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Homological finiteness conditions for a class of metabelian groups

P. H. Kropholler and J. P. Mullaney

Abstract
We generalize a theorem of Groves and Kochloukova concerning cohomological finiteness conditions
for metabelian groups in order to encompass a classical example of Baumslag and Stammbach. More
precisely we shall show that for any natural number n and indeterminate x, the group of 2 × 2 matrices
generated by (

1 0
1 1

)
,

(
x 0
0 1

)
,

(
n! 0
0 1

)
,

(
i+ x 0

0 1

)
for i = 1, . . . , n is of type FPn+1 but not of type FPn+2, thus providing evidence in favour of the Bieri–
Groves FPm-conjecture. These examples are amongst the simplest known examples of torsion-free
metabelian groups of their kind.

Work of Kochloukova and Groves [17] establishes the Bieri–Groves FPm conjecture in some
important special cases. We were motivated by wishing to extend these results to some examples
of Baumslag, Kropholler, and Stammbach [2, 5, 19]. These examples are described in Section 2
below. The Kochloukova–Groves work does not quite fit the new context and the purpose of this
paper is to show that this issue can be addressed by making some adjustments to the Kochloukova–
Groves strategy. As a result, this paper follows theirs very closely, but in view of the elegance of
the examples we believe it is important that this research be recorded.

1. The Background and some Historical Remarks

It was the work of Baumslag and Remeslennikov in the 1970s which suggested that the theory
of finitely presented soluble groups might be richer than once thought. For example, it was
demonstrated in [2] that there exists a finitely presented metabelian group with a free abelian
derived group of infinite rank. Remeslennikov [21] found the same example independently. This
could be compared with the fact, proved in [3], that every finitely generated metabelian group
can be embedded in a finitely presented metabelian group. Recall that a group G is said to be
metabelian if there exists a short exact sequence

A ↪→ G� Q (1.1)
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of groups with A and Q abelian. Hence metabelian groups are precisely the soluble groups of derived
length two.

The group G is finitely generated if and only if Q is a finitely generated group and A is finitely
generated as a ZQ-module via conjugation, and we will assume from now on that G is finitely
generated.

In 1980 Bieri and Strebel [13] characterized finitely presented metabelian groups in terms of
the invariant ΣA. This is defined in the following way. A character of Q is a non-zero group
homomorphism v : Q→ R; two characters are equivalent if they are positive real multiples of each
other. The set S(Q) of all equivalence classes [v] of characters of Q can be identified with the unit
sphere Sn−1 ⊂ Rn ∼= Hom(Q,R), where n is the Z-rank of Q. Let Qv = {q ∈ Q : v(q) ≥ 0}. This
is a monoid, so we can form the monoid ring ZQv. We then associate to every finitely generated
ZQ-module A the set

ΣA = {[v] ∈ S(Q) : A is finitely generated as a ZQv-module }.

The ZQ-module A is then said to be m-tame if every m-point subset of ΣcA = S(Q) \ ΣA lies in an
open hemisphere of S(Q). Equivalently, v1 + . . .+ vm 6= 0 for any [v1], . . . , [vm] ∈ ΣcA.

A group G is said to be of type FPm if there is a ZG-projective resolution of the trivial module Z
where the modules are finitely generated in dimensions ≤ m. In particular a group is of type FP1 if
and only if it is itself finitely generated. Bieri and Strebel [13] proved that the properties of being of
type FP2 and being finitely presented are equivalent for metabelian groups. It is not known whether
this is true for all soluble groups, but it is certainly not true for groups in general: for example,
the right-angled Artin groups in [6] are of type FP2 but not finitely presented. In addition, Bieri
and Strebel showed that G is finitely presented if and only if the corresponding ZQ-module A is
2-tame. These results led to the FPm-conjecture of Bieri and Groves.

The FPm-Conjecture [9]. Suppose we have the short exact sequence (1.1) and let m be a
positive integer. Then G is of type FPm if and only if A is m-tame as a ZQ-module.

