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Thomas Rüdiger,94 Anja Rudolph,13 Elinor J Sawyer,95

Fredrick Schumacher,96 Petra Seibold,13 Caroline Seynaeve,59

Mitul Shah,5 Ann Smeets,85 Melissa C Southey,97

Rob A E M Tollenaar,98 Ian Tomlinson,99 Helen Tsimiklis,97

5 Hans-Ulrich Ulmer,100 Celine Vachon,86 Ans M W van den Ouweland,101

Laura J Van’t Veer,25 Hans Wildiers,85 Walter Willett,102

Robert Winqvist,90,91 M Pilar Zamora,103 Georgia Chenevix-Trench,104

Thilo Dörk,105 Douglas F Easton,4,5 Montserrat Garc�ıa-Closas,16

Peter Kraft,3,60 John L Hopper,11 Wei Zheng,106

10 Marjanka K Schmidt,25,107 and Paul D P Pharoah,4,5

1Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of

Cambridge, Cambridge, UK, 2MRC Biostatistics Unit, University of Cambridge, Cambridge, UK, 3Program

in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston,

MA, USA, 4Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care,

15 University of Cambridge, Cambridge, UK, 5Centre for Cancer Genetic Epidemiology, Department of

Oncology, University of Cambridge, Cambridge, UK, 6Cambridge Breast Unit and NIHR Cambridge

Biomedical Research Centre, University of Cambridge NHS Foundation Hospitals, Cambridge, UK,
7Cambridge Experimental Cancer Medicine Centre, Cambridge, UK, 8Department of Clinical Genetics,

Helsinki University Hospital, University of Helsinki, Helsinki, Finland, 9Fred A. Litwin Center for Cancer

20 Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada,
10Department of Molecular Genetics, University of Toronto, Toronto, Canada, 11Centre for Epidemiology

and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne,

Melbourne, Australia, 12Division of Clinical Epidemiology and Aging Research, German Cancer

Research Center (DKFZ), Heidelberg, Germany, 13Division of Cancer Epidemiology, German Cancer

25 Research Center (DKFZ), Heidelberg, Germany, 14Human Cancer Genetics Program, Spanish National

Cancer Research Centre, Madrid, Spain, 15Centro de Investigaci�on en Red de Enfermedades Raras

(CIBERER), Valencia, Spain, 16Division of Cancer Epidemiology and Genetics, National Cancer Institute,

Rockville, MD, USA, 17Department of Oncology, Helsinki University Hospital, University of Helsinki,

Helsinki, Finland, 18Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen

30 University Hospital, Herlev, Denmark, 19Department of Clinical Biochemistry, Herlev and Gentofte

Hospital, Copenhagen University Hospital, Herlev, Denmark, 20Faculty of Health and Medical Sciences,

University of Copenhagen, Copenhagen, Denmark, 21Division of Cancer Prevention and Genetics,

Istituto Europeo di Oncologia, Milan, Italy, 22Department of Medical Epidemiology and Biostatistics,

Karolinska Institutet, Stockholm, Sweden, 23Division of Preventive Oncology, German Cancer Research

35 Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany, 24German Cancer

Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany, 25Division of

Molecular Pathology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital,

Amsterdam, The Netherlands, 26Department of Obstetrics and Gynecology, University of Heidelberg,

Heidelberg, Germany, 27Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ),

40 Heidelberg, Germany, 28Breast Cancer Functional Genomics Laboratory, Cancer Research UK

Cambridge Institute, University of Cambridge, Li Ka Shing Centre, UK, 29Department of Biology,

University of Pisa, Pisa, Italy, 30Genomic Epidemiology Group, German Cancer Research Center (DKFZ),

Heidelberg, Germany, 31University Cancer Center Hamburg (UCCH), University Medical Center

Hamburg-Eppendorf, Hamburg, Germany, 32Department of Laboratory Medicine and Pathology, Mayo

