifted turbulent flames. Because fuel tends to
be more reacted in the region of most reactive or stoichiometric mixture fraction, there
tends to be a positive Z-c correlation for lean mixture and a negative correlation for rich
mixture. An alternative to the presumed copula method, the Flamelet Generated Copula
method was introduced and the underlying mathematical model presented. The Plackett
copula provides a reasonably accurate model for the Z-c¢ dependence throughout the
majority of the lifted auto-igniting flow. In the vicinity of Z = Z_,, the Z-c dependence
has two branches, across which the Plackett copula performs less well. Hence it is
necessary to perform a posteriori evaluation of the joint distribution model performance

to assess the impact of this discrepancy on flame simulations in practice.






Chapter 6

Results II: Presumed-pdf
modelling of an autoigniting

ethylene jet flame

6.1 Introduction

Based on the results of the a-priori analysis in Chapter 5, the most challenging combus-
tion feature for presumed pdf methods is the stabilisation of lifted flames. As suggested
in the conclusions of that section, this is likely due to the stronger mean gradients in
both mixture fraction and progress variable resulting in a large gradient production term
in the covariance equation. As a result their dependence has a greater impact on flame
prediction in this region. Therefore an auto-igniting lifted flame is used as a test case
for further a posteriori analysis of the mixture fraction progress variable presumed pdf

approach.

In this chapter, a series of RANS simulations of the autoigniting lifted ethylene jet flame
of Yoo, Richardson, et al. (2011) are performed, varying the following global parameters:
the peak conditional scalar dissipation rate, A; the choice of marginal pdf, taken as either
the top-hat pdf or the beta pdf; and the formulation of the joint-pdf, either assuming
independence or applying the Plackett copula.

The scalar dissipation rate is an important control parameter for tabulated chemistry,
especially in the case of auto-igniting non-premixed flames, and has been incorporated
into the turbulent flamelet table in other studies (Knudsen, Richardson, Chen, et al.
2011). Here, a single conditional scalar dissipation rate profile is taken for the entire
flow, in a manner analogous to a zero dimensional CMC. The mean scalar dissipation rate
can be ascertained from the whole domain, or from a subsection of the domain upstream

of the lift-off height, using volume averaging or pdf-weighted averaging. However, this

117
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does not fully account for the effect of the instantaneous scalar dissipation rate on the
instantaneous reaction rate and so cannot be expected to give accurate predictions of the
autoignition. The peak conditional scalar dissipation rate A may be calculated (O’Brien
and Jiang 1991) from either the DNS or RANS quantities as

_ X
A= TG0pZman o0
where
G(n) = exp (=2(exf (20— 1))°), (6.2)

X is the Favre average scalar dissipation rate, p, is the mixture fraction pdf and 7 is
the state space variable for mixture fraction. Application of Equation 6.1 to the lifted
ethylene DNS data indicates that the A is of the order of 9000/s in the region close to the
jet inlet, and as low as 50/s further downstream. Conditional mean scalar dissipation
rates presented for this case in Yoo, Richardson, et al. (2011) confirm a similar range,
with peak values around 3000/s at ©/H = 3. The purpose of this parametric study is
not to suggest that the variation of scalar dissipation rate between jet exit and lift-off
height can be described by a constant value, but to demonstrate the sensitivity of the

results to an assumed value of A in comparison to the other parameters.

The choice of marginal pdf is an important question to answer, not least because of the
cost and complexity of accurately integrating the beta pdf. Floyd et al. (2009) argue for
the use of the top-hat distribution in LES due to its acceptable accuracy, simplicity and
computational cost. Here we investigate its application in a RANS context, together with
the integration methods developed in Section 4.2. The Reynolds averaged formulation
was chosen because the sub-grid pdf is expected to be more difficult to model than
the sub-filter pdf in a well resolved LES. While such LES are reported increasingly
often in research journals for relatively low Reynolds number laboratory flame tests,
simulation of industrial combustion systems typically achieves much lower resolution of
flame structures and often employ RANS. Both the variance and covariance are expected
to be larger in the case of RANS. Finally, the effect of assuming an independent pdf
versus a copula-based pdf is studied in order to determine the importance of avoiding

the independence assumption relative to the other parameters.

6.2 Tabulation approaches for auto-igniting flows

Autoignition presents a particular challenge for tabulated chemistry approaches because
progress variables based on major reactant or product species or temperature change
very little during the early stages of autoignition. This makes tabulated chemistry
simulations of auto-igniting flows that use progress variables sensitive to numerical error.

A suitable test case to check that the lookup table is functioning correctly is to use the
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full tabulated chemistry CFD implementation to simulate the 1D autoignition process
that was used to generate the lookup tables. This was achieved by initialising a 1D
simulation domain z € [0,1] with a linear gradient of mixture fraction Z = x, with
an unburnt composition ¢ = 0 and imposing constant zero values for velocity, mixture
fraction variance and progress variable variance and keeping pressure constant. The
results of this CFD simulation, given as a function of mixture fraction Z = 7 = x, are
then expected to reproduce the CMC solution that was used to generate the table, with

any deviation being due to numerical error.

The autoigniting laminar flamelet used for the flamelet table was generated using the
CMC code described in Section 77 which was developed for this application. In Equa-
tion 2.59, the second derivative is discretised using a second order central difference
scheme. The system of equations is integrated implicitly using the DVODPK solver
with a relative tolerance of 1 x 1076 and an absolute tolerance of 1 x 10712, The peak
scalar dissipation rate A used in the AMC model was one of the parameters varied in
this study. The code was used to perform an autoigniting ethylene flamelet on a regular
mixture fraction grid of 201 points. A regular grid was chosen to avoid an unnecessary
interpolation during the generation of the turbulent flamelet table, and was verified to
produce the correct solution by comparison with a mixture fraction grid clustered around
stoichiometry, as recommended by Mastorakos (2009). The boundary conditions for each
autoigniting flamelet were chosen to match the conditions of the inlet streams of the DNS
— the oxidiser boundary condition (Z = 0) is 1550K with a composition of Yo, =0.233
and Yy, = 0.767; the fuel boundary condition (Z = 1) is 550K with a composition
of Yo p, = 0.18, Yo, = 0 and Yy, = 0.82, and the pressure is at a constant 1 bar.
For the initial conditions, species and enthalpy were linearly interpolated between their
boundary conditions, representing an inert mixing solution, and resulting in a slightly
non-linear initial temperature profile. The ethylene chemical mechanism used was the
same as in the DNS case, a 22 species reduced mechanism by Luo et al. (2012). The
autoigniting flamelet solution was run until steady state was reached, and the final state
was used as the definition of the maximum value of non-normalised progress variable

Y.. A typical such solution is illustrated in Figure 6.1.

The progress variable c is based on a linear combination of mass fractions Y, and is

normalised as a function of mixture fraction.

Y.=Yu,0+Yco, (6.3)
YC

where Y ?2*(Z) = (Q™**|n) is determined by the steady state of the CMC solution.
It was confirmed in all cases that the unscaled progress variable Y, was a monotonic
function of time for all Z. We define the conditional source term (S .|n) for the normalised

progress variable ¢ by the contribution from its reactive source term and diffusion source
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Figure 6.1: Autoignition of ethylene from CMC code with x,,,,., = 3000/s.
Solid lines indicate progress variable ¢ = i/10 for ¢ = 1... 10.

term, i.e.
sy 1 9Qcm)
el = 1 gmaly ot (6.5)
2 2
- m ((NW%ZW N+ Wa,olm + <°UcoQ|n>) . (6.6)

Once a solution (Q|n) (¢) is calculated, it is then remapped to a two dimensional uni-
form grid in mixture fraction and the control parameter ¢ using a linear interpolation,

providing a final set of values (Q|n, () which are used to generate the turbulent lookup
table.

The quantities in the turbulent lookup table are Favre averaged quantities given by

~ (P emo., .
J©) =p / / S5 (0.¢10) ddc (6.7)

where D (1,(;©) is the Favre pdf and © is a vector of control moments (for example

0 ={Z,2"%&c" 77"}).
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6.3 CFD set-up

The simulations presented in this section are two-dimensional steady-state RANS cal-
culations performed using StarCD (CD-adapco 2016). The mean momentum (Equa-
tion 2.21), continuity (Equation 2.20) and turbulence quantities (Equation 2.24 and
Equation 2.25) were solved by the built-in methods in the software. The transport
equations for the Favre averaged reference variables (Equations 2.61-2.72), source terms
for the transport equations, the subroutines to interpolate Favre averaged quantities
from the turbulent lookup table, and setting of the temperature field, were implemented
as user defined functions in Fortran 90. The mean density field was calculated from the

mean temperature and mean species mass fractions using the ideal gas law.

The size of the computational domain is 30H x 30H in the x, y dimensions, where
H = 2mm is the jet width, with a symmetry plane at y = 0 corresponding to the
mid-plane of the jet. This domain size is greater than the original DNS dimensions of
15H x 20H in order to minimise any effect of the simulation boundaries on the flow,
since the DNS and RANS boundary conditions do not correspond exactly. The grid
dimensions are 300 x 300 with the smallest grid point in each direction being 0.1mm,
giving approximately 10 points across the jet inlet which is sufficient to capture the tanh
inlet profile of the DNS.

The inlet boundary condition for the coflow and jet inlets is described as follows. Velo-
city component u, density p, mean mixture fraction Z , turbulent kinetic energy k and

turbulent dissipation ¢ profiles are specified as a function of the cross-stream coordinate

5~ 1 y+ H/2 y—H/2 B
Z—2{tanh< 5% )—tanh( 5% , where 0 = 0.00H

as in the DNS. Inlet values of £ and ¢ are estimated to be

k= gu212
k3/2
E =
Lt

where turbulent intensity I = 10% and integral length scale L, = H/2 = 1lmm are
the same as specified in the DNS turbulent inlet conditions. Density is calculated from
the ideal gas law using the enthalpy and composition as functions of mixture fraction.
It is important to specify both velocity and density at the inlet so that the correct

mass flux profile can be calculated. This step is performed only once, at the simulation
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initialisation. Boundary value for the control parameters are fixed at the inlet, equal to

zero except for Z.

The turbulent properties specified above are inconsistent: since the inlet table specifies
k and € which cannot be zero for the standard k- model, the laminar coflow is given
a non-zero turbulent intensity of 10%. This is a limitation of the RANS model used
to simulate the flow and could be avoided by applying a more advanced model which
can account for laminar regions. That the turbulence intensity is set equal to 10%
across both the jet (u = 204m/s) and coflow (u = 20m/s), whereas the DNS imposed
a laminar coflow, implies that the turbulent kinetic energy in the jet is two orders of
magnitude greater than in the coflow. Sensitivity studies reducing I in proportion to u
demonstrated that the RANS solution is insensitive to the value of I used in the coflow
for 4% < I < 10%. This insensitivity to I,

coflow MaY be because k,

cofiow K Kie 10 all cases.

A slip wall condition is applied at the outer y = 30H boundary and y = 0 is a symmetry
plane. At the outlet boundary the pressure is fixed and the velocity, scalar and turbulent

property outlet boundary conditions are zero-gradient.

The turbulence model used is the realisable k- model (Shih et al. 1995), with the default
coefficients. The realisable k-¢ model has been shown to give better results for round
and planar jets over the standard k- model and was found to accurately capture the
spreading rate of this jet. No energy equation is solved; the mixture fraction transport
equation is sufficient to capture the enthalpy field in the absence of heat loss, such as
from radiation. There were no sources of heat loss in the original DNS simulation, and

therefore this is a valid assumption.

Gravity is set to zero as in the DNS. The flow density is provided by the lookup table.
Molecular viscosity is assumed constant since this is negligible compared to the turbulent
viscosity. Each simulation was initialised by extrapolating the inlet conditions across

the whole domain.

The SIMPLE algorithm (Patankar 1980) is used to solve the flow field and scalar quant-
ities as given in Section 2.1.4.6. The maximum residual tolerance of 10~° was applied.
Only the v and v components of the momentum equations are solved for. Relaxation
factors of 0.7 and 0.3 were applied to velocity and pressure respectively. An under-
relaxation factor of 0.8 is applied to each of the mean control moments A , C, /Z7"5, 275,
777¢ in order to improve convergence, since the density can change rapidly with minor
changes to the control moments. Gradient calculations for u, v, k, €, and all scalar
quantities are done using an upwind differencing scheme. With these parameters, a
typical simulation on the grid described above takes around 800 iterations to converge.

