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Abstract—Sound fields can be encoded with a fixed number of
signals, using microphones or panning functions. The sound field
may later be reproduced approximately by decoding the signals to
a loudspeaker array. The Stereo and Ambisonic systems provide
examples. A framework is presented for addressing general
questions about such encodings. The first problem considered
is the conversion between encodings. The solution is applied to
the decoding of scene encodings to a loudspeaker array. This is
generalised to the decoding of sub-scenes where the resolution
is focused in an angular window. Within an object based audio
framework such sub-scenes are useful for representing complex
objects without using all the channels required for a full scene.
The second problem considered is the compression of a scene
encoding to a smaller encoding, from which the original can be
reconstructed. The spatial distribution of compression error can
be controlled.

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, tem-
plate.

I. INTRODUCTION

A channel-based encoding consists of a fixed number of
signals that can be used to drive a loudspeaker array in a
specific configuration. No assumptions are made about how the
signals are derived and what relationships they may have. A
scene-based encoding consists of signals obtained from real or
virtual microphones placed at the centre of a sound scene. This
type of encoding may require decoding to produce loudspeaker
feeds, using some form of gain or filter matrix. If this encoding
is designed to be fed directly to an array, then it is also referred
to as a channel encoding (A channel encoding doesn’t have to
be scene-based). Ambisonic encodings provide an example of
scene encoding1;2, based on spherical harmonic directivities.
In this article general scene encodings are considered, for
which there no assumptions are made about the microphones
used.

One realisation of a virtual microphone is using panning
functions: For plane wave sources a virtual microphone signal
is the sum of the source signals weighted by panning functions,
the input direction for each function set to the corresponding
source. The directivity of the panning functions matches the
directivity of the real microphone that produces the same
output for the corresponding real scene, see Fig. 1.

For a given loudspeaker array, a set of microphones, de-
coding functions or panning functions are designed so that
the original audio scene is reproduced faithfully, which is to
say perceived images match the original recorded sources, or
intended images. If a set of panning functions were replaced by
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Fig. 1: Relationship between real and virtual microphones,
and panning functions. s1 and s2 represent plane wave source
signals. The microphone directivity function is shown as a
polar plot.

microphones with the same directivities then the array would
reproduce the sound field captured by the microphones. In this
case the microphone decoding is trivial. Formal definitions for
sound fields, microphone directivities and panning functions
are given in Section II.

Examples of channel-based systems include Stereo and Am-
bisonic systems. The Stereo system3;4 provides the simplest
and oldest example of channel reproduction. The listening
arrangement assumes a 60◦ loudspeaker separation from the
listener, and the stereo channel signals feed directly to the
loudpseakers. There are several variations of the panning
functions. Tangent law panning is designed to produce the
correct Interaural Time Difference (ITD) cue, 0s, when the
listener faces an image. The stereo signals are derived using
panning functions or from crossed-pair cardioid microphones
that approximate their directivities.

In the Ambisonic system, the channels are generated ei-
ther from microphone arrays or with multichannel panning
functions, and the directivity functions are spherical harmon-
ics,1;2. A variety of Ambisonic decoders have been designed
according to different design criteria5;6;7;8;9;10;11;12;13;14. In the
original mode matching approach, based on the Fourier-Bessel
expansion, the decoding process attempts to reconstruct the
sound field physically up to a given spherical harmonic order,
1st order for the original form of Ambisonics and higher for
Higher Order Ambisonics (HOA). Higher order reproduction
produces the sound field over a wider central region for a
given frequency, and for a given order the region shrinks
with increasing frequency. The reproduction can be made
more accurate by modelling the loudspeaker source waves as
point sources rather than plane waves. This is important if
the reproduction extends over the whole interior region. The
approach is known as Near-field compensated HOA (NFC-
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HOA)15. The driving functions are complex filters, rather than
the simple gains. NFC-HOA naturally accommodates near
image sources, which also require complex filters under the
assumptions for HOA.

Mode matching ensures the low frequency ITD cue is cor-
rectly reproduced for all listener head orientations, for a central
listener. However mode matching, even with regularisation,
may perform poorly for many sparse arrays at higher orders.
Also the errors outside the central region restricts the audience
size. Each of the decoding methods can be defined using
equivalent loudspeaker panning functions: The panning gains
for each plane wave are given by first encoding the plane
wave to the Ambisonic channel encoding then decoding to
the array. Channel-based encoding using Ambisonics enables
a compact representation of the sound field, which may include
reverberation and complex sources. However it is not possible
to directly manipulate the component sounds in a channel-
encoding independently from one another.

Vector base amplitude panning (VBAP)16 is a widely used
method for panning over a 3-dimensional loudspeaker array.
VBAP is an extension of Stereo tangent law panning to 3D
audio. For each target image VBAP provides non-zero panning
gains for three near loudspeakers. Equivalently, for each loud-
speaker, VBAP defines a continuous panning function. VBAP
is usually presented in the context of object-based audio,
in which each component sound is panned separately at the
point of reproduction. However it can also be viewed in terms
of channel reproduction using panning functions. From the
respect of ITD, VBAP is inferior to mode matched Ambisonic
decoding, since in the VBAP case ITD for each image is
only accurate when the listener faces it. However for a non-
central listener the ITD cues are disrupted in both cases, and
the VBAP image is generally less distorted because the active
loudspeakers are more localised.

An alternative to the mode matched HOA decoding ap-
proach is to prescribe target panning functions, without con-
straints, then calculate decoding functions which produce
panning functions close to these11. This approach produces
well behaved decoding functions given reasonable panning
functions. Also, the perceptual performance of the overall
reproduction system is more controllable since it is broadly
separated into the perceptual performance of the panning
functions and the quality of the encoding that supplies them.
A natural choice is to use VBAP panning functions, since
VBAP is robust, producing good images for a wide variety of
arrays and listener positions, although the advantages of mode-
matched decoding for a central listener are usually lost. In the
limiting case of a dense symmetric array VBAP-Ambisonic
decoding produces similar panning functions to the mode
matched approach.

Wave Field Synthesis (WFS)17, is a reproduction method
based on the approximation of boundary source integrals. In
its original form it can reproduce a sound field over an interior
region up to the spatial aliasing frequency determined by the
loudspeaker spacing. The total cost of driving functions for one
individual point or plane wave source is low: a equalisation
filter, a delay line, and one multiply for each loudspeaker.