45 Clinic, Rochester, MN, USA, 33Academic Unit of Molecular Oncology, Department of Oncology and

Metabolism, University of Sheffield, Sheffield, UK, 34Academic Unit of Pathology, Department of

Neuroscience, University of Sheffield, Sheffield, UK, 35Department of Genetics and Pathology,

Pomeranian Medical University, Szczecin, Poland, 36Department of Pathology, Leiden University

Medical Center, Leiden, The Netherlands, 37Department of Human Genetics, Leiden University Medical

2 International Journal of Epidemiology, 2017, Vol. 0, No. 0



Center, Leiden, The Netherlands, 38Epidemiology Research Program, American Cancer Society,

Atlanta, GA, USA, 39Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton,

Southampton, UK, 40Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander

University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany,

5
41Genomic Medicine, Manchester Academic Health Science Centre, University of Manchester, Central

Manchester Foundation Trust, St. Mary’s Hospital, Manchester, UK, 42Department of Gynaecology and

Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg,

Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany, 43David Geffen School of Medicine,

Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles,

10 Los Angeles, CA, USA, 44Usher Institute of Population Health Sciences and Informatics, The University

of Edinburgh Medical School, Edinburgh, UK, 45Institute for Medical Biometrics and Epidemiology,

University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 46Department of Cancer

Epidemiology, Clinical Cancer Registry, University Medical Center Hamburg-Eppendorf, Hamburg,

Germany, 47Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University

15 Hospital, Herlev, Denmark, 48Cancer Epidemiology & Intelligence Division, Cancer Council Victoria,

Melbourne, Australia, 49Department of Surgery, Oulu University Hospital, University of Oulu, Oulu,

Finland, 50Department of Preventive Medicine, Keck School of Medicine, University of Southern

California, Los Angeles, CA, USA, 51Molecular Genetics of Breast Cancer, German Cancer Research

Center (DKFZ), Heidelberg, Germany, 52Department of Biostatistics & Epidemiology, University of

20 Massachusetts, Amherst, Amherst, MA, USA, 53Translational Cancer Research Area, University of

Eastern Finland, Kuopio, Finland, 54Institute of Clinical Medicine, Pathology and Forensic Medicine,

University of Eastern Finland, Kuopio, Finland, 55Imaging Center, Department of Clinical Pathology,

Kuopio University Hospital, Kuopio, Finland, 56Warwick Clinical Trials Unit, University of Warwick,

Coventry, UK, 57Family Cancer Clinic, The Netherlands Cancer Institute – Antoni van Leeuwenhoek

25 Hospital, Amsterdam, The Netherlands, 58Saarland Cancer Registry, Saarbrücken, Germany,
59Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam,

The Netherlands, 60Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston,

MA, USA, 61Department of Oncology, Oulu University Hospital, University of Oulu, Oulu, Finland,
62Central Finland Hospital District, Jyv€askyl€a Central Hospital, Jyv€askyl€a, Finland, 63Peter MacCallum

30 Cancer Center, The University of Melbourne, Melbourne, Australia, 64Prosserman Centre for Health

Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada,
65Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada,
66Department of Surgical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam,

The Netherlands, 67Department of Cancer Genetics, Institute for Cancer Research, Oslo University

35 Hospital Radiumhospitalet, Oslo, Norway, 68Institute of Clinical Medicine, Faculty of Medicine,

University of Oslo, Oslo, Norway, 69Department of Clinical Molecular Biology, Oslo University Hospital,

University of Oslo, Oslo, Norway, 70VIB Center for Cancer Biology, VIB, Leuven, Belgium, 71Laboratory

for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium,
72University of Hawaii Cancer Center, Honolulu, HI, USA, 73Department of Molecular Medicine and

40 Surgery, Karolinska Institutet, Stockholm, Sweden, 74Department of Epidemiology, University of

Washington School of Public Health, Seattle, WA, USA, 75Department of Cancer Epidemiology and

Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland,
76IFOM, The FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan,

Italy, 77Cogentech Cancer Genetic Test Laboratory, Milan, Italy, 78Department of Oncology – Pathology,

