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In this work an expression for the solution of the Helmholtz equation for wedge spaces is derived.

Such propagation spaces represent scenarios for many acoustical problems where a free field

assumption is not eligible. The proposed sound field model is derived from the general solution of

the wave equation in cylindrical coordinates, using sets of orthonormal basis functions. The latter

are modified to satisfy several boundary conditions representing the reflective behaviour of wedge-

shaped propagation spaces. This formulation is then used in the context of nearfield acoustical

holography (NAH) and to obtain the expression of the Neumann Green function. The model and its

suitability for NAH is demonstrated through both numerical simulations and measured data, where

the latter was acquired for the specific case of a loudspeaker on a hemi-cylindrical rigid baffle.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4998573]
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I. INTRODUCTION

Analytical sound field models exist in a variety of math-

ematical forms that can differ to suit different types of

acoustic environments. Most rigorous analytical models are

solutions to the acoustic wave equation (at least within a

problem-specific region of validity). Some models are sim-

ply based on a specific coordinate system that best describes

a given problem. Some more specific models employ bound-

ary conditions to include diffraction of scattering objects

within the sound field. However, adding boundary conditions

to a problem quickly makes it difficult to formulate an ana-

lytical model, which is where numerical methods can be

applied instead. Especially models based on functional anal-

ysis are widely used for both sound field capture/analysis,1–9

reproduction/control,10–14 and nearfield acoustical hologra-

phy (NAH).15–20

In the absence of scattering objects, a typical approach

to modelling a specific acoustic scenario is to take the solu-

tion pertaining to the free and undisturbed field (within a

bounded volume) in the most suitable coordinate system for

the given problem. All sound sources are assumed to be

located outside of a bounded volume of interest and mod-

elled on the basis of the superposition of either plane waves

or point sources.2,21,22 These solutions may be sufficient for

many acoustic problems, yet those where scattering has a

significant impact on the sound field require more accurate

solutions. For example, the sound field models for acoustic

transducer arrays often need to be modified to account for

the scattering due to the array’s own physical presence in the

sound field. This is achieved by superimposing the specific

solution for the sound field radiated from a source distribu-

tion to the free field solution, so that the sum satisfies the

boundary condition.2–5,8,23,24

The example of the model for the sound field of acoustic

transducer arrays shows how introducing boundary condi-

tions to a problem can serve to better describe the character-

istics of a specific acoustic environment. Further examples

for acoustic environments that require several boundary con-

ditions are ducts and transmission lines,25,26 rooms,27,28 and

underwater shorelines.1,9,29 Asvestas et al.30 described the

wave equation as separable inside infinite wedges for both

the Dirichlet and the Neumann boundary condition, yielding

analytical expressions for the field of plane waves, and point

and line sources through an infinite series expansion and infi-

nite integration in the wavenumber domain. Buckingham1,29

adopted their point source model to the field of shoreline

underwater acoustics for different boundary conditions on

the faces of the wedge. Luo and Zhang9 recently published

exact solutions for both the Dirichlet and Neumann

boundary conditions in the infinite wedge, including a

numerical approach to integrate over potentially occurring

singularities.

Boundary conditions also play a role in the application

of Rayleigh’s First Integral formula to describe the radiation

from a piston integrated into an infinite baffle.26,28 While

this formula is a well established tool to model the radiation

from panels, loudspeaker drivers or similar structures, it is

still derived for a practically non-existent environment.

Williams2 introduced the concept of Rayleigh-like formulaea)Electronic mail: F.Hoffmann@soton.ac.uk
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to transfer the principle to other coordinate systems and

geometries.

In principle, these Rayleigh-like formulae project the

behaviour of one specific boundary to any other point in

space. NAH extends this concept to link two boundaries

within a given sound field through propagators, which makes

NAH particularly well suited for the use with coordinate sys-

tems in which the acoustic wave equation is separa-

ble.2,16,31,32 Their solutions enable propagation of holograms

either further away from, or back towards their source.

These forward or inverse problems, respectively, can be

solved through either an eigenvalue decomposition or a sin-

gular value decomposition of the solutions of the wave equa-

tion. Williams et al. presented an overview for planar and

cylindrical NAH in Ref. 31. Other notable NAH (related)

methods can be found in Refs. 33–39, e.g., equivalent source

method, inverse boundary element method, Helmholtz equa-

tion least-squares, and statistically optimised nearfield

acoustical holography. One prominent application of NAH is

to identify the vibration pattern on the surface of an

object,2,31,32 which makes it conceptually the inverse of

Rayleigh-like formulae. Another application is to investigate

the directivity of sound sources by looking at the pressure

field directly15,40 or by evaluating the intensity field from the

reconstructed pressure and velocity holograms.18

One key issue with NAH is that inverse problems are

known to suffer from ill-conditioning when very small

eigen/singular values meet measurement noise.31,41,42 In that

case, regularisation of the inverse can yield a stable solution,

which may come at the cost of spatial resolution. However,

regularisation techniques based on sparsity assumptions and

statistical optimisation have been proposed recently39,43,44

that have the potential of overcoming this issue.

This work introduces a radiation model for propagation

spaces that are relevant for many practical acoustical appli-

cations, e.g., the measurement of the radiation from a loud-

speaker (or any other acoustic source) in the corner of a

room or similar environments. It adopts the solution of the

wave equation in acoustical wedges by Asvestas et al.30 as

the basic model and extends it by yet another boundary con-

dition. The final model enables the deduction of a

Neumann–Green function (NGF) and the formulation of a

Rayleigh-like formula. Both provide tools to describe the

acoustic radiation from sources in rooms or other wedge-

shaped propagation spaces, e.g., a corner between two walls.

Furthermore, it is shown that the model can be used for

NAH. The findings are confirmed through both simulated

and measured data.

The remainder of this work is organised as follows.

Section II introduces the sound field model in the form of

the solution to the acoustic Helmholtz equation in infinite

wedge propagation spaces. On the basis of that model, a

Rayleigh-like formula and an NGF are derived in Sec. III.