If NFC-HOA and WFS are compared using equal numbers

of loudspeakers, then up to the spatial aliasing frequency
defined by loudspeaker spacing, NFC-HOA reproduction has
slightly less error than WFS18 over the interior. For frequen-
cies above the aliasing frequency HOA error is low in a central
region that shrinks with frequency, whereas for WFS the error
is usually significant everywhere (Using focused sources it is
possible, however, to achieve a low error with WFS in this
case20). If the spacing is greater than head width, typically
0.17m, so that the alias frequency is less than the top of
the ITD range, then the localisation performance of WFS is
generally better than NFC-HOA outside the central region19.
This is unsurprising considering that for each image source
WFS driving energy is more localised on the array, and so
produces less error outside the central region.

The plane wave driving functions define a set of panning
functions. An Ambisonic encoding can be reproduced using
WFS by decomposing it first into a plane wave set21 . This
can make sense if high order decoding is required over the
full width of an array interior with less complexity than using
NFC-HOA filters.

The reproduction methods each have advantages and dis-
advantages. Each can be expressed using panning functions
that define how plane waves can be reproduced, and so the
methods are all acceptable in the later examples where panning
functions are used.

Unlike pure channel or scene encoding, an object-based
audio encoding consists of a variable number of audio objects,
each representing a single source of some kind. Each object
includes signals and other metadata information, for example
about source position and size. The audio objects are rendered
to loudspeakers at the point of reproduction. In the context
of spatial audio, object-based audio allows the reproduction
to be modified and optimised according to the user’s repro-
duction system and room. Object encoding has recently been
developed in standards for cinema and interactive broadcast-
ing22. As transmission bandwidth increases and reproduction
hardware becomes more sophisticated, object-based audio has
become more attractive.

Scene encodings can be embedded as objects within an
object based encoding. This is useful because such a scene
object can be used to efficiently capture an element of the
sound field that is spatially complex, for which detailed
independent control of the internal sound components is not
required. An Ambisonic encoding is often used to provide a
background scene, or bed, However it may not be possible or
convenient to use such an encoding, either because of how
the object was captured, or in order to minimise and manage
the total channel count. For example it is often required to
mix recorded Stereo to channel-based or object-based audio,
and it is unclear how best to do this. Scene objects where the
spatial information is focused in part of the overall scene will
be referred to as sub-scene objects.

The contributions of this article are summarised in three
stages as follows:

1. In Section II a framework is developed to formulate
problems about sound fields, directivities, whether these refer
to microphone directivities or panning functions, and the
signals produced by applying directivities to sound fields. The
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aim is to clarify existing discussions about these concepts,
which is of general interest, and to prepare a language for
formulating problems in the later parts.

2. Ambisonic decoding provides a way to decode an
Ambisonic encoding to an array. A method is derived for
converting between channel encodings, in Section III, and
is used to give a decoding method for general scene ob-
jects. This is shown to be a generalisation of an Ambisonic
decoding method based on prescribed panning functions11,
which is itself shown to be equivalent to the AllRAD decoding
method14. Ambisonic encoding is shown to be useful in some
cases as an intermediate encoding in the decoding process,
by allowing more efficient decoding when the channel object
is dynamically oriented. An example is given where a Stereo
signal is decoded using three different methods. The results
from a listening test support proposed approach.

3. Given a channel encoding for some set of directivities,
it can be useful to re-encode using fewer channels, in order
to reduce storage and transmission requirements, either for
a channel encoding or a scene object. In Section II-C a
method is given to calculate an optimal reduced encoding.
The spatial distribution of error introduced by the re-encoding
is controllable. Examples are provided of re-encoding a 7.0
type channel encoding to 5 channels.

A. Notation

Signals and filters are represented in the frequency do-
main. For simplicity frequency variables are omitted, although
signals, sound fields, and directivity functions have implicit
frequency dependence. Vectors and matrices are in bold type.
Either may also be represented in component form with normal
type, for example the element of matrix A in the i-th row and
j-th column is written Aij . j is also occasionally used for

√
−1

, but not simultaneously as an index, so its meaning is always
clear. A hat is used to denote a spatial vector of unit length,
for example x̂ = x/|x|. Operators or matrices, vector spaces,
and functions are all capitalised. The complex conjugate is
represented with a bar, for example p̄. The transpose is written
AT and the transpose conjugate is AH . A dual basis or space
is represented with an asterix, like S∗.

II. REPRESENTING SOUND FIELDS AND MICROPHONES

A. Sound Fields

There are several ways to represent a region of sound field
in a 2D or 3D that is free of sources, and so which satisfies
the homogeneous Helmholtz equation. The Herglotz expansion
(HE), is built from a continuous set of plane wave basis
functions. The pressure field as a function of position x and
wave number k is

p(x, k) =

∫
k̂∈Ω

e−jk·xs(k)dΩ (1)

where the integration variable is k̂ ranging over a surface
Ω of radius 1, a circle in 2 spatial dimensions and a sphere in
3 dimensions. The positive frequency convention, with time
dependence ejωt is used here for wave representation. The
wave vector of each plane wave component is k = kk̂, where

the direction of travel of the wave is k̂. The Herglotz density
function s(k) contains the information that uniquely represents
and encodes the sound field, and can be thought of as a signal
density function for the direction k̂ and wave number k.

For numerical calculation the HE integral cannot be used
directly. It can be approximated by sampling over a set of
uniformly distributed directions, {k̂i}. The encoding is then
represented by a function s(ki) = s(k̂i, k). For brevity we
hide the frequency dependence from k and write the encoding
as a vector s with components si = s(k̂i) = s(k̂i, k). For
brevity s and s(k) will be referred to as the sound field, since
it contains the information content of the field, although the
actual pressure field is given by (1). We also refer to the space
of sound fields S, which is the vector space of all possible
sound fields s ∈ S. The continuous encoding s(k) exists in
an infinite dimensional space, however in this article we stick
to the finite dimensional case and notation. The sound field
pressure is now a sum

p(x) =

L∑
i=1

e−jki·xs(ki)∆Ωi . (2)

∆Ωi are weights that compensate for the arrangement of the
plane waves. In the 2D case the directions {k̂i} can be spaced
equally, with uniform ∆Ωj . In 3D, the optimal choice of {k̂i}
and {∆Ωj} is not trivial in general. There exist direction sets
for which uniform {∆Ωj} is optimal, such as the spherical
designs including t-designs23;14. In any case the reconstruction
error can be made arbitrarily small for uniform {∆Ωj} by
choosing a uniform array with sufficient L. The suitable value
for L in the present context will be explained in Section II-B,
once other other dependent factors have been explained.