45 Karolinska Institutet, Stockholm, Sweden, 79National Center for Tumor Diseases, University of Heidelberg,

Heidelberg, Germany, 80Anatomical Pathology, The Alfred Hospital, Melbourne, Australia, 81Servicio de

Anatom�ıa Patol�ogica, Hospital Monte Naranco, Oviedo, Spain, 82Department of Laboratory Medicine and

Pathobiology, University of Toronto, Toronto, Canada, 83Laboratory Medicine Program, University Health

Network, Toronto, Canada, 84Department of Obstetrics and Gynecology, Helsinki University Hospital,

50 University of Helsinki, Helsinki, Finland, 85Leuven Multidisciplinary Breast Center, Department of Oncology,

Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium, 86Department of Health Sciences

International Journal of Epidemiology, 2017, Vol. 0, No. 0 3



Research, Mayo Clinic, Rochester, MN, USA, 87Servicio de Cirug�ıa General y Especialidades, Hospital

Monte Naranco, Oviedo, Spain, 88Sir Peter MacCallum Department of Oncology, The University of

Melbourne, Melbourne, Australia, 89Department of Medicine, St Vincent’s Hospital, The University of

Melbourne, Fitzroy, Australia, 90Laboratory of Cancer Genetics and Tumor Biology, Cancer and

5 Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland, 91Laboratory of

Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland, 92Unit of

Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine,

Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT),

Milan, Italy, 93Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK,

10
94Institute of Pathology, Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany, 95Research Oncology, Guy’s

Hospital, King’s College London, London, UK, 96Department of Epidemiology and Biostatistics, Case

Western Reserve University, Cleveland, OH, USA, 97Department of Pathology, The University of

Melbourne, Melbourne, Australia, 98Department of Surgery, Leiden University Medical Center, Leiden, The

Netherlands, 99Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre,

15 University of Oxford, Oxford, UK, 100Frauenklinik der Stadtklinik Baden-Baden, Baden-Baden, Germany,
101Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands,
102Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 103Servicio de

Oncolog�ıa Médica, Hospital Universitario La Paz, Madrid, Spain, 104Department of Genetics and

Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia, 105Gynaecology

20 Research Unit, Hannover Medical School, Hannover, Germany, 106Division of Epidemiology, Department of

Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School

of Medicine, Nashville, TN, USA and 107Division of Psychosocial Research and Epidemiology, The

Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands

*Corresponding author. Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge,

25 Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK. E-mail: qg209@medschl.cam.ac.uk

Editorial decision 21 March 2017; Accepted 29 June 2017

Abstract

Background: There is increasing evidence that elevated body mass index (BMI) is associ-

ated with reduced survival for women with breast cancer. However, the underlying rea-

30 sons remain unclear. We conducted a Mendelian randomization analysis to investigate a

possible causal role of BMI in survival from breast cancer.

Methods: We used individual-level data from six large breast cancer case-cohorts includ-

ing a total of 36 210 individuals (2475 events) of European ancestry. We created a BMI

genetic risk score (GRS) based on genotypes at 94 known BMI-associated genetic vari-

35 ants. Association between the BMI genetic score and breast cancer survival was ana-

lysed by Cox regression for each study separately. Study-specific hazard ratios were

pooled using fixed-effect meta-analysis.

Results: BMI genetic score was found to be associated with reduced breast cancer-

specific survival for estrogen receptor (ER)-positive cases [hazard ratio (HR)¼1.11, per

40 one-unit increment of GRS, 95% confidence interval (CI) 1.01–1.22, P¼0.03). We

observed no association for ER-negative cases (HR¼1.00, per one-unit increment of

GRS, 95% CI 0.89–1.13, P¼0.95).

Conclusions: Our findings suggest a causal effect of increased BMI on reduced breast

cancer survival for ER-positive breast cancer. There is no evidence of a causal effect of

45 higher BMI on survival for ER-negative breast cancer cases.