The integration of the turbulent table is described in Section 4.2.
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6.4 Validation of the flow field

In this section, the flow field upstream from the RANS will be compared with the
flow field from the DNS, upstream of the ignition point. After ignition, the flow field
is significantly distorted by the expansion caused by the temperature rise. Since the
lift-off height and post-ignition temperature field in the RANS both depend on the
choice of modelling options, downstream comparison of the flow field between RANS
and DNS further is difficult. Therefore, in the following figures the RANS case is an
inert simulation, where the reaction rate of progress variable is set to zero and therefore

¢ = 0 everywhere.
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Figure 6.2: Radial profiles of turbulence quantities for a typical RANS sim-
ulation with no reaction at selected downstream locations. Solid black: DNS;
Dotted green: RANS.

Figure 6.2 compares the cross-stream profiles of the turbulence quantities from the RANS
with those calculated from the DNS data. The turbulence inlet quantities were not
matched with the DNS, but rather selected to give good downstream predictions. This
is because the synthetic turbulence used in the DNS jet decays rapidly, as seen in the
streamwise plot of turbulent kinetic energy in Figure 6.3. Therefore the turbulence

kinetic energy at the inlet is set artificially low at the inlet. The turbulence dissipation
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Figure 6.3: Streamwise profiles of turbulence quantities for a typical RANS

simulation with no reaction at selected downstream locations. Solid black: DNS;
Dotted green: RANS.

rate at the inlet is based on k. Both the k and e cross-stream profiles at x/H = 3 match
the DNS results well, and at «/H = 6, close to where ignition occurs, the profiles are
still matched reasonably well. Streamwise profiles at the cross-stream location y/H = 1
show that the turbulent kinetic energy generated by the shear layer matches closely
that of the DNS. The turbulent dissipation rate in this profile can be seen to be under
predicted by the RANS, again due to the artificially high dissipation rate of the DNS.

The centreline values of the streamwise velocity component (Figure 6.5) shows that there
is a distinct potential core apparent in the DNS which ends around x/H = 6.5. The DNS
centreline velocity initially decays more slowly than that of the RANS simulation. The
sharp change in the du/dx seen in the both streamwise velocity and mixture fraction
plots is caused by ignition in the DNS. After this point the DNS profiles become broader

and the centreline values lower due to the increased turbulence (see Figure 6.3).

Temperature and density inlet profiles are shown in Figure 6.6. Given that the mixture
fraction spans [0, 1] across the inlet, correspondence of the temperature profile with the
DNS indicates that the unburned conditional temperature in DNS corresponds well with
the unburned condition in the CMC used to generate the table. The matching both the
velocity and density profiles at the inlet implies that the total momentum flux of the jet

is correct.

The preceding figures show that the base RANS simulation, shown here without chemical

reaction, is a sufficiently good fit to the DNS flow field to make comparisons valid.
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Figure 6.4: Cross-stream profiles of streamwise velocity, mixture fraction and
mixture fraction variance for a typical RANS simulation with no reaction at
selected downstream locations. Solid black: DNS; Dotted green: RANS.
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Figure 6.5: Centreline profiles of streamwise velocity and mixture fraction.
Solid black: DNS; Dotted green: RANS.

In the following sections, the downstream results from reacting RANS simulations are
compared directly with the values from the DNS in order to assess the importance of
each modelling decision listed in Section 6.1. The full set of parameters for the reacting

RANS simulations performed is presented in 6.1.

The lift-off height for each simulation, defined as the most upstream point where ?OH

reaches 4% of its maximum value, are shown in Figure 6.7. It is clear that the peak
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Figure 6.6: Cross-stream profiles of temperature and density inlet conditions
for a typical RANS simulation. Solid black: DNS; Dotted green: RANS.

Ref. Var. Marginal JPDF A (1/s) Section

a Top-hat 4D 3000 6.5
a Beta 4D 3000 6.5
b Top-hat 4D 3000 6.5
b Beta 4D 3000 6.5
c Top-hat 4D 3000 6.5
c Beta 4D 3000 6.5
c Top-hat 4D 2000 6.6
c Top-hat 4D 2500 6.6
c Top-hat 4D 3000 6.6
c Top-hat 4D 3175 6.6
c Top-hat 4D 3250 6.6
c Top-hat 4D 3375 6.6
c Top-hat 4D 3375 6.6
c Top-hat 3D 3000 6.7
c Top-hat 4D 3000 6.7
c Top-hat 5D 3000 6.7

Table 6.1: Table of simulations and modelling choices.

scalar dissipation rate A is the most significant quantity affecting the lift-off height. The
rate of change of lift-off height with respect to scalar dissipation rate is low for scalar
dissipation rates around A = 2000/s, and becomes increasingly large for higher scalar
dissipation rates as they approach the extinction limit of the laminar flamelet. The
choice of marginal pdf (beta or top-hat distribution) is clearly seen to have a negligible
effect on the lift-off height. The use of a residence time based reference quantity to
quantify the reaction progress is seen to have a significant effect on the lift-off height,
and the sensitivity to the peak scalar dissipation rate is becomes more linear than with
the use of a progress variable. The difference in predicted lift-off height is considerably
lower between reference parameters a and b than between either one and ¢. Therefore
there is no benefit of using a purely time-based quantity such as a as opposed to a
combined time/reaction rate quantity such as b, which can provide improved resolution

in state space for mean quantities.
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Figure 6.7: Lift-off heights for lifted ethylene jet flame simulations.

6.5 Choice of marginal distribution and reference variable

The RANS simulations presented in this section employ a table with peak scalar dissip-
ation rate A = 3000/s and an assumption of independence between the Z and ¢ pdfs.
Here, the choice of marginal distribution (top-hat vs. beta) and the choice of control
parameter are compared between the Z and ¢ pdfs. The control parameters tested
are the normalised progress variable ¢, the residence-time based parameter a and the
combination of the two, b = (a + ¢)/2.

Figure 6.8 shows velocity, mean mixture fraction and mixture fraction variance cross-
stream profiles for various downstream locations, ranging from near the flame base at
x/H = 6 to x/H = 12. The velocity and mixture fraction fields are not significantly
affected by either choice of marginal distribution or choice of progress variable. The
spreading rate of each closely matches that of the DNS, and the peak values are reason-
ably well captured. For both variables, the centreline values are slightly under-predicted
by the RANS while the values on the edge of the jet are slightly over predicted, indic-
ating that the RANS is slightly too diffusive. The mixture fraction cross-stream profile
of the DNS is expanded radially outwards around y/H = 1 due to a combination of
the increased scalar transport caused by higher turbulence, and the expansion around
the flame driving an outward flow component. This flow feature is not captured in
the RANS and is not seen in the corresponding velocity profiles. The mixture fraction
variance, important for the determination of mean quantities, is over predicted by the
RANS at upstream locations. At the furthest downstream location (x/H = 12) the peak
values from the RANS simulations are much closer to the DNS, particularly for refer-
ence variables b and ¢. This indicates that the development of the shear layer is delayed,
possibly due to the scalar dissipation rate model used. Nevertheless, the peak value

of mixture fraction variance is correctly located inside the shear layer and on the rich



128 Chapter 6 Results II: Presumed-pdf modelling of an autoigniting ethylene jet flame

200 ' '
© 004} .
© © Il [\
I I .
T i Z ™\
= 100 g 8 0.02 L f
8 8 g
E) IN N
0 0.00 L\
200 ™~ 0.04 | |
; ; ie
= 100 z & 0.02
S N &
0 0.00
200 o > 0.04
T i U
o
= 100 N & 0.02
S N ?N
0 0.00
200
o S ‘T\I‘ 0.04
I
I
] Ay
% 100 = T 0.02
5 N N
0 0.00
y/H y/H
@Wa @b ®c == DNS === Beta +---+ Top-hat

Figure 6.8: Cross stream profiles of mean velocity, mixture fraction and mixture
fraction variance for z/H € {6,7,9,12}

side of the mean stoichiometric mixture fraction contour, and the width of the mixture
fraction variance profile is comparable to that of the DNS at all downstream locations.
Simulations using progress variable ¢ as a reference parameter tend to have lower peak
values of mixture fraction variance. In general though, it is concluded that the mean
mixture fraction its variance are sufficiently well captured by the RANS simulations for

the purposes of turbulent flamelet table lookup.

Figure 6.9 shows the cross-stream profiles for the reactedness reference variable ¢ €
{a,b,c} for the same downstream locations. These indicate that the lift-off height is over
predicted, as shown by the profiles of a, b or ¢, which show fully burning compositions
even at x/H = 6. The DNS, in contrast, begins to ignite around x/H = 6 and becomes
increasingly burned moving towards x/H = 12. This is confirmed by Figure 6.7, which
shows lift-off heights for each case and in which this case corresponds to A = 3000/s.
This under-prediction is most likely due to the use of a fixed peak scalar dissipation rate;
whereas in the DNS the dissipation rate near the jet exit is high and inhibits autoignition,

this is not captured in the RANS simulations. Progress variable from the DNS (shown in
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Figure 6.9: Cross-stream profiles of reaction reference variable Favre mean ¢,

variance ¢”2 and source term Wy for z/H € {6,7,9,12} and ¢ € {a,b,c}. The
source term has units of 1/s.

black) is not directly comparable to the RANS case, since it is normalised based on the
Y™ ax found in the DNS domain, not by the final solution of the CMC. Therefore only
qualitative comparisons may be made. The RANS progress variables take the value of
1 in the coflow at this point, however this does not affect the composition of the coflow
for which ¢ = 0 and ¢ = 1 are equivalent. The radial profiles of the residence-time based
reference quantities are broader than those of the progress variable: in burning regions
both a and b are slower to reach the value of one compared to the progress variable due
to the reduced source term w, as a — 1; and along the centreline the values of both
a and b move away from zero due to this source term, unlike ¢ which remains close to

zero. Each of these effects is more pronounced for a than for b.

Similarly, the three choices of reference variable exhibit significantly different radial
profiles. Initially (z/H = 6) each has a bell-shaped profile, where the maximum value is
strongly dependent on the maximum gradient of the respective mean. In each case the

peak variance decreases downstream as the shear layer develops. A direct comparison
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to the DNS quantities is not possible due to the under-prediction of the lift-off height.
Over these locations, the peak progress variable variance in the DNS grows from the
ignition point up to a fixed maximum value which is maintained between x/H = 9 and
x/H = 12; each of the RANS simulations appears to maintain the peak value reached

as the profiles broaden downstream.

The source term for each reference variable (labelled w,. in Figure 6.7) illustrates the
difference between the three. The reaction rate of progress variable ¢ is non-zero every-
where that ¢ ¢ {0,1} and is highest around ¢ ~ 0.4. In contrast, w, and w; are non-zero
everywhere that a,b # 1. The source term for a is highest when a ~ 0, and w, has
its peak value sometimes around b = 0 and sometimes around b = 0.4. At z/H = 12,
the y location where w; is maximum does not correspond to the y location where w, is
maximum, purely as a result of the different mean and variance profiles of b and c. In
general, the peak mean reaction rate of progress variable from the DNS is lower than

that observed in the RANS simulation using ¢ as a reference variable.
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Figure 6.10: Cross-stream profiles of temperature, OH and H,O, mass fraction
for x/H € {6,7,9,12}.
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Figure 6.10 shows the corresponding cross-stream profiles for temperature, ?OH and
?HQOQ. The temperature and ?OH plots again indicate that the flame lift-off height
is under-predicted in each case. For progress variable ¢, which under-predicts lift-off
height by the greatest amount, peak temperature at z/H = 6 is around y/H = 1. In
contrast, the DNS peak temperature shortly after ignition (x/H = 7) is further out at
y/H ~ 1.2. This is due to the broadening of the jet moving downstream, and this effect
is also seen in the peak temperatures for a and b at x/H = 6 which are further out than
y/H = 1. In each respective case (a, b, ¢ and DNS) the location of peak temperature
moves outwards as the flame brush broadens, towards y/H ~ 1.5. By y/H = 12 each
RANS case exhibits a peak temperature lower than that of the DNS.

