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Abstract 
Liquid state NMR is the only class of magnetic resonance experiments for which the simulation problem is solved 

comprehensively for spin systems of any size. This paper contains a practical walkthrough for one of the many avail‐

able simulation packages – Spinach. Its unique feature is polynomial complexity scaling: the ability to simulate large 

spin systems quantum mechanically and with accurate account of relaxation, diffusion, chemical processes and hy‐

drodynamics. This paper is a gentle introduction written with a PhD student in mind. 

 

 

1. Introduction 
Textbooks and  introductory  lectures make NMR simulation  look deceptively simple: type  in some Pauli matrices, 

make a Hamiltonian, compute the exponential, and that’s ostensibly it – their authors have done a wonderful job of 

making  the  subject easy  to understand  [1‐3]. The  reality  is  rather more brutal:  relaxation  theory  requires deep 

knowledge of tensor calculus,  interaction specification and rotation conventions are a veritable minefield, matrix 

manipulation is a highly technical subject… and then there are chemical kinetics, diffusion, flow, spatial encoding, 

distant dipolar effects, hyperpolarisation, and paramagnetic shifts. With a bit of luck, the simulation would be done 

by the end of the PhD project… or maybe not. Fortunately, there is now an app for that, and it’s called Spinach [4]. 

This paper is a practical walkthrough – it goes through the process of setting up and running liquid state NMR simu‐

lations  in  the order  that most people would be doing  it  in practice. The purpose of Spinach  in  this context  is  to 

simplify the process: the program automates all intermediate stages (Hamiltonian generation, relaxation superop‐

erator calculation, time evolution mathematics, etc.) and offers many standard pulse sequences as pre‐programmed 

modules with detailed examples and documentation. Complicated particulars of the internal mathematics and pro‐

gramming are avoided as much as possible here, with references to the more technical papers. 
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At the time of writing, Spinach is unique in its ability to simulate, without significant approximations1 and in the time 

domain, liquid state NMR systems containing hundreds of interacting spins [6]. Many packages can generate a rea‐

sonable likeness of a 1D NMR spectrum for large spin systems, but complicated combinations of multi‐dimensional 

pulse sequences, advanced relaxation and kinetics treatments, shaped pulses and gradients, diffusion and flow are 

only available in Spinach. This is the result of very recent theoretical developments, the primary ones being quantum 

mechanical simulation algorithms [7,8] that have much lower computational resource requirements than anything 

previously available, and the Fokker‐Planck equation for the spatial degrees of freedom [9,10]. 

Spinach is a Matlab package, the primary reason being convenience: of all available scientific computing environ‐

ments, Matlab takes the shortest amount of time to get a calculation going. To set Spinach up, follow the installation 

instructions on the web site (http://spindynamics.org). The current public version requires Matlab R2016b or later 

with Parallel Computing Toolbox and Optimisation Toolbox installed. 

2. What does NMR simulation software do? 
Time domain NMR simulation packages solve Liouville ‐ von Neumann’s equation (the equivalent of Schrödinger’s 

equation for spin ensembles) and calculate the observable magnetisation at each point in time [11]: 

           ˆ̂ˆ ˆ ˆˆ          t iL t t m t m t
t
  

  


   (1) 

where   ˆ t  is a vector that contains  information about spin system state, 
ˆ̂
L  is a matrix, called Liouvillian, that 

depends on things like J‐couplings and relaxation rates, and  m̂  is the observable magnetisation projector. To a com‐

puter, Equation (1) looks like standard linear algebra; it is solved by calculating the exponential of 
ˆ̂
L : 

       ˆ̂ˆ ˆexpt dt iL t dt t      
   (2) 

Technical details may be  found  in more specialised  reviews of magnetic  resonance simulation methods  [10‐15]. 

Spinach is designed to automate this process: the user specifies the spin system and the experiment parameters, 

and receives a free induction decay at the end of the calculation. 

 

                                                                 
1 Spinach drops unpopulated quantum states – this reduces the basis set and makes calculations faster, but does not 
influence accuracy of the final answer. Technical details are published in [5]. 



3 
 

 

Figure 1. Time‐domain NMR simulation flowchart. All stages except the first 
are automated in modern magnetic resonance simulation software. 

 

Figure 1 shows the general flowchart of a typical liquid state NMR simulation. The job of the user is to say which 

interactions are active at which time – that is, to specify the molecule and to choose the pulse sequence. Spinach 

builds and solves Equation (1), and returns the answer to the user. 

3. Specifying the system 
In order to be understood by a simulation package, spin system parameters (chemical shifts, J‐couplings, etc.) must 

be specified in a certain formal way that the program expects. Standard formats are starting to emerge [16], but at 

the moment every simulation package has  its own way of specifying the spin system. Spinach uses Matlab data 

structures that are described in this section. 

Any Spinach calculation must begin with a specification of three major aspects of the simulation: 

sys    ‐ spin system and instrument configuration (isotopes, magnet field, etc.) 

inter    ‐ interactions present within the spin system (scalar, dipolar, etc.) 

bas     ‐ formalism and basis set (Hilbert space, Liouville space, coherence orders, etc.) 

Matlab uses dots to separate fields in its data structures. Those fields make a convenient hierarchy that is used to 

supply information to Spinach, for example: 

  sys.magnet=14.1;      ‐ main magnet field, 14.1 Tesla 

  sys.isotopes={'1H','1H','13C'};  ‐ three‐spin system, two protons and a carbon. 

  inter.coupling.scalar{3,5}=7.4;  ‐ J‐coupling between spin 3 and spin 5, equal to 7.4 Hz 

  bas.formalism='zeeman-hilb';  ‐ Hilbert space formalism, Zeeman basis  

Statements of this kind are described in detail in the manual (http://spindynamics.org/wiki). Once the specification 

is typed in, the three data structures sys, inter and bas must be supplied to create.m and basis.m constructor 

functions. These functions process spin system and simulation formalism specifications, write some useful diagnos‐

tics to Matlab console and create the spin_system object – the primary data structure that is used to store spin 

system information in Spinach: 
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    spin_system=create(sys,inter);    ‐ create spin system data structure 
 
    spin_system=basis(spin_system,bas);  ‐ add basis set information 
 

Once these functions are run, Spinach has all the necessary information about the spin system and the formalism. 

The program performs extensive input validation, and will always tell the user if it needs more information. A typical 

specification for a simple liquid state NMR case looks like the following: 

 
% Spin system 
sys.isotopes={'1H','1H'};   ‐ two protons 
inter.zeeman.scalar={0.0 0.01};  ‐ chemical shifts in ppm 
inter.coupling.scalar={0.0 3.0; 
                       0.0 0.0};  ‐ J‐couplings as a Matlab cell array (curly brackets) 
inter.coordinates={[0.00 0.00 0.00];  
                   [0.00 0.00 2.00]}; ‐ coordinate vectors (square brackets) as a cell array 
% Magnet field 
sys.magnet=14.1;    ‐ magnetic field in Tesla 
  
% Simulation formalism 
bas.formalism='sphten-liouv';  ‐ spherical tensors in Liouville space 
bas.approximation='none';   ‐ no approximations 
  
% Relaxation theory parameters 
inter.relaxation={'redfield'};  ‐ the list of relaxation theories 
inter.equilibrium='dibari';  ‐ thermal equilibrium correction algorithm 
inter.rlx_keep='secular';   ‐ non‐secular terms to be dropped 
inter.temperature=298;   ‐ spin temperature at equilibrium 
inter.tau_c={1e-9};    ‐ rotational correlation time 
  
% Spinach housekeeping 
spin_system=create(sys,inter);  ‐ create spin system data structure 
spin_system=basis(spin_system,bas); ‐ add basis set information 
 

It is clear that the specification is human‐readable – a quick way to get going is to modify one of the many standard 

examples supplied with Spinach. Matlab has three types of brackets: round brackets are used for function arguments 

and array indices, square brackets are used for vectors and matrices, and curly brackets are used for arrays that can 

contain anything –  those are called cell arrays. This  latter  type  is needed  for arrays with  flexible structure –  for 

example rotational correlation times may be different for different chemical species, and each of those species may 

have a different number of them when rotational diffusion  is anisotropic. Further details of the  input syntax are 

given in the sections below. Deeper technicalities are in the online manual. 