The 2D or 3D sound field region, containing no sources,
may also be expanded in terms of a countable set of localised
regular harmonic basis functions {Ri}, or modes,

p(x, k) =

∞∑
i=1

yi(k)Ri(x, k) , (3)

where yi(k) are the coefficients or signals encoding the sound
field. As with the HE encoding {si}, {yi} shall be referred to
as the sound field without ambiguity.

The basis functions are othogonal by integration over space,

Ri ·Rj =

∫
x∈V

Ri(x)R̄j(x)dV = Cδij (4)

for a constant C. V can be either the whole of 2D or 3D
space.

The Fourier Bessel Expansion (FBE) provides a set of such
basis functions that are spherically symmetric in 3D space.
There are several variations including the N3D form15, which
has real valued functions. The basis functions are each the
product of a spherical harmonic function of direction and
spherical Bessel function of distance. Analogous functions
exist in 2D based on sinusoidal functions of azimuth and
Bessel functions, a common form is the N2D basis,15. The
term FBE will be used to refer expansions of this type in
either 3D or 2D.
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An FBE can be approximated by truncation,

p(x, k) ≈
M∑
i=1

yi(k)Ri(x, k) , (5)

For typical sound fields the approximation is very good within
a radius r depending on M and k 24. For 3D harmonics this
relationship can be expressed as N = kr where N is the order
of expansion and the number of harmonics is M = (N + 1)2.
This property has been used in the Ambisonic reproduction
method for sound field encoding. Variable truncation allows
for variable resolution and compatibility of encodings with
different resolution. The truncated encoding coefficients form
a finite vector, y = {yi}, which is a representation of the
sound field, like s, but with a different basis.

Each plane wave used in an HE can be expanded in terms
of an FBE. The expansion coefficients for a plane wave are
equal to a set of spherical harmonic functions sampled in the
direction of the plane wave5. So any sound field approximation
s can be expressed with an FBE encoding y, using a matrix
Y composed from expansions of individual plane waves in S,

y = Y s (6)

(The plane wave weights ∆Ωi from (2) are still included in s).
As the number of plane waves in S increases, each harmonic
coefficient yi converges separately to the correct value for the
actual sound field approximated by s.

The spherical harmonics are orthogonal and can be nor-
malised by scaling the FBE basis functions Ri, so that in the
high order limit Y Y H ≈ I . Y is approximately unitary if it is
square. For S based on a spherical design then for a maximum
number of harmonics M , less than L and depending on the
design, Y Y H = I exactly.

What determines the physical resolution needed to encode
a scene, either in terms of harmonics or plane waves? The
sampling theorem would suggest that the angular resolution of
the plane wave set should at least match the angular resolution
of the scene. This is indeed true for pure physical reproduction
in which the listener is not considered. Perceptually based
panning methods however are able to exploit the human
auditory system to achieve image localisation resolution that is
much better than the encoding resolution. Even two channels,
in the case of Stereo, are sufficient for good localisation
resolution across a 60◦ range. The main auditory mechanism
providing this localisation is the ITD cue. With Ambisonics
the picture is similar. The field can be physically reconstructed
up to a chosen frequency limit so that it encloses the head
and possibly other significant scattering body surfaces25. For
1st order Ambisonics (N = 1, M = 4) gives 500 Hz limit
for an adult head, using N = kr, which ensures ITD cues
are reproduced well. Clearly the information capacity of the
encoding is very restricted, however the auditory system is
focused on sparse signals, which can be encoded in this way,
and is less sensitive to non-sparse information that cannot be.
Increasing the encoding resolution allows auditory system to
engage more cues, increasing localisation resolution and image
quality.

The HE is a natural representation for the sound field in the
sense that the signal content in each direction is represented

directly. In the FBE the signal components are complex linear
combinations of the plane wave signal components. However,
as discussed later, there are fundamental and practical reasons
why the FBE is sometimes preferable. In the next section the
directivity of microphones is represented in a way similar to
the HE. Sometimes it may be preferable to choose to represent
microphones in a way that parallels the FBE.

B. Directivity Functions

An ideal microphone is characterised by its directivity
function. Specifically, the output q of a perfectly linear micro-
phone is the bilinear function of a complex-valued directivity
function (DF) Q(k̂), and the sound field encoding s(k̂),

q =

∫
k̂∈Ω

Q(k̂)s(k̂)dΩ (7)

The normalised wavevector k̂ provides the direction of travel
of the wave. Note that microphone directivity is often stated as
a function of the reverse direction θ̂ = −k̂, opposite the wave
travel direction. In the following formula the wave directions
are indexed, so we don’t have to choose between variables,
and no confusion arises.

A panning function provides a loudspeaker gain as a func-
tion of the desired image direction. A common goal is to
find a set of panning functions for a loudspeaker array such
that the output gains produce a perceived image close to the
desired image, for a range of desired images. Microphones
with the same directivities will produce the same loudspeaker
feeds when exposed to the corresponding real scene, as shown
before in Fig. 1. DF will be used to refer to both microphone
directivities and panning functions.

Using a discretised sound field with components sj = s(k̂j)
and discretised DF with components Qj = Q(k̂j) a micro-
phone signal given by (7) can be approximated as

q ≈
L∑
j=1

Qjsj∆Ωj (8)

The discretisation of the sound field and DFs is for computa-
tional purposes only, and should be high enough to represent
the DFs well enough so that (8) is accurate. If the DFs are band
limited as an FBE then there exists a sufficient spherical design
that achieves this exactly. For t-designs L ≈ 4M is sufficient.
Otherwise the error can be made as small as required by
choosing L high enough. For offline calculation this presents
no practical issue. However if calculation is required across S
online then L needs to be chosen considering the error / cost
trade off.

A set of DFs, representing a set of microphones or panning
functions, can then be written as a matrix Q with components
Qij where i indexes the DFs, and j indexes the plane wave
directions. Qi will denote the ith DF as a vector. For the sake
of convenience we redefine sj by absorbing the product with
∆Ωj into it. This keeps the signals and DFs, which are of most
interest, constant whatever discretisation is used. Each DF Qi

produces a signal qi given by (8). The set of signals can be
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written as a vector q, and the corresponding set of equations
is

q = Qs (9)

It might be considered more consistent to represent the mics as
column vectors in Q so that q = QTs or q = QHs, however
to simplify notation we follow (9). q can be viewed as a lossy
encoding of the sound field represented by s. To represent the
sound field accurately the number of elements in s is much
greater than the number of elements in q. q then contains less
information than s and the original sound field, and Q has
full row rank.
Q could be defined instead by substituting its transpose QT

or transpose conjugate QH . This would perhaps be a more
symmetric presentation since DFs are then column vectors like
s. The choice does not affect the discussion here.

