Large-scale NMR simulations
in liquid state: a tutorial

llya Kuprov

School of Chemistry, University of Southampton,
University Road, Southampton, SO17 1BJ, UK.

i.kuprov@soton.ac.uk

Abstract

Liquid state NMR is the only class of magnetic resonance experiments for which the simulation problem is solved
comprehensively for spin systems of any size. This paper contains a practical walkthrough for one of the many avail-
able simulation packages — Spinach. Its unique feature is polynomial complexity scaling: the ability to simulate large
spin systems quantum mechanically and with accurate account of relaxation, diffusion, chemical processes and hy-

drodynamics. This paper is a gentle introduction written with a PhD student in mind.

1. Introduction

Textbooks and introductory lectures make NMR simulation look deceptively simple: type in some Pauli matrices,
make a Hamiltonian, compute the exponential, and that’s ostensibly it — their authors have done a wonderful job of
making the subject easy to understand [1-3]. The reality is rather more brutal: relaxation theory requires deep
knowledge of tensor calculus, interaction specification and rotation conventions are a veritable minefield, matrix
manipulation is a highly technical subject... and then there are chemical kinetics, diffusion, flow, spatial encoding,
distant dipolar effects, hyperpolarisation, and paramagnetic shifts. With a bit of luck, the simulation would be done

by the end of the PhD project... or maybe not. Fortunately, there is now an app for that, and it’s called Spinach [4].

This paper is a practical walkthrough — it goes through the process of setting up and running liquid state NMR simu-
lations in the order that most people would be doing it in practice. The purpose of Spinach in this context is to
simplify the process: the program automates all intermediate stages (Hamiltonian generation, relaxation superop-
erator calculation, time evolution mathematics, etc.) and offers many standard pulse sequences as pre-programmed
modules with detailed examples and documentation. Complicated particulars of the internal mathematics and pro-

gramming are avoided as much as possible here, with references to the more technical papers.

At the time of writing, Spinach is unique in its ability to simulate, without significant approximations® and in the time
domain, liquid state NMR systems containing hundreds of interacting spins [6]. Many packages can generate a rea-
sonable likeness of a 1D NMR spectrum for large spin systems, but complicated combinations of multi-dimensional
pulse sequences, advanced relaxation and kinetics treatments, shaped pulses and gradients, diffusion and flow are
only available in Spinach. This is the result of very recent theoretical developments, the primary ones being quantum
mechanical simulation algorithms [7,8] that have much lower computational resource requirements than anything

previously available, and the Fokker-Planck equation for the spatial degrees of freedom [9,10].

Spinach is a Matlab package, the primary reason being convenience: of all available scientific computing environ-
ments, Matlab takes the shortest amount of time to get a calculation going. To set Spinach up, follow the installation

instructions on the web site (http://spindynamics.org). The current public version requires Matlab R2016b or later

with Parallel Computing Toolbox and Optimisation Toolbox installed.

2. What does NMR simulation software do?

Time domain NMR simulation packages solve Liouville - von Neumann’s equation (the equivalent of Schrédinger’s

equation for spin ensembles) and calculate the observable magnetisation at each point in time [11]:
0 . N N
Sp()=-iL(1)p() mle)=(i| (1) W

where ,b(l‘) is a vector that contains information about spin system state, L is a matrix, called Liouvillian, that

depends on things like J-couplings and relaxation rates, and 71 is the observable magnetisation projector. To a com-

puter, Equation (1) looks like standard linear algebra; it is solved by calculating the exponential of i:
plr+di)= exp[—iLA(t)dt} (1) 2)

Technical details may be found in more specialised reviews of magnetic resonance simulation methods [10-15].
Spinach is designed to automate this process: the user specifies the spin system and the experiment parameters,

and receives a free induction decay at the end of the calculation.

1 Spinach drops unpopulated quantum states —this reduces the basis set and makes calculations faster, but does not
influence accuracy of the final answer. Technical details are published in [5].
2

Spin system, instrument and

g USER
experiment parameters

Generate thermal

Generate spin Hamiltonian e
equilibrium state

Thermalize rlxn

Generate relaxation superoperator
superoperator

Generate exponential propagator

Project out the

Obtain system trajectory i

Figure 1. Time-domain NMR simulation flowchart. All stages except the first
are automated in modern magnetic resonance simulation software.

Figure 1 shows the general flowchart of a typical liquid state NMR simulation. The job of the user is to say which
interactions are active at which time — that is, to specify the molecule and to choose the pulse sequence. Spinach

builds and solves Equation (1), and returns the answer to the user.

3. Specifying the system

In order to be understood by a simulation package, spin system parameters (chemical shifts, J-couplings, etc.) must
be specified in a certain formal way that the program expects. Standard formats are starting to emerge [16], but at
the moment every simulation package has its own way of specifying the spin system. Spinach uses Matlab data

structures that are described in this section.

Any Spinach calculation must begin with a specification of three major aspects of the simulation:

sys - spin system and instrument configuration (isotopes, magnet field, etc.)
inter - interactions present within the spin system (scalar, dipolar, etc.)
bas - formalism and basis set (Hilbert space, Liouville space, coherence orders, etc.)

Matlab uses dots to separate fields in its data structures. Those fields make a convenient hierarchy that is used to

supply information to Spinach, for example:
sys.magnet=14.1; - main magnet field, 14.1 Tesla
sys.isotopes={'1H','1H','13C'}; -three-spin system, two protons and a carbon.
inter.coupling.scalar{3,5}=7.4; -J-coupling between spin 3 and spin 5, equal to 7.4 Hz
bas.formalism="'zeeman-hilb'; - Hilbert space formalism, Zeeman basis

Statements of this kind are described in detail in the manual (http://spindynamics.org/wiki). Once the specification

is typed in, the three data structures sys, inter and bas must be supplied to create.mand basis.m constructor
functions. These functions process spin system and simulation formalism specifications, write some useful diagnos-
tics to Matlab console and create the spin_system object — the primary data structure that is used to store spin

system information in Spinach:

spin_ system=create (sys,inter); - create spin system data structure
spin_system=basis (spin_system,bas); - add basis set information
Once these functions are run, Spinach has all the necessary information about the spin system and the formalism.

The program performs extensive input validation, and will always tell the user if it needs more information. A typical

specification for a simple liquid state NMR case looks like the following:

o)

s Spin system

sys.isotopes={'1H',"1H'}; - two protons
inter.zeeman.scalar={0.0 0.01}; - chemical shifts in ppm
inter.coupling.scalar={0.0 3.0;
0.0 0.0}; - J-couplings as a Matlab cell array (curly brackets)

inter.coordinates={[0.00 0.00 0.00];

[0.00 0.00 2.0071}; - coordinate vectors (square brackets) as a cell array
% Magnet field
sys.magnet=14.1; - magnetic field in Tesla
% Simulation formalism
bas.formalism="'sphten-liouv'; - spherical tensors in Liouville space
bas.approximation='none'; - no approximations

o)

¢ Relaxation theory parameters

inter.relaxation={'redfield'}; - the list of relaxation theories
inter.equilibrium="dibari'; - thermal equilibrium correction algorithm
inter.rlx keep='secular'; - non-secular terms to be dropped
inter.temperature=298; - spin temperature at equilibrium
inter.tau c={1le-9}; - rotational correlation time

% Spinach housekeeping
spin system=create (sys,inter); - create spin system data structure
spin_system=basis (spin_ system,bas); - add basis set information

It is clear that the specification is human-readable — a quick way to get going is to modify one of the many standard
examples supplied with Spinach. Matlab has three types of brackets: round brackets are used for function arguments
and array indices, square brackets are used for vectors and matrices, and curly brackets are used for arrays that can
contain anything — those are called cell arrays. This latter type is needed for arrays with flexible structure — for
example rotational correlation times may be different for different chemical species, and each of those species may
have a different number of them when rotational diffusion is anisotropic. Further details of the input syntax are

given in the sections below. Deeper technicalities are in the online manual.

