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ABSTRACT: TC AC 28, 6-(1H-Indol-4-yl)-8-methoxy-1-
methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine-4-acetic
acid methyl ester, has been synthesized on a near-gram scale in
seven steps with notable improvements in the reported poor-
yielding last two steps enabling this key chemical probe
compound to be available for researchers.

■ INTRODUCTION
The 1,4-benzodiazepine scaffold is a well-established “privileged
scaffold” in medicinal chemistry,1−16 and we have an active
interest in synthesizing libraries of such compounds.17−21 Our
recently described triazolo-benzodiazepine derivative TC AC
28 is a potent, selective bromo and extraterminal bromodomain
inhibitor and a useful epigenetic tool compound, with a
crystallographically defined binding mode to the target protein
and displaying Kd values of 40 and 800 nM toward Brd2(2) and
Brd2(1), respectively.22,23 We sought to scale up the original
seven-step-protocol toward the racemic product (as in the
original manuscript) with the aim of improving the final two
problematic and low-yielding steps.23

■ RESULTS AND DISCUSSION
Our scale-up efforts (step 1, Scheme 1) started with a synthesis
of the methyl ester hydrochloride salt 2, which was formed in
virtually quantitative yield, followed by a cyclization step (step
2) to afford the isatoic anhydride 4.24

Reaction of the latter formed the benzodiazepinedione 5, and
we employed an ether trituration, as opposed to our earlier
reported chromatographic purification workup. This was
followed by treatment with Lawesson’s reagent25,26 and then
mercury-mediated cyclization to afford the triazolo-analogue 7
(steps 3−5). At this stage, no significant differences in yields
were noticed from our original report and we did not attempt
less toxic routes to 7 given that the yield was acceptable and the

chemistry scalable. However, the next two crucial steps were
vital in our aims to obtain approximate gram quantities of
product.
Step 6 (Scheme 2) was originally performed by combining

12 batches of ca. 170 mg of precursor 7, producing the key
chloroimidate intermediate 8, which was obtained as a white
solid in 29% yield (619 mg). Careful reexamination of this step
led us to significantly lower the amounts of POCl3 used, and we
were able to avoid the inefficient chromatographic step by
carrying out a trituration in Et2O (Table 1, entry 3). Indeed, we
were delighted to obtain a yield of 76% of 8 in near-gram
quantities (0.80 g) in a one-step protocol.
Buoyed by this result, we next examined the final Pd-

catalyzed Suzuki−Miyaura coupling reaction to install the
indolyl group in 9.27,28 Maintaining the original Pd(PPh3)4
catalyst, we obtained, by using a 1,2-dimethoxyethane (DME)/
water mixture with Na2CO3 as base, 9 in 49% yield (Table 3,
entry 2), which was scalable to 0.8 g of product (Table 2).

■ CONCLUSIONS

Overall, acceptable, near-gram quantities of the final product 9
have been synthesized, benefitting ultimately from improved
steps 6 and 7 of the original synthetic route (Table 3).
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■ EXPERIMENTAL SECTION

All commercially purchased materials and solvents were used
without further purification unless specified otherwise. NMR
spectra were recorded on a Bruker Avance III HD 400 MHz
spectrometer and prepared in deuterated solvents, such as
CDCl3 and dimethyl sulfoxide (DMSO)-d6. Liquid chromatog-
raphy mass spectra (LCMS) were acquired using an Agilent
6120 (600 bar) HPLC with Agilent 1290 MCT column
compartment oven and Agilent 6120 Quad Mass spectrometer,
and percentage purities were run on a Zorbax SB C18 2.1 × 50
mm2 1.8 μm column (0.1% aq formic acid, 0.1% formic acid in
MeCN 5−95%, 0.1% trifluoroacetyl (TFA)/MeCN, over 5
min, held at 100% for 2 min; flow rate, 0.5 mL/min) with UV
detector at 250 nm and bandwidth 100 nm. Purifications were
performed by flash chromatography on silica gel columns using
a Reveleris PREP purification system.
(DL)-Aspartic Acid Dimethyl Ester Hydrochloride (2).

To a suspension of DL-aspartic acid (50.00 g, 375.65 mmol) in
methanol (300 mL) at 0 °C, thionyl chloride (68.50 mL,
939.14 mmol, 2.5 equiv) was dropwise added at such a rate that
the temperature was maintained below 10 °C. Upon

completion of the addition, the reaction mixture was stirred
at reflux for 2 h and then allowed to cool to ambient
temperature and stirred overnight. The reaction mixture was
concentrated under reduced pressure, and the resulting viscous
oil was triturated from diethyl ether, filtered, and dried at 40 °C
under vacuum, affording the product as a white solid (74.00 g,
>99%). The spectral data were consistent with those
reported.29