According to (7) DF can be viewed as a linear map from
the space of sound fields S to the complex numbers C, so the
space of all possible directivity functions is the dual space S∗,
of S. S and S∗ have the same internal structure but represent
different types of object. The subspace of S∗ spanned by DFs
in Q will be written

S∗Q ⊆ S∗ . (10)

For any sensible choice of DFs they are linearly indepen-
dent, and form a basis of a subspace in S∗. We assume this
case unless stated otherwise. A linearly dependent set is a
frame26, and may arise for example when two different basis
sets are joined together.

Equation (9) can also be viewed as an equation with an
operator Q that acts on the sound field according to the
original definition in (7). All subsequent expressions have
analogs with this interpretation. We focus on the discrete case
to give a presentation in terms of familiar matrix operations.
For background on the linear algebra and matrix results
employed here refer to27.

C. Compact Source Representation

Some technical difficulties arise when using plane wave
expansions. s(k̂) is not simply defined for any field where
the exterior region contains a source at a finite distance. This
can be seen for example by looking at the sequence of FBEs of
a monopole field including orders up to N , for N = 1, 2, 3...
The FBE sequence converges at every point in the interior
region. However if the sequence is then re-expanded as HEs
we find the encoding functions sN (k̂) do not converge to a
limit, in fact they are unbounded. This is explored in28.

Even though sN (k̂) is non-convergent, if DFs in Q are spa-
tially band-limited, meaning spherical harmonic coefficients
of sufficient order are zero, then a physically valid signal
vector q = Qs can still be found. This is because the
corresponding sequence qN then does converge, and therefore
converges to the physically realised value. The difficulty arises
because of the sound field representation rather than the
microphone physics. This strict band-limit condition could be
relaxed to allow for DFs with harmonic components that decay
sufficiently fast, however there is no practical need to discuss
this further here.

III. CONVERSION BETWEEN SIGNAL SETS

A. Theoretical Background

A range of problems can be expressed as the task of convert-
ing one set of signals associated with a set of DFs to another
set of signals associated with another set of DFs. The DFs
are known, but the associated sound field is not. One specific
example is finding signals for a standard multichannel mi-
crophone set given a non-standard set of microphone signals.
Another example is finding loudspeaker feeds, for an array
with defined panning functions, from signals of a possibly
unrelated microphone set. This conversion is an example of
decoding called since it is the process of reproducing the sound
field from a set of encoding signals. This will be the focus of
Sections III-B and III-D.

More precisely, given signals q and DFs Q such that q =
Qs for an unknown sound field s, what is the best estimate
for signals r such that r = Rs for known DFs R? Generally
there will be many sound fields satisfying q = Qs, since Q
has full row rank as noted previously. A natural estimate is
the sound field s̃ for which the L2 norm ‖s‖ is a minimum,
since this will have the least total energy. Nearly all possible
sound fields s have excessively high energy, being distant from
s̃. Sparsity is another possible criteria useful for estimating
s, since natural sound fields are sometimes sparse. The L1

norm is one way to select for sparsity, and can be used in
combination with energy criteria, but this is not explored here.
The kind of sound field that is usefully represented by channel
encodings is dense and complex rather than sparse.

If Q has full row rank, as discussed in the previous section,
then the least power estimate, written s̃q to indicate the
dependence on known signals q, can be calculated using the
Moore-Penrose pseudo inverse Q+, which can be calculate in
this case using QH(QQH)−1

s̃q = Q+q (11)

Usually the DFs Q are chosen to be linearly independent
so that the pseudo inverse is well conditioned. This may not
always be the case, for example microphones at low frequency
become nearly linearly dependent. The pseudo inverse can be
extended to include Tikhonov regularisation29,

Q+ = QH(QQH + βI)−1 (12)

β controls the amount of regularisation, and can vary with
frequency. This has the effect of reducing signal strength and
leads to filters that are simpler and better behaved.

Equation (11) can also be viewed as an expansion of s̃q
with a set of dual vectors {Q∗j} where Q∗j = {Q+

ij}, the jth

column vector of Q+,

s̃q =
∑
j

Q+
ijqj =

∑
i

qiQ
∗
i (13)

The inner product of vectors Qi with vectors Q∗j defines a
matrix

Qi ·Q∗j =
∑
k

QikQ
+
kj (14)

= QQ+ = I = δij . (15)
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The equivalence to the identity follows because Q has full row
rank. {Q∗i } is therefore a dual basis for {Qi}. In the current
context Q+ are referred to as the dual sound fields to the DFs
Q. The space spanned by the dual basis will be called

SQ∗ ⊆ S . (16)

The subspaces SQ∗ and S∗Q are dual to one another. The space
of sound fields S can be written as an orthogonal inner direct
sum of SQ∗ and the null space SQ0

= {s : Qs = 0}:

S = SQ∗ ⊕ SQ0
, (17)

since any sound field can be written as s = s̃q+(s−s̃q), where
q = Qs, s̃q ∈ SQ∗ and (s− s̃q) ∈ SQ0 ( since Q(s− s̃q) =
q − q = 0 ).

Fig. 2 illustrates this relationship and other quantities dis-
cussed below. From the estimate s̃q the corresponding estimate

0

S

s̃q

s

s̃rSQ0

SQ∗

SR∗

b

b

b

b

Fig. 2: Illustration of relationships between quantities in the
sound field space S. The view is normal to the plane of s̃q
and s̃r. s may be out of the plane.

for r is
r̃ = Rs̃q = RQ+q (18)

RQ+ is then the transcoding / decoding matrix from signals
q to r̃. If there exists a DF in R that is proportional with a
DF in Q, Rk = αQi, then signal rk can be recovered exactly,
as we would hope: From (18) r̃k = αQiQ

+q = αqi, since
QQ+ = I , so r̃k = rk.