3.1 Isotopes and labels

Spin system composition is specified by giving a list of isotope names, for example:
sys.isotopes={'1lH',6 "1H','19F', '235U0"'};

All known isotopes are supported, including those with spin zero. Optionally, a label for each spin may be specified

by giving a list of strings, for example:
sys.labels={'CA','CB', 'HB2', 'HB3'};

Labels are printed next to spin interaction summaries — this makes diagnostic output easier to read for large spin

systems. Labels are also used by protein NMR spectroscopy modules to identify different types of atoms — when a

dedicated protein pulse sequence (such as hncoca.m) is run, these labels must be set to the standard PDB atom

identifiers. PDB and BMRB import functions set these labels automatically.

3.2 Interactions
There are three broad classes of interactions in nuclear magnetic resonance — between spins and the external mag-
netic field, between spins and other spins, and inside (or so it looks) a specific spin. Mathematically, all three classes

have the same appearance — as a product of two spin vectors §1 and §2 with a matrix A in the middle:

Interaction type Mathematical form Examples

spin-field §1T ‘A-B chemical shift
spin-spin §1T A-S, dipolar coupling
internal §1T A-§, quadrupolar coupling

The matrix is called “interaction tensor”. Its orientation-independent (“isotropic”) part is responsible for the line
pattern in the NMR spectrum, and the part that changes with molecular orientation (“anisotropic”) is responsible

for the line width and other relaxation properties.
For the spin - field interactions, Spinach needs the primary magnet field in units of Tesla, for example:
sys.magnet=14.1;

If the system has chemical shifts, they may be specified as scalars, 3x3 matrices, or eigenvalues + Euler angles (in

radians). If multiple specifications are supplied, they are added together.

Variable name Variable type Content
inter.zeeman.eigs [1 x nspins] cell arrays Eigenvalues of chemical shift tensors (in ppm) with Euler
inter.zeeman.euler |of[1x 3] row vectors angles (in radians).

[1 x nspins] cell array

inter.zeeman.matrix)
of [3 x 3] matrices

Full chemical shift tensors (in ppm) as matrices.

[1 x nspins] cell array

inter.zeeman.scalar
of real numbers

Isotropic chemical shifts (in ppm).

Examples:

inter.zeeman.eigs={[7 15 -22]
[11 18 -291};

inter.zeeman.euler={[pi/5 pi/3 pi/11] ..
[pi/6 pi/7 pi/151};

’

inter.zeeman.matrix={[5 0 0; O
0

5 0; 00 5]
[5 0 0; 5 0; 005

11

inter.zeeman.scalar={1.0 2.0 3.0};

Spin-spin couplings may also be specified as scalars, 3x3 matrices, or eigenvalues + Euler angles. If multiple specifi-

cations are supplied, Spinach adds them together.

Variable name Variable type Content

Eigenvalues of coupling tensors (in Hz) with Euler an-
gles (in radians). Bilinear coupling is introduced by
specifying a coupling between two different spins.
Quadratic coupling (e.g. quadrupolar) is introduced by
specifying a coupling between a spin and itself.

inter.coupling.eigs [nspins x nspins] cell array
inter.coupling.euler of [1 x 3] matrices

Full coupling tensors as matrices (in Hz). Each element
of the cell array is accounted for, so the couplings must
be divided by two if a symmetric cell array is supplied.

[nspins x nspins] cell array

inter.coupling.matrix
prng of [3 x 3] matrices

[nspins x nspins] cell array

of reals Isotropic couplings (in Hz).

inter.coupling.scalar

Cartesian coordinates of every spin (in Angstroms),
used to determine point dipolar interactions. If a cell
corresponding to a particular spin is left empty, that
spin is assumed to not have any dipolar interactions
with the rest of the system.

[nspins x 1] cell array of

inter.coordinates
[1 x 3] row vectors

Examples:

inter.coupling.scalar={0 50; 0 0};
inter.coupling.eigs{2,2}=[1led led -2e4];
inter.coupling.euler{2,2}=[0 0 0];

]

inter.coordinates={[0.0 0.0 0.0] ...
0.0 0.0 1.51};

[
Spin-spin interactions may be specified in a variety of equivalent ways. The table below provides suggestions on
specifying all common NMR interactions. Spinach supports most other types of magnetic resonance spectroscopy,

but the corresponding interactions are outside the scope of this paper.

Ways of specifying NMR interactions

Use inter.zeeman.scalar for isotropic chemical shifts, inter.zeeman.matrix for ani-
sotropic chemical shift tensors supplied as matrices, or inter.zeeman.eigs & inter.zee-
man.euler for anisotropic chemical shift tensors specified as eigenvalues and Euler angles.

Nuclear
chemical shift

Inter-nuclear Use inter.coupling.scalar; couplings that are specified multiple times, e.g. between
J-coupling spin 1 and 2, and then again between spin 2 and 1, will be added together.

Use inter.coordinates if nuclear coordinates are known (they will be converted into a
Inter-nuclear dipolar interaction matrix internally), or inter.coupling.matrix for dipolar coupling supplied as
dipolar coupling a matrix, or inter.coupling.eigs & inter.coupling.euler for dipolar interactions
supplied as eigenvalues and Euler angles.

Nuclear Best specified as an “interaction” of the nucleus with itself. Use inter.coupling.matrix,
quadrupolar or inter.coupling.eigs & inter.coupling.euler for quadrupolar interactions speci-
coupling fied as eigenvalues and Euler angles.

A word of caution is in order about rotations in general and Euler angles in particular: there is no other subject in
magnetic resonance that appears as innocent, and is actually as deadly, as three-dimensional rotations. Space agen-

cies have lost a few satellites to Euler angles, and every magnetic resonance theorist has gained a few grey hairs.

Always store and publish your interactions as 3x3 matrices in Hz or ppm. Spinach has many functions that would

help you translate historical conventions — see the Kernel Utilities section of the online manual.

For partially oriented systems, the order matrix may be supplied to enable the simulation of orientation residuals of

anisotropic interactions, for example:
inter.order matrix=diag([le-3 2e-3 -3e-3]);

Magnetic interaction parameters and atomic coordinates may also be imported directly into sys and inter data
structures from Gaussian [17] and ORCA [18] logs. In both cases, the log is first parsed and then the parse data is

imported into Spinach, for example:

% Parse a Gaussian calculation log
props=gparse('../standard systems/alanine.log');

o)

$ Import data into Spinach
[sys,inter]=g2spinach (props, {{'C',"'13C"}, {'N',"15N"}}, [182.1 264.5]1,1[1);
Further details on the parameters and options for the parser and the import functions are given in the manual. Spin

system information may also be read from the spinsys{} field of SIMPSON [15] *.in files.

Protein spin system composition and interaction information may be loaded from a pair of protein database files —
a PDB file with atomic coordinates and a BMRB file with chemical shifts. The following call, used in the protein ex-

ample set supplied with Spinach

o)

¢ Protein data import

options.pdb mol=1;

options.select="all';

options.noshift="delete'
[sys,inter]=protein('1D3Z.pdb"', '1D3Z.bmrb"', options) ;

would automatically create the necessary data structures, estimate all J-couplings and some backbone CSA tensors.

The detailed syntax description may be found in the manual. Nucleic acid data may be imported in a similar way:

% Import RNA data
options.noshift="delete'
[sys,inter]=nuclacid('example.pdb', 'example.txt',options);
Spinach example set contains several examples of protein and nucleic acid NMR simulations; some of the outputs of

those calculations are shown in Figure 2. Further details may be found in our recent papers [6-8,19].

ﬂ H!