Both directions of the FPm conjecture remain open for m > 2 but a number of specific cases have
been proved. In [9] it was shown that if G is of type FPm then A⊗ZK is m-tame as a KQ-module
for every field K. In [1] Hans Åberg established the full FPm-conjecture for the case where G has
finite Prüfer rank. Kochloukova [18] extended Åberg’s methods to show that the ‘only-if’ part of
the conjecture holds true if either the additive group of A is torsion or if G is the split extension of
A by Q.

In general the status of the conjecture for non-split extensions seems to be more delicate and more
technical than for split extensions, although as we shall see below, in many examples, there are few
non-split extensions to be found. In [18] it is shown that the full conjecture is true for the case
where A is torsion and of Krull dimension 1 as a ZQ-module. More recently Bieri and Harlander
[12] proved the FP3-conjecture for the case where G is the split extension of A by Q.
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2. The examples of Baumslag–Stammbach and the desired generalization of the
Groves–Kochloukova Theorem

Baumslag’s example [2] of a finitely presented metabelian group with a free abelian normal subgroup
of infinite rank was the group G1 generated by the 2× 2-matrices

a =

(
1 0
1 1

)
, s =

(
1 + x 0

0 1

)
, t =

(
x 0
0 1

)
over Q(x). This is a 3-generator 3-relator group with presentation

G1 = 〈a, s, t : [s, t] = [at, a] = 1, as = aat〉.

Fix a positive integer n > 1. To this group we add the generators(
n! 0
0 1

)
,

(
i+ x 0

0 1

)
for all 2 ≤ i ≤ n. Using methods similar to Baumslag’s it can be shown that the resulting metabelian
group Gn has a finite presentation and that its derived subgroup is torsion-free abelian of infinite
rank. We know that Gn is isomorphic to the split extension An oQn (and in fact by Theorem B
below, every extension of An by Qn is split), where

An = Z
[
x, x−1, (1 + x)−1, . . . , (n+ x)−1,

1

n!

]
and Qn is the free abelian group with basis {q−1, q0, q1, . . . , qn} and an action ◦ on An given
by

a ◦ q−1 = (n!)a, a ◦ q0 = xa, a ◦ q1 = (1 + x)a . . . a ◦ qn = (n+ x)a (2.1)

for all a ∈ A. This action turns An into a cyclic ZQn-module. Now An and Qn embed as subgroups
of Gn and so we can think of this action as conjugation in Gn by the fact that

(1, a ◦ q) = (q, 0)−1(1, a)(q, 0).

The ZQn-module An was first studied by Baumslag and Stammbach [5], who showed that the
exterior power

∧i
ZAn

∼= Hi(An,Z) is a non-free finitely generated ZQn-module for 1 ≤ i ≤ n, is
a free Z[1/n!]Qn-module of finite rank for i = n+ 1 and is free of infinite rank for i ≥ n+ 2. By
studying the action of Gn on a subcomplex of a product of trees indexed by a finite set of discrete
(i.e. image Z) characters of Gn we can show that Gn is a group of type FPn+1. In fact we prove a
more general result from which this can be deduced as a corollary.

Theorem A. Let Q = Q0 ×Q1 × . . .×Ql be a finitely generated free abelian group, where Q0 =
〈q−1〉 and Qi is a free abelian group with basis {qi,j}0≤j≤zi for 1 ≤ i ≤ l. Let A be a finitely
generated (right) ZQ-module and assume that the action of ZQ on A factors through an action of
a quotient M = M0 ⊗M1 ⊗ . . .⊗Ml, where Mi = ZQi/Ii, I0 = 〈q−1 − k〉 where k is some positive
integer and, for 1 ≤ i ≤ l, Ii is generated as an ideal by {qi,j − fi,j}0≤j≤zi , where for fixed i the fi,j
are irreducible non-constant monic polynomials in Z[qi,0] that are pairwise coprime in Z[qi,0, 1/k]
and fi,0 = qi,0. Assume further that A is free as an M -module. Then the split extension G of A by
Q is of type FPm, where m = min{rk(Qi) : 1 ≤ i ≤ l}.
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Corollary. The group Gn is of type FPn+1.