3.1 Isotopes and labels 
Spin system composition is specified by giving a list of isotope names, for example: 

     
sys.isotopes={'1H','1H','19F','235U'}; 

 

All known isotopes are supported, including those with spin zero. Optionally, a label for each spin may be specified 

by giving a list of strings, for example: 

 
sys.labels={'CA','CB','HB2','HB3'}; 

 

Labels are printed next to spin interaction summaries – this makes diagnostic output easier to read for large spin 

systems. Labels are also used by protein NMR spectroscopy modules to identify different types of atoms – when a 
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dedicated protein pulse sequence (such as hncoca.m) is run, these labels must be set to the standard PDB atom 

identifiers. PDB and BMRB import functions set these labels automatically. 

3.2 Interactions 
There are three broad classes of interactions in nuclear magnetic resonance – between spins and the external mag‐

netic field, between spins and other spins, and inside (or so it looks) a specific spin. Mathematically, all three classes 

have the same appearance – as a product of two spin vectors  1s

 and  2s


 with a matrix A  in the middle: 

 

Interaction type  Mathematical form  Examples 

spin‐field  T
1s B A


   chemical shift 

spin‐spin 
T

1 2s s A
 

   dipolar coupling 

internal 
T

1 1s s A
 

   quadrupolar coupling 

 

The matrix  is called “interaction tensor”.  Its orientation‐independent (“isotropic”) part  is responsible for the  line 

pattern in the NMR spectrum, and the part that changes with molecular orientation (“anisotropic”) is responsible 

for the line width and other relaxation properties. 

For the spin ‐ field interactions, Spinach needs the primary magnet field in units of Tesla, for example:  

 
sys.magnet=14.1; 

 

If the system has chemical shifts, they may be specified as scalars, 3x3 matrices, or eigenvalues + Euler angles (in 

radians). If multiple specifications are supplied, they are added together.  

 

Variable name  Variable type  Content 

inter.zeeman.eigs 
inter.zeeman.euler  

[1 × nspins] cell arrays  
of [1 × 3] row vectors  

Eigenvalues of chemical shift tensors (in ppm) with Euler 
angles (in radians). 

inter.zeeman.matrix  
[1 × nspins] cell array  
of [3 × 3] matrices  

Full chemical shift tensors (in ppm) as matrices. 

inter.zeeman.scalar  
[1 × nspins] cell array  
of real numbers  

Isotropic chemical shifts (in ppm). 

 

Examples:  

 
    inter.zeeman.eigs={[7 15 -22] ... 
                       [11 18 -29]}; 
 
    inter.zeeman.euler={[pi/5 pi/3 pi/11] ... 
                        [pi/6 pi/7 pi/15]}; 
 
    inter.zeeman.matrix={[5 0 0; 0 5 0; 0 0 5] ... 
                         [5 0 0; 0 5 0; 0 0 5]}; 
 
    inter.zeeman.scalar={1.0 2.0 3.0}; 
 

Spin‐spin couplings may also be specified as scalars, 3x3 matrices, or eigenvalues + Euler angles. If multiple specifi‐

cations are supplied, Spinach adds them together. 
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Variable name  Variable type  Content 

inter.coupling.eigs 
inter.coupling.euler  

[nspins × nspins] cell array 
of [1 × 3] matrices  

Eigenvalues of coupling tensors (in Hz) with Euler an‐
gles  (in  radians).  Bilinear  coupling  is  introduced  by 
specifying  a  coupling  between  two  different  spins. 
Quadratic coupling (e.g. quadrupolar) is introduced by 
specifying a coupling between a spin and itself.  

inter.coupling.matrix  
[nspins × nspins] cell array 
of [3 × 3] matrices  

Full coupling tensors as matrices (in Hz). Each element 
of the cell array is accounted for, so the couplings must 
be divided by two if a symmetric cell array is supplied.  

inter.coupling.scalar  
[nspins × nspins] cell array 
of reals  

Isotropic couplings (in Hz).  

inter.coordinates  
[nspins  ×  1]  cell  array  of 
[1 × 3] row vectors  

Cartesian  coordinates  of  every  spin  (in  Angstroms), 
used to determine point dipolar  interactions.  If a cell 
corresponding  to a particular  spin  is  left empty,  that 
spin  is assumed  to not have any dipolar  interactions 
with the rest of the system.  

 

Examples:  

 
    inter.coupling.scalar={0 50; 0 0}; 
 
    inter.coupling.eigs{2,2}=[1e4 1e4 -2e4]; 
 
    inter.coupling.euler{2,2}=[0 0 0]; 
 
    inter.coordinates={[0.0 0.0 0.0] ... 
                       [0.0 0.0 1.5]}; 
 

Spin‐spin  interactions may be specified  in a variety of equivalent ways. The table below provides suggestions on 

specifying all common NMR interactions. Spinach supports most other types of magnetic resonance spectroscopy, 

but the corresponding interactions are outside the scope of this paper. 

 

Ways of specifying NMR interactions 

Nuclear 
chemical shift  

Use inter.zeeman.scalar for isotropic chemical shifts, inter.zeeman.matrix for ani‐
sotropic chemical shift tensors supplied as matrices, or inter.zeeman.eigs & inter.zee-
man.euler for anisotropic chemical shift tensors specified as eigenvalues and Euler angles.  

Inter‐nuclear 
J‐coupling  

Use inter.coupling.scalar; couplings  that are  specified multiple  times, e.g. between 
spin 1 and 2, and then again between spin 2 and 1, will be added together.  

Inter‐nuclear 
dipolar coupling  

Use inter.coordinates  if nuclear coordinates are known (they will be converted  into a 
dipolar interaction matrix internally), or inter.coupling.matrix for dipolar coupling supplied as 
a matrix, or inter.coupling.eigs & inter.coupling.euler  for dipolar  interactions 
supplied as eigenvalues and Euler angles. 

Nuclear 
quadrupolar 
coupling  

Best specified as an “interaction” of the nucleus with itself. Use inter.coupling.matrix, 
or inter.coupling.eigs & inter.coupling.euler for quadrupolar interactions speci‐
fied as eigenvalues and Euler angles. 

 

A word of caution is in order about rotations in general and Euler angles in particular: there is no other subject in 

magnetic resonance that appears as innocent, and is actually as deadly, as three‐dimensional rotations. Space agen‐

cies have lost a few satellites to Euler angles, and every magnetic resonance theorist has gained a few grey hairs. 
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Always store and publish your interactions as 3×3 matrices in Hz or ppm. Spinach has many functions that would 

help you translate historical conventions – see the Kernel Utilities section of the online manual. 

For partially oriented systems, the order matrix may be supplied to enable the simulation of orientation residuals of 

anisotropic interactions, for example:  

     
inter.order_matrix=diag([1e-3 2e-3 -3e-3]); 

 

Magnetic interaction parameters and atomic coordinates may also be imported directly into sys and inter data 

structures from Gaussian [17] and ORCA [18] logs. In both cases, the log is first parsed and then the parse data is 

imported into Spinach, for example:  

 
    % Parse a Gaussian calculation log 
    props=gparse('../standard_systems/alanine.log'); 
 
    % Import data into Spinach 
    [sys,inter]=g2spinach(props,{{'C','13C'},{'N','15N'}},[182.1 264.5],[]); 
 

Further details on the parameters and options for the parser and the import functions are given in the manual. Spin 

system information may also be read from the spinsys{} field of SIMPSON [15] *.in files. 

Protein spin system composition and interaction information may be loaded from a pair of protein database files – 

a PDB file with atomic coordinates and a BMRB file with chemical shifts. The following call, used in the protein ex‐

ample set supplied with Spinach  

 
% Protein data import 
options.pdb_mol=1; 
options.select='all'; 
options.noshift='delete'; 
[sys,inter]=protein('1D3Z.pdb','1D3Z.bmrb',options); 

 

would automatically create the necessary data structures, estimate all J‐couplings and some backbone CSA tensors. 

The detailed syntax description may be found in the manual. Nucleic acid data may be imported in a similar way:  

 
% Import RNA data 
options.noshift='delete'; 
[sys,inter]=nuclacid('example.pdb','example.txt',options); 

 

Spinach example set contains several examples of protein and nucleic acid NMR simulations; some of the outputs of 

those calculations are shown in Figure 2. Further details may be found in our recent papers [6‐8,19]. 
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Figure 2. Left: fully quantum mechanical time‐domain Liouville‐space simulation of ubiquitin NOESY 
spectrum using full Redfield relaxation superoperator, performed as described in [6]. Right: the result 
of a smoothed chirp  inversion pulse on a 31‐spin system with strong nearest‐neighbour J‐couplings, 
followed by a homospoil gradient and a hard 90‐degrees pulse. Both calculations are included into the 
standard example set supplied with Spinach. 