1011 am 3 S &] = 20
10 8 6 4 2 0 2000 1000 0 -1000 -2000
F2: 1H chemical shift / ppm 1H offset linear frequency / Hz

2

S

-
o

-
=1

el

F1: 1H chemical shift / ppm
&

o
T

w
T

[=1

Figure 2. Left: fully quantum mechanical time-domain Liouville-space simulation of ubiquitin NOESY
spectrum using full Redfield relaxation superoperator, performed as described in [6]. Right: the result
of a smoothed chirp inversion pulse on a 31-spin system with strong nearest-neighbour J-couplings,
followed by a homospoil gradient and a hard 90-degrees pulse. Both calculations are included into the
standard example set supplied with Spinach.
NMR calculations on ubiquitin-size spin systems require 32 GB of RAM for the calculations that do not involve Red-
field relaxation superoperator (such as HSQC, HNCOCA, etc.) and 128 GB of RAM for the calculations (NOESY, NOESY-
HSQC, etc.) that do [6]. From about 100 spins onwards, the asymptotic scaling of both RAM requirements and CPU

time with the size of the spin system in liquid state NMR simulations is linear.

4. Relaxation and chemical kinetics

Spinach supports a large variety of relaxation theories, the most commonly used ones being T1/T, approximation
and Bloch-Redfield-Wangsness theory [20-22]. The former simply assigns relaxation times to each nucleus in the
system, and the latter assumes rotational diffusion and obtains relaxation rates from the interactions present in the
system and the parameters of the diffusion process. Particulars of other relaxation theories may be found in the
documentation. Relaxation theory module in Spinach is uniquely powerful; it is implemented using very numerically

efficient methods that can handle relaxation superoperators with dimension in excess of a million [19,23].

Spinach relaxation theory specification is a cell array listing all active relaxation theories, for example:
inter.relaxation={'redfield',"tl t2’};

requests both Redfield theory and T1/T, theory. Within the T1/T, theory, longitudinal and transverse relaxation rates

in Hz should be provided for each spin. For example, in a three-spin system:

inter.relaxation={'tl t2'};
inter.rl rates=[1.0 2.0 5.0];
inter.r2 rates=[5.0 7.0 9.0];

This would make all longitudinal states of each spin relax with rates Ry, and all transverse states of each spin with
rates R,. Strictly speaking, the T1/T, relaxation model makes no mention of what happens to multi-spin orders. Spin-

ach therefore takes the liberty of making multi-spin orders relax at the sum of the relaxation rates of their constitu-

ent operators. This is a reasonable approximation in most cases.

In order to use Redfield theory, the user must supply anisotropic parts for all relevant interactions, as well as one,
two or three rotational correlation times for each chemical species present in the system. The call with one rotational

correlation time, for example:
inter.tau c={le-9};

would make Spinach assume isotropic rotational diffusion of what would be assumed to be a spherical molecule. A

call with two rotational correlation times, for example:
inter.tau c={[le-9 2e-9]};

corresponds to axial rotational diffusion of what would be assumed to be an axially symmetric ellipsoid. The two-
element vector above gives the rotational correlation time around the symmetry axis of the axially symmetric ellip-

soid (first element) and the correlation time of rotation around an axis perpendicular to the symmetry axis (second

element). The Z axis of the reference frame used to specify the interactions at the spin system specification stage

must coincide with the symmetry axis of the rotational diffusion tensor. A call with three parameters, for example:
inter.tau c={[le-9 2e-9 3e-9]};

is assumed to give the three rotational correlation times of an arbitrary ellipsoid, corresponding to rotations around
X, Y and Z principal axes (in that order) of its rotational diffusion tensor. The reference frame used to specify the

interactions at the spin system specification stage must coincide with the eigenframe of the diffusion tensor.

%107

7 =01s
m

T =14s| 1
m
Tm=1.65
T =18s
m

T =20s
m

T =228
m

T =24s
m

T =10s
m

8 . \ ! s s
-500 -505 -510 -515 -520 -525 -530 -535 -540 -545
19F linear frequency, Hz

Figure 3. Inversion-recovery °F NMR spectrum of 1-fluoro-2,4-dini-

trobenzene as a function of mixing time, showing the effect of DD-

CSA cross-correlation described in detail by Grace and Kumar [24].

The calculation is included into the standard example set supplied

with Spinach.
The state to which the relaxation superoperator should be driving the system must be specified by setting the in-
ter.equilibrium parameter that controls the “thermalization” of the relaxation superoperator — a numerical
correction that makes it drive the spin system to some prescribed thermal equilibrium state. The value of ‘zero’
causes the system to relax to the all-zero state; specifying *1levante’ or ‘dibari’ makes use of Levante-Ernst [25]
and DiBari-Levitt [26] equilibrium correction methods respectively. In that case, the spin temperature in the equilib-

rium state should also be specified, e.qg.:

inter.temperature=298;

Not specifying a temperature makes the program use the high-temperature approximation.

%107

4 6 8
time, seconds

0 2 10

Figure 4. Longitudinal magnetisation as a function
going dipolar cross-relaxation. The two spins are
correlation time is set to 1.0 ns, the temperature i

4

-5 : - -
4 6 8
time, seconds

0o 2 10

of time in a two-proton spin system under-
placed 2.0 Angstroms apart, the rotational
s set to 298 K, the chemical shift difference

is 0.01 ppm, the magnet field is 14.1 Tesla. One of the spins in inverted at time zero. Left: no

J-coupling between the spins. Right: zero-quantum

beats resulting from a 3.0 Hz J-coupling. The

calculations are included into the standard example set supplied with Spinach.

Spinach has a very general chemical kinetics module that can handle arbitrary reaction networks, the only restriction

being that the corresponding differential equations must be linear and must have the following general form:

[A] [A]
d|[B]|_. |[B] 5
dt| [C] [C]
where K is the reaction rate matrix. For example:
kl+ k2+
A->BzC
ks
p [AT) (—k. O 0) [A] (4)
E [B] |= k1+ _k2+ kz— [B]
[C] 0 Kk, -k)IC]

Spinach expects the user to supply this matrix and the initial concentrations of the molecules. All of the molecules

should be specified in the same input (simply listing their spins one after the other) and then Spinach should be told

which spins belong to which molecule using inter.chem.parts variable, e.g.:

S
g

Isotopes
sys.isotopes={'1lH','13C',"15N", "1H',"13C","15

o

)

Chemical shifts

inter.zeeman.scalar={1.0, 20.0, 15.0, 1.5,

&
g

Spins 1,2,3 are molecule A; spins 4,5,6 are
inter.chem.parts={[1 2 3],[4 5 6]1};

o
)

Kinetic rate matrix (Hz)

inter.chem.rates=[-0.1 0.2; 0.1 -0.2];

Initial concentrations (arbitrary units)

inter.chem.concs=[1.0, 2.0];

10

25.

N'};

0, 16.0};

molecule B

In the general case, the parameters, supplied at the spin system specification stage, must be:

Reaction kinetics parameters

Variable name Variable type Content

Individual vectors in the cell array must contain the numbers of
spins that belong to each of the molecules in the chemical reac-
tion, for example {[1 2],[3 4]} indicates that spins 1 and 2 belong
to the first molecule and spins 3 and 4 belong to the second mol-

a cell array of vectors

inter.chem.parts L
containing integers

ecule.
. a matrix of real Chemical reaction rate matrix between the molecules identified
inter.chem.rates L K
numbers in inter.chem.parts variable.
a vector of non- Initial concentrations of the molecules identified in in-

inter.chem.concs

negative real numbers |ter.chem.parts variable.

The systems on either side of the reaction arrow must have the same number of spins, must have those spins spec-
ified in the same order, and must have the same basis set. Within BRW relaxation theory, different chemical com-

partments can have different rotational correlation times.

5. Formalism and basis set specification

Spinach supports three simulation formalisms: the standard | 0[> ,

,6'> Zeeman basis used in most textbooks (collo-
quially known as “the Hilbert space”), the adjoint representation of the same (known as “the Liouville space” [27]),
and a particularly convenient version of Liouville space that uses irreducible spherical tensor operators as the basis

set [4]. The formalism is chosen using bas . formalism parameter, for example:

bas.formalism='sphten-liouv';

Formalism keyword Formalism description

Liouville space formalism; the fundamental operators from which the basis set is built are
single-spin irreducible spherical tensors. These operators are ordered with respect to
'sphten-liouv' many common transformations and conservation laws encountered in magnetic reso-
nance. Many useful operations may therefore be performed semi-analytically. A lot of
Spinach functionality either requires this formalism or operates most efficiently within it.