For all reference variables the Favre averaged mass fraction of OH, an indicator of
flame location, is over-predicted relative to the DNS at upstream locations due to the
under-prediction of lift-off heights. The DNS profiles show a clear progression which
corresponds strongly to the progress variable radial profiles. The radial profiles of 7H202,
a which is present during the early stages of autoignition, are captured best by the
reference variable a over the range x/H = 6,7. However, where the DNS profiles show
decreasing peak values and broadening profiles moving downstream, this is not captured
by the parameter a, for which the peak value actually increases over this range. In this
respect the parameter b performs better, capturing the both the decreasing peak value
and broadening profile of 37}1202 between x/H = 6 and x/H = 12.

There is no significant difference between the use of a beta distribution vs. top-hat
distribution in any of the results. Slight differences can be seen in 7OH and 7H202
plots, where the top-hat distribution seems to produce marginally narrower profiles.
However in the velocity, mixture fraction, mixture fraction variance and temperature

profiles there is no observable difference between the two.

6.6 Effect of peak scalar dissipation rate

Figure 6.11 shows mixture fraction variance, temperature and ?OH profiles for a range
of peak scalar dissipation rates A using progress variable c¢ as the reference variable. The
velocity and mixture fraction fields proved insensitive to A over the ranges considered, so
plots of these quantities are not included. Mixture fraction variance is also only sl/i&kltly
more sensitive to this parameter, which is to be expected since the effect of A on Z” 2 is
only indirectly through the flow field. For the temperature predictions, the highest peak
scalar dissipation rate of 3375/s gave the most accurate prediction of lift-off height for
progress variable, whereas 3250/s gave the most accurate prediction with both a and b
(see Figure 6.7). This is also seen in temperature and Y5 profiles at 2/H = 6. This is
due to the high presumed mean scalar dissipation rate better matching the conditions

upstream of the flame, which determine the autoignition process. However it performs
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Figure 6.11: Cross-stream profiles of mixture fraction variance, temperature
and Y for a range of scalar dissipation rates at /H € {6,7,9,12}

worst further downstream, where it fails to match the peak temperature achieved by
using a lower scalar dissipation rate which is closer to the downstream DNS conditions,
and as a result has a lower peak temperature than the DNS. The temperature and ?OH
profiles both tell the same story in this regard. This downstream effect is less pronounced
than the variation caused at x/H = 6 by the lift-off height variation, but this can be
explained as a result of the sharp gradient of temperature and 70H in this region; high
dT'/dx combined with error in the lift-off height (measured in the z direction) causes a

large error in the predicted temperature at this location.

6.7 Comparison of 3D, 4D and 5D tables

This section compares the effect of the number of free parameters included in the joint

mixture fraction progress variable pdf, specifically:

o Continuous marginal pdf for Z, Dirac delta marginal distribution for ¢ (3D);
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o Continuous marginal pdf for both Z and ¢, with independence assumed (4D);

o Continuous marginal pdf for both Z and ¢, using a Plackett copula (5D).

The odds parameter for the Plackett copula is determined using a transport equation
for Z7¢” together with the methods laid out in Chapter 4.
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Figure 6.12: Cross-stream profiles of T, ?Hzoz and Z”¢” for 3D, 4D and 5D
presumed pdfs at /H € {6,7,9,12}.

Radial profiles comparing the influence of the 3D, 4D and 5D presumed pd/f\r/nodels for
T, ?H202 and Z”¢” are showin in Figure 6.12. The profiles of 272 and ¢”? show no
significant differences between the models and so are omitted. The temperature profiles
indicate that all three models over-predict the lift-off height. The peak temperature from
the 3D model (delta distribution for ¢) is higher than that of the 4D and 5D models.
The temperature profile of the 4D (independent) model is initially higher, indicating
that it slightly over-predicts the lift-off height, and downstream the 4D and 5D models
predict very similar temperatures. This suggests that the 5D model gives an improved
model for reaction rates, but has little direct effect on T. In terms of prediction of

?HQOQ, the 3D model gives a significant over-prediction and fails to account for the
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consumption of ?HQOQ moving downstream. Both the 4D and 5D models significantly
under-predict Yy, o, around x/H = 7,9 but over-predict it downstream at z/H = 12.
Relative to this effect, the difference in profiles from the 4D and 5D models is much
less significant. Finally, the plots of Z7e" compare the covariance observed in the DNS
with the covariance modelled by the RANS transport equation. While these are not
exactly comparable due to the normalisation of progress variable differing between the
two, the general agreement is good, with negative values of covariance being accurately
captured downstream. However, upstream the covariance appears over-predicted and
the transport equation fails to capture the positive covariance observed on the lean side

of the stoichiometric line observed in the DNS.

6.8 DNS data copula vs independent
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Figure 6.13: Radial profiles of temperature and reaction rate of progress vari-
able computed from DNS quantities with presumed pdfs.

To confirm that the 5D model has little direct effect on predicted temperature, condi-

tional mean quantities (w.|n, () were extracted from the entire DNS domain, and used
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Turbulent table dimension Lift-off height 2/H

3D 4.64
4D 4.54
5D 4.97

Table 6.2: Lift-off heights predicted by 3D, 4D and 5D turbulent flamelet tables.

for the to the calculation of mean and Favre averaged quantities via

(%, 1) / / I, C)p(, ¢ (6.9)
T(x. 1) / / (T|n, C)F(n, )dndc. (6.9)

where p is the presumed pdf to be analysed. This approach differs from the use of a
flamelet table to provide conditional quantities, as applied in Section 5.4, as the tem-
perature and reaction rate come directly from the DNS and include information about

the effect of scalar dissipation rate on conditional quantities.

Figure 6.13 compares the mean temperature and reaction rate from the DNS with the
respective quantities computed from the conditional averages and a presumed pdf. The
error associated with the use of a presumed pdf, illustrated by the deviation of the
integrated mean values from the DNS solution, is significant and of the order of 20%
at some locations for temperature, and higher for the reaction rate. The assumption
of independence has no significant effect on the calculation of the mean temperature,
and the sensitivity to this assumption is at any rate small in comparison to the use of
presumed pdfs in the first place; the use of this particular copula does not significantly
reduce the error in prediction of the mean temperature. A similar result was observed
for all of the major species mass fractions. The mean reaction rate, however, exhibits a
stronger dependence on correlation. The temperature differences observed in the RANS
simulations attr/i_l\)/uted to different predictions of the mean reaction rates resulting in
different ¢ and ¢”? fields.

6.9 Conclusions

In this chapter, several RANS simulations of the ethylene slot jet were performed. Sev-
eral modelling options were tested, including: choice of marginal presumed pdf; formu-
lation of the presumed joint-distribution; value of the peak scalar dissipation rate; and
choice of control variable. Scalar dissipation rate was confirmed to be an important
parameter in autoigniting flames which should be accounted for in a turbulent combus-
tion model. The prediction of Favre averaged quantities was found to be insensitive

to the choice of marginal distributions tested (top-hat and beta) however the top-hat
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pdf (Floyd et al. 2009) provided a substantial decrease in computation time needed to
generate the lookup table. The significance of this depends on the case to be simulated:
for the RANS simulations presented in this chapter, the computational cost of table gen-
eration for the 5D table containing all species mass fractions and source terms greatly
exceeded the that of running the RANS. The use of a residence-time based reference
variable a was found to offer improved predictive capability in some situations and the
reference variable b was found to exhibit behaviour between that shown by the use of a

and c¢ as a reference variable.

Variance of progress variable was considerable, the inclusion of the Plackett copula
over the assumption of independence was found to offer moderate improvements in
prediction of mean profiles. The mechanism by which the dependence in the presumed
joint-distribution affects the mean reaction rates is explained by evaluating the mean
reaction rates and temperatures from the joint-distribution and conditional quantities
of the DNS data, reconfirming that correlation has little direct effect on temperature
but a significant effect on reaction rates. It is concluded that the temperature profiles
in the RANS differ due to modified progress variable mean and variance fields produced
by the different mean reaction rate and variance source terms. Hence it is shown that
the use of the Plackett copula to model the joint distribution in a lifted autoigniting

flame offers only marginal modelling improvement.

Given the added computational cost of turbulent table calculation involved in includ-
ing the scaled covariance as a parameter in the table, it is recommended that scalar
dissipation rate be included as a tabulation parameter before some measure of the de-
pendence. With the size of a 5-dimensional turbulent flamelet table already exceeding
several gigabytes when all species and source terms are tabulated, extending beyond 5
table parameters will require more advanced data structures such as those employed in
In Situ Adaptive Tabulation (Pope 1997).



Chapter 7

Results I1I: Multivariate
presumed-pdf modelling for

spray-fuelled combustion

A key step in the prediction of spray combustion is modelling the evaporation of fuel
droplets. As noted in Sections 2.2.1 and 2.2.3, the evaporation rate of a droplet de-
pends on the seen properties of the surrounding flow, such as the temperature, compos-
ition and relative velocity. Each of these seen quantities exhibit turbulent fluctuations,
and these influence the instantaneous and, potentially, the averaged evaporation rate
within a spray. In the context of Lagrangian spray modelling, it is common to ac-
count for seen velocity fluctuations by assuming they have a normal distribution, and
De et al. (De, Lakshmisha, et al. 2011) have recently demonstrated a presumed beta
distribution mixture fraction probability density function approach which accounts for
independent fluctuations in the seen composition. This chapter presents a further devel-
opment of presumed-probability density function (pdf) modelling which also accounts for
the correlation between fluctuations of seen velocity, temperature and composition. The

new approach uses stochastic sampling of copula-based presumed joint-distributions.

Section 7.1 presents two numerical investigations on the effect of turbulent fluctuations in
seen quantities on the mean evaporation rate. The Plackett copula is used to model the
joint-distribution of selected seen quantities, and the effect of seen quantity correlations
on the mean evaporation rate is investigated. This is done first for the mixture fraction-
velocity joint-distribution (Section 7.1.2), and then for the mixture fraction-progress
variable joint-distribution (Section 7.1.3). In Section 7.2 the influence of the seen mixture
fraction-progress variable joint-distribution on overall spray combustion behaviour is

studied by application to a RANS simulation of an autoigniting turbulent spray.

137
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Figure 7.1: The generic Burke-Schumann limit for a diffusion flame

7.1 Effects of seen property fluctuations on evaporation

rate statistics

7.1.1 General Formulation for statistically homogeneous spray

In mixture fraction-based spray combustion modelling (Bilger 2011), the evaporation
rate contributes to source terms in both the mean and variance equations for mixture
fraction. The source term for the mean mixture fraction is related to the volumetrically-
averaged evaporation rate of the spray (found using Equation 2.91). In the following
numerical studies, the influence of the joint-distribution of seen quantities on mean
evaporation rate is investigated by evaluating the steady-state evaporation rates for a
spray consisting of boiling droplets under a range of turbulence and mixing conditions.
In order to isolate the influence of the droplets’ seen properties from the droplets own

properties, we report the average of the steady-state evaporation parameter (A, ), which

is proportional to the mean evaporation rate for a given droplet population.

Droplet evaporation and seen quantities are discussed in Sections 2.2.1 and 2.2.3, respect-
ively, and the steady state evaporation rate Aj, is given by Equation 2.92. Sampling
from presumed joint-distributions is described in Section 4.5; here, the method of John-
son (Johnson 2013) is used to sample from a Plackett copula, and presumed marginal
distributions are applied for each of the seen quantities. For velocity fluctuations, a
Gaussian distribution is assumed, and for mixture fraction and progress variable a beta
distribution is assumed. The evaluation of seen quantities such as temperature and fuel

mass fraction depends on the choice of control parameters.

