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Introduction

Recall that the de-Rham cohomology H∗dR(X/k) of a smooth projective curve
X over an algebraically closed field k is defined as the hypercohomology of
the de-Rham complex

OX
d−→ ΩX

where d denotes the usual differential map f 7→ df . In particular, we have a
long exact sequence relating H∗dR(X/k) to ordinary cohomology of the struc-
ture sheaf OX and of the sheaf ΩX of differentials on X. The very general
and famous fact that the Hodge-de-Rham spectral sequence degenerates at
E1 (e.g., see [Wed08]) means for our curve X that the following main part of
that long sequence is a short exact sequence, see Propositon 2.1:

0→ H0(X,ΩX)→ H1
dR(X/k)→ H1(X,OX)→ 0.

We call this sequence the Hodge-de-Rham short exact sequence. In par-
ticular, the vector space H1

dR(X/k) is the direct sum of the vector spaces
H0(X,ΩX) and H1(X,OX) over k.

We now assume furthermore that a finite group G acts on our curve X.
If p := char(k) does not divide the order of G, Maschke’s Theorem implies
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that the Hodge-de-Rham short exact sequence also splits as a sequence of
modules over the group ring k[G].

However, the latter fact fails to be true in general when p > 0 does divide
ord(G). A counterexample has been constructed in the recent paper [Hor12]
by Hortsch. The main goal of this paper is to generalise that counterexam-
ple. More precisely, we will prove the following theorem, see Theorem 3.3
and Example 3.4.

Theorem. Let p ≥ 3 and let q(z) ∈ k[z] be a monic polynomial of odd
degree without repeated roots. Let X denote the hyperelliptic curve over k
defined by the equation y2 = q(xp − x) and let G denote the subgroup of
Aut(X) generated by the automorphism τ given by (x, y) 7→ (x+ 1, y). Then
the Hodge-de-Rham short exact sequence does not split as a sequence of k[G]-
modules.

We remark that the hyperelliptic curves considered in this theorem are
exactly those hyperelliptic curves y2 = f(x) which allow an automorphism
that maps x to x + 1 and for which f(x) is of odd degree, see Example 3.4
and Proposition 3.6.

When q(z) = z, the theorem above becomes the main theorem of [Hor12].
Beyond [Hor12], our theorem shows (see Remark 3.5) that, for every algebrai-
cally closed field k of characteristic p ≥ 3, there exist infinitely many g ≥ 2
and hyperelliptic curves X over k of genus g for which the Hodge-de-Rham
short exact sequence does not split equivariantly. It also shows that, for every
g ≥ 2, there exists a prime p ≥ 3 and hyperelliptic curves in characteristic p
of genus g for which the Hodge-de-Rham short exact sequence does not split
equivariantly.

In Example 3.8 and Remark 3.9 we show, using the modular curve X0(22)
for p = 3, that, without assuming the degree of q(x) to be odd, this theorem
may be false.

To prove our main theorem, we follow the same broad strategy as in
[Hor12]: we give an explicit basis of H1

dR(X/k) in terms of Čech cohomology
(in fact for an arbitrary hyperelliptic curve X), see Theorem 2.2, and study
the action of τ on that basis. The actual computations towards the end
however do not generalise those in [Hor12], see Remark 2.5 and Remark 3.7.

We provide a basis of H1
dR(X/k) for any hyperelliptic curve X also when

p = 2 and use this to show that the hyperelliptic involution acts trivially on
H1

dR(X/k) when p = 2. In fact, the hyperelliptic involution acts on H1
dR(X/k)
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by multiplication by −1 for all p, see Theorem 3.1.
If p = 2, Elkin and Pries construct a subtler basis of H1

dR(X/k) in [EP13]
which is suitable to study the action of Frobenius and Verschiebung and,
finally, to determine the Ekedahl-Oort type.

Acknowledgements. The authors would like to thank the referees for
carefully reading the paper and for their elaborate and helpful comments.

1 Preliminaries

In this section, we introduce assumptions and notations used throughout this
paper and collect and prove some auxiliary results.

We assume that k is an algebraically closed field of characteristic p ≥ 0
and that X is a hyperelliptic curve over k of genus g ≥ 2. We recall that
a curve (always assumed to be smooth, projective and irreducible in this
paper) is hyperelliptic if there exists a finite, separable morphism of degree
two from the curve to P1

k. We fix such a map

π : X → P1
k,

which is unique up to automorphisms of X and of P1
k (see [Liu02, Re-

mark 7.4.30]). Let K(X)/K(P1
k) = k(x) denote the extension of function

fields corresponding to π. According to [Liu02, Proposition 7.4.24 and Re-
mark 7.4.25], we may and will furthermore assume the following concrete
description of K(X).

If p 6= 2, then K(X) = k(x, y) where y satisfies

(1) y2 = f(x)

for some monic polynomial f(x) ∈ k[x] which has no repeated roots; moreo-
ver, f(x) is of degree 2g + 1 if ∞ ∈ P1

k is a branch point of π and of degree
2g+ 2 otherwise. The branch points of π are then the roots of f(x), together
with ∞ ∈ P1

k if deg(f(x)) = 2g + 1.
If p = 2, then K(X) = k(x, y) where y satisfies

(2) y2 − h(x)y = f(x)

for some polynomials h(x), f(x) ∈ k[x] such that h′(x)2f(x) + f ′(x)2 and
h(x) have no common roots in k; moreover, we have d := deg(h(x)) ≤ g+ 1,
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with equality if and only if ∞ is not a branch point of π. The branch points
of π are the roots of h(x), together with ∞ ∈ P1

k if d < g + 1.
The following estimate for the order of y above ∞ is true for both p 6= 2

and p = 2.

Lemma 1.1. Let P ∈ π−1(∞). Then we have:

ordP (y) ≥

{
− (g + 1) if π is unramified at P

− 2(g + 1) if π is ramified at P .