NMR calculations on ubiquitin‐size spin systems require 32 GB of RAM for the calculations that do not involve Red‐

field relaxation superoperator (such as HSQC, HNCOCA, etc.) and 128 GB of RAM for the calculations (NOESY, NOESY‐

HSQC, etc.) that do [6]. From about 100 spins onwards, the asymptotic scaling of both RAM requirements and CPU 

time with the size of the spin system in liquid state NMR simulations is linear. 

4. Relaxation and chemical kinetics 
Spinach supports a  large variety of relaxation theories, the most commonly used ones being T1/T2 approximation 

and Bloch‐Redfield‐Wangsness theory [20‐22]. The former simply assigns relaxation times to each nucleus  in the 

system, and the latter assumes rotational diffusion and obtains relaxation rates from the interactions present in the 

system and the parameters of the diffusion process. Particulars of other relaxation theories may be found  in the 

documentation. Relaxation theory module in Spinach is uniquely powerful; it is implemented using very numerically 

efficient methods that can handle relaxation superoperators with dimension in excess of a million [19,23]. 

Spinach relaxation theory specification is a cell array listing all active relaxation theories, for example:  

     
inter.relaxation={'redfield',’t1_t2’}; 

 

requests both Redfield theory and T1/T2 theory. Within the T1/T2 theory, longitudinal and transverse relaxation rates 

in Hz should be provided for each spin. For example, in a three‐spin system:  

     
inter.relaxation={'t1_t2'}; 
inter.r1_rates=[1.0 2.0 5.0]; 
inter.r2_rates=[5.0 7.0 9.0]; 
 

This would make all longitudinal states of each spin relax with rates R1, and all transverse states of each spin with 

rates R2. Strictly speaking, the T1/T2 relaxation model makes no mention of what happens to multi‐spin orders. Spin‐

ach therefore takes the liberty of making multi‐spin orders relax at the sum of the relaxation rates of their constitu‐

ent operators. This is a reasonable approximation in most cases.  

In order to use Redfield theory, the user must supply anisotropic parts for all relevant interactions, as well as one, 

two or three rotational correlation times for each chemical species present in the system. The call with one rotational 

correlation time, for example:  

     
inter.tau_c={1e-9}; 

 

would make Spinach assume isotropic rotational diffusion of what would be assumed to be a spherical molecule. A 

call with two rotational correlation times, for example:  

     
inter.tau_c={[1e-9 2e-9]}; 

 

corresponds to axial rotational diffusion of what would be assumed to be an axially symmetric ellipsoid. The two‐

element vector above gives the rotational correlation time around the symmetry axis of the axially symmetric ellip‐

soid (first element) and the correlation time of rotation around an axis perpendicular to the symmetry axis (second 



9 
 

element). The Z axis of the reference frame used to specify the interactions at the spin system specification stage 

must coincide with the symmetry axis of the rotational diffusion tensor. A call with three parameters, for example:  

     
inter.tau_c={[1e-9 2e-9 3e-9]}; 

 

is assumed to give the three rotational correlation times of an arbitrary ellipsoid, corresponding to rotations around 

X, Y and Z principal axes (in that order) of its rotational diffusion tensor. The reference frame used to specify the 

interactions at the spin system specification stage must coincide with the eigenframe of the diffusion tensor. 

 

Figure 3.  Inversion‐recovery 19F NMR spectrum of 1‐fluoro‐2,4‐dini‐
trobenzene as a  function of mixing time, showing  the effect of DD‐
CSA cross‐correlation described  in detail by Grace and Kumar  [24]. 
The  calculation  is  included  into  the  standard example  set  supplied 
with Spinach. 

The state to which the relaxation superoperator should be driving the system must be specified by setting the in-

ter.equilibrium parameter that controls the “thermalization” of the relaxation superoperator – a numerical 

correction that makes it drive the spin system to some prescribed thermal equilibrium state. The value of ‘zero’ 

causes the system to relax to the all‐zero state; specifying ‘levante’ or ‘dibari’ makes use of Levante‐Ernst [25] 

and DiBari‐Levitt [26] equilibrium correction methods respectively. In that case, the spin temperature in the equilib‐

rium state should also be specified, e.g.:  

 
inter.temperature=298; 

 

Not specifying a temperature makes the program use the high‐temperature approximation. 
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Figure 4. Longitudinal magnetisation as a function of time in a two‐proton spin system under‐
going dipolar  cross‐relaxation. The  two  spins are placed 2.0 Angstroms apart,  the  rotational 
correlation time is set to 1.0 ns, the temperature is set to 298 K, the chemical shift difference 
is 0.01 ppm, the magnet field is 14.1 Tesla.  One of the spins in inverted at time zero. Left: no 
J‐coupling between the spins. Right: zero‐quantum beats resulting from a 3.0 Hz J‐coupling. The 
calculations are included into the standard example set supplied with Spinach. 

Spinach has a very general chemical kinetics module that can handle arbitrary reaction networks, the only restriction 

being that the corresponding differential equations must be linear and must have the following general form:  

 

[A] [A]

[B] [B]

[C] [C]

d

dt

   
   
   
   
   
   

K

 

   (3) 

where K is the reaction rate matrix. For example:  
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        



   (4) 

Spinach expects the user to supply this matrix and the initial concentrations of the molecules. All of the molecules 

should be specified in the same input (simply listing their spins one after the other) and then Spinach should be told 

which spins belong to which molecule using inter.chem.parts variable, e.g.:  

 
% Isotopes 
sys.isotopes={'1H','13C','15N','1H','13C','15N'}; 
  
% Chemical shifts 
inter.zeeman.scalar={1.0, 20.0, 15.0, 1.5, 25.0, 16.0}; 
  
% Spins 1,2,3 are molecule A; spins 4,5,6 are molecule B 
inter.chem.parts={[1 2 3],[4 5 6]}; 
  
% Kinetic rate matrix (Hz) 
inter.chem.rates=[-0.1 0.2; 0.1 -0.2]; 
  
% Initial concentrations (arbitrary units) 
inter.chem.concs=[1.0, 2.0]; 
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In the general case, the parameters, supplied at the spin system specification stage, must be:  

 

Reaction kinetics parameters  

Variable name  Variable type  Content  

inter.chem.parts  
a cell array of vectors 
containing integers  

Individual vectors in the cell array must contain the numbers of 
spins that belong to each of the molecules in the chemical reac‐
tion, for example {[1 2],[3 4]} indicates that spins 1 and 2 belong 
to the first molecule and spins 3 and 4 belong to the second mol‐
ecule.  

inter.chem.rates  
a matrix of real 
numbers  

Chemical reaction rate matrix between the molecules identified 
in inter.chem.parts variable. 

inter.chem.concs  
a vector of non‐ 
negative real numbers  

Initial  concentrations  of  the  molecules  identified  in  in-
ter.chem.parts variable. 

 

The systems on either side of the reaction arrow must have the same number of spins, must have those spins spec‐

ified in the same order, and must have the same basis set. Within BRW relaxation theory, different chemical com‐

partments can have different rotational correlation times. 

5. Formalism and basis set specification 
Spinach supports three simulation formalisms: the standard   ,    Zeeman basis used in most textbooks (collo‐

quially known as “the Hilbert space”), the adjoint representation of the same (known as “the Liouville space” [27]), 

and a particularly convenient version of Liouville space that uses irreducible spherical tensor operators as the basis 

set [4]. The formalism is chosen using bas.formalism parameter, for example:  

     
bas.formalism='sphten-liouv'; 

 

Formalism keyword   Formalism description  

'sphten-liouv'  

Liouville space formalism; the fundamental operators from which the basis set is built are 
single‐spin  irreducible  spherical  tensors.  These  operators  are  ordered with  respect  to 
many  common  transformations  and  conservation  laws  encountered  in magnetic  reso‐
nance. Many useful operations may  therefore be performed  semi‐analytically. A  lot of 
Spinach functionality either requires this formalism or operates most efficiently within it.  

'zeeman-liouv'  

Liouville space formalism; the fundamental operators from which the basis set is built are 
single transition operators between the projection states onto the Z axis. The state vector 
coefficients in this formalism are easy to interpret because they correspond to populations 
of standard textbook spin states. This formalism is essentially a vectorisation of 'zeeman-
hilb'; it permits only limited state space reduction; most calculations would have expo‐
nential complexity scaling if this option is chosen.  