Key words: Body mass index, breast cancer survival, Mendelian randomization, epidemiology, genetics
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Introduction

Breast cancer is the most common form of cancer for

women worldwide.1 There is substantial variation in sur-

vival outcomes between patients. Some of this variation

5 can be explained by established clinico-pathological fac-

tors including clinical stage, tumour grade and the molecu-

lar phenotype of the tumour. However, other factors such

as germline genetic variation2 and lifestyle factors may also

be important. The association between body mass index

10 (BMI) and survival has been investigated in many studies

with increased BMI being associated with a reduced sur-

vival,3–11 with some studies reporting an association lim-

ited to estrogen receptor (ER)-positive disease.12–15

Whether this association is causal or simply due to con-

15 founding by other factors remains unclear.

Mendelian randomization (MR)16,17 has become an es-

tablished method used to estimate the causal relationship

between an exposure and an associated outcome using

data on inherited genetic variants that influence exposure

20 status. Genetic variants are attractive as candidate instru-

mental variables because they are randomly assigned at

conception and are not affected by potential environmental

confounding factors. The use of germline genetic variants

as instruments for modifiable exposures has the potential

25 to avoid some of the limitations of conventional observa-

tional epidemiology for making causal inferences.18 Recent

genome-wide association studies have identified multiple

loci associated with BMI,19 enabling investigation of a pos-

sible causal role of BMI in breast cancer outcomes using an

30 MR approach.

The aim of this study was to utilize germline genotype

data for genetic variants known to be associated with BMI,

in a breast cancer case-cohort to evaluate the association

between BMI and breast cancer survival in an unbiased

35 way. There are three assumptions under which genetic

variants provide valid instrumental variables for the effect

of BMI on breast cancer survival: first, the genetic variants

are associated with BMI; second, the variants are not asso-

ciated with any confounder of the BMI-breast cancer sur-

40 vival association (pleiotropy); third, the variants are

conditionally independent of the survival, given the BMI

and confounders (exclusion restriction).

Methods

We included six datasets where a genotyping array provid-

45ing genome-wide coverage of common genetic variation

had been used to genotype multiple breast cancer case-

cohorts in populations of European ancestry (COGS,

CGEMS, METABRIC, PG-SNPs, SASBAC and UK2).

A summary of these case-cohorts has been described in de-

50tail previously.2 The characteristics of the studies used in

our analysis are summarized in Table S1 (available as

Supplementary data at IJE online). Genotypes for common

variants across the genome were imputed using a reference

panel from the 1000 Genomes Project (March 2012) for

55each dataset. All patients provided written informed con-

sent, and each study was approved by the relevant institu-

tional review board. Data on age at diagnosis, vital status,

breast cancer-specific mortality, follow-up time, time be-

tween diagnosis and blood draw, lymph node status, histo-

60logical grade, tumour size and estrogen receptor status

were also available. In addition, some case-cohorts from

the COGS study provided data on height and weight (self-

reported) at date closest to diagnosis (cases) or study entry

(controls) for 65 582 participants. BMI was calculated as

65weight in kilograms divided by height in metres squared

(kg/m2).

Calculation of BMI genetic risk score

The Genetic Investigation of Anthropometric Traits

(GIANT) consortium involving over 300 000 individuals

70of European descent has reported 97 common variants

associated with BMI, of which three were only associated

with BMI for men.19 We used the genotype data described

above to construct the BMI genetic risk score (GRS) based

on 94 BMI-associated genetic variants . The BMI genetic

75risk score is given by the sum of the weighted imputed al-

lele doses (number of risk alleles carried) where the weights

Key Messages

• Observational studies have reported an association between elevated body mass index (BMI) and reduced survival

for women with breast cancer. However, the causal nature of the association is unclear.

• We conducted a large Mendelian randomization analysis in order to examine a potential causal effect of BMI on

breast cancer survival, using both individual genotype data and summary data.

• Our study provides evidence that the reported association between BMI and survival for estrogen receptor-positive

breast cancer is likely to be causal.
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are the reported beta-coefficients for association with BMI.