5-Methoxyisatoic Anhydride (4). To a stirred solution of
2-amino-5-methoxy-benzoic acid 3 (15.00 g, 99.23 mmol) and
triethylamine (13.80 mL, 99.23 mmol, 1 equiv) in tetrahy-
drofuran (THF) (500 mL) at 0 °C, triphosgene (29.45 g, 99.23
mmol, 1 equiv) was portionwise added at such a rate that the
temperature was maintained below 5 °C. Upon completion of
the addition, the reaction mixture was stirred for 18 h at
ambient temperature. The reaction was recooled to 0 °C, and
H2O (15 mL) was added in a dropwise fashion at such a rate
that the temperature was maintained below 10 °C. After stirring
for a further 30 min at ambient temperature, the reaction
mixture was concentrated under reduced pressure. The residue
was triturated with H2O, and the resulting solid was collected

Scheme 1. Synthesis of Triazolo-Benzodiazepinone, 7
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by filtration and dried at 50 °C under vacuum, affording the
product as a brown solid (17.00 g, 89%). LCMS purity (UV):

99%, tR 3.24 min. The NMR data were consistent with those
reported.23

Methyl-2-(7-methoxy-2,5-dioxo-2,3,4,5-tetrahydro-
1H-benzo[e][1,4]diazepin-3-yl)acetate (5). 5-Methoxyisa-
toic anhydride 4 (45.00 g, 232.97 mmol) and DL-aspartic acid
dimethyl ester hydrochloride (46.04 g, 232.99 mmol, 1 equiv)
were suspended in pyridine (600 mL), and the reaction mixture
was stirred at reflux for 18 h. After cooling to ambient
temperature, the reaction mixture was concentrated under
reduced pressure. The residue was partitioned between ethyl
acetate (500 mL) and 2 M HCl (500 mL). The organic layer
was separated, and the aqueous layer was further extracted with
ethyl acetate (2 × 350 mL). Some solid material at the phase
boundary was collected by filtration, giving an initial crop of
product. The combined organic phase of the filtrate was dried
(MgSO4) and concentrated under reduced pressure. Tritu-
ration with diethyl ether afforded the product as a white solid
(27.30 g, 43%). LCMS purity (UV): 96%, tR 3.12 min. The
NMR data were consistent with those reported.23

(+/−)-Methyl-2-(7-methoxy-5-oxo-2-thioxo-2,3,4,5-
tetrahydro-1H-benzo[e][1,4]diazepin-3-yl)acetate (6). To
a suspension of the previous compound 5 (15.01 g, 53.91

Scheme 2. Synthesis of TC AC 28 (9)

Table 1. Step 6 Optimization

entry
POCl3
(equiv)

dimethylaniline (N,N-DMA)
(equiv) workup purification

isolated yield (8)
(%)

1 21 5.5 quench (Et3N) acetone/DCM (30−80%) column 20a

2 10 3 quench (water) extraction with CHCl3 trituration with diethyl ether 50
3 1.5 2 quench (water) extraction with CHCl3 trituration with diethyl ether 76

aMaterial decomposes on silica.

Table 2. Suzuki Coupling Optimization

entry catalyst solvent base conditions isolated yield (9) (%)

1 Pd(PPh3)4 dimethylformamide Et3N 100 °C, 24 h 27
2 Pd(PPh3)4 DME/water Na2CO3 85 °C, 2 h 49

Table 3. Comparison of Scale-Up vs Original Published
Route

step
S.M.
(g)a

prod.
(g)

yield
(%) S.M. (g)b

prod.
(g) yield (%)

1 50.07 74.00 >99
2 50.02 57.03 89 >99
3 45.00 27.30 43c 3.70 1.77 36
4 15.01 8.30 53 1.86 1.12 57
5 8.00 6.57 77d 2.20 2.15 91
6 0.99 0.80 76e 2.04 (0.17 × 12) 0.619 29
7 1.33 0.81 49 27−31

aScale-up (this work); S.M. = starting material, prod. = product.
bOriginal papers. cTrituration in ether as opposed to chromatography.
dReaction mixture quenched with NaHCO3, extracted with ethyl
acetate as opposed to no workup. ePOCl3 (1.5 equiv), DMA (2 equiv)
quenched with water, extraction with CHCl3, and trituration with
diethyl ether as opposed to POCl3 (21 equiv). DMA (5.5 equiv),
quenched with Et3N and purified by chromatography.
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mmol) in pyridine (265 mL), Lawesson’s reagent (19.62 g,
48.52 mmol, 0.9 equiv) was added, and the reaction mixture
was stirred at reflux for 6 h. The reaction mixture was cooled to
ambient temperature and concentrated under reduced pressure.
The residue was suspended in CH2Cl2 (3 × 300 mL) and
reconcentrated under reduced pressure. Trituration with
CH2Cl2 afforded the product as a pale yellow solid (8.30 g,
53%). LCMS purity (UV): 92%, tR 3.51 min. The NMR data
were consistent with those reported.23