Proof. Note that no two of the polynomials x, 1 + x, . . . , n+ x generate a proper ideal in Z[x, 1/n!].
Take l = 1, z1 = n, q1,j = qj , f1,j = x+ j and k = n!. Then M = M0 ⊗M1

∼= An.

The method of our proof originated with Åberg [1] and closely follows that of a similar result by
Groves and Kochloukova [17, Theorem 5], of which ours is a generalization. In essence we have
taken their result and showed it to be true when we invert an appropriate integer k as well as
inverting a set of polynomials that are pairwise coprime (in the sense that no two of them lie in
a proper ideal of Z[qi,0, 1/k].) The set of characters that we choose in our proof has the property
that the set of equivalence classes of the restrictions of each character to Q is contained in ΣcA.
After constructing a G-tree for each character, and taking the product X of these, we prove three
properties of an appropriate subspace Y of X:

(i) G acts co-compactly on Y ;
(ii) Y is (m− 1)-connected;
(iii) the stabilizers in G of cells in Y are of type FPm.

That G is of type FPm is then implied by a criterion of Brown [15]. Hence the group Gn is of type
FPn+1. It follows from Kochloukova’s ‘only if’ result [18] that An is (n+ 1)-tame as a ZQn-module,
but by our choice of characters we see that it is not (n+ 2)-tame and so Gn is not of type FPn+2.
In this way we have further evidence that the FPm-conjecture may be true.

It is desirable to have a direct proof of the tameness of An and this will be the subject of a separate
paper.

One consequence of the Bieri-Strebel theorems is that whether or not a metabelian group G is
finitely presented depends only upon the Q-module A, and not on the extension class in H2(Q,A). In
particular, G is finitely presented if and only if the split extension AoQ is finitely presented. Using
the Lyndon-Hochschild-Serre spectral sequence we have been able to show that H2(Qn, An) = 0 and
so every extension of An by Qn is split. In general we have the following.

Theorem B. Let A, Q and the positive integer k be as in Theorem A with l = 1, and let z1 = n,
q1,j = qj and f1,j = fj . Then H2(Q,A) is cyclic of order dividing k − 1. In the special case of An
and Qn, the cohomology group vanishes.

3. The set V of characters and the space Y

From now on we are in the situation described in Theorem A. We shall write qj for q1,j , fj for f1,j
and z1 = n so that Q1 has rank n+ 1. Hence n+ 1 ≥ m. Let M̃ = M0 ⊗M1; then

M̃ ∼= Z
[
q0, q0

−1, f−11 , . . . , f−1n , k−1
]

where qj acts as multiplication by fj for j ≥ 1 and q−1 acts as multiplication by the positive integer

k. Let Q̃ = Q0 ×Q1 and let φ : ZQ̃→ M̃ be the ring homomorphism sending q−1 to k and qi to fi
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for 0 ≤ i ≤ n. The restriction of φ to Q̃ is a group homomorphism τ from the free abelian group Q̃
to the group of units (M̃)× of M̃ . Crucially, τ is injective, so we may identify Q̃ with its isomorphic

copy in (M̃)×. We shall think of M̃ as a subring of the field of rational functions Q(q0).

Definition 3.1. Let R be a non-trivial commutative ring and let R∞ denote the set of real
numbers together with an additional point∞. Then a valuation on R is a map v : R→ R∞ satisfying
v(0) =∞, v(1) = 0, v(ab) = v(a) + v(b) and v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ R.

We then define vi, for each 0 ≤ i ≤ n, to be the fi-adic valuation on Q(q0); that is, the unique
valuation on Q(q0) that is zero on Q \ {0} and satisfies vi(fi) = 1 . In addition we define, for
polynomials g, h ∈ Z[q0],

v∗(g/h) = deg(h)− deg(g)

and it is easily seen that this too is a valuation. So v∗ and the vi are group homomorphisms into
the group of rational integers Z and their restrictions to Q̃ provide us with a set V of n+ 2 discrete
characters of Q̃. If in addition we define v(Qi) = 0 when i > 1 for each v ∈ V then we get a set of
discrete characters of the group Q. Note that v(Q0) = 0. Each v ∈ V can be extended to a character
of G via composition with the natural projection π : G� Q.