Section IV defines the radial functions associated with the

combination of the spatial modes, enabling the study of the

propagation behaviour of individual wave components.

Using these radial functions, the propagators needed for the

reconstruction of both velocity and pressure from a mea-

sured pressure hologram are defined in Sec. V. In analogy to

Secs. III, IV, and V, Sec. VI presents the most important equa-

tions and expressions for the finite wedge. Section VII presents

simulated sound fields for two elementary types of source, one

of which is later used to provide a comparison to measured data.

The results of NAH with both simulated holograms and mea-

sured holograms obtained from a specially designed measure-

ment rig are presented and discussed in Sec. VIII before the

findings of this work are summarised in Sec. IX.

II. SOUND FIELD MODEL

A. Description of the geometry

The reference geometry used throughout this paper is

based on the cylindrical coordinate system shown in Fig. 1.

The propagation space is restricted to an infinite wedge by

introducing two planes, / ¼ /1 and / ¼ /2, with /2 > /1

and whose intersection coincides with the z-axis (see Fig. 1).

The angle between these planes is j ¼ /2 � /1. The sound

field is defined in the wedge space for which the angular

coordinate / 2 ½/1;/2�. All considerations presented in the

following pertain to the frequency domain, and the depen-

dency on e�ixt and the parameter x are omitted in all expres-

sions for the sake of brevity.

B. General solution of the Helmholtz equation in the
infinite wedge

The general solution of the Helmholtz Equation in cylin-

drical coordinates for an infinite wedge can be derived

through a separation of variables approach in the frequency

domain,2 yielding the expression

pðrÞ ¼
X1
n¼0

Unð/Þ
ð1
�1

AnðkzÞRnðkrrÞZðkzzÞdkz; (1)

with r ¼ ðr;/; zÞT .

The angular basis functions Unð/Þ depend on the

boundary condition that describes the acoustic properties on

the flanks of the wedge at / ¼ /1;/2, which can in principle

be a Robin boundary condition

ap r;/; zð Þj/¼/1;/2
þ b

@p r;/; zð Þ
@/

���
/¼/1;/2

¼ g r;/; zð Þ;

(2)

FIG. 1. Cylindrical coordinates with radius r, azimuth angle / and height z
with wedge boundaries at /1 and /2.
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for / ¼ /1;/2; a; b 2N0, and gð/Þ 2 C. The latter speci-

fies the acoustic impedance on the boundary. In this work,

only the impedances associated with the pressure release

condition pðrÞj/¼/1;/2
¼ 0 and with the rigid condition

ð@=@/Þp rð Þj/¼/1;/2
¼ 0 are considered. The benefit behind

this restriction is that either of them leads to a countable total

orthonormal set (TOS)45 of angular basis functions

Un /ð Þ¼ �n

sin
np
j

/�/1ð Þ
� �

; PressureReleaseBCð Þ

cos
np
j

/�/1ð Þ
� �

; RigidBCð Þ

8>>><
>>>:

(3)

with �n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dnÞ=j

p
, dn representing the Kronecker

Delta, n 2N0; and /1;/2 2 ½0; 2pÞ. In either case it holds

that the basis functions Unð/Þ are all real-valued and hence

describe exclusively standing wave components along the

/-direction.

This choice of Unð/Þ requires resolving Bessel’s equa-

tion to identify the radial basis functions, leading to solutions

in the form of Bessel, Neumann, and Hankel functions of

potentially non-integer order (compare to Ref. 2). Since this

work is devoted to the radiation of sound away from the

coordinate origin, given the time convention used in this

work, only the Hankel functions of the first kind are consid-

ered as radial basis functions, so that

Rn krrð Þ ¼ H 1ð Þ
np
j

krrð Þ: (4)

Note that this solution is the same for both boundary condi-

tions. The axial basis functions are defined through

Z kzzð Þ ¼ eikzzffiffiffiffiffiffi
2p
p ; (5)

with the relation between the radial and axial component of

the wave number

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

z

q
; (6)

where k ¼ x=c represents the wave number as a function of

the angular frequency, x, and the speed of sound, c.

The solution in Eq. (1) is identical to the one presented

in Refs. 1, 9, and 29 and the coefficients AnðkzÞ describe a

pressure field radiated from sources located within a cylinder

of radius rS around the origin.2 In that case, Eq. (1) is only

valid for r > rS. The particle velocity vector field

vðrÞ ¼ vrðrÞ � er þ v/ðrÞ � e/ þ vzðrÞ � ez; (7)

in the propagation space can be obtained from the pressure

model by exploiting Euler’s equation in the frequency

domain, iq0ck~vðrÞ ¼ $pðrÞ.
In preparation for the acoustical holography application

of the model, the spatial spectra corresponding to the pres-

sure and the particle velocity are introduced in Sec. II C.

C. Pressure and velocity spectrum

Let fpðrÞgr2K be a hologram of the pressure at a given

radius rH with

K :¼ fr : r ¼ rH;/ 2 /1;/2½ �; z 2 Rg: (8)

Taking the scalar product21,45 of the hologram and the mod-

el’s basis functions defines the spatial analysis transform, the

result of which provides the holograms’ spectrum through

Pnðkz; rHÞ ¼
ð/2

/1

ð1
�1

pðrH;/; zÞUnð/ÞZ�ðkzzÞ dz d/:

(9)

Exploiting the orthonormality relation of TOSs to invert the

expressions in Eq. (9) provides the corresponding spatial

synthesis transform

pðrH;/; zÞ ¼
X1
n¼0

ð1
�1

Pnðkz; rHÞUnð/ÞZðkzzÞdkz: (10)

Replacing the expression for the pressure in Eq. (11) by

the expression in Eq. (1), and exploiting the orthonormality

relation of orthonormal sets21,45 yields the relation between

the sound field coefficients and the pressure spectrum

AnðkzÞRnðkrrHÞ ¼ Pnðkz; rHÞ: (11)

This equation can be rewritten for AnðkzÞ, if jRnðkrrHÞj 6¼ 0;
which applies for the Hankel functions of the first kind

for 0 < jarHj <1 and rH 2 R, where a ¼ kr is defined in

Eq. (6).46

In accordance with what is shown for the pressure holo-

gram above, the expression for the spectrum of a particle

velocity hologram is given by

Vnðkz; rHÞ ¼
ð/2

/1

ð1
�1

vðrH;/; zÞUnð/ÞZ�ðkzzÞ dz d/:

(12)

Since vðrÞ is a vector, it follows that the resulting spectrum

must have the same dimensions.