B. Relation To Existing Decoding Methods

The sound fields can be approximated using the truncated
FBE, instead of the sampled HE. The FBE encodes the sound
field information with a set of coefficients or signals {yi},
described in equation (3). An HE is converted to an FBE using
(6),

y = Y s (19)

which can be interpreted as a set of microphones Y acting on
s. Substituting Y for Q in (18) gives

r̃ = RY +y (20)

This can be viewed as the microphone equation r = Rs
rewritten in terms the FBE, so r̃ = RY y, with microphones
RY = RY +

RY + is equivalent to an Ambisonic decoding matrix based
on defined panning functions R arrived at by previous au-
thors5;11. Batke11 chooses R to be the panning functions that
arise in VBAP, providing a way to decode an Ambisonic
encoding as if the component sounds were individually panned
using VBAP. In the AllRAD14 Ambisonic decoding method
VBAP is also used. The method first decodes onto a regular
virtual array. Each virtual feed is then panned onto the
actual array using VBAP. This is equivalent to applying the
output of the virtual array to virtual microphones defined by
VBAP, and can be written using the same form as (20). If a
spherical design array is used, as proposed for AllRAD, then
Y Y H = I , so that Y + = Y H(Y Y H)−1 = Y H , and the
decoding matrix in (20) can be simplified to RY H .

To reduce computation RY + can be pre-calculated. In a
listener position adaptive system30, the VBAP panning matrix
R is updated when the listener changes position relative to
the loudspeaker array, and then RY + should be recalculated.

C. Transforming Encodings

Within an object-based context it may be useful to transform
a scene object at the reproduction point, which should be
done as efficiently as possible. Transformations might include
moving the central direction of the object, rotating about this
direction, and spreading the object. It may be convenient to
include metadata with the object to set initial transformations.
The central direction, and rotation about this direction, can
be transformed by rotating the DFs Q used in (18). If Θ is a
rotation acting on a column vector microphone then the micro-
phones Q rotated are QΘT , and ΘT = ΘH = Θ+ = Θ−1

(each microphone is a row vector in Q). Consequently Q+ is
(QΘT )+ = ΘQ+, using the unitarity of Θ. The transcoding
matrix is RΘQ+. The last form allows the pseudoinverse to
be precalculated rather than calculated after manipulation at
the reproduction point. Direct rotation in S∗ or S is not very
convenient. One approach is to oversample the DF then rotate
using linear interpolation. If the DF is already oversampled
this reduces computational cost, but requires more space.
Another approach is to generate an intermediate FBE, with
signals y = Y Q+q, for which the transcoding matrix is
RY +ΘY Y Q

+, where ΘY is the rotation in a form that
acts on the FBE signals y. Y Q+ can be pre-calculated for
efficiency, and ΘY can be calculated efficiently using an
iterative process. If the DFs are approximated well using less
than the maximum order represented by y then the rotation can
be speeded up by restricting to the this order. To further save
computation it may be worthwhile to pre-encode the scene
object using the significant signals in y rather than q, provided
the number of encoded signals is not significantly increased.
More general spatial transformations can be incorporated in
this framework31.

D. Sub-scene Object Encoding / Decoding with Examples

The existing decoding methods referred to in Section III-B
act on encodings of an entire sound field, based either on the
sampled HE or truncated FBE. The FBE encoding is often
used to provide a background sound field, or bed, that spans
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(b) Q, w = 360◦, a = 1.0
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(d) Q, w = 360◦, a = 0.5
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Fig. 3: Directivity patterns for various microphones, Q, and dual sound fields Q+ .
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(b) Q+Q, w = 360◦, a = 1.0
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(c) QHQ, w = 360◦, a = 1.0.
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Fig. 4: Sound field estimates from encoded plane waves. Also shown are the target direction and the estimated overall direction.
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all directions. It may also be useful to use a sub-scene object
that is focused in a particular range of directions. For example
Stereo recordings obtained with crossed pair of microphones
are very common. If we wish to transmit only part of a scene
it could be costly to transmit the channels required for a full
scene.

Sub-scene encodings can be produced either directly from
microphones that are focused in one region, or by panning
source signals. Sub-scene encodings can also be extracted from
high order microphone signals by using (18) where in this case
R are the sub-scene DFs, andQ are the high order microphone
directivities.

The spatial information of a Stereo encoding is focused
around the line between the microphone directions. To encode
spatial information across a region, rather than a line, requires
a minimum of 3 signals, using DFs that are directed to the cor-
ners of a triangle, rather than a line. In the following examples
some general features of sub-scene decoding will be illustrated
using Stereo decoded to a 2-dimensional loudspeaker array.

Equation (18) can be applied as a sub-scene decoder RQ+

where R are the loudspeaker panning functions and Q are
the sub-scene DFs. This will also be compared with two other
naive decoding approaches. In the virtual stereo loudspeaker
approach, the signals q are panned discretely using R in the
directions given by stereo loudspeaker positions. The decoding
function can be written as RV , where the columns of V are
delta vectors. It is not clear how optimal this reproduction
is however, since it does not take into account the particular
directivites Q, nor does it make full use of the loudspeaker
array to reproduce directions encoded by Q. Another naive
approach is to replace the dual sound fields Q+ in (18) with
QH . In other words the sound field driven by each encoded
signal is equal to the DF for that signal. All three decoding
methods use prescribed loudspeaker panning functions R.

In the following examples several microphone directivities
are used that have different degrees of overlap and shape.
These are based on variations of the general cardioid, and
have the form

Q(θ) =


1

(1+a) (a+ cos((θ − θc) 2π
w ), if |θ − θc| < w/2,

2π − |θ − θc| < w/2

0, otherwise
(21)

where θc is the angle of the beam centre, w is the beam width
angle, a = 1 for a cardioid type shape (2π − |θ − θc| <
w/2 catches the case where the beam crosses θ = 0). A pure
cardioid response is given by a = 1, w = 2π, a hyper-cardioid
by 0 < a < 1, w = 2π, and figure of eight (velocity) response
by a = 0, w = 2π. The angle variables in the formula use
radians. They will be quoted in degrees when indicated by the
degree symbol ◦.

The encodings are decoded to a hexagonal 6 channel array
using standard tangent law pairwise panning functions, which
are equivalent to 2D Vector Base Panning (VBAP)16. This
panning function is chosen because of it provides images that
are well localised and robust to listener location. The tangent

law, arranged for the ratio of a pair of loudspeaker gains is,

g1

g2
=

tan θ0 + tan θ

tan θ0 − tan θ
(22)

where 2θ0 is the angle between the loudspeakers and θ is the
angle of the desired image relative to the direction midway
between the loudspeakers. The final gains are calculated by
applying a normalisation g2

1 + g2
2 = 1.