For mixture fraction-velocity fluctuations, the functional dependence of the temperature
and fuel mass fraction on mixture fraction is modelled by the Burke-Schumann diffu-
sion flame structure, as plotted in Figure 7.1 (Burke and Schumann 1948). The simple
structure of the Burke-Schumann diffusion flame in Figure 7.1 is idealised, but is still
sufficient for the purposes of demonstrating the effects of seen mixture fraction fluc-

tuations on droplet evaporation. In general, more advanced models which account for
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Figure 7.2: The extension of the Burke-Schumann limit for partially-premixed
combustion employed in this study. Red: temperature, green: fuel mass frac-
tion.

effects of finite rate chemistry on the relationship between the seen mixture fraction
and the seen composition could be applied — for example the steady laminar flamelet
model (Peters 1984a). The fuel and air are modelled using property models for n-heptane
evaporation in air specified in (Chin and Lefebvre 1983). Evaporation predictions are
reported for combustion with evaporated-fuel and air temperatures of 500K, and a flame
temperature of 2000K at an assumed stoichiometric mixture fraction of 0.1. The mean
evaporation rate A, is reported in terms of the mixture fraction segregation, rather
than the variance, where the segregation g is defined by,
72

9==

707 (7.1)

such that it varies between zero and unity. A constant mean slip velocity of 6ms—! is

specified for all tests. The Ranz-Marshall correlation (Equation ??) only depends on
the magnitude of the droplet slip velocity, and not its sign, therefore a non-zero mean
slip velocity is needed in order to see any effect of correlation between mixture fraction

and velocity.

For mixture fraction-progress variable fluctuations, the Burke-Schumann limit is no
longer applicable, since it is parametrised by mixture fraction only. A simple extension
can be made by a linear interpolation between the burning (progress variable ¢ = 1) and

unburned (¢ = 0) states, as shown in Figure 7.2. The definition chosen for this analysis
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is based on the mass fraction of CO5:

Yoo, — Yélgl;)urned (Z)

c= (7.2)
Yé)gl;ned( Z)— Y(ljlg’t;urned< Z)
Y,
- burfl(e)(i (7.3)
YOO2 (%)

Here we assumed that Yggl;urned =0.

The mean steady-state evaporation parameter \,, is evaluated according to Equa-
tion 2.92 by drawing a large number of samples (here, 10,000) from the appropriate
joint-distribution of control parameters. These samples from the joint-distribution of
control parameters are then used to determine the seen temperature and composition.
For each sample, a steady state evaporation rate A, is then found. From these the mean
steady state evaporation rate A, is calculated. This sampling procedure is equivalent

to ensemble-averaging in a statistically stationary turbulent flow.

7.1.2 Velocity /mixture fraction results and discussion

Results for the mixture fraction-velocity study are presented for correlation values of
-0.5, 0, and 0.5, and for kinetic energy values of 0, 0.135, 0.54 and 2.16 m?s~2 which
correspond to turbulence intensities I of 0%, 5%, 10% and 20%. In the case where the
correlation is zero, the joint-distribution reverts to independent distributions of mixture

fraction and velocity.

Figure 7.3 shows the effect of the mean mixture fraction and velocity fluctuation on the
mean steady state evaporation coefficient A,,. It is observed that the mean evaporation
rate for the laminar case (k = 0, g = 0) peaks at Z = 0.25 after rising rapidly with
the temperature in the region below stoichiometry. Between Z = 0.1 and Z = 0.25 the
mean evaporation rate continues to increase due to the disproportionate effect of higher

temperatures on evaporation rates in the logarithm in Equation 2.92.

Introducing velocity fluctuations only (¢ = 0 and k£ > 0 in Figure 7.3) increases the
evaporation rate across the entire range of mixture fractions by a small amount. This is

1/2

due increased spread of the velocity distribution and the Re"/“ non-linear dependence

of evaporation rate on seen velocity. The shape of the evaporation profile is preserved.

Introducing mixture fraction fluctuations only (¢ = 0.02 and g = 0.2 in Figure 7.4) the
increase in segregation results in a decrease in evaporation rate, particularly in the region
surrounding stoichiometry, as a higher proportion of seen mixture fractions lie close to
zero. The shape of the evaporation rate profile is no longer preserved, indicating that the
dependence on the mean temperature profile is lessened as a wider range of temperatures

is experienced by the droplets.
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Figure 7.5: Effect of correlation on evaporation rate at k = 2.16m?/s? with
(+):g = 0.02; and (x):g = 0.2. Solid line: zero correlation. Dashed line:
correlation = 0.5. Dotted line: correlation = -0.5.

The combination of both mixture fraction and velocity fluctuations (Figure 7.5) shows
little difference from the inclusion of mixture fraction only, due to the relatively small
effect of velocity fluctuations as compared with the effect of mixture fraction fluctuations.
For low values of segregation g = 0.02 no effect is seen of the correlation between mixture
fraction and Reynolds number; the lines are indistinguishable. For higher segregation
g = 0.2 there is an observable effect on the order of 4%, although it is not clear whether
this is due to a lack of statistical convergence. In the region around stoichiometry
Z € ]0,0.3], both positively and negatively correlated fluctuations enhance evaporation

rate while in the region above Z = 0.4 both forms of correlation inhibit evaporation.

7.1.3 Mixture fraction-progress variable distribution results

The results of Section 7.1.2 indicate that in the burning case, turbulent velocity fluctu-
ations do not have a significant effect on the evaporation rate of a droplet in steady state
evaporation. In particular, the dependence of A, on Reé is only weakly non-linear at
conditions of practical interest. This suggests that the covariance u’/Z’ was a poor choice
to investigate, as the correlation should not be expected to have a significant impact

unless both of the quantities in question exhibit a significant effect on evaporation.
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Figure 7.7: Mean steady state evaporation rate as a function of mean mixture
fraction. Left: g = 0.02, Right: g = 0.2.

The modified Burke-Schumann limit shown in Figure 7.2 produces the instantaneous
evaporation rate shown in Figure 7.6. The strong dependence of the evaporation para-
meter on the seen temperature is evident though the similarity of this figure to Fig-
ure 7.2. The effect of mixture fraction and progress variable fluctuations is summarised
in Figure 7.7: for a selection of mean progress variable values ¢ € {0.2,0.4,0.6}, mean
mixture fractions Z, and segregations g € {0.02,0.2}, the effect of correlation on the
mean evaporation rate is presented. The covariances investigated correspond to the
minimum and maximum values possible by the given marginal distributions, plus the

independent assumption. For very low segregation (¢ = 0.02), there is very little effect
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Figure 7.8: Seen mixture fraction, progress variable, temperature and fuel mass
fraction probability density functions for negatively correlated (6 = 0.1, top),
independent (6 = 1, centre), and positively correlated (6 = 100, bottom).

of the Z-c¢ correlation on the evaporation rate for any of the mean mixture fractions.
For moderate values of the segregation, however, the covariance has a significant effect
on the evaporation rate. For mean mixture fractions below = 0.3, positive covari-
ance enhances the evaporation rate while negative covariance inhibits evaporation. This
trend switches for Z > 0.3, where positive covariance inhibits evaporation and negat-
ive covariance increases evaporation. This is perhaps unexpected, as the stoichiometric

mixture fraction is specified as Z,, = 0.1 in the modified Burke-Schumann profile.

The influence of Z-c correlation on the evaporation rate can be understood by consider-
ing the marginal distributions of 7" and Y, ;. These marginal distributions, together
with the marginal distributions of Z and ¢, are presented in Figure 7.8 for negative, neut-
ral and positive covariances (these distributions are obtained by sampling the Plackett
copula, in which these covariances correspond to odds parameters of 8 = 0.1, § = 1
(independent) and 6 = 100, respectively). The marginal distributions of Z and ¢ are
given by Z = 0.3, Z’2 = 0.01, ¢ = 0.6 and ¢/2 = 0.2. It is observed that the inclusion of
correlation has no effect on the mixture fraction and progress variable distributions, as

expected, whereas significantly different temperature and fuel mass fraction distributions
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are observed. Since ultimately temperature and fuel mass fraction are parameters that
affect the evaporation rate, this gives insight into how the inclusion of Z-c¢ dependence

on evaporation rates has a significant effect.

7.1.4 Summary of seen property effects on evaporation

Using a zero dimensional evaporating spray problem, the sensitivity of the mean steady
state evaporation rate of liquid n-heptane to both mixture fraction — velocity depend-
ence and mixture fraction — progress variable dependence were studied. The approach
developed uses Plackett copulas to generate presume joint-pdfs with specified first and
second moments. This method has been demonstrated for a beta-Gaussian joint-pdf
and an efficient sampling algorithm has been developed. Mixture fraction — velocity cor-
relations were found to have no significant effect on the mean evaporation rate, whereas
mixture fraction — progress variable correlations were found to have a significant effect
on evaporation rate, of up to 20%. Further, whether correlation enhanced or inhibited
the evaporation rate was found to be a dependent on the mean mixture fraction, and
the point where correlation had no significant effect was found to lie around Z = 0.3,
considerably higher than the stoichiometric mixture fraction. While this analysis was
performed by considering an idealised temperature and fuel mass fraction dependence
on Z and c, this result is expected to be observed in real flames where the temperature
and fuel mass fraction are related to Z and ¢ through more complex models, such as
the laminar flamelet model. These results therefore suggest that the inclusion of a pre-
sumed pdf model which can capture mixture fraction and progress variable dependence
is important for the numerical simulation of Reynolds averaged flows with evaporat-
ing dispersed spray in which the spray is found in regions where such correlations are

present.

7.2 Assessment of presumed joint-pdf modelling in the sim-

ulation of an autoigniting n-heptane spray

Building on the results of the a priori analysis done in the previous section, this fol-
lowing section sets out to test the stochastic evaporation model a posteriori in a 3D

axisymmetric RANS simulation in conditions relevant to diesel engines.

7.2.1 Experimental configuration

Spray autoignition data from the Sandia National Laboratories’ optically-accessible con-

stant volume combustion chamber are used as a basis for investigating the presumed-pdf
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Case name Temperature Pressure X, Xy, Xco, Xp,o0

X21 1000K 42bar 0.21 0.6933 0.0611 0.0356
X12 1000K 42bar 0.12  0.7806 0.0628 0.0365

Table 7.1: Initial conditions for Spray H

modelling of spray combustion. This equipment is designed to reproduce the thermody-
namic conditions found inside a diesel engine. A schematic diagram of the combustion
vessel is reproduced from (Idicheria and Pickett 2007b) in Figure 7.9. The combustion
chamber has a cubic shape and sufficient volume that the pressure rise during combus-
tion may be neglected. The spray is mounted centrally and directed towards the centre
of the chamber so that the whole spray is visible through a 108mm optical window.
Full details of the experimental configuration are given in (Idicheria and Pickett 2007b;
M. Pickett 2016) and references therein. A range of operating parameters have been
investigated experimentally including fuel type, injection pressure, injection nozzle dia-
meter, and temperature, density and dilution of the oxidiser (giving between 8% and
21% oxygen by volume). The initial high pressure and temperature is achieved by burn-
ing a lean charge of a premixed hydrocarbon fuel blend, in order to achieve the desired
pre-ignition composition and temperature. The vessel walls are heated and the vessel
contents are stirred in order to reduced thermal inhomogeneity in the charge, however
the background flow is sufficiently weak that the fluid can be considered quiescent prior

to fuel injection.

The experimental cases simulated in this Chapter are all for n-heptane fuel, known as
Sandia Spray-H, with 0.1mm diameter single hole injector and a 6ms injection duration.
The fuel mass flow rate specified in the simulations is fitted to experimetnal measure-
ments is given in Fig. 7.10 (M. Pickett 2016). The two initial oxygen levels are used, as
specified in Table 7.1. The key metrics used for comparison with the experimental are
the ignition delay time (IDT) and lift-off length (LOL), as defined and reported in (M.
Pickett 2016). The experimental ignition delay time is based on the system pressure
measurement and the experimental lift-off length is based on OH* chemiluminescence
observations. In the simualtions, IDT was defined as the time after the start of injection
with the maximum rate of change of peak temperature in the system and the lift-off
length is estimated from the most upstream location of a threshold value of OH mass
fraction, in accordance with guidance from the Engine Combustion Network (ECN) (M.
Pickett 2016).