Proof. This is [KT15, Inequality (5.2)].

Lemma 1.2. If p 6= 2, let ω := dx
y

and, if p = 2, let ω := dx
h(x)

. Then the

differentials ω, xω, . . . , xg−1ω form a basis of the k-vector space H0(X,ΩX)
of global holomorphic differentials on X.

Proof. This is [Liu02, Proposition 7.4.26].

Remark 1.3. A different basis of H0(X,ΩX) is given in [Ma78, Lemma 5].
The action of the Cartier operator on H0(X,ΩX) is studied in [Sub75] and
[Yui78].

Lemma 1.4. Let p = 2 and let P ∈ π−1(∞). Then we have:

(3) ordP (dx) =

{
− 2 if π is unramified at P

2(g − 1− d) if π is ramified at P .

Proof. By the Riemann-Hurwitz formula [Sti93, Theorem 3.4.6] we have

ordP (dx) = eP · ord∞(dx) + δP

where eP denotes the ramification index of π at P and δP denotes the order
of the ramification divisor of π at P . It is easy to see that ord∞(dx) = −2.
Therefore ordP (dx) = −2 if π is unramified at P . On the other hand, if π
is ramified at P , we have δP = 2(g + 1 − d) by [KT15, Equation (5.3)] and
hence

ordP (dx) = 2 · (−2) + 2(g + 1− d) = 2(g − 1− d),

as claimed.
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We define Ua = X\π−1(a) for any a ∈ P1
k and let U be the affine cover ofX

formed by U0 and U∞. Given any sheaf F on X we have the Čech differential
ď : F(U0)×F(U∞)→ F(U0∩U∞), defined by (f0, f∞) 7→ f0|U0∩U∞−f∞|U0∩U∞ .
In general we will suppress the notation denoting the restriction map. The
first cohomology group OX(U0∩U∞)

Im(ď)
of the cochain complex

0→ OX(U0)×OX(U∞)
ď−→ OX(U0 ∩ U∞)→ 0.

is the first Čech cohomology group Ȟ1(U ,OX). By Leray’s theorem [Liu02,
Theorem 5.2.12] and Serre’s affineness criterion [Liu02, Theorem 5.2.23] we
therefore have

(4) H1(X,OX) ∼=
OX(U0 ∩ U∞)

{f0 − f∞ | f0 ∈ OX(U0), f∞ ∈ OX(U∞)}
.

When describing elements of H1(X,OX) using this isomorphisms we will
denote the residue class of f ∈ OX(U0 ∩ U∞) by [f ].

Proposition 1.5. The elements y
x
, . . . , y

xg
∈ K(X) are regular on U0 ∩ U∞,

and their residue classes
[
y
x

]
, . . . ,

[
y
xg

]
form a basis of H1(X,OX).

Proof. By [Liu02, Proposition 7.4.24(b)], we may identify OX(U∞) with the
k-algebra k[x, y] defined by the relation given in (1) or (2). ThenOX(U0∩U∞)
is k[x±1, y]. As the relations in (1) and (2) are quadratic in y, the elements
. . . , 1

x2
, 1
x
, 1, x, x2, . . . and . . . , y

x2
, y
x
, y, xy, x2y, . . . form a k-basis of k[x±1, y].

The elements 1, x, x2, . . . and y, xy, x2y, . . . obviously form a basis of the
image of OX(U∞) in OX(U0 ∩ U∞). By [Liu02, Proposition 7.4.24(b)], the
image of OX(U0) in OX(U0∩U∞) consists of elements of the form g

(
1
x
, y
xg+1

)
where g ∈ k[s, t]. Hence, the elements . . . , 1

x2
, 1
x
, 1 and . . . y

xg+3 ,
y

xg+2 ,
y

xg+1 form
a basis of that image. We conclude that the residue classes

[
y
x

]
, . . . ,

[
y
xg

]
form

a basis of H1(X,OX), as was to be shown.

Remark 1.6. Let ωj := xj−1

y
dx when p 6= 2 and let ωj = xj−1

h(x)
dx when

p = 2. Then, by Lemma 1.2, the elements ωj, j = 1, . . . , g, form a k-basis
of H0(X,ΩX). Let 〈 , 〉 : H0(X,ΩX) × H1(X,OX) → k denote the Serre
duality pairing. Then 〈ωj,

[
y
xi

]
〉 vanishes if j 6= i and is non-zero if j = i, see

the proof of [Tai14, Theorem 4.2.1]. In other words, up to multiplication by
scalars, the basis

[
y
xi

]
, i = 1, . . . , g, of H1(X,OX), given in Proposition 1.5,

is dual to the basis ωj, j = 1, . . . , g, with respect to Serre duality.

Remark 1.7. Different bases ofH1(X,OX) are described in [Sul75, Lemma 6]
and [Ma78, Lemma 6]. The action of Frobenius on H1(X,OX) is studied in
[Bo01].
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2 Bases of H1
dR(X/k)

The object of this section is to give an explicit k-basis for the first de-Rham
cohomology group H1

dR(X/k) using Čech cohomology. If p 6= 2, we will
moreover refine our result when another open subset is added to our standard
open cover of X.

The algebraic de-Rham cohomology of X is defined to be the hypercoho-
mology of the de-Rham complex

(5) 0→ OX
d−→ ΩX → 0

where d denotes the usual differential map f 7→ df . We use the cover U
and the Čech differentials defined in the previous section to obtain the Čech
bicomplex of (5):

0

��

0

��
0 // OX(U0)×OX(U∞)

��

// ΩX(U0)× ΩX(U∞)

��

// 0

0 // OX(U0 ∩ U∞)

��

// ΩX(U0 ∩ U∞) //

��

0

0 0

(6)

By a generalisation of Leray’s theorem [Gro61, Corollaire 12.4.7] and Serre’s
affineness criterion [Liu02, Theorem 5.2.23], the first de-Rham cohomology
of X is isomorphic to the first cohomology of the total complex of (6). Thus,
H1

dR(X/k) is isomorphic to the quotient of the space{
(ω0, ω∞, f0∞) ∈ ΩX(U0)× ΩX(U∞)×OX(U0 ∩ U∞) |

df0∞ = ω0|U0∩U∞ − ω∞|U0∩U∞
}(7)

by the subspace

(8) {(df0, df∞, f0|U0∩U∞ − f∞|U0∩U∞)|f0 ∈ OX(U0), f∞ ∈ OX(U∞)} .