Liouville space formalism; the fundamental operators from which the basis set is built are
single transition operators between the projection states onto the Z axis. The state vector
coefficients in this formalism are easy to interpret because they correspond to populations
of standard textbook spin states. This formalism is essentially a vectorisation of ' zeeman-
hilb'; it permits only limited state space reduction; most calculations would have expo-
nential complexity scaling if this option is chosen.

'zeeman-liouv'

Hilbert space formalism; the fundamental states from which the basis set is built are the
projection states onto the Z axis. This is the standard density operator formalism described
in most magnetic resonance textbooks. Only the core functionality (operators, states,
propagators, evolution) is available. This option is mostly useful for backwards compatibil-
ity checks; it cannot support complicated relaxation theories or chemical kinetics. All cal-
culations within this formalism would have exponential complexity scaling.

'zeeman-hilb'

This is a highly technical topic — this tutorial specifically aims to avoid complicated mathematics. It would suffice to

say that 'zeeman-hilb' is essentially the textbook route with Pauli matrices [1-3], and 'sphten-liouv' is its

11

modern and very numerically efficient replacement [6,7,28,29]. The fastest algorithms that use incomplete basis
sets [7,8] and have polynomial complexity scaling are only available within 'sphten-1liouv' formalism. If the sys-

tem has more than 20 spins, ' sphten-1liouv' is the only realistic choice [6].

The concept of an incomplete basis set is relatively new in magnetic resonance simulations [7], and an extended
explanation is perhaps warranted. Every quantum state of the spin system may be described by a density matrix,

and any matrix may be written as a linear combination of some basis matrices. In the simple case of one spin:
p=ac, +bé, +co, (5)

where {OA-XaOA-YaOA-z} are Pauli matrices and {a,b, C} are complex numbers. In this case, the Pauli matrices are
the "basis set" and the complex numbers are the "expansion coefficients". Systems with multiple spins have many
more operators in the basis set: not only single-spin operators, but also multi-spin operators (for example

AS) ® 6';2)) that describe correlated simultaneous dynamics of multiple spins. It is here that approximations can
be made: many such states are not populated for a variety of reasons [7,8,28,29]. The smaller the basis set, the

faster the calculation becomes — but a balance must be struck between calculation speed and accuracy.

To run an exact (i.e. complete basis set) calculation in any formalism, set:
bas.approximation="'none';

This option requests a complete basis set, which is only practical up to about twelve spins in Hilbert space and six
spins in Liouville space. Approximate calculations are those that use an incomplete basis set. The user is expected to
provide the information that Spinach would use to build the basis set. The following frequently encountered choices

are provided with the kernel:

Approximation | Approximation description Parameters

Includes all product states between up to (and including) bas.level
spins located anywhere within the system. For example, setting
"IK-0"' bas.level=5 would generate the basis that contains all spin correla-|bas.level
tions that involve five spins or less. The location of those spins is not
taken into account.

Includes all product states between up to (and including) bas.level
directly coupled spins, and up to order bas.space level between
spins that are closer together than the proximity cut-off radius.

Essentially, this basis starts from IK-0, but then also drops correlations |bas.level,

between very remote spins —if a pair of spins is not coupled in any way, | bas . space_level
even the two-spin order between them is not actually needed. Here,
bas.level controls the maximum correlation order for spins con-
nected by couplings, and bas.space_level controls the maximum
correlation order for spins that are within the proximity cut-off radius.

'IK-1"

Includes, for every spin, all correlations with all directly coupled spins,
and correlations with up to (and including) bas.space level with
spins that are closer together than the user-specified proximity cut-off.
'IK-2" bas.space level
This basis is similar to IK-1, except the truncation level around each spin
is automatically set to the number of its direct coupling neighbours.
This basis set can be quite large, but it is also very accurate.

In most liquid state NMR calculations, the proximity cut-off of 5 Angstrom is sufficient.

12

100 T T T T T
0-spin order
1-spin order V4|
107! 2-spin order /f
3-spin order)‘
€ 4-spin order
Q i | “\ \‘ 5-spin order |/
c -2 | \H
& 10 H\‘,“” U“ ‘ ‘ ‘ w\ ‘(\ H |1 “‘ "‘ 6-spin order |/
s w‘\ v \‘ “‘ ' A ‘ | /M‘ 7-spin order
k3] 1 v | 8-spin order
»do—’~ 103 ‘\ 9-spin order
13 | 10-spin order
@ |
g .
210 H vaVYYVUYVVVV¥
Q |
> |
» |
m5‘ E
\
I I L 1 L 6 | L L | | | L L L
-184.4 -184.35 -184.3 -184.25 -184.2 -184.15 -184.1 -184.05 -184 10 0 100 200 300 400 500 600 700 800 900 1000
19F chemical shift, ppm time, milliseconds

Figure 5. Convergence of the °F NMR spectrum of anti-3,4-difluoro-n-heptane (16-spin system) as a function
of the basis truncation level. Top left: six-spin orders and below. Middle left: seven-spin orders and below.
Bottom left: eight-spin orders and below; this calculation is indistinguishable from the exact simulation to
within about 1073 in relative amplitude. Right: contributions from different orders of spin correlation to the
system trajectory. The two traces in the lower part of the figure correspond to nine- and ten-spin correla-
tions — from their negligible magnitude, it is clear that for practical simulation purposes only correlations of
up to eight spins need to be kept in the basis.

The concept of a basis set in NMR simulations is illustrated in Figure 5. The spin system in question is anti-3,4-
difluoro-n-heptane — with 16 spins, it is just outside of what is realistically possible to simulate with conventional
tools, even if symmetry and sparse matrix algebra is used. It is clear from the right panel of Figure 5 (note the loga-
rithmic scale) that only correlations involving up to 8 spins are populated to a significant extent in this system. This
is fundamentally important observation: the dimension of the full Liouville space in this system is in the billions,
whereas the dimension of the reduced subspace is only 1,924,374, and is actually reduced further to 360,770 once

the various symmetries and conservation laws are taken into account — Spinach does that automatically. It is very

instructive to go through the console log, which is reproduced below.

= BASIS SET

spherical tensor basis set using Liouville space matrix formalism.
spin correlations up to order 8 between directly coupled spins.
keeping only coherence orders with M=[1]...

keeping only the zero-quantum states on 1H...

building the basis set descriptor...

chemical species 1: 1924374 states.

permutation symmetry summary

S O A R S A S

Group Spins
Jo o
S3 14 15 16
S3 21 22 23

9 irreps in the group direct product.

dimensions of the irreps 1 1 2 1 1 2 2 2 4

36 symmetry operations in the group direct product.
Liouville space symmetry mode - fully symmetric irrep only.
Alg irrep, 373957 states.

trying to reduce the problem dimension...

destination state screening using coil state.

irrep #1, attempting zero track elimination...

13

T A A W}

state space dimension reduced from 373957 to 360770
evolving subspace 1 of 1...

large Liouvillian, propagating using Krylov algorithm...
taking 511 Krylov steps with 87 substeps each.

GPU Krylov step 1 out of 511...

GPU Krylov step 2 out of 511...

GPU Krylov step 3 out of 511...

GPU Krylov step 4 out of 511...

GPU Krylov step 5 out of 511...

O O A)

Spinach first applies the state space restriction to 8-spin orders or less [7], then applies the conservation law with
respect to the coherence order (+1 only in pulse-acquire simulations with an ideal 90-degree pulse), then applies
the conservation law with respect to the observer spins (only zero-quantum states are expected on protons), then
applies the symmetry factorisation for the two methyl groups [28], then runs the zero track elimination [8], and
finally engages the Tesla K40 GPU that it has found in the system to push the density matrix through its time evolu-
tion using the Krylov algorithm [8]. The whole calculation takes a few minutes. This ability to reduce matrix dimen-

sions on the fly is the strongest side of Spinach.