'zeeman-hilb'  

Hilbert space formalism; the fundamental states from which the basis set is built are the 
projection states onto the Z axis. This is the standard density operator formalism described 
in most magnetic  resonance  textbooks. Only  the  core  functionality  (operators,  states, 
propagators, evolution) is available. This option is mostly useful for backwards compatibil‐
ity checks; it cannot support complicated relaxation theories or chemical kinetics. All cal‐
culations within this formalism would have exponential complexity scaling.  

 

This is a highly technical topic – this tutorial specifically aims to avoid complicated mathematics. It would suffice to 

say that 'zeeman-hilb'  is essentially the textbook route with Pauli matrices [1‐3], and 'sphten-liouv'  is  its 
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modern and very numerically efficient replacement [6,7,28,29]. The fastest algorithms that use  incomplete basis 

sets [7,8] and have polynomial complexity scaling are only available within 'sphten-liouv' formalism. If the sys‐

tem has more than 20 spins, 'sphten-liouv' is the only realistic choice [6]. 

The concept of an  incomplete basis set  is relatively new  in magnetic resonance simulations [7], and an extended 

explanation is perhaps warranted. Every quantum state of the spin system may be described by a density matrix, 

and any matrix may be written as a linear combination of some basis matrices. In the simple case of one spin: 

  X Y Z
ˆ ˆ ˆ ˆa b c         (5) 

where  X Y Zˆ ˆ ˆ, ,    are Pauli matrices and  , ,a b c  are complex numbers. In this case, the Pauli matrices are 

the ''basis set'' and the complex numbers are the ''expansion coefficients''. Systems with multiple spins have many 

more  operators  in  the  basis  set:  not  only  single‐spin  operators,  but  also  multi‐spin  operators  (for  example 
   1 2
Z Zˆ ˆ  ) that describe correlated simultaneous dynamics of multiple spins. It is here that approximations can 

be made: many such states are not populated for a variety of reasons [7,8,28,29]. The smaller the basis set, the 

faster the calculation becomes – but a balance must be struck between calculation speed and accuracy. 

To run an exact (i.e. complete basis set) calculation in any formalism, set:  

  
bas.approximation='none'; 

 

This option requests a complete basis set, which is only practical up to about twelve spins in Hilbert space and six 

spins in Liouville space. Approximate calculations are those that use an incomplete basis set. The user is expected to 

provide the information that Spinach would use to build the basis set. The following frequently encountered choices 

are provided with the kernel:  

Approximation   Approximation description   Parameters  

'IK-0'  

Includes all product states between up to (and including) bas.level 
spins  located  anywhere  within  the  system.  For  example,  setting 
bas.level=5 would generate the basis that contains all spin correla‐
tions that involve five spins or less. The location of those spins is not 
taken into account. 

bas.level  

'IK-1'  

Includes all product states between up to (and including) bas.level 
directly coupled spins, and up to order bas.space_level between 
spins that are closer together than the proximity cut‐off radius.  
 
Essentially, this basis starts from IK‐0, but then also drops correlations 
between very remote spins – if a pair of spins is not coupled in any way, 
even the two‐spin order between them  is not actually needed. Here, 
bas.level  controls  the maximum  correlation  order  for  spins  con‐
nected by couplings, and bas.space_level controls  the maximum 
correlation order for spins that are within the proximity cut‐off radius. 

bas.level, 
bas.space_level  

'IK-2'  

Includes, for every spin, all correlations with all directly coupled spins, 
and correlations with up  to  (and  including) bas.space_level with 
spins that are closer together than the user‐specified proximity cut‐off.  
 
This basis is similar to IK‐1, except the truncation level around each spin 
is automatically set  to  the number of  its direct coupling neighbours. 
This basis set can be quite large, but it is also very accurate. 

bas.space_level  

In most liquid state NMR calculations, the proximity cut‐off of 5 Angstrom is sufficient. 
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Figure 5. Convergence of the 19F NMR spectrum of anti‐3,4‐difluoro‐n‐heptane (16‐spin system) as a function 
of the basis truncation level. Top left: six‐spin orders and below. Middle left: seven‐spin orders and below. 
Bottom  left: eight‐spin orders and below; this calculation  is  indistinguishable from the exact simulation to 
within about 10–3 in relative amplitude. Right: contributions from different orders of spin correlation to the 
system trajectory. The two traces  in the lower part of the figure correspond to nine‐ and ten‐spin correla‐
tions – from their negligible magnitude, it is clear that for practical simulation purposes only correlations of 
up to eight spins need to be kept in the basis. 

The concept of a basis set  in NMR simulations  is  illustrated  in Figure 5. The spin system  in question  is anti‐3,4‐

difluoro‐n‐heptane – with 16 spins, it is just outside of what is realistically possible to simulate with conventional 

tools, even if symmetry and sparse matrix algebra is used. It is clear from the right panel of Figure 5 (note the loga‐

rithmic scale) that only correlations involving up to 8 spins are populated to a significant extent in this system. This 

is fundamentally  important observation: the dimension of the full Liouville space  in this system  is  in the billions, 

whereas the dimension of the reduced subspace is only 1,924,374, and is actually reduced further to 360,770 once 

the various symmetries and conservation laws are taken into account – Spinach does that automatically. It is very 

instructive to go through the console log, which is reproduced below. 

[…]    
[…]  ============================================ 
[…]  =                                          = 
[…]  =                BASIS SET                 = 
[…]  =                                          = 
[…]  ============================================ 
[…]    
[…]  spherical tensor basis set using Liouville space matrix formalism. 
[…]  spin correlations up to order 8 between directly coupled spins. 
[…]  keeping only coherence orders with M=[1]... 
[…]  keeping only the zero-quantum states on 1H... 
[…]  building the basis set descriptor... 
[…]  chemical species 1: 1924374 states. 
[…]  permutation symmetry summary 
[…]  ===================== 
[…]   Group    Spins       
[…]  --------------------- 
[…]    S3     14  15  16 
[…]    S3     21  22  23 
[…]  ===================== 
[…]  9 irreps in the group direct product. 
[…]  dimensions of the irreps 1  1  2  1  1  2  2  2  4 
[…]  36 symmetry operations in the group direct product. 
[…]  Liouville space symmetry mode - fully symmetric irrep only. 
[…]  A1g irrep, 373957 states. 
[…]  trying to reduce the problem dimension... 
[…]  destination state screening using coil state. 
[…]  irrep #1, attempting zero track elimination... 

-184.4 -184.35 -184.3 -184.25 -184.2 -184.15 -184.1 -184.05 -184

19F chemical shift, ppm
0 100 200 300 400 500 600 700 800 900 1000

time, milliseconds

10-6

10-5

10-4

10-3

10-2

10-1

100

0-spin order
1-spin order
2-spin order
3-spin order
4-spin order
5-spin order
6-spin order
7-spin order
8-spin order
9-spin order
10-spin order



14 
 

[…]  state space dimension reduced from 373957 to 360770 
[…]  evolving subspace 1 of 1... 
[…]  large Liouvillian, propagating using Krylov algorithm...  
[…]  taking 511 Krylov steps with 87 substeps each. 
[…]  GPU Krylov step 1 out of 511... 
[…]  GPU Krylov step 2 out of 511... 
[…]  GPU Krylov step 3 out of 511... 
[…]  GPU Krylov step 4 out of 511... 
[…]  GPU Krylov step 5 out of 511... 
 

Spinach first applies the state space restriction to 8‐spin orders or less [7], then applies the conservation law with 

respect to the coherence order (+1 only in pulse‐acquire simulations with an ideal 90‐degree pulse), then applies 

the conservation law with respect to the observer spins (only zero‐quantum states are expected on protons), then 

applies the symmetry factorisation for the two methyl groups [28], then runs the zero track elimination [8], and 

finally engages the Tesla K40 GPU that it has found in the system to push the density matrix through its time evolu‐

tion using the Krylov algorithm [8]. The whole calculation takes a few minutes. This ability to reduce matrix dimen‐

sions on the fly is the strongest side of Spinach. 

The simulations producing Figure 5 are included into the standard example set supplied with versions 1.10 and later 

of Spinach; more technical information on the basis set specification may be found in the online manual and in the 

papers cited above – this practical tutorial is not the place for eye‐popping mathematics and computer science. For 

the purposes of getting started, the advice is quite simple: increase the basis set until the answer stops changing. In 

most liquid state NMR simulations, IK‐2 with bas.space_level=3 and a 5 Angstrom proximity cut‐off is sufficient. 