At this point, the model for sound propagation in infinite

wedges is complete, however, some applications can benefit

from alternative formulations. Section III presents the deri-

vation of Rayleigh-like formula2 and NGF on the basis of

the developed model.

III. RAYLEIGH-LIKE FORMULA AND
NEUMANN–GREEN FUNCTION FOR INFINITE
WEDGES

Rayleigh-like formulae describe the pressure field radi-

ated from the velocity distribution on a given rigid boundary

V :¼ fr : r ¼ rS;/ 2 /1;/2½ �; z 2 Rg (13)

inside the propagation space and are thus conceptually simi-

lar to Rayleigh’s first integral formula.2 Since the velocity at
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V causes acoustic radiation, the entire boundary effectively

becomes a source. The developed model already supports

this premise through the choice of the radial basis functions

in Eq. (4). It can be assumed that the velocity of V is limited

to a radial component, i.e., vðrS;/; zÞ ¼ vrðrS;/; zÞ � er (see

Fig. 2).2 The nature of the velocity vðrS;/; zÞ implies that

Vnðkz; rsÞ ¼ Vnðkz; rSÞ � er. In this case, Euler’s equation

reduces to

Vn kz; rð Þ ¼ �i

q0ck

@

@r
Pn kz; rð Þ: (14)

Since the coefficients AnðkzÞ fully describe a sound field

inside the infinite wedge, it can be derived from Eq. (11) that

the relation between two pressure spectra at different radii is

Pn kz; rð Þ ¼ Rn krrð Þ
Rn krrSð ÞPn kz; rSð Þ: (15)

This result is conceptually analogous to NAH in other geom-

etries, e.g., spherical and cylindrical.2 Using the above to

replace Pnðkz; rÞ in Eq. (14) yields

Vn kz; rð Þ ¼ �ikr

q0ck

R0n krrð Þ
Rn krrSð ÞPn kz; rSð Þ; (16)

where R0n;jðxÞ ¼ ð@=@xÞHð1Þnp=jðxÞ. Provided that

krR
0
nðkrrÞ 6¼ 0, transposing Eq. (16) for the pressure spec-

trum Pnðkz; rÞ and exchanging r with rS yields

Pn kz; rð Þ ¼ iq0ck
Rn krrð Þ

krR0n krrSð ÞVn kz; rSð Þ; r � rS: (17)

The synthesis of the pressure pðrÞ at radius r from the result

in Eq. (17) substituted into Eq. (10) leads to the expression

for the pressure as a function of the velocity spectrum on the

boundary V

p rð Þ ¼ iq0ck
X1
n¼0

ð1
�1

Rn krrð Þ
krR0n krrSð ÞVn kz; rSð Þ

� Un /ð ÞZ kzzð Þdkz: (18)

An analytic expression for Eq. (18) is hard to find due to the

rather complex integral. Therefore it is common to limit the

bounds of integration and solve it numerically instead. When

attempting that, it is important to deal with the case when

kr ¼ 0 as it poses a singularity. To solve that issue, Luo and

Zhang proposed to marginally shift the integration path into

the complex plane in order to avoid the singularity.9

Furthermore, it is necessary to limit the integration bounds

for the numerical calculation. The error introduced by this

limitation can be controlled by considering the evanescent

behaviour of higher order components.2 This is more thor-

oughly discussed in Sec. IV.

Equation (18) can be used to derive both the Rayleigh-

like formula and the NGF for radiation problems based on

the normal velocity distribution vn on a boundary S ¼ V [ S0

(see Fig. 2), where

S0 :¼ fr : r > rS ; / ¼ /1;/2½ � ; z 2 Rg: (19)

The defining condition of an NGF is that it satisfies

ð@GN=@nÞjS ¼ 0; where n denotes the geometrical dimen-

sion that locally corresponds to the normal vector on S.

However, this condition is inherent to the flanking walls for

the developed sound field model. This entails that the NGF

depends solely on the boundary condition

@GN

@r

����
V

¼ 0: (20)

Referring to the Kirchhoff integral equation (KIE) as given

in Ref. 2, the Rayleigh-like formula for the infinite wedge is

based on the NGF and must be of the form

pðrÞ ¼ iq0ck

ð/2

/1

ð1
�1

GNðrjr0Þvnðr0ÞrSdz0d/0; (21)

with r0 ¼ ðrS;/
0; z0Þ. Using Eq. (12) to compare the

Rayleigh-like formula to the expression in Eq. (18) yields

the Neumann–Green function for the infinite wedge

GNðrjr0Þ ¼
X1
n¼0

ð1
�1

1

rS

Rn krrð Þ
krR0n krrSð Þ � Un /0

� �
� Z� kzz

0ð ÞUn /ð ÞZ kzzð Þdkz: (22)

To confirm that this results satisfies Eq. (20) and Eq. (22) is

derived with respect to r and the result evaluated for r 2 V,

yielding

@GN rjr0ð Þ
@r

����
r2V

¼
X1
n¼0

ð1
�1

1

rS
Un /0
� �

Z� kzz
0ð Þ

� Un /ð ÞZ kzzð Þdkz: (23)

From the completeness relation of total orthonormal sets,2,45

it follows that

@GN rjr0ð Þ
@r

����
r2V

¼ 1

rS
d /� /0
� �

d z� z0ð Þ: (24)

This confirms that the normal derivative of the NGF is

indeed equal to zero everywhere on the boundary V but at

the position of the singularity/point source r0 ¼ ðrS;/
0; z0ÞT

(compare to Chap. 8 in Ref. 2).