As outlined in Section I, for a decoder that has prescribed
loudspeaker panning functions, the overall performance can
be separated into the performance of this panner R, and
the performance of the function driving the panner, either
Q+, QH or V in this study. The focus in this section
is on the performance of the function driving the panner.
The performance of loudspeaker panners has been studied
extensively.

The approximation introduced by the encoding process is
measured by comparing the estimated sound field with the
sound field that is encoded. For the proposed decoder RQ+,
the estimated sound field is Q+q = Q+Qs. Each column
of Q+Q is then the estimated sound field for a single plane
wave. The closer Q+Q is to the identity I , the identity, the
more accurate is the estimated sound field.

To begin we check that the decoder RQ+ is consistent with
the trivial decoding for the ideal Stereo system. In this the DFs
for the encoded stereo signals are the same as the loudspeaker
panning functions, and the loudspeaker feeds are equal to the
stereo signals. In this case R = Q, and the feeds are then
r̃ = QQ+q = q, equal to the stereo signals as required.
The same applies for any encoding - decoding system where
R = Q.

If the non-zero regions of the encoding microphone directiv-
ity functions do not overlap then they are orthogonal, and the
dual sound fields Q+ have the same shape as the encoding
microphones. This is seen in the first example where two
microphones are encoded with a w = 90◦ and separated by
90◦, as shown in Fig. 3a.

Fig. 4a plots Q+Q, the transfer matrix from the desired
sound field to the estimated sound field via the microphone
channels. Reading the plot vertically for one horizontal posi-
tion in the plot gives the estimated sound field for a single
encoded plane wave. If the transfer were ideal then the matrix
would be the identity, as shown by the dashed line. In Fig. 4a
there are two isolated diffuse regions. This does not take into
account the psychoacoustics of the reproduction matrix R on
the overall spatial effect, however it does provide a useful
view of the quality of spatial information being fed into the
reproduction stage.

For each encoded plane wave an overall estimated direction
is calculated by finding the absolute maximum of each es-
timated sound field in Q+Q, and comparing with the ideal
case where the estimate direction is equal to the encoded
wave direction. These are included in Fig. 4b. The maximum
is representative because the sound field directivities are
symmetrical about the maximum direction for these examples.
The estimated direction is unreliable for plane wave directions
where the estimated sound field is weak and diffuse.
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The case w = 360◦ corresponds to pure cardioid response.
The cardioid configuration shown in Fig. 3b is common in
Stereo microphones, with significant overlap of the DFs. The
dual sound fields shown in Fig. 3c are differentiated from the
microphone directivities, with significant negative lobes (The
factor J

2π , where J is the number of plane wave direction
samples, makes the scale equal with the integral definition of
sound field (1), prior to discretisation

The corresponding sound field estimate for encoded plane
waves Fig. 4b shows agreement with the identity across a
continuous range, with a varying degree of blur. The range
extends outside the (−45,+45)◦ range of the central encoding
microphone directions. There is some relatively low level
negative gain in this plot. If it were required as part of the
overall strategy that there were no negative gains or reduced
negative gains in Q+Q then this could possibly be built into
the calculation of the pseudo inverse Q+.

Using the naive decoder RQH , the sound field estimates
for plane waves are QHQ, and are less defined and accurate
compared with those of Q+Q, Fig. 4c.

For the virtual loudspeaker approach the decoder is RV .
Then V Q gives the mapping from measured plane wave
to estimated sound field, Fig. 4d. This is non-zero across
two horizontal lines, separated by a wide gap. Although the
estimated direction is reasonable, the gap implies the image
may be unstable or blurred. Stereo images quickly become
more unstable as the loudspeaker separation increases beyond
60◦.

For a hypercardioid response with a = 0.5 (Fig. 3d), the
spatial encoding measured by Q+Q (Fig. 4e) is improved
when compared with the cardioid mics (Fig. 4b). .,. The
decoding method is based on the assumption of equal weight
for errors in all directions. However a sub-region encoding is
only useful for a limited range of directions, and so we know a
priori that sound field energy is not required for reproduction
in directions away from this (ignoring complications of low
order Ambisonics at low frequency). A simple way to address
this is to apply zero gain in the reverse directions in (Fig. 3d),
providing a small improvement in reproduction. Another pos-
sible approach would be to apply spatial regularisation in the
sound field estimation process, adding greater weight to the
cost of reverse reproduction.

E. Averaged Signal Estimate Error

The signal estimate error ‖r̃ − r‖, based on (18), depends
on the unknown sound field. However we can calculate an
overall signal error estimate by averaging over a set of
representative sound fields. The norm of the sound fields must
be limited otherwise the error is unbounded. Here we consider
the average over plane waves {si} of fixed amplitude in all
directions, defined by si(k̂j) = δij . In terms of the sound field
s the signal estimate is

r̃ = RQ+q = RQ+Qs = R̃s (23)

with the definition R̃ = RQ+Q.

Ignoring overall normalisation, the averaged signal error is√∑
i

‖r̃(si)− r(si)‖2 (24)

=

√∑
i,j,k

|(R̃kj −Rkj)si(k̂j)|2 (25)

=

√∑
k,i

|R̃ki −Rki|2 = ‖R̃−R‖ , (26)

which is the Frobenius norm of the matrix R̃ − R. Further
more the estimator R̃ = RQ+Q gives the lowest total error
‖R̃ − R‖ of all the possible estimators R̃ ∈ S∗Q. This is
because RQ+Q is the projection of the DFs Ri onto S∗Q, and
so for each i RiQ

+Q is the closest DF in S∗Q to Ri. This is
emphasised in the next section by writing the subscript Q in
R̃Q = RQ+Q. In summary, the signal estimates r̃ = RQ+q
are optimal in this averaged sense.

F. Listening test

A listening test was created to compare reproduction using
the decoder based on (18), labeled RQ, with virtual stereo
reproduction, labeled VL. For both conditions the stereo
encoding used was produced using a simulated crossed pair of
hypercardioid microphones, with a = 0.5 and separation 90◦.
The position of the virtual stereo loudspeakers was at ±30◦

relative to the listener. A third condition was included as a
reference, consisting of reproduction by discrete panning of
images (labeled VBAP).

A 7.0 horizontal array was used with loudspeaker positioned
at 0◦,±30◦,±90◦,±135◦., in a room measuring 3 x 4 m, and
meeting the acoustic conditions specified by ITU-R BS 1116-
132. For each condition 3 images were reproduced, a stream
located at 50◦, a woman’s voice at 0◦, and a violin at −50◦.