The simulations producing Figure 5 are included into the standard example set supplied with versions 1.10 and later
of Spinach; more technical information on the basis set specification may be found in the online manual and in the
papers cited above — this practical tutorial is not the place for eye-popping mathematics and computer science. For
the purposes of getting started, the advice is quite simple: increase the basis set until the answer stops changing. In
most liquid state NMR simulations, IK-2 with bas . space level=3and a5 Angstrom proximity cut-off is sufficient.
It is also possible to specify a completely custom basis set — see the online manual for further details. A technical

discussion of the accuracy considerations for using incomplete basis set is given in [5].

6. Built-in pulse sequences

Spinach is designed to be extensible — our users write their own pulse sequences — but the following standard liquid
state NMR experiments have been implemented by the Spinach team or donated by the users over the years: pulse-
acquire, inversion-recovery, saturation-recovery, CLIP-HSQC, COSY, DQF-COSY, HETCOR, HMQC, HNCO, HNCOCA,
HSQC, LCOSY, NOESY, ROESY, TOCSY, NOESY-HSQC. The sequences use a common syntax that should be used to

provide the relevant parameters, for example (HSQC):

o)

s Sequence parameters, HSQC

parameters.J=140; - J-coupling, Hz

parameters.sweep=[2500 950]; - sweep widths, Hz

parameters.offset=[4300 1100]; - transmitter offsets, Hz
parameters.npoints=[128 128]; - number of discretisation points in each dimension
parameters.zerofill=[512 512]; - number of zerofilling points in each dimension
parameters.spins={'13C', "1H'}; - isotopes in each channel
parameters.decouple fl={'1H'}; - spins to decouple in F1

parameters.decouple £2={'13C'}; - spinsto decouplein F2

parameters.axis units='ppm'; - axis units for plotting

The list of necessary parameters is given in the documentation page for each pulse sequence. The responsibility for
processing the free induction decay data that the sequence returns rests with the user. It may either be processed
in Matlab (Spinach provides 1D, 2D and 3D plotting functionality) or exported into a third-party NMR data processing
package using Matlab’s built-in ASCIl export functionality.

14

7. Writing custom pulse sequences

Writing Spinach simulations of pulse sequences is easier than writing them for NMR spectrometers because the
syntax is sensible (here the instrument manufacturers get a dirty look) and phase cycles are not a problem — coher-
ence selection may be performed by simply zeroing unwanted coherences [28]. The next page shows the complete
source code of the current Spinach implementation of the NOESY pulse sequence [30] that simulates anything from

aziridine [31] to ubiquitin [6], and also supports chemical kinetics. It is instructive to go through the code line by line.

15

function fid=noesy(spin system,parameters,H,R,K)

% Compose Liouvillian
L=H+1i*R+1i*K;

% Coherent evolution timestep
timestep=1./parameters.sweep;

o)

% Detection state

coil=state(spin_system, 'L+',parameters.spins{1l});

o)

% Pulse operators

Lp=operator (spin system, 'L+',parameters.spins{1l});

Lx=(Lp+lp') /2; Ly=(Lp-Lp')/2i;

o)

% First pulse

rho=step (spin_system, Lx, parameters.rho0,pi/2);

% F1 evolution

rho stack=evolution(spin system,L, [],rho,timestep (1), ...
parameters.npoints(l) -1, '"trajectory');

o)

% Second pulse

rho stack cos p=step(spin_system,Lx,rho_ stack,+pi/2);
rho _stack sin p=step(spin_system, Ly, rho stack,+pi/2);
rho stack cos m=step(spin_ system,Lx,rho_stack,-pi/2);
rho _stack sin m=step(spin_system, Ly, rho stack,-pi/2);

o)

% Homospoil

rho stack cos p=homospoil
rho stack sin p=homospoil
rho stack cos m=homospoil
rho stack sin m=homospoil

o)

% Mixing time

spin_system,rho stack cos p, 'destroy');
spin_system,rho stack sin p, 'destroy');
spin system,rho stack cos m, 'destroy');
spin_system,rho stack sin m, 'destroy');

rho stack cos p=evolution(spin system,1i*R+1i*K, [], ...

rho stack cos p,parameters.tmix,1l, 'final');
rho stack sin p=evolution(spin system,1i*R+1i*K, [], ...

rho stack sin p,parameters.tmix,1l, 'final');
rho stack cos m=evolution(spin system,l1i*R+1i*K, [], ...

rho stack cos m,parameters.tmix,1l, 'final');
rho stack sin m=evolution(spin system,1i*R+1i*K, [], ...

rho stack sin m,parameters.tmix,1l, 'final');

% Homospoil

rho stack cos p=homospoil (spin_system,rho stack cos p, 'destroy');

rho stack sin p=homospoil
rho stack cos m=homospoil

(
(
(
(

spin_system,rho stack sin p, 'destroy');
spin_system,rho stack cos m, 'destroy');

rho stack sin m=homospoil (spin_ system,rho stack sin m, 'destroy');

o

3 Third pulse

rho_stack cos p=step(spin_system,Ly,rho_stack cos p,pi/2)
rho _stack sin p=step(spin_system,Ly,rho_stack sin p,pi/2)
rho_stack cos m=step(spin_system,Ly,rho stack cos m,pi/2);
rho_stack sin m=step(spin_ system,Ly,rho_stack sin m,pi/2)

o

5 Axial peak elimination in F2

rho stack cos=rho stack cos p-rho stack cos m;
rho stack sin=rho stack sin p-rho stack sin m;

o)

% F2 evolution

’

I

’

fid.cos=evolution(spin system,L,coil, rho_stack cos,timestep(2),...
parameters.npoints (2) -1, 'observable');
fid.sin=evolution(spin_ system,L,coil, rho_stack sin,timestep(2),...
parameters.npoints (2) -1, 'observable');

end

16

The pulse sequence does not need to worry about either the spin system or any relaxation / kinetics parameters:
the corresponding operator or superoperator matrices (H for the Hamiltonian, r for the relaxation superoperator
and K for the kinetics superoperator) will simply be received from Spinach kernel — hence the argument list in the

very first line. The next line puts all three operators together, their sum is called the Liouvillian and denoted L.

The next line deals with the evolution time step, which is inversely related to the sweep width that the user has
specified in the parameters structure as illustrated in Section 6. The sequence then asks Spinach for the detection

state (L+ on all spins specified by the user) and the pulse operators (LX and LY).

The sequence then performs the first pulse by taking the initial condition supplied by the user in parameters.rho0
and using the step function. That function uses Krylov propagation [8,32] and is optimised for one-off evolution

events. The particulars are rather technical — Spinach manual contains further information.

The evolution command in the next line refers to the indirect dimension evolution. The arguments are the Liouvillian
(1), the starting state (rho) the length of the time step and the number of steps. Because this evolution period is
incremented during the experiment, it makes sense to only run it once and to keep the entire trajectory — this is the
meaning of the last argument in the function call. The trajectory is returned as a stack of state vectors (rho_stack),

that is, a matrix made of individual column vectors arranged in the order of time from left to right.

At this point the simulation splits into four independent batches: the next pulse is applied with four different phases
to create the components of the States quadrature [33] and to eliminate the axial peaks in the F2 dimension that
result from partial relaxation of the longitudinal magnetisation during the pulse sequence. A homospoil gradient is

then applied to all four stacks (any states other than Lz are simply zeroed out analytically).

The system is then sent through the mixing time using the evolution.m function provided by Spinach kernel. Its
inner workings are complicated [8], but the user only needs to provide the evolution operator (relaxation and kinet-
ics are needed here) and the duration of the evolution period. The mixing time is followed by another homospoil
gradient and another pulse, with the same phase on all four batches. Axial peaks are then eliminated by subtracting

the simulation pairs that differed in the direction of the second pulse.

Finally, the direct dimension evolution is run and the magnetisation is detected on the coil state. The two compo-

nents of the States quadrature are returned to the user.