With the Rayleigh-like formula given in explicit form

through Eq. (21), it is now possible to describe the radiated
FIG. 2. Concept of the radiation from a curved boundary V with the given

velocity profile vrðrS;/; zÞ inside the wedge defined by the rigid boundaries S0.
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sound field from arbitrary source distributions on the bound-

ary V.

IV. RADIAL FUNCTIONS

The practical implementations of Eqs. (18) and (21)

require limitation of the integration bounds and truncation of

the sum. The following considerations are equally relevant

for both the Rayleigh-like formula and the NGF, but their

meaning becomes more intuitive when evaluating the

expression in Eq. (18).

The determining factor for the limitation/truncation is

the transfer function of the velocity modes on the boundary

to the corresponding pressure modes at a given observation

radius r. These transfer functions are also referred to as

‘radial functions’ and can be identified from Eq. (18) as

shown in Sec. IV A.

A. Identifying the radial functions

Considering that both axial and angular basis functions

are orthonormal, the radial functions for the infinite wedge

are identified as

Cn kz; rð Þ ¼ iq0ck
Rn krrð Þ

krR0n krrSð Þ : (25)

The dependency on kz stems from Eq. (6).

The radial functions describe a discrete spectrum in the

angular domain but are continuous in the kz-domain.

Comparing the model description at hand to the interrela-

tions of Fourier transform and Fourier series, this is not at all

surprising.

B. Properties

Figure 3 shows an example of Cn for r ¼ 2 m; rS

¼ 0:15 m; j ¼ p; and f ¼ 5 kHz. To help with legibility, the

plot is continuous along the n-axis, but only discrete points

of n are relevant. It can be observed that modal combinations

ðn; kzÞ with axial wave numbers kz > k are heavily attenu-

ated, i.e., they decay as evanescent wave components. The

same applies for evanescent angular modes n > krSj=p,

only their descent is not as steep as for the axial wave

numbers.2

The radial functions describe the physics of the propaga-

tion inside wedge spaces: While purely axial modes (n¼ 0)

cannot transition from evanescent into propagating modes as

the radius increases, purely angular modes (kz¼ 0) can. The

reason is simply that a mode n with a certain trace wave-

length at a given radius may be evanescent, so that across a

small arc section it “shuffles” air between its maxima and

minima, while at a larger radius, the same mode now has a

longer trace wavelength and propagates, no longer effecting

an acoustic “short circuit.” This principle does not hold for

axial modes, but it does for modal combinations ðn; kzÞ.
With view on the NAH performance prospect, this finding

suggests that having a small standoff distance, i.e., the gap

between hologram (measurement) plane and V, is less

critical for the NAH resolution in the /-domain than for the

resolution in the z-domain (see Sec. V).

C. Truncation and limitation of the solutions

As a consequence of the propagating modes accumulat-

ing around the origin of the n-kz-plane, the integration and

summation in Eq. (18) can be limited and truncated, respec-

tively, while maintaining a good approximation of the actual

sound field, provided that AnðkzÞ has a similar, finite magni-

tude for all combinations ðn; kzÞ.
In the case of Eq. (18), the integration limit Kz > k and

the final term of the truncated sum n¼N can be chosen such

that

~pðrÞ¼
XN

n¼0

ðKz

�Kz

Cnðkz;rÞVnðkz;rSÞUnð/ÞZðkzzÞdkz (26)

approximates the actual pðrÞ adequately by monitoring the

convergence of the integral and sum. This requires however

the a priori knowledge of all coefficients Vnðkz; rHÞ to deter-

mine the contribution of evanescent modes in comparison to

the propagating modes.

Not only is the evaluation of the radial functions useful

for the numerical calculation of sound fields, but they also

provide valuable information when attempting to

solve inverse problems.2,21 The latter are a key component

of NAH, whose methods are adapted for infinite wedges in

Sec. V.

V. HOLOGRAPHY IN INFINITE WEDGES

This section introduces the equations that enable acous-

tic holography, i.e., the reconstruction of pressure (and also

particle velocity) at any point within the wedge space from

the knowledge of a hologram fpðrÞgr2K (see Sec. II C).

Equation (15) links pressure spectra obtained from dif-

ferent radii for infinite wedges. Replacing the expression for

the pressure in Eq. (9) by Eq. (18) (evaluated at r¼ rH)

shows that the radial functions in Eq. (25) link the pressure

FIG. 3. (Color online) Magnitude of the radial functions Cnðkz; rÞ in dB

(referred to unity), r ¼ 2 m; rS ¼ 0:15 m; j ¼ p; f ¼ 5 kHz.
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spectra of the hologram at radius rH to the normal velocity

spectra at the radius rS, yielding

Pnðkz; rHÞ ¼ Cnðkz; rHÞVnðkz; rSÞ: (27)

A key component of NAH is to reformulate the equation as

an expression to calculate the velocity spectrum, which can

be obtained by multiplying both sides of the equation by the

reciprocals of the radial functions. However, the evanescent

nature of the higher order modes reflects in an extremely

small magnitude of the radial functions for modes outside

the “radiation circle” defined by k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z þ ðpn=jrSÞ2
q

(see

Sec. IV B). Accordingly, their reciprocals take extremely

large values, effecting heavy amplification of the corre-

sponding pressure modes. While no problem in theory, the

measurement noise of the hologram data in practice also

manifests itself in the derived pressure spectra. When

heavily amplified, the noise in the pressure spectrum can

severely corrupt the result for Vnðkz; rSÞ. This common issue

in the field of inverse problems can be addressed by intro-

ducing a Tikhonov regularisation to the reciprocal of the

radial functions, however, there are alternatives that may

provide better results in certain cases (see Sec. I). The regu-

larised solutions for the velocity spectra ~Vnðkz; rSÞ are then

given by

~Vn kz; rSð Þ ¼ C�n kz; rHð Þ
jCn kz; rHð Þj2 þ b2

V

P̂n kz; rHð Þ: (28)

The �̂ symbol on the pressure spectra denotes that they were

calculated from holograms measured at rH by evaluating Eq.

(9). A suitable regularisation parameter bV that is optimal for

minimising the impact of noise in the measured data can be

chosen through the L-curve analysis41,47 or other techniques.