Eight subjects participated in the experiment. All had
some experience with audio engineering, and reported normal
hearing. Each subject was provided with a keyboard, with
which they can select between four short repeating sounds by
pressing number keys, and toggle playback using the space
key. The sounds could be listened to in any order as many
times as required to reach a decision. The first sound was
the reference, and the remaining three sounds were the two
conditions and the reference, hidden, in random order. The
subject was asked to rate each condition on a scale from
1 (worst) to 10 (best), for two criteria. First according to
the overall image localisation, with the listener at the central
listening position, and secondly according to stability of image
localisation to movement of the listener about the central
listening position. The reference is prescribed a score of 10
for both variables.

Two subjects scored the hidden reference lower than the
reference for both variables, however all scores were retained.
Boxplots from the results are shown in Fig. 5. At first glance
these indicate a clear ranking between the conditions.
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Fig. 5: Boxplots of scores for localisation and stability, for
three conditions: virtual loudspeaker (VL), decoder (RQ), and
discrete panning (VBAP).

The significance of the apparent rankings was tested statis-
tically. Using a paired t-test33, the p-values for comparison of
localisation scores for pairs of conditions are:

VL, RQ p = 0.0234

RQ, VBAP p = 0.0006

The t-test p-values for comparison of stability scores for
pairs of conditions are:

VL, RQ p = 0.0052

RQ, VBAP p = 0.0022

Since the sample is small and normal distribution is an
assumption of the t-test, the scores were also tested using
binomial test33 on the rank of pairs of scores. The p-values
for localisation are:

VL, RQ p = 0.0352

RQ, VBAP p = 0.0352

The binomial p-values for stability pair rank are:

VL, RQ p = 0.0352

RQ, VBAP p = 0.0352

Even though the sample is small, the p-values suggest the
means of the underlying populations, for both variables, are
ranked in the order VL < RQ < VBAP. Furthermore, the mean
scores for RQ are positioned roughly midway between VL and
VBAP. To this extent the original goal of improved sub-scene
decoding has been met. Clearly many other scenarios can be
investigated.

Comments by subjects indicate that RQ and VBAP repro-
duced the lateral images more accurately than VL, for which
images were more restricted in range. Also the stability of
the central image was less for VL: For VBAP this image is
produced by the central loudspeaker, and for RQ the central
loudspeaker contributes. However the lateral images produced
by VL were stable since they were each focused on one
loudspeaker. The images produced by RQ were all blurred to
some extent because they all used two or more loudspeakers.
In this respect the comparison with VL is less straightforward,
and in retrospect could also be tested for.

IV. FINDING AN OPTIMAL REDUCED ENCODING

Given a set of DFs, it may be useful to find a smaller set of
DFs so that the encoding can be reduced to a smaller encoding
from which the original can be reconstructed. The reduction
may be desirable because transmission is required over a lower
bandwidth channel, or when several possibly overlapping sets
are combined. The goal then is to find the reduced set for
which the original signals can be reconstructed as well as
possible.

A. Theory
The reduced DF set will be chosen to minimise the dif-

ference between the signals from the original DFs and their
estimates derived from the reduced DF signals, averaging over
all plane waves. So, given N DFs Q, how should M DFs B
with M < N be chosen to minimise the total estimated signal
error, ‖q̃ − q‖, over all plane waves, where q̃ = QB+b,
b = Bs?

The discussion leading from (24) has shown that the best es-
timate for DFsQ, constructed from DFsB, is Q̃B = QB+B,
with average error ‖Q̃B−Q‖. Hence the problem is equivalent
to finding the value B giving the least error for estimates Q̃B ,

BQ = arg minB(‖Q̃B −Q‖) (27)

which is the DF set, spanning S∗B ⊆ S∗, that minimises the
overall distance from S∗B to the vectors {Qi}, illustrated in
Fig. 6. The optimum set is not unique, since any basis for S∗B
provides an alternative set.

0

S∗

Q1 Q2

Q3

b
b

b

Q̃3

Q̃2

Q̃1

b

S∗
B

Fig. 6: Choice of S∗B in S∗ minimising distance from mics
Q.

Singular Value Decomposition (SVD) solves this problem
directly27: Given mics Q, SVD provides unitary U ,V and
diagonal Σ such that

Q = UΣV H (28)

and the diagonal entries of Σ, the singular values, are real
valued, non-negative, and ordered by decreasing size, V H the
complex conjugate of V . Then a solution to (27) is given by

BQ =
[
V H

]
M

(29)

denoting the restriction of V H to the first M rows, which form
an orthonormal basis, with the most significant vector first. The
projection of Q into the space spanned by basis DFs BQ is

Q̃ = QBH
QBQ (30)
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(b) Q̃, projected
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(c) Q̄, projected and power corrected
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(d) Q̄, pre-weighted, projected and
power corrected
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(e) Q̄, pre-weighted with front empha-
sis, projected and power corrected
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Fig. 7: Polar plots of panning functions for a 2D 7-loudspeaker array, targets Q, and reconstructed Q̃, Q̄.

(a) BQ for target microphones Q, Fig. 7a (b) BQ for front weighted target microphones Q, Fig. 7e

Fig. 8: Polar plots of basis panning functions BQ, ordered left to right, from the top, most significant first. Dashed lines
indicate negative values.

where BH
QBQ is a projection operator, since BQB

H
Q = I by

orthonormality of BQ. Furthermore BH
Q = B+

Q as BQ has
full row rank. The projection can also be evaluated as

Q̃ = [UΣ]
M
BQ (31)

where [UΣ]
M is the restriction of UΣ to the first M columns.

Finally, the reduced signals are given by

b = BQQ
+q , (32)

and to reproduce estimates of the original signals from the
encoded signals,

q̃ = QBH
Qb . (33)

B. An Example

Fig. 7a shows panning functions Q for a 2D 7-loudspeaker
array, of the type used in 7.0 reproduction systems. The
panning functions are derived from the tangent law (22),
used previously. In this case the panning function for each
loudspeaker is asymmetric because each is comprised of two
neighbouring pair-wise panning segments of differing angular
extent. In practice a set of 7.0 channel signals may not be
obtainable strictly using these panning functions or similar,
but it is likely to be close.