It is also possible to specify a completely custom basis set – see the online manual for further details. A technical 

discussion of the accuracy considerations for using incomplete basis set is given in [5]. 

6. Built‐in pulse sequences 
Spinach is designed to be extensible – our users write their own pulse sequences – but the following standard liquid 

state NMR experiments have been implemented by the Spinach team or donated by the users over the years: pulse‐

acquire,  inversion‐recovery, saturation‐recovery, CLIP‐HSQC, COSY, DQF‐COSY, HETCOR, HMQC, HNCO, HNCOCA, 

HSQC, LCOSY, NOESY, ROESY, TOCSY, NOESY‐HSQC. The sequences use a common syntax that should be used to 

provide the relevant parameters, for example (HSQC): 

 
% Sequence parameters, HSQC 
parameters.J=140;   - J‐coupling, Hz 
parameters.sweep=[2500 950]; - sweep widths, Hz 
parameters.offset=[4300 1100]; - transmitter offsets, Hz 
parameters.npoints=[128 128]; - number of discretisation points in each dimension 
parameters.zerofill=[512 512]; - number of zerofilling points in each dimension 
parameters.spins={'13C','1H'}; - isotopes in each channel 
parameters.decouple_f1={'1H'}; - spins to decouple in F1 
parameters.decouple_f2={'13C'}; - spins to decouple in F2 
parameters.axis_units='ppm'; - axis units for plotting 
 

The list of necessary parameters is given in the documentation page for each pulse sequence. The responsibility for 

processing the free induction decay data that the sequence returns rests with the user. It may either be processed 

in Matlab (Spinach provides 1D, 2D and 3D plotting functionality) or exported into a third‐party NMR data processing 

package using Matlab’s built‐in ASCII export functionality. 



15 
 

7. Writing custom pulse sequences 
Writing Spinach simulations of pulse sequences  is easier than writing  them  for NMR spectrometers because  the 

syntax is sensible (here the instrument manufacturers get a dirty look) and phase cycles are not a problem – coher‐

ence selection may be performed by simply zeroing unwanted coherences [28]. The next page shows the complete 

source code of the current Spinach implementation of the NOESY pulse sequence [30] that simulates anything from 

aziridine [31] to ubiquitin [6], and also supports chemical kinetics. It is instructive to go through the code line by line. 
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function fid=noesy(spin_system,parameters,H,R,K) 
  
% Compose Liouvillian 
L=H+1i*R+1i*K; 
  
% Coherent evolution timestep 
timestep=1./parameters.sweep; 
  
% Detection state 
coil=state(spin_system,'L+',parameters.spins{1}); 
  
% Pulse operators 
Lp=operator(spin_system,'L+',parameters.spins{1}); 
Lx=(Lp+Lp')/2; Ly=(Lp-Lp')/2i; 
  
% First pulse 
rho=step(spin_system,Lx,parameters.rho0,pi/2); 
  
% F1 evolution 
rho_stack=evolution(spin_system,L,[],rho,timestep(1),... 
                    parameters.npoints(1)-1,'trajectory'); 
  
% Second pulse 
rho_stack_cos_p=step(spin_system,Lx,rho_stack,+pi/2); 
rho_stack_sin_p=step(spin_system,Ly,rho_stack,+pi/2); 
rho_stack_cos_m=step(spin_system,Lx,rho_stack,-pi/2); 
rho_stack_sin_m=step(spin_system,Ly,rho_stack,-pi/2); 
  
% Homospoil 
rho_stack_cos_p=homospoil(spin_system,rho_stack_cos_p,'destroy'); 
rho_stack_sin_p=homospoil(spin_system,rho_stack_sin_p,'destroy'); 
rho_stack_cos_m=homospoil(spin_system,rho_stack_cos_m,'destroy'); 
rho_stack_sin_m=homospoil(spin_system,rho_stack_sin_m,'destroy'); 
  
% Mixing time 
rho_stack_cos_p=evolution(spin_system,1i*R+1i*K,[],... 
                rho_stack_cos_p,parameters.tmix,1,'final'); 
rho_stack_sin_p=evolution(spin_system,1i*R+1i*K,[],... 
                rho_stack_sin_p,parameters.tmix,1,'final'); 
rho_stack_cos_m=evolution(spin_system,1i*R+1i*K,[],... 
                rho_stack_cos_m,parameters.tmix,1,'final'); 
rho_stack_sin_m=evolution(spin_system,1i*R+1i*K,[],... 
                rho_stack_sin_m,parameters.tmix,1,'final'); 
  
% Homospoil 
rho_stack_cos_p=homospoil(spin_system,rho_stack_cos_p,'destroy'); 
rho_stack_sin_p=homospoil(spin_system,rho_stack_sin_p,'destroy'); 
rho_stack_cos_m=homospoil(spin_system,rho_stack_cos_m,'destroy'); 
rho_stack_sin_m=homospoil(spin_system,rho_stack_sin_m,'destroy'); 
  
% Third pulse 
rho_stack_cos_p=step(spin_system,Ly,rho_stack_cos_p,pi/2); 
rho_stack_sin_p=step(spin_system,Ly,rho_stack_sin_p,pi/2); 
rho_stack_cos_m=step(spin_system,Ly,rho_stack_cos_m,pi/2); 
rho_stack_sin_m=step(spin_system,Ly,rho_stack_sin_m,pi/2); 
  
% Axial peak elimination in F2 
rho_stack_cos=rho_stack_cos_p-rho_stack_cos_m; 
rho_stack_sin=rho_stack_sin_p-rho_stack_sin_m; 
  
% F2 evolution 
fid.cos=evolution(spin_system,L,coil,rho_stack_cos,timestep(2),... 
                  parameters.npoints(2)-1,'observable'); 
fid.sin=evolution(spin_system,L,coil,rho_stack_sin,timestep(2),... 
                  parameters.npoints(2)-1,'observable'); 
  
end 
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The pulse sequence does not need to worry about either the spin system or any relaxation / kinetics parameters: 

the corresponding operator or superoperator matrices (H for the Hamiltonian, R for the relaxation superoperator 

and K for the kinetics superoperator) will simply be received from Spinach kernel – hence the argument list in the 

very first line. The next line puts all three operators together, their sum is called the Liouvillian and denoted L. 

The next  line deals with the evolution time step, which  is  inversely related to the sweep width that the user has 

specified in the parameters structure as illustrated in Section 6. The sequence then asks Spinach for the detection 

state ( L̂  on all spins specified by the user) and the pulse operators ( XL̂  and  YL̂ ). 

The sequence then performs the first pulse by taking the initial condition supplied by the user in parameters.rho0 

and using the step function. That function uses Krylov propagation [8,32] and  is optimised for one‐off evolution 

events. The particulars are rather technical – Spinach manual contains further information. 

The evolution command in the next line refers to the indirect dimension evolution. The arguments are the Liouvillian 

(L), the starting state (rho) the length of the time step and the number of steps. Because this evolution period is 

incremented during the experiment, it makes sense to only run it once and to keep the entire trajectory – this is the 

meaning of the last argument in the function call. The trajectory is returned as a stack of state vectors (rho_stack), 

that is, a matrix made of individual column vectors arranged in the order of time from left to right. 

At this point the simulation splits into four independent batches: the next pulse is applied with four different phases 

to create the components of the States quadrature [33] and to eliminate the axial peaks in the F2 dimension that 

result from partial relaxation of the longitudinal magnetisation during the pulse sequence. A homospoil gradient is 

then applied to all four stacks (any states other than  ZL̂  are simply zeroed out analytically). 

The system is then sent through the mixing time using the evolution.m function provided by Spinach kernel. Its 

inner workings are complicated [8], but the user only needs to provide the evolution operator (relaxation and kinet‐

ics are needed here) and the duration of the evolution period. The mixing time is followed by another homospoil 

gradient and another pulse, with the same phase on all four batches. Axial peaks are then eliminated by subtracting 

the simulation pairs that differed in the direction of the second pulse. 

Finally, the direct dimension evolution is run and the magnetisation is detected on the coil state. The two compo‐

nents of the States quadrature are returned to the user. 

Pulse sequences live in the experiments folder of Spinach distribution. All of them are extensively documented 

and also contain subroutines (called “grumblers”) that run detailed checks on the parameters supplied (or not sup‐

plied, as the case may be) by the user. Copying that style is a good idea. 