From the literature it is known that a Tikhonov regular-

isation of the inverse problem is equivalent to a spatial low-

pass filtering of the synthesised sound field quantity

(pressure and velocity). Examples of such surface velocity

reconstructions from measured data and further practical

aspects of the mechanisms described above are presented in

the Sec. VIII.

Once the normal velocity spectrum has been obtained

from Eq. (28), the velocity on V can be reconstructed using

the synthesis equation

~vrðrS;/; zÞ ¼
X1
n¼0

ð1
�1

~Vnðkz; rSÞUnð/ÞZðkzzÞdkz (29)

[compare to Eq. (10)].

A. Considerations on the practical relevance

With Eq. (29) the radiation model is complete and theo-

retically all the mathematical expressions have been derived

to perform acoustical holography from measured data.

In practice, however, the expressions in Eqs. (1), (10),

(18), and even (26) require the uncountable set fZðkzzÞgkz2R

to enable the description of any arbitrary pressure field. This

is in analogy to the inverse Fourier transform, mapping from

the frequency domain to the time domain. An infinitely

spreading propagation space however hardly applies to real

life conditions; On the contrary, most of the time it is neces-

sary to consider the sound field in a room with a floor at z¼ z1

and a ceiling at z¼ z2, i.e., there is an additional boundary

condition for those values of z.
Section VI introduces the key expressions that were

derived for the infinite wedge in a form that pertains to the

finite wedge instead, with a rigid or pressure release bound-

ary condition at the floor and ceiling of the wedge.

VI. RADIATION MODEL AND ACOUSTICAL
HOLOGRAPHY FOR THE FINITE WEDGE

The propagation space is now further restricted to a

finite wedge by introducing two parallel planes z¼ z1 (the

floor) and z¼ z2 (the ceiling), effecting a wedge-shaped

wave guide. On top of the angular boundary conditions, the

model should also satisfy the pressure release boundary con-

dition, pðrÞjz¼z1;z2
¼ 0, or the rigid boundary condition,

ð@=@zÞpðrÞjz¼z1;z2
¼ 0, respectively, on the floor (z¼ z1) and

the ceiling (z¼ z2).

Following similar steps to those described in Secs. II,

III, and V, the most important expressions for the radiation

and acoustical holography have been derived and are pre-

sented in the remainder of this section.

A. Pressure radiated from the boundary V for finite
wedges

An expression similar to Eq. (18) that describes the radi-

ation from the boundary

V :¼ fr : r ¼ rS;/ 2 /1;/2½ �; z 2 z1; z2½ �g

is given through

p rð Þ¼ iq0ck
X1

n;m¼0

Rn km
r rð Þ

km
r R0n km

r rSð Þ
Vm

n rSð ÞUn /ð ÞZm zð Þ; (30)

km
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � mp

f

� �2
s

; m 2N0: (31)

The new TOS of basis functions that satisfies the boundary

conditions for the floor and ceiling is given through

Zm zð Þ ¼ lm

sin
mp
f

z� z1ð Þ
� �

; Pressure Release BCð Þ

cos
mp
f

z� z1ð Þ
� �

; Rigid BCð Þ

8>>>><
>>>>:

(32)

with lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dmÞ=f

p
and f ¼ z2 � z1, where z1; z2

2 R; z1 < z2; and m 2N0. This TOS is now countable,

likewise yielding countable sets of radial and axial wave

numbers, where the latter is given by fkm
z gm2N0

:¼ fkm
z ¼ ðmp=fÞ : m 2N0g. In this case, both Unð/Þ 2 R

and ZmðzÞ 2 R do not describe propagating waves along the

circumferential and axial direction, respectively, but
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standing waves instead. The transform from the spatial

domain to the modal domain for the pressure is given

through the double integral

Pm
n ðrÞ ¼

ð/2

/1

ðz2

z1

pðr;/; zÞUnð/ÞZmðzÞdzd/: (33)

When transforming the normal velocity, pðr;/; zÞ becomes

vðr;/; zÞ and Pm
n ðrÞ becomes Vm

n ðrÞ, respectively.

One major advantage of the expression in Eq. (30) over

the one in Eq. (18) is that it does not require (numerical)

integration. The summations should be infinite, however, the

series truncation error can be kept below a reasonable

limit since the higher order components of Unð/Þ and ZmðzÞ
become evanescent2 when ðnp=jÞ > km

r r. In that case the

contribution of these particular components may be negligi-

ble, depending on the observation radius r (see Sec. IV).

B. Neumann–Green function and Rayleigh-like
formula for finite wedges

Following a similar procedure as presented in Sec. III

yields the expression for the NGF in finite wedges

GN rjr0
� �

¼
X1

n;m¼0

1

rS

Rn km
r rð Þ

km
r R0n km

r rSð Þ

� Un /0
� �

Zm z0ð ÞUn /ð ÞZm zð Þ (34)

that likewise satisfies the boundary condition in Eq. (24)

everywhere but at the position of the singularity/point source

r0 ¼ ðrS;/
0; z0ÞT . The Rayleigh-like formula for the finite

wedge is then given by

pðrÞ ¼ iq0ck

ð/2

/1

ðz2

z1

GNðrjr0Þvnðr0ÞrSdz0d/0: (35)

C. Nearfield acoustical holography in finite wedges

The synthesis equation for the velocity reconstruction

from the corresponding spectrum is given through

~vrðrS;/; zÞ ¼
X1

n;m¼0

~V
m

n ðrSÞUnð/ÞZmðzÞ; (36)

where the velocity spectrum is calculated through

~V
m

n rSð Þ ¼
C�n

mp
f
; rH

� �

Cn
mp
f
; rH

� ������
�����
2

þ b2
V

P̂
m

n rHð Þ (37)

and the pressure spectrum is obtained from the measured

hologram p̂ðrH;/; zÞ through

P̂
m

n ðrHÞ ¼
ð/2

/1

ðz2

z1

p̂ðrH;/; zÞUnð/ÞZmðzÞdz d/: (38)

VII. SOUND FIELD SIMULATIONS

The numerical calculation of the pressure field was

accomplished on the basis of the truncated synthesis Eq.