Using the methods of Groves and Kochloukova in [17] one constructs a tree Γv corresponding to
each v ∈ V . This tree is equipped with a map to R which is related to the valuation v : Q→ R.
Thus there is a map h : X → Rn+1 where X is the product of these trees and n = rk(Q1)− 1. In
their reasoning, Groves and Kochloukova introduce an integer β, see [17, §4.1, Paragraph 3]. In our
context we need to set

β = −

(
2 +

n∑
i=0

di

)
where di = deg(fi). We must also choose a set of generators a1, . . . , ad of A as a Q-module that is
a basis of A as a free M -module. With this we have built n+ 2 trees Γv∗ ,Γv0 , . . . ,Γvn and from
these we can construct the Åberg CW-complex Y = h−1(W ) described in [17, §4.2], where W is
the subspace spanned by those elements of Rn+2 that arise as valuations of elements of Q1.

By showing that Y has the three properties

(i) [Cocompactness] G acts co-compactly on Y ;
(ii) [Connectivity] Y is (m− 1)-connected, that is Y is path connected and the homotopy
groups π1(Y ), . . . , πm−1(Y ) are trivial; and
(iii) [Homological Finiteness] the stabilizers in G of cells in Y are of type FPm

then Groves and Kochloukova can use the classical criterion of Brown.

Brown’s criterion ([15] Proposition 1.1). Let G be a group acting on a CW-complex Y via
permutation of the cells and such that for every cell the stabilizer of the cell fixes the vertices
pointwise. Assume further that Y is (m− 1)-acyclic, the stabilizers in G of cells of dimension i ≤ m
are always of type FPm−i and G acts co-compactly on Y . Then G is of homological type FPm.
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We reason in exactly the same way in this paper.

4. Cocompactness

Observe that W is the (n+ 1)-dimensional subspace

W = {(y−1, y0, y1, . . . , yn) ∈ Rn+2 : y−1 +

n∑
i=0

diyi = 0}.

Definition 4.1. For a subset B of
∏
v∈V R we define

[[B]] =

{∏
v∈V
dbve :

∏
v∈V

bv ∈ B

}
where dbve denotes the least integer greater than or equal to bv.

Lemma 4.2 ([17] Lemma 7). If
∏
v∈V sv ∈ [[W ]], then

0 ≤ sv∗ +

n∑
i=0

disvi < 1 +

n∑
i=0

di.

Hence Q acts co-finitely on [[W ]].

For v ∈ V let (Q1)v be the submonoid of Q1 of all elements q with v(q) ≥ 0 and let (M1)v be the
Z(Q1)v-submodule of M1 generated by the image of 1Q1 in M1.

Lemma 4.3 ([17] Lemma 6). For v ∈ V we have (M1)v = {m ∈M1 : v(m) ≥ 0}.

Theorem 4.4 (c.f. [17] Theorem 6). For every
∏
v∈V sv in [[W ]] and every set

{av ∈ A : v ∈ V }, there exists an element a ∈ A such that
∏
v∈V [(av, sv)] =

∏
v∈V [(a, sv)]. Con-

sequently for every
∏
v∈V rv ∈W such that [[

∏
v∈V rv]] =

∏
v∈V sv one has

∏
v∈V [(av, rv)] =∏

v∈V [(a, rv)].

Proof. By the same argument as Theorem 6 in [17], we find that, using Lemma 4.3, it will suffice
to find an a ∈ A such that v(a− av) ≥ 0 for each v.

Let F (q0) =
∏n
i=0 fi(q0). Then, for some t, we have F tav ∈ Z[q0] for every v ∈ {v0, v1, . . . , vn}.