8. Fitting experimental data 
Once a simulation  is set up, converting  it  into a  fitting procedure  is quite easy – Matlab provides  the necessary 

infrastructure. The only technicality is matching the X axis: point position and spacing in the simulation are not nec‐

essarily the same as in the experimental data. The experimental spectrum and the simulated one must therefore be 

interpolated into a common X axis point grid, for example: 

 
sim_spec=interp1(sim_axis,sim_spec,exp_axis,'pchip'); 

 
This is a call to Matlab’s built‐in 1D interpolation function that tells the program to take the dataset with the ppm 

values for each point  in the simulated spectrum  listed  in sim_axis, and values  in sim_spec, and calculate the 



18 
 

values of that spectrum at the points specified  in exp_axis  (the X axis of the experimental spectrum). The  last 

option specifies a particular interpolation method – technical details may be found in Matlab documentation. Once 

the simulated and the experimental spectrum have the same X axis, they may be subtracted and the least squares 

error may be computed: 

 
err=norm(real(expt_data)-real(sim_spec))^2; 

 
This error is then minimised by Matlab as a function of relevant simulation parameters – multiple examples of such 

fitting runs are given in the standard example set supplied with Spinach. 

 

Figure 6. The result of the fitting of a 500 MHz 1H NMR 
spectrum  of  anti‐2,3‐difluoro‐n‐butane  with  respect 
to  chemical  shifts,  J‐couplings  and  line  width.  Red 
dots: experimental data. Blue  lines:  fitted  spectrum. 
This calculation is included into the standard example 
set supplied with Spinach. 

Of the many error minimisation algorithms available in Matlab, Nelder‐Mead simplex is recommended for situations 

when the initial guess is not particularly good [34], and LBFGS method for the refinement runs [35]. Note that NMR 

fitting is a difficult problem – every parameter combination that makes any two lines overlap between the theoret‐

ical and the experimental spectrum is a local minimum on the error surface. 

9. Case study 1 – COSY45 of rotenone 
As a simple example that is both sufficiently easy to get started and sufficiently difficult to require Spinach, consider 

the simulation of a magnitude‐mode COSY45 spectrum of rotenone – a system with 22 spins and an irregular cou‐

pling pattern. This example is available in the example set supplied with Spinach. 

 

Figure 7. Chemical structure of rotenone. 
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The first thing Spinach requires is the function declaration:  

 
    function cosy45_rotenone() 
 

This is not strictly necessary, but a good practice because this guarantees that Matlab starts the simulation with a 

clean background where no previously assigned variables exist. The second stage is to specify the isotopes, 22 pro‐

tons in this case:  

 
    sys.isotopes={'1H','1H','1H','1H','1H','1H','1H','1H','1H',... 
                  '1H','1H','1H','1H','1H','1H','1H','1H','1H',... 
                  '1H','1H','1H','1H'}; 
 

See the spin system specification section of the manual for technical details on how to specify more complicated 

spin systems. The next step is to specify the magnet field (in Tesla):  

 
    sys.magnet=5.9; 
 

then chemical shifts, in ppm for all protons:  

 
    inter.zeeman.scalar={6.72 6.40 4.13 4.56 4.89 6.46 7.79 3.79 2.91... 
                         3.27 5.19 4.89 5.03 1.72 1.72 1.72 3.72 3.72... 
                         3.72 3.76 3.76 3.76}; 
 

then all scalar couplings, in Hz:  

 
    inter.coupling.scalar{3,4}=12.1;  
    inter.coupling.scalar{4,5}=3.1;  
    inter.coupling.scalar{3,5}=1.0;  
    inter.coupling.scalar{3,8}=1.0;  
    inter.coupling.scalar{1,8}=1.0; 
    inter.coupling.scalar{6,7}=8.6;  
    inter.coupling.scalar{5,8}=4.1;  
    inter.coupling.scalar{7,9}=0.7;  
    inter.coupling.scalar{7,10}=0.7;  
    inter.coupling.scalar{9,10}=15.8; 
    inter.coupling.scalar{10,11}=9.8;  
    inter.coupling.scalar{9,11}=8.1;  
    inter.coupling.scalar{13,14}=1.5;  
    inter.coupling.scalar{12,14}=0.9;  
    inter.coupling.scalar{22,22}=0; 
 

where the last line is necessary to tell Matlab that the array is 22 by 22 and all other elements are empty or zero. 

The next stage is basis set specification. The complete basis set for a 22‐spin system is too large and we must there‐

fore rely on the restricted state space approximation (see the basis set specification section of the manual and our 

recent papers [6‐8,28,29] for technical details of the basis set selection process). Here we will be using the IK‐2 basis 

with Liouville space formalism and no spatial proximity analysis because atomic coordinates are not supplied:  

 
    bas.formalism='sphten-liouv'; 
    bas.approximation='IK-2'; 
    bas.space_level=1; 
    bas.connectivity='scalar_couplings'; 
 

The three methyl groups contain magnetically equivalent protons and this symmetry may optionally be used to re‐

duce the calculation time:  

 
    bas.sym_group={'S3','S3','S3'}; 
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    bas.sym_spins={[14 15 16],[17 18 19],[20 21 22]}; 
 

This completes the basis set specification. The next stage is to specify the pulse sequence parameters. The full list of 

the parameters Spinach stock pulse sequences require is given in the manual page for each sequence. The specific 

parameters required by the COSY sequence in this case:  

 
    parameters.angle=pi/4; 
    parameters.offset=1200; 
    parameters.sweep=2000; 
    parameters.npoints=[512 512]; 
    parameters.zerofill=[2048 2048]; 
    parameters.spins={'1H'}; 
    parameters.axis_units='ppm'; 
 

where the field names are intended to be self‐explanatory. This completes the specification of the spin system, of 

the basis set and of the experiment parameters. The next stage  is to give all that  information to Spinach. This  is 

accomplished by running the two housekeeping functions:  

 
    spin_system=create(sys,inter); 
    spin_system=basis(spin_system,bas); 
 

Both print copious output to the console. This output  should always be inspected carefully because it might contain 

warning messages. The next stage is simulation, which is carried out in liquid state (hence the liquid context func‐

tion) with the assumptions set to 'nmr', indicating common high‐field NMR spectroscopy:  

 
    fid=liquid(spin_system,@cosy,parameters,'nmr'); 
 

The simulation returns the two‐dimensional free  induction decay that should undergo apodization (cosine bell  in 

both dimensions is a good choice here):  

 
    fid=apodization(fid,'cosbell-2d'); 
 

and Fourier transform (fft2 performs a two‐dimensional transform and fftshift moves the zero frequency to 

the centre of the spectrum – Matlab’s default is to have it on the edge):  

 
    spec=fftshift(fft2(fid,parameters.zerofill(2),parameters.zerofill(1))); 
 

Finally, the spectrum is plotted (the many parameters of the plotting function are explained in the online manual):  

 
 plot_2d(spin_system,spec,parameters,20,[0.0025 0.05 0.0025 0.05],2,256,6,'positive'); 
 

The whole simulation should take less than a minute on any modern laptop. Note that Matlab auto‐starts the par‐

allelization engine when it runs for the first time, that stage only happens once per Matlab session.  
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Figure 8. COSY‐45  simulation  for  rotenone, performed as 
described in the main text. 

10. Case study 2 – NOESY of ubiquitin 
This section describes the stages of setting up a simulation of a simple protein NMR experiment. Multiple examples 

are available in the standard example set supplied with Spinach. You would need the following:  

1. A suitably powerful computer. As a guidance, calculations that do not require a relaxation superop‐

erator (HSQC and such) would need 16 GB of RAM to run ubiquitin, and the calculations that do need 

it (NOESY and such) would require 64 GB. 

2. A PDB file containing Cartesian coordinates of every atom in the protein, including protons. 

3. A BMRB file containing chemical shifts for those atoms that have been assigned. Unassigned atoms 

would either not appear in the simulation or end up with a chemical shift of –1 ppm (depending on 

the options specified, placing them at –1 ppm often helps with the subsequent assignment). 