(26), for the infinite wedge, and the correspondingly trun-

cated expression in Eq. (30) for the finite wedge. In the case

of Eq. (26) it is additionally necessary to numerically solve

the integration. For the results in this work, the truncated

integration was numerically solved using the trapezoidal

rule48 (first order approximation) with the integration limits

Kz ¼ dQk=DkzeDkz;Q 2 R � 1; and the step size Dkz for

the integration variable, where d�e denotes the ceiling opera-

tor. The ceiling operator ensures that all propagating wave

components are definitely part of the synthesis. The parame-

ter Q can be adjusted to control the amount of evanescent

components included in the calculation. Alternatively, the

integral in Eq. (26) can be solved using the inverse fast

Fourier transform,2,32 which is commonly done in the field

of NAH as it may increase the speed of the calculation. The

limits for the truncation of the sums over the angular and

axial components were chosen as N ¼ dQkrSe and M ¼
dQkf=pe; respectively.

Sections VII A and VII B introduce two elementary

types of sources mounted on the baffle for both propagation

spaces.

A. Point source model

The NGFs presented in Secs. III and VI B can be applied

to model the sound field of a point source on the rigid baffle

V located at ðrS;/
0; z0ÞT for the infinite and the finite wedge,

respectively. The resulting pressure field can be calculated

from Eqs. (21) and (35), respectively, where

vn r0ð Þ ¼ vr r0ð Þ ¼ 1

rS
d r � rSð Þd /� /0

� �
d z� z0ð Þ: (39)

Figure 4(a) shows the magnitude of the pressure field in the

xy-plane (z¼ 0) for an infinite wedge with j ¼ p=2; rS ¼
0:2 m; /0 ¼ p=4; and z0 ¼ 0. The interference between the

radiated waves and the reflections from the rigid walls gener-

ate a clear radiation pattern. Particularly two angles at which

destructive interference occurs point distinct nulls in the

radiation pattern.

The same scenario for a finite wedge with j ¼ p=2 and

f ¼ 2 m, where z1 ¼ �1 m and z2 ¼ 1 m, is shown in Fig.

4(b). In comparison to the field shown in Fig. 4(a), the field

in the finite wedge also suggests a weakened radiation in

those same directions where Fig. 4(a) shows distinct destruc-

tive interference, the attenuation however being nowhere

near as strong. This must be due to the now occurring reflec-

tions from the floor and ceiling that overlay their own inter-

ference pattern. The latter is responsible for increased

maxima and minima observed when increasing the radius

along the angle / ¼ /0.

B. Piston source model

Another type of source that is simple to simulate with

the given model is that of a piston source on the baffle. It can
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be modelled as a patch in the radial component of the veloc-

ity profile on the boundary V where vrðrS;/
0; z0Þ 6¼ 0. For a

patch located centrally on V, of angular width a and axial

width B, the velocity profile is given by the product

vr rS;/; zð Þ ¼ P
/� j

2
a

 !
P

z

B

� �
; (40)

where P denotes the rectangular function

P /ð Þ ¼
1; j/j � 1

2
;

0; j/j > 1

2
:

8>><
>>: (41)

The corresponding radial component of the velocity spectra

for the infinite and finite wedge, as calculated from Eqs. (12)

and (33) (see Sec. VI A), are

Vn kz;rSð Þ¼ aBsinc kz
B

2

� �
Z� kz0ð Þ � sinc

np
j

a
2

� �
Un

p
4

� �
(42)

and

Vm
n rSð Þ ¼ aBsinc

mp
f

B

2

� �
Zm

f
2

� �
� sinc

np
j

a
2

� �
Un

p
4

� �
;

(43)

respectively. In this case Eqs. (18) and (30), respectively,

are more suitable to directly calculate the sound fields.

The results for the infinite and finite wedge are shown in

Figs. 5(a) and 5(b), respectively. With the piston size in a

similar order of magnitude as the wave length, the fields in

Fig. 5 show similar characteristics as those in Fig. 4(a), yet

the attenuation with propagated distance is smaller than that

of the point source. The overall level difference between the

results for the point source and those for the piston source

stems from the leading factor aB in Eqs. (42) and (43).

VIII. MEASUREMENTS

In order to support the developed theory and model,

holographic measurements of piston-like sources were con-

ducted inside a quasi-infinite wedge with j ¼ p. The proto-

type of a hemi-cylindrical loudspeaker array49 with 15 Tang

Band W1–1070SH drivers was used as a radiating source

with rS ¼ 0:1426 m. The measured hologram data are com-

pared to simulated data, assuming the sound field of rectan-

gular pistons with an edge length equal to the diameter of

the drivers in the prototype, each located in the correspond-

ing positions. Pressure spectra were calculated from the mea-

sured holograms in order to perform NAH. The

reconstructed velocity profile of the radiating surface is then

compared to the underlying actual source profile.

Section VIII A introduces the measurement rig in detail.

A. Measurement rig

The prototype was placed on a large planar baffle inside

an anechoic chamber (see Fig. 6). Absorbing material was

placed at the edges of the planar baffle to reduce the reflec-

tions caused by the locally occurring change of acoustic

impedance. The prototype was extended with wooden ele-

ments to locally provide conditions similar to those of an

infinite hemi-cylinder.

Two sliding rails were fitted underneath the baffle, run-

ning parallel to the axis of the HCA on either side. Each held

two carriers: one pair to support a wooden arc with radius

rH ¼ 0:3 m, holding 30 G.R.A.S. 40PL array microphones

(see Fig. 6) and one pair to hold a strain relief feeding the

microphone cables to the array. This arrangement minimises

the acoustic obstruction posed by the measurement arc and

allows for iterative scanning of the sound field radiated from

the HCA along the vertical axis. The gaps in the baffle

exposing the two rails were covered with pieces of timber to

mitigate the acoustic impedance change occurring at the gap

and thereby reducing reflections.