7.2.2 Numerical details

The spray configuration is statistically axisymmetric and it is modelled with unsteady
RANS (URANS) simulations are performed on an axisymmetric domain as described

in (Bolla 2013). The domain is a 2D wedge of 1° with cyclic boundary conditions with
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Figure 7.9: Burner configuration for spray cases, reproduced from (Idicheria
and Pickett 2007Db)

7 3T
£ N

I Y
= :

< ol D S
Q

g -

Eoqdl o
PR

2}

©

2 0 T | T | T | T | T | T

Time (ms)

Figure 7.10: Spray mass flow rate temporal profile

a uniform grid resolution of 0.5mm x 0.5mm in the region of the spray. This level of
resolution is consistent with previous studies (Bolla 2013; Lucchini et al. 2009; Novella
et al. 2011) and with ECN recommendations (M. Pickett 2016).

This same configuration was studied previously by De Paola (Paola 2007) and Bolla (Bolla
2013) in the context of CMC and the FGM /presumed-pdf method has been applied to
this spray by Bekdemir et al. (Bekdemir, Somers, et al. 2009; Bekdemir, Rijk, et al.
2010).

The numerical implementation for this case is essentially the same as described in Sec-
tion 6.3, with the addition of the Lagrangian spray model described in Equations 2.74-
2.76.

Density is given by the ideal gas equation of state using the mean mass fractions and
local pressure, neglecting gravitational effects. Other thermodynamic properties are

modelled as functions of temperature and composition.
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Chemical reaction is modelled using the reduced n-heptane mechanism by S. Liu et al.
(2004), involving 22 species according to 18 global steps. The mechanism has been
applied successfully in several n-heptane spray ignition studies. Bolla (2013) reports
that the mechanism gives correct trends with varying oxygen levels, giving relatively
good agreement for higher oxygen levels but tending to overpredict ignition delay for
higher dilution levels. Overall the kinetic model is an adequate basis for the present
investigation of the presumed-pdf modelling sensitivities. The definition of progress

variable for this case is given in Equation 77.

The turbulence model employed is the k£ — ¢ model with the standard coefficients. The
fluid is initialised with ambient temperature 1000K (Z = 0) and turbulence quantities
k = 1.25m?/s? and ¢ = 125m?/s3. The solution method is PISO (Issa 1986) with a
constant timestep of 1x 10~%s. Simulations were performed over the entire 6ms injection

time interval.

The liquid phase mass-transfer is given by the same boiling model present in Star-CD,
modified via a user defined function to apply stochastically sampled seen quantities from
the presumed pdf:
0 k 1 c, (T, —T
Cd — —ar—9- D, (14 0.23Re} ) log [1 + ”"(Lgd)

ot Cp.g .

(7.4)

where m g, D, and T}; are the mass, diameter and temperature of the droplet, k, and
Cp g are the thermal conductivity and specific heat at constant pressure of the gas
phase, and L,, is the latent heat of vaporization. The droplet Reynolds number Re, is

calculated as
pg ’urel |Dd

Red =
Heim

(7.5)

where the relative velocity u; ,..; is based on the stochastic seen velocity. Subscripts are
used to differentiate between gas-phase/seen quantities (g), droplet quantities (d) and
film quantities (film). In the case of no fluctuations, T, p, and Yy,,.; , are interpolated
from the CFD. Where the stochastic evaporation model is employed, values of Z and ¢
are sampled from the presumed joint-pdf and then the seen temperature T\, density p,
and fuel mass fraction Y;,,.; , are obtained from the flamelet table assuming Z = ¢ = 0,
parametrized by Z and c. If the droplet temperature exceeds the critical temperature

T, it evaporates immediately.

Liquid n-heptane at a temperature of 373K is injected into the domain as an axisym-
metric jet of diameter 0.1mm and cone angle of 10°. The mass flow rate of the nozzle is
given in Figure 7.10. The liquid phase injection is represented by 2 x 107 parcels /s. The
Reitz-Diwakar atomization and breakup models are applied (Reitz and Diwaker 1986),
in order to model the transition from the continuous injection conditions into discrete
droplets and therefore avoid the need to specify the droplet size distribution as an input

parameter.
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7.2.3 Results and discussion

Time-series plots are presented for 4 , Cy VHQOZ, and T in Figures 7.11-7.14 for the
base case X12. Only a subsection of the domain closest to the axis is shown for the
x direction. Figure 7.11 shows the evolution of mixture fraction over time. The spray
begins to evaporate almost immediately after injection, and momentum transfer from the
injected spray to the surrounding gas phase and the resulting inertia carries the vapour
downstream where it mixes with the turbulent oxidiser. The stoichiometric mixture
fraction line is marked (black line), as is a contour of ff;—}; which indicates the position of
the flame. At all times after ignition the ?B}; contour follows the stoichiometric mixture
fraction line. Figure 7.12 shows the same time-series for Favre mean progress variable ¢.
Ignition occurs after 0.94ms on the lean side of the stoichiometric mixture fraction line.
This is in agreement with the laminar flamelet used to generate the lookup table, in which
the most reactive mixture fraction was found to be on the lean side of stoichiometric.
Once autoignition has occurred, the flame kernel grows via progress variable diffusion
and begins to propagate along the stoichiometric mixture fraction line by the same
mechanism. In this manner it propagates back along the stoichiometric mixture fraction
line until eventually a balance is reached between reaction and advection and the flame
stabilises at the lift-off height. The lift-off height can be defined by the minimum height
of a Y5 contour; here Y5 = 0.0001 was chosen, but the measurement of the lift-off
height is insensitive to the exact value. While this propagation along the stoichiometric
mixture fraction is happening, the progress variable also diffuses orthogonally to the
mixture fraction contours. This results in the entire upper region shown in Figure 7.12
being burned, and is an artefact of the dissipation term in the laminar flamelet being
included in the source term for the lookup table. In reality the scalar dissipation rate
in this region is low, which would prevent the diffusion of product mass fractions into

regions of mixture fraction space close to the oxidiser boundary condition.

Figure 7.13 shows time-series contour plots of ?HZOQ’ which is an important quantity
in pre-ignition chemistry. The contour plots show that it is initially concentrated in the
regions of rich fluid with the longest residence times, up until ignition occurs at which
point it is rapidly consumed. As the mean progress variable propagates downstream the
small patch of ?HQOQ moves down ahead of it to reside in the rich mixture at the base

of the flame.

The time-series of temperature plots, shown in Figure 7.14, displays much the same
trend as the progress variable. Initial low temperature in the region of evaporation is
caused by the transfer of heat to the spray, captured here by the low temperature of
the fuel boundary condition in the laminar flamelet. The temperature contours follow
the progress variable propagation downstream but have a much narrower profile, with

highest values around the stoichiometric mixture fraction line.
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Figure 7.11: Overview of base case (X12) Z over time. Stoichiometric mixture
fraction line (black) and Y,z = 0.0001 contour (dotted).
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Figure 7.12: Overview of base case (X12) ¢ over time. Stoichiometric mixture
fraction line (black) and Y = 0.0001 contour (dotted).
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Figure 7.13: Overview of base case (X12) ?Hon over time. Stoichiometric
mixture fraction line (black) and Y, 5 = 0.0001 contour (dotted).
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Figure 7.14:

Overview of base case (X12) T' (K) over time. Stoichiometric
mixture fraction line (black) and Y, 5 = 0.0001 contour (dotted).
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Figure 7.15 shows contour plots for Favre mean reference variables, temperature, ?HQOQ
and the peak scalar dissipation rate A (modelled via Equation 6.1 assuming a beta
distribution for mixture fraction) shortly after ignition. The value of A changes very
little between just after ignition and the final steady state of the flow (Figure 7.16).
The value is extremely high next to the spray region (~ 800/s) due to the high mixture
fraction gradient and turbulence generated by the spray. It rapidly decreases away from
this location but remains slightly higher on the lean side of the stoichiometric mixture
fraction line. Around the region where ignition occurs it has values of around 18/s.
Using a scalar dissipation rate this low in the laminar flamelet results in far too low
ignition delay time and rapid propagation of the mean progress variable, and the flame
becomes attached. When generating the flamelet table, it is important to restrict the
choice of peak scalar dissipation rate to be high enough such that autoignition does not
occur in the region where A is above the critical value for the fuel (200/s), which would

be physically unrealistic.

Figure 7.16 shows the same fields at the steady state condition, at ¢ = 6ms. Upstream
mixture fraction and mixture fraction variance fields remain much the same, and pro-
gress variable variance has followed the progress variable contours upstream to the lift-off
height. This is unfortunate as, despite the mixture fraction variance around the region
of spray, there is no progress variable variance upstream of the stabilisation point, and
therefore the Z-c¢ covariance upstream of this location is expected to be zero, as indeed
was observed. This makes this test case unsuitable for determining the effect of mixture
fraction progress variable correlation on the evaporation rate using the stochastic evap-
oration model developed. This simulation was run for a variety of modelling parameters
(listed in Table 7.2) including the gas phase copula model of Darbyshire et al. (Darby-
shire and Swaminathan 2012) and the copula-based stochastic model developed in this
thesis, but while the use of the copula to model the gas phase joint-pdf may present
some improvement downstream, after ignition and away from the location of the spray,
this is expected to have no effect on the lift-off height or ignition delay time. Similarly
the copula based stochastic evaporation model is expected to have no effect on the evap-
oration rates for this configuration, because there is no direct interaction of the spray
with the flame front.

Nevertheless, some results for lift-off length are presented in Table 7.2, which lists ob-
served lift-off lengths and ignition delay times for each configuration run. Ignition
delay time is defined as the time at which C > 0.05 and lift-off length is given by
You = 0.0001. The case with oxidiser X = 0.12 with a peak conditional scalar dis-
sipation rate of 50/s is taken as a base case, in which the gas phase presumed pdf is
modelled with a copula and no stochastic evaporation model is employed for the dis-
persed phase. From this base case, variants are run with one of the following changes:
peak conditional scalar dissipation rate A = 150/s; independent presumed pdf for the

gas phase; stochastic evaporation model; and ambient oxygen concentration X, = 0.21.
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Figure 7.15: Selected Favre averaged quantities just after (t = 1.3ms) igni-
tion time for base case (X12). Stoichiometric mixture fraction line (black) and
Yo = 0.0001 contour (dotted). Zv and Cv denote mixture fraction and pro-
gress variable variance, respectively. H202 is the Favre averaged mass fraction
Yu,0,-

Xp, Peak SDR  Copula? Stoch.? Experiment Simulation
LOL IDT LOL IDT

0.12 50 Yes No 29.2 0947 189 0.94
150 Yes No 19.1 1.36

50 No No 18.7 0.7

50 Yes Yes 18.6 0.94

0.21 50 Yes No 17.0 0.53 84 0.15

Table 7.2: Spray lift-off lengths (mm) and ignition delay times (ms) predicted

for various modelling options. Peak scalar dissipation rate (SDR) has units of
-1

s
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The base case (Xp, = 0.12, A = 50/s) matches the ignition delay time to within
1%. Increasing the peak scalar dissipation rate to 150/s results in a greatly increased
ignition delay time but very minor difference in the lift-off length; this is because the lift-
off length is determined by the balance between reaction and advection, and the reaction
rates in the higher SDR laminar flamelet are not significantly lower once autoignition has
occurred, whereas the ignition delay time is longer. Using the independent presumed
joint-pdf for the gas phase results in a 25% shorter ignition delay time, emphasising
the importance influence of the mixture fraction-progress variable dependence on the

reaction rate statistics in this flow.

Using a stochastic evaporation model results in no difference in the ignition delay time,
and a very slight change in lift-off length. This indicates that stochastic fluctuations
have a small effect in this flame, but since the progress variable variance is near-zero in
the region of the spray the same result is found by assuming independent fluctuations,
or by not considering progress variable fluctuations at all. Effectively, the stochastic
process is modelling the fluctuations in seen temperature and fuel mass fraction, where
such inhomogeneities are caused solely evaporation, including locally-rich mixtures and
heat loss to the evaporating fluid. Finally, the case with ambient oxygen concentration
Xo, = 0.21 results in a significant under-predictions in both lift-off length and igni-
tion delay time. Again, this can be attributed to the omission of spatial variations in
scalar dissipation rate in the present tests, combined with the increased reactivity of the

mixture due to the presence of extra oxygen.