Spinach cross‐checks the amino acid sequence between the PDB and the BMRB file – any mismatch would produce 

an error message. Use the following command to import data and create Spinach input structures:  

 
    [sys,inter]=protein('pdb_file_name','bmrb_file_name',options); 
 

The full list of options and the detailed descriptions of the sub‐fields of sys and inter data structures are available 

in the manual. The protein import function above fills and returns the following fields:  

 
    sys.isotopes 
    sys.labels 
    inter.zeeman.scalar 
    inter.zeeman.matrix 
    inter.coupling.scalar 
    inter.coordinates 
 

Field names are self‐explanatory: isotope names are placed into sys.isotopes, PDB labels of each atom are placed 

into sys.labels, chemical shifts are placed  into inter.zeeman.scalar, rough guesses for nitrogen CSAs are 

placed into inter.zeeman.matrix (if you have accurate CSA tensors, you need to place them into the correspond‐

ing cells of inter.zeeman.matrix array after the import is complete), reasonable guesses of J‐couplings [6] are 
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placed into inter.coupling.scalar (if you have accurate J‐couplings, you would need to overwrite the values 

in inter.coupling.scalar after the import is complete), PDB atom coordinates are placed into inter.coor-

dinates; nothing else  is  imported or guessed. The detailed  list of everything that happens when protein data  is 

imported into Spinach is given in our recent paper [6] and printed to the console at run time. 

After the import is finished, the resulting sys and inter structures may be used by Spinach. Dipolar coupling tensors 

are computed automatically from atomic coordinates. Any additional information (quadrupolar coupling, unpaired 

electrons and associated interactions, etc.) can be added to sys and inter structures at this point.  

At the next stage in the input preparation, you need to specify the magnet field and the cut‐off tolerances for the 

various interactions (which distances are “too large” for the dipolar coupling and which J‐couplings are “too small” 

to be consequential). The top of the Matlab file should look similar to the following:     

 
    % Protein data 
    [sys,inter]=protein('1D3Z.pdb','1D3Z.bmrb',options); 
 
    % Magnet field 
    sys.magnet=21.1356; 
 
    % Tolerances 
    sys.tols.prox_cutoff=5.0; 
    sys.tols.inter_cutoff=2.0; 
 

Cut‐off tolerance for proximity is specified in Angstrom and cut‐off for J‐coupling is specified in Hz. In the example 

above, dipolar couplings would not be taken into account between spins that are further than 5.0 Angstrom apart 

and any J‐coupling smaller than 2.0 Hz would be ignored. 

The next thing to be specified is the relaxation theory. Redfield relaxation theory is a very expensive option from the 

computational point of view – NOESY simulation for a 70‐residue protein requires about 64 GB of RAM (it was taking 

a terabyte in some of the early versions of Spinach). If you do not require accurate relaxation theory treatment, use 

something similar to the following:  

 
    % Relaxation theory 
    inter.relaxation='damp'; 
    inter.damp_rate=5.0; 
 

This requests a non‐selective damping at 5.0 Hz for all states  (the relaxation superoperator would be a diagonal 

matrix with –5.0 on the diagonal). Alternatively, Spinach supports simple T1/T2 and Lindblad relaxation models – 

those are often sufficient; details are in the manual. However, if you do require accurate relaxation treatment (it is 

strictly necessary for NOESY spectra), the following should be supplied: 

 
    % Relaxation theory 
    inter.relaxation='redfield'; 
    inter.rlx_keep='kite'; 
    inter.tau_c=5e-9; 
 

This requests full Redfield theory: DD, CSA, NQI and all cross‐correlations thereof [19]. Dipolar tensors are computed 

from atomic coordinates, CSAs and NQIs must be provided as described in Section 3. The middle line in the specifi‐

cation above requests the “Redfield kite” – cross‐relaxation is included between longitudinal states only. If you re‐

quire the treatment of all cross‐relaxation processes, specify  ‘secular’  instead of  ‘kite’ – note that the simulation 

time would increase considerably. The last line specifies the rotational correlation time in seconds, it is important 
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that you get this number right because all relaxation rates depend on it. Spinach relaxation module supports aniso‐

tropic rotational diffusion; further details are given in Section 3 above.  

The next step is to choose a basis set. This is a very complicated topic (see the manual), but the minimal basis set 

that produces quantitatively accurate results for proteins in liquid state is the following:  

 
    % Basis set 
    bas.formalism='sphten-liouv'; 
    bas.approximation='IK-1'; 
    bas.connectivity='scalar_couplings'; 
    bas.level=5; bas.space_level=3; 
 

This requests IK‐1(5,3) connectivity‐adaptive basis set that  includes  local correlations of up to five spins on the J‐

coupling graph and local correlations of up to three spins on the spatial proximity graph [6]. In principle, some amino 

acid side chains (valine, isoleucine) require correlations of more than five spins to be present in the basis set to get 

their multiplicity absolutely right, but the multiplet structure of the corresponding signals is never actually resolved 

in protein NMR spectra. An absolutely bullet‐proof basis here would be IK‐1(8,3), but in this case it simply produces 

the same answer after a much longer calculation. 

The next stage is to call Spinach constructor functions and generate the spin_system data structure that contains 

all information about the spin system and is required by most high‐level Spinach functions as the first argument:  

 
    % Create the spin system structure 
    spin_system=create(sys,inter); 
 
    % Kill carbons and nitrogens 
    spin_system=kill_spin(spin_system,strcmp('13C',spin_system.comp.isotopes)); 
    spin_system=kill_spin(spin_system,strcmp('15N',spin_system.comp.isotopes)); 
 
    % Build the basis 
    spin_system=basis(spin_system,bas); 
 

The two lines in the middle are optional – in this case they request the removal of all carbon and nitrogen spins from 

the spin system. This  is necessary for the NOESY simulation, but should not be done for HSQC, HNCO and other 

sequences that require the presence of 15N and 13C spins.  

The next stage is to specify experiment parameters. In the case of a 2D NOESY, the following is a reasonable set:  

 
    % Sequence parameters 
    parameters.tmix=0.065; 
    parameters.offset=4250; 
    parameters.sweep=10750; 
    parameters.npoints=[512 512]; 
    parameters.zerofill=[2048 2048]; 
    parameters.spins={'1H'}; 
    parameters.axis_units='ppm'; 
    parameters.rho0=state(spin_system,'Lz','1H'); 
 

As the names of the parameters suggest, this requests a mixing time of 65 ms, frequency offset of 4250 Hz, sweep 

width of 10,750 Hz, 512 points to be acquired in both dimensions and zero‐filled to 2,048 points in both dimensions, 

the sequence is operating on 1H nuclei, axis units should be ppm and the initial condition is  ZL̂  on protons. 

The next stage is the actual simulation. For the example case of 2D NOESY the syntax is:  

 
    % Simulation 
    fid=liquid(spin_system,@noesy,parameters,'nmr'); 
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The choice of the outer function reflects the fact that we are running a liquid state simulation (Spinach supports all 

other types of magnetic resonance spectroscopy and imaging), spin_system is the data structure containing the 

information about the system, noesy  is the name of the pulse sequence we are running (@ symbol  is a Matlab 

technicality –  it denotes a function handle) and the various fields of the parameters argument have all been set 

above. The result is a 2D free induction decay that is ready for standard NMR data processing. Depending on the 

pulse sequence,  it may be a simple array of complex numbers, or  it might contain subfields, such as  fid.cos and 

fid.sin, that are used in States quadrature processing of phase‐sensitive experiments. 

The next stage is apodization, which may be accomplished using any of the window functions available in Spinach – 

the complete list is in the manual. In this particular case we will use Gaussian apodization:  

 
    % Apodization 
    fid.cos=apodization(fid.cos,'gaussian-2d',5); 
    fid.sin=apodization(fid.sin,'gaussian-2d',5); 
 

where the last argument is the decay rate (per dataset point) of the Gaussian function – this parameter should be 

increased until the sinc wiggles disappear from the spectrum. Good practical advice on spectral apodization was 

published by Vosegaard and Nielsen [36]. 

The next stage is Fourier transform and quadrature processing. For a 2D NOESY simulation, States quadrature pro‐

cessing is necessary:  

 
    % F2 Fourier transform 
    f1_cos=real(fftshift(fft(fid.cos,parameters.zerofill(2),1),1)); 
    f1_sin=real(fftshift(fft(fid.sin,parameters.zerofill(2),1),1)); 
 
    % States signal 
    f1_states=f1_cos-1i*f1_sin; 
 
    % F1 Fourier transform 
    spectrum=fftshift(fft(f1_states,parameters.zerofill(1),2),2); 
 

This is standard Matlab Fourier transform syntax: fft is the command that performs the transform and fftshift 

performs a cyclic shift that moves the zero frequency to the centre of the spectrum. Finally, the plotting function 

produces a contour plot:  

 
    % Plotting 
    plot_2d(spin_system,-real(spectrum),parameters,20,... 
           [0.01 0.05 0.01 0.05],2,256,6,'positive'); 
 

2D and 3D plotting functions in Spinach have a significant number of adjustable parameters that are described in 

the manual. The last argument tells the plotter to ignore negative peaks. If those are expected in the spectrum, the 

argument should be ‘both’. The output is shown in Figure 2. 