Via this representation of H1
dR(X/k) and the isomorphism (4) we obtain the

canonical maps

(9) i : H0(X,ΩX)→ H1
dR(X/k), ω 7→ [(ω|U0 , ω|U∞ , 0)]
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and

(10) p : H1
dR(X/k)→ H1(X,OX), [(ω0, ω∞, f0∞)] 7→ [f0∞].

The following proposition is equivalent to the more familiar and fancier
sounding statement that the Hodge-de-Rham spectral sequence for X dege-
nerates at E1 (see [Wed08]). This is in fact true for every smooth, proper
curve X over k, see example (2) in section (1.5) of [Wed08].

Proposition 2.1. The following sequence is exact:

(11) 0→ H0(X,ΩX)
i−→ H1

dR(X/k)
p−→ H1(X,OX)→ 0.

We will call the sequence (11) the Hodge-de-Rham short exact sequence.

An elementary proof of Proposition 2.1 (that works for every smooth pro-
jective curve) can be found in [Tai14, Proposition 4.1.2]; the main ingredient
there is just the fact that the residue of differentials of the form df vanishes
at every point of X and that hence the obvious composition H1(X,OX) →
H1(X,ΩX)

∼→ k is the zero map. For a hyperelliptic curve X, the surjectivity
of p will also be verified in the proof of Theorem 2.2 below.

In order to state a basis of H1
dR(X/k), we now define certain polynomials.

To this end, we introduce the notations f≤m(x) := a0 + . . . + amx
m and

f>m(x) := am+1x
m+1+. . .+anx

n for any polynomial f(x) := a0+. . .+anx
n ∈

k[x] and any m ≥ 0. Let 1 ≤ i ≤ g.
When p 6= 2 we define

si(x) := xf ′(x)− 2if(x) ∈ k[x]

and put ψi(x) := s≤ii (x) and φi(x) := s>ii (x) so that si(x) = ψi(x) + φi(x).
When p = 2 we define

si(x, y) := xf ′(x) + (xh′(x) + ih(x))y ∈ k[x]⊕ k[x]y ⊆ k(x, y)

(where k[x]⊕ k[x]y denotes the k[x]-module generated by 1 and y) and put
ψi(x, y) := s≤ii (x, y) and φi(x, y) := s>ii (x, y) where now the operations ≤ i
and > i are applied to both the coefficients xf ′(x) and xh′(x) + ih(x). Again
we have si(x, y) = ψi(x, y) + φi(x, y).

We now give a basis of H1
dR(X/k) in terms of the polynomials just intro-

duced and using the presentation of H1
dR(X/k) developed above.
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Theorem 2.2. If p 6= 2, the residue classes

(12) γi :=

[(
ψi(x)

2xi+1y
dx,
−φi(x)

2xi+1y
dx,

y

xi

)]
, i = 1, . . . , g,

along with the residue classes

(13) λi :=

[(
xi

y
dx,

xi

y
dx, 0

)]
, i = 0, . . . , g − 1,

form a k-basis of H1
dR(X/k).

On the other hand, if p = 2, the residue classes

(14) γi :=

[(
ψi(x, y)

xi+1h(x)
dx,

φi(x, y)

xi+1h(x)
dx,

y

xi

)]
, i = 1, . . . , g,

together with the residue classes

(15) λi :=

[(
xi

h(x)
dx,

xi

h(x)
dx, 0

)]
, i = 0, . . . , g − 1,

form a k-basis of H1
dR(X/k).

Remark 2.3.
(a) If p 6= 2 and f(x) = xp − x, an easy calculation shows that the basis
elements given above are the same as those given in Theorem 3.1 of [Hor12].
(b) If p = 2, another basis of H1

dR(X/k) is given in [EP13, Section 4].

Proof. The elements in (13) and (15) are the images under the map i of the

differentials xi

y
dx, i = 0, . . . , g − 1, and xi

h(x)
dx, i = 0, . . . , g − 1, respectively,

which form a basis of H0(X,ΩX) by Lemma 1.2. Furthermore, provided
the elements in (12) and (14) are well-defined elements of H1

dR(X/k), these
elements are mapped to the elements [ y

xi
], i = 1, . . . , g, under p, which form

a basis of H1(X,OX) by Proposition 1.5. By Proposition 2.1, it therefore
suffices to check that the elements in (12) and (14) are well-defined elements
of H1

dR(X/k).
We first check the equality in (7). When p 6= 2, this is verified as follows:(

ψi(x)

2xi+1y
− −φi(x)

2xi+1y

)
dx =

si(x)

2xi+1y
dx

=
xf ′(x)− 2if(x)

2xi+1y
dx =

xi

2y

(
f ′(x)

x2i
− 2if(x)

x2i+1

)
dx

=
xi

2y
d

(
f(x)

x2i

)
=
xi

2y
d

(( y
xi

)2
)

= d
( y
xi

)
.
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When p = 2, we obtain

h′(x)ydx+ h(x)dy = f ′(x)dx

by differentiating equation (2) and then verify the equality in (7) as follows
(note that we replace all minus signs with plus signs):(

ψi(x, y)

xi+1h(x)
+

φi(x, y)

xi+1h(x)

)
dx =

si(x, y)

xi+1h(x)
dx

=

(
f ′(x)

xih(x)
+
h′(x)y

xih(x)
+

iy

xi+1

)
dx

=
dy

xi
+

iy

xi+1
dx = d

( y
xi

)
.