Since the fi are all pairwise co-prime as elements of Z[q0, 1/k] we can apply the Chinese Remainder
Theorem for commutative rings to get a unique solution mod F tZ[q0, 1/k] to the congruences

a′ ≡ aviF t mod fi
tZ[q0, 1/k]
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for 0 ≤ i ≤ n. This a′ ∈ A must have degree less than that of F t. Set a = a′F−t. Then

vi(a− avi) = vi(a
′F−t − avi) = vi(F

−t(a′ − aviF t) = −t+ vi(a
′ − aviF t)

and since fi
t divides a′ − aviF t in Z[q0, 1/k] we have vi(a− avi) ≥ 0. Recall that aw = 0. Thus

v∗(a− aw) = v∗(a) = v∗(a
′F−t) = deg(F t)− deg(a′) > 0.

This completes the proof.

Theorem 4.5. The group G acts co-compactly on Y .

Proof. This follows from Theorem 4.4, using an argument identical to that of Theorem 7 in [17].

5. Connectivity

Lemma 5.1 ([17] Lemma 8). Every set of m elements of V lies in an open half-space of Hom(Q,R)

Therefore, using [1, Proposition III.3.3], we have:

Lemma 5.2. Y is (m− 1)-connected.

6. Homological Finiteness

It remains to show that if P is the stabilizer in G of a cell in Y then P is of type FPm. The following
lemma implies that it is enough to prove that the stabilizer of a vertex in X lying in h−1[[W ]] is of
type FPm.

Lemma 6.1 ([18] Lemma 2.9). If Γ is a cell of Y then the stabilizer of Γ in G coincides with the
stabilizer in G of a vertex of X lying in h−1([[W ]]).

By replicating the argument of Section 4.5 in [17] we can see that an element aq ∈ P if and only
if

a ∈ Av∗ ◦ qv∗sv∗+β ∩Av0 ◦ qv0β ∩ . . . ∩Avn ◦ qvnβ and q ∈ G(v) for all v ∈ V.
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The condition on q ∈ Q is satisfied precisely when q ∈ Ker v for all v, i.e. whenever q ∈ Q0 ×Q2 ×
. . .×Ql. Since A is free as an M -module it suffices to consider the case when A is cyclic as an M -
module, and so we can take A = M . Then b ∈ Av for all v 6= v∗ exactly if b ∈ Z[q0, 1/k]⊗M2 . . .⊗
Ml. Let q̃ = q0q1 . . . qn ∈ Q1. Then since a ∈

⋂
0≤i≤nAvi ◦ qviβ we have a ◦ (q̃)−β ∈ Avi for 0 ≤ i ≤ n

and so a ◦ (q̃)−β ∈ Z[q0, 1/k]⊗M2 . . .⊗Ml. Write the component of a ◦ (q̃)−β in Z[q0, 1/k] as g(q0).
Now

a ∈ Av∗ ◦ q0−(sv∗+β) ⊆ {b ∈ A : v∗(b) ≥ sv∗ + β}.

It follows that sv∗ + β
∑n
i=0 di ≤ v∗(a ◦ (q̃)−β) < 0, and so the degree of g(q0) is bounded above by

−(sv∗ + β
∑n
i=0 di) = d. Hence the component g(q0) ◦ (q̃)β of a that is a polynomial in Z[q0, 1/k] is

a Z-linear combination of the elements

(k)ljq0
j+βf1

β . . . fn
β

where 0 ≤ j ≤ d and the lj are the powers of k appearing in the monomials of g. Thus P ∩ M̃
is a free Z[1/k]-module of finite rank d+ 1 and so P ∩A = P ∩ (Z[q0, 1/k]⊗M2 ⊗ . . .⊗Ml) is a
finitely generated free M ′ = Z[1/k]⊗M2 ⊗ . . .⊗Ml-module. Hence, P is the split extension of a
free Z[1/k]⊗M2 ⊗ . . .⊗Ml-module by Q0 ×Q2 × . . .×Ql.

We now perform induction on l to show that P is always of type FPm and so G is of type FPm,
where m = min{rk(Qi) : 1 ≤ i ≤ l}.

Theorem 6.2. Every stabilizer P in G of a cell in the Åberg complex Y is of type FPm, and so
G is of type FPm.