Pulse sequences live in the experiments folder of Spinach distribution. All of them are extensively documented
and also contain subroutines (called “grumblers”) that run detailed checks on the parameters supplied (or not sup-

plied, as the case may be) by the user. Copying that style is a good idea.

8. Fitting experimental data

Once a simulation is set up, converting it into a fitting procedure is quite easy — Matlab provides the necessary
infrastructure. The only technicality is matching the X axis: point position and spacing in the simulation are not nec-
essarily the same as in the experimental data. The experimental spectrum and the simulated one must therefore be

interpolated into a common X axis point grid, for example:
sim spec=interpl (sim axis,sim spec,exp axis, 'pchip');

This is a call to Matlab’s built-in 1D interpolation function that tells the program to take the dataset with the ppm

values for each point in the simulated spectrum listed in sim axis, and values in sim_spec, and calculate the

17

values of that spectrum at the points specified in exp axis (the X axis of the experimental spectrum). The last
option specifies a particular interpolation method — technical details may be found in Matlab documentation. Once
the simulated and the experimental spectrum have the same X axis, they may be subtracted and the least squares

error may be computed:

err=norm(real (expt data)-real (sim spec))"2;

This error is then minimised by Matlab as a function of relevant simulation parameters — multiple examples of such

fitting runs are given in the standard example set supplied with Spinach.

640 645 650 655 660 665 670 675 680 685

. . .
2260 2270 2280 2290 2300 2310 2320 2330 2340 2350
1H frequency, Hz

Figure 6. The result of the fitting of a 500 MHz *H NMR

spectrum of anti-2,3-difluoro-n-butane with respect

to chemical shifts, J-couplings and line width. Red

dots: experimental data. Blue lines: fitted spectrum.

This calculation is included into the standard example

set supplied with Spinach.
Of the many error minimisation algorithms available in Matlab, Nelder-Mead simplex is recommended for situations
when the initial guess is not particularly good [34], and LBFGS method for the refinement runs [35]. Note that NMR
fitting is a difficult problem — every parameter combination that makes any two lines overlap between the theoret-

ical and the experimental spectrum is a local minimum on the error surface.

9. Case study 1 — COSY45 of rotenone

As a simple example that is both sufficiently easy to get started and sufficiently difficult to require Spinach, consider
the simulation of a magnitude-mode COSY45 spectrum of rotenone — a system with 22 spins and an irregular cou-

pling pattern. This example is available in the example set supplied with Spinach.

Figure 7. Chemical structure of rotenone.

18

The first thing Spinach requires is the function declaration:

function cosy45 rotenone ()

This is not strictly necessary, but a good practice because this guarantees that Matlab starts the simulation with a

clean background where no previously assigned variables exist. The second stage is to specify the isotopes, 22 pro-

tons in this case:

sys.

isotopes={'1H','1H','1H','1H','1H','1H','1H','1H', '1H', ...
"1H','1H','1H','1H','1H',"'1H','1H',"'1H','1H', ...
"1H','1H','1H','1H'};

See the spin system specification section of the manual for technical details on how to specify more complicated

spin systems. The next step is to specify the magnet field (in Tesla):

sys.magnet=5.9;

then chemical shifts, in ppm for all protons:

inter.zeeman.scalar={6.72 6.40 4.13 4.56 4.89 6.46 7.79 3.79 2.91...

3.27 5.19 4.89 5.03 1.72 1.72 1.72 3.72 3.72...
3.72 3.76 3.76 3.76};

then all scalar couplings, in Hz:

inter.coupling.scalar{3,4}=12.1;

inter.coupling.scalar{4,5}=3.
inter.coupling.scalar{3,5}=1.
inter.coupling.scalar{3,8}=1.
inter.coupling.scalar{1l,8}=1.
inter.coupling.scalar{6,7}=8.
inter.coupling.scalar{5,8}=4.
inter.coupling.scalar{7,9}=0.

’
’
’
’
’

’

~N PP o0 O O o

’

inter.coupling.scalar{7,10}=0.7;
inter.coupling.scalar{9,10}=15.8;
inter.coupling.scalar{10,11}=9.8;
inter.coupling.scalar{9,11}=8.1;
inter.coupling.scalar{13,14}=1.5;
inter.coupling.scalar{12,14}=0.9;
inter.coupling.scalar{22,22}=0;

where the last line is necessary to tell Matlab that the array is 22 by 22 and all other elements are empty or zero.

The next stage is basis set specification. The complete basis set for a 22-spin system is too large and we must there-

fore rely on the restricted state space approximation (see the basis set specification section of the manual and our

recent papers [6-8,28,29] for technical details of the basis set selection process). Here we will be using the IK-2 basis

with Liouville space formalism and no spatial proximity analysis because atomic coordinates are not supplied:

bas.
bas.
bas.
bas.

formalism='sphten-liouv';
approximation='IK-2"';

space level=1;
connectivity='scalar couplings';

The three methyl groups contain magnetically equivalent protons and this symmetry may optionally be used to re-

duce the calculation time:

bas.

sym group={'S3','S3"','S3"'};
19

bas.sym spins={[14 15 16],[17 18 19],[20 21 22]};

This completes the basis set specification. The next stage is to specify the pulse sequence parameters. The full list of
the parameters Spinach stock pulse sequences require is given in the manual page for each sequence. The specific

parameters required by the COSY sequence in this case:

parameters.angle=pi/4;

parameters.offset=1200;

parameters.sweep=2000;

parameters.npoints=[512 512];

parameters.zerofill=[2048 2048];

parameters.spins={'1H'};

parameters.axis units='ppm';
where the field names are intended to be self-explanatory. This completes the specification of the spin system, of
the basis set and of the experiment parameters. The next stage is to give all that information to Spinach. This is

accomplished by running the two housekeeping functions:

spin_ system=create (sys,inter);
spin_system=basis (spin_system,bas);

Both print copious output to the console. This output should always be inspected carefully because it might contain
warning messages. The next stage is simulation, which is carried out in liquid state (hence the 1iquid context func-

tion) with the assumptions set to 'nmr ', indicating common high-field NMR spectroscopy:
fid=liquid(spin_system, @cosy,parameters, 'nmr');

The simulation returns the two-dimensional free induction decay that should undergo apodization (cosine bell in

both dimensions is a good choice here):
fid=apodization (fid, 'cosbell-2d"');

and Fourier transform (£f£t2 performs a two-dimensional transform and fftshift moves the zero frequency to

the centre of the spectrum — Matlab’s default is to have it on the edge):
spec=fftshift (fft2 (fid,parameters.zerofill (2),parameters.zerofill (1)));
Finally, the spectrum is plotted (the many parameters of the plotting function are explained in the online manual):
plot 2d(spin_system, spec,parameters, 20, [0.0025 0.05 0.0025 0.05],2,256,6, 'positive');

The whole simulation should take less than a minute on any modern laptop. Note that Matlab auto-starts the par-

allelization engine when it runs for the first time, that stage only happens once per Matlab session.

20

([T T T T T ™
2l i 1
3l ¥ ¢ g]

- +

E 4t o]

5 -+

g #
£ # f

e
[&)

I

T.61)

o #

+
ra 1
@
sl 1
8 7 6 5 4 3 2 1

F2: 1H chemical shift / ppm

Figure 8. COSY-45 simulation for rotenone, performed as
described in the main text.

10. Case study 2 — NOESY of ubiquitin

This section describes the stages of setting up a simulation of a simple protein NMR experiment. Multiple examples

are available in the standard example set supplied with Spinach. You would need the following:

1. A suitably powerful computer. As a guidance, calculations that do not require a relaxation superop-

erator (HSQC and such) would need 16 GB of RAM to run ubiquitin, and the calculations that do need

it (NOESY and such) would require 64 GB.

2. A PDB file containing Cartesian coordinates of every atom in the protein, including protons.

3. A BMRSB file containing chemical shifts for those atoms that have been assigned. Unassigned atoms

would either not appear in the simulation or end up with a chemical shift of -1 ppm (depending on

the options specified, placing them at —1 ppm often helps with the subsequent assignment).