B. Angular sampling and resolution

The S/ ¼ 30 microphones were arranged on the arc at

the angles /u ¼ p=S/ u� 1
2

� �
; u ¼ 1…S/; yielding a uni-

form sampling pattern. Given the nature of the angular basis

functions Unð/Þ with the fixed phase relation, it follows

from the sampling theorem that this microphone arrange-

ment allows for the recovery of orders up to

n ¼ NM ¼ S/ � 1 ¼ 29. However, Fig. 3 suggests that, up to

a certain frequency, high angular orders will have already

decayed below the noise floor once they have propagated to

the measurement aperture given their evanescent nature. To

FIG. 4. (Color online) Pressure field in dB (referred to unity) of a point

source located at ð0:2;p=4; 0ÞT , Q¼ 1.5, Dkz ¼ 0:01. (a) Infinite wedge. (b)

Finite wedge.

FIG. 5. (Color online) Pressure field in dB (referred to unity) of a piston

located at ð0:2; p=4; 0ÞT , Q¼ 1.5, Dkz ¼ 0:01; a ¼ p=6; B ¼ 0:1 m. (a)

Infinite wedge. (b) Finite wedge.
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investigate this further, one can look at the magnitude of the

integral over the axial component of the radial functions

CðCÞn ðr; rS; jÞ ¼
ðKz

�Kz

Cnðkz; r; rS; jÞdkz (44)

as a function of both radius and frequency. Figure 7 shows the

magnitude of CðCÞn normalised to the modal strength at r¼ rS.

This result suggests it is unlikely that orders n � 12 can be

observed above the noise floor when they reach the measure-

ment aperture at rH ¼ 0:3 m for frequencies below 10 kHz.

C. Vertical sampling and resolution

The measured holograms were obtained at z 2 ½�0:5; 0:5�
m, covering AZ ¼ 1 m with SZ¼ 51 samples. The sampling

positions along the z-axis are zw ¼ Dz½w� ðSZ þ 1Þ=2�; w ¼
1…SZ: It follows from the sampling theorem that the vertical

sample spacing enables capture of axial components kz up to

kz;max ¼ p=Dz 	 157:1 rad/m. Due to the finite hologram aper-

ture along the z-axis, a spatial eight-point Tukey window2 is

applied to the sampled data to attenuate otherwise salient

higher spatial frequency components, which would occur due

to the discontinuity at the edges of the hologram. The hologram

is then extended to an aperture length ranging from �3 to 3 m

by zero-padding, so that AZ ¼ 6 m and SZ¼ 301.

D. Analysis equations

The analysis equation for the finite measurement aper-

ture and set of samples is given by

P̂n kz; rHð Þ ¼ j
S/

XS/

u¼1

Un /uð ÞDz
XSZ

w¼1

Z� kzzwð Þp̂ /u; zwð Þ;

(45)

where p̂ð/u; zwÞ is the pressure measured at the uth microphone

at the height zw at the hologram radius rH ¼ 0:3 m, where the

spatial window has already been applied. Similar to the fre-

quency domain resolution of the discrete time Fourier transform

(DTFT), the pressure spectrum P̂nðkz; rSÞ can be obtained at an

arbitrary resolution in the kz-domain from the measurement data

p̂ð/u; zwÞ. For the acquired hologram, the analysis was

performed with a resolution of Dkz ¼ 2kz;max=SZ, matching that

of a discrete Fourier transform operation.

E. Reconstruction error measure

The difference between velocity reconstructions

obtained from the measured hologram and a simulated refer-

ence is quantified through the normalised mean squared
reconstruction error (NMSRE) on the reconstruction aper-

ture, given through

NMSRE ¼ 10 log10

XS/

u0¼1

XSZ

w0¼1

je /u0 ; zw0ð Þj2

XS/

u0¼1

XSZ

w0¼1

jvr /u0 ; zw0ð Þj2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; (46)

with eð/u0 ; zw0 Þ ¼ ~vrð/u0 ; zw0 Þ � vrð/u0 ; zw0 Þ, where vrð/u0 ; zw0 Þ
denotes the velocity reference obtained through holographic

reconstruction from simulated data acquired on the extended

measurement aperture to avoid zero-padding. The recon-

struction aperture consists of 201 samples in the /-domain

and 401 samples in the z-domain in the interval ½�0:5; 0:5�
m, each uniformly distributed.

F. Result for a single driver

The field radiated from a driver/piston located at

ðrS; p=2; 0:0315 mÞT is considered. The measured hologram

is compared against one hologram obtained from perturbed

and one from ideal simulation. The perturbed data are cre-

ated from the model by introducing normally distributed

positioning errors with a standard deviation of 4 mm in z-

direction and 2 mm in /-direction to the measurement points

and by adding noise to the calculated data. The signal-to-

noise-ratio (SNR) was set so that it matches that of the mea-

sured data, which was estimated on the basis of noise

FIG. 6. (Color online) Measurement rig with an array of 30 G.R.A.S. 40PL
array microphones fitted on an arch over the HCA with radius rH ¼ 0:3 m.

FIG. 7. (Color online) Modal decay in dB from source surface

(rS ¼ 0:1426 m) to hologram surface (rH ¼ 0:3 m) computed from CðCÞN

within the audible frequency band. The data are normalised to the modal

strength on the surface of the loudspeaker array.
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samples from the tail of the measured impulse responses as

suggested in Ref. 50.

The measured hologram was not absolutely calibrated,

so any given pressure data do NOT represent the actual sound

pressure level (SPL). The measured and the simulated ideal

holograms are put into perspective by normalising the former

to the latter at the hologram point closest to the driver.

Figure 8(a) shows the magnitude and phase of the differ-

ent holograms at f ¼ 8 kHz. Both magnitude and phase

show the effects of reflections from the walls at the angles

/ ¼ 0 and / ¼ p. Comparing the measured and the per-

turbed simulation data to the ideal model data, it can be

observed that the non-ideal holograms show artefacts due to

the various acquisition perturbations.