The method of the previous section is applied to find
an encoding with less than 7 signals. The resulting basis
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panning functions BQ are shown in Fig. 8a. These resemble
distorted 2D harmonics. Interestingly, if the number of panning
functions Q are increased and arranged uniformly, then BQ

converge on 2D circular harmonic functions.
Using just the first five of the basis panning functions, the

projected panning functions Q̃ resemble the original functions
Q, with some expected distortions (Fig. 7b).

C. Power Correction

In Fig. 7b the panning functions, especially the narrower
ones, are broadened in comparison with the originals. Even
taking this into account there is a non-uniform change of
relative power ‖Q̃i/Qi‖2 The subspace S∗B is drawn closer
to the more powerful Qi that have greater ‖Qi‖. The power
balance can be restored by applying gain to the projected DFs
to form new encoding DFs Q̄i that all have the same power
as the originals,

Q̄i = Q̃i
‖Qi‖
‖Q̃i‖

(34)

The panning functions Q̄i are shown in Fig. 7c.
This process is not ideal. Q̄ will not in general have the least

error among constant power DFs. For this the SVD process
would need to be replaced by an optimisation that has the equal
power constraint built in, and this is not so easy to obtain in
a simple form.

D. Detailed Error

The remaining error between Q̄i and Qi is due to difference
of shape. This can be measured in detail by subtracting them
first. The detailed relative power error is defined as

εi = ‖Q̄i −Qi‖/‖Qi‖ (35)

The values of εi for each loudspeaker angular position are:

0◦ 0.32

30◦, 330◦ 0.16

90◦, 270◦ 0.11

135◦, 225◦ 0.06

Detailed error for the centre loudspeaker panning function
is particularly significant, as this is the most important channel
in 7.0 reproduction.

E. Weighting Between DFs

The less powerful DFs suffer greater detailed error εi. This
is because the error function in (27) is a sum across all the
DF error, so less power DFs carry relatively less weight. Pre-
emphasising the less powerful DFs should give more uniform
detailed error. This can be achieved by pre-weighting the DFs
before calculating the basis using SVD,

UΣV ∗ = ∆Q (36)

where ∆ = diag(δi). Increasing the weight δi for each DF
will reduce the error ‖Q̃i−Qi‖ for each DF Q̃i approximated
using the optimised DF set BQ. Appropriate weights for

balancing the strengths of the DFs are given by the inverse
of the DF lengths,

δi =
1

‖Qi‖
(37)

The resulting projected DFs, carry the emphasis forward.
This is rebalanced by power correction, as before. The results
are shown in Fig. 7d

The corresponding detailed errors εi for each loudspeaker
angular position are:

0◦ 0.10

30◦, 330◦ 0.14

90◦, 270◦ 0.13

135◦, 225◦ 0.12

which shows are much more even spread of error, compared
with the previous errors without pre-weighting.

Pre-weights can be increased further to selectively boost
the accuracy of some reconstructed DFs at the expense of
others. For example the front stage is usually more important
for the listener, so the accuracy should be increased at the
front. Combining several DF sets that are each normally used
separately, it may be useful to assign a weight to each set
reflecting its relative importance. The following additional
pre-weight factors were applied to each Qi identified by
loudspeaker angular position:

0◦ 1.6

30◦, 330◦ 1.6

90◦, 270◦ 1.2

135◦, 225◦ 1.0

The basis functions for this case, shown in Fig. 8b, reflect
the increased significance of the front panning functions.
Fig. 7e shows that the resulting panning functions are much
closer to the target functions, Fig. 7a, where they have been
pre-emphasized.

The detailed errors εi for each loudspeaker angular position
are :

0◦ 0.02

30◦, 330◦ 0.04

90◦, 270◦ 0.20

135◦, 225◦ 0.27

The error for the front panning functions at 0◦, 30◦, 330◦

is low enough that the perceptual difference from the target
would be very small. For the other panning functions, at the
sides and rear, the errors are small enough that the perceptual
difference is expected to be small, especially for diffuse sound
sources that are typically applied in those regions.

An advantage of this method over using an Ambisonic
encoding with harmonic panning functions is that some of
the encoding functions can be made as close as desired to the
target functions, using only a few channels. This is because
the basis set, BQ, transforms according to the pre-emphasis
applied, and is not fixed. This is particularly useful where the
target panning functions are of varying widths or importance.
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F. Direction Weighting

An alternative approach is to weight by direction within
DFs, rather than weight between DFs. This is possible by
transforming to a weighted sound field description before
calculating the basis, then unweighting the sound field after
calculating the projected DFs. Using SVD we find U , Σ and
V H such that

QΛ = UΣV H (38)

with weights Λ = diag(λi), with larger entries emphasising
the importance of the corresponding direction. This has the
equivalent effect to applying a weight to the sum over direction
in (24). The DF estimates are then formed by unweighting the
projections,

Q̃ = QB∗QBQΛ−1 (39)

DF and direction weighting can be combined in the SVD
decomposition,

∆QΛ = UΣV ∗ (40)

Yet another emphasis method is to sample the directivity
functions Qi(k̃) with a non-uniform set of directions {ki},
which can be considered as a form of pre-warping. The error
‖Q̃i−Qi‖ is then reduced for regions that are relatively more
densely sampled. Further details are not considered here.

V. CONCLUSIONS

A framework was presented for representing sound fields,
microphone directivity functions and panning functions, and
the resulting signals. A method was found for converting sig-
nals from one directivity set to another, based on intermediate
estimation of the sound field. This is compatible with conven-
tional decoding methods including Stereo and Ambisonics, and
allows the decoding of general scene encodings, including sub-
scenes, to arbitrary loudspeaker arrays in a rational manner. It
was shown how some existing Ambisonic decoding methods
are included as particular cases. An important general feature
is that the psychoacoustical content of the loudspeaker pan-
ning functions is separated from the process of mapping the
encoding functions on to the panning functions.

The overlap between encoding directivity functions allows
channel signals to be compressed into fewer channels and
restored approximately. While this causes some loss of spatial
accuracy, it is a linear process, so the temporal fine structure of
the signals is preserved. Weighting can be used to distribute
spatial encoding accuracy non-uniformly in the compressed
signals.

The work was motivated initially by the need to develop
better representations and reproduction methods for object
based audio. Sub-scenes are a way to encode complex sources
or create scene building blocks that minimize channel count to
practical levels. These ideas, and others, will be incorporated
in production and reproduction tools that are currently in
development. It will then be possible to further evaluate and
develop the methods within a working end to end environ-
ment. All data supporting this study are openly available via
https://doi.org/10.5258/SOTON/D0200.
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