It remains to prove that the first two entries of the triples in (12) and (14)
are regular differentials on U0 and U∞, respectively.

We first consider the case p 6= 2. As dx
y

is a regular differential on X =

U0∪U∞ by Lemma 1.2, it suffices to observe that each of the functions ψi(x)
xi+1 ,

i = 1, . . . , g, is regular on U0 (in fact has a zero at ∞) and that each of the

functions φi(x)
xi+1 , i = 1, . . . , g, is regular on U∞.

We now turn to the case p = 2. As above, we know from Lemma 1.2
that dx

h(x)
is regular on X = U0 ∪ U∞. Furthermore, for every i ∈ {1, . . . , g},

the function φi(x,y)
xi+1 is regular on U∞ since y is regular on U∞ and since, by

definition of φi(x, y), the k[x]-coefficients of 1 and y in φi(x, y) are divisible

by xi+1. Hence φi(x,y)
xi+1h(x)

dx is regular on U∞, as was to be shown. It remains

to show that ψi(x,y)
xi+1h(x)

dx is regular on U0. As ψi(x,y)
xi+1 and dx

h(x)
are regular on

U0 ∩ U∞, this amounts to showing that ψi(x,y)
xi+1h(x)

dx is regular above ∞.
We first consider the case when ∞ is not a branch point of π. By

Lemma 1.4, the differential dx has a pole of order 2 at each of the two points
P∞, P ′∞ ∈ X above ∞. Furthermore, the k[x]-coefficient of 1 in ψi(x, y) has
a pole at P∞ and P ′∞ of order at most i and the k[x]-coefficient of y has
a pole at P∞ and P ′∞ of order at most i − 1 since the coefficient of xi in
xh′(x) + ih(x) is zero (remember char(k) = 2). Moreover, y has a pole at P∞
and P ′∞ of order at most g+ 1 by Lemma 1.1. Finally, 1

h(x)
has a zero at P∞
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and P ′∞ of order d = deg(h(x)) = g + 1. Putting all this together we obtain

ordP

(
ψi(x, y)

xi+1h(x)
dx

)
= ordP (ψi(x, y)) + ordP

(
1

xi+1

)
+ ordP

(
1

h(x)

)
+ ordP (dx)

≥ min{−i,−(i− 1)− (g + 1)}+ (i+ 1) + (g + 1)− 2 = 0

for P ∈ {P∞, P ′∞}, which shows that ψi(x,y)
xi+1h(x)

dx is regular at P∞ and P ′∞.

We finally assume that∞ is a branch point of π and prove that ψi(x,y)
xi+1h(x)

dx
is regular at the unique point P∞ ∈ X above ∞. By Lemma 1.4, the order
of the differential dx at P∞ is 2(g − 1− d) where d = deg(h(x)). For similar
reasons as above, the k[x]-coefficients of 1 and y in ψi(x, y) have a pole at P∞
of order at most 2i and 2(i − 1), respectively, and 1

h(x)
has a zero at P∞ of

order 2d. Finally, y has a pole at P∞ of order at most 2(g+1) by Lemma 1.1.
Putting all this together we obtain

ordP∞

(
ψi(x, y)

xi+1h(x)
dx

)
= ordP∞ (ψi(x, y)) + ordP∞

(
1

xi+1

)
+ ordP∞

(
1

h(x)

)
+ ordP∞(dx)

≥ min{−2i,−2(i− 1)− 2(g + 1)}+ 2(i+ 1) + 2d+ 2(g − 1− d) = 0,

which shows that ψi(x,y)
xi+1h(x)

dx is regular at P∞.

In the proofs in the next section, we will need a refined description of the
basis elements given in (12) when another open subset is added to our stan-
dard cover U = {U0, U∞}. To this end, we now fix a ∈ P1

k\{0,∞} and define
the covers U ′ := {Ua, U∞} and U ′′ := {U0, Ua, U∞} of X. Similarly to (7)
and (8), the first de-Rham cohmology group H1

dR(X/k) is then isomorphic
to the k-vector space

(16) {(ω0, ωa, ω∞, f0a, f0∞, fa∞) ∈
ΩX(U0)×ΩX(Ua)×ΩX(U∞)×OX(U0∩Ua)×OX(U0∩U∞)×OX(Ua∩U∞) |
f0a − f0∞ + fa∞ = 0, df0a = ω0 − ωa, df0∞ = ω0 − ω∞, dfa∞ = ωa − ω∞}
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quotiented by the subspace

(17) {(df0, dfa, df∞, f0 − fa, f0 − f∞, fa − f∞)|
f0 ∈ OX(U0), fa ∈ OX(Ua), f∞ ∈ OX(U∞)} .

We use the notations Ȟ1
dR(U) and Ȟ1

dR(U ′′) for the representations of
H1

dR(X/k) introduced in (7), (8) and (16), (17), respectively. The canonical
isomorphism ρ : Ȟ1

dR(U ′′)→ Ȟ1
dR(U), is then induced by the projection

(18) ρ : (ω0, ωa, ω∞, f0a, f0∞, fa∞) 7→ (ω0, ω∞, f0∞).

When p 6= 2, the next proposition explicitly describes the pre-image of

the basis elements γi =
[(

ψi(x)
2xi+1y

dx, −φi(x)
2xi+1y

dx, y
xi

)]
, i = 1, . . . , g, of H1

dR(X/k)

under ρ. To this end, we define the polynomials

g(x) := (x− a)g, ri(x) := g≤i−1(x) and ti(x) := g>i−1(x)

in k[x] for 1 ≤ i ≤ g so that ri(x) + ti(x) = (x− a)g.