The manuscript19 presented the results as the number of

standard deviations increase in BMI per allele. We there-

fore transformed these to the increase in BMI per allele.

5 The imputation r2 of all 94 single nucleotide polymorph-

isms (SNPs) in the breast cancer dataset is greater than 0.4.

Statistical analysis

We verified the first assumption of Mendelian randomization

by evaluating the association between BMI GRS and BMI in

10 a set of control subjects from the COGS study. MR analysis

was performed using Cox proportional hazard models, to

evaluate the associations of the BMI genetic risk scores with

breast cancer-specific mortality based on 36 210 cases with

2475 events over 170 504 person-years of follow-up. The

15 date of diagnosis was used to calculate time-to-event with

follow-up being censored at death, last follow-up or 10 years,

whichever came sooner. As several studies include prevalent

cases, the date of study entry was used to determine time

under observation in order to adjust for the potential bias of

20 prevalent cases in a prospectively recruiting study (left-trun-

cation).20 All analyses were performed for each study separ-

ately, and summary statistics were obtained using a

fixed-effect meta-analysis. We also conducted MR subtype-

specific analysis for 5683 ER-negative cases (679 events) and

25 22 567 ER-positive cases (1161 events) (Table S1).

We assessed the relationship between BMI GRS and

breast cancer survival using summary statistics for the as-

sociation of each BMI- associated SNP with survival, for

each dataset. We used both an inverse-variance weighted

30 method and a likelihood-based method21 to estimate the

association. Several clinico-pathological factors are known

to be associated with survival. Rather than being true

potential confounders of any relationship between BMI

and survival, these factors should be considered as

35intermediates. Nevertheless, in order to evaluate the se-

cond assumption of MR, we tested for association between

BMI-associated SNPs and node status, tumour size and

histological grade. Alternatively, it is possible that smoking

behaviour might mediate the true casual mechanisms for

40the association between BMI and breast cancer survival.

We examined therefore the potential associations between

smoking behaviour (measured as self-reported total pack-

years smoked) and survival and between GRS and smoking

behaviour. Pleiotropic effects of the BMI SNPs on unmeas-

45ured confounders may also violate the assumption. The

role of directional pleiotropy was assessed using Egger re-

gression on the summary statistics of association for each

BMI-associated SNP with survival.22 Egger regression is a

modified form of standard inverse-variance weighted

50meta-analysis. When applied to MR analyses, the slope of

the Egger regression provides an estimate of the causal ef-

fect, and the estimated value of the intercept can be inter-

preted as an estimate of the average pleiotropic effect

across all the genetic variants.23 All analyses were per-

55formed using R (R project for Statistical Computing).

Results

We observed strong positive associations between the BMI

GRS and observed BMI using a set of 28 190 controls from

the COGS study. A one-unit increase in GRS corresponds

60to a 0.94 kg/m2 (95% CI 0.85–1.03, P¼ 4.16� 10�99) in-

crease in BMI and explained 1.6% of the BMI variance

(F statistic¼ 450). Self-reported BMI was significantly asso-

ciated with breast cancer survival for both ER-negative and

ER-positive disease in the COGS data (Table 1). Both asso-

65ciations were attenuated after adjustment for tumour grade,

nodal status and tumour size.

We performed MR analysis for all available ER-

negative and ER-positive breast cancer cases. The GRS

Table 1. Association between BMI genetic risk score and survival for ER-positive and ER-negative breast cancer