7.3 Summary and Discussion

The effect of seen quantity correlations on the mean evaporation rate of a boiling spray
in partially-premixed combustion are studied by means of two statistically-homogeneous
spray simulations using an idealised combustion model. It is shown that mixture
fraction-velocity correlations have no significant effect on the mean evaporation rate due
to the negligible effect of velocity fluctuations on the mean evaporation rate. Mixture
fraction-progress variable dependence was found to significantly enhance or inhibit mean
evaporation rate, depending on the value of mean mixture fraction. The mechanism for
this phenomenon is explained through the resulting joint distribution of temperature

and fuel mass fraction.

Finally, simulations of an auto-igniting spray bomb (M. Pickett 2016) spray were per-
formed giving poor agreement with experimental results, attributed to the lack of scalar
dissipation rate variation in the combustion model. This emphasises the fact that the
scalar dissipation rate is a key reference variable for autoigniting flow. Extension of the
current modelling to also include mean scalar dissipation rate as a control parameter is

possible and should be expected to greatly improve quantitative predictions. However
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the simulations presented serve as an adequate basis for examining the sensitivity to the

other presumed-pdf modelling aspects.

The stochastic joint-distribution model based on a Plackett copula was tested and found
to have no significant effect on the flame structure, due to the region in which the
majority of evaporation occurs being away from the flame, resulting in low progress
variable variance in the region of evaporation. High oxidizer temperatures also result in
rapid evaporation and render the effects of mixture fraction fluctuations on the droplet

negligible.

The absence of spray-combustion-turbulence interactions in the n-heptane spray case
is itself an important observation. This demonstrates that the mixture fraction fluctu-
ations in the non-reacted region in which the spray evaporates do not have a substantial
influence: the dependence of evaporation rate on temperature and the dependence of
temperature on mixture fraction upstream of the stabilisation point are both approx-
imately linear, so that fluctuations of mixture fraction do not have a net effect on the

mean reaction rate.

Heye et al. (2015) also show very limited effects of spray-combustion-turbulence interac-
tions in transported-pdf modelling of an auto-igniting methanol spray (Sydney series),
including a coupling method which pairs representative fluid particles with gas phase
Lagrangian pdf particles to provide a model for the seen quantities. Where as Jones
et al. (2011), employing a stochastic coupling similar to Heye et al. (2015) but in the
context of stochastic fields implementation of the transported pdf, and De, Lakshmisha,
et al. (2011) in the context of cold spray jets do observe a significant contribution from
spray-combustion-turbulence interactions. A pre-requisite for the occurrence of spray-
combustion-turbulence interactions is for there to be some overlap between the spray
and the flame. In general, this is more likely to occur when droplet (or solid fuel particle)
life times are relatively large compared to their convection times, and this is likely the

case under colder conditions, with larger droplets or with solid fuel particles.
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Figure 7.16: Selected Favre averaged quantities at steady state (¢ = 6ms) for
base case (X12). Stoichiometric mixture fraction line (black) and Y 5 = 0.0001
contour (dotted). Zv and Cv denote mixture fraction and progress variable
variance, respectively. H202 is the Favre averaged mass fraction ?Hzoz‘



Chapter 8

Conclusions

The aims of this thesis are to investigate and model the statistical dependence between
mixture fraction and progress variable in partially-premixed combustion, and to de-
velop a presumed-pdf computer code that can model gas and spray-fuelled combustion.
This requires some care in the numerical implementation, and an appropriate numerical
formulation is developed through Chapters 2-4. The nature of the mixture fraction-
progress variable dependence is investigated in a range of archetypal partially-premixed
combustion configurations in Chapter 5, showing that the effect of their dependence
has a significant impact on mean reaction rate predictions in the stabilisation region
of lifted jet flames. In Chapter 6, the sensitivities of the presumed-pdf modelling are
investigated with reference to direct numerical simulation (DNS) data for a gas-fuelled
lifted autoigniting jet flame. Last, in Chapter 7, stochastic modelling for evaporation
processes based on the presumed joint-pdf of mixture fraction and progress variable is
developed and analysed. The joint-pdf modelling in the present work provides a numer-
ical and theoretical basis which can be applied in RANS and LES of a wide range of

gas, liquid and potentially also solid-fuelled combustion systems.

8.1 Presumed-pdf formulation and numerical implement-

ation

In Chapter 2, two new reference variables, denoted a and b, were introduced based
on a non-linear residence time and in combination with a mass fraction-based progress
variable, respectively. The instantaneous and mean transport equations for these new
quantities are presented in Chapter 2. These were then applied to an autoigniting homo-
geneous reactor in order to characterise the numerical sensitivity of autoignition delay
time using each reference variable (Section 4.6). The parameters a and b were found
to offer an improvement over the progress variable ¢ in terms of numerical accuracy

of the prediction of autoignition delay time. It is suggested that a progress variable
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based on major species mass fractions is unsuitable for accurately resolving pre-ignition
chemistry in autoigniting flames, due to the initial period of slow production of major
species mass fractions, and hence predictions of autoignition time are highly sensitive to
small fluctuations caused by numerical errors, such as integration error, in the progress
variable. The use of a as a reference variable resolves this problem by introducing a
source term which is linear for small values of a. However a is unsuitable for modelling
flame propagation since the source term of a has no dependence on the extent of reac-
tion. The hybrid variable b = % (a + c) is therefore recommended for systems in which

autoignition and flame propagation are both influential.

In Chapter 4, a general method for the integration of joint-distributions with a scalar
in the context of turbulent combustion is developed, making use of the known joint-
distribution function (cdf), which can be applied to both empirical joint-distributions
and the functional forms of presumed joint-distributions containing singularities. The
application of this method is presented for one- and two-dimensional distribution func-
tions, and the extension to higher dimensions is simple. It is demonstrated in Section 4.3
that the upper and lower bounds of the covariance of a joint-distribution are determined
by the marginal pdfs, and that the bounds {—1,1} of the Pearson correlation coefficient
are rarely attainable in practice. This result is already known in statistical literature,
but has been previously neglected in the context of turbulent combustion modelling.
Knowledge of these upper and lower bounds is important for tabulation of chemistry
with a joint-moment as a parameter. A robust method for numerically evaluating these
bounds is presented, making use of the integration method developed in this thesis.
A numerical method for linking copula parameters to known joint-moments from CFD
(covariance) is developed and applied to the Plackett copula parameter . An altern-
ative method for finding 6 based on Spearman’s p is suggested which avoids the use of
sampling or lookup tables to obtain the odds parameter, thereby improving the compu-
tational efficiency of the method to enable its application to the stochastic modelling of
seen quantities in Lagrangian sprays. A generic method for sampling from a joint distri-
bution is presented, which is optimized for generation of small numbers of samples for
application to the short-lived seen quantity joint-distributions to stochastic modelling

of sprays.

An alternative approach to the presumed copula method is suggested, based on mixture
fraction-residence time information from a laminar flamelet or other canonical combus-
tion experiment. This approach (referred to here as the Flamelet Generated Copula
approach) constructs a copula from the joint-distribution of reference variables in the
laminar flamelet, which has the potential to characterise reference variable dependence

without the use of a transport equation for joint-moments.
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8.2 a priori analysis of statistical dependence between ref-

erence variables

In Chapter 5, a priori analysis of one-point joint Z-c distributions is applied to a range
of test cases including: partially premixed stratified DNS case of (Richardson and Chen
2016), the Sandia series of piloted methane jet flames with local extinction (Barlow and
Frank 1998), and the lifted autoigniting ethylene jet DNS of (Yoo, Richardson, et al.
2011). A methodology is developed for the analysis of the underling copula from an
empirical joint-pdf obtained from the DNS or experiment. The methodology involved
the removal of the influence of the marginal joint-distributions in order to isolate the
underlying empirical copula of the two reference variables. A general dependence of the
copula on the mean values of the reference variables was observed in all cases where it

had a significant effect.

The validity of the Plackett and independent copulas as models for the statistical de-
pendence between Z and ¢ was also examined based on the empirically-observed pdfs.
Using the empirical marginals, the two presumed copulas (Plackett and independent)
were used to construct joint-distributions and then compared with the empirical joint
distribution. It was found that the Placket copula offers a general improvement in the
representation of the empirical joint distribution in most cases. This was determined
though comparison of the L, norm between the empirical joint pdf and the reconstructed
joint pdf with modelled copula. However, it was seen that the same joint-distributions
when used to calculate mean scalar quantities gave no significant difference in the case
of the Sandia flame series, but significant differences in mean reaction rate for the lifted
ethylene DNS.

8.3 a posteriori analysis of presumed-pdf modelling

In Chapter 6, RANS simulations of the ethylene slot jet were performed. Several mod-
elling options were tested, including: choice of marginal presumed pdf; formulation of
the presumed joint-distribution; value of the peak scalar dissipation rate; and choice of
control variable. Scalar dissipation rate was confirmed to be an important parameter
in autoigniting flames which should be accounted for in a turbulent combustion model.
The prediction of Favre averaged quantities was found to be insensitive to the choice
of marginal distributions tested (top-hat and beta) however the top-hat pdf (Floyd et
al. 2009) provided a substantial decrease in computation time needed to generate the
lookup table. The use of a residence-time based reference variable a was found to offer
improved predictive capability in some situations and the reference variable b was found

to exhibit behaviour between that shown by the use of a and ¢ as a reference variable.
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Variance of progress variable was considerable, the inclusion of the Plackett copula
over the assumption of independence was found to offer moderate improvements in
prediction of mean profiles. The mechanism by which the dependence in the presumed
joint-distribution affects the mean reaction rates is explained by evaluating the mean
reaction rates and temperatures from the joint-distribution and conditional quantities
of the DNS data, reconfirming that correlation has little direct effect on temperature
but a significant effect on reaction rates. It is concluded that the temperature profiles
in the RANS differ due to modified progress variable mean and variance fields produced
by the different mean reaction rate and variance source terms. Hence it is shown that
the use of the Plackett copula to model the joint distribution in a lifted autoigniting

flame is a significant modelling improvement.

8.4 presumed-pdf modelling for gas-phase properties seen

by droplets

In Chapter 7, the effect of seen quantity correlations on the mean evaporation rate of a
boiling spray in partially-premixed combustion was studied by means of two statistically-
homogeneous spray simulations using an idealised combustion model. It is shown that
mixture fraction-velocity correlations have no significant effect on the mean evaporation
rate due to the negligible effect of velocity fluctuations on the mean evaporation rate.
Mixture fraction-progress variable dependence was found to significantly enhance or
inhibit mean evaporation rate, depending on the value of mean mixture fraction. The
mechanism for this phenomenon is explained through the resulting joint distribution of

temperature and fuel mass fraction.

Finally, in Chapter 7, a priori evaluation of droplet evaporation times demonstrated
that the correlation in mixture fraction — progress variable fluctuations has a significant
effect on seen quantity distributions resulting in a significant effect on mean steady-state
evaporation rate. In Section 7.2, simulations of an auto-igniting spray bomb (M. Pickett
2016) were performed giving poor agreement with experimental results, attributed to
the lack of scalar dissipation rate modelling in the combustion model. The stochastic
joint-distribution model based on a Plackett copula was tested and found to have no
significant effect on the flame structure, due to the region in which the majority of
evaporation occurs being away from the flame, resulting in low progress variable variance
in the region of evaporation. High oxidizer temperatures also result in rapid evaporation

and render the effects of mixture fraction fluctuations on the droplet negligible.

8.5 Summary and future work

The main contributions of this thesis may be summarised as follows:
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e The systematic a priori analysis of mixture fraction — progress variable dependence

across multiple high quality empirical datasets.

o A novel technique for analysing dependence between reference variables, by re-
moving the influence of marginal distributions to studying the underlying copula

in isolation.

e Improved numerical methods for the integration of and sampling from presumed
pdfs.

e The application of presumed pdfs with non-zero correlation to existing stochastic
evaporation models for seen quantities, and demonstration of the effect on evap-

oration rate.

e The introduction of two new reference variables based on non-linear residence
time, which are appropriate for tabulated chemistry approaches and avoid the
demonstrated issue of numerical sensitivity exhibited by the use of a mass fraction-

based progress variable.

e The flamelet generated copula method, allowing the generation of copulas from
laminar flamelet solutions and hence the ability to capture dependence between

reference variables without the need to transport joint moments.