Proposition 2.4. Let p 6= 2. For i ∈ {1, . . . , g}, let

ω0i :=
ψi(x)

2xi+1y
dx, ω∞i :=

−φi(x)

2xi+1y
dx,

ωai :=
(ψi(x)ti(x)− φi(x)ri(x))(x− a)− 2if(x)(−1)g−i

(
g
i

)
ag−i+1xi

2xi+1(x− a)g+1y
dx

and

f0ai :=
ri(x)y

xi(x− a)g
, f0∞i :=

y

xi
, fa∞i :=

ti(x)y

xi(x− a)g
.

Then we have:

(19) ρ−1(γi) = [(ω0i, ωai, ω∞i, f0ai, f0∞i, fa∞i)].

Remark 2.5. This description of ρ−1(γi) does not generalise the description
given in Lemma 3.3 of [Hor12] in case of the hyperelliptic curve y2 = xp− x.
In fact, the proof of that lemma seems to contain various mistakes.
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Proof. We fix i ∈ {1, . . . , g}. We obviously only need to show that the sextu-
ple on the right-hand side of (19) is a well-defined element of the space (16).

From the proof of Theorem 2.2 we already know that d(f0∞i) = ω0i − ω∞i
and that f0∞i, ω0i and ω∞i are regular on the appropriate open sets.

Since ri(x) + ti(x) = (x− a)g, we have

f0ai − f0∞i + fa∞i =
ri(x)y

xi(x− a)g
− y

xi
+

ti(x)y

xi(x− a)g
= 0,

as desired.
The function f0ai is obviously regular above P1

k\{0, a,∞}. We further-

more observe that ord∞

(
ri(x)

xi(x−a)g

)
≥ −(i − 1) + i + g = g + 1 and that, by

Lemma 1.1, the order of y above ∞ is at least −2(g+ 1) or at least −(g+ 1)
depending on whether∞ is a branch point of π or not. Thus, f0ai is regular
above ∞ and hence on U0 ∩ Ua.

As above, the function fa∞i is regular above P1
k\{0, a,∞}. Furthermore,

the functions ti(x)
xi

, y and 1
(x−a)g

are obviously regular above 0. Therefore,
fa∞i is regular above 0 as well and hence on Ua ∩ U∞.

We next show that df0ai = ω0i − ωai. Using the product rule and the chain
rule we obtain

df0ai = d

(
ri(x)y

xi(x− a)g

)
=

ri(x)

xi(x− a)g
dy + d

(
ri(x)

xi(x− a)g

)
y

=
f ′(x)ri(x)

2xi(x− a)gy
dx+

(
r′i(x)

xi(x− a)g
− iri(x)

xi+1(x− a)g
− gri(x)

xi(x− a)g+1

)
ydx

=
xf ′(x)ri(x)(x− a) + 2f(x) (xr′i(x)(x− a)− iri(x)(x− a)− gxri(x))

2xi+1(x− a)g+1y
dx.

We now recall that

xf ′(x)− 2if(x) = ψi(x) + φi(x).

12



We furthermore recall that ri(x) = g≤i−1(x) where g(x) = (x−a)g. Therefore

r′i(x) · (x− a)− g · ri(x)

= [g′(x)]
≤i−2 · (x− a)− g · g≤i−1(x)

=
(

[g′(x) · (x− a)]
≤i−1

+ a · bi−1 · xi−1
)
− g · g≤i−1(x)

= a · bi−1 · xi−1

where bi−1 = (−1)g−ii
(
g
i

)
ag−i denotes the coefficient of xi−1 in g′(x).

Thus we obtain

df0ai =
(ψi(x) + φi(x))ri(x)(x− a) + 2f(x)(abi−1x

i)

2xi+1(x− a)g+1y
dx

=
ψi(x) ((x− a)g+1 − ti(x)(x− a)) + φi(x)ri(x)(x− a) + 2f(x)(abi−1)xi

2xi+1(x− a)g+1y
dx

=
ψi(x)

2xi+1y
dx− (ψi(x)ti(x)− φi(x)ri(x))(x− a)− 2f(x)(abi−1)xi

2xi+1(x− a)g+1y
dx

= ω0i − ωai,

as claimed.
From the above we moreover obtain that

dfa∞i =df0∞i − df0ai = (ω0i − ω∞i)− (ω0i − ωai) = ωai − ω∞i.

Finally, ωai is regular on Ua because ωai = ω0i − df0ai and ωai is hence
regular on U0 ∩ Ua and because ωai = ω∞i + dfa∞i and ωai is hence regular
on Ua ∩ U∞.

3 Actions on H1
dR(X/k)

In this section we study the action of certain automorphisms on H1
dR(X/k).

We first prove that the hyperelliptic involution acts by multiplication by −1
on H1

dR(X/k) when p 6= 2 and as the identity when p = 2. We then give
a family of hyperelliptic curves for which the Hodge-de-Rham short exact
sequence (11) does not split equivariantly.

Theorem 3.1. The hyperelliptic involution acts on H1
dR(X/k) by multipli-

cation by −1.
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Proof. Recall that the hyperelliptic involution is the unique non-trivial au-
tomorphism σ of X such that π ◦ σ = π.

If p 6= 2, the involution σ acts on K(X) by (x, y) 7→ (x,−y). Hence, σ
maps each entry of the triples in (12) and (13) to its negative. Thus, the
p 6= 2 part of Theorem 2.2 implies Theorem 3.1.