ER-negative ER-positive

HR (95% CI) P HR (95%CI) P

Observational estimatea

Unadjusted 1.02 (1.01–1.04) 0.01 1.03 (1.02–1.04) 2.37�10�05

Adjusted for nodes, size and grade 1.00 (0.97–1.02) 0.77 1.02 (1.00–1.05) 0.05

Individual-level data MR analysis

GRS 1.00 (0.89–1.13) 0.95 1.11 (1.01–1.22) 0.03

Summary results MR analysis

GRS IVWb 1.01 (0.91–1.12) 0.91 1.11 (1.01–1.21) 0.02

GRS likelihood-based 1.01 (0.91–1.12) 0.91 1.11 (1.02–1.21) 0.02

GRS Egger regression 0.91 (0.70–1.18) 0.46 1.11 (0.89–1.38) 0.36

IVW, inverse variance-weighted.
aAssociation between self-reported BMI and survival (HR per unit increase in BMI).
b– inverse-variance weighted.
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was found to be associated with reduced breast cancer-

specific survival for ER-positive cases with hazard ratio

(HR) of 1.11 (95% CI¼1.01–1.22, P¼ 0.03) per one-unit

increment of the GRS (Table 1). In order to evaluate

5 whether this association varied by menopausal status, we

compared the estimates for GRS for premenopausal

(defined as age at diagnosis< 50 years) and postmeno-

pausal (age at diagnosis� 50 years) women with ER-

positive breast cancer, using data from the COGS study.

10 We found no evidence for a difference in the hazard ratios

(P¼ 0.93).

No significant association with genetic score was

observed for ER-negative cases (HR¼ 1.00, 95% CI 0.89–

1.13; Table 1). This indicates that the observed association

15 between BMI and breast cancer survival for ER-negative

cases might not be causal. However, we had only 38%

power to detect the same magnitude of association as that

observed for ER-positive disease with a type I error of

5%.24 The number of events would need to be approxi-

20 mately 2000 for a power of 80% in ER-negative cases

(Supplementary Figure 1, available as Supplementary data

at IJE online). The differences between the estimated asso-

ciations with genetic score for ER-positive and ER-

negative were not significant (P¼0.07). The association

25 between BMI and breast cancer survival was also evaluated

using standard inverse-variance weighted meta-analysis of

summary statistics for the association of each BMI-

associated SNP with survival. The results were similar to

those based on individual-level data (Table 1).

30In order to test the validity of the exclusion restriction

assumption, we compared the results of a standard inverse-

variance weighted regression with the Egger regression for

the SNPs in the GRS (Figure 1A). The slope of the inverse-

variance weighted regression was 0.10 (95% CI 0.02–

350.19) which was similar to that from the Egger regression

0.10 (95% CI 0.11–0.32). The intercept from the Egger re-

gression was not significantly different from zero

(�0.0002, P-value¼ 0.99), suggesting no overall direc-

tional pleiotropy. A funnel plot of the minor allele

40frequency-corrected genetic associations with the BMI

against the individual causal effect estimates for each SNP

shows little evidence for asymmetry (Figure 1B).

We tested each GRS SNP for association with either

node status or grade or tumour size or stage. Sixteen of the

45BMI SNPs were associated with one or more of these vari-

ables. We then repeated the individual data MR analysis

using a GRS-78 that excluded these SNPs. The magnitudes

of the associations with ER-positive breast cancer were

similar to those for the results based on all the BMI SNPs

50(GRS-78: HR¼ 1.10, 95% CI 1.00–1.22, P¼ 0.06).

We explored a potential complex relationship between

smoking behaviour, BMI and prognosis by investigating

the association between BMI GRS and smoking behaviour

and between smoking behaviour and prognosis. There was

55a very weak correlation between GRS and number of

pack-years smoked (correlation coefficient¼ 0.017,

P¼ 0.004). However, there was no association between

smoking and prognosis (P¼ 0.47 and 0.79 for ER-positive

Figure 1. Genetic associations of BMI GRS and breast cancer survival for ER-positive cases. (A) Scatter plot of log hazard ratio of genetic associations

with breast cancer survival for ER-positive cases against log odds ratio of association with BMI. Slope of the regression lines: inverse variance-

weighted (dotted) and MR-Egger (dashed) provide an estimate of the predicted log hazard ratio per unit increase in BMI. (B) Funnel plot of minor al-

lele frequency (MAF)-corrected log odds ratio of genetic associations with BMI against log hazard ratio per predicted unit increase in BMI on breast

cancer survival for each genetic variant individually.
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and ER-negative disease, respectively). It is unlikely that

the association between smoking behaviour and BMI can

explain the association between BMI GRS and prognosis.