The flamelet generated copula approach, while promising the inclusion of real combus-
tion physics into the model for the joint-distribution, should be extended in a manner
that can account for ¢ and Z. , in order to account for the variation of the copula through-
out the flow field observed in Chapter 5. It remains to be seen whether this approach
is capable of capturing the majority of dependence between Z and ¢ without the use of
joint moments. Preliminary application of the resultant copula (with no dependence on
mean reference variables) shows promising qualitative ability to give the general trend
of covariance observed in the ethylene jet DNS, but the dependence produced is not

strong enough to manifest in the mean quantity predictions.

The stochastic evaporation model developed should be applied to a more appropriate
laboratory scale spray flame in which the droplets interact with the flame directly, in

order to confirm the results of Section 7.1.






Appendix A

Derivation of upper and lower

bounds for specific distributions

A.1 Known bounds for covariance and variance

The variance of a function is given by

where

is the mean.
o?(a) = [ (@ = 2po 4 4?) f(a)do
_ /a;?f(a:)d;c _ 2,u/:z:f(x)da; +u2/f(:v)da:
Since f is a pdf we have the identity [ f(z)dz = 1:
o2 = /me(x)d:c —op? 4 2
— [e* 1@y -

For a given y, the maximum value of 02 is obtained when [ 22 f(z)dx is maximised. For
x € [0,1] and the requirement that f(z) > 0, we have

/me(x)dx < /xf(x)dx:,u,

'.'0.2 § M_MQ
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This gives the upper bound for the variance. This upper bound is achieved when

/x2f(ac)daf = /xf(x)daf
/(x2 —x) f(z)dz =0

What does this tell us about the function f(x)? The expression 2 — z is negative
everywhere in (0,1) and is zero at x = 0, 1. Therefore (22 — ) f(x) is zero at x = 0,1
so does not contribute to the integral. The contribution from (z? —z) f(x) on z € (0,1)
must also be zero. Since f(x) > 0 and (22 — ) < 0 on this interval, we have that
f(z) =01in z € (0,1). Therefore

fz) = cod(x) + c10(x — 1)

where 6(x) is a Dirac delta. The coefficients are found by

M:/@ﬂ@ﬂ
:=/x@&@ﬂ+qﬂx—nﬁm
:cq/x&@MH%h/xﬂx—IMm

1:/}@mx

—co/é(x)d:c+cl/(5(x—1)dx
=cCotcCq

co=1—np
So the distribution function f(z) which maximises the variance and has mean p is

f(@) = (1= p)d(z) + pd(z —1)
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The covariance of two random variables X and Y with joint probability distribution
f(X,Y) is defined as

XV — / / (¢~ X) (y— V) f(a,y)dady

_ / / (wy — Xy + 2V — XY) f(x,y)dzdy

— [ [eut@indy~ [ [Rusedody+ [ [V radody— [ [ X700 0)dsdy
— [ [evt@indy X [ [usicdy+ Y [ [ dedy -3V [ [ ta,)dndy
—//xyf(w,y)dxdy—XY—i—YX—XY

://xyf(x,y)dmdyXY

=XY—-XY

Again, the maximum value of the covariance (for random variables with means that are
known) is determined by the maximum value of the integral [ [ zyf(z,y)dzdy. Since
x,y € [0,1] we have

| [aut sy < [ [afteydody = [Tay=%
and //wyf(w,y)dﬂfdyﬁ//yf(x,y)dxdyz/yfy(y)dyzY
/ / vy f(z,y)dzdy < min (X, 7)

where fy-(y) is the marginal distribution of f. Hence the covariance has an upper bound

given by

N

(As a sanity check, consider X’ X’ = 0%

XX <min(X,X)-X X

which is what we expect.)
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. X X<Y _ _
min(X,Y)—XY:{ T XY
Y X>Y
) X(-Y) X<Y
Y(1-X) X>Y
a<‘~>={£<X<1_Y> rer
X ZY(1-X) X>Y
1Y X<Y
Y X>Y

If 2 < y then there is a stationary point at Y = 1, and if x > y there is a stationary
point at Y = 0. However, because the function min is not defined on the line X =Y,

we have not searched this line for the maximum. Setting X =Y gives

f(:v,y) :X_Y2

which has a stationary point at X = 0.5. The second derivative 92 f/0x? = —2 indicates
(0.5,0.5) is indeed a
maximum. Hence, the maximum covariance occurs when X =Y = 0.5 and therefore
XY’ =0.5—0.52 = 0.25. Note that the maximum covariance does not depend directly

on the variances of X and Y, only on their mean values.

that the function is convex on the domain and therefore (X,Y)

Similarly, the minimum value of the covariance is determined by the minimum value of

/ / vy f(z,y)dzdy =0

XY ' >-XY

the integral, which is zero:

A.2 Upper bound on correlation from quadruple-delta dis-

tribution

The covariance of two distributions is limited by the upper bound found in the denom-

inator of the definition of the Pearson correlation coefficient:

0-17
Correlation = —%— (A.1)
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Figure A.1: a) Numerically calculated minimum and maximum covariance for
all distributions in the

The covariance can never be greater than /o2, /05. However, for some given marginal

distributions this upper limit can not be achieved.

This is demonstrated in Figure A.1 using the joint-pdfs from the gas phase table. For

each joint-pdf specified by a particular set of control parameters

To illustrate, consider the case where both marginal distributions have segregation 1
(two double delta distributions). Specifically, look at

My =0.25
py = 0.75

Sy =5, =1

Where s is a segregation and the distributions have domain [0, 1] unless stated otherwise.

They have the corresponding pdfs:

feM) =0 —py,)d(m—0)+p,6(n—1)
=0.756 (1 — 0) + 0.256 (n — 1)

Jy () = (1= pyy) 6 (¢ — 0) + p,,0 (v — 1)
=0.250 (¢ — 0) + 0.750 (¢ — 1)

The x distribution has a mean closer to x = 0 and therefore the delta distribution at
0 (x — 0) is weighted more heavily, etc. The joint distribution with these two marginals
will be a quadruple delta distribution, with one Dirac delta at each of the corners of the
domain [0,1]%. The weighting of each of these four deltas is unknown and depends on
both the weightings of the deltas in the marginals and the copula of the joint-pdf, i.e.
on the covariance.

2
Pt () = o[£ ()., ()

= wped (N — 0,9 —0) +wp16(n— 0,9 — 1) + w156 (n— 1, —0) + w10 (n—1,9 —1)

where § (a,b) = (a)d (b). This is a pdf:
/ wd (1, ) dndip = w
/jpdf(ﬁﬂ/}) dndy = wog + woy + wyg +wyy =1

The conditions that the weights sum to 1 has not been proven but is a requirement of

jpdf being a pdf. For independent marginals, the joint distribution is simply the product
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of the two marginals:

jpdf (n,v) =

fz () £y ()

(1= p15) 6 (7= 0) + 1,6 (n — 1)] x [(1 = p,) 6 (4 — 0) + pa,, 0 (¢ — 1]
= (1= p1g) (1 —py,) 6 (7 — 0,9 —0)

+ (1= pg) pyd (n— 0,40 — 1)

g (1= py) 6 (n—1,4—0)

+ Uphtyd(n—1,9—1)

Proof that this is a joint-pdf:

/jpdf(mw) dndip = (1= pg) (1= pyy) + (1= i) gy + gy (1= py)) + ity

=1 = py — oy F By F Loy — B hly T P — P by + Hig Ly
=1

In the case of perfect positive correlation (C|u,v] = max (u+ v —1,0)), we have wy, =

ws = 0 and

distributions

therefore w; + w,; = 1 and w; and w, are determined by the marginal
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The marginal distributions can be expressed in terms of the joint distribution

fu () = / ipdf (n, ) dip

Wod (N — 0,9 —0)dy

Therefore we have these equations to solve

Wog + Woy +wip +wyy =1
Woo + Woy = (1 — p1g)
Wyt Wyp = Hy
woo +wip = (1—py)

Wop + Wip = [y

In matrix form,

1100 Wogo 1—p,
0 011 wor | o
1010 wio || 1—ny
0101 Wy oy

Which has determinant 0 so the system cannot be solved.
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The covariance is given by

Opy = / mbipdf (n, ) dndy) — ppu,,
— [ 0008 (0 = 0, = 0) w28 (1= 0,5 = 1) + w8 (1= L= 0) 4 w3 (= Lo = 1) s g
— [ oo (n 0.0 0) dnd
+/nww015(n—0,¢—1)dnd¢
+/77¢w105<?71,1/)0) dndyp
+ [ b 0= 1w = 1) dndv — o,
= W1y — flghly

Which gives us wyy = 0, + piypt, - For known g, p,,, the covariance depends only on

wy1. This relation can be used to make the linear system invertible:

1100 Woo 1—pg,

0 011 wor | Lo
1010 wy | 1—p,

0 001 w4 Opy T Haghly

with solution

Woo = 1_Mx _My"i':uazuy—i_o-xy
Wo1 = :uy - lux'uy - awy
Wi = Mg — :uxlu’y - Umy

Wy = :U’m/‘Ly + U:cy

It is easily seen that the additional constraint wgyy + wgq + wqg +wy; = 1 is satisfied.
However, the above result does not help us find the maximum because covariance now

we have a circular expression involving o, .

The variances for the marginal distributions are given by

0% = / (n— )2 £ (n) dn
=/[(n—ugf{(l—Mm)5(77—0)+ﬂz5(77—1)}] )
= / (0 =20y + 2 — 0Py +20p2 — p3) 6 (n—0) + (g — 20p3 4+ p3) 0 (n—1)] dn

= (u2 —p3) + (g — 202 + p3)
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and similarly UZ = [hy —ui. Hence, for the univariate distribution the known upper limit
of the variance is realisable, using a double delta distribution. Is the known upper limit
for the covariance also realisable for all potential marginal distributions? Assume that
the covariance is equal to the upper bound stated above, and consider the quadruple-
delta distribution again:

Opy = 050

2
Yy
2
(w11 = Hatty)” = (be — 13) (1y — 13)
w -2 w + 2,2 o 2 2 + 2,2
1 lu:v//’y 11 /‘Lmﬂy Mw#y Mw#y Mw#y Mw#y

Ty = 2pg Wiy A (g hty + pg iy + pE ) =0

This is a quadratic in w;; and hence

uzuer\/ — ) g (1= f1y)

substituting back into the covariance equation confirms that

Oy = \/(1_Mw)ux (1_,uy) My = Ua% U%

Further, since o, is known, then so are all the weights w.:

wOozl—um—ueruzuer\/E\/%
Woy = 1y, — Hatty — V0202

Wio = fiy — fakty — V7202

Wiy = fatty + 2\ [02

A specific example reveals a problem: choose p,, = 0.25, u, = 0.75, 02 = UZ = .1875,

x
and hence o, = .1875:

Woo = 1—0.25—0.75 + 0.25 - 0.75 + 0.1875 = 0.375
Wy = 0.75 — 0.25 - 0.75 — 0.1875 = 0.375

wy = 0.25—0.25-0.75 — 0.1875 = —0.125

wy, = 0.25-0.75 + 0.1875 = 0.375

While these values do fit the “sum to 1” criteria, they are not suitable because w
is negative which would make the pdf negative at the point (z,y) = (1,0). (To see

that this problem is caused by the covariance imposed on the distribution, note that
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the values found in the independent case are all positive: wgg = 0.1875, wy; = 0.5625,

Hence the covariance o, = o cannot be achieved with these marginal distributions

o

zy z%y
and there must be a smaller upper limit on the value of the covariance than the one we
are currently applying. The restriction that each w.. > 0 can be used to find restrictions

on both the upper (positive) and lower (negative) bounds of covariance:

Wo1 :Umy S ,U'y - :U’a:,uy
W10 :Umy < Mg — IU’:L*,uy

.‘.O'Iy < min [,Uy (1 —,U,w)7 Mo (1 _Myﬂ

Woo :Uwy Zﬂw"‘ﬂy—ﬂmﬂy—l
Wyy ¢ Ua:y > _/'La:,uy

'.'O—a:y Z max [lu’x + :uy - Ma::uy - 17 _:u’x/'by]

Note: the lower limits o, > max (um + oy — Mgy — 1, —ux,uy) seem intricately re-

lated to the existing limit:

\%

g —0,.,.0

vy = ~Oz0y
> —\/Mm (1= pg) pry (1= payy)
= —\/umuy (1= pg) (1= py)
=/ (o, — m2p,) (1= 1)
= (ot — 121, — 1opd + 12112

= =\ () (1 + 1y — papt, — 1)

The complete set of restrictions is then

Oxy < min [Hy (1 - Mm) ) Mg (1 - Hy) ) ngy]
Oxy > max [lu’a: + Hoyy = Hglby — 1, THag gy, ngy] (AQ)

Presumably, this upper limit (for the case of positive covariance) is found when the
quadruple delta joint-pdf is actually a double-delta pdf, with weights only at (0,0) and
(1,1). Similarly, for the maximum negative covariance we would expect the joint-pdf to

be nonzero at (1,0) and (0,1). Consider the positive covariance case:
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and also

wo +wyg =1
:>,uy:1
= Wo1 :17M:n70-my

the maximum o, will occur when wy; = 0 and therefore w,; =1, o,, = p, — 1.