(+/−)-Methyl-2-(8-methoxy-1-methyl-6-oxo-5,6-dihy-
dro-4H-benzo[f ][1,2,4]triazolo[4,3-a][1,4]diazepin-4-yl)-
acetate (7). To a stirred suspension of compound 6 (8.00 g,
27.18 mmol) and acethydrazide (6.04 g, 81.53 mmol, 3 equiv)
in THF (120 mL), acetic acid (80 mL) was added. The reaction
mixture was cooled to 0 °C, and mercury (II) acetate (12.91 g,
40.77 mmol, 1.5 equiv) was added to the reaction mixture
portionwise at such a rate that the temperature was maintained
below 5 °C. Upon completion of the addition, the reaction
mixture was stirred at 0 °C for 2 h and then allowed to warm to
ambient temperature and stirred for 48 h. The reaction mixture
was concentrated under reduced pressure, and the residue was
partitioned between NaHCO3 (sat. aq., 450 mL) and ethyl
acetate (300 mL). The aqueous component was separated and
extracted with ethyl acetate (2 × 300 mL). The combined
organic layer was dried (MgSO4) and concentrated under
reduced pressure. The product was collected as a white solid
(6.57 g, 77%) after flash column chromatography (95:5
CH2Cl2/MeOH). LCMS purity (UV): 95%, tR 3.15 min. The
NMR data were consistent with those reported.23

(+/−)-Methyl-2-(6-chloro-8-methoxy-1-methyl-4H-
benzo[f ][1,2,4]triazolo[4,3-a][1,4]diazepin-4-yl)acetate
(8). To a solution of compound 7 (0.99 g, 3.13 mmol) in
CHCl3 (20 mL), N,N-dimethylaniline (0.79 g, 6.26 mmol) and
POCl3 (0.72 g, 4.70 mmol) were added under inert
atmosphere, and the reaction was heated at 80 °C for 18 h.
After cooling to room temperature, the reaction was slowly
poured into lukewarm water (80 mL) with stirring. After
stirring for 15 min, it was diluted with CHCl3 (50 mL) and the
layers were separated. The aqueous layer was extracted with
further CHCl3 (50 mL). The combined organic layer was dried
(MgSO4) and concentrated under reduced pressure. The
residue was triturated with diethyl ether to afford an off-white
solid (0.80 g, 76%). The product was used without further
purification. LCMS purity (UV): 97%, tR 3.94 min. The NMR
data were consistent with those reported.23

(+/−)-Methyl-2-(6-chloro-8-methoxy-1-methyl-4H-
benzo[f ][1,2,4]triazolo[4,3-a][1,4]diazepin-4-yl)acetate
(9). To a stirred suspension of compound 8 (1.33 g, 3.97
mmol) in DME (14 mL), a solution of Na2CO3 (0.76 g, 7.17
mmol) in water (6 mL) was added, followed by the addition of
indole-4-boronic acid (0.77 g, 4.76 mmol) and Pd(PPh3)4 (0.31
g, 0.27 mmol), and the reaction was heated at 85 °C for 2.5 h.
After cooling to ambient temperature, it was filtered over celite,
and the filtrate was partitioned between EtOAc/water. The
layers were separated, and the organic layer was further washed
with water and brine. The organic layer was dried (MgSO4) and
concentrated under reduced pressure. The product was
collected as a white solid (0.81 g, 49%) after flash column
chromatography (rf = 0.35; 95:5 CH2Cl2/MeOH). 1H NMR
(400 MHz) CDCl3: δ = 8.40 (s, 1H), 7.52 (d, J = 8.0, 1H), 7.42
(d, J = 9.0, 1H), 7.24 (t, J = 3.0, 1H), 7.20 (dd, J = 3.0, J = 9.0,
1H), 7.15 (t, J = 7.5, 1H), 7.08 (d, J = 7.5, 1H), 6.92 (d, J = 3.0,
1H), 6.58 (s, 1H), 4.78 (dd, J = 5.5, J = 9.0, 1H), 3.81 (s, 3H),

3.72−3.78 (m, 4H), 3.63 (dd, J = 5.5, J = 16.5, 1H), 2.64 (s,
3H). 13C NMR (101 MHz, CDCl3) δ = 172.5, 168.1, 157.9,
156.4, 150.5, 136.5, 131.9, 130.8, 126.9, 126.4, 125.5, 124.3,
123.4, 121.2, 117.7, 116.5, 113.6, 103.1, 55.8, 53.4, 51.9, 36.9,
12.2. LCMS purity (UV): 99%, tR 4.12 min. Elemental analysis:
calcd for C23H21N5O3.

3/4H2O (%): C, 64.40, H, 5.29, N, 16.33,
found: C, 64.73, H, 5.12, N, 16.07. MS m/z (ES+) calculated
for C23H21N5O3 [+H]

+: 416.3 found: 416.3; m/z (ES−) calcd
for C23H21N5O3 [−H]+: 414.3 found: 414.3.
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