Figure 8(b) shows the magnitude of the pressure spectra

P̂nðkz; rHÞ of the non-ideal holograms. Due to the symmetry

of the setup, the spectrum of the ideal hologram would be

expected not to contain any contributions at odd angular

orders n. However, measurement noise and positioning

errors of the measurement rig and prototype contribute to an

intrinsic noise floor in the spectra, which adds to the promi-

nent contributions at even orders n.

Using the pressure spectra P̂nðkz; rHÞ, the radial compo-

nent of the velocity spectrum on the boundary of the proto-

type (rS ¼ 0:1426 m) can be obtained from Eq. (28) and

numerical evaluation of Eq. (29). It was observed from the

work with the measured data that the exact knowledge of

hologram radius rH and baffle radius rS is critical for accu-

rate reconstruction of the spreading of the radiation source

along the z-axis.

The holographic radial velocity reconstruction in Fig. 9(a)

shows a very clear maximum of vr for all three types of data at

the position of the driver. Note that the /-axis was translated

into a position x along the arc to ensure an undistorted image

of the diaphragm, where xð/Þ ¼ rS/; / 2 ½0; j�. The refer-

ence reconstruction is obtained from the ideal simulated

FIG. 8. (Color online) (a) Magnitude (in dB, referred to unity) and phase of

holograms for a driver at ðrS; p=2; 0:0315 mÞT ; f ¼ 8 kHz. (b) Spatial pres-

sure spectra (in dB, referred to unity) of (left) measured and (right) perturbed

simulation data.

FIG. 9. (Color online) (a) Holographic velocity reconstruction (in dB,

referred to unity) on the prototype surface, (b) corresponding velocity mag-

nitude spectra (in dB, referred to unity) from (left) measured and (right) per-

turbed simulation data.
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hologram on the extended measurement aperture after using

the same regularised inverse filter as for the measured holo-

gram. Compared to the reference, the reconstruction from both

measured and perturbed simulation data show artefacts that

must be attributed to measurement noise and position errors.

Figure 9(b) shows the corresponding magnitude spectra

in the modal domain. The lowpass-filter effect of the

Tikhonov regularisation can be clearly observed when com-

paring the velocity spectra to the pressure spectra of the

hologram data in Fig. 8(b). The background noise at high

values of n and jkzj is suppressed by the regularisation.

To ascertain the influence of the measurement perturba-

tions on the NMSRE, the reconstruction from the measured

hologram is compared against results obtained with perturbed

simulation holograms in the frequency range from 1 to 8.5 kHz.

The NMSRE for both cases is shown in Fig. 10. The results

based on perturbed simulated holograms are averaged over 20

samples for each frequency. It can be seen that, with a differ-

ence mostly smaller than 2 dB, the NMSRE results are of very

similar magnitude and development for both types of data.

G. Discussion

From the presented hologram data, it can be seen that

there is generally a good match between the measurements

and simulations, especially considering that the piston shape

of measurement and simulation is slightly different. Physical

effects such as the reflections from the rigid baffles at / ¼ 0

and / ¼ p can be observed in all holograms, as expected

from Sec. VII.

The results of the holographic velocity reconstructions

show an overall convincing match with the reference. It can

be seen that the extent of the area indicating the piston posi-

tion is not perfectly round but looks prolonged in z-direction.

This supports the hypothesis made in Sec. IV B, since the

spatial resolution (given the standoff distance) is sufficient to

clearly distinguish the driver’s diaphragm from the side

lobes in the /-domain yet not in the z-domain.

Other reconstruction artefacts might be attributed to

measurement noise and positioning errors (see below), as

well as a relatively short scanning aperture and a large stand-

off distance; a smaller hologram radius rH would provide a

better SNR and require less regularisation, thus increasing

the spatial resolution of the velocity reconstruction at the

baffle radius rS while reducing the side lobes. There is, how-

ever, a tradeoff since decreasing rH shifts spatial aliasing

effects to lower frequencies as higher order wave compo-

nents are stronger near the source. Furthermore, it should

also be noted that the reconstruction of the velocity from a

pressure hologram is conditioned worse than the reconstruc-

tion from a velocity hologram, as described by Jacobsen and

Liu in Ref. 51. This exacerbates the influence of noise and

requires more regularisation, effecting a lower reconstruc-

tion resolution.

Comparing the NMSRE of the holographic reconstruc-

tions from measured and perturbed simulation data suggests

that the biggest part of the reconstruction error can, with good

confidence, be attributed to imperfections in the measurement

rig and the prototype, e.g., positioning errors, the relatively

short aperture and noise. The difference in NMSRE may also

occur due to the effects of reflections from sudden impedance

changes (discontinuities of the baffle, the scanning arc and the

trenches housing the supporting rails) that contribute to the

measured data but cannot easily be modelled. This result sug-

gests that the discrepancy between the model and the measured

data are dominated by imperfections of the measurement rig

and the SNR and implies a good accuracy of the model for the

given geometry.

IX. SUMMARY AND OUTLOOK

Acoustic models for the propagation of waves and radia-

tion from sources in infinite and finite wedge-shaped propa-

gation spaces have been presented. From a basic expansion

through orthonormal basis functions proposed for both types

of propagation spaces, Rayleigh-like formulae as well as

corresponding NGFs were derived from a basic expansion.

These have been shown to provide simulated data that are

well-matched with hologram data obtained from measure-

ments. The identification of radial functions from the

Rayleigh-like formulae enabled the formulation of a set of

forward and inverse propagators that were then applied to

perform NAH on the basis of measured hologram data.

Using the proposed NAH method, reconstructions of the nor-

mal velocity on a hemi-cylindrical baffle obtained from mea-

sured and simulated holograms were presented to confirm

both the developed sound field model and its NAH suitabil-

ity. A criterion for truncation of the model’s series and inte-

grals has been proposed.

It was found from the measurement results that a smaller

standoff distance would produce more accurate results. The

spatial resolution that remained after regularisation reduced

the accuracy of the velocity sources along the vertical axis

by comparison to the actual driver layout. A hypothesis sug-

gesting that the angular resolution is less sensitive to an inad-

equate choice for the standoff distance than the axial

resolution was proposed and confirmed from the measure-

ment data.
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