Proof. First suppose l = 1. Then P is the split extension of a free Z[1/k]-module of finite rank d+ 1
by the infinite cyclic group Q0. Since the group Z[1/k] oQ0 has the presentation 〈x, t : t−1xt = xk〉
we deduce that P = (P ∩A) oQ0 has the presentation

〈H, t : t−1xit = xi
k for 0 ≤ i ≤ d 〉

where H = 〈x0, . . . , xd〉 is free abelian group of rank d+ 1. Hence P is an HNN-extension of H with
stable letter t, and the base group H and associated subgroups are free abelian of finite rank. It
follows from [7, Proposition 2.13(b)] that P is of type FP∞ and so is certainly of type FPm. Hence
by Brown’s criterion G is of type FPm.

We now assume that Theorem A holds when M ′ is a tensor product of Z[1/k] and l − 1 other
components. In particular then P is of type FPm′ , where m′ = min{rk(Qi) : 2 ≤ i ≤ l}, and so P
is of type FPm, since m ≤ m′. This completes the proof of Theorem A.

Hence we have proved that Gn is of type FPn+1. To see that this statement is sharp, we appeal to
[18, Theorem B] where it is proved that the ‘only if’ direction of the Bieri–Groves conjecture holds
in the split extension case. This implies that A is (n+ 1)-tame. However, using the fact that the vi
(as characters of Q) are restrictions of valuations, we deduce from [14, Theorem 2.1] that it is not
(n+ 2)-tame, since

v∗ + v0 + d1v1 + . . .+ dnvn = 0

and [v∗], [v0], . . . , [vn] ∈ ΣcA , and A 6= Av for all v ∈ V .
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7. Group extensions

Suppose we are in the l = 1 case of Theorem A, and write qj = q1,j , fj = f1,j and z1 = n. Suppose
also that A is a cyclic M -module; then A ∼= Z[q0, q

−1
0 , f−11 , . . . , f−1n , k−1]. We shall use the Lyndon-

Hochschild-Serre spectral sequence to calculate the second cohomology group H2(Q,A). First of all
note that we have a short exact sequence

〈q−1〉 = B −→ Q −→ C = 〈q0, q1, . . . , qn〉,

and recall that q−1 is acting as multiplication by the integer k. In the calculation below we assume
that k ≥ 2.

It is clear that H0(B,A) = 0. Since B is infinite cyclic Hn(B,A) = 0 for n ≥ 2, and H1(B,A) =
H0(B,A) = (Z/(k − 1)Z)[q0, q

−1
0 , f−11 , . . . , f−1n ]. In order to calculate H2(Q,A) we must first calcu-

late H1(C,H1(B,A)). We get another LHS-spectral sequence via the short exact sequence

〈q0〉 = X −→ C −→ C ′ = 〈q1, . . . , qn〉

and use the fact that q0 acts as multiplication by q0.

Now H0(X,H1(B,A)) = 0 since only the zero element in H1(B,A) is fixed under the action of X.
Moreover we have

H1(X,H1(B,A)) = H0(X,H1(B,A)) = (Z/(k − 1)Z)[f1(1)−1, . . . , fn(1)−1].

The group H1(C,H1(B,A)), and thus H2(Q,A), is then given by the fixed points in (Z/(k −
1)Z)[f1(1)−1, . . . , fn(1)−1] under the action of C ′, that is H0(C ′,Z/(k − 1)Z). In general it is cyclic
of order dividing k − 1. In the application to extensions of An by Qn, we have that k = n! and each
qi (i > 0) may be identified with an integer (specifically, the integer fi(1)) in such a way that qi − 1
divides n! (and hence qi − 1 becomes a unit modulo k − 1). Therefore in this case the cohomology
group vanishes and every extension of An by Qn is split.

Thus we have proved Theorem B: what this shows is that the delicacy of the FPm conjecture
for non-split extensions is further complicated by the difficulty of finding simple examples where
non-split extensions exist and can be used to test the theory.

7.1. Concluding Remark

We thank the referee for a very careful reading of this paper and for suggesting many
improvements.

References
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