Acknowledgements 
A large number of people have contributed ideas, examples and good advice to Spinach over the last ten years – the 

current  developer  team  is  listed  at  the  web  site  (http://spindynamics.org/wiki/index.php?title=Spinach_devel‐

oper_team). The people who have specifically contributed to the functionality described  in this tutorial are Luke 

Edwards, Hannah Hogben, Matthew Krzystyniak, Dmitry Savostyanov, and Zenawi Welderufael. The funding came 

from EPSRC  (EP/F065205/1, EP/H003789/1) and  the  inspiration  from Marina  Jay Brassington, Ayn Rand’s  “Atlas 

Shrugged” and sound tracks by Jeremy Soule. 



25 
 

References 

[1]  M.H. Levitt, Spin dynamics: basics of nuclear magnetic resonance, John Wiley & Sons, 2001. 

[2]  J. Keeler, Understanding NMR spectroscopy, John Wiley & Sons, 2011. 

[3]  P. Hore, J. Jones, S. Wimperis, NMR: The Toolkit: how Pulse Sequences Work, Oxford University Press, 
USA, 2015. 

[4]  H. Hogben, M. Krzystyniak, G. Charnock, P. Hore, I. Kuprov, Spinach – a software library for simulation 
of spin dynamics in large spin systems, Journal of Magnetic Resonance, 208 (2011) 179‐194. 

[5]  A. Karabanov, I. Kuprov, G. Charnock, A. van der Drift, L.J. Edwards, W. Köckenberger, On the accuracy 
of the state space restriction approximation for spin dynamics simulations, The Journal of chemical 
physics, 135 (2011) 084106. 

[6]  L.J. Edwards, D. Savostyanov, Z. Welderufael, D. Lee, I. Kuprov, Quantum mechanical NMR simulation 
algorithm for protein‐size spin systems, Journal of Magnetic Resonance, 243 (2014) 107‐113. 

[7]  I. Kuprov, N. Wagner‐Rundell, P. Hore, Polynomially scaling spin dynamics simulation algorithm based 
on adaptive state‐space restriction, Journal of Magnetic Resonance, 189 (2007) 241‐250. 

[8]  I.  Kuprov,  Polynomially  scaling  spin  dynamics  II:  further  state‐space  compression  using  Krylov 
subspace techniques and zero track elimination, Journal of Magnetic Resonance, 195 (2008) 45‐51. 

[9]  I.  Kuprov,  Fokker‐Planck  formalism  in  magnetic  resonance  simulations,  Journal  of  Magnetic 
Resonance, 270 (2016) 124‐135. 

[10] L. Guduff, A.J. Allami,  C.  van Heijenoort,  J.‐N. Dumez,  I.  Kuprov,  Efficient  simulation  of  ultrafast 
magnetic resonance experiments, Physical Chemistry Chemical Physics, (2017). 

[11] R.S.  Dumont,  S.  Jain,  A.  Bain,  Simulation  of  many‐spin  system  dynamics  via  sparse  matrix 
methodology, The Journal of chemical physics, 106 (1997) 5928‐5936. 

[12] T. Allman, A.D. Bain,  J.R. Garbow, SIMPLTN, a program  for  the  simulation of pulse NMR  spectra, 
Journal of Magnetic Resonance, Series A, 123 (1996) 26‐31. 

[13] P. Hodgkinson, L. Emsley, Numerical simulation of solid‐state NMR experiments, Progress in Nuclear 
Magnetic Resonance Spectroscopy, 36 (2000) 201‐239. 

[14] M. Edén, Computer simulations in solid‐state NMR. I. Spin dynamics theory, Concepts in Magnetic 
Resonance Part A, 17 (2003) 117‐154. 

[15] Z.  Tošner, R. Andersen, B.  Stevensson, M.  Edén, N.C. Nielsen,  T. Vosegaard, Computer‐intensive 
simulation of  solid‐state NMR experiments using  SIMPSON,  Journal of Magnetic Resonance, 246 
(2014) 79‐93. 

[16] A. Biternas, G. Charnock, I. Kuprov, A standard format and a graphical user interface for spin system 
specification, Journal of Magnetic Resonance, 240 (2014) 124‐131. 

[17] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb,  J. Cheeseman, G. Scalmani, V. Barone, B. 
Mennucci, G. Petersson, GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA, in, 2009. 

[18] F. Neese,  The ORCA  program  system, Wiley  Interdisciplinary  Reviews:  Computational Molecular 
Science, 2 (2012) 73‐78. 

[19]  I.  Kuprov, Diagonalization‐free  implementation  of  spin  relaxation  theory  for  large  spin  systems, 
Journal of Magnetic Resonance, 209 (2011) 31‐38. 

[20] R.K. Wangsness, F. Bloch, The dynamical theory of nuclear induction, Physical Review, 89 (1953) 728. 

[21] A.G. Redfield, On the theory of relaxation processes, IBM Journal of Research and Development, 1 
(1957) 19‐31. 



26 
 

[22] M. Goldman, Formal theory of spin–lattice relaxation, Journal of Magnetic Resonance, 149 (2001) 
160‐187. 

[23] D. Goodwin,  I. Kuprov, Auxiliary matrix  formalism  for  interaction  representation  transformations, 
optimal control, and spin relaxation theories, The Journal of chemical physics, 143 (2015) 084113. 

[24] R.C.R. Grace, A. Kumar, Observation of Cross Correlations  in a Weakly Coupled 19F‐1H Four‐Spin 
System, Journal of Magnetic Resonance, Series A, 115 (1995) 87‐93. 

[25] T.O.  Levante,  R.R.  Ernst,  Homogeneous  versus  inhomogeneous  quantum‐mechanical  master 
equations, Chemical Physics Letters, 241 (1995) 73‐78. 

[26] M.H. Levitt, L. Di Bari, Steady state in magnetic resonance pulse experiments, Physical Review Letters, 
69 (1992) 3124‐3127. 

[27] A.D. Bain, J.S. Martin, FT NMR of nonequilibrium states of complex spin systems. I. A Liouville space 
description, Journal of Magnetic Resonance (1969), 29 (1978) 125‐135. 

[28] H. Hogben, P. Hore, I. Kuprov, Strategies for state space restriction in densely coupled spin systems 
with applications to spin chemistry, The Journal of chemical physics, 132 (2010) 174101. 

[29] M. Krzystyniak, L.J. Edwards, I. Kuprov, Destination state screening of active spaces in spin dynamics 
simulations, Journal of Magnetic Resonance, 210 (2011) 228‐232. 

[30] A. Kumar, R.  Ernst, K. Wüthrich, A  two‐dimensional nuclear Overhauser  enhancement  (2D NOE) 
experiment  for  the elucidation of complete proton‐proton cross‐relaxation networks  in biological 
macromolecules, Biochemical and biophysical research communications, 95 (1980) 1‐6. 

[31]  I.  Kuprov,  D.M.  Hodgson,  J.  Kloesges,  C.I.  Pearson,  B.  Odell,  T.D.  Claridge,  Anomalous  Nuclear 
Overhauser  Effects  in  Carbon‐Substituted  Aziridines:  Scalar  Cross‐Relaxation  of  the  First  Kind, 
Angewandte Chemie, 127 (2015) 3768‐3772. 

[32] R.B.  Sidje, Expokit: a  software package  for  computing matrix exponentials, ACM Transactions on 
Mathematical Software (TOMS), 24 (1998) 130‐156. 

[33] D. States, R. Haberkorn, D. Ruben, A  two‐dimensional nuclear Overhauser experiment with pure 
absorption phase in four quadrants, Journal of Magnetic Resonance (1969), 48 (1982) 286‐292. 

[34] J.A. Nelder, R. Mead, A simplex method for function minimization, The computer journal, 7 (1965) 
308‐313. 

[35] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical 
Programming, 45 (1989) 503‐528. 

[36] T. Vosegaard, N.C. Nielsen, Defining the sampling space in multidimensional NMR experiments: What 
should the maximum sampling time be?, Journal of Magnetic Resonance, 199 (2009) 146‐158. 

 