Yy Yy

Similarly, in the case of greatest negative covariance:

Wopo = 1_Nm _Ny+/1‘muy+amy
Wig = Mg — :U’m:u’y - Uwy

wll == O
and also

Woo +wyp =1
:>,uy:0
:>wOO:1_Moc+O-xy

:>w10:1—w00

These are not satisfactory solutions because when p,, = 0 or 1 one of the distributions
is a delta distribution and hence its variance is zero, and by the original upper bound
the covariance is also zero. This is why these expressions for covariance only depend on

the other marginal.
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A.3 Distributions with one continuous marginal

Now consider the case where one of the marginal pdfs is not a double delta distribution,

but is instead an arbitrary continuous distribution f, (1) and the other given by
The joint-pdf can now be written in the form

ipdf (1,¢) = (1 — 1) 6 (C) fro (M) + )0 (1 =€) fro1 (1)

where f,q (1) and f,; (n) are the distributions of f, (n) conditioned on y = 0, 1 respect-
ively (in the case of independence, f,, is a scalar multiplication of f_;). The marginal

distribution of x must still be f_ (1), hence

£ () = / ipdt (n, ¢) d¢
= (1= 1) fao <n>/6<<> d¢ + iy fon <n>/6<1o a¢

= (1—11y) fuo (1) + 11y fur (1)

The covariance is given by

7y = [ [ 060t (0.0 dd — o,

Oy T Haphly = //nC(l — 11y)) 6 (C) fro (0) dndCJr//nCMyé(l —¢) fz1 (n)dnd(
—(=n,) [ O [ntuoman}acsn, [a-0{ [ manfac
= (1= ny) [ B ol 1y [ 651 gt

where o and i, are the expected values of the conditional distributions f,g and f, ;.

Gy + ity = (1— 1) uxo/as () dC + i /46 (1—¢)de¢

= :U’ylu‘wl
ny = :U’y (:U’acl - :U’:E)
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How are p, and p,,; related? We can look at the expected value of the marginal

distribution f:
= / nfe (n)dn

= /77 (1= py) o (1) + 1y fr ()] dy
= (1—uy)/nfmo (n) dn+uy/nfw1 (1) dn

= (1= py) fgo + fryhrn

As an interesting aside, a similarly structured expression is obtained from the variance

of the continuous marginal:

oy = /anm (n)dn — p3
2/772 (1= 11y) Fuo (1) + by fur ()] dp— 2
= (1—My)/772fmo <n)dn+uy/n2 21 () dn — 3

0320 +M325 = (1 _Ny> (‘730 +Ngo) + Hy (‘7%1 +:U’il)

Substituting the value of p,, into o,

= iy (o1 — (1= fy) Pgo — Hyytizn)
= iy (Ha1 = Hao + Hybao = Hylls1)
=ty (1= p1y) (1 — 110)

= 0'72, (Bz1 — Hz0)

Here we have made use of the fact that f, is a double delta distribution and therefore
= My (1- My)'

Since the parameters o and p,,; are not known, we would like to express this in terms
of the means and variances of the marginals instead. The maximum positive covariance
possible for this type of distribution will occur when as much of the probability mass of
f»1 lies as close as possible to the point (7,{) = (1,1) and as much as possible of the
probability mass of f,_, lies as close as possible to (0,0). Since both are (not strictly)
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positive, this corresponds to the piecewise functions

foo() = {fz () n<ng

0 n>Mng
0

fm1<n>={ 1=
f=(m) n>ng4

i.e. the marginal is simply cut at the point n = 1, and part given to each partial

marginal. Hence the relation with the f, is preserved by

Jo= (1 _My> fzo (M) "‘Hyfml (n)

_(1_%){]}(17) 77<77d+uy{0 N <1g
0 n>1g fo(m) n>mng

Aside: the variance of f, can be written
0% = /(n—ugffw (n) dip

B o J (M=) fu () n<mng
—/(n—uz) dn
fooy o (M) n> 14

Z/nd (n—pz)? (1= p1y) fa (n)dn+/ (0 — 112)° 1y fo () dy
0

MNa

= (1—/@)/0% (n— 1) fo (n)dn+uy/ (n— 1g)? fo () dn

MNa
= (1=py) o3|, +m, (o2 —]02] )
= |0—3:|774 - 2:uy |0—§|77d + :uyaa%:
= (1=2p,) |03 +p,02

_ 1—2,uy |02|
1—,uy Tlng

or
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02 +p2 = /n2fx (n) dn

_/ 2{(1—uy)fz<n) n<ia
= [n 7

foy [ (1) n>ng

ur 1
:/ n? (1—p,) fo () dn+/ 02ty fo () dn
0

MNa

MNd 1
=<1—uy>/ n2fx(n)dn+uy/ 72 f () dn
0

Ma

MNa MNa 1
_ 2 _ 2 2
—/0 n*fz (n)dn uy/ nfm(n)dnJruy/ n*fz (n)dn

0 N4

where

ur
2, = [ e s

is the “partial variance of f,.” Since the integrand here is positive or zero, this value is
a monotonically increasing function of 1, which tends towards o2 as n,; — 1. However,

02 should not depend on 7, which implies that n,; must depend on [

_ 1_'“9 2

2
|Uw|m 11— 2,uy0m

This is only positive for p1,, < 0.5. This implies a contradiction.

The question now is what are the extreme values of the covariance permitted by this

form.

We need to relate the values of 11,5 and p,; to known quantities, the means and vari-
ances of the marginal distributions. This will most likely be through the expression for
covariance. Considering the definition of covariance, which involves an integral of the
joint pdf (which in this case is only nonzero on ¢ = 0 or ¢ = 1) multiplied by n{: on
the ¢ = 0 axis there will be no contribution to the covariance from f,,, but on the
¢ =1 axis there will be a finite positive contribution from f,;. Hence the covariance is

maximised as 1y — 0. But the mean p,, places a restriction on the value of §;:

1
fo (§) dE = pu,
€a
€4
fo (§)dE=1—p,

0
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Each of these leads to the same expression for £ in terms of the cumulative density

function F:

Fx(£d>:1_:uy
Ed:F:;1 (1_iuy>

Now we can see why the maximum covariance depends on the variance of X (a phe-
nomenon which was observed numerically). As the mean p,, approaches 1, £; approaches
zero, and the domain of f,; increases towards the whole [0, 1] interval. A fixed p,, (and
,,) determines &4, but the value of the integration from £, to 1 depends on the marginal

pdf f,. Since we have

1 1
%y+uwuy=/0 /O n¢f (n,¢) dnd¢

Z/lnfz () iy

d

1

= / nfe (n)dn
Fpt(1-ny)

we are able to evaluate this once we know the marginal distributions. The integration

can be done numerically. Often the marginal distribution f, will have singularities at 0

and/or 1. We would like to avoid the numerical issues that this causes by transforming

the above integral into a form where the integrand is always finite over the integration

interval, i.e.:

F;l(l_“y)
0

For the minimum covariance, let

0
sz(ﬁ)Z{ 77<nd

fa(m) n>n4
le(m:{fm(n) n<1Nq
0 N> 1Ng

The restrictions placed on {; by the mean p,, are now

1
fr (§)dE=1—p,
€a
€4
fr (§)d§ = 1,

0
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which, in terms of the CDF, are

and finally

If needed, these upper and lower limits are may be computed numerically.






Appendix B

Additional statistics for lifted

ethylene DNS case

# 4 c z"c”  rg. Pze 0. L,  Empirical  Plackett
C3 0.629 0.014 -0.002 -0.720 -0.809 0.063 0.669 k.| A
\
D3 0431 0.036 -0.004 -0.690 -0.830 0.046 0.395 K
E3 0.212 0.067 -0.004 -0.399 -0.427 0.224 194

Table B.1: DNS Row 3: Statistical properties of lifted flame sample locations,
including the mean mixture fraction, mean progress variable, covariance, Pear-
son correlation, Spearman’s p ., odds parameter, and calculated L, norm of

error.
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# Z c VAL Pze 0. L,  Empirical  Plackett

C4 0.668 0.083 -0.012 -0.597 -0.822 0.050 0.568

D4 0.544 0.193 -0.021 -0.637 -0.799 0.057 0.768

E4 0407 0335 -0.023 -0.617 -0.683 0.090 1.46

F4 0.137 0485 0.003 0.134 0.341 3.459 2.07

G4 0.025 0.083 0.003 0.728 -0.130 0.331 4.02

Table B.2: DNS Row 4: Statistical properties of lifted flame sample locations,
including the mean mixture fraction, mean progress variable, covariance, Pear-
son correlation, Spearman’s p ., odds parameter, and calculated L, norm of
error.
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#  Z 7' vy, pge O L,  Empirical  Plackett
A5 0.914 0.040 -0.006 -0.612 -0.869 0.020 0.644
B5 0.879 0.062 -0.009 -0.590 -0.855 0.035 0.546
C5 0.711 0.245 -0.026 -0.698 -0.791 0.066 0.625
D5 0.625 0.416 -0.033 -0.754 -0.792 0.056 0.586
E5 0.522 0.580 -0.032 -0.733 -0.728 0.053  1.92
F5 0.289 0.756 -0.004 -0.171 0.147 2.692  1.90
G5 0.110 0.611 0.013 0.614 0.758 18.696 0.723

Table B.3: DNS Row 5: Statistical properties of lifted flame sample locations,
including the mean mixture fraction, mean progress variable, covariance, Pear-
son correlation, Spearman’s p,., odds parameter, and calculated L, norm of
error.
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# Z c VAL Pze 0, L,  Empirical  Plackett

A6 0.866 0.141 -0.013 -0.634 -0.790 0.059 0.756

B6 0846 0.162 -0.016 -0.683 -0.792 0.072 0.878

C6 0.734 0.346 -0.031 -0.770 -0.799 0.061 0.541

D6 0.661 0.478 -0.036 -0.785 -0.815 0.042 0.494

E6 0.581 0.614 -0.036 -0.770 -0.783 0.034 1.62 /g
F6 0384 0.781 -0.012 -0.400 -0.142 0.899 3.08 @
%

G6 0.188 0.763 0.009 0.434 0.527 6.451 1.09

S
/i

Table B.4: DNS Row 6: Statistical properties of lifted flame sample locations,
including the mean mixture fraction, mean progress variable, covariance, Pear-
son correlation, Spearman’s p,., odds parameter, and calculated L, norm of
error.
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# Z ¢ 7' ry. pgye Oy. Ly, Empirical Plackett
A7 0833 0.259 -0.020 -0.731 -0.746 0.090
B7 0821 0.284 -0.022 -0.754 -0.767 0.090
C7 0.737 0.416 -0.033 -0.809 -0.818 0.049
D7 0.677 0.512 -0.036 -0.801 -0.834 0.036
E7 0.608 0.611 -0.037 -0.757 -0.796 0.032
F7 0458 0.741 -0.022 -0.514 -0.427 0.234
G7 0.287 0.747 0.004 0.105 0.260 3.905 2.15

Table B.5: DNS Row 7: Statistical properties of lifted flame sample locations,
including the mean mixture fraction, mean progress variable, covariance, Pear-
son correlation, Spearman’s p,., odds parameter, and calculated L, norm of
error.
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