If p = 2, the involution σ acts on K(X) by (x, y) 7→ (x, y + h(x)). In
particular, it fixes the basis elements (15) of H1

dR(X/k). According to the
p = 2 part of Theorem 2.2, it remains to show that σ also fixes the residue
classes [(ω0i, ω∞i, f0∞i)], i = 1, . . . , g, in (14). For i ∈ {1, . . . , g}, this follows
from the description of H1

dR(X/k) given in (7) and (8) and from the equation

σ((ω0i, ω∞i, f0∞i))− (ω0i, ω∞i, f0∞i)

=

(
d

(
h≤i(x)

xi

)
, d

(
h>i(x)

xi

)
,
h≤i(x)

xi
− h>i(x)

xi

)
which in turn is verified in the following three lines (where we replace all
minus signs with plus signs):

σ

(
ψi(x, y)

xi+1h(x)
dx

)
+

ψi(x, y)

xi+1h(x)
dx =

[xh′(x) + ih(x)]≤ih(x)

xi+1h(x)
dx = d

(
h≤i(x)

xi

)

σ

(
φi(x, y)

xi+1h(x)
dx

)
+

φi(x, y)

xi+1h(x)
dx =

[xh′(x) + ih(x)]>ih(x)

xi+1h(x)
dx = d

(
h>i(x)

xi

)
σ
( y
xi

)
+
y

xi
=
h(x)

xi
.

Remark 3.2. If p 6= 2, Theorem 3.1 can also be proved as follows. By
Lemma 1.2, the involution σ acts by multiplication by −1 on H0(X,ΩX).
By Serre duality, it then acts by multiplication by −1 also on H1(X,OX).
Finally, by Maschke’s Theorem (for the cyclic group of order 2) applied to
the Hodge-de-Rham short exact sequence (11), it acts by multiplication by
−1 also on H1

dR(X/k).

Before we state the main result of this paper, we recall that any auto-
morphism τ of X induces a map τ̄ : P1

k → P1
k since P1

k is the quotient of X
by the hyperelliptic involution and since the hyperelliptic involution σ be-
longs to the centre of Aut(X) (see [Liu02, Corollary 7.4.31]). The following
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commutative diagram visualises this situation:

X
τ //

π
��

X

π
��

P1
k

τ̄ // P1
k

Theorem 3.3. Let p ≥ 3. We assume that the degree of the polynomial f(x)
defining the hyperelliptic curve X is odd. We furthermore assume that there
exists τ ∈ Aut(X) such that the induced map τ̄ : P1

k → P1
k is given by x 7→

x + a for some a 6= 0. Let G denote the subgroup of Aut(X) generated
by τ . Then the Hodge-de-Rham short exact sequence (11) does not split as a
sequence of k[G]-modules.

The following example explicitly describes hyperelliptic curves that allow
an automorphism τ as assumed in the previous theorem.

Example 3.4. Let p ≥ 3, let a ∈ k× and let q(z) ∈ k[z] be any monic
polynomial without repeated roots. Then f(x) := q(xp− ap−1x) ∈ k[x] obvi-
ously has no repeated roots either and thus y2 = f(x) defines a hyperelliptic
curve X. Moreover, (x, y) 7→ (x+ a, y) defines an automorphism τ of X and
the induced automorphism τ̄ is given by x 7→ x+ a.

Remark 3.5.
(a) When applied to a = 1 and to the hyperelliptic curve X given by q(z) = z
in Example 3.4, Theorem 3.3 becomes the main theorem of [Hor12].
(b) Theorem 3.3 and Example 3.4 imply that, for every algebraically closed
field k of characteristic p ≥ 3, there exist infinitely many g ≥ 2 and hy-
perelliptic curves over k of genus g for which the Hodge-de-Rham spectral
sequence does not split equivariantly.
(c) Suppose g ≥ 2 is given. If p is a prime divisor of 2g+1 then, according to
Theorem 3.3 and Example 3.4, every monic polynomial q(z) ∈ k[z] of degree
(2g + 1)/p without repeated roots defines a hyperelliptic curve X of genus g
for which the Hodge-de-Rham sequence does not split equivariantly.

The following proposition shows that any hyperelliptic curve satisfying
the assumptions of Theorem 3.3 is in fact of the form as given in Example 3.4.

Proposition 3.6. Let p ≥ 3 and let τ ∈ Aut(X). If the induced isomorphism
τ̄ : P1

k → P1
k is given by x 7→ x+a for some a 6= 0, then the action of τ ∗ on y is

given by τ ∗(y) = y or τ ∗(y) = −y and f(x) is of the form f(x) = q(xp−ap−1x)
for some polynomial q ∈ k[z] without repeated roots.

15



Proof. We first show that τ ∗(y) = ±y. There exist g1(x) and g2(x) 6= 0 in
k(x) such that

τ ∗(y) = g1(x) + g2(x)y ∈ k(x, y).

Hence

(20) f(x+ a) = τ ∗(y2) = (τ ∗(y))2 = g1(x)2 + 2g1(x)g2(x)y + g2(x)2f(x).

This implies that g1(x) = 0 because otherwise

y =
f(x+ a)− g1(x)2 − g2(x)2f(x)

2g2(x)g1(x)

would belong to k(x). By comparing the degrees in (20) we see that g2(x) is
a constant, and then by comparing coefficients in the same equation we see
that g2(x)2 = 1. Hence τ ∗(y) = ±y, as claimed.

We now show that f(x) is of the form q(xp − ap−1x). The extension
k(x) = k(z, x) of the rational function field k(z) obtained by adjoining an
element x satisfying the equation xp−ap−1x−z = 0 is a Galois extension with
cyclic Galois group generated by the automorphism x 7→ x + a. We derived
above that f(x) = f(x + a). Hence f(x) belongs to k(z). Furthermore, x
and hence f(x) is integral over k[z]. Therefore, f(x) ∈ k(z) belongs to k[z],
i.e., f(x) = q(xp − ap−1x) for some q ∈ k[z] without repeated roots, as was
to be shown.