Discussion

5 We conducted a large Mendelian randomization analysis

in order to examine a potential causal effect of BMI on

breast cancer survival, using both individual data and sum-

mary data. We constructed a weighted BMI genetic score

comprising 94 BMI-associated genetic variants identified

10 in genome-wide association studies as instrumental vari-

ables. We also used an inverse-variance weighted method

and likelihood-based method to evaluate the combined as-

sociation of BMI-associated SNPs with breast cancer sur-

vival. The results from the summarized data were in

15 agreement with the results from two-stage regression based

on individual-level genotype data. Our findings suggest a

possible causal association between increased BMI and

reduced breast cancer survival for ER-positive cases. This

provides consistent evidence, along with other findings,

20 that increased BMI has been repeatedly associated with

ER-positive breast cancer.

A limitation of the analysis is that, even if the genetic

variants are not associated with confounders of the rela-

tionship between BMI and breast cancer survival for the

25 population as a whole (that is, the genetic variants are

valid instrumental variables for the population), the gen-

etic variants may be associated with these confounders for

the subpopulation of breast cancer patients. This is due to

conditioning on a collider: if BMI is a causal risk factor for

30 breast cancer risk, then conditioning on breast cancer risk

(by only including breast cancer patients in the analysis)

means that all common causes of breast cancer risk

(including the genetic variants and confounders) are condi-

tionally associated. In simple terms, even if genetic variants

35 are distributed randomly in the population as a whole,

they are not necessary randomly distributed in the ascer-

tained population of breast cancer patients. This may lead

to bias in the analysis, although it is unclear how serious

this bias might be. In order to evaluate the potential for

40 collider bias, we performed a simulation study in which we

simulated data on a genetic risk score and an exposure

(BMI in our example) for 100 000 individuals. For each in-

dividual, we simulated whether that individual had a posi-

tive breast cancer diagnosis as a binomial random variable.

45 For each individual with a positive breast cancer diagnosis,

we simulated the time-to-event for breast cancer progres-

sion as an exponential random variable. The genetic risk

score was simulated as a normally distributed random vari-

able, as was the confounder (assumed unmeasured), and

50 the independent error term. The probability of breast

cancer diagnosis was modelled as a function of the expos-

ure. This leads to the collider (selection) bias: individuals

with a breast cancer diagnosis (and therefore eligible for

the Mendelian randomization analysis) will have higher

55average levels of the exposure and confounder than those

not included. Whereas collider bias was observed for ex-

treme values of the effect of the risk factor on disease sta-

tus, it was not observed for values that are in line with the

effect of BMI on breast cancer diagnosis as observed in pre-

60vious investigations. Hence, although we would be cau-

tious not to generalize the result of this limited simulation

study to other analysis contexts, in this case there seemed

to be little potential for bias and type 1 error rate inflation

to arise due to collider bias.

65Whereas our results suggest a causal association be-

tween BMI and survival for women with ER-positive

breast cancer, BMI is, in itself, a complex phenotype. It is

conceivable that more specific phenotypes related to body

fat composition and distribution might be better predictors

70of outcome. Untangling such complex relationships with

survival will require data on the association between germ-

line genetic variation and specific body fat composition

and distribution phenotypes. Potential mechanisms under-

lying effects of obesity on breast cancer survival are medi-

75ators such as members of the insulin/insulin-like growth

factor family, adipocytokines secreted from adipose tissue

and inflammatory cytokines.23

Our study, based on data from multiple large-scale

genetic association studies of breast cancer, provides

80evidence that the reported association between BMI and

survival for ER-positive breast cancer is likely to be

causal. This suggests that BMI reduction in overweight

women with ER-positive breast cancer might improve

clinical outcomes.
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Supplementary data are available at IJE online.
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