Spinach cross-checks the amino acid sequence between the PDB and the BMRB file — any mismatch would produce

an error message. Use the following command to import data and create Spinach input structures:

[sys,inter]=protein('pdb file name', 'bmrb file name',options);

The full list of options and the detailed descriptions of the sub-fields of sys and inter data structures are available

in the manual. The protein import function above fills and returns the following fields:

sys.lisotopes
sys.labels

inter.
inter.
.coupling.scalar

inter

inter.

zeeman.scalar
zeeman.matrix

coordinates

Field names are self-explanatory: isotope names are placed into sys . isotopes, PDB labels of each atom are placed

into sys.labels, chemical shifts are placed into inter.zeeman.scalar, rough guesses for nitrogen CSAs are

placedinto inter.zeeman.matrix (if you have accurate CSA tensors, you need to place them into the correspond-

ing cells of inter.zeeman.matrix array after the import is complete), reasonable guesses of J-couplings [6] are

21

placed into inter.coupling.scalar (if you have accurate J-couplings, you would need to overwrite the values
in inter.coupling.scalar after the import is complete), PDB atom coordinates are placed into inter.coor-
dinates; nothing else is imported or guessed. The detailed list of everything that happens when protein data is

imported into Spinach is given in our recent paper [6] and printed to the console at run time.

After the import is finished, the resulting sys and inter structures may be used by Spinach. Dipolar coupling tensors
are computed automatically from atomic coordinates. Any additional information (quadrupolar coupling, unpaired

electrons and associated interactions, etc.) can be added to sys and inter structures at this point.

At the next stage in the input preparation, you need to specify the magnet field and the cut-off tolerances for the
|II

various interactions (which distances are “too large” for the dipolar coupling and which J-couplings are “too smal

to be consequential). The top of the Matlab file should look similar to the following:

o)

% Protein data
[sys,inter]=protein('1D3Z.pdb', '1D3Z.bmrb', options) ;

% Magnet field
sys.magnet=21.1356;

o)

% Tolerances
sys.tols.prox cutoff=5.0;
sys.tols.inter cutoff=2.0;

Cut-off tolerance for proximity is specified in Angstrom and cut-off for J-coupling is specified in Hz. In the example
above, dipolar couplings would not be taken into account between spins that are further than 5.0 Angstrom apart

and any J-coupling smaller than 2.0 Hz would be ignored.

The next thing to be specified is the relaxation theory. Redfield relaxation theory is a very expensive option from the
computational point of view — NOESY simulation for a 70-residue protein requires about 64 GB of RAM (it was taking
a terabyte in some of the early versions of Spinach). If you do not require accurate relaxation theory treatment, use

something similar to the following:

o

s Relaxation theory

inter.relaxation='damp';

inter.damp rate=5.0;
This requests a non-selective damping at 5.0 Hz for all states (the relaxation superoperator would be a diagonal
matrix with —5.0 on the diagonal). Alternatively, Spinach supports simple T1/T, and Lindblad relaxation models —
those are often sufficient; details are in the manual. However, if you do require accurate relaxation treatment (it is

strictly necessary for NOESY spectra), the following should be supplied:

o)

% Relaxation theory

inter.relaxation="'redfield';

inter.rlx keep='kite';

inter.tau c=5e-9;
This requests full Redfield theory: DD, CSA, NQI and all cross-correlations thereof [19]. Dipolar tensors are computed
from atomic coordinates, CSAs and NQIs must be provided as described in Section 3. The middle line in the specifi-
cation above requests the “Redfield kite” — cross-relaxation is included between longitudinal states only. If you re-

quire the treatment of all cross-relaxation processes, specify ‘secular’ instead of ‘kite’ — note that the simulation

time would increase considerably. The last line specifies the rotational correlation time in seconds, it is important

22

that you get this number right because all relaxation rates depend on it. Spinach relaxation module supports aniso-

tropic rotational diffusion; further details are given in Section 3 above.

The next step is to choose a basis set. This is a very complicated topic (see the manual), but the minimal basis set

that produces quantitatively accurate results for proteins in liquid state is the following:

% Basis set
bas.formalism="'sphten-liouv';
bas.approximation='IK-1";
bas.connectivity='scalar couplings';
bas.level=5; bas.space level=3;

This requests 1K-1(5,3) connectivity-adaptive basis set that includes local correlations of up to five spins on the J-
coupling graph and local correlations of up to three spins on the spatial proximity graph [6]. In principle, some amino
acid side chains (valine, isoleucine) require correlations of more than five spins to be present in the basis set to get
their multiplicity absolutely right, but the multiplet structure of the corresponding signals is never actually resolved
in protein NMR spectra. An absolutely bullet-proof basis here would be 1K-1(8,3), but in this case it simply produces

the same answer after a much longer calculation.

The next stage is to call Spinach constructor functions and generate the spin_system data structure that contains

all information about the spin system and is required by most high-level Spinach functions as the first argument:

% Create the spin system structure
spin_system=create (sys, inter) ;

% Kill carbons and nitrogens

spin system=kill spin(spin system,strcmp('13C',spin system.comp.isotopes));
spin_system=kill spin(spin_ system,strcmp('15N',spin system.comp.isotopes));

% Build the basis

spin system=basis (spin_ system,bas);
The two lines in the middle are optional —in this case they request the removal of all carbon and nitrogen spins from
the spin system. This is necessary for the NOESY simulation, but should not be done for HSQC, HNCO and other

sequences that require the presence of >N and *3C spins.

The next stage is to specify experiment parameters. In the case of a 2D NOESY, the following is a reasonable set:

o)

¥ Sequence parameters

parameters.tmix=0.065;
parameters.offset=4250;
parameters.sweep=10750;
parameters.npoints=[512 512];
parameters.zerofill=[2048 2048];
parameters.spins={'1H'};

parameters.axis units='ppm';
parameters.rhoO=state (spin system, 'Lz', '1H'");

As the names of the parameters suggest, this requests a mixing time of 65 ms, frequency offset of 4250 Hz, sweep
width of 10,750 Hz, 512 points to be acquired in both dimensions and zero-filled to 2,048 points in both dimensions,

the sequence is operating on *H nuclei, axis units should be ppm and the initial condition is Lz on protons.

The next stage is the actual simulation. For the example case of 2D NOESY the syntax is:

% Simulation
fid=liquid(spin_system, @noesy, parameters, 'nmr');

23

The choice of the outer function reflects the fact that we are running a liquid state simulation (Spinach supports all
other types of magnetic resonance spectroscopy and imaging), spin_system is the data structure containing the
information about the system, noesy is the name of the pulse sequence we are running (@ symbol is a Matlab
technicality — it denotes a function handle) and the various fields of the parameters argument have all been set
above. The result is a 2D free induction decay that is ready for standard NMR data processing. Depending on the
pulse sequence, it may be a simple array of complex numbers, or it might contain subfields, such as fid.cos and

fid.sin, that are used in States quadrature processing of phase-sensitive experiments.

The next stage is apodization, which may be accomplished using any of the window functions available in Spinach —

the complete list is in the manual. In this particular case we will use Gaussian apodization:

o

s Apodization

fid.cos=apodization(fid.cos, 'gaussian-2d"',5);

fid.sin=apodization(fid.sin, 'gaussian-2d4d',5);
where the last argument is the decay rate (per dataset point) of the Gaussian function — this parameter should be
increased until the sinc wiggles disappear from the spectrum. Good practical advice on spectral apodization was

published by Vosegaard and Nielsen [36].