Proof (of Theorem 3.3). We suppose that the sequence (11) does split and
that

s : H1(X,OX)→ H1
dR(X/k)

is a k[G]-linear splitting map. Then we have

(21) s(τ ∗(α)) = τ ∗(s(α)) ∈ H1
dR(X/k)

and

(22) p(s(α)) = α

for all α ∈ H1(X,OX). We will show that these equalities give rise to a
contradiction when α is the residue class

[
y
xg

]
in H1(X,OX) (see Proposi-

tion 1.5).
We first show that

[
y
xg

]
∈ H1(X,OX) is fixed by τ ∗. To this end, we recall

that U = {U0, U∞}, U ′ = {Ua, U∞} and U ′′ = {U0, Ua, U∞} and consider the
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following obviously commutative diagram of isomorphisms where ρ and ρ′

are defined as in (18) and the equalities denote the identification (4):

H1(X,OX)

τ∗

��

Ȟ1(U ,OX) Ȟ1(U ′′,OX)
ρoo

ρ′

��

H1(X,OX) Ȟ1(U ,OX) Ȟ1(U ′,OX).τ∗oo

By (the proof of) Proposition 2.4, the triple
(

rg(x)y

xg(x−a)g
, y
xg
, tg(x)y

xg(x−a)g

)
defines a

well-defined element of Ȟ1(U ′′,OX). Hence we have

ρ−1
([ y
xg

])
=

[(
rg(x)y

xg(x− a)g
,
y

xg
,

tg(x)y

xg(x− a)g

)]
=

[(
((x− a)g − xg)y
xg(x− a)g

,
y

xg
,

y

(x− a)g

)]
in Ȟ1(U ′′,OX).

We therefore obtain

τ ∗
([ y
xg

])
= τ ∗

(
ρ′
(
ρ−1

([ y
xg

])))
= τ ∗

(
ρ′
([(

((x− a)g − xg)y
xg(x− a)g

,
y

xg
,

y

(x− a)g

)]))
= τ ∗

([
y

(x− a)g

])
=
[ y
xg

]
,

as claimed.
By Theorem 2.2, the elements λi, i = 0, . . . , g−1, defined in (13) together

with the elements γi, i = 1, . . . , g, defined in (12) form a basis of H1
dR(X/k).

Since the canonical projection p : H1
dR(X/k) → H1(X,OX) is k[G]-linear

and maps γg to the residue class
[
y
xg

]
, it follows that

(23) τ ∗(γg) = γg +

g−1∑
i=0

ciλi

for some c0, . . . , cg−1 ∈ k. On the other hand, we have

s
([ y
xg

])
= γg +

g−1∑
i=0

diλi

17



for some d0, . . . , dg−1 ∈ k. Now the action of τ ∗ on λi for 0 ≤ i ≤ g − 1 is
easily seen to be given by

τ ∗(λi) = τ ∗
([(

xi

y
dx,

xi

y
dx, 0

)])
=

[(
(x+ a)i

y
dx,

(x+ a)i

y
dx, 0

)]
=

i∑
k=0

(
i

k

)
ai−kλk.

(24)

Plugging the equations obtained so far into equation (21) we obtain

γg +

g−1∑
i=0

diλi = s
([ y
xg

])
= s

(
τ ∗
([ y
xg

]))
= τ ∗

(
s
([ y
xg

]))
= τ ∗

(
γg +

g−1∑
i=0

diλi

)

=

(
γg +

g−1∑
i=0

ciλi

)
+

g−1∑
i=0

di

(
i∑

k=0

(
i

k

)
ai−kλk

)
.

By comparing coefficients of the basis element λg−1, we see that cg−1 = 0.
On the other hand, we will below derive the equation cg−1 = a/4 from the
defining equation (23). Since we assumed that a 6= 0, this gives us the desired
contradiction.

The left-hand side of equation (23) is τ ∗(γg). To compute τ ∗(γg) we
consider the following commutative diagram of isomorphisms where ρ is
the canonical projection (18), ρ′ is given by (ω0, ωa, ω∞, f0a, f0∞, fa∞) 7→
(ωa, ω∞, fa∞) and the equalities denote the identification given by (7) and (8):

H1
dR(X/k)

τ∗

��

Ȟ1
dR(U) Ȟ1

dR(U ′′)ρoo

ρ′

��
H1

dR(X/k) Ȟ1
dR(U) Ȟ1

dR(U ′).τ∗oo

(25)

Then, by Proposition 2.4, we have:

τ ∗(γg) = τ ∗(ρ′(ρ−1(γg)))

= τ ∗
([
ωag,
−φg(x)

2xg+1y
dx,

y

(x− a)g

)]
=

[(
τ ∗(ωag),

−φg(x+ a)

2(x+ a)g+1y
dx,

y

xg

)]
.

(26)
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On the other hand, the right hand side of equation (23) is equal to

(27)

[(
ψg(x)

2xg+1y
dx,
−φg(x)

2xg+1y
dx,

y

xg

)]
+

g−1∑
i=0

ci

[(
xi

y
dx,

xi

y
dx, 0

)]
.

Note that the third entry in both (26) and (27) is y
xg

. Now, if the third entry
of a triple (df0, df∞, f0|U0∩U∞−f∞|U0∩U∞) in the subspace (8) of the space (7)
vanishes, then f0 and f∞ glue to a global and hence constant function and the
whole triple vanishes. Hence, the triples in (26) and (27) are equal already
before taking residue classes. By comparing the second entries of (26) and
(27) we therefore obtain the equation

− φg(x+ a)

2(x+ a)g+1y
dx = − φg(x)

2xg+1y
dx+

g−1∑
i=0

ci
xi

y
dx in ΩK(X).

Since dx is a basis of ΩK(X) considered as a K(X)-vector space, the equation
above is equivalent to the equation

φg(x+ a)

2(x+ a)g+1
=
φg(x)

2xg+1
−

g−1∑
i=0

cix
i

(in the rational function field k(x)) which in turn is equivalent to the equation

φg(x+ a)xg+1 = φg(x)(x+ a)g+1 − 2(x+ a)g+1xg+1

g−1∑
i=0

cix
i in k[x].