The next stage is Fourier transform and quadrature processing. For a 2D NOESY simulation, States quadrature pro-

cessing is necessary:

o)

5 F2 Fourier transform
fl cos=real (fftshift (fft(fid.cos,parameters.zerofill(2),1),1));
fl sin=real (fftshift (fft (fid.sin,parameters.zerofill(2),1),1));

o

s States signal
fl states=fl cos-1i*fl sin;

o

5 F1 Fourier transform
spectrum=fftshift (fft (f1 states,parameters.zerofill (1l),2),2);

This is standard Matlab Fourier transform syntax: fft is the command that performs the transform and fftshift
performs a cyclic shift that moves the zero frequency to the centre of the spectrum. Finally, the plotting function

produces a contour plot:
% Plotting
plot 2d(spin_system,-real (spectrum), parameters, 20, ...
[0.01 0.05 0.01 0.051,2,256,6, '"positive');
2D and 3D plotting functions in Spinach have a significant number of adjustable parameters that are described in
the manual. The last argument tells the plotter to ignore negative peaks. If those are expected in the spectrum, the

argument should be ‘both’. The output is shown in Figure 2.

Acknowledgements

A large number of people have contributed ideas, examples and good advice to Spinach over the last ten years — the

current developer team is listed at the web site (http://spindynamics.org/wiki/index.php?title=Spinach devel-

oper_team). The people who have specifically contributed to the functionality described in this tutorial are Luke
Edwards, Hannah Hogben, Matthew Krzystyniak, Dmitry Savostyanov, and Zenawi Welderufael. The funding came
from EPSRC (EP/F065205/1, EP/H003789/1) and the inspiration from Marina Jay Brassington, Ayn Rand’s “Atlas
Shrugged” and sound tracks by Jeremy Soule.

24

References
[1] M.H. Levitt, Spin dynamics: basics of nuclear magnetic resonance, John Wiley & Sons, 2001.
[2] J. Keeler, Understanding NMR spectroscopy, John Wiley & Sons, 2011.

[3] P.Hore,J.Jones, S. Wimperis, NMR: The Toolkit: how Pulse Sequences Work, Oxford University Press,
USA, 2015.

[4] H.Hogben, M. Krzystyniak, G. Charnock, P. Hore, |. Kuprov, Spinach —a software library for simulation
of spin dynamics in large spin systems, Journal of Magnetic Resonance, 208 (2011) 179-194.

[5] A.Karabanov, |. Kuprov, G. Charnock, A. van der Drift, L.J. Edwards, W. Kéckenberger, On the accuracy
of the state space restriction approximation for spin dynamics simulations, The Journal of chemical
physics, 135 (2011) 084106.

[6] L.J.Edwards, D.Savostyanov, Z. Welderufael, D. Lee, I. Kuprov, Quantum mechanical NMR simulation
algorithm for protein-size spin systems, Journal of Magnetic Resonance, 243 (2014) 107-113.

[7]1 I.Kuprov, N. Wagner-Rundell, P. Hore, Polynomially scaling spin dynamics simulation algorithm based
on adaptive state-space restriction, Journal of Magnetic Resonance, 189 (2007) 241-250.

[8] I. Kuprov, Polynomially scaling spin dynamics II: further state-space compression using Krylov
subspace techniques and zero track elimination, Journal of Magnetic Resonance, 195 (2008) 45-51.

[9] I. Kuprov, Fokker-Planck formalism in magnetic resonance simulations, Journal of Magnetic
Resonance, 270 (2016) 124-135.

[10] L. Guduff, A.J. Allami, C. van Heijenoort, J.-N. Dumez, |. Kuprov, Efficient simulation of ultrafast
magnetic resonance experiments, Physical Chemistry Chemical Physics, (2017).

[11] R.S. Dumont, S. Jain, A. Bain, Simulation of many-spin system dynamics via sparse matrix
methodology, The Journal of chemical physics, 106 (1997) 5928-5936.

[12] T. Allman, A.D. Bain, J.R. Garbow, SIMPLTN, a program for the simulation of pulse NMR spectra,
Journal of Magnetic Resonance, Series A, 123 (1996) 26-31.

[13] P. Hodgkinson, L. Emsley, Numerical simulation of solid-state NMR experiments, Progress in Nuclear
Magnetic Resonance Spectroscopy, 36 (2000) 201-239.

[14] M. Edén, Computer simulations in solid-state NMR. I. Spin dynamics theory, Concepts in Magnetic
Resonance Part A, 17 (2003) 117-154.

[15] Z. ToSner, R. Andersen, B. Stevensson, M. Edén, N.C. Nielsen, T. Vosegaard, Computer-intensive
simulation of solid-state NMR experiments using SIMPSON, Journal of Magnetic Resonance, 246
(2014) 79-93.

[16] A. Biternas, G. Charnock, I. Kuprov, A standard format and a graphical user interface for spin system
specification, Journal of Magnetic Resonance, 240 (2014) 124-131.

[17] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. Petersson, GAUSSIANQ9. Gaussian Inc., Wallingford, CT, USA, in, 2009.

[18] F. Neese, The ORCA program system, Wiley Interdisciplinary Reviews: Computational Molecular
Science, 2 (2012) 73-78.

[19] I. Kuprov, Diagonalization-free implementation of spin relaxation theory for large spin systems,
Journal of Magnetic Resonance, 209 (2011) 31-38.

[20] R.K. Wangsness, F. Bloch, The dynamical theory of nuclear induction, Physical Review, 89 (1953) 728.

[21] A.G. Redfield, On the theory of relaxation processes, IBM Journal of Research and Development, 1
(1957) 19-31.

25

[22] M. Goldman, Formal theory of spin—lattice relaxation, Journal of Magnetic Resonance, 149 (2001)
160-187.

[23] D. Goodwin, I. Kuprov, Auxiliary matrix formalism for interaction representation transformations,
optimal control, and spin relaxation theories, The Journal of chemical physics, 143 (2015) 084113.

[24] R.C.R. Grace, A. Kumar, Observation of Cross Correlations in a Weakly Coupled 19F-1H Four-Spin
System, Journal of Magnetic Resonance, Series A, 115 (1995) 87-93.

[25] T.O. Levante, R.R. Ernst, Homogeneous versus inhomogeneous quantum-mechanical master
equations, Chemical Physics Letters, 241 (1995) 73-78.

[26] M.H. Levitt, L. Di Bari, Steady state in magnetic resonance pulse experiments, Physical Review Letters,
69 (1992) 3124-3127.

[27] A.D. Bain, J.S. Martin, FT NMR of nonequilibrium states of complex spin systems. I. A Liouville space
description, Journal of Magnetic Resonance (1969), 29 (1978) 125-135.

[28] H. Hogben, P. Hore, I. Kuprov, Strategies for state space restriction in densely coupled spin systems
with applications to spin chemistry, The Journal of chemical physics, 132 (2010) 174101.

[29] M. Krzystyniak, L.J. Edwards, I. Kuprov, Destination state screening of active spaces in spin dynamics
simulations, Journal of Magnetic Resonance, 210 (2011) 228-232.

[30] A. Kumar, R. Ernst, K. Wiithrich, A two-dimensional nuclear Overhauser enhancement (2D NOE)
experiment for the elucidation of complete proton-proton cross-relaxation networks in biological
macromolecules, Biochemical and biophysical research communications, 95 (1980) 1-6.

[31] I. Kuprov, D.M. Hodgson, J. Kloesges, C.l. Pearson, B. Odell, T.D. Claridge, Anomalous Nuclear
Overhauser Effects in Carbon-Substituted Aziridines: Scalar Cross-Relaxation of the First Kind,
Angewandte Chemie, 127 (2015) 3768-3772.

[32] R.B. Sidje, Expokit: a software package for computing matrix exponentials, ACM Transactions on
Mathematical Software (TOMS), 24 (1998) 130-156.

[33] D. States, R. Haberkorn, D. Ruben, A two-dimensional nuclear Overhauser experiment with pure
absorption phase in four quadrants, Journal of Magnetic Resonance (1969), 48 (1982) 286-292.

[34] J.A. Nelder, R. Mead, A simplex method for function minimization, The computer journal, 7 (1965)
308-313.

[35] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical
Programming, 45 (1989) 503-528.

[36] T. Vosegaard, N.C. Nielsen, Defining the sampling space in multidimensional NMR experiments: What
should the maximum sampling time be?, Journal of Magnetic Resonance, 199 (2009) 146-158.

26