Now, the assumption that the degree of f(x) is odd means that the degree
of f(x) is precisely 2g+1. By definition, the terms of highest degree in φg(x)
are the same as the terms of highest degree in

sg(x) = xf ′(x)− 2gf(x) = x2g+1 + 0 · x2g + . . . .

We therefore have(
(x+ a)2g+1 + 0 · (x+ a)2g + . . .

)
xg+1

= (x2g+1 + 0 · x2g + . . .)(x+ a)g+1 − 2(x+ a)g+1xg+1(cg−1x
g−1 + . . .).

Hence, by comparing the coefficients of x3g+1, we obtain

(2g + 1)a = (g + 1)a− 2cg−1.
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and hence

cg−1 =
((g + 1)− (2g + 1))a

2
= −g

2
a.

Finally, we have 2g+ 1 = deg(f(x)) ≡ 0 mod p by Proposition 3.6 and hence

cg−1 =
a

4
,

as claimed above. This concludes the proof of Theorem 3.3.

Remark 3.7. While the method of calculating τ ∗
([

y
xg

])
and τ ∗(γg) in the

proof above is the same as in [Hor12], the actual computations do not genera-
lise those in [Hor12], not only due to Remark 2.5 but also because of further
mistakes in [Hor12]. Finally, the argument in the proof above for obtaining
the desired contradiction is different from the one in [Hor12] the very end of
which has unfortunately not been carried out anyway.

We conclude with an example which demonstrates that the requirement
in Theorem 3.3 of f(x) to be of odd degree is a necessary condition.

Example 3.8. Let p = 3 and X be the hyperelliptic curve of genus 2 defined
by the equation

y2 = f(x) = x6 + x4 + x2 + 2.

As in Theorem 3.3 let τ denote the automorphism of X given by (x, y) 7→
(x+ 1, y) and let G := 〈τ〉.

By Theorem 2.2, a basis of Ȟ1
dR(U) is given by

λ0 =

[(
1

y
dx,

1

y
dx, 0

)]
, λ1 =

[(
x

y
dx,

x

y
dx, 0

)]
,

γ1 =

[(
1

x2y
dx,

x4 + 2x2

y
dx,

y

x

)]
, γ2 =

[(
x2 + 1

2x3y
dx,

2x3

y
dx,

y

x2

)]
.

By Proposition 1.5, the residue classes γ̄1 :=
[
y
x

]
and γ̄2 :=

[
y
x2

]
form a basis

of H1(X,OX). We define a map

s : H1(X,OX)→ H1
dR(X/k)

of vector spaces over k by

γ̄1 7→ γ1 and γ̄2 7→ γ2 + λ1.
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Clearly p◦s is the identity map on H1(X,OX), and hence, if s is k[G]-linear,
the sequence in Proposition 2.1 does split as a sequence of k[G]-modules.

We now show that s is k[G]-linear. By Proposition 2.4, the pre-images
of γ1 and γ2 under ρ in Ȟ1

dR(U ′′) are the residue classes of

ν1 =

(
1

x2y
dx,

x4 + 2x3 + 2x2

2(x− 1)3y
dx,

x4 + 2x2

y
dx,

y

x(x− 1)2
,
y

x
,
(x+ 1)y

(x− 1)2

)
and

ν2 =

(
x2 + 1

2x3y
dx,

x3 + x2 + x+ 1

2(x− 1)3y
dx,

2x3

y
dx,

(x+ 1)y

x2(x− 1)2
,
y

x2
,

y

(x− 1)2

)
,

respectively. Using a computation similar to (26), it is easy to verify that

τ ∗(γ1) = τ ∗(ρ′(ν1))

=

[(
x4 + 2x2 + 2x+ 2

2x3y
dx,

x4 + x3 + 2x2 + 2x

y
dx,

(x+ 2)y

x2

)]
= γ1 + 2γ2 + 2λ1

and that

τ ∗(γ2) = τ ∗(ρ′(ν2))

=

[(
x3 + x2 + 1

2x3y
dx,

2x3 + 2

y
dx,

y

x2

)]
= γ2 + 2λ0.

Furthermore, we have seen in (24) that

τ ∗(λ0) = λ0 and τ ∗(λ1) = λ1 + λ0.

We finally conclude that

s(τ ∗(γ̄1)) = s(γ̄1 + 2γ̄2) = γ1 + 2γ2 + 2λ1 = τ ∗(γ1) = τ ∗(s(γ̄1))

and
s(τ ∗(γ̄2)) = s(γ̄2) = γ2 + λ1 = τ ∗(γ2 + λ1) = τ ∗(s(γ̄2)).

Hence s is k[G]-linear, and the Hodge-de-Rham short exact sequence (11)
splits.
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Remark 3.9. The curve X defined in the previous example is isomorphic to
the modular curve X0(22).

To see this, we first note that, by [KY10, Table 2], the modular curve
X0(22) is the hyperelliptic curve of genus 2 defined by

y2 = f(x) = x6 + 2x4 + x3 + 2x2 + 1.

Now, x 7→ x − 1, y 7→ y defines an isomorphism between X0(22) and the
curve defined by y2 = x6 + 2x4 + 2x2 + 2. We finally apply the isomorphism
described in the following general procedure.

If g(x) = asx
s + . . .+ a0 with a0 6= 0 6= as, we define g∗(x) := a−1

0 xsg
(

1
x

)
.

It is stated after Lemma 2.6 in [KY10] that, if y2 = g(x) defines a hyperelliptic
curve and s is even, then the curves defined by y2 = g(x) and y2 = g∗(x) are
isomorphic.
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des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. (1961), no. 11.

[Hor12] Ruthi Hortsch, On the canonical representation of curves in positive characte-
ristic, New York J. Math. 18 (2012), 911–924.
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